
Citation: Hassan, M.U.; Steinnes,

O.-M.H.; Gustafsson, E.G.; Løken, S.;

Hameed, I.A. Predictive Maintenance

of Norwegian Road Network Using

Deep Learning Models. Sensors 2023,

23, 2935. https://doi.org/10.3390/

s23062935

Academic Editor: Kang Ryoung Park

Received: 23 January 2023

Revised: 17 February 2023

Accepted: 4 March 2023

Published: 8 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Predictive Maintenance of Norwegian Road Network Using
Deep Learning Models
Muhammad Umair Hassan * , Ole-Martin Hagen Steinnes, Eirik Gribbestad Gustafsson, Sivert Løken
and Ibrahim A. Hameed *

Department of ICT and Natural Sciences, Norwegian University of Science and Technology (NTNU),
6009 Ålesund, Norway; omsteinn@stud.ntnu.no (O.-M.H.S.); eirikgg@stud.ntnu.no (E.G.G.);
lsivert@stud.ntnu.no (S.L.)
* Correspondence: muhammad.u.hassan@ntnu.no (M.U.H.); ibib@ntnu.no (I.A.H.)

Abstract: Industry 4.0 has revolutionized the use of physical and digital systems while playing a vital
role in the digitalization of maintenance plans for physical assets in an optimal way. Road network
conditions and timely maintenance plans are essential in the predictive maintenance (PdM) of a
road. We developed a PdM-based approach that uses pre-trained deep learning models to recognize
and detect the road crack types effectively and efficiently. We, in this work, explore the use of deep
neural networks to classify roads based on the amount of deterioration. This is done by training
the network to identify various types of cracks, corrugation, upheaval, potholes, and other types of
road damage. Based on the amount and severity of the damage, we can determine the degradation
percentage and have a PdM framework where we can identify the intensity of damage occurrence
and, thus, prioritize the maintenance decisions. The inspection authorities and stakeholders can make
maintenance decisions for certain types of damages using our deep learning-based road predictive
maintenance framework. We evaluated our approach using precision, recall, F1-score, intersection-
over-union, structural similarity index, and mean average precision measures, and found that our
proposed framework achieved significant performance.

Keywords: predictive maintenance; anomaly detection; deep learning; highway predictive
maintenance

1. Introduction

According to Statistics Norway, there are a total of 54,899 km of county and national
roadways in Norway that the Norwegian Public Road Administration (NPRA) is respon-
sible for monitoring and ensuring are well-maintained. Predictive maintenance (PdM)
techniques are designed to determine the conditions of roadways in order to estimate when
maintenance should be performed [1]. Compared to traditional maintenance activities, such
as time-based preventative maintenance, PdM is conditions-based, where maintenance is
carried out based on real-time estimations of the degradation state of the roadway infras-
tructure fostering safety and cost-savings [2]. PdM is a proactive maintenance approach
that aims to predict equipment or asset failures before they occur and take preventative
actions to minimize the downtime and costs associated with repairs [3]. This approach is
widely used in many industries, including transportation and infrastructure.

In the context of roads, predictive maintenance can involve using various technologies
to monitor and assess road conditions in real time, detect potential defects or damage, and
predict when repairs or maintenance may be needed [4]. Some of the technologies that may
be used for this purpose include sensors and internet-of-things (IoT) devices that can be
embedded in the road surface to monitor factors, such as temperature, humidity, traffic
volume, and pavement strain [5]. In Norway, road surface inspection vehicles are deployed
to map the road surfaces two times a year to reduce risks associated with poor road quality
and schedule maintenance. Inspection vehicles are equipped with camera systems to

Sensors 2023, 23, 2935. https://doi.org/10.3390/s23062935 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s23062935
https://doi.org/10.3390/s23062935
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0001-7607-5154
https://orcid.org/0000-0003-1252-260X
https://doi.org/10.3390/s23062935
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s23062935?type=check_update&version=1

Sensors 2023, 23, 2935 2 of 29

measure the road surface conditions. Each collected image is labeled with geolocation.
Only a limited number of the collected images are manually analyzed based on reports
from road users because the manual inspection is a very tedious, time-consuming, and
inefficient process [1].

The fourth industrial revolution (Industry 4.0) strongly emphasizes the integration of
physical and digital systems [6,7]. PdM-based road inspection is a novel and demanding
concept to maintain the road’s infrastructure. A thematic diagram of PdM for roads is avail-
able in Figure 1. The information from the road network is required for the maintenance
plans and to make maintenance decisions. The assumptions define the maintenance plans,
while constraints restrict the scope of the plans. Road networks re vital in enabling ground
transport; consequently, the roads are directly linked to a wide range of economic and
social activities. Therefore, proposing maintenance plans for roads is crucial to preserve
both the capacity and value of road assets.

Figure 1. Conceptual design of PdM planning for road infrastructure.

Machine learning (ML) and deep learning (DL) models have encouraged PdM-based
approaches regarding maintenance decisions in road infrastructure [8]. This paper proposes
using pre-trained DL models to classify and categorize road surface distress. Here, a set of
DL models was trained to predict road conditions using a labeled dataset regarding the type
and severity of the road crack. When deployed, the trained model can automatically analyze
road conditions and decide which road sections are due for maintenance. In addition, it
can be used to document road conditions for contracting and estimating expected costs
accurately. Various variants of deep convolutional neural networks (CNNs) are used in our
proposed work. A CNN uses convolution layers to extract features from an image. The
result from a convolution layer is a feature map. A complete CNN is built up with several
convolutional layers, one or more hidden layers, and an output layer. The fully-connected
layers and output layers are tasked with making the final decision, i.e., road conditions in
terms of distress types and severity.

For training and testing, NPRA provided two datasets for two different roads; 2483
and 626 images, respectively. Domain experts visually inspected the two datasets to identify
and quantify existing road damage, distress types, and extent. Annotated images were
then used for training, testing, and validating the proposed DL models. Four distress
types were used in this work: alligator cracking, vertical cracking, horizontal cracking, and
potholes. Due to the scarcity of labeled images, pre-trained transfer learning models, such
as the faster R-CNN model [9] on the MS-COCO dataset [10] achieved the best accuracy.
Precision and recall could be significantly improved if more labeled datasets are available.
We used cloud computing services and APIs from Microsoft Azure. The developed API
allows multiple images to be uploaded and renders damages in a heatmap for easy use.

The objective of this research is to make DL-based models accessible through a server,
and the models should detect several types of road cracks in an effective way. We leveraged
the pre-trained DL models for detecting the different road crack types. The pre-trained
models performed better relative to other types of AI approaches for road crack detection.
Pre-trained models were trained on large datasets [11] with diverse road conditions, which
enabled them to recognize various patterns and features related to road cracks. This
pre-training on large datasets helped to generalize the model’s ability to detect cracks in

Sensors 2023, 23, 2935 3 of 29

different road conditions and environments. Pre-trained models are often based on DL
architectures, such as CNNs, which are specifically designed for image processing tasks [12].
This allows the model to extract and learn complex features from road images that can
be difficult for traditional ML approaches to detect. These models are often fine-tuned on
smaller datasets of road images with annotated cracks [13]. Pre-trained models are often
available as open-source code and pre-trained weights, making it easier for researchers
and developers to use and customize them for their specific needs [14]. This ease of access
can save time and resources, allowing developers to focus on customizing the model for
specific use cases. Overall, it has been demonstrated that pre-trained models perform better
for road crack detection due to their ability to recognize complex patterns; moreover, they
are highly flexible and can be easily customized.

The paper is organized as follows. The related works are presented in Section 2. We
provide the details of data collection and methods used in this work in Section 3, while the
framework development is discussed in Section 4. The evaluation metrics are presented in
Section 5. The results are demonstrated in Section 6. Section 7 provides a brief discussion
of our work. Finally, the concluding remarks are available in Section 8.

2. Related Works

The PdM plays a vital role in making early decisions to save maintenance costs.
Li et al. [15] proposed a preventive maintenance-based intelligent decision-making model
for asphalt roads using a particle swarm optimization and enhanced gated recurrent
neural network. The use of image processing and ML techniques has opened up new
channels for road crack detection methods. For example, Chun et al. [16] combined the
image processing and naïve Bayes classifier for the categorization of road pavement cracks
automatically. Zalama et al. [17] proposed a Gabor filter and AdaBoost training-based
method to identify road damage, while another work [18] focused on integrating the
traditional image processing and classification techniques for pavement crack detection.
Some metaheuristic ML approaches are combined with image-processing algorithms to
recognize road cracks automatically. In this regard, Hoang et al. [19] used the least-square
support vector machine with an artificial bee colony algorithm to achieve the maximized
accuracy in classifying different types of road cracks.

In addition to ML-based road crack detection approaches, DL-based models have also
been deployed to classify road damage detection. Wu et al. [20] proposed a classification
method using the U-Net architecture [21]. Qu et al. [22] developed a road crack detection
method by using the fine-tuned LeNet-5 to classify original images and VGG-16 [23] to
extract the features of road cracks in the detection phase. Li et al. [24] applied the adaptive-
cost sensitive loss functions for imbalance dataset problems in road crack detection. They
also developed a database of road pavement cracks in Beijing’s night scenes.

Djenouri et al. [25] proposed a method to detect road cracks using a graph convolu-
tional neural network (GCNN). They computed the visual features of roads using scale
invariant feature transformation (SIFT) and then analyzed a correlation between SIFT fea-
tures of similar images. A genetic algorithm supervises their developed GCNN to optimize
the hyperparameters of the network. They tested their model on seven different datasets.
Fan et al. [26] also studied the road crack detection problem and proposed a residual
attention-based UNet by introducing the balance loss. They solved the data imbalance
problem of images in the road cracks datasets.

A mobile CNN-based approach for detecting cracks in the road’s surface is proposed by
Dogan et al. [27]. The authors introduced a lightweight network based on MobileNetV2 that
can be used in mobile devices to detect road cracks. They trained their model on Crack500
dataset [28]. In another work, Xu et al. [29] compared faster R-CNN and mask R-CNN for
road crack detection. This work is closely related to our work because we also compare
deep learning models for detecting road cracks. An encode–decoder-based transformer
architecture is proposed to model the crack features in long-range dependencies [30]. A
local enhancement module was added to the transformers to add the capacity to learn from

Sensors 2023, 23, 2935 4 of 29

local features. The authors manually annotated the dataset to improve the robustness of
their proposed LETNet architecture.

Fang et al. [31] proposed an attention-based TransUNet for crack detection in road
surfaces. The TransUNet takes the detailed texture information of detected cracks from
the shallow layers and passes it to deep layers through skip connections. The authors
added a transformer block in the second last convolution stage to explicitly model the
long-range dependency of the image regions. They evaluated their method on four road
crack datasets. Sun et al. [32] detected the road cracks under noise conditions. They
produced a dataset with multiple noise crack images called NCD. After that, they leveraged
an adaptive bilateral filtering algorithm to reduce the noise influence. Ultimately, they
designed a network with two new modules forming a feature pyramid structure with a
feature enhancement strategy.

A distribution equalization learning methodology for road crack detection is presented
in [33]. The authors proposed a truncated expansion-based methodology for data augmen-
tation to relieve sample imbalance and developed weighted cross-entropy loss to avoid
ill-posed classifier issues. They proposed auxiliary interaction loss to alleviate the detected
image region cracks. The authors in [34] proposed a multi-scale classification network for
road crack detection by focusing on the feature maps of CNN. They added the weighted
values of pixels in corresponding image regions with different scales to learn features for
road cracks.

A method by Guo et al. [35] detected the road cracks by considering the image edges
as additional features and adapting the image gradient to produce precise crack boundaries.
The authors introduced an edge adaptation module in their proposed method and used
3D convolution for handling feature map relations in different channels. Dung et al. [36]
proposed a fully convolutional network (FCN)-based methodology for the semantic seg-
mentation of road cracks. Similar to our work, they used the pre-trained network for
image classification on the public road dataset. Then they trained the FCN network for the
semantic segmentation of cracks on a subset of annotated images.

3. Data and Methods

Recent technological advancements have made it feasible to conveniently monitor
the road’s infrastructure using different cameras, recognizing the road conditions by de-
tecting specific damage types to execute maintenance plans and decisions. A PdM-based
framework for monitoring and detecting road cracks is presented in Figure 2.

Figure 2. PdM-based framework for the maintenance of road networks.

The collected road data were monitored and saved in a database; they were then sent
for analysis. We used different ML- and DL-based pre-trained models to predict road
conditions, and maintenance plans were made for areas where the damage was detected.

Sensors 2023, 23, 2935 5 of 29

The NPRA inspects Norwegian roads (urban and county roads). During these inspec-
tions, NPRA gathers data by taking pictures of the roads and scanning them with a laser
scanner. The data used in this work were gathered during these inspections. During the
first part of the PdM application, the images from these inspections were used to train
and verify a CNN to identify cracks in the tarmac surface. The data were collected in
two phases: First, the roads were scanned with a LiDAR scanner that could scan with a
high density of points to analyze the depth of cracks and other road damages. Second, the
gathered images from two cameras mounted in front of the car (containing both the tarmac
surface and the surroundings) were used to analyze the environment close to roads. The
road administration also experimented with images behind the car, focusing only on the
road surface at a top-down angle. Both datasets were manually inspected to extract images
containing road damages before annotation. The images were then divided into training
and evaluation sets. The details of the datasets are as follows.

Veidekke dataset. These images were taken as part of a prototype setup where the
NPRA is implemented on all vehicles. The cameras are mounted at the vehicle’s rear,
angled approximately 20 degrees to the road surface, providing a top-down view. Due to
the images being part of a prototype setup, only 2144 images were gathered. Each image
was RGB with a resolution of 2046× 2046. The size of each image was roughly 500 kb
and contained metadata with GPS coordinates. We split this dataset into 561 training and
65 evaluation images.

P18 dataset. The P18 images were taken during the annual road inspection. Therefore,
the road administration databases contained several million images accumulated over
several years. Two cameras mounted at the front of the car gathered the images. Each
image was RGB with a resolution of 2703× 1018. The size of each image was roughly 350 kb
and contained metadata with GPS coordinates. We split the P18 dataset into 1932 training
and 551 evaluation images.

There were several meta-architectures used for road crack detection. We used the single
shot detector (SSD) [37] and faster R-CNN [9] in our PdM-based road crack detection framework.

SSD. A single shot detector is a feed-forward convolutional network, which means
that classification and detection are done in a single forward pass in the network (built to
be simple relative to other approaches). It was proposed to be faster than Faster R-CNN
while being more accurate [37]. SSD has become the standard in object detection, though
its impressive speed will (to some extent) limit accuracy [38]. The base network of an SSD
architecture is VGG-16 without the fully connected layers, which leaves 15 convolution
layers (see Figure 3). Training the SSD network requires an input image with labeled
ground truth boxes.

Figure 3. An illustration of the convolution and max-pooling layers of the VGG-16 network used in
the CNN.

Faster R-CNN. It consists of two modules; a deep fully convolutional network for the
region proposal and the detector from the fast R-CNN model. The region proposal network
(RPN) takes an image as input and gives a set of rectangular object proposals with the
corresponding objective scores as output. These outputs are then fed through the detector

Sensors 2023, 23, 2935 6 of 29

network, determining the class and score. The model can be trained in four steps using
an alternative training method, such as (i) training the RPN, (ii) training the faster R-CNN
detector network using the region proposals from the RPN, (iii) using the trained detector
to initialize a new RPN training session, where the shared convolutional layers become
fixed while tuning only the layers unique to the RPN, and (iv) keeping the convolutional
layers fixed, fine-tuning the unique layers of the detector network. The computational
cost is drastically reduced by sharing the convolutional layers between the RPN and the
detector network, resulting in reduced processing times.

4. Framework Development

Within TensorFlow’s object detection API, we created a generalized method of con-
figuring pre-trained models called the pipeline configuration. The pipelines consist of a
protocol buffer (protobuf) file that holds the settings for both the training and evaluation.
The protobuf file dictates which meta-architecture and feature extractor the model consists
of. Further, it decides both parameters and metrics in training and evaluation. It also
defines the input paths of the training, evaluation, and label map data. Additionally, the
pipeline configuration determines if the model should start training from a pre-trained
checkpoint or train from scratch.

The deployment of trained models with TensorFlow Serving for a website was
achieved using Docker, which utilizes the Google Remote Procedure Call (gRPC) pro-
tocol to communicate with a client script that provides images for prediction.

As seen in Figure 4, a trained model and its configuration file were exported into a
saved model and a variables directory. Preferably, the trained model should be frozen,
as this eliminates the meta-data and variables that are not necessary. Encapsulating the
model in a single file is not as computationally intensive. However, using the NVIDIA
docker makes it possible to utilize the GPU on the virtual machine. The serving image was
built within Docker. Moreover, the exported model was committed to Docker. Finally, a
TensorFlow model server was started to manage the model service. By running the model
server, the model was accessible from the client’s scripts.

Figure 4. Process flow for PdM deployment.

Serving clients. Several clients were created to use the deployed object detection
models. A back-end script in the web page that received uploaded images from the user
before sending them to the served model and receiving predictions was the most prominent.
Additionally, a script to auto-label road cracks was created. Both scripts were connected
through gRPC to Docker. The web page was intended to receive images from users, predict
road damage, and mark damage intensity on a map. A back-end script on the web page
had to request predictions from the served model.

5. Experimental Evaluation

We used the following metrics to evaluate the performances of deep learning models
for road crack detection.

Sensors 2023, 23, 2935 7 of 29

Precision. Precision is the ratio between the correctly classified examples and the
number of times the system has classified examples of a particular class.

Precision =
True Positive

True Positive + False Positive
(1)

Recall. Recall is the ratio between correctly classified examples and the total number
of examples for a class.

Recall =
True Positive

True Positive + False Negative
(2)

F1-score. The F1-score is a combination of precision and recall and is calculated by
taking the harmonic mean value from precision and recall. When calculating the mean
between ratios, the harmonic mean is more intuitive than the arithmetic mean and is used
when calculating the F1-score.

F1-score =
2× Precision × Recall

Precision + Recall
(3)

Intersection Over Union (IoU). IoU is a metric used to calculate the similarity be-
tween two arbitrary shapes A, B ⊆ S ∈ Rn. The IoU score is calculated using the follow-
ing formula:

IoU =
|A ∩ B|
|A ∪ B| (4)

Mean average precision. In object detection, IoU is the primary evaluation metric.
It is used to measure the degree of overlap between the ground truth, the labeled test
data, and the predicted bounding box. For object detection, the equation can be simplified
as follows:

IoU =
TP

FP + TP + FN
(5)

where

• TP—True Positive
• FP—False positive
• FN—False negative.

mAP is a mean average precision score that requires an IoU threshold of at least 0.5,
following Equation 6, and is used to calculate mAP in our work.

mAP =
1
N

N

∑
i=1

APi (6)

Structural similarity index. Measuring quality differences in images is a difficult task.
The perceived quality of the human visual system can be different than measured pixel
value differences and the signal-to-noise ratio. SSIM offers a method to quantify image
degradation as perceived changes in structural information. Given two non-negative image
signals, the similarity measure can serve as a quantitative measurement of the quality of
the second image [39]. The SSIM index is based on three comparisons: luminance, contrast,
and structure. The luminance comparison is a function of the estimated mean intensity
of the luminance difference between the two signals, denoted as l(x, y), where the mean
intensity is given by

µx =
1
N

N

∑
i=1

xi (7)

Sensors 2023, 23, 2935 8 of 29

Signal contrast is estimated by taking the standard deviation. In discrete form, this is
given by

σx =

(
1

N − 1

N

∑
i=1

(xi − µx)
2

) 1
2

(8)

The contrast comparison denoted by c(x, y) is the comparison of σx and σy. The
structure comparison denoted as s(x, y) is given by the signals normalized by their stan-
dard deviation.

x− µx

σx
(9)

and
y− µy

σy
(10)

The three measures were combined into an SSIM given in the following general form.

SSIM(x, y) = [l(x, y)]α · [c(x, y)]β · [s(x, y)]γ (11)

where α, β, γ > 0 are weights used to adjust the relative importance of the components.
The index ranges from 0 to 1, where 0 indicates complete dissimilarity and 1 indicates
perfectly identical patches [40]. If X and Y are the images to be compared, computed as
matrices of pixels, y, and x are a subset of local square windows located at the same spatial
position in both images [40]. SSIM is defined for local square windows of an image and can
be computed to evaluate the global image similarity by taking the mean SSIM for the entire
image, also known as MSSIM.

6. Results
6.1. Object Detection
6.1.1. Model 1—Faster R-CNN Inception ResNet V2 Astrous COCO

Model 1 was pre-trained on the MS-COCO dataset [10]. Additionally, it was fine-tuned
for 10,000 epochs on the Veidekke dataset provided in this work. In Table 1, it can be seen
that Model 1 achieved precision and recall of 67% and 79%, respectively, occurring 1765
times in the training set and 164 in the evaluation set, providing a decent base for the model
to learn. Table 2 presents the confusion matrix of Model 1.

Table 1. Evaluation results of Model 1.

Damage Precision@0.5IOU Recall@0.5IOU F1-Score@0.5IOU

Vertical crack 67% 79% 73%
Horizontal crack NaN 0% NaN
Alligator crack 75% 50% 60%
Pothole NaN 0% NaN

Table 2. Confusion matrix of Model 1.

Actual
Predicted

Vertical Horizontal Alligator Pothole None

Vertical 130 0 0 0 34
Horizontal 0 0 0 0 9
Alligator 3 0 3 0 0
Pothole 2 0 0 0 0
None 58 0 1 0 0

Figure 5 presents four examples, where the model correctly determined the presence
of vertical cracks. It did, however, detect the same cracks several times. This resulted in a
cluttered image filled with detection boxes. Given the low representation of other damages,

Sensors 2023, 23, 2935 9 of 29

the model struggled to detect them. Figure 6 provides insight into that specific problem. In
Figure 6a, the horizontal crack is completely ignored. Figure 6b depicts a pothole that is
mistakenly interpreted as a vertical crack.

As can be seen in Figure 7a, the mAP convoluted at roughly 30%. Likewise, Figure 7b
shows the average precision of ‘vertical crack’ detection to be slightly above 50%.

The resulting images from Model 1 showed that the model recognized vertical cracks
consistently. Figure 8 shows four examples of good vertical crack detection. In Figure 8a,b,
the model correctly marks the vertical cracks despite shadows obscuring the cracks, making
the task more challenging. Further, Figure 8c,d show the model detecting both larger and
smaller cracks.

(a) (b)

(c) (d)
Figure 5. Examples of poor vertical crack detection. The green boxes represents the vertical cracks.

(a) (b)
Figure 6. Examples of missed cracks. The green boxes represents the vertical cracks.

Sensors 2023, 23, 2935 10 of 29

(a) (b)
Figure 7. mAP and AP of the ‘vertical crack’ in Model 1. (a) Mean average precision. (b) Average
precision of the ‘Vertical Crack’.

(a) (b)

(c) (d)
Figure 8. Examples of good vertical crack detection. The green boxes represents the vertical cracks.

6.1.2. Model 2—Faster R-CNN Inception ResNet V2 Astrous COCO

Model 2 was pre-trained on the MS-COCO dataset, and fine-tuned for 100,000 time
steps on P18. Model 2 achieved an accuracy of 24%. It can also be seen that the models
were able to reach 50% average accuracy for the ‘horizontal crack’. The model stopped
improving after 30,000 timesteps.

Table 3 shows the respective precision and recall results produced by the evaluation
calculated at a 50% confidence and the IoU threshold. Table 3 shows that while ‘vertical
crack 1’ is the most represented class, it scores lower than the horizontal crack, which has
a smaller sample size. The confusion matrix in Table 4 shows that the model predicted
334 instances of damage without there being any damage present. Similarly, 580 labeled
damages were missed by the model. Further inspection revealed that ‘vertical crack 1’ was

Sensors 2023, 23, 2935 11 of 29

often mistaken for an ‘alligator crack’ or a ‘vertical crack 2’. This occurred 56 and 35 times.
Moreover, 46 instances of ‘vertical crack 2’ damages were mistaken as ‘vertical crack 1’.

Table 3. Table for precision and recall Model 2.

Damage Precision@0.5IOU Recall@0.5IOU F1-Score@0.5IOU

Vertical crack 1 66% 51% 57%
Vertical crack 2 55% 50% 52%
Horizontal crack 66% 70% 68%
Alligator crack 18% 33% 23%
Pothole 43% 26% 32%

Table 4. Confusion matrix of Model 2.

Actual
Predicted

Vertical 1 Horizontal Alligator Pothole Vertical 2 None

Vertical 1 598 11 56 4 35 480
Horizontal 4 89 1 0 2 32
Alligator 12 0 19 1 1 24
Pothole 3 1 0 6 0 13
Vertical 2 46 7 2 0 86 31
None 244 27 27 3 33 0

Figure 9 shows examples of good damage detection with the model. Figure 9a shows
that the model correctly detects five vertical cracks, as well as one ‘alligator crack’. Figure 9b
shows the model detecting two ‘vertical crack 2’ instances. Moreover, both Figure 9c,d
show the model detecting ‘vertical crack 1’ and ‘vertical crack 2’, despite shadows covering
parts of the roads.

(a) (b)

(c) (d)
Figure 9. Good damage detection. The green and yellow boxes represent the vertical cracks while
cyan colored boxes are the horizontal cracks.

The model struggles when an image contains several cracks that are in close proximity
to each other, as seen in Figure 10. Through closer inspection of both Figure 10a,b, it

Sensors 2023, 23, 2935 12 of 29

becomes apparent that the reason for the intertwined boxes stems from the high frequency
of cracks. The model subsequently misses several cracks in both figures. At first glance, the
processed images look cluttered and incorrect. A closer inspection shows that the predicted
boxes do in fact represent cracks.

(a) (b)
Figure 10. Cluttered detection—Model 2. The green and yellow boxes represent the vertical cracks
while cyan colored boxes are the horizontal cracks.

As shown in Figure 11a,b, the model was good at distinguishing between different
classes, despite the low accuracy scores and the mixed results of the confusion matrix.
Moreover, Figure 11c shows how the model can miss distinct cracks, such as the horizontal
crack depicted. At times, the model detects the same crack as two instances as seen in
Figure 11d.

(a) (b)

(c) (d)
Figure 11. Damage detection—Model 2. The green and yellow boxes represent the vertical cracks
while cyan colored boxes are the horizontal cracks.

In total, 580 out of 1564 labeled damages were not detected by the model. Moreover,
334 predicted damages were non-existent.

Sensors 2023, 23, 2935 13 of 29

6.1.3. Model 3—Faster R-CNN ResNet 101 KITTI

Model 3 was pre-trained on the KITTI dataset [41] and fine-tuned on P18. The model
achieved 15% mAP during evaluation. Table 5 shows Model 3 achieving relatively good
precision and poor recall scores.

The confusion matrix located in Table 6 shows that 608 ‘vertical crack 1’ damages were
missed. In 130 instances, the model wrongly predicted ‘vertical crack 1’ for non-existing
damages. Further, the model mistook ‘vertical crack 1’ for ‘vertical crack 2’ 28 times.
Similarly, 44 of the ‘vertical crack 2’ instances were classified as ‘vertical crack 1’. This
means that roughly 25% of the more severe vertical cracks were predicted as less severe
types of vertical damage. In total, 752 out of 1564 labeled damages were not detected by
the model. Finally, a total of 165 predicted damages were non-existent.

Table 5. Precision and recall of Model 3.

Damage Precision@0.5IOU Recall@0.5IOU F1-Score@0.5IOU

Vertical crack 1 72% 42% 53%
Horizontal crack 77% 48% 59%
Alligator crack 23% 28% 25%
Pothole 80% 17% 28%
Vertical crack 2 63% 47% 54%

Table 6. Confusion matrix of Model 3.

Actual
Predicted

Vertical 1 Horizontal Alligator Pothole Vertical 2 None

Vertical 1 497 8 43 0 28 608
Horizontal 8 62 1 0 3 54
Alligator 10 0 16 0 1 30
Pothole 2 0 0 4 0 17
Vertical 2 44 1 2 1 81 43
None 130 10 9 0 16 0

When looking through the images presented in Figure 12, it appears that the model
is fairly good at detecting cracks covered by shadows. Figure 13 shows that the model
has low sensitivity, therefore resulting in a lot of smaller damages being missed. Figure 14
shows how the model missed several larger and more substantial cracks. It also mistakenly
classified a shadow as a crack, as shown in Figure 14a.

6.1.4. Model 4—Faster R-CNN Inception ResNet v2 Atrous Oidv4

Model 4 was pre-trained on the Oidv4 dataset [42], and fine-tuned on P18. It achieved
a mAP of 14%. Through further evaluation, in Table 7, it is evident that while precision
is high, recall is low. This results in a low F1-score, hence the poor performance. Further
inspection of the confusion matrix, in Table 8, shows that 829 of 1564 labeled damages
were not detected by the model. This means that only 46.9% of the labeled damages were
recognized, not considering whether or not they were classified correctly. Finally, a total of
163 predicted damages were non-existent.

The model produced several good evaluation images, as seen in Figure 15. Figure 15a,c,d
indicates good capability of correctly detecting different classes while also being precise
with labels. However, in Figure 16a, an example is shown where the model missed a
distinct horizontal crack. In Figure 16b, the model wrongly detected a wet part of the road
as an ‘alligator crack’. Figure 17 provides an example of how the model can sometimes
predict cracks within cracks.

Sensors 2023, 23, 2935 14 of 29

(a) (b)

(c) (d)
Figure 12. Good damage detection—Model 3. The green and yellow boxes represent the vertical cracks.

(a) (b)
Figure 13. Low sensitivity in damage detection—Model 3. The green and yellow boxes represent the
vertical cracks while cyan colored boxes are the horizontal cracks.

(a) (b)
Figure 14. Poor damage detection—Model 3. The green and yellow boxes represent the vertical
cracks while cyan colored boxes are the horizontal cracks.

Sensors 2023, 23, 2935 15 of 29

(a) (b)

(c) (d)
Figure 15. Good damage detection—Model 4. The green and yellow boxes represent the vertical
cracks while cyan colored boxes are the horizontal cracks.

(a) (b)
Figure 16. Missed damage detection—Model 4. The green and yellow boxes represent the vertical
cracks while cyan colored boxes are the horizontal cracks.

Figure 17. Mixed boxes—Model 4. The green box represents the vertical cracks while cyan colored
box is the horizontal cracks.

Sensors 2023, 23, 2935 16 of 29

Table 7. Precision and recall of Model 4.

Damage Type Precision@0.5IOU Recall@0.5IOU F1-Score@0.5IOU

Vertical crack 1 72% 38% 50%
Horizontal crack 79% 32% 46%
Alligator crack 19% 23% 21%
Pothole 100% 13% 23%
Vertical crack 2 56% 51% 53%

Table 8. Confusion matrix of Model 4.

Actual
Predicted

Vertical 1 Horizontal Alligator Pothole Vertical 2 None

Vertical 1 449 6 33 0 39 657
Horizontal 2 41 0 0 3 82
Alligator 9 0 13 0 3 32
Pothole 1 1 1 3 1 16
Vertical 2 38 1 4 0 87 42
None 122 3 16 0 22 0

6.1.5. Model 5—SSD MobileNet V1 COCO

The SSD MobileNet V1 network pre-trained on the MS-COCO dataset was fine-tuned
on Veidekke. All images were resized to 400× 400 and augmented with random horizon-
tal flips.

In Table 9, it can be seen that the model predicted vertical cracks correctly 68 times. It
missed 92 times and wrongly classified 4 times. Alligator cracks were correctly predicted
five times and wrongly predicted once. The precision, recall and F1-score of Model 5 are
presented in Table 10.

The training lasted 4 h and 41 min, resulting in a mAP of 40%. The calculated precision
and recall values of the fine-tuned model with a 50% IoU and confidence threshold, are
shown in Table 11.

Table 9. Confusion matrix of Model 5.

Predicted
Actual

Vertical Horizontal Alligator Pothole None

Vertical 68 0 4 0 92
Horizontal 2 1 0 0 6
Alligator 1 0 5 0 0
Pothole 1 0 0 0 1
None 12 0 1 0 0

Table 10. Precision and recall Model 5.

Damage Type Precision@0.5IOU Recall@0.5IOU F1-Score@0.5IOU

Vertical crack 1 81% 41% 54%
Horizontal crack 100% 11% 20%
Alligator crack 50% 83% 62%
Pothole NaN 0% NaN

6.1.6. Model 6—SSD Inception V2 COCO

The SSD Inception V2 model was pre-trained on the MS-COCO dataset and fine-tuned
on Veidekke. All images were resized to a 400 × 400 resolution and augmented with
random horizontal flips.

Sensors 2023, 23, 2935 17 of 29

After 3.5 h of training and 20,000 timesteps, it achieved 20% mAP. The calculated
precision and recall with 50% confidence and IoU threshold are depicted in Table 11. The
corresponding confusion matrices, at the same thresholds, are listed in Table 12.

Table 11. Precision and recall Model 6.

Damage Type Precision@0.5IOU Recall@0.5IOU F1-Score@0.5IOU

Vertical crack 1 92% 29% 44%
Horizontal crack NaN 0% NaN
Alligator crack 100% 17% 29%
Pothole NaN 0 NaN

Table 12. Confusion matrix of Model 6.

Predicted
Actual

Vertical Horizontal Alligator Pothole None

Vertical 47 0 0 0 117
Horizontal 0 0 0 0 9
Alligator 3 0 1 0 2
Pothole 0 0 0 0 2
None 1 0 0 0 0

6.1.7. Model 7—SSD MobileNet V1 COCO

Model 7 was pre-trained on the MS-COCO dataset and fine-tuned on P18. The model
achieved 5% mAP. As seen in Table 13, most damages were not detected by the model.
Table 14 shows a low recall score that indicates that the model rarely detects damages.
Conversely, when the damages are detected, the model has high classifying precision.

Table 13. Confusion matrix of Model 7.

Actual
Predicted

Vertical 1 Horizontal Alligator Pothole Vertical 2 None

Vertical 1 120 2 0 0 2 1060
Horizontal 8 3 0 0 0 117
Alligator 7 0 1 0 0 49
Pothole 0 0 0 4 0 19
Vertical 2 26 3 0 0 21 122
None 25 0 0 1 6 0

Table 14. Precision and recall for Model 7.

Damage Type Precision@0.5IOU Recall@0.5IOU F1-Score@0.5IOU

Vertical crack 1 65% 10% 17%
Horizontal crack 38% 2% 4%
Alligator crack 100% 2% 4%
Pothole 80% 17% 28%
Vertical crack 2 72% 12% 21%

6.2. VGG16

The following results are achieved using the Veidekke dataset split into two classes for
binary classification. Results from the pre-trained VG166 network can be seen in Figure 18
and in Tables 15 and 16. The model miss-classified 105 out of 261 images in Table 15.

Sensors 2023, 23, 2935 18 of 29

Figure 18. VGG16 binary training statistics. The statistics for the model remain close to static
throughout the training phase.

Table 15. Confusion matrix for VGG16 binary classification.

Predicted

Damage No damage

Damage 15 60
No damage 45 141

Table 16. Classification report from testing on 261 images.

Condition Precision Recall F1-Score Support

Damage 0.25 0.20 0.22 75
No damage 0.70 0.76 0.73 186
Macro average 0.48 0.48 0.48 261
Weighted average 0.57 0.60 0.58 261

In Table 16, the ‘Damage’ precision is low, while ‘no damage’ is much higher. This is
also present in the F1-score, which represents the combination of precision and recall. The
F1-score is given by Equation (3).

6.3. Autoencoder
Convolutional Autoencoder

During the testing of the first model, the center layer, also known as the latent space
representation, had a resolution of 16 × 16.

The reconstruction is blurry, as seen in Figure 19.

Sensors 2023, 23, 2935 19 of 29

Figure 19. Model performance of reconstruction visualized, with the bottom road showing the
reconstructed images and the top row showing the original image. This involves tests of no-, low-,
and medium-damage classes.

Table 17 shows the results sampled from five images of each class. It indicates that
there is little to no difference in the reconstruction error between classes. The * indicates
the images with more than half the surfaces covered in shadows.

Table 17. Sampled results for five images per class.

Samples
No Damage Low Damage Medium Damage High Damage

MSE SSIM MSE SSIM MSE SSIM MSE SSIM

1 0.22 77.07 0.22 77.41 0.24 77.18 0.27 79.06
2 0.21 78.64 0.23 80.11 0.22 78.66 0.22 81.66
3 0.14 86.17 0.15 84.51 0.18 82.13 0.16 85.05
4 0.28 74.43 0.15 81.57 0.37 69.24 0.36 70.53
5* 0.17 86.76 0.11 89.66 0.16 85.25 0.3 83.34

Table 18 shows the SSIM averaged over 150 samples for each of the four classes.
Differences between classes are marginal. Training the model for an additional 10 epochs
shows very small changes in the overall SSIM, as witnessed in Table 19.

Table 18. Average mean over 150 samples.

No Damage Low Damage Medium Damage High Damage

SSIM 0.76897 0.78254 0.78887 0.81260

Table 19. SSIM averaged over 150 samples for a model training 20 epochs. ∆ indicates the change in
the results given by ∆ = results 20 epochs − results 10 epochs.

No Damage Low Damage Medium Damage High Damage

SSIM 0.76745 0.78532 0.78851 0.81507
∆ −0.00152 +0.00278 −0.00036 +0.00247

Using the same five sampled images from each class as before, the results shown in
Table 20 indicate little to no change.

Sensors 2023, 23, 2935 20 of 29

Table 20. Sampling of images with a slight difference in results for five images per class.

Samples
No Damage Low Damage Medium Damage High Damage

MSE SSIM MSE SSIM MSE SSIM MSE SSIM

1 0.21 77.19 0.22 77.4 0.24 77.17 0.27 79.06
2 0.15 82.19 0.22 80.12 0.22 78.75 0.22 81.65
3 0.14 86.19 0.14 84.61 0.18 82.13 0.16 85.04
4 0.23 74.54 0.15 81.56 0.36 69.28 0.34 70.56
5* 0.16 86.79 0.1 89.72 0.16 85.31 0.3 83.42

Changing the hyperparameters of the model to increase the latent space representation
resolutions shows a clearer reconstruction of the image in Figure 20.

Figure 20. Model performance with adjusted hyperparameters visualized, with the bottom road
showing the reconstructed images and the top row showing the original image. These are for tests of
no-, low-, and medium-damage classes.

The reconstruction scores seen from the image are shown in Table 21. The averaged
SSIM value in Table 22 indicates small differences between classes, with ‘high damage’
scoring slightly higher than the three others.

Table 21. Hyper reconstruction of images from each class.

Samples
No Damage Low Damage Medium Damage High Damage

MSE SSIM MSE SSIM MSE SSIM MSE SSIM

1 0.1 84.5 0.09 85.57 0.09 85.71 0.09 86.87
2 0.07 88.19 0.07 89.56 0.08 86.64 0.07 88.2
3 0.05 90.72 0.06 89.56 0.07 88.26 0.06 89.98
4 0.11 82.71 0.07 87.1 0.15 79.98 0.14 81.0
5* 0.04 91.91 0.03 93.37 0.05 90.63 0.07 89.94

Table 22. SSIM averaged over 150 samples for a modified model (training 10 epochs).

No Damage Low Damage Medium Damage High Damage

SSIM 0.85113 0.84675 0.86361 0.88097

Training the model for another 10 epochs showed a slight increase in reconstruction
accuracy for all categories in Table 23.

Sensors 2023, 23, 2935 21 of 29

Table 23. Final reconstruction of images from each class with a slight difference of results.

Samples
No Damage Low Damage Medium Damage High Damage

MSE SSIM MSE SSIM MSE SSIM MSE SSIM

1 0.08 87.23 0.08 88.35 0.07 88.44 0.07 89.31
2 0.05 90.29 0.06 89.92 0.06 89.25 0.06 90.32
3 0.04 92.35 0.05 91.43 0.06 90.34 0.05 91.75
4 0.09 85.85 89.29 0.06 0.13 83.72 0.11 84.58

5* 0.03 93.44 0.03 94.47 0.04 92.26 0.06 91.67

7. Discussion

Through transfer learning, object detection has shown promising results regarding
automatic damage detection. The fine-tuned models in this work were able to detect
damages. However, the overall accuracy was lacking, even though the models might have
been interpreted as accurate when inspecting validation images.

Two object detection approaches were tested, faster R-CNN and SSD. Both were
pre-trained on different datasets, fine-tuned on different datasets, and used different meta-
architectures. Faster R-CNN is generally considered slow and precise, while SSD provides
faster and less accurate predictions.

Through inspection of predicted images, the faster R-CNN model predictions are good.
The SSD network, model 5, had the highest mean average precision, but it overlooked
several damage types entirely.

Some of the inconsistencies in all models were from the dataset. Both datasets had
small amounts of data, and some classes were underrepresented in the datasets. In the
P18 dataset, all models struggled to determine the difference between the two vertical
cracks. Furthermore, most models fine-tuned on the Vegdekke dataset failed to learn the
underrepresented classes properly.

In this work, seven object detection models were fine-tuned to detect road surface
damage. Four models consisted of a faster R-CNN network, while the other three used SSD
networks. All models were able to recognize damages to different degrees. A comparison
between them can be seen in Table 24. In this section, we discuss several of the key elements
within object detection models. The most prominent are as follows:

• The dataset used for pre-training.
• The dataset used for fine-tuning.
• The meta-architecture of the models.

Section 7.1 discusses how the meta-architecture influences results. In Section 7.2, we
discuss the choice of pre-training datasets and how it affects the results. The datasets
and how the tanning data impacts this work are briefly discussed in Section 7.3. Finally,
Section 7.4 draws all topics together to discuss the model’s performance compared to the
goal of this work.

Table 24. Comparison of the fine-tuned object detection models.

Name Architecture Feature Extractor Pre-Trained Dataset Dataset mAP

Model 1 Faster R-CNN Inception ResNet V2 Astrous MS-COCO Vegdekke 30%
Model 2 Faster R-CNN Inception ResNet V2 Astrous MS-COCO P18 20%
Model 3 Faster R-CNN ResNet 101 KITTI P18 15%
Model 4 Faster R-CNN Inception ResNet V2 Astrous Oidv4 P18 14%
Model 5 SSD MobileNet V1 MS-COCO Vegdekke 40%
Model 6 SSD Inception V2 MS-COCO Vegdekke 20%
Model 7 SSD MobileNet V1 MS-COCO P18 5%

Sensors 2023, 23, 2935 22 of 29

7.1. Meta-Architectures

Throughout this work, two meta architectures were used for object detection. SSD
and faster R-CNN are two well-known architectures commonly used in the research com-
munity. We discuss different meta-architectures and how they affect the results in the
following subsections.

Faster R-CNN is considered a precise architecture with low computational times. New
approaches, such as SSD, further improve the detection speed by reducing the computa-
tional cost. SSD outperforms faster R-CNN in most situations. Smaller objects are the only
exception where R-CNN can compete, even beating SSD in some cases.

The models in Table 24 are compared regarding the generated mAP scores. Admittedly,
mAP will not accurately measure a model’s performance. As described earlier, mAP
estimates a model’s precision. The limitation of this metric is that it only considers how
well-predicted boxes fit with the ground-truth boxes. The mAP score ignores damages that
are missed by the predictions. In addition, the imbalanced datasets can affect the mAP if
the model only learns some of the classes. The impacts of the datasets are discussed in
Section 7.3.

Seven models were trained in this work, three of which used SSD, while the remaining
four used faster R-CNN. In order to properly compare the two architectures, the models
should be compared when fine-tuned on the same dataset. As shown in Table 24, the
highest mAP score at 40% was reached by Model 5 using SSD architecture. Likewise, the
highest-scoring faster R-CNN model was Model 1, achieving a mAP of 30%. Both models
were fine-tuned on Veidekke and pre-trained on MS-COCO. It should be noted that they
did not use the same feature extractor.

In order to properly examine the models, the confusion matrices and evaluation
images must be thoroughly inspected. When comparing Tables 2 and 9, it is evident that
Model 5 detected fewer cracks than Model 1 while having a higher precision. It is hard to
determine why one seems more reserved than the other. It could be due to the architectural
differences between the two models. In addition, it could be due to differences in the
feature extractor. Ultimately, both models detect cracks and give decent representations of
road conditions.

Given that mAP can be affected by imbalanced datasets, a closer look at the precision
and recall for each class gives insight into the models. Tables 1 and 10 show that both
models properly learned how to predict vertical cracks.

Model 1 predicted 79% of the actual vertical cracks (recall), while 67% of the predicted
vertical cracks were correct (precision). Converted to percent, Table 2 shows that 50% of
alligator cracks and 100% of potholes were predicted as vertical cracks. If classes were
ignored, Model 1 attained 76% recall and 70% precision. In comparison, Model 5 achieved
41% recall and 81% precision. If classes were ignored, the Model 5 recall increased to 45%,
and precision increased to 86%.

When inspecting the two models, it becomes apparent that there is an optimization
issue. One way of indicating which model performs better is to calculate the F1-score. This
is a mathematical compromise between precision and recall. Due to the low number of
damage in some classes, it is sensible to look at the accuracy score for each class separately.
Table 1 shows that Model 1 achieved a 72% F1-score. Likewise, Table 10 shows Model 5
attained a 54% F1-score. Despite having a lower mAP, Model 1 achieved an overall better
vertical crack detection performance than Model 5.

Due to using different feature extractors, it is difficult to measure how much the
architecture affects these results. It is not unreasonable to assume that faster R-CNN’s
heavier computing algorithms give it some advantages in the detection of smaller cracks.
To see if this statement has any merit, the models trained on P18 must be inspected. Model
2 and Model 7 will be used to compare these two meta-architectures. Model 2 is identical
to Model 1, except it is trained on P18 instead of Veidekke. Likewise, Model 7 is identical to
Model 5 but trained on P18.

Sensors 2023, 23, 2935 23 of 29

In the P18 dataset, images were taken close to parallel to the road surface. It captured
both the road and the surrounding environment. This caused each image to contain less
road surface. Thus, cracks appear smaller than in Veidekke. Typically, this would favor a
faster R-CNN compared to the SSD architecture. Model 2 (faster R-CNN) achieved 20%
mAP, a 10% reduction compared to the same network trained on Veidekke. Similarly, Model
7 (SSD) decreased by 35%, reaching a mAP of 5%. As stated earlier, mAP does not fully
represent a model’s performance. Further inspection of the confusion matrices is required
to understand how the two models perform.

The low recall scores in Table 14 indicate that Model 7 (SSD) struggled with detecting
actual damages. Table 13 also shows that the vertical crack was only detected 10% of the
time. Model 7 rarely predicted any damage; even when it did, it achieved a rather low
accuracy. As a result, the F1-score of the vertical crack was only 17%.

Model 2 performed much better at detecting damages. Vertical 1, Vertical 2, and
horizontal cracks achieved F1-scores of 57%, 52%, and 67%, respectively. Both models
experienced performance hits when changing datasets. The dataset-specific changes are
discussed in Section 7.3. It is interesting to see that Model 7, using the SSD architecture,
had the highest drop in precision. SSD can struggle with smaller objects, which seems to be
aligned with the decline.

As previously mentioned, comparing meta-architectures with different feature ex-
tractors is challenging. Even so, comparing the four models, the meta-architecture effects
became apparent. SSD struggled when the size of the damages decreased. Moreover, faster
R-CNN detected the most damage in both datasets. It was more sensitive, which caused
images with considerable damage to be cluttered, leading to a lower precision. This was
observable in evaluation images. The images containing the most damaged parts of the
road were specifically handpicked to train and test the model. In a real-world application,
inspection images often contained no or low amounts of visible damage. This could help
make cluttering a negligible factor, thus increasing precision. When Model 1 and 2 start
cluttering, the road might already be critically damaged. However, these models must
undergo further testing in order to conclude whether the more sensitive models would
increase their accuracy in a real-world application.

7.2. Pre-Trained Dataset

The pre-trained dataset is one of the main components of transfer learning. By training
on a dataset, the outer layers learn to recognize features. When a model is fine-tuned,
it may already know how to extract some features. The similarity between the datasets
determines how much of the learned features are translatable. This determines how long
a model has to be fine-tuned to learn the features of the new dataset. This sub-section
discusses the relative impacts of the pre-trained dataset.

There are three different pre-trained datasets used in this work. In order to properly
compare the effects of datasets used for pre-training, other variables must be taken into
account. Model 2 and Model 4 are two R-CNN networks where the only difference is the
pre-trained dataset, as seen in Table 24. This provides a sound basis for comparison.

First off, in Table 24, it can be seen that Model 2 pre-trained on MS-COCO achieved a
20% mAP. Model 3, pre-trained on the Oidv4 dataset, achieved a 14% mAP. This indicates
that the difference in the score was caused by using different datasets in pre-training. By
inspecting the two confusion matrices in Tables 4 and 8, it is evident that Model 4 has a
lower recall than Model 2. This suggests that Model 4 struggles with recognizing features
when compared to Model 2.

In transfer learning, the model should eventually reach the same precision no matter
the initialized weights, given that the dataset is big enough. If the dataset is small, the
weights provided from pre-trained models will impact the performance of a fine-tuned
model. The datasets used in this work are considered small. In order to examine the effects
this might have on precision, further inspection is required.

Sensors 2023, 23, 2935 24 of 29

Oidv4 contains approximately 9 million images, with 14.6 million annotated labels [42].
MS-COCO contains 300,000 images with 1.5 million object instances [10]. Admittedly, de-
termining which transferred features help the models in this work is challenging. However,
through logical reasoning, one could assume that by having similar features, images con-
taining roads could be better suited. Since it is time-consuming to scour through all the
millions of images, another assumption must be considered. Images of cars, motorcycles,
buses, and trucks would typically include roads. Statistics for these categories are included
in a graph provided by MS-COCO [10]. Oidv4 only provides a category called “vehicles”,
which includes objects such as airplanes. However, those statistics did shed some light on
the differences between the datasets.

Approximately 145,000 vehicle-related images were found in the MS-COCO dataset.
This is estimated in their work [10]. Oidv4 is estimated to have a little under 100,000 images
of vehicle “boxes” in their dataset, read from figures on their website [42]. This is a rough
estimation. There are several images in both datasets that contain roads without vehicles. It
becomes evident that MS-COCO contains about 50% more road vehicles than Oidv4. This
can have caused the pre-trained model to learn more road-related features from MS-COCO.
It is important to point out that each image of a road can contain a varying amount of
vehicles. Regardless, the estimated occurrences of vehicles in the two datasets indicate, to
some extent, how well-represented roads are.

Model 3 was trained with a different feature extractor compared to Models 2 and 4.
This makes it hard to measure the effects of using the KITTI dataset. KITTI is commonly
used in autonomous vehicle projects and consists only of images containing roads. How-
ever, the 2D object detection dataset is rather small, at only 14,999 images with 80,256
annotated objects [41]. Given the different feature extractors, no conclusion can be drawn
on whether KITTI is better or worse than the other two datasets. When comparing the
number of road objects in all three datasets, MS-COCO appears to have the most. It could
indicate that MS-COCO is the better option for transfer learning regarding road damage
detection. The data on the topic are inconclusive and are speculated. Even so, some of
the differences in precision between Model 2 and Model 4 must be accounted for by the
pre-trained dataset used.

7.3. Dataset

Datasets used during fine-tuning enable models to learn new classes quickly. Two
datasets were created in this work. In this section, three elements are discussed. First, the
annotation of datasets; second, how P18 compares to Veidekke; and third, how annotations
and the two datasets impacted each model’s performance.

P18 contained 2483 images with a total of 6303 damages. Veidekke contained 626 im-
ages with 2113 damages. Even in the context of transfer learning, both datasets are small. It
might be challenging for models to learn the important features (as discussed in Section 7.2).
Veidekke was part of an experimental test setup and had limited data. Moreover, P18
is used in NPRA’s yearly road inspections, and they gathered several million images of
roads. However, NPRA was amid the GDPR adjustments and could only provide a limited
amount of images.

Both datasets were annotated using LabelImg. Veidekke was the first dataset to be
annotated. Four classes were defined (as seen in Table 25). By following NPRA’s guidelines
of damage classification, each of the damage classes labeled should have three degrees of
severity. Given the small amount of data, there was no classification of severity in Veidekke.
Five classes were defined when annotating P18, introducing severity 1 and 2 to the vertical
crack class (as seen in Table 26).

Sensors 2023, 23, 2935 25 of 29

Table 25. Damage occurrences in the Veidekke dataset.

Crack Types Training Evaluation

Vertical crack 1765 164
Horizontal crack 66 9
Alligator crack 85 6
Pothole 16 2

Table 26. Damage occurrences in the P18 dataset.

Crack Types Training Evaluation

Vertical crack 1 3530 1184
Vertical crack 2 392 172
Horizontal crack 503 128
Alligator crack 233 57
Pothole 81 23

The number of damage occurrences and consistency in annotations affect how a fine-
tuned model performs. Since three non-professionals labeled both datasets, there is likely
to be a degree of inconsistency. For instance, the distinction between severity 1 and 2 was
loosely defined and highly subjective. This can make it challenging for fine-tuned models
to separate between the degrees of severity within each class correctly. In the confusion
matrix of Model 2 (Table 4), it can be seen that the model rarely mistakes ‘vertical crack 1’
for ‘vertical crack 2’. On the contrary, ‘vertical crack 2’ is often mistaken for ‘vertical crack
1’. As mentioned, the model might suffer from inconsistent labeling. Conversely, due to
the similar nature of both vertical cracks 1 and 2, it is reasonable to expect some wrong
predictions between the two damages. Increasing the amount of data may help the model
learn to separate the severity degrees better.

The Veidekke dataset does not contain enough instances of potholes, alligator cracks,
and horizontal cracks for the model to learn correctly. When inspecting Model 1’s confusion
matrix (Table 2), it can be seen that neither potholes nor horizontal cracks are predicted.
Moreover, alligator cracks are inconsistent, with one wrong, three correct, and three miss-
classified predictions. Comparing Model 1 with Model 5 shows that neither models were
able to properly learn potholes and horizontal cracks. Model 5 achieved a 62% F1-score for
alligator cracks. Due to only six alligator cracks in the evaluation set, it does not provide a
good basis to conclude how a model would perform. The model may have learned that
alligator cracks consist of several small vertical cracks. Given the above, it is reasonable to
propose that Veidekke either needs fewer classes or more data to improve precision.

The volume of each class in P18 (Table 26) is skewed toward ‘vertical crack 1’. However,
the overall number of damages is increased compared to Veidekke. The confusion matrices
of the P18 models (Tables 4, 6 and 8) show all five classes being learned. The models still
struggle to distinguish between classes. For instance, ‘alligator crack’ and ‘vertical crack
2’ are often entangled with ‘vertical crack 1’. This might be due to the skewed balance of
the training data. Moreover, the lower image resolution can make it difficult to distinguish
between damages.

Naturally, any road dataset will contain a larger amount of vertical cracks than other
damages. Potholes are rare because they are critical to road safety and will often be fixed
immediately. In future datasets, it may be worth gathering more data to increase the
amount of rare road distresses.

Veidekke has a higher amount of pixels defining road surface than P18. The images
in Veidekke have a resolution of 2046× 2046, while the images in P18 have 2703× 1018
pixels. Combined with the fact that roads cover larger portions of images in Veidekke,
they provide more details than P18. This might account for the higher accuracy achieved
in Veidekke models. A single degree of severity in vertical cracks can also give Veidekke
an advantage.

Sensors 2023, 23, 2935 26 of 29

Cha et al. [43] found that CNN performance improvements stagnated after 10,000
training images. While their research was based on a CNN, it may be reasonable to assume
that an object detection model would need similar amounts of data. This suggests that both
Veidekke and P18 need increased amounts of data. Maeda et al. [44] gathered their dataset
containing 163,664 road images, 9053 of which were annotated with 15,435 bounding boxes.
This led to high precision on several types of damages using an SSD MobileNet model. As
discussed in this section, both datasets have great potential for improvement by adding
more data.

It is revealed in this section that Veidekke holds two key advantages over P18;

• Higher image resolution.
• Road covering the entire image.

Even so, the Veidekke dataset was under-represented. In order to properly test the
strengths and limitations of both datasets, further research should be conducted with
additional data.

7.4. Performance

Determining how well the models perform can be difficult. Sections 7.2 and 7.3 dis-
cussed how certain aspects affected the model performances. How the models performed
compared to the goals of this work have yet to be discussed. Before work on the work
started, a few goals were created:

• Models should be accessible through a server.
• Models should be able to detect several types of road distress.

The model could be used as an integrated service on any online platform to achieve
these goals. Calculating a road surface condition index would also be possible through
the model.

All models can be served through TensorFlow Serving, as described in Section 4. The
docker environment remained stable throughout testing and could potentially be used in
production. The second goal was only partially successful. None of the models performed
well enough to be integrated into a production solution. Several issues must be solved
before they are ready for use.

Given that rare damages are severely under-represented in Veidekke, the mAP scores
are not representative. Instead, the precision of the classes should be considered. Model 1
achieved the highest precision for vertical cracks with 50% average precision and a 73%
F1-score. Given the above, it is likely that Veidekke has the most significant potential for
road damage detection.

8. Conclusions

The NPRA collects roughly five million images of road surfaces in Norway during
their yearly surveys. Inspecting the images has primarily been conducted manually. In this
work, we developed a PdM-based road inspection framework in which the DL models were
applied to analyze these images to provide a concrete overview of road conditions. The
detection and classification of road distress damages can be achieved using object detection
methods. All models were poor at differentiating between classes and degrees of severity.
This problem can be reduced or rectified by providing a more substantial dataset. Several
key factors were found to affect the performance of the models; meta-architecture, dataset,
and transfer learning. Faster R-CNN has the highest sensitivity and was, therefore, able
to identify smaller damages. The models trained on Veidekke achieved the best precision,
despite having fewer training samples. Using a specific pre-trained model improved
detection capabilities. The practical application of the model was simplified by using
a website as an interface. It allowed multiple images to be uploaded and rendered the
accumulation of damage in a heatmap.

Many architectures have not been tested as yet, such as the MASK R-CNN approach.
This combines object detection and semantic segmentation in a single output. Semantic

Sensors 2023, 23, 2935 27 of 29

segmentation can help define the area of damage. This area can then be used to calculate
a percentage of the road that contains the damage. Combining this with the previous
classification of object detection, it may be possible to develop a ‘fleshed out’ metric to
determine the level of decay in a road. The NPRA already has aggregated data for 1 km
stretches with the following metrics:

• Unevenness measured in the international roughness index mm/m.
• Rutting measured in mm.
• Cross-fall measured in percentage.

Combining this with results from a deep neural network can provide valuable insight
into road conditions.

Since data were collected over multiple years, it may be possible to create a model
that looks at the same stretches of roads over a longer period of time. The goal of this
approach should be to identify the rate of decay. Given such a rate, it is feasible to calculate
an estimated time for the remaining useful life of the road surface.

Author Contributions: Conceptualization, E.G.G., I.A.H. M.U.H., O.-M.H.S., and S.L.; methodology,
I.A.H., and S.L.; software, E.G.G., M.U.H., O.-M.H.S., and S.L.; validation, M.U.H., and I.A.H.; formal
analysis, I.A.H., and M.U.H.; investigation, I.A.H.; resources, E.G.G., O.-M.H.S., and S.L.; data
curation, E.G.G., I.A.H., M.U.H., O.-M.H.S., and S.L.; writing—original draft preparation, E.G.G.,
M.U.H., O.-M.H.S., and S.L.; writing—review and editing, M.U.H.; visualization, E.G.G., O.-M.H.S.,
and S.L.; supervision, I.A.H.; project administration, I.A.H.; funding acquisition, I.A.H., and M.U.H.
All authors have read and agreed to the published version of the manuscript.

Funding: The APC was funded by the Norwegian University of Science and Technology (NTNU), Norway.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available upon request from the
corresponding author.

Acknowledgments: We thank the anonymous reviewers for their valuable feedback, which improved
the quality of this work. We also thank the Norwegian University of Science and Technology (NTNU),
Norway, for providing the open access funding to publish this work.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Morales, F.J.; Reyes, A.; Caceres, N.; Romero, L.M.; Benitez, F.G.; Morgado, J.; Duarte, E. A machine learning methodology to

predict alerts and maintenance interventions in roads. Road Mater. Pavement Des. 2021, 22, 2267–2288. [CrossRef]
2. Serradilla, O.; Zugasti, E.; Rodriguez, J.; Zurutuza, U. Deep learning models for predictive maintenance: A survey, comparison,

challenges and prospects. Appl. Intell. 2022, 52, 10934–10964. [CrossRef]
3. Cheng, J.C.; Chen, W.; Chen, K.; Wang, Q. Data-driven predictive maintenance planning framework for MEP components based

on BIM and IoT using machine learning algorithms. Autom. Constr. 2020, 112, 103087. [CrossRef]
4. Khan, S.M.; Atamturktur, S.; Chowdhury, M.; Rahman, M. Integration of structural health monitoring and intelligent transporta-

tion systems for bridge condition assessment: Current status and future direction. IEEE Trans. Intell. Transp. Syst. 2016, 17,
2107–2122. [CrossRef]

5. Hou, Y.; Li, Q.; Zhang, C.; Lu, G.; Ye, Z.; Chen, Y.; Wang, L.; Cao, D. The state-of-the-art review on applications of intrusive
sensing, image processing techniques, and machine learning methods in pavement monitoring and analysis. Engineering 2021, 7,
845–856. [CrossRef]

6. Zonta, T.; da Costa, C.A.; da Rosa Righi, R.; de Lima, M.J.; da Trindade, E.S.; Li, G.P. Predictive maintenance in the Industry 4.0:
A systematic literature review. Comput. Ind. Eng. 2020, 150, 106889. [CrossRef]

7. Shah, S.H.H.; Han, K.; Lee, J.W. Real-Time Application for Generating Multiple Experiences from 360° Panoramic Video by
Tracking Arbitrary Objects and Viewer’s Orientations. Appl. Sci. 2020, 10, 2248. [CrossRef]

8. Li, J.; Yin, G.; Wang, X.; Yan, W. Automated decision making in highway pavement preventive maintenance based on deep
learning. Autom. Constr. 2022, 135, 104111. [CrossRef]

9. Ren, S.; He, K.; Girshick, R.; Sun, J. Faster r-cnn: Towards real-time object detection with region proposal networks. Adv. Neural
Inf. Process. Syst. 2015, 28, 91–99. [CrossRef]

http://doi.org/10.1080/14680629.2020.1753098
http://dx.doi.org/10.1007/s10489-021-03004-y
http://dx.doi.org/10.1016/j.autcon.2020.103087
http://dx.doi.org/10.1109/TITS.2016.2520499
http://dx.doi.org/10.1016/j.eng.2020.07.030
http://dx.doi.org/10.1016/j.cie.2020.106889
http://dx.doi.org/10.3390/app10072248
http://dx.doi.org/10.1016/j.autcon.2021.104111
http://dx.doi.org/10.1109/TPAMI.2016.2577031

Sensors 2023, 23, 2935 28 of 29

10. Lin, T.Y.; Maire, M.; Belongie, S.; Hays, J.; Perona, P.; Ramanan, D.; Dollár, P.; Zitnick, C.L. Microsoft coco: Common objects in
context. In Proceedings of the European Conference on Computer Vision, Zurich, Switzerland, 6–12 September 2014; pp. 740–755.

11. Jin, K.; Wi, J.; Lee, E.; Kang, S.; Kim, S.; Kim, Y. TrafficBERT: Pre-trained model with large-scale data for long-range traffic flow
forecasting. Expert Syst. Appl. 2021, 186, 115738. [CrossRef]

12. Dalsasso, E.; Yang, X.; Denis, L.; Tupin, F.; Yang, W. SAR image despeckling by deep neural networks: From a pre-trained model
to an end-to-end training strategy. Remote Sens. 2020, 12, 2636. [CrossRef]

13. Jiang, H.; He, P.; Chen, W.; Liu, X.; Gao, J.; Zhao, T. Smart: Robust and efficient fine-tuning for pre-trained natural language
models through principled regularized optimization. arXiv 2019, arXiv:1911.03437.

14. Lin, J.; Liu, Y.; Zeng, Q.; Jiang, M.; Cleland-Huang, J. Traceability transformed: Generating more accurate links with pre-trained
bert models. In Proceedings of the 2021 IEEE/ACM 43rd International Conference on Software Engineering (ICSE), Madrid,
Spain, 22–30 May 2021; pp. 324–335.

15. Li, J.; Zhang, Z.; Wang, X.; Yan, W. Intelligent decision-making model in preventive maintenance of asphalt pavement based on
PSO-GRU neural network. Adv. Eng. Inform. 2022, 51, 101525. [CrossRef]

16. Chun, P.j.; Hashimoto, K.; Kataoka, N.; Kuramoto, N.; Ohga, M. Asphalt pavement crack detection using image processing and
naive bayes based machine learning approach. J. Jpn. Soc. Civ. Eng. Ser. E1 Pavement Eng. 2015, 70, I_1–I_8.

17. Zalama, E.; Gómez-García-Bermejo, J.; Medina, R.; Llamas, J. Road crack detection using visual features extracted by Gabor filters.
Comput.-Aided Civ. Infrastruct. Eng. 2014, 29, 342–358. [CrossRef]

18. Cubero-Fernandez, A.; Rodriguez-Lozano, F.J.; Villatoro, R.; Olivares, J.; Palomares, J.M. Efficient pavement crack detection and
classification. EURASIP J. Image Video Process. 2017, 2017, 1–11. [CrossRef]

19. Hoang, N.D.; Nguyen, Q.L.; Tien Bui, D. Image processing–based classification of asphalt pavement cracks using support vector
machine optimized by artificial bee colony. J. Comput. Civ. Eng. 2018, 32, 04018037. [CrossRef]

20. Wu, S.; Fang, J.; Zheng, X.; Li, X. Sample and structure-guided network for road crack detection. IEEE Access 2019, 7,
130032–130043. [CrossRef]

21. Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation. In Proceedings of the
International Conference on Medical Image Computing and Computer-Assisted Intervention, Munich, Germany, 5–9 October
2015; pp. 234–241.

22. Qu, Z.; Mei, J.; Liu, L.; Zhou, D.Y. Crack detection of concrete pavement with cross-entropy loss function and improved VGG16
network model. IEEE Access 2020, 8, 54564–54573. [CrossRef]

23. Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:1409.1556.
24. Li, K.; Wang, B.; Tian, Y.; Qi, Z. Fast and Accurate Road Crack Detection Based on Adaptive Cost-Sensitive Loss Function. IEEE

Trans. Cybern. 2021, 53, 1051–1062. [CrossRef]
25. Djenouri, Y.; Belhadi, A.; Houssein, E.H.; Srivastava, G.; Lin, J.C.W. Intelligent Graph Convolutional Neural Network for Road

Crack Detection. IEEE Trans. Intell. Transp. Syst. 2022, early access.
26. Fan, L.; Zhao, H.; Li, Y.; Li, S.; Zhou, R.; Chu, W. RAO-UNet: A residual attention and octave UNet for road crack detection via

balance loss. IET Intell. Transp. Syst. 2022, 16, 332–343. [CrossRef]
27. Doğan, G.; Ergen, B. A new mobile convolutional neural network-based approach for pixel-wise road surface crack detection.

Measurement 2022, 195, 111119. [CrossRef]
28. Yang, F.; Zhang, L.; Yu, S.; Prokhorov, D.; Mei, X.; Ling, H. Feature pyramid and hierarchical boosting network for pavement

crack detection. IEEE Trans. Intell. Transp. Syst. 2019, 21, 1525–1535. [CrossRef]
29. Xu, X.; Zhao, M.; Shi, P.; Ren, R.; He, X.; Wei, X.; Yang, H. Crack detection and comparison study based on faster R-CNN and

mask R-CNN. Sensors 2022, 22, 1215. [CrossRef]
30. Xu, Z.; Guan, H.; Kang, J.; Lei, X.; Ma, L.; Yu, Y.; Chen, Y.; Li, J. Pavement crack detection from CCD images with a locally

enhanced transformer network. Int. J. Appl. Earth Obs. Geoinf. 2022, 110, 102825. [CrossRef]
31. Fang, J.; Yang, C.; Shi, Y.; Wang, N.; Zhao, Y. External attention based TransUNet and label expansion strategy for crack detection.

IEEE Trans. Intell. Transp. Syst. 2022, 23, 19054–19063. [CrossRef]
32. Sun, M.; Zhao, H.; Li, J. Road crack detection network under noise based on feature pyramid structure with feature enhancement

(road crack detection under noise). IET Image Process. 2022, 16, 809–822. [CrossRef]
33. Fang, J.; Qu, B.; Yuan, Y. Distribution equalization learning mechanism for road crack detection. Neurocomputing 2021, 424,

193–204. [CrossRef]
34. Feng, H.; Xu, G.s.; Guo, Y. Multi-scale classification network for road crack detection. IET Intell. Transp. Syst. 2019, 13, 398–405.

[CrossRef]
35. Guo, J.M.; Markoni, H.; Lee, J.D. BARNet: Boundary aware refinement network for crack detection. IEEE Trans. Intell. Transp.

Syst. 2021, 23, 7343–7358. [CrossRef]
36. Dung, C.V. Autonomous concrete crack detection using deep fully convolutional neural network. Autom. Constr. 2019, 99, 52–58.

[CrossRef]
37. Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.Y.; Berg, A.C. Ssd: Single shot multibox detector. In Proceedings of

the European Conference on Computer Vision, Amsterdam, The Netherlands, 11–14 October 2016; pp. 21–37.

http://dx.doi.org/10.1016/j.eswa.2021.115738
http://dx.doi.org/10.3390/rs12162636
http://dx.doi.org/10.1016/j.aei.2022.101525
http://dx.doi.org/10.1111/mice.12042
http://dx.doi.org/10.1186/s13640-017-0187-0
http://dx.doi.org/10.1061/(ASCE)CP.1943-5487.0000781
http://dx.doi.org/10.1109/ACCESS.2019.2940767
http://dx.doi.org/10.1109/ACCESS.2020.2981561
http://dx.doi.org/10.1109/TCYB.2021.3103885
http://dx.doi.org/10.1049/itr2.12146
http://dx.doi.org/10.1016/j.measurement.2022.111119
http://dx.doi.org/10.1109/TITS.2019.2910595
http://dx.doi.org/10.3390/s22031215
http://dx.doi.org/10.1016/j.jag.2022.102825
http://dx.doi.org/10.1109/TITS.2022.3154407
http://dx.doi.org/10.1049/ipr2.12388
http://dx.doi.org/10.1016/j.neucom.2019.12.057
http://dx.doi.org/10.1049/iet-its.2018.5280
http://dx.doi.org/10.1109/TITS.2021.3069135
http://dx.doi.org/10.1016/j.autcon.2018.11.028

Sensors 2023, 23, 2935 29 of 29

38. Huang, J.; Rathod, V.; Sun, C.; Zhu, M.; Korattikara, A.; Fathi, A.; Fischer, I.; Wojna, Z.; Song, Y.; Guadarrama, S.; et al.
Speed/accuracy trade-offs for modern convolutional object detectors. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 7310–7311.

39. Wang, Z.; Bovik, A.; Sheikh, H.; Simoncelli, E. Image Quality Assessment: From Error Visibility to Structural Similarity.
IEEE Trans. Image Process. 2004, 13, 600–612. [CrossRef] [PubMed]

40. Prieto, G.; Agustín, R.; Nogués, T.; Mu noz González, A.; Gómez-Leon, N.; Guibelalde, E.; Castillo, D.; Renieblas, G.P.; Nogués,
A.T. Structural similarity index family for image quality assessment in radiological images. J. Med. Imag 2017, 4, 35501. [CrossRef]

41. Geiger, A.; Lenz, P.; Urtasun, R. Are we ready for autonomous driving? the kitti vision benchmark suite. In Proceedings of the
2012 IEEE Conference on Computer Vision and Pattern Recognition, Providence, RI, USA, 16–21 June 2012; pp. 3354–3361.

42. Kuznetsova, A.; Rom, H.; Alldrin, N.; Uijlings, J.; Krasin, I.; Pont-Tuset, J.; Kamali, S.; Popov, S.; Malloci, M.; Kolesnikov, A.; et al.
The open images dataset v4: Unified image classification, object detection, and visual relationship detection at scale. Int. J.
Comput. Vis. 2020, 128, 1956–1981. [CrossRef]

43. Cha, Y.J.; Choi, W.; Büyüköztürk, O. Deep Learning-Based Crack Damage Detection Using Convolutional Neural Networks.
Comput.-Aided Civ. Infrastruct. Eng. 2017, 32, 361–378. [CrossRef]

44. Maeda, H.; Sekimoto, Y.; Seto, T.; Kashiyama, T.; Omata, H. Road Damage Detection Using Deep Neural Networks with Images
Captured Through a Smartphone. arXiv 2018, arXiv:1801.09454.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/TIP.2003.819861
http://www.ncbi.nlm.nih.gov/pubmed/15376593
http://dx.doi.org/10.1117/1.JMI.4.3.035501
http://dx.doi.org/10.1007/s11263-020-01316-z
http://dx.doi.org/10.1111/mice.12263

	Introduction
	Related Works
	Data and Methods
	Framework Development
	Experimental Evaluation
	Results
	Object Detection
	Model 1—Faster R-CNN Inception ResNet V2 Astrous COCO
	Model 2—Faster R-CNN Inception ResNet V2 Astrous COCO
	Model 3—Faster R-CNN ResNet 101 KITTI
	Model 4—Faster R-CNN Inception ResNet v2 Atrous Oidv4
	Model 5—SSD MobileNet V1 COCO
	Model 6—SSD Inception V2 COCO
	Model 7—SSD MobileNet V1 COCO

	VGG16
	Autoencoder

	Discussion
	Meta-Architectures
	Pre-Trained Dataset
	Dataset
	Performance

	Conclusions
	References

