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Abstract

Heading estimation is a challenging task in the presence of magnetic
disturbances. For small vehicles with electric motors, such as a snake robot,
heading estimation becomes extra challenging due to the induced
electromagnetic field from the motors and magnetic materials in the
environment. The Boa snake robot, currently under development at the
Norwegian University of Science and Technology, was built to investigate novel
methods for estimating contact forces and contact points for planar snake
robots. To this end, the robot has an IMU fixed to each link. The magnetic
cross-talk from the motors must therefore be addressed to enable accurate
heading and attitude estimates.

In this thesis, the magnetic disturbance on the onboard IMUs induced by
the robots’ motors was assessed. The rotating magnetic field induced by the
motors was found to be accurately modeled by a sinusoidal signal. The model
was further tested and validated with additional motor load. Additionally, the
effect of physical magnetic shielding was explored using ferrite shielding sheets
and physical distance between the IMU and the motor. The experiments showed
that physical distance and shielding sheets provided approximately the same
magnetic field attenuation, but shielding sheets made the cross-talk more
complex and the model less reliable. Lastly, a magnetic disturbance rejection
technique using an adaptive Kalman filter was explored by performing a simple
proof-of-concept heading experiment. The heading experiment showed that the
heading estimates could be significantly improved using a cross-talk model as a
predictor in a feed-forward loop to correct the magnetometer measurements.
The heading can be estimated using a Kalman filter with an adaptive
measurement covariance matrix to reject magnetic disturbances.

Hence, a general technique to improve heading estimates in the presence of
electric motors and magnetically noisy environments was proposed. Future work
includes testing the technique on a multi-link snake robot using obstacle-aided
locomotion with full attitude and position estimation.
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Sammendrag

Kursvinkelestimering er en utfordrende oppgave i nærvær av forstyrrelser fra
magnetiske materialer. For små kjøretøy med elektriske motorer, som for
eksempel en slangerobot, blir kursvinkelestimering ekstra utfordrende på grunn
av det induserte elektromagnetiske feltet fra motorene, foruten å nevne mulige
magnetiske materialer i omgivelsene. Slangeroboten Boa, som for øyeblikket er
under utvikling ved Norges Teknisk-Naturvitenskapelige universitet, ble bygget
for å undersøke en ny metode for å estimere kontaktkrefter og kontaktpunkter
for slangeroboter. Roboten har derfor en IMU på toppen av hvert robotledd med
børsteløse likestrømsmotorer.

Arbeidet i denne avhandlingen har undersøkt den magnetiske forstyrrelsen
på IMU-en ombord slangeroboten, indusert fra motoren. Den magnetiske
forstyrrelsen på magnetometeret ble modellert som en sinuskurve. Modellen ble
videre testet og validert med ekstra belastning på motoren. I tillegg ble effekten
av fysisk skjerming ved hjelp av ferrittskjermingsark og fysisk avstand testet og
evaluert. Eksperimentene viste at fysisk avstand og skjermingsark ga omtrent
samme magnetfeltredusering, men skjermingsark gjorde krysstalen mer
kompleks og modellen mindre pålitelig. Til slutt ble en teknikk for å avvise
magnetiske forstyrrelser ved hjelp av et adaptivt Kalmanfilter utforsket gjennom
et enkelt dugelighetseksperiment for kursvinkelestimering. Eksperimentet viste
at kursvinkelestimatene kan betydelig forbedres ved å bruke krysstalemodellen
som en prediktor i en foroverkoblingssløyfe som korrigerer
magnetometermålingene. Kursvinkelen kan estimeres ved hjelp av et
Kalmanfilter som adaptivt endrer målekovariansmatrisen for å avvise
magnetiske forstyrrelser.

Avslutningsvis ble det foreslått en generell teknikk for å forbedre
kursvinkelestimatene i nærvær av elektriske motorer og magnetisk støyende
miljøer. Det foreslås at fremtidig arbeid tester teknikken på en flerleddet
slangerobot som bruker hinderassistert forflytning, med full bevegelses- og
posisjonsestimering.
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Chapter 1

Introduction

The research of snake robots is ever expanding due to their promising
applications in search and rescue operations, exploration of celestial bodies in
the outer solar system, such as the Jovian moons, maintenance of oil platform
and other scenarios [15] [16]. Snake robots may be especially suitable for search
an rescue operations in ruins, or research in harsh environments. The navigation
of autonomous robots is vital to the efficiency and reliability of the mission. The
heading and attitude estimation problem for vehicles is however a difficult in
magnetically noisy environments, since magnetometers are used, especially if
the use of GPS is limited. Heading estimation becomes even harder for small
vehicles with electric motors which generate an electromagnetic field, disturbing
the magnetometer measurements. The problem remains challenging, even
though extensive research has been conducted on the topic [17]. Improving
heading estimation in the presence of magnetic disturbances is the main topic of
this thesis.

1.1 Background and motivation

The Boa snake robot, currently under development at NTNU, is a sensor driven
terrestrial snake robot. One of its intended uses is to test a novel technique to
estimate the contact force between the robot and its environment [18]. To this
end, an Inertial Measurement Unit (IMU) is mounted on top of each joint. Each
joint contains a Brushless DC (BLDC) servo motor. Figure 1.1 displays an
illustration of the design of the Boa snake robot with the previous motors and
chassis design. The magnetic cross-talk from the motor must therefore be
addressed to enable precise heading and attitude estimates.

Force sensors have historically been used to estimate the interaction forces
between snake robots and obstacles in their environment. These are however
prone to wear and tear [18]. To overcome this problem, the design of the Boa

1
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Figure 1.1: Illustration of the previous design of the Boa snake robot with five
links. Figure retrieved from Löwer et al. [18].

uses principles based on Newton’s 2nd law to estimate the forces [18]. This led
to the decision of adding the Inertial Measurement Unit (IMU)s on top of each
motor joint. The IMU will be used to estimate the forces acting on each snake
robot link by the obstacles, and are used in heading, attitude and spatial position
estimation.

Research conducted in the autumn of 2022 investigated how the IMU
measurements are affected by the servo motor. The main result was that the
magnetic cross talk from the motor is accurately modelled by a sinusoidal signal
[19]. Since the previous study, the Boa snake robot has been redesigned with a
new set of Brushless DC (BLDC) servo motors. This work aims at continuing the
previous work by concluding on unresolved work, and investigating to what
degree it is possible to use the magnetic field measurements in heading
estimation.

Good attitude and heading estimates in magnetically noisy environments are
a challenge typically solved by high quality and expensive equipment such as GPS
or high-quality IMUs. However, robots used in ruins or inside buildings, may not
have reliable GPS connection. Additionally, reducing the cost of the snake robot
is an objective in itself, to enable making a snake robot for commercial use. The
snake robot should therefore be able to navigate, without the use of GPS or high-
cost IMUs. This would be a big step in enabling large scale use of snake robots.

This work focuses on achieving good heading estimates for each individual
link of the snake robot, which might also help with position and attitude estimates
of the snake robot as a whole.
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1.2 Assignment description and scope

The description of this assignment was outlined as a facsimile that can be found in
the very beginning of this thesis. The main objective was to improve the heading
estimation on the Boa snake robot, based on the results from the previous project
work. Four main research points were outlined in the assignment description. The
next paragraphs will describe how these have been interpreted by the author and
incorporated into this work.

The first assignment point describes that this thesis should adapt the
magnetic cross-talk model to the new motor. This was assessed by redoing the
experiments performed in the previous project work, however improved and
with the new motor. The second assignment point about the influence of varying
load torque was assessed by performing the same experiment used to assess the
first point, but using a test rig that emulated a rotational load. Other measures
to reduce the magnetic disturbances were investigated by performing a literature
review on algorithmic methods to improve heading estimates in magnetically
noisy environments. Additionally, a series of experiments with magnetic
shielding sheets and increased distance between the servo motor and the IMU
was performed to analyse how effective these measures were in the context of
heading estimation.

The last research point in the assignment captures the main objective to
improve the heading estimation when the IMU was subject to the magnetic
disturbance from the servo motor. This was done by proposing a technique based
on the results from the previous steps. By further testing the technique in terms
of a proof-of-concept heading experiment and compare it to the standard
approach of heading estimation utilizing the same sensors, it would be able to
assess the results in terms of heading estimation quality.

To limit the scope of the thesis, only one robot link was considered.
Additionally, as the Boa is a planar snake robot, only the heading with respect to
the sensors working in the 2D plane will be assessed. This means that the
heading estimation does not need the accelerometer measurements, the
gyroscope measurements along the x- or y-axis, or the z-axis magnetometer
measurements. However, these sensors will be part of the work related to
nominal IMU noise characterization, since it benefits the project as a whole
when the full attitude estimates will be considered in the future.

A limitation to the assigned work was that the Boa link chassis was not
available for the work, due to the previously mentioned redesign. The
experimental setup was therefore limited by this fact. Additionally, the cross-talk
model and heading estimation could only be assessed as seen in the IMU sensor
frame, and the results therefore cannot be directly related to a Boa link.
However, the method developed in this work can be redone once the Boa robot
is operational.
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1.3 Structure of the thesis

This thesis has been structure in the following manner to provide the results
obtained by the work:

In Chapter 2, the theory needed to understand snake robots, electromagnetic
fields in servo motors and the basic principles of IMUs will be described, as
well as data analysis methods used to model the magnetic cross-talk from
the motor. Additionally, the theory on heading estimation will be covered.

In Chapter 3, a literature review on previous work in the field is conducted as
part of the method to investigate methods to improve the heading
estimation. The chapter also introduces the reader to the previous project
work on the Boa, which this thesis is a continuation of. It is presented
before Chapter 4: Method, since it formed the basis of the experimental
design.

In Chapter 4, the work was divided into five phases, and the experimental design
to reach the objective of each phase described. The chapter also introduces
the reader to the hardware under investigation during the thesis.

In Chapter 5, the results from the experiments will be presented and described.
Additional observation from the experiments is also presented that should
be assessed in future work.

In Chapter 6, the results are discussed, the previous work are validated, and a
technique to improve the heading estimates when the servo motor’s actuates
are proposed based on the results. it further proposes future work to be
conducted to test the proposed technique under more realistic conditions.

Chapter 7 concludes the work.

Appendix A provides large plots and additional numbers from the results.



Chapter 2

Theory

This chapter will introduce the main theory relevant to the thesis. It will include
basic theory about snake robots and electromagnetic fields. Further, the theory
goes into detail about electric motors before the basic principles of how IMUs
work. Moreover, the reader will be introduced to the protocols critical in the
experimental setup: RS-485 and Inter-Integrated Circuit (I2C). Further on, the
basic principles of the data analysis methods used are presented. A section is
also devoted to sine regression as this is an important part of modeling the
magnetic cross-talk from the motor. Lastly, the theory on heading estimation and
filtering techniques will be covered.

Note that almost every section is a direct citation from the theory chapter in
the previous project work carried out in advance of this thesis [19]. Exceptions
are minor changes in Section 2.2, the addition of Section 2.5.2 in Section 2.5, and
greater changes in Section 2.6. Sections 2.6.2, 2.6.3, 2.8 and 2.9 are new.

2.1 Snake Robots

This section is based on the theory section of Pål Liljebäck’s doctoral thesis [20].
Only the basic principles of snake robots, their basic structure, and how they
propel through the environment will be described. This is done in order to
capture the basic principles and terminology needed to understand the
motivation behind the research of this thesis.

The general snake robot is composed of four different elements: links, joints,
motors, and sensors. The front link is called the head. Figure 2.1 illustrates this
basic principle. The sensors are needed for navigation. These could be but are
not restrained to IMUs, force sensors, cameras, GNNS, and encoders. The servo
motors are used as actuators to propel the snake robot. It could be used in either
a wheel, a propel, or in the joint itself, based on the locomotion method of the
snake robot.

5
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Link
Joint

Head

Figure 2.1: An illustration of a snake robot design. In addition to links, joint and
a head, the snake robot has sensors distributed around the body of the robot.

A snake robot’s propulsion method is inspired by biological snake
locomotion [20]. Lateral undulation is the most common type of snake
locomotion and is shown in Figure 2.2 [20]. The Boa snake robot project is
researching a propulsion technique based on lateral undulation called
obstacle-aided locomotion [18]. The snake robot uses lateral undulation against
obstacles to propel itself in any given direction, utilizing Newton’s second and
third laws. Each joint is a servo motor, enabling the robot to move each link
against obstacles and thus create a force to move in the desired direction. The
reader is referred to Liljebäck [20] for mathematical details on the modeling of
snake robots, as this is not relevant to this thesis.

Figure 2.2: Illustration of two biological snake locomotion methods: lateral
undulation (top) and obstacle-aided lateral undulation (bottom).
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2.2 Electric and magnetic field theory

A basic understanding of dynamic electromagnetic fields is needed to understand
how electric motors work and why sensors can be disturbed by an electric motor.
The theory of static electric and magnetic fields will first be presented to more
easily describe the theory of dynamic electromagnetic fields. Lastly, shielding of
magnetic fields will be introduced. The entire section, except for subsection 2.2.4,
is based on Sadiku and Nelatury [21].

2.2.1 Electrostatic fields

Electrostatic fields can be described in terms of Coulomb’s law. Coulomb’s law
states that the force F between two point charges Q1 and Q2 acts along the line
between the two point charges, with the strength given by

F =
kQ1Q2

R2
, (2.1)

where k is a constant, R is the distance between the two point charges and Q1 and
Q2 are the size of the point charges. The electric field intensity, E, is the force that
a unit positive charge experiences when placed in an electric field.

E= lim
Q→0

F
Q

(2.2)

Electric flux is measured in Coloumbs, and is defined as the amount of electric
field passing through a given surface area. Thus, from the equations above, an
electric field is a vector field that describes the force an electric charge
experiences at a given point in the field.

2.2.2 Magnetostatic fields

Similar to electric fields, a magnetic field is a vector field that describes the force
a moving electric charge experiences due to magnetism. A magnetic field can be
induced by moving electric charges. Electric charges moving at a constant speed
induces a static magnetic field, while electric charges moving at varying speeds
will induce a dynamic magnetic field [21]. The force experienced by an electric
charge in a static magnetic field is given by

F=Qv×B (2.3)

where v is the velocity of the electric charge, Q, and B is the magnetic flux density.

However, in the presence of both an electric field and a magnetic field,
Lorentz law states that an electric charge, Q, moving through the electric and
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magnetic fields with velocity, v, experiences a force that is perpendicular to both
fields, according to the right-hand rule. This force is called the Lorentz force
[21].

F=QE+Qv×B (2.4)

The magnetic field can either be described in terms of magnetic flux intensity,
H, or by magnetic flux density, B, as described in equation (2.5) and Biot Savart’s
law in equation (2.7).

B= µ0H (2.5)

The magnetic flux through a surface S is given by

ψ=

∫

S
B dS (2.6)

Biot-Savart’s law states that the differential magnetic field intensity dH,
produced at a point P, by a current I , moving along a small line dl, at a distance
R from the point is given by

dH=
I dl×R
4πR3

(2.7)

This means that the magnetic field intensity at a point in a magnetostatic field
depends on the current through a conductor and the distance to it.

The magnetic field around a permanent magnet and around a coil with
constant current running through it is shaped as shown in Figure 2.3. One can
see that they are similar. The magnetic field around a permanent magnet is
induced by internal magnetic forces, while the magnetic field around the coil 1 is
induced by a moving electric charge as given by Biot-Savart’s law.

Figure 2.3: The magnetic field around a permanent magnet (left), and a coil with
a constant current, I (right). Image retrieved from Stanford Magnets [22].

Magnetic fields can in most cases be assumed to be additive following the
superposition principle [23].

1Also commonly called an electromagnet.
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2.2.3 Dynamic electromagnetic fields

In dynamic electromagnetic fields, the electric and magnetic fields are
interdependent of each other, as opposed to static fields where they are
independent [21]. Dynamic electromagnetic fields can be made in three ways:

1. Having a time-varying loop in a stationary magnetic field
2. Having a time-varying magnetic field in a stationary loop
3. A combination of the above

As will be described in Section 2.3.1, these effects are utilized in electric motors.

Table 2.1: Summary of how electromagnetic fields are created. Table adapted
from Sadiku and Nelatury [21]

Stationary charges Electrostatic field
Steady currents (moving charges with constant velocity) Magnetostatic field

Time-varying currents Electromagnetic fields

Faradays’ law states that if a closed electric loop experiences a changing
magnetic field, it will induce an Electromotive force (EMF) proportional to the
rate of change of the magnetic flux. Lentz’ law further states that the direction of
the current in the loop due to the electromotive force is such that it counteracts the
change in magnetic field. This effects is what cause eddy currents in electrically
conductive materials and the back emf voltage in DC motors.

2.2.4 Magnetic shielding

Magnetic fields cannot be stopped. It is however possible to contain or redirect
the magnetic field using materials with high magnetic permeability [24].
Examples are ferrite shielding sheets or mu metals [25] [24]. This is called
passive magnetic shielding, and can be accomplished by using permeable
materials which contains the electromagnetic field [24]. Another passive
shielding technique which is commonly used are electrically conductive
materials [26]. When the shielding sheet is subject to a changing magnetic field,
eddy currents will be induced following Faradays’ and Lenz’ law, and create an
equal and opposite magnetic field, zeroing out the magnetic field. Eddy currents
can therefore be used for dynamic magnetic fields only. For both methods, the
performance of the shielding changes with frequency. It is therefore important to
choose the correct material and thickness based on the data sheet of the
shielding sheet.
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2.3 Electric Motors

With the basics of electromagnetic fields covered, the principles of electric
motors can be presented. The working principle of electric motors is based on
the Lorentz force given in equation (2.4) [21]. By moving electrically charged
particles through a conductor in a magnetic field, the Lorentz force will pull on
the particles in the direction given by the right-hand rule and make the current
loop rotate. The general design of electric motors will be presented in subsection
2.3.1. After that, the Brushless DC (BLDC) motor will be described in detail in
subsection 2.3.2.

2.3.1 General structure of electric motors

An electric motor consists of a static element called the stator, and a rotating
element called the rotor [27]. There exist several types of electric motors;
synchronous Alternating Current (AC) motors, asynchronous AC motors, DC
motors, and brushless DC motors, to name a few. Electric motors are built on
armature windings consisting of one or several coils, and either permanent or
electromagnets. Depending on the type of motor, the rotor could be the windings
and the stator the magnets, or the other way around [27]. The relevant type of
electric motor for this thesis is the Brushless DC motor.

The difference between a servo motor and a conventional electric motor is
that the servo motor additionally has a control unit and encoders enabling the
user to control the position of the motor, as opposed to only the speed [27]. The
detailed theory behind servo motors is, however, above the scope of this thesis.

2.3.2 Brushless DC motors

The Brushless DC motor can have two configurations: either an outer ring rotor
with permanent magnets and an inner ring stator with coils or an outer ring stator
with coils and an inner ring rotor with permanent magnets. Figure 2.4 shows an
illustration of both as three-phase motors. The BLDC motor is controlled by a
control unit, providing current to each coil at a time as shown in Figure 2.4c. This
sequence induces motion to the rotor. A hall effect sensor is used as feedback to
the controller to change the direct current when the stator field is aligned with
the stator field [27].

The most common type of BLDC motor is the 3-phase BLDC with three
windings. The three stator windings are connected in a star connection, also
called the Y-connection. Each winding can consist of one or more coils. The three
windings are distributed over the stator to form an even number of poles [28].
The rotor consists of alternating north, and south pole permanent magnets [28].
According to Yedamale [28], the rotor pole pairs are constrained to be between
two and eight pole pairs for 3-phase motors. A three-phase current is applied to
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the three windings according to the current cycles shown in Figure 2.4c, creating
a changing magnetic field which attracts the permanent magnets of the rotor.
Other current cycles also exists. Thus, broadly speaking, electric motors utilize a
strong magnetic field to function.

(a) (b)

(c)

Figure 2.4: Illustration of how 3-phase brushless DC motors work. a) shows an
inner ring stator with one pole pair. b) shows an outer ring stator with two pole
pairs. c) shows an example of the trapezoidal three-phase current cycles that go
through phases A, B, and C to make the rotor rotate.
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2.4 Inertial Measurement Unit

An Inertial Measurement Unit (IMU) is a sensor essential to navigate unmanned
vehicles such as satellites, robots, Unmanned aerial vehicle (UAV)s, Autonomous
underwater vehicle (AUV)s, and snake robots, as well as guided control of cars
and aircrafts. It consist of a 3-axis accelerometer, 3-axis gyroscope, and normally
also a 3-axis magnetometer. The accelerometer measures specific force, while
gyroscopes measure angular rate. Often, an IMU containing a magnetometer is
also called a MIMU. In this thesis however, all references to an IMU contains
both an accelereometer, a gyroscope and a magnetometer.

An image of a typical IMU is presented in Figure 2.5. IMUs are based on
Micro-electromechanical systems (MEMS) technology. The most common type of
MEMS inertial sensors are silicon-based. The technology enables large advantages
related to cost, size, weight, and power consumption [29].

Figure 2.5: A typical IMU. Image retrieved from Bosch [30].

The most common types of MEMS accelerometers and gyroscopes both utilize
a vibrating mass to measure the linear acceleration and angular velocity of an
object [29]. The accelerometers are however in reality force sensors that measure
the specific force. This means that an accelerometer in free fall will measure zero
acceleration, while an accelerometer placed stationary on a table will measure
−9.81 ms−2 [31].

Three-axis magnetometers in IMUs are not necessarily MEMS technology.
Magnetometers in IMUs are used to measure the Earth’s magnetic field, often in
order to measure an object’s heading. Most magnetometers are either Hall-effect
sensors or magnetoresistive sensors. Newer, more precise methods also exist.
Overall, numerous different methods exist, utilizing different physical laws [32].
Common for them is that they measure the voltage difference either due to a
change in resistance or the creation of an electric field due to a magnetic field
[32] [33].
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2.5 Communication protocols

Snake robots need a computing unit, such as a microcontroller, to be able to
control the movements of the joints and sample data from the different sensors.
To communicate with these peripheral units, different standardized
communication methods are used. This section will give a brief introduction to
the protocols used in this thesis, and the adequate information needed set up the
communication between the units, since it is relevant to the experimental setup.

2.5.1 I2C

Inter-Integrated Circuit is a synchronous serial communication bus normally
used for low speeds, and short distance communication [34]. The I2C protocol
requires two lines: serial data where the data is transmitted and serial clock for
synchronizing the two communicating devices. The voltage levels on the lines
are either 3.3V or 5V. The standard speed of I2C is 100 kbit/s, while fast mode
provides 400 kbit/s [34]. Each device on the I2C bus is allocated its own
address. The address space is 7 bits, limiting the number of nodes
communicating to 128 units [34].

The I2C protocol uses the master/slave convention, where one unit is
assigned master, while all other devices are assigned the slave role. Multimaster
is also possible [34]. There exist in-built libraries in programming languages,
such as Python and Arduino to communicate over I2C.

2.5.2 RS-485

RS-485 is not per definition a communication protocol, as it does not specify
signaling levels, speed or the format of the data transmission. It is however a
standard in the physical layer of serial communication. The communication
protocol used could be the UART standard, but often a unique protocol is used.
RS-485 is good in electrically noisy environments, and can handle up to 1200 m
distances. It uses differential signalling, and thereby has two data signals. The
wires are commonly called A (or D+) and B (or D-). The recommended
arrangement of serial communication transceivers are the daisy chain [35]
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2.6 Data analysis methods

A basic understanding of correlation plots, Auto Regressive and Moving Average
(ARMA) modelling and how to recognize White Gaussian Noise is needed to
understand the data analysis performed on the experimental data. This section
will introduce the reader to these data analysis methods.

2.6.1 Correlation and scatter plots

Correlation plots are, in general, the same as scatter plots, but with the intention of
revealing systematic linear or non-linear patterns in a data set [36]. Correlation
is a statistical property describing the linear relationship between two random
variables, X , Y . The correlation coefficient is a measure between zero and one,
which describes how correlated two features are. If the correlation coefficient is
zero, it means that there is no correlation, and if it is one, it indicates a clear
correlation. The correlation coefficient between two variables are proportional to
the covariance between them, as defined by the correlation coefficient in Equation
(2.8).

ρX ,Y =
cov(X , Y )
σXσY

(2.8)

cov(X , Y ) = E[(X − E[X ])(Y − E[Y ])] (2.9)

where cov(X , Y ) is the covariance between X and Y , and σX , σY are the
standard deviations of X and Y respectively [36]. Note that in case of a
nonlinear relationship, the correlation coefficient can be one [36]. For features
with a nonlinear relationship, other fitness measures, such as the Root Mean
Square Error (RMSE) or the residuals with the nonlinear curve can be used.
These will be further described in Section 2.7.

2.6.2 ARMA modelling

Auto Regressive and Moving Average modelling is a time series analysis and
modelling technique. The aim of time series analysis is to characterize the nature
of the observed data, and evaluate if it is possible to predict future observations
based on the analysis [37]. ARMA modelling is a common method used to model
a univariate time series where there is a stochastic trend, or random variations
over time. ARMA modelling can be used to model stationary timeseries such as
stock market analysis, health data or to perform economic forecasting [38]. Ning
et al. [39] modelled the magnetometer noise using an ARMA model to improve
the magnetic field and heading measurements.

ARMA models combines two simpler structures: the Autoregressive (AR)
and Moving Average (MA) models. The ARMA model is typically denoted as
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ARMA(p, q), where p is the order of the AR part and q is the order of the MA
part [38]. An ARMA model is defined as

Yt = c +
p
∑

i=1

φiYt−i + εt +
q
∑

i=1

θiεt−i (2.10)

where Yt is the time series you are trying to forecast, c is a constant, φi are the
parameters of the autoregressive part of the model, Yt−i are the values of the time
series at previous points in time, εt is the error term of the model, θi are the
parameters of the moving average part of the model, and εt−i are the error terms
at previous points in time. The model parameters can be estimated using least
squares [38].

Choosing the appropriate order for the ARMA model determines the
accuracay of the forecasting. This can be achieved by inspecting the Auto
Correlation Function (ACF) and Partial Auto Correlation Function (PACF) plots
of the time series data [38]. The basic principle is to investigate which time steps
contains information about the next, which is exactly what auto correlation is.
Auto correlation is defined as the correlation between a data sample, and the
data sample in a previous time step. Let X t be a time series. The auto
correlation, ρk, at lag k is defined as

ρk =
Cov(X t , X t−k)
p

Var(X t)Var(X t−k)
(2.11)

One lag is the last time step, lag two is the second last time step, and so on. The
partial autocorrelation at lag k is the autocorrelation between X t and X t−k that is
not accounted for by lags 1 through k− 1.

The ACF and PACF plots describes how much the next step in the time series
can be described by the previous time steps. The goal is to find out at which lag
the auto correlation is sufficiently close to zero, such that it does no longer holds
information about the next time step. This is done by inspecting which lag first
goes within the 95 % confidence interval, of the plot. An ARMA model of orders
p and q has an autocorrelation and partial autocorrelation cutoff after lag p and
lag q respectively [38].

2.6.3 Statistical measures

It can in many cases be sufficient to determine whether a time series is sufficiently
close to a Gaussian distribution by statistical measures and visual inspection. One
typical approach is to use skew and kurtosis as rough indicators of the normality
of a data set [40].

The skew is a unitless measure which describes how symmetric the
distribution of a data set is. It is a common rule of thumb that a skew less than
0.5 is approximately symmetric. The kurtosis describes the tailedness of the
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distribution. The most common measure of the kurtosis was define by pearson.
However, many statistical programming libraries use Fisher’s definition of
kurtosis, which more directly relates to the normal distribution [40]. This
kurtosis measure is also called the excess kurtosis, which is simply Person’s
definition subtracted by three. An excess kurtosis of zero means that the
distribution is gaussian, assuming the skew is sufficiently close to zero. The
Pandas and Scipy.stats Python libraries both calculates the excess kurtosis [41]
[42]. The literature is not consistent on at which range the data can be
considered to be normal for the excess kurtosis. Some say ±1, others ±3.

If a discrete time series is Gaussian, and the autocorrelation is zero, meaning
that the signal is considered as random, the time series can be assumed to be
white [43].

For data sets originating from sensors, it is common to have outliers in the
measurements. A common technique to identify and remove outliers is using a
multiple of the Interquartile range (IQR) [36]. The method is called the IQR
method, and the chosen multiple is referenced to as the scale. A scale of 1.5 is
the normal rule to identify a sample as an outlier [36].

2.7 Sine regression

Sine regression is a data modeling technique used to fit data to a sine curve. The
sine regression can be used as an estimator in cases where two variables are
known to be correlated by a sine. One normal approach is to use nonlinear least
squares. To solve nonlinear least squares one can use numerical optimization
methods such as the Gauss-Newton method [44]. Matlab and Python both
provide libraries/toolboxes to perform sine regression. In Python, it can be
performed using SciPy’s curve_fit function in the optimization package [9]. In
Matlab, one may use the Sine Fitting toolbox [45].

When fitting a data set to a nonlinear function, the model can be evaluated
by analyzing the residuals between the estimated value at a point, and the real
value. This error is called the residual [44]. The Root Mean Square Error is another
normal fitness measure used to evaluate the model [46]. The RMSE is defined as
the root of the mean of the square of the residuals, as described in equation (2.12).

RMSE =

√

√

√

√

1
N

N
∑

i=1

( ŷ − y)2 (2.12)

where ŷ is the estimated value of y , using the regression model.

When evaluating the performance of the model, it is important to not only
evaluate it based on the training set. The training set is the data set used to build
the model. Instead, a test set should be used. By applying the estimator on the test
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set, and calculating the RMSE and residuals, one can validate the model [47]. In
many data analysis and modelling techniques, it is normal to split the data set
into a training set, a test set and a validation set. The test set is then used to state
the model order. However, since sine regression with only one sine technically do
not have a model order, the test and validation step is fused.

2.8 Heading estimation

In this section, the concept of heading estimation will be explained. It focuses on
the 2D plane only, as the Boa is a planar snake robot.

The heading of a body is defined as the clockwise angle from north [48].
One can either use the range between 0◦ and 360◦, where 0◦, 90◦, 180◦ and
270◦ is north, east, south and west respectively. In control, the range from −π to
π is often used, as it avoids sudden changes in the values. The heading can be
calculated by a three axis magnetometer measuring earth’s magnetic field.
Equation 2.13 shows the calculation in the planar case, where Bx and By are the
X- and Y- axis magnetometer measurement respectively [39]. Note that this
equation uses radians. Figure 2.6 illustrates the calculation.

Figure 2.6: The heading can be calculated from the magnetometer’s x and y-
axis measurements by ψ= arctan (
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The different cases is to ensure the heading is in the correct quadrant. This is
easily programmed in most programming languages using the atan2 function.
The heading estimate also needs to add what is called magnetic declination
angle, which in the magnetic component. Magnetic declination angle is a
constant covering the variation in earth’s magnetic field around the world, and
can be calculated using in example the World Magnetic Model [48].

ψ̂= ψ̂m +δ (2.14)

where δ is the magnetic declination angle.

The heading can also be estimated by integrating Z-axis gyroscope
measurements (in the 2D-plane), assuming the initial heading is known.
Gyroscope samples are discrete values. Let ωk and ψ̂m,k be the gyroscope
measurement and known heading estimate at time step k. The heading estimate
at the next time step of size d t, can then be calculated by

ψ̂k+1 = ψ̂k +ωkd t (2.15)

The problem with gyroscope measurements is that they have a constant bias.
When integrating over this bias, the heading estimation will drift. The
magnetometer measurements are, however, prone to external magnetic fields, or
electric current generating electromagnetic noise, which in turn affects the
heading calculation [48]. To overcome these challenges, the heading can be
estimated using sensor fusion techniques, such as the Kalman Filter described in
Section 2.9. This way, the measurements can correct each other.

The heading estimate from inertial sensors such as the magnetometer and
gyroscope is often called a digital compass. In the aviation industry, a typical
digital compass has an accuracy of ± 1◦ when level, and ± 3◦ when tilted [48].

2.9 The Kalman Filter

The Kalman filter is a recursive filter used in sensor fusion to estimate the state
of a dynamic system [49]. The Kalman filter can be used to estimate states with
noisy measurements, both when the state can be measured directly, and when it
needs to be calculated by transfer functions describing the dynamic system [49].
The Kalman Filter assumes the system model is observable, that the noise is white,
and that the transfer function is linear. Modifications to the standard Kalman Filter,
such as the Extended Kalman Filter (EKF), can handle non-linear dynamic systems
[43]. As the measurements are sampled at discrete time steps, the discrete-time
Kalman Filter is used in most practical applications.

The Kalman Filter essentially consists of only two steps: the prediction step,
and the update step [43]. In the prediction step, the Kalman filter estimates the
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future state of the system based on the previous state estimate and the system
dynamics. Assume the system dynamics are described by

xk = Fxk−1 + vk−1 (2.16)

vk−1 ∼N (0, Qk−1) (2.17)

where xk is the state at time step k, F is the state transition matrix, and vk−1
is white process noise with covariance Qk−1. Further, assume the measurement
model is

yk = Hxk +w (2.18)

w∼N (0, R) (2.19)

where yk is the measurement at time step k, H is the measurement matrix, and w
is white measurement noise with covariance matrix Rk. The prediction equations
are as follows

x̂k|k−1 = Fkx̂k−1 (2.20)

Pk|k−1 = FkPk−1FT
k +Qk (2.21)

where x̂k|k−1 is the predicted state estimate, and Pk|k−1 is the predicted error
covariance matrix at time k.

In the update step, the Kalman filter corrects the state estimate based on the
available measurements. The update equations are

Kk = Pk|k−1HT
k (HkPk|k−1HT

k +Rk)
−1 (2.22)

x̂k = x̂k|k−1 +Kk(yk −Hkx̂k|k−1) (2.23)

Pk = (I−KkHk)Pk|k−1 (2.24)

where, Kk is the Kalman gain, x̂k is the updated state estimate, and Pk is the
updated error covariance matrix at time k [43].

The Kalman filter has two tuning parameters: the process noise and
measurement noise covariance matrices. The process noise covariance matrix,
Qk represents the uncertainty in the system dynamics, while the measurement
noise covariance matrix, R, captures the uncertainty in the sensor
measurements. Proper initialization and tuning of these covariance matrices are
essential for accurate state estimation [43].

Algorithm 1 describes the Kalman Filter algorithm in pseudo code. The
Kalman filter first needs to be initialized with the initial state estimate x̂0 and the
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initial error covariance matrix P0 based on prior information. This is important
as a bad initial estimate can lead to divergence of the filter.

The process covariance matrix, Qk, must be discretizted, and depends on the
time step ∆t. This is done using Van Loan’s formula, assuming a contunious-time
linear process _x= Ax+Bu+Gn:

exp

��

−A GDGT

0 AT

�

∆t

�

=

�

× V2
0 V1

�

(2.25)

Qk = VT
1V2 (2.26)

Algorithm 1 Kalman Filter Algorithm

Input: F: State transition matrix, H: Measurement matrix, Qk: Discrete
process noise covariance matrix, R: Measurement noise covariance matrix, yk:
Measurement vector
Output: x̂: Final state estimate
Initialization: x̂0: Initial state estimate
P0: Initial error covariance estimate
for each time step k do

x̂k|k−1 = Fx̂k−1 ▷ State prediction without control input
Pk|k−1 = FPk−1FT +Qk ▷ Error covariance prediction
Kk = Pk|k−1HT (HPk|k−1HT +R)−1 ▷ Kalman gain
x̂k = x̂k|k−1 +Kk(yk −Hx̂k|k−1) ▷ State update
Pk = (I−KkH)Pk|k−1 ▷ Error covariance update

end for
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Literature review

The literature review aims to investigate how other researchers in the field has
overcome magnetic disturbances in heading and attitude estimation. The main
topics of interest in the search, were how disturbances from electric motors were
managed, magnetic disturbance rejection, and heading estimation. This chapter
also includes a section on the project work performed in advance of this thesis.

3.1 Improved heading estimation in magnetically noisy
environments

Achieving good heading and attitude estimates in environments with external
magnetic disturbances has been a thoroughly examined topic, due to its
complexity. As described in the theory, magnetic fields cannot be directly
shielded, and external magnetic fields must therefore either be handled by
software or redirected through metals with high magnetic permeability.

Wondosen et al. performed a comprehensive literature search in advance of
the development of their improved attitude and heading estimation using what
they called the Double Quaternion Extended Kalman filter (DQEKF) [17]. A
common technique to overcome magnetic disturbances described in the paper, is
by detecting the magnetic disturbance and rejecting the measurement by
increasing the measurement noise covariance matrix for the magnetometer data,
making the filter update the estimates based on data from more reliable sources.
The key takeout from Wondosen et al., is that multiple approaches to accurate
heading and attitude estimation has been researched, yet, accurate and reliable
heading estimates in magnetically noisy environments remains a problem.
Wondosen et al. therefore proposed to decouple the attitude and heading
estimation, preventing the inaccuracy in the heading estimates from the
magnetic disturbance to propagate into the attitude estimates [17]. The heading
estimates were improved by detecting magnetic disturbances and rejecting these

21
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measurements before feeding them into the EKF. The detection algorithm
worked by creating a rule, based on the error between the expected measured
magnetic field at time step k, Hk, and the measured field, Bk, calculated as
dm =
∑k

k−n(|Hk| − |bk|)2) 1. The results showed that the DQEKF performed
better than the standard EKF when the magnetic disturbance rejection algorithm
was employed to both methods [17].

Widey and Woo suggested a robust attitude estimation technique using an
adaptive Kalman filter for UAVs [50]. In addition to magnetic disturbance
detection and rejection from the environment, the method proposed in the paper
specifically handles the magnetic noise from the motors on the UAV. The
improved attitude estimation method introduced a few design changes to the
standard Kalman Filter, whereas those relevant to the heading estimation will be
presented next. The first design change managed magnetic distubrance
detection and rejection. After the magnetometer has been calibrated, the norm
of the measurement should not change in the case of no magnetic disturbances,
as the earth’s magnetic field norm is constant [50]. Thus, the rejection rule was
that if the magnetometer norm deviates with a threshold from the initial
magnetic field norm, the magnetometer measurement should be discarded, and
thus not used in the update step of the Kalman Filter. The second design change
specifically handled the interference from the thruster motors. The magnetic
interference follows a periodic sine function proportional to the motors’ speed.
When the rpm is sufficiently higher than the dynamic rotation of the AUV, the
disturbance from the motor’s could be easily filtered by adaptively increasing the
measurement noise covariance matrix. In their case, the magnitude of the
magnetic disturbance was in the range of 10 µT. The last design change handled
the magnetic disturbance which does not change the norm of the measured
field, but the direction. Widey and Woo handled this by linearly increasing the
measurement covariance matrix with the scaled difference between the
predicted attitude and the measured attitude [50].

Laslty, Ning et al. had a more complex approach to improving the attitude
estimation, and will therefore not be covered [39]. However, the authors saw
the need to model the measurement noise using an Auto Regressive and Moving
Average model.

To summarize, the literature review shows that magnetic disturbances in
heading and attitude estimation can be handled by different magnetic
disturbance and rejection techniques. Additionally, in the cases where the
disturbance originates from known electric motors, the disturbance can be
filtered if the dynamics of the disturbance is sufficiently larger than the dynamics
of the system. Lastly, attitude estimates can be improved by decoupling the
heading and attitude estimates to prevent the reduced heading accuracy due to
magnetic fields from leaking into the attitude estimates.

1The rule was however not specified
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3.2 Previous work on the Boa Snake Robot

Initial investigation of the Boa snake robot’s servo motors and IMU were
performed in the project work preceding this master’s thesis. The work was
focused on understanding to what extent the electromagnetic field induced by
the servo motors would affect the IMU measurements on the robot [19]. Since
then, the hardware on the Boa has been upgraded, and the servo motor changed
from the RMD-X6 1:6 to the Dynamixel XH540-V150-R [51] [52]. The results
from the project work can therefore not be used directly in this thesis. However,
the conclusion forms the base foundation for the method and experimental
design in this thesis.

By designing a test rig based on the Boa snake robot design, and performing
an experiment where the servo motor shaft rotated 30◦ three times while the
motor and IMU themeselves never moved, the previous work was able to map
out how the servo motor’s generated magnetic field affects the IMU
measurements. The main results showed that the gyroscope was unaffected by
the induced magnetic field, and that the accelerometer variance increased
significantly in the z-direction when the servo motor shaft rotated. However, the
work could not conclude why, as the data collected was not sufficient for
mapping out the potential relation between the increased variance and either
the motor’s shaft speed, position or torque current. It was hypothesised that
there could be a relation with the motor’s shaft speed, but a conclusion could not
be made due to a lack of data points as the shaft acceleration was much higher
than the sampling frequency. The increased variance could also have been due to
vibrations in the motor. It was therefore recommended for future work to
improve the experimental setup.

The most important result from the previous work showed that the
magnetometer measured the magnetic field induced by the servo motor, in
addition to the earth’s magnetic field. It was concluded that the magnetic
cross-talk from the motor to the IMU could be modelled as a sine function
against the motor’s shaft position. Furthermore, it was suggested that by
estimating the generated motor field by sine regression, it might be possible to
predict the motor’s magnetic field contribution and subtracting the contribution
by using feed-forward before feeding the magnetometer measurements into a
Kalman Filter [19].
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Method

The investigation of how to improve the heading estimates of the Boa Snake robot
involved a systematic approach divided into four main phases:

Phase 1: Literature review laying the foundation of the design of the next three
phases. It was therefore presented in Chapter 3.

Phase 2: IMU noise characterization by performing time series analysis of raw
IMU measurements without magnetic disturbance from the servo motor.
This phase also utilised data from the experiments performed in phase 3.

Phase 3: Motor actuation experiments to investigate the cross-talk from the
motor. The IMU was mounted on top of the servo motor as by the Boa
Snake robot design, while the motor shaft rotated and the servo motor and
IMU themselves did not move (Figure 4.2). The experiment was also
performed with an emulated rotational load. Physical shielding methods
were also tested to investigate if it could improve the magnetic field
measurement.

Phase 4: Motor field disturbance modelling Using the experimental data from
the baseline and additional load experiments, and sine regression, a model
of the magnetic disturbance from the servo motor in the sensor frame was
made.

Phase 5: Proposal of a improved heading estimation technique using
feed-forward and magnetic disturbance detection and rejection. The
design was tested by a a proof of concept experiment and heading
estimator.

The sections in this chapter describes the experiments performed in the four
steps in further detail. However first, the hardware and experimental setup will
be introduced.
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4.1 Hardware introduction

The main hardware components in investigation is the servo motor and IMU of
the Boa snake robot. These will therefore be described in further detail in this
section, together with the baseline hardware setup similar in all experiments.

The IMU and servo motor of the Boa Snake Robot are displayed in Figure
4.1. The BNO-055 is a smart sensor from Bosch, with tri-axis accelerometer,
gyroscope and magnetometer. The BNO-055 performs internal sensor fusion
estimates of the attitude in quarternions or euler angles, linear acceleration and
gravity in the sensor frame, using the sensors’ raw measurements [30]. The IMU
is auto-calibrated by performing a set of predefined movements [53]. The
Dynamixel XH540-150V-R is a BLDC servo motor from Robotis, allowing both
position and velocity control. It is controlled by a command set over RS-485
serial communication [52]. Robotis provides the Dynamixel SDK package in
several programming languages, including C/C++, Python and MatLab. This
allows easy control of the Dynamixel motor family [2]. All references throughout
this thesis to "the IMU" or "the BNO" refers to the BNO-055, while references to
"the servo motor", the "motor" or "the Dynamixel" refers to the Dynamixel
XH540-V150-R.

(a) Image by from Robotis [52]. (b) Image by Adafruit [54].

Figure 4.1: The main hardware of the Boa Snake Robot under investigation in
this research are a) the Dynamixel XH540-V150-R servo motor, and b) the BNO-
055 IMU on a breakout board from Adafruit.

4.2 Baseline experimental setup and variations

The baseline hardware setup was similar for all the different experiments that
was conducted in the different phases, however with slight variations. On the
Boa Snake Robot, the BNO-055 IMU will be mounted on top of the servo motor,
which acts as a motor joint in each motor link. The chassis holding the robot link
hardware was unfortunately not available at the time of writing. A good enough
solution was therefore to secure the IMU (on a breadboard) to the top of the servo
motor by using double sided tape. During the experiments, the servo motor was
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secured to the table with a clamp. The motor shaft was outside the table to allow
the shaft to rotate freely. This way, the IMU and servo motor itself could not move
during the experiment after IMU calibration, making the results easy to interpret.
The experimental setup with variations are shown in Figure 4.2. The baseline
setup shown in Figure 4.2a served as the starting point for all the experiments.
The different variations for the experimental setup during the additional load and
shielding experiments will be further detailed in Sections 4.4.2 and 4.4.3.

(a) (b)

(c) (d)

Figure 4.2: The experimental setup during a) the baseline servo experiment, b)
the additional load experiment, c) the shielding experiment, and d) the distance
experiment. The Dynamixel servo motor was clamped to a table, while the motor
shaft was was outside the table, to ensure it could rotate freely while the motor
itself remained stationary. The only exception was during the experiment with
additional load, where a container was used to create a friction force adding load
on the motor shaft. The BNO-055 IMU was mounted on a breadboard on top of
the motor.
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Figure 4.3 shows the electrical interfaces in the experimental setup. The
Raspberry Pi was chosen as the controller for the experiments. It is easy to use,
has USB ports allowing easy serial communication with the Dynamixel through a
USB-to-RS485 cable, and supports I2C communication with the BNO-055. The
data from the IMU and the servo motor was saved as a CSV file on the
Raspeberry Pi. The Dynamixel was powered by an external power supply. The
BNO-055 was powered through the Raspberry Pi’s 5 V pin, and communicated
over I2C. The Raspberry Pi itself was powered through a USB-C power supply.

RS 485Dynamixel
XH540-V150-R
Servo motor 

5VGND SDASCL

5V from USB-C

Raspberry pi 4

24 V GND

Power supply Adafruit BNO 055
breakout board

Figure 4.3: Schematic of the electrical interfaces in the baseline experimental
setup. The Raspberry Pi, used as the main computer during the experiments,
powered the BNO-055 IMU and communicated over I2C. The Dynamixel servo
motor was powered by an external power supply, and was controlled by the
Raspberry Pi through serial communication over a RS4 85-to-usb-cable.

4.3 Nominal magnetometer noise characterization

Building upon the insights gained from the literature review in Chapter 3, the
second phase aimed to characterize the natural measurement noise of the IMU.
To investigate if the magnetometer measurement noise of the Boa snake robot
should be modelled as an ARMA series, as Ning et al. suggested [39], it was
decided to perform a dedicated time series analysis on the magnetometer
measurements. The hardware setup was as sketched in Figure 4.4. The BNO-055
IMU was wired to a Raspberry Pi 4, and placed flat on the table. A Python script
was written that calibrates the IMU, and samples IMU measurements for 15
minutes. The time series analysis involved plotting the ACF and PACF plots to
look at the autocorrelation of the time series, as described in Section 2.6.2 in the
theory. Additionally, the skew, kurtosis and standard deviations of the
measurements were investigated. The results are provided in Section 5.1, and
discussed in Section 6.1.1.
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Figure 4.4: Setup during magnetometer noise characterization sampling. The
power supply lines are not displayed for simplicity.

4.4 Servo motor actuation experiments

The third phase involved a series of servo motor experiments, inspired by the
proceeding project work [19], as referenced in the literature review. The
experiments conducted rotated the motor shaft at different speeds while the
motor itself remained stationary. The experiments were performed both without
and with additional load, and used the same test script. Raw IMU measurements
where also sampled before and after the servo actuation. The primary objective
was to develop a model of the magnetic disturbance caused by the servo motor
on the magnetometer in the BNO-055. Additionally, two physical magnetic field
reduction methods were evaluated with the same experimental setup: shielding
sheets and physical distance. The goal was to explore the potential combination
of software and hardware approaches to improve the accuracy of the magnetic
field measurements. The modelling part of the third phase is described in
Section 4.5.

The experiment was designed to achieve the following objectives: 1)
Verification of the results obtained in the project work, 2) Building a model of
the magnetic field disturbance generated by the servo motor 3) investigating
how a changing motor load might impact the validity of the motor field model,
and 4) explore physical techniques to reduce the magnetic field disturbance. The
raw IMU measurements collected before and after servo actuation was used in
phase 1 to find the nominal gyroscope and accelerometer noise. All these
experiments were conducted using the same baseline hardware setup and test
script, detailed in Sections 4.1 and 4.4.1, however with slight variations.

4.4.1 Test script development

The software script, used in almost all of the experiments, was designed as an
improvement of the experiments performed by Linnerud in the previous project
work [19]. The experiment designed in the previous project work were concluded
to not have enough data points through the entire velocity span due to the high
acceleration of the servo motor, making it harder to interpret correlations in the
data set. It was however very suitable for modelling the magnetic disturbance as
a function of the servo motor shaft position. The new test script design therefore
aimed to ensure there were enough data points at the expected possible shaft
velocities and positions of the Boa Snake Robot.
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The motor actuation test script was programmed following the flowchart in
Figure 4.5, and can be found on GitHub [1]. First, the IMU is initialized, and the
serial communication ports are opened. Second, the IMU is calibrated by moving
the IMU in a defined movement. Here, the user inputs if the IMU is calibrated or
not until the calibrations status is good. Once the IMU is calibrated, raw IMU
measurments are sampled for two minutes. After that, the servo motor is set to
position control mode, the maximum acceleration set to 1072.9 rev/min2 and
the torque is enabled. Then, the script enters the test loop, where the motor
rotates the shaft clockwise from 0◦ to 360◦ and back to 0◦ counterclockwise with
five evenly spread speeds between 5.7 and 41.2 rpm, while sampling IMU data.
Lastly the torque was disabled and raw IMU measurements were sampled for
two more minutes while the motor is not turned on. The reason for sampling
IMU measurements both before, during and after servo actuation was to see if
the magnetic field generated from the servo motor invalidates the IMU
calibration.

In addition to sampling the raw IMU measurements, the calculated
orientation estimated by the internal sensor fusion algorithm on the BNO-055
was sampled and stored during the servo motor movements. The IMU was
configured to display the orientation from the true north, and not the relative
orientation from initialization. The test script was used for all the experiments
performed, except the nominal magnetometer noise characterization sampling.

For the experiments performed in phase 3: motor actuation experiments,
the user ensured the servo motor and IMU was secured to the table after IMU
calibration, to allow the motor shaft to rotate while the servo motor and IMU
themselves remained stationary, as shown in Figure 4.2.

4.4.2 Adding load

To investigate how the electromagnetic field generated by the servo motor
change with servo motor torque load, a test rig was designed to simulate torque
and friction forces, while keeping the servo motor stationary oriented. This is
important as the snake robot will use friction forces against obstacles to move,
adding torque load on the motor, which increases the torque current.

A proper test rig to measure or control the actual motor load was not
available. The best solution was therefore to design a simple test rig using
Fusion 360 and a 3D-printer [4]. The design is shown in Figure 4.2b. To
simulate the additional load, the baseline hardware setup was modified. A 3D
printed disk with additional weight was mounted on the motor shaft to apply
additional torque to the rotation. Friction forces was simulated by applying a
force between the disk, and a container with a pocket that the disk and shaft
could be pressed against using the clamp. The force creating the friction was
during this experiment made by the clamp securing the servo motor to the table
in a stationary position. The experiment was otherwise identical to the baseline
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Figure 4.5: Flowchart of the test script used during the servo actuation
experiments. The IMU auto calibrates by moving the IMU in a set of movements
[53]. The servo motor was programmed using the Dynamixel SDK package [2]
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experiment described in Section 4.1 and 4.4.1. As will be discussed in Section
6.2.3, the servo rotated a few degrees during actuation due to the friction forces
between the motor and the container, and the fact that the clamp could not
secure it completely.

4.4.3 Shielding experiments

In order to investigate if the heading estimates could benefit from using
shielding materials around the servo motor, a series of the servo actuation
experiments described in Section 4.4 were conducted with 1) physical shielding,
and 2) a distance between the IMU and the servo motor. The purpose of the
experiments was to compare how well the shielding could contain the magnetic
disturbance from the servo motor, and compare the results to the reduced
disturbance from simply moving the IMU away from the motor. The second
objective of the experiment was to investigate if the filtering techniques would
perform better with shielding or distancing.

Figure 4.2c and 4.2d visualizes the hardware setup in these experiments.
The shielding sheet that was used was the self-adhesive Wurth Elektronik Ferrite
Shielding Sheet with 0.1 mm thickness [25]. The physical distance between the
IMU and servo was along the rotational axis of the servo motor, which is out of
the plane. The motor could not move during any of the experiments, and the
IMU was calibrated before each experiment, as follows from the test script flow
in Figure 4.5. The experiment can be divided in three categories:

Reference experiment without shielding or additional distance between the
IMU and the servo motor.

Ferrite shielding sheets between the servo motor and the IMU of thicknesses 0.1
mm, 0.3 mm, 0.3 mm in addition to 0.1 mm around the servo motor, and
0.5 mm in addition to 0.1 mm around the servo motor.

Physical distance between the servo motor and the IMU with distances10 mm,
and 20 mm.

4.5 Magnetic cross-talk modeling

From the previous project work, described in Section 3.2, it was known that the
relationship between the servo motor shaft position and magnetometer
measurements could be fitted to a sine function using nonlinear least squares
regression [19]. The magnetic field from the BLDC servo motor is a direct effect
from the electromagnetic field generated to rotate and control the position of the
motor’s shaft. In this section, the method of fitting magnetic cross-talk from the
servo motor to a sine will be described, as it is specific to the case in hand.
However, the general sine fitting described in Section 2.7 was applied. The code
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used to perform the sine regression on the experimental data can be found on
GitHub, with an example in modelEvaluation.py [1].

As described in Section 2.2.2, magnetic fields are additive. This means that
in this specific case, the measured magnetic field from the magnetometer is a
sum of earth’s magnetic field, the servo motor’s generated magnetic field, and
additional noise and effects in the environment. This is described in Equation
(4.1), were Bservo is the magnetic field generated by the servo motor during servo
actuation, Bear th is the earth’s magnetic field, Bmeas is the magnetic field measured
by the magnetometer during servo actuation, and n is the measurement noise. The
magnetic field generated by the servo motor can thereby be estimated by Equation
(4.4), as a nonlinear function of the servo motor’s shaft position F(α).

Bmeas = BEar th +Bservo + n (4.1)

B̂servo = f(α) (4.2)

f (α) = Asin (ωα−φ) (4.3)

B̂servo = Bmeas −BEar th (4.4)

First BEar th was estimated from the experiments by taking the mean of the
magnetometer measurements before servo actuation, as these measurments was
not influenced by the magnetic field from the motor. Bservo was then estimated
by subtracting B̂Ear th from the measured magnetic field during servo actuation ,
Bmeas. Then, the time series of B̂servo was fitted to a sine as a function of the servo’s
shaft position, α, using Scipi’s curve_fit() function.

The baseline experiment was used to estimate the sensed magnetic field from
the servo motor. The data from the experiment with load was was used as the test
set, making it possible to evaluate if the motor disturbance model also was valid
with load variations.

4.6 Heading estimation experiment

The previous experiments described in this chapter served as preparatory work
to propose how to reduce the disturbances in the magnetic field measurements
for the Boa snake robot. The experiments described gave insights on how the
magnetic disturbance from the motor could be modelled. This insight were then
used to test an improved technique to improve the heading estimation for the Boa
snake robot.

The proposed method to be evaluated was as described in the block diagram
in Figure 4.6. Feed-forward is used to compensate for the magnetic disturbance
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from the servo motor. The magnetic field and gyroscope measurements are then
used to estimate the heading of the snake robot link. The heading estimator is
an adaptive Kalman filter with Magnetic Disturbance Rejection (MDR) inspired
by Widey and Woo [50], as described in the Literature review in Section 3.1.
The Kalman filter design and magnetic disturbance rejection technique will be
described in further detail in Section 4.6.1 and 4.6.2.

Figure 4.6: Proposed method to improve heading estimates for the Boa snake
robot.

To evaluate the performance of the proposed method, one needs something
to compare it with. The heading was therefore also estimated using the standard
Kalman filter without magnetic disturbance rejection, but still including the
feed-forward loop. The BNO-055’s internal sensor fusion estimate also served as
a reference. Lastly, the two heading estimators where also applied without the
feed-forward loop, with the same tunings, to evaluate their performance when
purely relying on non-corrected magnetometer data. The tunings for the Kalman
filter that was compared is shown in Table 4.1 in degrees. The first tuning was
designed to be overconfident in the plant model and gyroscope measurements,
and underconfident in the magnetometer measurements. This way, the heading
estimate without the magnetometer measurements can be assessed. The second
tuning was attempted to achieve the best possible heading estimates without
magnetic disturbance rejection, while still using the magnetic field
measurements. The last heading estimator tested the Kalman filter with
magnetic disturbance rejection, and was tuned to achieve what was believed to
be the best heading results using this filter.

To test the heading estimators, there was a lack of proper equipment to
perform experiments where the ground truth was tracked. Additionally, due to
time limitations, a test rig where the movement of the experimental setup was
caused by actuating the motor shaft itself could not be built. Despite this, the
best solution was to test the Kalman filters by a simple proof-of-concept
experiment. The starting point of the experimental setup was the baseline setup,
except that the motor was not clamped to the table. Since the goal of the
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Table 4.1: The process and measurement covariance matrices for the different
Kalman filter tunings.

KF tuning 1 KF tuning 2 KF with MDR

Q

�

0.0012 0
0 102

� �

0.12 0
0 102

� �

0.12 0
0 102

�

R

�

12 0
0 0.0012

� �

12 0
0 0.0012

� �

0.12 0
0 0.0012

�

experiment was to evaluate if it is possible to estimate the heading while the
servo motor rotates, the only movement needed to estimate the heading is a
rotation around the IMU’s z-axis. The physical experiment performed rotated the
motor counterclockwise about 45◦, then counterclockwise back to the initial
starting position, around 45◦ clockwise, and back to the starting position again.
The same movement was performed one more time, before lastly the motor was
rotated 90◦ counterclockwise. The movement was performed by hand, while the
motor itself was controlled by the same test script as all previous experiments,
meaning the motor shaft position had no correlation with the movement of the
motor. The initial starting position was approximately 290◦ (or −70◦), and was
measured by the compass on a smart phone. The uncertainty in the initial
position can therefore be roughly estimated as around ± 10◦.

It was attempted to improve the experimental accuracy of the movement by
mounting the motor on a camera tripod. For reasons explained in Section 6.5.1,
the attempted improvement proved to show key insights into possible practical
obstacles which would need to be addressed in future work. The attempted test
stand could therefore not be used for the proof of concept heading estimate
experiment, and results from this attempt will be further elaborated in Section
6.5.1.

An implementation of the proposed heading estimator can be found on
GitHub [1]. The example code found in KFtest.py shows the adaptive Kalman
filter and feed-forward correction used on the data acquired from the heading
experiment.

4.6.1 Kalman filter design

This section describes the Kalman filter design made specifically to estimate the
heading during the heading experiment. The Kalman filter algorithm described in
Algorithm 1 in Section 2.9 in the Theory was used.

The states of the system was defined as x = [ψ, ψ̇]T. The system was
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approximated to have a constant heading acceleration, as it could not be
estimated by torque or force measurements, nor measured. The linear time
variant discrete process model was thereby defined as

xk = Fk−1xk−1 + vk−1 (4.5)

Fk−1 =

�

1 ∆tk−1
0 1

�

(4.6)

vk−1 ∼N (0, Qk−1) (4.7)

with initial state estimate x̂0 = 0. The process covriance matrix Qk−1 is the
discretized version of Q, and depends on the step size ∆tk−1. Since the process
was approximated to have constant acceleration, even though it is known not to
be true, the entry in Q belonging to the heading rate should therefore be large
compared to the entry belonging to the heading.

To avoid non-linearities, the pseudo measurement of the heading was defined
as ψm = arctan(magY

magX ). The heading rate could be measured as the negative of
the gyroscope measurement. The measurement model was thus

yk = Hxk +w (4.8)

H=

�

1 0
0 1

�

(4.9)

w∼N (0, R) (4.10)

where the measurement covariance matrix is R = diag([σ2
ψm

,σ2
ω]). The

gyroscope variance could be identified by analysing the gyroscope measurement
noise. σψm

is the variance of the pseudo measurement. The standard deviation
of the gyroscope measurements found by the experiments should be sufficient to
use in the covariance matrix, while σψm

would need to be tuned.

The gyroscope measurement was used in the innovation calculation and
update step of the heading rate, while the pseudo measurement was used in the
innovation calculation and update step of the heading, as described by H.

4.6.2 Magnetic disturbance rejection

The Magnetic disturbance detection and rejection rules, introduced in Section
3.1, where performed by adaptively increasing the measurement covariance
matrix. Let rh be the entry in the covariance matrix, R, belonging to the heading
measurement. Further, let σ2

ψm
be the initial heading pseudo measurement

variance. The measurement variance of the heading measurement is adaptively
increased based on the square of the residual between the estimated and
measured heading as shown in Equation (4.11), and the square error of the



Chapter 4: Method 37

change in earth’s magnetic field norm as shown in Equation (4.12).

rh = σ
2
ψm
+ c(ψk − ψ̂k)

2 (4.11)

rh+ = c(Bk − B0)
2 (4.12)

where ψk is the measured heading from the magnetometer measurements, ψ̂k is
the heading estimate from the Kalman filter at time step k, Bk is the magnetometer
norm at time step k, and B0 is the initial magnetometer norm before the servo
motor start to actuate. c is a scaling factor, which was tuned to 0.01. Note that
only the x- and y- axis magnetometer measurements where used in the Kalman
filter.
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Results

In this chapter, the results from the work performed in the different phases to
improve the heading estimates will be presented. First, Section 5.1 presents the
nominal magnetometer noise characterization results. Second, the results from
the baseline experiment are presented in Section 5.2, followed by the additional
load results in Section 5.3. Section 5.4 presents the results from phase 4 on
magnetic cross-talk modelling. The shielding experiments are then presented in
Section 5.5, although the experiments were performed in phase 3. This was
decided since the conclusions drawn from the data relied on the cross-talk
modelling results. Lastly, the improved heading estimation results are presented
in Section 5.6.

Note that the gyroscope and accelerometer data collected from the baseline
and additional load experiments in phase 3 were used to conclude on phase 2
on IMU measurement noise characterization, as well as phase 4 on motor field
disturbance modelling.

5.1 Magnetometer noise characterization

As described in Ning et al., the magnetometer’s measurement noise might need
to be modelled in terms of an ARMA model [39], and not as white Gaussian
noise which often is the normal assumption. This was investigated performing
time series analysis on a 15 minutes long time series where the IMU lay
motionless on a table, as described in Section 4.3. The time series is shown in
Figure 5.1. It shows that the IMU measurements has many large outliers with
approximately the same value, but otherwise visually look like white noise. The
density of the measurements along each axes are plotted in Figure 5.2. The x-
and z-axes clearly follows a normal distribution.

39
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Figure 5.1: Time series plot of the magnetometer measurement noise, a) with
outliers, and b) after removing outliers.
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Figure 5.2: Density plot of the magnetometer measurement time series.
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The mean, standard deviation, skew and excess kurtosis of the
magnetometer data is displayed with three decimals in Table 5.1a. The kurtosis,
skew and standard deviation is very large. Removing the outliers using the IQR
method with a scale of 3 (instead of the normal scale of 1.5 to only remove the
data points due to sensor faults), yielded the results in Table 5.1b.

Table 5.1: Magnetometer measurement statistics from the nominal
magnetometer noise experiment with a) the entire dataset and b) after
removing outliers.

(a)

x y z
skew 20.175 -169.801 -21.425

kurtosis 405.057 28924.743 457.105
mean [µT] -16.670 18.857 9.149
std [µT] 101.042 12.015 95.174

(b)

x y z
skew 0.018 -0.014 -0.075

kurtosis 0.133 -0.095 -0.033
mean [µT] -21.666 18.915 13.599
std [µT] 0.634 0.486 0.612

The auto correlation and partial auto correlation function of the data set, used
to determine whether an ARMA model of the magnetometer noise was needed,
are displayed in Figure 5.3. It is observed that lag 1 is within the 95 % confidence
interval, shown in green, in both the ACF and PACF plot. The noise therefore has
no autocorrelation or partial autocorrelation, and an ARMA model is not needed.

5.2 Baseline servo actuation experiment

As described in Section 4.4, several tests were conducted to investigate the effect
of the magnetic cross-talk between the motor and the IMU. In this section, the
results from the baseline servo actuation experiment is presented. To make the
plots more readable, evident outliers were removed. Through this entire section,
the motor’s position or velocity refers to the angular position or rotational velocity
of the servo motor’s shaft if not otherwise is specified. The motor itself was always
secured to a table, and did not move throughout the experiment.

A time series plot of the motor’s position and velocity, and the magnetometer
measurements, is presented in Figure 5.4. The servo motor and IMU themselves
did not move during the test, and the change in magnetic field can thus be fully
attributed to the motor’s generated magnetic field. The electromagnetic field along
each axis changes when the motor shaft rotates.
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(a) (b)

Figure 5.3: Auto correlation and partial auto correlation plot of the
magnetometer measurements a) up to lag five, and b) zoomed in on the
confidence interval, shown in green. The plot was made using Statsmodels’
graphics.tsa.plot_acf and graphics.tsa.plot_pacf functions [8].
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Figure 5.4: Timeseries from the baseline servo actuation experiment. The two
last rows shows the motor shaft position and velocity during the experiment,
which were pre-programmed. The three first rows shows the measured magnetic
field along the x-, y- and z- axis. The missing data points are outliers which were
removed.
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To easily get an overview of the experimental results, pair plots for the
accelerometer, gyroscope and magnetometer measurements against the motor’s
shaft position, velocity and torque current were made using Seaborn’s pairplot
function [7]. These can be found in Appendix A in Figures A.1, A.2, and Figure
A.3. In this section, the observations from the pair plots of particular interest will
be extracted and displayed in a concise format for the reader.

The first evident observations is that neither the gyroscope or accelerometer
measurements show any correlation with the motor position, velocity nor torque
current for any of the sensor axes. This can be seen in Figure 5.5 with an example
of the z-axis gyroscope scatter plots. The accelerometer scatter plots are similar.
Additionally, the pair plots displayed no correlation between the motor’s torque
current and any of the IMU measurements.
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Figure 5.5: Scatter plots between the gyroscope z-axis and the motor shaft’s
angular position, velocity and torque current, viewing no clear correlations.

Figure 5.6 displays a 3D scatter plot between each magnetometer axes, and
scatter plots between each of the axes and the motor position in degrees. The
expected sine relationship between the motor position and the magnetic field
measurements are evident. Furthermore, the 3D scatter plot views that the
magnitude of the magnetic field rotates along an ellipse with the rotation of the
motor’s shaft. It is observed that x-and y-axis magnetic fields has a peak-to-peak
of approximately 175 µT, while the z-axis field has a peak-to-peak of
approximately 15 µT.

The magnetometer scatter plots against the servo velocity shows complex
patterns, as viewed in Figure 5.7. There are nonlinear curves, as well as evenly
spaced lines at different speeds, and the x- and z-axis magnetic fields seems to
be outer bounded by a nonlinear curve. However, the different speeds spans the
entire magnetic filed span along the y-axis. As will be explained and discussed in
Section 6.2, the patterns are however due to the design of the experiment.

Figure 5.8 displays density histograms from the baseline experiment when
the motor shaft rotated for one axis of each sensor. The other axes had similar
shapes. The figure shows that the accelerometer and gyroscope measurements
are approximately normal distributed even when the motor actuates. Oppositely,
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Figure 5.6: 3D scatter plot of magnetometer measurement along each axis, and
the clear correlation between the position of the motor shaft and the measured
magnetic field. The scatter plots shows that the magnetic field rotates with the
motor shaft rotation.
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the magnetic field density is clearly not normal distributed. This is as expected
from the observed correlation plots in Figures 5.5 and 5.6.
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Figure 5.8: Histogram plots of the sample densities of one axis for each IMU
sensor during servo actuation from the baseline experiment. The gyroscope view
is from the z-axis, as this is the one axis relevant for a planar snake robot.

Figure 5.9 compares the raw magnetometer measurements before and after
the servo actuation test, to inspect if the motor actuation left any permanent
effects on the magnetic field measurements. The figure visually shows no
difference.

Figure 5.9: Comparison of the magnetometer measurements before and after the
motor actuates in the baseline experiment.

The mean, standard deviation, excess kurtosis and skewness of the IMU
measurements before, during and after the motor actuation are further
presented in Tables 5.2, 5.3 and 5.4. Table 5.2 shows that the largest change in
the magnetometer means was along the z-axis with 1.531 µT. The standard
deviations of the magnetometer measurements after servo actuation were
approximately the same as before actuation, but not equal. The change is
however negligible in the engineering context. The skew and kurtosis also
changed with around 0.1 for each axis, but while the x- and z axis kurtosis
increased, the y-axis decreased. The changes are however relatively small.
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Table 5.2: Magnetometer sample statistics before and after the servo actuation
in the baseline experiment. The statistics during servo actuation was omitted as
the measurements were known to be strongly affected by the motor.

mean std skew kurtosis
Before

magX -11.941 0.656 0.140 0.079
magY 5.695 0.400 -0.005 -0.198
magZ -29.964 0.623 -0.054 -0.040

After
magX -12.656 0.612 -0.067 0.172
magY 5.708 0.409 -0.038 0.016
magZ -31.495 0.708 -0.077 -0.163

Table 5.4 shows that the statistics for the gyroscope measurements are
approximately equal before, during and after servo actuation. The same applies
to the accelerometer measurement statistics in Table 5.3. It is however observed
that the accelerometer has a skew of over 0.5 along the z-axis both before and
during servo actuation, and a kurtosis over 1 for the x- and z- axes both before,
during and after servo actuation. This might indicate the accelerometer
measurement noise does not follow the Gaussian distribution, and will be
further discussed in Section 6.2.1.

Table 5.3: Accelerometer sample statistics before, during and after the servo
actuation in the baseline experiment.

mean std skew kurtosis
Before

accX 0.420 0.012 -0.029 1.035
accY 0.378 0.014 -0.070 0.482
accZ 9.824 0.017 -0.500 1.135

During
accX 0.420 0.014 0.139 1.270
accY 0.380 0.014 -0.062 -0.019
accZ 9.824 0.017 -0.599 1.721

After
accX 0.419 0.013 -0.032 0.606
accY 0.379 0.013 -0.072 0.035
accZ 9.824 0.018 -0.321 1.123
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Table 5.4: Gyroscope sample statistics before, during and after the servo
actuation in the baseline experiment.

mean std skew kurtosis
Before

gyrX 0.000 0.001 0.115 0.005
gyrY -0.000 0.002 -0.001 0.012
gyrZ -0.000 0.001 -0.015 0.138

During
gyrX 0.000 0.001 -0.024 0.448
gyrY 0.000 0.002 0.089 -0.152
gyrZ 0.000 0.001 0.193 0.298

After
gyrX 0.000 0.001 -0.009 -0.058
gyrY 0.000 0.002 -0.035 0.249
gyrZ 0.000 0.001 0.070 0.007

5.3 Servo actuation experiment with load

The additional load experiment served two purposes. The first was to investigate
if the magnetic field sensed by the magnetometer changed significantly. The
second, and related, purpose, was to validate the model of the magnetic
disturbance from the motor when the motor load changes. In this section, the
resulting torque current and magnetic field is compared to the baseline
experiment, and the mean, standard deviations, skew and kurtosis is presented.
The data was further used in the motor disturbance modelling. The sine
regression performed on the additional load data set will therefore be presented
in Section 5.4.

Figure 5.10 compares the torque current during the baseline experiment
and the load experiment. The torque current is clearly larger during the load
experiment. The negative current is when the motor rotates in the negative
direction. The change in the measured magnetic field with and without load is
shown in Figure 5.11. Note that the initial magnetic field before the servo
actuation are different for the experiment without and with load. The difference
is less than 5 µT.

For the interested reader, Appendix A.2 presents the pair plots during the
servo actuation with additional load in Figures A.4, A.5 and A.6. The figures were
put in the appendix due to their similarities to the pair plots from the baseline
experiment.

Table 5.5 shows the mean, standard deviation, skew and kurtosis for the
magnetometer measurements before and after servo actuation with load. It views
almost no change after servo actuation. The z-axis mean however increased by
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Figure 5.10: Torque current during servo actuation with and without additional
load.
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Figure 5.11: The magnetic field in the x-, y- and z- direction over time during
servo actuation with and without load.
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2.5 µT. The statistics for the gyroscope and accelerometer measurements viewed
no clear change, and can be found in Tables A.1 and A.2 in Appendix A.3 by the
interested reader. The statistical tables were used to find the distribution of the
IMU noise, and the relevant numbers will be summarized and analysed in the
discussion.

Table 5.5: Magnetometer sample statistics before and after the servo actuation in
the additional load experiment. The statistics during servo actuation was omitted
as the measurements where known to be strongly affected by the motor.

mean std skew kurtosis
Before

magX -12.267 0.621 -0.080 -0.038
magY 8.417 0.454 -0.086 -0.138
magZ -27.718 0.597 0.030 0.053

After
magX -13.261 0.624 -0.110 0.106
magY 8.037 0.459 -0.010 -0.384
magZ -30.349 0.665 0.043 0.043

5.4 Magnetic cross-talk modeling

The modelling of the cross-talk from the servo motor disturbance were based on
the results from the servo motor experiments, and the evident sine relation
between the magnetic field measurements and the servo motor shaft position.
The model was used to predict the magnetic disturbance from the servo motor to
improve the heading estimates which are presented in Section 5.6. In this
section, any mention of periodic signal and sine function will be in the servo
shaft position domain, and not the time domain unless specifically mentioned.
This is due to the magnetic field following a sinusoidal curve as a function of the
motor shaft position. The data presented is the magnetometer measurements
from both the baseline experiment and the additional load experiment, but
subtracted by the magnetic field of the earth that the IMU measured before the
servo actuation, as described in Section 4.5. First, the sine function fitted on the
baseline and load experiment data is presented. These results will be used to
conclude on the effect of additional motor load. Second, the model built from
the baseline experiment is evaluated, and tested on the data from the additional
load experiment.

5.4.1 Sine regression on the baseline and load experimental data

Figure 5.12 shows the fitted sine function to the servo motor magnetic field, as
sensed by the magnetometer, along each axis using non linear least’s squares with
SciPy’s curve_fit function [9]. One can see that one rotation of the servo motor
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shaft is one period of the generated magnetic field. Both the x- and y- axis start at
approximately 0 µT at the shaft position of 0◦. The z- axis starts at approximately
2 µT to 5 µT. The x- and y- axes has approximately 30◦ phase shift. The amplitude
of the x- and y- axes are both approximately 90 µT. Figure 5.13 shows the fitted
sine function to the servo’s generated magnetic field during the experiment with
load. The sines differs from the baseline experiment with approximately 1 µT,
meaning that the effect of additional rotational load is in practice not visible in
terms of the cross-talk model.

(a)

(b)

(c)

Figure 5.12: Sine regression of the magnetic cross-talk from the motor during
the baseline experiment.
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(a)

(b)

(c)

Figure 5.13: Sine regression of the magnetic cross-talk from the motor with
additional motor load
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5.4.2 Model performance

From this point on, references to "the model" or "the magnetic disturbance model"
is the fitted sine to the baseline experiment data. As described in Section 4.5, the
training data is the baseline experimental data, while the test data is the data set
from the additional load experiment.

The model performance was evaluated by inspecting the residuals and RMSE
of the model to both the training and the test data. The residuals and RMSE of the
training data describes the general fit of the model, while the residuals and RMSE
of the test data can be used to evaluate if the model is valid when the servo motor
is subject to external load. The residuals are plotted against time and the motor
velocity in Figure 5.14. The standard deviation of the residuals, and the RMSE of
the model is given in Table 5.6.
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Figure 5.14: The motor model residuals when the model was used on a) the
training data (from the servo actuation data during the baseline experiment),
and b) the test data (from the servo actuation data during the additional load
experiment).

It is observed that the residuals are similar in magnitude on both the training
and test data. The residuals are higher when the motor shaft has higher velocity.
It is also observed that in the time domain, the motor residuals follow the same
trend as the magnetic field, but time shifted. The difference between the RMSE
and standard deviations on the training and test data are less than the resolution
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Table 5.6: Standard deviation and RMSE of the residuals from the motor
magnetic disturbance model on training and test data.

std training std test RMSE training RMSE test
x 3.299 3.257 3.316 3.257
y 3.033 3.200 3.033 3.205
z 1.875 1.223 1.937 1.909

of the magnetometer (0.3 µT), and thus approximately equal: σe ≈ (3.3,3.1, 1.9)
µT. The standard deviation of the residuals gives an indication of the spread in
the data, and can be used in the sensor fusion algorithm to estimate the heading.
The use of these values will be described and discussed in Section 6.3.

5.5 Shielding results

In this section, the results from the physical magnetic disturbance mitigation
techniques are presented. The goal of the shielding experiments were to see if
shielding could improve the magnetic field model by overall reducing the sensed
field from the motor. As part of the shielding experiment, one experiment with
the baseline setup was conducted, since the experiments were performed in a
different physical location than the baseline and additional load experiments.

The initial measured magnetic field after calibration, but before the servo
actuates, for some of the shielding experiments are shown in Figure 5.15. The
figure shows that the initial calibrated yielded different magnetic fields for all the
experiments, even though the position and orientation of the IMU and the servo
motor was approximately the same for all tests. Why these differences occurred
will be discussed in Section 6.4.

Since the initial magnetic field varied between each experiment, the time
series plots of each experiment was deemed an imprecise way of comparing the
effectiveness of shielding. Instead, the motor field was estimated, and the model
residuals and RMSE was used as a measure of the shielding performance. The
residuals are plotted in Figures 5.16 and 5.17 for the shielding sheets and
distance experiments respectively. The plots shows that the residuals are larger
with shielding sheets in the beginning of the time series where the motor shaft
had a low velocity, but is lower at the end of the experiment where the motor
has a higher velocity. The effect of a 20 mm distance yields the lowest residuals.
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Figure 5.15: Magnetic field after calibration without servo motor actuation
during the experiments with physical distance and with the 0.5 mm ferrite
shielding sheets between the servo motor and the IMU. The rest of the shielding
sheets experiments had all different initial values, but are not included in the plot
to make it easier to read.
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Figure 5.16: Estimated motor field residuals during the servo motor actuation
tests with ferrite shielding sheets between the servo motor and the IMU.

It was generally observed that shielding sheets gave a more inconsistent
magnetic field. The motor field estimate with 0.1 mm shielding is shown in
Figure 5.18. It shows that the magnetic field from the motor sensed by the
magnetometer spreads for the x- and y- axis fields, most likely either due to
hysteresis, or the change in motor velocity.

The RMSE of the cross-talk model from the motor’s magnetic field built from
the the shielding experiments are shown in Table 5.7. The table shows that the
RMSE of the model is larger with shielding sheets. Reducing the magnetic field by
adding an additional distance of 20 mm between the IMU and servo motor yields
an RMSE of around 1 µT.

Table 5.7: RMSE values of the motor field estimation during the experiments
with different physical magnetic field disturbance reduction methods.

RMSE x RMSE y RMSE z
0.0 mm shielding or distance 2.821 2.063 1.170

0.3 mm shielding 4.141 2.406 1.201
0.3 mm shielding + around 4.359 2.437 1.195
0.5 mm shielding + around 3.030 2.259 1.111

10 mm distance 1.541 1.290 0.901
20 mm distance 1.094 1.007 0.934
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Figure 5.17: Estimated motor field residuals during the servo motor actuation
tests with additional 10 mm and 20 mm distance between the servo motor and
the IMU. ”Normal” is with the distance between the IMU and servo motor as
in the baseline experimental setup, and could be referred to as 0 mm additional
distance.
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Figure 5.18: Magnetic field from the servo motor sensed by the magnetometer
as a function of servo position when there is 0.1 mm shielding sheet between the
motor and the IMU. The sheets introduced effects which made the the measured
magnetic field more noisy.
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Figure 5.19 shows the degree of magnetic field attenuation the shielding
sheet thickness and distance yielded. Only the 0.5 mm shielding sheet
experiment, which gave the highest degree of attenuation, is viewed to make the
plot easier to read. The fitted sine to the motor disturbance was used to show
the degree of magnetic field attenuation, instead of the raw data since the
noisiness of the measurements during the shielding experiment would make the
plot hard to read. It is observed that 20 mm has approximately the same
attenuation as with 0.5 mm of shielding sheets, compared to no shielding or
additional distance shown in blue.
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Figure 5.19: Estimated servo field with the different shielding techniques. Only
the shielding sheet experiment with 0.5 mm of shielding is displayed for easier
inspection.

5.6 Heading estimation

The proposed method of correcting the magnetic field measurements, by
feed-forwarding the estimated magnetic disturbance from the motor, was tested
by designing two Kalman filters: the standard Kalman filter, and a Kalman filter
with the magnetic disturbance rejection method described in Section 4.6.2. The
initial state estimate for the filters were 0. As no ground truth where known, the
BNO-055’s own heading estimate served as a reference, even though there was
no guarantee that this estimate was correct. Remember that the initial heading
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was known to be approximately −70 deg, and that the movement was aimed to
follow the following pattern on eye sight: 45◦ counterclockwise, 90◦

clockwise, 90◦ counterclockwise, 45◦ clockwise, 45◦ counterclockwise and
lastly 90◦ counterclockwise and back to starting position. During this
movement, the servo motor shaft rotated as programmed in the test script in
Figure 4.5.

Figure 5.20 compares the pseudo measurement of the heading, the
BNO-055 estimate, two different tunings of the standard Kalman filter, and the
Kalman filter with magnetic disturbance rejection. The covariance matrices for
the different filters were shown in Table 4.1 in degrees. Note that Q was
discretized in the Kalman filter. The left plot shows the heading estimators with
feed-forward correction of the predicted cross-talk from the motor, while the
right plot did not use feed-forward. The estimates with feed-forward correction
will first be presented.
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Figure 5.20: The heading estimates with servo motor magnetic disturbance,
using the standard Kalman filter, and a Kalman filter with magnetic disturbance
rejection. On the left, the magnetic field measurements were corrected by feed-
forwarding the predicted magnetic disturbance from the motor before they were
used in the Kalman filter. The right plot shows the heading estimates without feed-
forward. The Kalman filters had initial state estimate of 0. The tuning parameters
were as shown in Table 4.1. The heading was known to be approximately −70◦.

The first, overconfident, tuning of the standard Kalman filter had an almost
identical shape as the BNO estimate, however with an initial estimate of around
180◦. The process covariance matrix was small for the heading estimate, meaning
that it was very confident in the heading plant model. Additionally, the heading
pseudo measurement variance was large compared to the gyroscope variance,
meaning that the Kalman filter mainly relied on the gyroscope measurements.
The first tuning therefore was able to capture the relative movement of the motor
and IMU, but not estimate the correct heading value.

The second tuning of the standard Kalman filter was the best tuning
achieved without the magnetic disturbance rejection rule presented in Section
4.6.2. It converged towards the raw pseudo measurement, but was greatly
affected by large changes in the magnetic field. The shape deviated from the
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Figure 5.21: The initial heading estimates without servo motor magnetic
disturbance or motor movement, using the standard Kalman filter, and a Kalman
filter with magnetic disturbance rejection. The Kalman filters had initial state
estimate of 0. The tuning parameters were as shown in Table 4.1. The initial
heading was known to be approximately −70◦.

BNO estimate, and reported a change in heading of more than 100◦ in the time
frame 30 s to 40 s. This is the time frame where the movement was known to be
less than 90◦. In the time frame after 30 seconds, the motor speed and model
residuals were known to be the largest, based on the motor model evaluation.
The second Kalman filter tuning was therefore not able to estimate the heading
correctly when the motor shaft rotated with higher velocities.

The Kalman filter with magnetic noise rejection follows approximately the
same shape as the BNO estimate and first Kalman filter tuning, but were not
biased with respect to the pseudo measurements. The Kalman filter with
magnetic disturbance rejection thereby yields the best heading estimation results
of the tested filters, based on the apriori information about the heading.

The heading estimates performed without feed-forward correction are shown
in the right plot of Figure 5.20. One can see that the first Kalman filter tuning looks
exactly the same as with feed-forward. The second tuning was affected by the
disturbed magnetic field. This can be seen during the first 20 seconds, where the
experimental setup were motionless on the table, and the second Kalman filter
tuning reports a change in the heading. The Kalman filter with magnetic noise
reduction was also not able to catch the correct movement in the time frame 20
- 30 seconds, but was able to stabilize at about 30 s. This shows that the filters
on their own are not able to reliably estimate the heading without the magnetic
cross-talk predictor and feed-forward loop.

In advance of the movement, nominal IMU measurements with no servo
shaft rotation or movement of the motor was conducted, as with the other
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experiments. The Kalman filters’ and IMU’s estimates from these measurements
are shown in Figure 5.21. As one can see, the BNO-055 estimate initially had the
same initial estimate as during the servo movement. The first Kalman filter stays
constantly equal to zero. The pseudo measurement had a mean of approximately
−75◦, and both the second Kalman filter tuning and the Kalman filter with
magnetic disturbance rejection converges towards the pseudo measurement.
One can see that the Kalman filter with magnetic disturbance rejection had the
fastest convergence rate. This shows that the BNO estimate and the first tuning
of the Kalman filter is over confident in the plant model.

5.7 Observations on surrounding metals

The attempt of improving the experimental setup of the heading experiment by
mounting the motor and IMU on top of a camera tripod gave some interesting
observations. Figure 5.22 shows the magnetic field when the baseline
experimental setup was performed on the camera tripod. It shows similar
patterns as the ones seen in the shielding sheets experiments in Figure 5.18,
however much stronger. The measurements has a large range in the magnetic
field. This observation consequentially led to the decision of not using the setup
for the proof-of-concept heading experiment. The observed effect will be used to
discuss the choice of materials of the snake robot’s chassis, as well as what this
may mean in terms of magnetic disturbances of the environment in Section
6.5.1.
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Figure 5.22: Surrounding metals makes the amplitude and offset of the magnetic
cross-talk less predictable. The data acquired was from a baseline experiment, but
with the motor mounted on top of a camera tripod which contained metals.
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Discussion

The aim of this thesis is to improve the heading estimates of the Boa snake robot,
even in the presence of magnetic disturbances from the brushless DC servo motor.
This chapter discuss the results and evaluates if the work was able to achieve its
goal.

First, the results from the magnetometer noise characterization is discussed
in Section 6.1.1. It was found that it cannot be modelled using an ARMA series.
The discussion will therefore focus on the statistical properties of the time series
and from there determine the magnetometer noise. Secondly, the gyroscope and
accelerometer measurements noise is determined in Section 6.1.2 using the
statistical data acquired during the pure IMU measurements sampled before and
after the servo actuation in the baseline and load experiment.

In Section 6.2, the conclusions from the previous project work on the Boa
snake robot are validated for the new Boa motor, using the data from the
baseline and additional load experiments. As part of the validation, the IMU
measurements before and after the servo actuation are compared to see if the
servo motor’s generated electromagnetic field had any permanent effects on the
measurements. They are also compared with the measurements during servo
actuation.

The results clearly validated that the magnetic cross-talk from the motor
follows a sine curve as a function of the servo motor’s angular position. The
model of the magnetic cross-talk from the motor is evaluated in Section 6.3
using the results from the baseline and additional load experiments.

Further on, from the shielding experimental results, it was clear that the
magnetic field measurements were more spread with shielding sheets than
without shielding or additional distance. Section 6.4, is devoted to discussing
these interesting results and how this affected the model performance and
heading estimation.
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The heading estimation results using a normal Kalman filter and an
adaptive Kalman filter, both with and without feed-forward correction of the
magnetic cross-talk, are evaluated in Section 6.5. Based on the entire discussion,
a method to improve the heading estimates will be presented in Section 6.6.
Lastly, the methodology of the work is discussed in Section 6.7, and future work
proposed in Section 6.8.

6.1 IMU noise characterization

In attitude estimation, it is important to have a thorough understanding of the
measurement noise. The Kalman filter assumes white Gaussian noise. The Kalman
filter also relies on the correct tuning of the measurement covariance matrix. The
IMU noise is therefore characterized in this Section based on the results from
the nominal IMU measurements where the motor did not actuate. It is important
to remember that the noise of course is relative to the environment where the
test was performed and the calibration of IMU. The experiments was performed
inside a building in Trondheim. Each calibration before each experiment was also
unique.

6.1.1 Magnetometer noise evaluation

The magnetometer’s nominal measurement noise is important to model correctly
to obtain accurate heading estimates. Although the nominal measurement noise
will be negligible while the servo motor actuates, the correct measurement noise
model is important to know for the heading estimation when the servo motor’s
torque is disabled. Additionally, the nominal noise is important to know such that
normal noise can be distinguished from effects made by the servo motor.

The results shows that the measurements from the nominal magnetometer
characterization experiment had many outliers. This was seen in Figure 5.1a. This
is most likely a sensor fault, since the values are so large. It could either be due
to a bad solder, bad wiring or other reasons. These outliers can be removed easily
in the control algorithm, and will therefore not be addressed in further detail.
Figure 5.1b shows that without the outliers, the magnetometer measurements
visually looks like white noise.

The ACF and PACF plots in Figure 5.3 further showed that the
magnetometer measurements can’t be modelled in terms of an ARMA series.
This is because the the autocorrelation and partial autocorrelation was inside the
95 % confidence interval from the first lag. It can therefore be concluded that
the noise was random. The density plot in Figure 5.2 further indicates that the
noise could follow a normal distribution, even though the y-axis measurements
visually looked spikey. This could however be due to the large and lonely outlier
in the measurements. The statistical values presented in Table 5.1a can be used
to evaluate the normality of the data, however, due to the many outliers, which
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normally would be detected and ignored in a control algorithm, the statistic
does not give representative data for the samples used in a control algorithm.
This is especially visible in the large excess kurtosis and standard deviations.
Instead, we look at the data where the outliers have been removed in Table 5.1b.

First, it is observed that the norm of the magnetometer measurement mean
was 31.81 µT, which is low, but still within what one could expect inside a building
in Trondheim. The absolute value of the skew of the magnetometer data is less
than 0.5, meaning the data set is approximately symmetric. The excess kurtosis
of the measurements are all close to 0, but not perfectly zero. The skewness and
kurtosis of the data set thereby also indicates that the noise can be assumed to
be Gaussian. Together with the reflection on the ACF and PACF plots, it can be
concluded that the magnetic field measurements can be assumed to be white,
zero mean noise. The standard deviations was found to be 0.634 µT, 0.486 µT
and 0.612 µT for the x-, y- and z- axis respectively.

The standard deviations of the measurement noise can be validated by the
measured IMU time series before and after the servo motor actuation with and
without load. The ranges for the standard deviations from the test statistics in
Tables 5.2 and Tables 5.5 are summarized in Table 6.1. The range of measured
standard deviations differs by up to 0.111 µT, which is less than the resolution of
the magnetometer. The standard deviations concluded from the magnetometer
measurement noise characterization is all within the ranges in Table 6.1. The
nominal magnetometer noise standard deviations without magnetic
disturbances can therefore be assumed to be somewhere between the observed
minimum and maximum standard deviations observed in Table 6.1.

Table 6.1: Minimum and maximum standard deviations for the magnetometer
measurements before and after each servo actuation experiment.

std min [µT] max [µT]
x 0.612 0.656
y 0.400 0.459
z 0.597 0.708

6.1.2 Gyroscope and accelerometer noise evaluation

The statistical properties of the gyroscope and accelerometer noise can be found
using the data presented in Tables 5.3 and 5.4 (and A.1 and A.2). Although it
was not vital to determine the accelerometer noise for the heading estimation of
a planar snake robot, it was performed due to the profit the contribution brings
to the Boa project in general.

The results shows clearly that the standard deviation of the gyroscope
measurements were σg y ro = [0.001,0.002, 0.001]. The skew are all less than
0.2. The gyroscope noise is therefore symmetrical, since a common rule of
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thumb from the literature is that a skew less than 0.5 means the dataset is close
to symmetric. The value of the kurtosis varied between each experiment, also
within one axis. The lowest measured kurtosis was as close to zero as 0.005,
while the highest measured kurtosis was before the additional load experiment
with the value 0.437. The variations could be due to the time series not being
long enough for a stable measure of kurtosis, the amount of outliers in the data
set or different amount of drift during each experiment. The literature is not
consistent on at which range of kurtosis the data can be considered to be
normally distributed. Some say ±1, others ±3. Since the kurtosis indeed was less
than one, the gyroscope measurements can be assumed to follow the Gaussian
distribution with the standard deviations described above.

The accelerometer measurements had standard deviations between
σacc = [0.009,0.013, 0.015] and σacc = [0.014, 0.015,0.018]. Since the skew
is less than or equal than 0.5 before and after servo actuation, the noise can be
assumed to be symmetric. The kurtosis was however at maximum 1.27, but also
varied a lot with the lowest value of 0.035. Depending on the rule of thumb one
use, the noise may or may not be assumed to be normally distributed. For all
practical scenarios, modelling the accelerometer noise as Gaussian or with another
distribution would most likely not make a big different, since the excess kurtosis
still was significantly lower than 3. The filter can however no longer be assumed
to yield the optimal solution. It is recommended to at least address the increased
kursosis in further detail in future work. It will not be addressed in further detail
here, as it is not necessary for the heading estimation in this work.

To summarize, the nominal IMU measurements was all concluded to be white
Gaussian noise, when not subject to the induced electromagnetic field from the
servo motor.

6.2 Validating previous work

The project work performed in the autumn of 2022, on the previous version of
the Boa Snake robot, concluded that the accelerometer and gyroscope was not
affected by the servo motor’s generated electromagnetic field [19]. However, the
results was inconclusive whether the accelerometer’s measurement noise was
correlated with the servo motor’s shaft speed. It also concluded that the
magnetic field generated from the motor could be modelled as a sine function of
the motor shaft’s angular position [19]. The previous work marked validating
the results on additional motor load as future work. This section will focus on
discussing the validation of these results on the new motor, both with and
without additional torque load.

Before deep diving into the discussion, the scatter plots with the servo
velocity in Figures 5.7 needs to be addressed. The evenly spaced lines are the
servo speed increments in each experiment, as described in Section 4.4, and
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spans almost the entire magnetic field span. The curves are where the motor
accelerates. This is viewed in an interpreted plot for the y-axis magnetic field in
Figure 6.1. The servo motor only changed its direction around 0◦ and 360◦,
meaning that it only accelerated and changed velocity around these positions as
well. The complex patterns are thus a result of the experimental design, and
should not be misread as anything else. The pattern can therefore not be used to
model the magnetic cross-talk. To prevent the test-script from affecting the plot,
a dedicated experiment could have been made, were the servo motor rotates
continuously with a constant acceleration. However, since each pre-programmed
angular velocity had the same span in the magnetic field measurements, it is
concluded that there probably is no evident correlation.
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Figure 6.1: The complex patterns between the servo velocity and measured
magnetic field is due to the design of the experiment. Between each new
rotation, the motor changes its direction. When the motor has rotated with a pre-
programmed velocity in each direction, it accelerated to a new, faster velocity.

6.2.1 Motor field impact on the accelerometer and gyroscope

The scatter plots showed no evident pattern between the servo motor’s position,
velocity, or torque current and the acceleration or gyroscope measurements, as
could be seen in Figure 5.5 and the pair plots in Appendix A.1 and A.2. There
was also no indication of the accelerometer’s variance increasing with the motor’s
shaft speed. This makes sense since the strength of the electromagnetic field does
not increase with increased speed of the motor, but rather the rate of change of
the magnetic field, as shown in Figure 5.4.

The histograms in Figures 5.8 further showed that the accelerometer and
gyroscope measurements remained approximately Gaussian during the servo
actuation. Additionally, Tables 5.4 and 5.3 clearly showed that the mean and
standard deviation of the gyroscope and accelerometer measurements in
practice remained unchanged. The y-axis accelerometer mean however changed
with 0.073 m s−2 during servo actuation. This is however so small it could be due
to vibrations from the motor while the shaft rotated. It is therefore concluded
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that the accelerometer and gyroscope measurements were not affected by the
servo motor’s generated electromagnetic field, as was also concluded in the
previous project work on the previous motor [19].

6.2.2 Motor field impact on the magnetometer

The last part that had to be validated from the previous project work was the
modelling of the magnetometer measurements during servo actuation. As
expected, the time series in Figure 5.4 clearly showed that the magnetometer
was affected by the servo motor’s electromagnetic field. It was also observed
from the results that there were no correlation between the measured magnetic
field and the servo velocity or torque current.

The scatter plot in Figure 5.6 clearly revealed that the magnetic field along
each measurements axes were correlated with each other, and that the
magnetometer measurements followed a sine with respect to the servo motor’s
angular position. This is the same observation as in Linnerud for the previous
Boa design [19]. It makes sense that the x- and y- axis magnetic fields were
approximately the same scale, since the IMU was intentionally attempted to be
mounted directly above the servo motor shaft. The elliptic correlation between
each axis of the measured magnetic field also were as expected, since the
measurement is a direct effect from the BLDC motor’s generated electromagnetic
field to rotate the motor’s rotor. The magnetic disturbance from the motor thus
makes perfect sense based on the theory. The modelling of the magnetic
disturbance from the servo motor is further discussed in Section 6.3.

The results in Figure 5.9, comparing the IMU measurement before and after
servo actuation, showed that the magnetometer measurements visually seems to
have returned to its original value. Table 5.2 shows that the mean of the
magnetic field after servo actuation, when the torque was disabled, changed
with up to 1.531 µT. This is rather small in the engineering context, and it can
be concluded that the calibration of the magnetometer is not damaged by the
generated magnetic field from the servo motor.

It was expected that the magnetic field would be correlated with the torque
current of the motor, based on the theory. An increased current in the coils should
generate a larger magnetic field. This was however not observed. The reason could
be due to the low motor load.

In conclusion, the servo motor seems to leave no permanent effect on the
magnetic field measurements when the motor torque is disabled, and does not
affect the gyroscope or accelerometer measurements. These results from the
previous project work is thereby also valid with the new motor for the Boa snake
robot.
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6.2.3 Effects of additional motor load

The effect of additional load on the motor disturbance was not concluded in
Linnerud [19], and was therefore investigated as part of this thesis. The effects
of additional motor load, as presented in Section 5.3 will be further discussed in
this section. Since additional load on the motor leads to increased torque current
in the motor, the effects of additional load needed to be investigated. From
Biot-Savrt’s law, larger currents lead to a stronger magnetic field intensity. How
large this change is in practice, was what the experiment tested.

To confirm that the experimental setup was able to emulate an additional
load on the motor, the torque current during the additional load experiment was
plotted against the torque current during the baseline experiment in Figure 5.10.
The plot confirmed that the motor was subject to additional load because the
torque current was larger than in the baseline motor actuation experiment.

The effect of adding load to the motor was hard to interpret using the pair
plots in Appendix A.2, since the servo motor rotated a few degrees during the
experiments. This made it hard to interpret which changes were due to the
rotation, and which were due to the load. One can however assume that the
accelerometer and gyroscope measurements were unaffected, as was concluded
from the baseline experiments. Figure 5.11 showed that the magnetic field might
have been stronger during the tests, but the difference could also be due to the
differences in the IMU calibration between the tests with and without load. The
pair plots indicated that it now may be a correlation between the measured
magnetic field and the torque current. However, it does not make sense that the
scatter plot with additional load shows gaps and signs of correlation, when the
baseline experiment did have measurements in these areas. Adding the scatter
plots on top of each other, as displayed in the interpreted plot in Figure 6.2 no
correlations can be seen. This indicates that the observations were due to the
design of the test script. It is concluded that increased torque current does not
yield increased magnetic field
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Figure 6.2: The experiments shows no correlation between the size of the
measured magnetic field, and the torque current of the motor, although the
additional load experiment on its own indicated that there might be a correlation.
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In this case, a more effective way of investigating the effect of the added
load is to compare the sine regressions of the generated magnetic field during
the baseline experiment and the load experiment, using Figures 5.12 and 5.13
in Chapter 5.4. The modeled magnetic fields were almost identical. Additionally,
as will be further discussed when evaluating the magnetic cross-talk model in
Section 6.3, the model built on the data from the additional load experiment had
lower residuals and RMSE than with the baseline experimental data. One can
therefore assume that the magnetic cross-talk model does not need to include
terms depending on additional motor load. It should however be noted that the
amount of additional load was limited and that a higher load might give other
conclusions. This would need to be validated when testing a multi-link snake robot
once the hardware of the Boa snake robot links is available.

Table 5.5 showed that the measured magnetic field after servo actuation
differed with approximately 2.5 µT in the z-direction from the nominal
measurements sampled before servo actuation. This is not vital for the heading
estimation in 2D, but will have an effect on heading estimation in 3D. This
would need further assessment in future work if the Boa prototype design is ever
developed for use in 3D.

6.3 Evaluating the magnetic cross-talk model

The results from modeling the magnetic cross-talk from the servo motor, as
measured by the magnetometer, were presented in Section 5.4. The magnetic
field was modeled using SciPy’s curve_fit function. Note that the model
parameters themselves depend on the distance between the IMU and servo
motor, and the position of the IMU with respect to the center of the servo motor
shaft. The fitted sines were plotted with the data points in Figure 5.12. The
amplitudes of the x- and y- axis magnetic fields were both approximately 90 µT.
The fact that the amplitudes were approximately similar are as expected, since
the magnetic field of the BLDC motor rotates in the plane perpendicular to the
rotational axis of the motor shaft. The offset of the x- and y-axis cross-talk
model is however different. This could be due to the IMU not being mounted
directly above the center of the rotor coils.

The model performance was evaluated by the Root Mean Square Error and
residuals of the model on the training and test data. Testing the model on test
data was crucial to validate the model. The standard deviation of the model
residuals and RMSE on training and test data was presented in Table 5.6. The
results showed that the RMSE was more than 3 µT for the x- and y-axis models,
and around 1.9 µT for the z-axis model. The RMSEs were approximately equal
for both the training set and the test set, in other words, the baseline experiment
and the additional load experiment. This strongly indicates that the model is
robust in terms of additional rotational load.
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The RMSE values should preferably be lower. To try to understand why the
RMSE values were so large, the motor residuals in Figure 5.14 should be
considered. The plot clearly showed that the residuals increased with the motor’s
shaft velocity. It is most likely the deviations of up to 10 µT at the end of the time
series (where the motor shaft speed was highest) that gave the large RMSE
values. In the previous discussion, one does however not observe any evident
correlations between the magnetic field magnitude and the motor velocity or
current. On the other hand, if one compares the residuals with the magnetic
field measurements, the residuals show the same periodic pattern, but
time-shifted. This interpretation is illustrated in Figure 6.3.
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Figure 6.3: The residuals of the cross-talk model peaks of the residuals are time
shifted, with respect to the measured magnetic field. The residuals are therefore
most likely an effect of a changing back EMF in the BLDC motor.

Figure 6.3 illustrates, with arrows, that it seems like the peaks of the model
residuals are time-shifted versions of the measured magnetic field when the was
actuated. Remember that during the experiment, the motor shaft performed one
rotation in each direction before it did the same movement several times at
different speeds. The figure shows that the time shift became smaller and the
residuals larger when the motor’s magnetic field had a larger rate of change at
the end of the time series. As stated by Faradays’s law, described in the theory, a
changing magnetic field will induce an electromotive force opposing the change
in magnetic field, and thereby a back EMF voltage in the rotor coils. This further
changes the observed magnetic field since the current in the coils will be affected
by the back EMF. The back EMF is proportional to the rate of change of the
magnetic field. Therefore, it is believed that the increased residuals that were
observed when the shaft’s angular velocity increased are a direct effect of the
cross-talk model not considering the magnetic field from the back EMF voltage.
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Unfortunately, it was not attempted to model the magnetic field in relation
to the back EMF voltage. Instead, other methods to reduce the residuals were
tested by performing the shielding experiments and adding magnetic disturbance
rejection to the Kalman filter in the heading experiment. The effectiveness of these
methods will be discussed in Section 6.4 and 6.5.

6.4 Effectiveness of shielding

The shielding experiments aimed at improving the heading estimates by either
improving the cross-talk model or by attenuating the magnetic cross-talk. The
nominal magnetic field was measured before each servo actuation following the
test script used.

The nominal magnetometer measurements that were performed before the
servo actuation, shown in Figure 5.15, clearly showed that the in-built
magnetometer calibration of the BNO-055 was inconsistent. Even when no
ferrite sheets were near the IMU or the servo motor, the x-, y- and z- axis did
not show consistent readings. Throughout the experiments, the servo motor
maintained a consistent orientation, with variations only occurring during the
calibration process. The calibration sets the initial magnetometer measurements,
which further affects the offset between each measurement when the servo
motor actuated. Why the calibration was bad is hard to say, since the IMU
reported good calibration when the experiments were conducted. It could be
due to surrounding metals, or the ferrite sheets. The bad calibration would need
to be assessed in future work. Due to the differences in the nominal measured
magnetic field and calibration, the effectiveness of shielding and distance could
not be evaluated by the pure size of the magnetometer measurements. It was
therefore chosen to build cross-talk models from the different experiments and
evaluate the shielding methods using the estimated servo motor field and model
residuals.

The hope was that by adding shielding sheets, the model residuals would
reduce to White Gaussian Noise, or at least yield lower RMSE compared to those
without shielding. When shielding sheets was employed, Figure 5.16 clearly
showed that the residuals deviated from white noise characteristics. However,
the magnitude of the residuals no longer increased with higher motor velocities
but rather decreased. The residuals were actually higher with lower motor
velocity during the shielding experiments than without shielding. In retrospect,
this makes sense since shielding works better with higher frequencies. However,
since the sheets were ferrite sheets, it was expected that the shielding would be
able to contain the low-frequency magnetic field where the motor shaft rotated
at a slower rate.

The introduction of shielding additionally resulted in a more unpredictable
cross-talk in terms of the magnetic field against the motor’s angular position.
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This was clearly observed in Figure 5.18 from the experiment with 0.1 mm
shielding sheet. The magnetic field during the different angular positions varied
more than without shielding. Modeling the magnetic cross-talk would not be
reliable with these effects. By adding more ferrite sheets, the variance of the sine
model decreased. The accuracy of the models was however compromised as
seen by the RMSE values of the models in Table 5.7. The RMSE values were
higher with shielding than during the baseline setup, with a maximum RMSE of
4.350 µT.

Adding physical distance of only 10 mm and 20 mm proved to reduce the
RMSE values of the magnetic cross-talk model more effectively than with
shielding sheets. Figure 5.17 showed that the residuals were lower than with the
baseline setup, also when the servo shaft velocity was higher at the end of the
time series. The RMSE values were also significantly lower than without
additional distance. The RMSE of the cross-talk model with 20 mm distance
between the IMU and motor was around 1 µT. Considering the nominal
magnetometer measurement noise was around 0.7 µT, this is a really good
result. Following Biot-Savart’s law, the decreased RMSE makes sense as the
magnetic field intensity is inversely proportional to the square of the distance to
the magnetic source. If the residuals indeed were following Faraday’s law, this
would describe why distance improved the model residuals, while the shielding
sheets made the model residuals worse.

To conclude, adding distance made the cross-talk model more reliable than
the shielding sheets did. Considering the significant cost and the added weight
of shielding sheets, and their associated complications in modeling the magnetic
disturbance from the servo motor, it can be concluded that shielding sheets should
not be used. The consequence of additional distance is however that the snake
robot will become bulkier.

6.5 Evaluation of the heading estimation method

The proof-of-concept heading experiment gave a clear indication of the
performance of the magnetic disturbance compensation technique proposed in
Section 4.6. The results compared four different heading estimators and the
pseudo measurement of the heading, both with and without a feed-forward
loop. The goal was to evaluate the effects of feed-forwarding the predicted
cross-talk term by the quality of the estimates. The cross-talk was predicted with
the model created in Phase 3 of this work. The experiment did not have a
ground truth due to the limitations in the experimental setup. The heading of
the experimental setup was however known to have an initial heading of
approximately −70◦, and the motion profile was as described in Section 4.6.
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The heading estimators compared in the results were

1. The BNO-055’s own heading estimate, serving as a reference. The results
showed that the heading itself was completely wrong, but the relative
movement performed during the experiments were captured by the
estimator. The BNO most likely only used the gyroscope measurements for
the estimation, due to its similarity to ”KF tuning 1”.

2. ”KF tuning 1”: a standard Kalman filter tuned to not use the magnetic field
measurements. The tuning was overconfident in the plant model and
updated its estimate using the gyroscope measurement only. This was
concluded based on the heading experiment, the stationary time series,
and the heading estimate not using feed-forward in Figures 5.20 and 5.21.

3. ”KF tuning 2”: a standard filter, tuned to obtain the best possible heading
estimate using feed-forward, but without magnetic field rejection.

4. ”KF with MDR”: This heading estimator used an adaptive Kalman filter,
inspired by the literature review [17, 50]. The ”KF with MDR” adaptively
changed its measurement covariance matrix to reject magnetic
disturbances using the rules described in Section 4.6.2. This Kalman filter,
used in combination with the feed-forward term and cross-talk model,
gave the best results.

The results showed that the first Kalman filter tuning and the BNO estimate
had almost identical shapes, but different initial values for the heading
estimation. Even in the absence of magnetic disturbances, the heading estimates
were significantly inaccurate for both the BNO estimate and the first Kalman
filter tuning. The results thereby showed that not using the magnetic field
measurements at all due to the magnetic disturbances is a bad idea, as it makes
the estimator prone to a constant bias in case of bad initialisation.

The second Kalman filter tuning showed that even with feed-forward, the
heading estimate would be unreliable using a conventional Kalman filter, due to
modeling errors. This could be seen in Figure 5.20 from 20 s and through the
rest of the experiment, where the motor shaft had the highest velocities, and the
cross-talk model was known to have the largest residuals. By adding magnetic
disturbance rejection, these modeling errors were compensated for. The adaptive
Kalman filter with magnetic disturbance rejection (”KF with MDR”) was thereby
the heading estimator with the best estimates, as long as feed-forwarding of the
magnetic cross-talk model was performed. However, the results of using the ”KF
with MDR” without the feed-forward loop, as was shown in the right plot of
Figure 5.20, showed that the estimates were biased, or wrong through most of
the experiment. Omitting the feed-forward loop before estimating the heading
would therefore provide unreliable heading estimates. This shows that utilizing
both an adaptive Kalman filter and the magnetic cross-talk model is crucial to
make the heading estimator reliable when the servo motor actuates.
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Since the heading experiment did not have a ground truth, the real
performance of the adaptive Kalman filter with MDR, henceforth called the
proposed method, cannot be evaluated. However, it is evident that the proposed
method has the smallest estimation error based on the prior information of the
movement in the experiments. The relative heading of the experimental setup
can be assumed to be captured precisely enough by the BNO-055 estimate and
the overconfident Kalman filter in the first tuning. The proposed method had
almost the same relative heading, but the value of the heading estimate itself
was closer to the initially known heading which were approximately −70◦. The
experiment was therefore able to serve as a proof-of-concept to show that the
heading estimates were improved using the proposed heading estimator.

A quick note on the magnetic cross-talk model used in the heading
estimates is in order. The magnetic cross-talk model was re-fit in advance of the
heading experiment. It was decided to do it this way because the IMU was
moved between the baseline and additional load experiments, and the physical
shielding experiments before the heading experiment was conducted.
Additionally, the standard deviation of the residuals of the cross-talk model was
used as a starting point to tune the measurement covariance matrix. However, it
is very important to be aware that the modeling error yields non-Gaussian
magnetic field measurement noise. The Kalman filter will therefore not yield the
optimal solution for the heading estimator problem. However, the magnetic
disturbance rejection reduces the noise further. Although the Kalman filter no
longer is theoretically optimal, the proposed method showed an improvement of
the heading estimates in a practical setting.

6.5.1 Notes on the heading estimator design

The chosen filtering technique of the magnetic disturbance from the servo motor
was not an evident choice. In the literature review, only one of the reviewed
magnetic rejection techniques dealt with the magnetic field from a vehicle’s own
motors. Widey and Woo filtered the motor’s magnetic field when the RPM of the
UAV motors was sufficiently higher than the dynamics of the system [50]. This
was however not possible for the Boa snake robot, as the rotational speed of the
servo motor per definition is the dynamics of the system. Instead, the
feed-forward-loop-approach was chosen. Due to the observed residuals of the
cross-talk model, the Kalman filter with magnetic disturbance rejection was used
in combination with the feed-forward loop to handle the modeling error,
inspired by the Wondosen et al. and Widey and Woo in the literature review [17,
50]. The work in this thesis has successfully improved the heading estimates by
introducing this new proposed method. There are however a few weaknesses in
the design which should be addressed.

First, the cross-talk from the motor poses the weakness that it is easily
changed or affected by surrounding metals. When the motor changes its
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magnetic field to rotate, it will induce eddy currents in surrounding metals.
Following Lentz’s law, this will create a magnetic field counteracting the change,
and thereby distort the sensed magnetic field from the servo motor. This was
observed in the attempt of improving the experimental setup of the heading
experiment. Figure 5.22 showed that the magnetic disturbance from the servo
motor spreads by roughly 30 µT when the motor was mounted on a metallic
camera tripod. The magnetic cross-talk most likely induced eddy currents in the
camera stand, making the cross-talk to the IMU less predictable. To prevent this
problem from being a permanent issue for the navigation of the snake robot, it is
important that the hardware of the robot contains as little conductive or
magnetic metals as possible. External, temporary environmental magnetic fields
can however be handled by the adaptive Kalman filter. This is another reason to
use the adaptive design rather than a standard Kalman Filter.

The filter is further greatly reliant on proper initialization without
disturbance. Without this, there is a risk that the filter will use a long time to
converge to the correct heading angle. Without disturbance, the filter used 3
seconds to converge, as seen in Figure 5.21. With magnetic disturbances, the left
plot of Figure 5.20 showed that the Kalman filter with magnetic disturbance
rejection used about 5 seconds to converge. However here, the IMU was only
subject to the known magnetic field with low model residuals. If there are strong
disturbances or external magnetic fields while the filter converges to the correct
angle, the magnetic field measurements will be rejected, and the error will
propagate in the filter until the magnetic disturbance is gone. Letting the Kalman
filter converge before operating the snake robot is therefore crucial for the
navigation of the robot.
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6.6 Proposed technique for improved heading estimation

Based on the results from all the experiments, the proposed method to improve
the heading estimates can be summarized as follows. Figure 4.6 in Chapter 4 may
serve as a supplement to the description.

Hardware material selection and distance between the IMU and the motor:
The first step is to attenuate the magnetic cross-talk from the motor as
much as possible by increasing the distance between the servo motor and
the mounting of the IMU. Additionally, since it was known that metals will
interact with the magnetic field and make the field more unpredictable,
the chassis of the Boa snake robot should limit the use of conductive
materials or metals with high magnetic permeability.

Model the magnetic disturbance from the motor: Once the distance between
the IMU and servo motor is maximized, the magnetic corss-talk from the
motor can be modelled. This step is crucial to perform using the correct
mounting and chassis of the snake robot link, such that the sensed magnetic
field by the IMU from the servo motor is correct.

Predict the magnetic disturbance from the motor: Using the model acquired
in the previous step, it is possible to predict the magnetic disturbance from
the motor in loop. Since magnetic fields are additive, the magnetometer
measurements can be corrected in a feed-forward loop by subtracting the
predicted field from the measurements.

Reject magnetic disturbances using an adaptive Kalman filter: Although any
model will never be perfect, and because any surrounding metals or
magnetic fields in the environment will disturb the heading estimation, it
is crucial to detect and reject these disturbances and modelling errors. This
work proposes two rules to adaptively increase the measurement
covariance matrix of the Kalman filter to ensure that the state estimates
are not updated based on disturbed data. The two rules were to increase
the initial heading measurement covariance by 1) adding a multiple of the
square error of the predicted and measured heading, and 2) adding a
multiple of the square error of the measured and expected norm of the
magnetic field.

Proper initialization of the Kalman filter: Even with the feed-forward loop,
the Kalman filter will use time to converge towards the correct initial
heading estimate. It is therefore recommended to let it converge after
initialization before enabling the torque of the snake robot motors. It is
also recommended that the torque from all of the motor are disabled once
in a while during operation, to let the heading estimates be corrected in
case of drift.
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It is also worth mentioning that the Boa snake robot, which uses servo motors
as the joint between each link, has the great advantage that the servo motors can
give valuable information about the angle and angle rate of the servo motors at
each time step. This data can be used as odometry to further improve the attitude
and position estimates of the snake robot.

The Kalman filter should of course, be tailored for the attitude and spacial
position estimation. In this work, the linear Kalman filter was used since it was
possible to linearize the plant model using pseudo measurements. For the full
attitude and position estimates, a nonlinear Kalman filter such as the Extended
Kalman Filter should be used. Additionally, state estimates should include the
gyro bias to avoid drift, even though it was omitted in this work for simplicity.

6.7 Choice of method and scope

The goal of this work was to improve the heading estimates of the planar Boa
snake robot, where the IMU was mounted near the servo motor joints. The scope
was narrowed by only focusing on one motor and IMU. Additionally, some work
were attributed to how the the accelerometer was affected by the motor field,
since this was not concluded in the previous work, and is crucial for the force
estimation for the obstacle based locomotion of the Boa.

The decision to focus exclusively on a single motor was wise for several
reasons. Firstly, the approach undertaken proved to be highly comprehensive.
Initially, considerable time was dedicated to validating the previous work. It
involved creating new test scripts specifically tailored for the new motor, and
designing the test rig for the additional load experiment. This validation process
was time-consuming. However, it laid a solid foundation for subsequent steps.
Notably, leveraging the validated work facilitated the identification of IMU
measurement noise, ultimately streamlining the process of tuning the Kalman
filter. Furthermore, the validation of the prior work served as a starting point for
modeling the magnetic disturbance induced by the motor.

The test script design was as general as possible. This made it usable for
validating previous work, modeling the magnetic disturbance from the motor,
performing the shielding experiments, and performing the experiment for
testing the proposed method of improved heading estimation. This saved a lot of
time and made it easier to compare the performance of shielding. Furthermore,
it simplified the evaluation of the heading estimates, as it was known where the
motor field model would have larger residuals.

The investigation of physical magnetic disturbance attenuation techniques
didn’t yield the expected results, especially when it comes to the shielding
sheets. However, the shielding experiments in combination with the attempted
improvement in the setup with the camera tripod for the heading experiment,
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gave a better understanding of how the hardware of the Boa will affect the
heading estimates. It showed how important it is for the snake robot to consist of
as little metals as possible, to make the proposed method in this work more
reliable.

Lastly, the proof of concept heading estimation experiments needs to be
addressed, both in terms of the experimental design, and the heading estimator
design. Due to the time frame of the thesis, there would not have been time to
set up an experiment in a motion lab or develop a test stand and test script
where the movement of the IMU and servo motor was linked to the servo shaft’s
rotation. The chassis of a Boa link was also not available. Despite the limited
availability of proper test rigs, making the proof-of-concept experiment, using
the same test script, and moving the motor and IMU by hand, gave the data
necessary to test the proposed heading estimation technique. The fact that the
heading estimators used on the proof-of-concept data are of the most basic
Kalman filter design shows that the proposed technique of correcting the
magnetic field measurements makes it possible to yield good heading estimates.
If the method is applied to a more sophisticated Kalman filter with data from the
actuators and a more correct plant model, the heading estimation would most
likely become even better.

6.8 Future work

The work in this thesis concluded with a proposed method to improve the
heading estimates in the presence of strong magnetic fields from the vehicle’s
own motors. Future work should test this method in attitude and spacial
orientation estimates on a multi-link snake robot. This way, the proposed
technique can be tested in more realistic conditions where multiple motors
actuates simultaneously. Having typical magnetic objects in a physical simulated
environment would be an interesting assessment for an even more realistic
investment. Future work could also assess the possibility to use the Double
Quaternion Extended Kalman filter proposed by Wondosen et al. [17]. The plant
model of the robot can also be improved by using the position and velocity of the
servo motor’s as odometry. This would however need a non-linear Kalman filter
implementation.

For future work directly on the Boa snake robot, further investigation is
recommended regarding the inconsistent nature of the auto-calibration feature
of the BNO-055 IMU. The calibration proved to be a hard task in situ. Even when
the auto calibration reported good calibration, the magnetometer reported
inconsistent magnetic fields. Lastly, the accelerometer noise should be
investigated further, as the analysis showed that the excess kurtosis was over
one. This is vital for the attitude and force estimation used to navigate the robot
using obstacle aided locomotion.





Chapter 7

Conclusion

This work has successfully demonstrated a general approach to improve the
heading estimates in the presence of a disturbing magnetic field from
surrounding electric motors in small vehicles such as snake robots. The study
was performed using the Dynamixel XH540-V150-R BLDC servo motor, and the
BNO-055 IMU, used on the Boa snake robot.

By performing a proof-of-concept heading experiment, it was concluded
that the heading estimates were significantly improved by predicting the
magnetic cross-talk from the servo motor to correct the magnetic field
measurements in a feed-forward loop. By using a Kalman filter that adaptively
changes its measurement covariance matrix to reject magnetic disturbances, the
modeling error and external magnetic fields are rejected by the method. The
absence of either the feed-forward compensation or the magnetic disturbance
rejection rule made the heading estimates unreliable when the servo motor was
actuated. Both methods should therefore be used in combination to obtain the
best heading estimation results.

The magnetic cross-talk was modeled as a sine wave as a function of the BLDC
motor’s shaft position. The model was fit using non-linear least squares regression
with Scipy’s curve_fit function. The data used to model the magnetic cross-talk
was obtained from a baseline experiment where the motor shaft rotated with pre-
defined speed profiles while the motor housing and IMU themselves remained
stationary. The model was validated to work with an additional rotational load on
the motor. The maximum RMSE of the model was 3.316 µT. The residuals grew
with the absolute value of the motor’s shaft velocity, and it was concluded that
these residuals most likely came from the back emf in the motor.

Physical shielding methods were tested to reduce these residuals. It was
concluded that the expensive ferrite shielding sheets of 0.5 mm attenuated the
magnetic field approximately as much as 20 mm of additional distance between
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the motor and the IMU. However, the shielding sheets made the cross-talk from
the motor harder to predict in terms of the amplitude and offset parameters.
Using additional distance, on the other hand, decreased the maximum RMSE of
the cross-talk model to 1.097 µT. It was therefore recommended to maximize the
distance between the IMU and the motor as much as the design of the robot
allows before building the cross-talk model. The proposed method requires the
cross-talk model to be built for each individual snake robot link, preferably in a
lab without environmental magnetic disturbances, before being incorporated
into the heading estimator.

This work also validated the previous project work on the Boa snake robot
with the new motor and characterized the nominal IMU measurement noise.
Although the literature review suggested that the magnetometer noise might
need to be modeled as an ARMA series, the nominal IMU measurement was
determined to have White Gaussian Noise. By comparing the nominal noise with
the measurement noise while the servo motor was actuated, it was validated
that the accelerometer and gyroscope measurements were not affected by the
strong magnetic field.

This work has shown that it is possible to acquire good heading estimates
with a low-cost IMU by modeling the magnetic disturbances from the motor.
Future work should test the proposed method on a multi-link snake robot,
testing the method in attitude and spatial orientation estimation. The
contribution of this work will make it easier for the research group working on
the Boa snake robot to develop attitude and spatial orientation estimation
algorithms. Overall, the developed method would be suitable to improve the
heading estimates, not only for snake robots but also other small, low-cost
vehicles with electric motors and IMUs mounted nearby.
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Appendix A

Additional results from the servo
actuation experiments

Multiple plots and results that served to make the conclusions of this work was
not presented in the results Chapter 5, Results, to avoid filling the chapter with
large plots or numbers which could be shown in a more concise way with the
supplement of words. They are presented in this appendix for the interested
reader.

A.1 Pair plots during servo actuation in the baseline
experiment

Seaborn’s pairplot function [7] was used to make scatter and histogram plots of
each feature to easily get an overview of the servo motor’s effect on the IMU
measurements. The pair plots in Figures A.1, A.2 and A.3 displays the pairplots
that gave the starting points for the analysis and results from the baseline
experimental results.
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Figure A.1: Pair plot between the accelerometer measurements and the gyroscope
measurements from the baseline experiment.
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Figure A.2: Pair plot between the servo measurements and the gyroscope
measurements from the baseline experiment.
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Figure A.3: Pair plot between the servo measurements and the magnetometer
measurements from the baseline experiment.
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A.2 Pair plots during servo actuation in the load
experiment

The pair plots in Figures A.4, A.5 and A.6 displays the pair plots from the
additional load experiments. The IMU and motor rotated a few degrees during
the experiments, which can be seen in the scatter plots. The scatter plots were
therefore deemed unreliable in terms of interpreting if there would be any
correlation between the different features of the servo motor and the IMU
measurements. It was these results that led to decision to compare the cross-talk
model of the baseline and the additional load experiments.

Figure A.4: Pair plot between the accelerometer measurements and the gyroscope
measurements with load.
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Figure A.5: Pair plot between the servo measurements and the gyroscope
measurements with load.
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Figure A.6: Pair plot between the servo measurements and the magnetometer
measurements with load.
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A.3 Sample statistics before and after servo actuation
with load

To avoid filling the results chapter with numbers, the sample statistic from
before and after servo actuation with additional load are presented in Table A.1
and A.2. The most important numbers were extracted and used in the
discussion. The sample statistics complemented the baseline experiments in
characterizing the IMU measurement noise. They were also used to conclude
that after servo actuation, the measurements are equal to before actuation.

Table A.1: Accelerometer sample statistics before and after the servo actuation in
the additional load experiment. The statistics during servo actuation was omitted
as experimental setup rotated during servo actuation.

mean std skew kurtosis
Before

accX 0.466 0.011 0.157 -0.506
accY 0.527 0.015 0.296 0.828
accZ 9.794 0.016 -0.231 0.180

After
accX 0.448 0.009 -0.058 0.924
accY 0.439 0.012 -0.030 -0.062
accZ 9.799 0.015 -0.217 -0.184

Table A.2: Gyroscope sample statistics before and after the servo actuation in the
additional load experiment. The statistics during servo actuation was omitted as
experimental setup rotated during servo actuation.

mean std skew kurtosis
Before

gyrX 0.000 0.001 0.065 0.437
gyrY 0.000 0.002 -0.131 -0.045
gyrZ -0.000 0.001 0.145 0.153

After
gyrX 0.000 0.001 -0.029 -0.163
gyrY 0.000 0.002 -0.030 -0.009
gyrZ -0.000 0.001 0.005 -0.009
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