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Preface 

This PhD thesis is submitted in partial fulfillment of the requirements of the degree of 

Philosophiae doctor (Ph.D.) at the Norwegian University of Science and Technology 

(NTNU) in Trondheim. The presented research was carried out at the Department of 

Mechanical and Industrial Engineering between September 2020 and September 2023. 

The Ph.D. research was directed by Professor Alexey Vinogradov as the main 

supervisor and Associate Professor Andrei Lobov initially acted as the co-supervisor 

and later assumed the role of the main supervisor.  

The Ph.D. work was supported from the Norwegian Research Council by the RCN 

Project No 296236. The aim of the Ph.D. research is to investigate a reliable and 

effective method for early material damage detection of bearings in online intelligent 

condition monitoring systems, which can improve the safety and efficiency of marine 

machinery, reduce downtime, and minimize maintenance costs. 
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Abstract  

Rotating machinery is a vital component in maritime vessels and wind turbines, and 

bearing is one of the most important parts in rotating machinery providing support, 

reducing friction, and facilitating smooth operation. However, bearings are susceptible 

to wear, degradation, and various other faults as they are subjected to continuous 

operation, escalating into catastrophic failures over time. Hence, early detection of 

incipient damages is an effective way to avoid downtime and loss of revenue as well as 

to protect both assets and employees.   

Today, manual inspections and condition monitoring (CM) are still frequently used, 

however, it is not easily feasible in autonomous and remote-controlled vessels and 

subsea installations. In such scenarios, remote CM becomes the preferred option, 

allowing for continuous monitoring over long periods of time. This requires sensor data 

processing and analysis techniques to identify patterns and anomalies that indicate the 

presence of damages. In recent year, significant advancements in Artificial Intelligence 

(AI) techniques have emerged, offering a promising solution to address this challenge. 

This has sparked considerable interest and discussion in the field.  

Some research gaps are to be mentioned: (i) The majority of existing studies focus on 

vibration analysis; (ii) The unsupervised early damage detection is relatively 

understudied compared to the supervised paradigm; (iii) The real-time monitoring of 

bearing requires further investigation. It has been reported that the current vibration-

based CM systems for rotating machinery have limited sensitivity and capability for 

detecting pre-failure damages. As a result, by the time damage is detected, catastrophic 

failure becomes imminent, leaving little to no time for adjusting operational parameters 

to prevent further damage. This often necessitates shutting down operations until repairs 

or component replacements can be carried out. As an alternative non-destructive 

monitoring technique, Acoustic Emission (AE) has been found superior to vibration 

monitoring, as it can pick up signals from early damage before it propagates to the 
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surface and become detectable by vibration sensors. Besides, AE detection also shows 

superiority in slowly rotating machinery where the hit energy is far too low to be 

detectable with vibration methods.  

We aim to integrate the AE technology and power of AI algorithms, providing real-time 

insights into the condition monitoring of bearings in this Ph.D. work. The research 

process encompasses six research papers that contribute to the development of novel 

CM frameworks using AE signals and intelligent analytics. These frameworks are 

designed for early damage detection in machinery. By the introduction of sensitive and 

intelligent CM systems with real-time analytics capabilities, this research aims to 

advance the digitalization of the maritime sector. The goal is to reduce operational costs 

associated with maintenance. 

The thesis is presented as a collection of publications that build towards the goal of 

intelligent early material damage detection of bearings with AE signals. The structure 

of the thesis is consisted of five components: The Chapter 1 provides a comprehensive 

overview of the background and research questions of this Ph.D. work. Chapter 2 

investigates the existing literatures of related topics and outlines the research gaps and 

challenges of the present study. Chapter 3 summarizes the main contributions of each 

research paper. Chapter 4 elaborates the connections between the conducted research 

papers and the derived three research questions. A brief summary of the entire Ph.D. 

research and the prospect of future research are given in Chapter 5. 
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Chapter 1  

Introduction 
Condition Monitoring (CM) of bearings has been a hot topic for years in the field of 

prognostic and health management of rotating machinery. As an essential component  

in various types of machinery and equipment, such as maritime vessels, wind turbines, 

pumps, and motors, bearings are often subject to significant loads and stresses, which 

can cause wear, fatigue, cracks, and other damages over time. Studies have indicated 

that bearings are responsible for 30-70% of failures in various rotating components of 

the machine [1–3]. Taking the induction motor as an example, the investigation into 

bearing faults represents 51%, 41%, and 42% of the overall faults according to the 

research conducted by ASEA Brown Boveri, Institution of Electrical and Electronics 

Engineers, and Electric Power Research Institute, respectively, as depicted in Figure 1.1 

[4]. It goes without saying that the CM of bearings is a crucial and significant task for 

maintaining the health and reliability of critical equipment, reducing costs and 

downtime, and improving overall operational efficiency and safety.   

 
Figure 1. 1 A case study of failure rate of bearings in induction motors. The image is 
reproduced from [4].  



1. INTRODUCTION 

2 
 

In the past, manual CM methods such as frequent inspections were commonly involved 

to assess the health of bearings, and these techniques are still utilized today. Although 

these methods can yield valuable insights, they require substantial time and labor to 

implement and may lack precision. Furthermore, bearings are often located in hard-to-

reach or inaccessible regions within machinery or equipment. For example, in 

autonomous and remote-controlled vessels as well as subsea installations, the systems 

are usually inaccessible and remote condition monitoring has become the only feasible 

option over long periods of time. As a result, there is a growing need for advanced tools 

to monitor bearings’ health.  

The Ph.D. work is targeted to explore differentiating technology for bearing CM system. 

The reminder of this chapter will provide a comprehensive overview of the background 

and research scope. Initially, we discuss the motivation behind our effort for Intelligent 

Condition Monitoring (ICM) systems as well as the utilization of the Acoustic Emission 

(AE) technique. We outline the main framework of the state-of-the-art intelligent data-

driven analytics, which provides the reader a preliminary understanding of this topic. 

Subsequently, we introduce the research scope and highlight the primary research 

questions (RQs) that guide our work. Then, the main contributions and the 

corresponding research outcomes are briefly introduced. Finally, the thesis outline is 

provided.  

1.1 Background 

1.1.1 Intelligent condition monitoring  

To begin with, let us have a look at the term ‘intelligent’ in ICM, which usually 

describes the capacity of a system or process to learn, adapt, and make decisions through 

the utilization of advanced artificial intelligence (AI) technologies, specifically 

Machine Learning (ML) and Deep Learning (DL) methods. The relationship between 

different AI disciplines and ICM is depicted in Figure 1.2. The ICM circle overlaps with 

both ML and DL. In practice, ICM involves collecting large amounts of data from 

various sensors that mounted on the targeted objects, such as vibration sensors, AE 

sensors, temperature sensors, and oil analysis data, etc. The acquired data is then 

processed by advanced ML or DL tools for analysis, for example classifying different 
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fault patterns or detecting anomalies to achieve the goal of monitoring and improving 

system performance and reliability. Therefore, ICM is an exemplary instance of a data-

driven approach advocating that the sensor data itself provides the primary source of 

information for solving problems or making decisions, rather than relying on 

preconceived models or assumptions.  

 

Figure 1. 2 The venn diagram of the relationship between different AI disciplines and 
ICM.  

 

The general procedures of ICM comprise three steps, including data acquisition, feature 

extraction, and decision making, as illustrated in Figure 1.3. Initially, the data 

acquisition system in ICM works by collecting signals from various sensors that are 

mounted on the machine. A complete data acquisition system consists of three essential 

elements – Sensor, Signal Conditioning, and  Analog-to-Digital Converter that converts 

the conditioned sensor data into digital values. The data are usually collected at regular 

intervals and stored in a database. Then, the acquired data can be processed by the 

utilization of ML and DL tools for feature extraction and decision-making.   

In traditional ML paradigm, manually engineered features are often required to be 

extracted from time domain (such as kurtosis, skewness, shape factor, margin factor, 

etc.), frequency domain (such as mean frequency, frequency center, root mean square 

frequency, etc.), and time-frequency domain (involving signal processing techniques 

like Wavelet Transform (WT), Wavelet Package Transform (WPT) or Empirical Model 

Decomposition , etc. Then, feature selection or compression methods may be utilized 

to reduce the dimension and redundancy of the extracted features. In the decision-

making step, the predictive model can be developed based on various ML algorithms, 

such as Support Vector Machine (SVM), Random Forest (RF), Extreme Learning 

AI

ML

DL

ICM
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Machine, and artificial neural networks, depending on the specific application 

requirements. The output of the model can then be used to trigger alerts, schedule 

maintenance, or take other corrective actions to prevent catastrophic failures and 

optimize the system's performance.  

 
Figure 1. 3 General procedures of ICM. 

 

As a sub-field of ML, the DL paradigm has become increasingly popular in the ICM. 

DL refers to a variety of artificial neural networks with numerous hierarchical layers, 

which enables the models to learn hierarchical and deep representations from sensor 

data. The highlight of DL paradigm is to eliminate the need for some data pre-

processing steps that are typically required in traditional shallow ML methods, and 

enables end-to-end modeling, namely, the feature extraction and decision-making 

procedures are combined into a single process, as described in Figure 1.3. This 
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simplifies the ML pipeline and can lead to more accurate results by allowing the model 

to learn implicit features automatically from the raw input data. 

According to a recent study investigating the applications of intelligent algorithms in 

the field of fault diagnosis [5], it has been found that DL paradigm has outperformed 

traditional ML methods. The conclusion is supported by the statistical study as 

presented in Figure 1.4, showing that the popularity of DL has surpassed that of 

traditional ML approaches since 2017, and this trend is projected to continue well into 

the future. This highlights the superiority of the DL approach and its potential in solving 

complex problems in various domains.  In contrast to the traditional ML paradigm, DL 

paradigm offers the following advantages:  

• End-to-End modeling: DL models are capable of conducting end-to-end 

learning, which enables them to take raw data as input and directly generate a 

decision without the need for prior knowledge and expert experience. This 

aligns with the pursuit of model intelligence in modern industry, where 

automation and efficiency are highly valued.  

• Versatility: Without manual feature engineering, DL models can be easily 

applied to various types of data acquired from different sensors, including 

vibration signals, AE signals, current signals, etc., making them suitable for a 

wide range of applications in different domains.  

• Higher Accuracy: DL models have the potential to achieve higher accuracy in 

fault detection and diagnosis compared to traditional ML methods due to the 

capacity of learning complex patterns and relationships in large datasets.  

However, DL-based approaches are still in their infancy, there are still some remaining 

challenges to be addressed. For instance, DL models still face many training problems 

such as overfitting or parameter sensitivity etc. Therefore, improved pattern recognition 

approaches based on DL still need to be further developed.   

1.1.2 Acoustic Emission Technology vs. Vibration Technology 

Sensor data is the carrier of the bearing condition information. At present, vibration 

sensing is the most widely used technology for ICM, owing to its simplicity, robustness, 

and widespread availability. However, the vibration based ICM system can only 
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respond to the detectable vibrations caused by severe material failure such as large 

cracks or surface defects, and thus, have limited sensitivity and capability for detecting 

pre-failure damages. As a result, when damage is detected, full-scale failure is often 

imminent, leaving little or no time for adjusting the operating parameters to prevent 

further damage [6]. This is why we seek alternative technologies.  

 

Figure 1. 4  Development and milestones of intelligent fault diagnosis using ML. The 
figure is cited from [5].  

 

As an alternative non-destructive testing technique, AE signals exhibit a substantially 

broader frequency range (100 kHz to 1 MHz) [7], which does not significantly coincide 

with low-frequency mechanical vibration signals generated by machine component 

imbalance or misalignment. In addition, AE can be generated by microscopic flaws such 

as breaks in hard non-metallic inclusions or incipient cracks, providing insight into the 

dynamics of sources under load. Plastic deformation and fracture associated with the 

nucleation and growth of cracks represent the primary mechanisms of the sources 

releasing the elastic strain energy associated with AE transients [8]. The AE signal tends 
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to increase as the scale of the sources grows. A great deal of evidence has been 

accumulated, suggesting that AE parameters can reveal the faults in rotating equipment 

before they show up in the vibration acceleration range [9,10]. Hence, the potential of 

the AE technique for ICM is increasingly acknowledged in the industrial field.  

1.1.3 Objectives 

The objective of this project is to investigate the combined potential of AE technology 

and AI disciplines for ICM of bearings. While DL has exhibited remarkable success in 

end-to-end modeling with vibration signals in ICM, its application to AE signals is 

limited [11]. One of the challenges is that AE monitoring generates vast amounts of 

data that require extensive processing due to the high sampling frequency. This makes 

it difficult to apply DL directly to raw AE signals. As a result, single-parameter 

characterization of the AE waveforms, such as the Root Mean Square (RMS), AE 

counts, rise time etc. has been investigated by researchers. While they require little 

computational cost, they have been found unreliable for the characterization of the onset 

and propagation of damage. The limitations of these approaches have prompted 

researchers to move from time to frequency and then to time-frequency domain by using 

a variety of spectral transformations. Although the results from these later approaches 

appear more reliable, these manually engineered parameters require extensive prior 

knowledge and expert experience. Furthermore, a specifically designed feature for one 

machine is hardly applicable to other applications. These limitations call for further 

research and exploration of the potential of DL methods in AE waveform analysis.  

To this end, this research aims to explore a more versatile method with the focus of 

early warning of damage based on AE technology and DL paradigm. We aim to develop 

an end-to-end ICM framework, which is capable to address the following practically 

relevant challenges:  

• Extraction of implicit features from historical AE signals. 

• Timely detection of the emerging pre-mature failure types. 

• Continuous learning for monitoring the progression of failures. 

• Pattern recognition of these detected failure types with high confidence.  
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With these capabilities, the model can be effectively applied to online ICM of bearings, 

enabling it to significantly reduce operational costs associated with maintenance 

activities. 

1.2 Ph.D. project scope  

The PhD project is a component of the ‘AEMON - Novel Failure Monitoring System 

for Marine Applications by including Acoustic Emission ’ project which aims to 

develop a cutting-edge failure monitoring system for marine applications using AE 

technology. The project involves research partners from NTNU (education) and 

SINTEF (industrial research), as well as industry partners Kongsberg Maritime, Rolls-

Royce Marine, Equinor, and Island Offshore.  

 
Figure 1. 5 Work packages of AEMON project. 

 

In AEMON, we propose to investigate a collection of models that make few assumptions 

on the damage mechanism. By using such models, we aim to arrive at a collection of 

indicators, evolving over time, that cover a wide range of mechanisms under a variety 

of operating conditions. The indicators will flag the presence of damage, and the 

evolution of the indicators will provide an estimation of the time to damage escalation. 

Figure 1.5 presents the main work packages under the entire project and the 

corresponding responsible partners. The Ph.D. project is part of the activity H1, which 
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is responsible for construction of intelligent models for early material damage detection. 

This requires the utilization of signal processing techniques, improved ML or DL tools, 

and other data analytics to identify patterns and anomalies that indicate the presence of 

damages. Additionally, the research will involve the design and testing of prototype 

software systems to acquire and process AE signals in real-time. The target is to build 

a reliable and effective method for early material damage detection of bearings in online 

ICM systems, which can improve the safety and efficiency of marine machinery, reduce 

downtime, and minimize maintenance costs. In addition, the results of this research have 

the potential of  being extended beyond AE analysis and can be implemented in other 

types of sensor sources and industrial sectors involving rotating machinery.  

The Ph.D. work is closely related with the activity H2, which is responsible for the 

production of subsurface cracks by rolling contact fatigue and propagate these to the 

material surface while monitoring the AE activity. Two lab-scale test rigs equipped with 

AE monitoring systems (a Roller Bearing test rig and a Ball Bearing test rig) have been 

built to generate sub-surface damages and acquire AE signals. The damage reproduced 

at lab scale will be compared to field data in H4 for confirming their relevance and 

similarities with real life damages. The H3 will analyze the damage produced in H2 and 

evaluate the effectiveness of the method developed in H1.  

The thesis is guided by the following Research Questions (RQs):  

• RQ 1: How to derive useful information from AE signals using intelligent 

analytics that can reveal the emergence and development of damages in bearings?  

• RQ 2: How to perform end-to-end modeling that minimizes the model’s 

dependence on expert assumptions and prior knowledge, while facilitating 

intelligent learning and decision-making processes? 

• RQ 3: How to incorporate the model trained on a closed dataset into an open 

environment for real-time online monitoring?  

1.3 Contributions and publications  

The methods and discussions presented in this thesis are founded on the outcomes of 

five journal papers and a conference paper conducted in this PhD work during three 

years of study, from 2020 to 2023, as listed in the following.  
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• [Paper A] Yu Wang, R. H. Hestmo, A. Vinogradov, Early sub-surface fault 

detection in rolling element bearing using acoustic emission signal based on a 

hybrid parameter of energy entropy and deep autoencoder, Measurement 

Science and Technology, vol. 34, pp. 064008, March, 2023 [12]. 

• [Paper B] Yu Wang, A. Vinogradov, Simple is good: Investigation of history-

state ensemble deep neural networks and their validation on rotating machinery 

fault diagnosis,  Neurocomputing, vol 548, pp. 126353, September, 2023 [13]. 

• [Paper C] Yu Wang, A. Vinogradov, Improving the Performance of 

Convolutional GAN Using History-State Ensemble for Unsupervised Early 

Fault Detection with Acoustic Emission Signals, Applied sciences, vol. 13, no. 

5, pp. 3136, February, 2023 [14]. 

• [Paper D] Yu Wang, S. Bernat, A. Vinogradov, BC-GAN: A Threshold-Free 

Framework for Unsupervised Early Fault Detection in Rotating Machinery, 

2023. (Under review)  [15].  

• [Paper E] Yu Wang, Wang, Q.; Vinogradov, A. Ensembled multi-classification 

generative adversarial network for condition monitoring in streaming data with 

emerging new classes, 1st Olympiad in Engineering Science – OES 2023. 

Accepted. Presented. (Olympiad Medal/Best paper award)  

• [Paper F]. Yu Wang, Wang, Q, S. Bernat, Vinogradov, A. Ensembled multi-

task generative adversarial network (EMT-GAN): a deep architecture for 

classification in streaming data with emerging new classes and its application to 

condition monitoring of rotating machinery, 2023. (Under review) [16] 

1.4 Thesis outline  

The first chapter of this thesis introduced the research background and explained the 

motivation behind it. Furthermore, the subsequent chapters of the thesis are outlined as 

follows:   

Chapter 2 presents an overview of the research focus of this thesis by outlining the 

main sub-tasks of the developed ICM framework and reviewing the existing literature. 

The chapter identifies the key challenges and research gaps in this field to provide a 

comprehensive understanding of the state-of-the-art research in this area.  
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Chapter 3 provides a comprehensive summary of the primary contributions made 

through the completion of the six research papers during the Ph.D. work. 

Chapter 4 is dedicated to providing a comprehensive understanding of the connections 

between the developed methods and how they contribute to answering the proposed 

RQs. 

Chapter 5 summarizes the main findings of the Ph.D. work and provides suggestions 

for future research activities in the field.  

Appendix A contains the main contribution body. 

Appendix B provides the link to the GitHub repositories of corresponding work. 
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Chapter 2 

Literature review  
In the previous chapter, we have briefly introduced the ICM paradigm and advantages 

of AE signal in early material damage detection over traditional vibration-based 

analysis. The significance and necessity of combining the two techniques has been 

revealed. This chapter will delve into the two techniques in terms of theoretical 

foundations, methodologies, and implementations in the existing literatures, 

highlighting their strengths, limitations, and challenges.  

2.1 Acoustic emission-based monitoring of bearings 

AE is commonly defined as a phenomenon whereby transient elastic waves are 

spontaneously emitted by the rapid stress relaxation within localized sources in material 

under load [17]. Defects occurring at different locations within a bearing, such as the 

inner race, outer race, or roller, exhibit distinct characteristic frequencies at which bursts 

of AE are generated [18]. Consequently, the AE signal from a damaged bearing 

comprises periodic bursts that correspond to these characteristic frequencies. These 

bursts serve as indicators of the presence of defects, including cracks, plastic 

deformation, or fractures, etc. 

2.1.1 AE hit parameters 

AE hit parameters refer to these widely used metrics for analyzing and interpreting AE 

waveforms. The most commonly used AE hit parameters for diagnostic include AE 
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counts, amplitude, duration, rise time, RMS, and some waveform shape descriptors, 

some of them are depicted in Figure 2.1.  

Significant work has been dedicated to establishing the correlation between these 

parameters and AE events. Tan reported that AE events increase exponentially with 

defect size in bearings [19]. A study in [20] revealed that AE amplitude has a positive 

correlation with the defects in bearing outer race, however, this doesn't apply to inner 

race defects. Choudhury and Tandon conducted tests on bearings with different defect 

sizes. Their findings revealed that the ringdown counts of AE signals proved to be a 

highly effective parameter for detecting small-sized defects in both the inner race and 

roller of bearings [8]. In the work of Morhain and Mba, they performed the first known 

attempt to determine the appropriate threshold level for AE count diagnosis [21]. 

Besides, a clear relationship between the parameters RMS, amplitude and energy with 

speed, load and defect size has been reported in their research, particularly on outer race 

defects. He et al. further investigated the correlation between various AE parameters, 

including AE counts, amplitude, energy, and kurtosis, and the running condition of 

rolling element bearings [11]. They highlighted the impact of rotating speed to AE 

activities. Pachaud investigated two waveform shape descriptors, crest factor and 

kurtosis, and found that the kurtosis is more sensitive than crest factor in detecting the 

appearance of defects [22]. In addition, the successful application of AE parameters in 

slowly rotating rolling bearing can be found in [23,24]. Different time-domain features 

were extracted in [25] for fault diagnosis of low-speed bearing. Motahari-Nezhad and 

Jafari utilized sixty time-domain features, including kurtosis, energy, peak, to perform 

remaining useful life prediction of bearings [26]. Their results showed that kurtosis has 

the highest accuracy. Furthermore, it is worth mentioning that additional advanced AE 

hit parameters have been extensively studied to comprehensively characterize the AE 

waveforms from various perspectives. Detailed information regarding these parameters 

can be found in [27–32], here we do not to list all of them for the sake of brevity. 
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Figure 2. 1 Typical AE signal. 

 

Although parameter-based AE descriptors are economical and facilitate high 

computation speed, they have been found unreliable in many practical applications. 

Raw AE waveforms encapsulate a blend of information derived from mechanical 

interactions, including  rotating components, splashing oil, electrical interferences, and 

many other noise-like sources of unknown origin. Consequently, the true underlying 

AE events associated with damages are often masked by heavy ambient noise, making 

it challenging to identify them. Under such circumstances, utilizing AE hit parameters 

becomes impractical. In order to filter out noise and extract useful information, the raw 

AE signals are frequently required to be processed by advanced signal processing 

techniques.  

2.1.2 AE-based signal processing 

A wide range of research has been conducted to explore and develop signal processing 

methodologies that span across the frequency domain, time-frequency domain and other 

signal processing techniques, like cyclostationary analysis, for the extraction of 

valuable information from AE signals.  

Fast Fourier Transform (FFT) is a widely used technique to interpret the AE signals 

from frequency domain. Einar et al. applied a high-pass filter based on FFT to denoise 

the raw AE signal, which amplifies the AE events in time domain [33]. The frequency 

domain characteristics, including peak frequency, frequency centroid, frequency band, 

and spectral kurtosis, provide valuable insights into the features of AE sources [17]. A 
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series of FFT features have been explored [34]. Gowid et al. developed a new FFT-

based segmentation and features selection algorithm which yielded a high detection 

accuracy of 100% [35]. Wang et al. reported an experimental investigation into the 

relationship between the time–frequency patterns of AE signals and various cutting 

mechanisms under different speeds and fiber orientations [36].  

Time-frequency domain analysis involving Short-Time Fourier Transform (STFT) and 

WT is another popular approach. Pham et al. adopted STFT to create spectrogram 

images as the representation method in the time-frequency domain, which is further 

analyzed by neural network [37]. Gao et al. utilized Empirical Wavelet Transform to 

decompose AE signals for extraction of the time-frequency domain features [38]. Liu 

et al. performed WPT to decompose bearing AE signal at different scales [39]. Bianchi 

et al. showed that WPT is a powerful technique to filter out noise from AE signals [40]. 

Law et al. proposed an advanced signal processing method combining the Wavelet 

Packet Decomposition and Hilbert–Huang transform  for spindle bearings condition 

monitoring [41].  

Besides, a number of methods have been investigated for signal processing of AE 

signals as alternative feature extraction approaches, including the utilization of 

Empirical Model Decomposition [42] and Variational Mode Decomposition  [43], etc. 

Nikula et al. utilized autocorrelation to distill buried information from statistical 

features calculated from band-pass filtered signals based on short time windows for 

low-speed bearing fault diagnosis [25]. The analysis of cyclostationarity in AE signals 

had been demonstrated an effective method to interpret AE signal in bearing fault 

diagnosis. Kilundu et al. reported an experimental study of the Cyclic Spectral 

Correlation to characterize the cyclostationary aspect of AE signals recorded from a 

defective bearing [44]. Antoni provided a comprehensive introduction of cyclic spectral 

analysis methods, and validated the effectiveness of Spectral Coherence method in 

bearing damage detection [45]. Ni et al. proposed a novel fault energy based correntropy 

method to analyze the fault-irrelevant impulsive and cyclostationary interferences in 

bearings [46]. In [47], a novel Adapted Spectral Coherence method is investigated to 

identify faulty sources of wind turbine main bearing that are buried under multiple 

disturbances. 
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The AE-based signal processing technique is commonly reliant on the availability of 

prior knowledge regarding the specific machine and fault characteristics. This 

requirement poses a challenge as the approach heavily relies on the expertise of 

individuals, which can sometimes be vaguely defined. Especially in the case of online 

monitoring, unforeseen information or fault types may appear, so it is virtually 

impossible to design the best-suited features for unforeseen fault types. This case will 

be discussed in Section 3. 

2.1.3 AE-based intelligent condition monitoring 

We have outlined the traditional AE hit parameters and prevalent alternative feature 

extraction methods associated with signal processing techniques in the previous 

sections. The above-mentioned methods are classified as traditional methods in contrast 

to AI-based paradigms. The combination of AE technique and intelligent analytics can 

be found in existing literatures with applications ranging from EFD, fault diagnosis, and 

Remaining Useful life (RUL) prediction.   

Applications to EFD: Extensive research has provided compelling evidence supporting 

the effectiveness of AE signals in detecting early damages that would otherwise remain 

undetectable by vibration signals [9,10]. Konig et al. introduced a ML-based anomaly 

detection method for wear monitoring in sliding bearing systems. In their approach, 

they employed an autoencoder as a feature extractor to identify anomalies [27].  

Applications to fault diagnosis: Fault diagnosis has been the most studied sub-field. 

With traditional statistical features of AE signals as input, Omoregbee and Heyns 

leveraged SVM and Genetic Algorithms to classify different faults in low‑speed 

bearings [48]. The k-Nearest Neighbor was adopted in [49] for fault diagnosis of rolling 

element bearing. Meserkhani et al. developed an artificial neural network  based 

classifier to diagnose AE signals from four fault conditions in angular contact ball 

bearings [50]. The study aimed to compare the performance of different AE sensors in 

accurately detecting and classifying these fault conditions. It has been pointed out that 

traditional ICM paradigm requires handcrafted features that are independent of 

substantial human expertise and domain knowledge [51]. To this end, Hasan et al. 

applied Acoustic Spectral Imaging method to transform the one-dimensional AE signals 

into images. By leveraging the Convolutional Neural Network (CNN) for end-to-end 
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learning, the study enhanced the automated processing and interpretation of AE signals. 

Similarly, by representing the acquired AE signals as spectrogram, Pham et al. 

employed a CNN-based network to achieve accurate bearing fault diagnosis [37]. 

Inspired by sequential k-means, Pomponi and Vinogradov proposed a novel cluster 

method for real-time monitoring using AE signals [52].  

Applications to RUL prediction: RUL refers to the estimation of the remaining 

operational lifespan or time until failure. Elforjani and Shanbr proposed a ML-based 

prognosis method based on AE signals [28]. A new fault indicator referred to as Signal 

Intensity Estimator was proposed in this study, and the authors employed three 

comparative methods, including artificial neural networks, SVM, and Gaussian Process 

Regression methods simultaneously, to highlight the feasibility of the artificial neural 

networks model for estimating the RUL of slow natural degrading bearings. Authors in 

[26] proposed an AE-based technique that extracts informative features from the time 

domain. Feature selection was firstly performed by an improved distance evaluation 

method, and then, the selected features are further possessed by k-Nearest Neighbor 

classifier to achieve RUL prediction by taking the problem as a binary classification 

between ‘healthy’ and ‘faulty’.  

The integration of AE technology with intelligent analytics has significantly contributed 

to informed decision-making in maintenance and repair strategies. Despite notable 

advancements, it is important to address certain limitations in current research. Firstly, 

the combination of AE technique with AI-based paradigms remains relatively 

understudied compared to the extensive research on vibration signals. While end-to-end 

learning models have been successfully established for vibration signals, their 

application to AE signals is hindered by the high dimensionality of AE data. 

Consequently, the reliance on manually engineered features and signal processing 

techniques is prevalent in AE analysis, necessitating a high level of expertise and 

experience from analysts. These limitations underscore the need for further research and 

development in the integration of AE technology with advanced AI methodologies to 

overcome these challenges and enhance the effectiveness of AE-based intelligent 

decision-making processes. 
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2.1.4 Summary 

The first part of the literature review focuses on AE-based monitoring of bearings. We 

provide a concise introduction to the traditional parameter-based AE analytics, starting 

with conventional AE hit parameters and signal processing techniques. Subsequently, 

its applications in ICM of bearings are introduced, as well as the associated challenges 

with present AE-based monitoring. By addressing these aspects, this section aims to 

establish an overview understanding of traditional AE-based monitoring methods. In 

the following section, we will delve deeper into the existing ICM paradigms.  

2.2 Intelligent condition monitoring of bearings 

ICM is a continuous process of identifying changes that are indicative of the developing 

failures in the system using intelligent analytics. The signals acquired from the deployed 

sensors are fed into the monitoring system in real-time and analyzed to provide insights 

into the health and performance of the equipment. The core responsibilities of ICM 

encompass a range of sub-tasks, they include but not limited to: (i) Detecting the initial 

signs of early damage, which is also frequently referred to as ‘early fault detection 

(EFD)’ problem; (ii) identifying various fault patterns, commonly known as ‘fault 

diagnosis’; (iii) monitoring the development of the damage rate;  (iv) design and testing 

of prototype model to process the acquired signals in real-time in order to accomplish 

the aforementioned tasks. The main objective of this section is to outline the state-of-

the-art methodologies utilized in ICM.  

Table 2.1 ML-based paradigm vs. DL-based paradigm, reproduced from [53]. 

Method ML-based paradigm DL-based paradigm 

End-to-end Optimization × √ 

Tailored Representation 

Learning 
× √ 

Intricate Relation Learning Weak Strong 

Heterogeneity Handling Weak Strong 
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ICM can be roughly categorized into two paradigms: ML-based and DL-based, as 

presented in Figure 1.3. A summary of this discussion of the two paradigms is presented 

in Table 2.1. One can see that DL-based paradigm has the advantages over end-to-end 

optimization, tailored representation learning, intricate relation learning, and 

heterogeneity handling. In the following, we investigate the application of the two 

paradigms by focusing on three key aspects that are closely related to this Ph.D. project: 

EFD, intelligent fault diagnosis (IFD), and the challenges with online monitoring.  

2.2.1 Early fault detection (EFD) 

EFD is a process of detecting and diagnosing faults or anomalies in a machine at an 

early stage before they can cause significant damage or failure. When tackling such a 

problem, the key is to identify the unexpected events as early as possible.  

 

Figure 2. 2 Workflow of the general unsupervised EFD paradigm (Paper D [15]). 

 

Unsupervised learning paradigm of EFD: Two major challenges are faced in the EFD 

of bearings: (1) The early faults tend to be too subtle for detection, making it more 

challenging to extract the underlying features; and (2) there are limited data that is 

accessible to train the model [54]. Hence, EFD is usually considered as a classical 

unsupervised problem based on the condition that only the data from the normal 

operation stage are available for training the surrogate models. The problem is therefore 

generally associated with novelty detection and anomaly detection. A conventional 
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approach involves extracting a HI that captures the degradation trend of the machine. 

By observing the changes in the associated HI value of AE signals, emerging fault can 

be detected. The decision-making process involves setting a threshold to define the 

boundary of normal operating conditions, as depicted in Figure 2.2. If the HI value of a 

signal exceeds this pre-set threshold, it is considered a fault alarm. 

ML-based paradigm: Methods in this category focus on learning the boundaries of 

normal-state data using traditional shallow learning algorithms, which is typically 

followed after signal processing and feature extraction for downstream analysis. One-

class SVM is a widely employed technique in the field of anomaly detection [55,56]. 

Saari et al. conducted a study where they employed One-class SVM for detecting 

bearing faults in windmills. In their approach, the model was trained using fault-specific 

features as input to automatically identify the faults [56]. Brito et al. utilized Principal 

Component Analysis to reduce the dimensionality of the extracted features in their study.  

Subsequently, they utilized the Isolation Forest (iForest) algorithm for the detection of 

early faults in bearings [57]. Mi et al. proposed a High-Level Extended iForest method  

in fault detection for rolling bearings [58]. 

DL-based paradigm: The category of methods leverages the power of DL algorithms to 

learn useful information from input data. Autoencoder is a common choice to tackle the 

problem. As mentioned in [27], authors utilized autoencoder to extract HI by learning a 

single hidden neuron in the bottle-neck layer. Another way to leverage the autoencoder 

is by making use of the reconstruction error between the input and output of the network. 

Related research can be found in [59], where the HI was constructed from the deviation 

of reconstruction errors. Similarly, Zhang et al. utilized the reconstruction error as HI 

based on multiscale CNN and gated recurrent unit Network with an Attention 

Mechanism [54]. Kong et al. leveraged a novel attention recurrent autoencoder to learn 

the most valuable features of input signal in an unsupervised way [60]. Shao et al. 

proposed complex wavelet packet energy moment entropy of vibration signals as 

indicator, they trained an Enhanced deep gated recurrent unit to map the relationship 

between the input data and the indicator for detection of early fault in bearings [61]. 

Song et al. converted the EFD as a sequence segmentation problem using CNN and a 

Simulated Annealing method to search for the optimal segmentation [62]. Their method 

is independent of manually designed features and pre-set threshold.  
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Limitations to be overcome: While AI analytics have found extensive use in the field of 

EFD, there are limitations in contemporary approaches: (1) As mentioned in the above 

sections, most existing methods are specifically designed for analyzing vibration signals 

and cannot be readily applied to other techniques, such as AE time series [11,63]. (2) 

Many existing methods rely on manually engineered features, and the performance of 

the trained surrogate models is highly dependent on the quality of these features. 

Consequently, the success of the approach heavily relies on the expertise of the analyst, 

and there is an increased risk of misinterpretation, particularly when inexperienced 

analysts are involved. (3) Most of the well-established models require pre-defined 

thresholds to distinguish between healthy and faulty states [62]. For one thing, 

determining an appropriate threshold value can be challenging, as it varies across 

different applications. For another, the threshold sets a hard boundary between normal 

and abnormal conditions, which can be easily affected by noises.  These limitations 

highlight the need for further research and development to address these challenges and 

enhance the applicability of AI-based EFD methods. 

2.2.2 Intelligent fault diagnosis (IFD) 

IFD refers to the systematic process of identifying and determining the underlying 

causes or patterns of malfunction in a system or equipment using intelligent data-driven 

analytics to reduce human labor demand and cost [5]. It is the most extensively studied 

topic in ICM, allowing operators to not only detect mechanical irregularities buy also 

pinpoint the root cause of the issue and carry out repairs accordingly. In contrast to EFD, 

IFD is often approached as a supervised learning problem in many existing literatures 

[5,64–69]. These studies involve acquiring and labeling historical sensor data from 

various fault locations and conditions in order to create a comprehensive training dataset. 

Intelligent surrogate models are then trained to learn the correlation between the sensor 

data and corresponding labels, allowing them to accurately classify different fault 

conditions.  

ML-based paradigm: Numerous ML-based fault diagnosis schemes have been proposed. 

k-Nearest Neighbor [49,70], SVM [71,72], RF [73–75], and Naive Bayes classifier [76] 

are to be mentioned amongst the most popular methods. A detailed review of the 

application of ML models targeted to practical machine fault diagnostics can be found 
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in [68]. In the past, the feature extraction and the fault recognition represented two 

separated procedures. Statistical features, which are derived from the raw signal 

acquired through various kinds of vibration sensors, include (but are not limited to) the 

mean voltage, RMS, shape factor, skewness, kurtosis, or entropy.  These features may 

need manual tweaking before classification [49,71]. They are often linked to specific 

time, frequency or time-frequency domain-based signal processing techniques such as 

FFT, WPT, Empirical Model Decomposition and so on. The bearing fault diagnostics 

encounters two major challenges: (i) the noisy working environment, and (ii) variable 

operation conditions. The signal of interest, which is nonstationary and nonlinear, can 

be obscured by significant noise that is also nonstationary in nature. In such cases, the 

features selected and optimized for specific testing conditions may not necessarily be 

applicable to different situations. Therefore, the design and analysis of features, as well 

as their behavior, require careful consideration by an expert. This task is typically 

challenging and relies heavily on prior knowledge and experience. 

DL-based paradigm: Since 2015, there has been a significant surge in the adoption and 

utilization of DL algorithms. and become the mainstream of IFD de facto [5]. In contrast 

to ML paradigms, the DL paradigms can extract features automatically from training 

data through multi-layered hidden neurons and achieve end-to-end modeling. We will 

delve into IFD of bearings based on DL paradigm from the following conceptual aspects: 

(i) deep feature learning, (ii) applications in variable working conditions, (iii) 

applications for imbalanced and insufficient data problem, and (iv) challenges.   

Deep features learning: Deep features refer to the learned representations of data 

obtained from deep learning models, specifically deep neural networks. Autoencoder is 

one of the most popular network architectures widely employed in ICM. It employs an 

unsupervised approach to learn and capture underlying features by reconstructing input 

data. The use of a stacked network structure allows for the extraction of hierarchical 

deep features. Related works can refer to [77–80]. On the other hand, the Convolutional 

Neural Network (CNN) excels in extracting local features, leveraging sophisticated 

feature extractors called "kernels" or "filters". This has led to promising results in 

various applications of bearing fault diagnosis [62,81–86]. The Recurrent Neural 

Network [87] and its variants, such as Long Short-Term Memory (LSTM) [88–92] and 

Gate Recurrent Unit [54,93,94], are competitive in capturing the temporal correlations 

in time series data. These have also been found effective in bearing fault diagnosis 
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applications. Additionally, other network architectures like Sparse Filtering [95], Deep 

Belief Network [96], Deep Boltzmann Machine [97], Deep Fuzzy Neural Networks 

[98,99] are frequently utilized in this field to extract deep features.  

DL-based applications in variable working conditions: With the successful applications 

of DL paradigms in IFD, increasing researchers are now shifting their attention towards 

tackling the problem under variable working conditions [81,100–104]. The dynamic 

nature of variable working conditions presents new challenges that need to be addressed 

in order to effectively apply DL techniques for fault diagnosis. Transfer learning (TL) 

has been identified as an effective solution for addressing this problem [105]. TL 

enables the transfer of knowledge acquired from a source machine or specific 

operational conditions to another machine or different operational conditions, which 

enhances the efficiency of fault diagnosis. Zhao et al. proposed a novel deep multi-scale 

convolutional transfer learning network to address the challenge [106]. Similar works 

can be found in [51,85,103,107–111]. 

DL-based applications in imbalanced and insufficient data problem: The issue of 

imbalanced data has garnered increasing attention in this field and has become a hot 

topic of discussion. It refers to the scenario where the distribution of samples across 

different fault classes is significantly unequal, which is a prominent concern in IFD. In 

real industrial settings, mechanical systems often operate normally for the majority of 

their service time, while the failure stage can be quick and catastrophic. It is, therefore, 

difficult to obtain faulty data. Zhang et al. conducted a review research over this 

problem based on intelligent analytics [112]. Generative Adversarial Network (GAN) 

has emerged as a potent solution for addressing this challenge by serving as a data 

augmentation method. GAN is utilized to generate authentic simulated data to supply 

these small-sized fault classes, effectively overcoming the insufficient data problem. 

Numerous studies have explored the application of GAN for this purpose, and relevant 

works can be found in [113–120]. In recent year, the emerging of Meta Learning and 

few-shot learning provide a new solution for this problem. Few-shot learning aims to 

learn from very limited number of labeled data to generalize and make accurate 

predictions on new, unseen classes or tasks. Zhang et al. leveraged Model-Agnostic 

Meta-Learning, a classical few-shot learning algorithms, to perform bearing fault 

diagnosis using only a few training samples for each fault class [121]. The readers are 

encouraged to explore more research findings in [122–125]. 
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Challenges: Despite the reported remarkable success, the present paradigms of DL-

based IFD still encounter many challenges. In this section, we would like to highlight 

the ‘Generalization’ problem of the current DL methods, which can be crucial for 

practical application of DLs. As most of the proposed methods are tailored to specific 

datasets or application scenarios, which means the performance of a designed 

architecture can degrade on another task. An example can be found in [126], where a 

multi-scale cascade CNN witnessed a decline in classification accuracy from 99.7% to 

96.9% when the authors tested the same network with varying kernel scales in the multi-

scale learning layer. Furthermore, neural networks are susceptible to training 

parameters like the learning rate and the number of iterations. The question of 

enhancing the neural network’s generalization and adaptability is still open and remains 

unresolved.  

2.2.3 Challenges in online monitoring 

Up to now, we have outlined some existing methodologies for EFD and IFD within 

ICM, let us delve into a specific problem with online monitoring that requires closer 

examination. Online monitoring refers to the continuous monitoring and assessment of 

the condition of equipment or systems while they are in operation, which is an especially 

difficult task. In traditional ICM paradigm, the surrogate models, as reviewed in the 

above, are trained on closed training dataset, namely, there are limited number of 

categories and samples in the training set. In practical scenarios, machines can exhibit 

various fault possibilities, each with distinct behaviors in sensor data. It is practically 

impossible to encompass all of them in the training dataset. Consequently, we can 

foresee that a model trained on a closed dataset will inevitably encounter new 

information during practical online monitoring that it has never encountered before. 

This issue highlights limitation of current methods in addressing online ICM, prompting 

us to seek new solutions to tackle this challenge. In the following, we will introduce a 

new concept that can be leveraged to address the problem.  
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2.3 Streaming data with emerging new classes (SENC) 

The above-mentioned challenges faced with online ICM can be encompassed by the 

problem of streaming data with emerging new classes (SENC), namely, by addressing 

the SENC problem, we can effectively tackle these challenges within a unified 

framework. In the below, we will discuss the definition, applications, methodologies, 

and challenges of SENC problem.  

2.3.1 What is SENC problem? 

The SENC problem is generally described as: given a training dataset 𝑇 = {(𝒙𝑖, 𝑦𝑖)}𝑖=1
𝑛 , 

where 𝒙𝑖 ∈ 𝑅𝑑  denotes the i-th training instance and the corresponding label 𝑦𝑖 ∈

{1,2, … 𝑐}, 𝑐 stands for the number of initially known classes. The goal is to build a 

multi-classification model based on 𝑇  so as to classify the streaming data 𝑆 =

{(𝒙̃𝑡, 𝑦̃𝑡)}𝑡=1
∞ , where 𝒙̃𝑡 ∈ 𝑅𝑑 is a streaming instance at time t, and the corresponding 

label 𝑦̃𝑡 ∈ {1,2, … 𝑐, 𝑐 + 1, 𝑐 + 2, … 𝑐 + 𝑘}, 𝑘 is the number of emerging new classes. 

As a result, a SENC model is required to fullfill the following tasks in an integrated 

framework: (1) pattern recognition of these already known classes with high accuracy; 

(2) timely detection of emerging new classes; (3) model update to adapt to new classes, 

and (4) discriminating between different new classes. Due to the growing need to 

minimize dependence on human labor and expert knowledge in modern industries, a 

significant challenge has emerged as (5) the model must be capable of extracting 

features and making data-driven decisions automatically on the basis of the original 

signals.  

By addressing SENC problem, we can significantly enhance the intelligence and 

reliability of online monitoring systems as the model can dynamically evolve and adapt 

to changing tasks and conditions. Figure 2.3 summarizes the connections between 

SENC problem and ICM. In accordance with the sub-tasks of ICM, we divide the SENC 

problem into three scenarios with different settings of known classes 𝑐 and emerging 

new classes 𝑘.  

• When 𝑐 = 1,  and 𝑘 = 1.  
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This particular scenario presents a unique case of the SENC problem with a single 

known class and a single emerging new class. In practical applications, this scenario 

is associated with EFD in the run-to-failure process. In this context, instances from 

the normal operating stage are utilized as the training data, and a model is trained to 

detect any deviations from the normal behavior that could indicate an impending 

fault. By addressing this problem, the CM system can improve its efficiency and 

reduce maintenance costs.  

• When 𝑐 > 1,  and 𝑘 = 0.  

This scenario is a special case of the SENC problem where there are no new classes 

that have emerged. It is directly related to the challenge of IFD in CM. The objective 

is to develop a model that can accurately classify the different fault types and 

differentiate them from each other based on the sensor data acquired from the 

system. Achieving accurate classification is crucial for timely and effective 

maintenance, repair, and replacement of the faulty components to avoid costly 

downtime and potential safety hazards.  

• When 𝑐 ≥ 1,  and 𝑘 > 1.  

The most challenging case for real-time online monitoring is the standard SENC 

scenario where there are multiple known classes and emerging new classes in the 

streaming data. This scenario requires the model to continuously update itself to 

adapt to new emerging classes, which is also known as the incremental learning 

problem. To address this challenge, adaptive algorithms are needed to continuously 

update the model as new data arrives. This problem is associated with monitoring 

the emergence of new fault types or the development of damage rate, etc.   
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Figure 2. 3 The interconnections between SENC problem and ICM.  

 

2.3.2 Existing methodologies  

The SENC problem remains understudied especially within the field of ICM. Here we 

introduce some state-of-the-art frameworks to address this challenge. Janardan and 

Mehta investigated the concept drift problem in streaming data and explored various 

classification algorithms and platforms that are useful in their research [127]. They 

pointed out that many of these tools are very young, and further research is required to 

effectively benchmark and evaluate the wide range of available options. Din et al. 

conducted a comprehensive review research of this topic, and summarized a general 

workflow for SENC problem [128], as depicted in Figure 2.4. The basic idea is to train 

an initial model that can learn the boundary of known classes, and a pre-defined 

threshold is then utilized to identify emerging new classes. Upon detection of a new 

instance, it is stored in a fixed-sized ‘buffer’. Once the buffer reaches its capacity, a 

model update is triggered to update the existing model. Based on the workflow, some 

of the state-of-the-art methods are to be mentioned.  
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Figure 2. 4 The general workflow for SENC problem, cited from [128].  

 

A group of tree-based methods have been investigated [129–131]. Gama et al. extended 

the Very Fast Decision Tree algorithm to deal with continuous data [129]. Mu et al. 

proposed a method known as SENCForest, which utilizes the assumption that anomalies 

from established classes are relatively more ‘normal’ compared to newly emerging 

classes. This approach involves constructing an ‘outlying’ anomaly subregion using a 

completely-random tree method, with the aim of detecting these emerging new classes 

[131]. To establish a unified framework for the SENC problem, the multi-classification 

process is realized by recording the class labels in each leaf of the pre-trained trees.  

Cluster-based methods provide an alternative solution [132–135]. Gao et al. suggested 

that new instances should exhibit a distinct feature distribution locally in comparison to 

instances from the existing known classes [132]. They introduced a novel SACCO 

framework for SENC, which utilizes an ensemble of the fast graph-based clustering 

method. However, this assumption can be impractical in real-world applications, as new 

classes can often be in close proximity to the known classes. For instance, in the case 

of the EFD problem, distinguishing early fault information from normal operating 
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conditions can be very challenging. . Cai et al. pointed out this question and proposed 

the introduction of a Class Separation Indicator α to measure the difficulty of SENC 

tasks [133]. They emphasized that most existing methods perform optimally on high-α 

SENC tasks, where there exists a substantial geometric distance between the existing 

and new classes, and the performance of these methods degrade on low-α SENC tasks.  

To address this, a cluster-based ensemble method called SENNE is introduced in their 

study. Zhang et al. further improved their method by introducing a new KNNENS 

model [134].  

Thus far, most existing methods rely on shallow learning approaches, which exhibit 

subpar performance when applied to original mechanical signals. Consequently, the 

incorporation of manually designed features becomes necessary. Zhou et al. introduced 

a neural network-based method that is capable of handling raw signal data, referring to 

as LC-INC [136]. However, this framework is only applicable when there are at least 

two known classes present in the training dataset. As a result, it is unable to address 

problems that involve only one known class at the initial stage, and EFD problem falls 

into this category.  

It is worth noting that the aforementioned methods are mostly tailored for domains other 

than ICM of bearings or rotating machinery. The field of ICM in this context remains 

relatively new and understudied. A few relevant works are to be mentioned.  Zhang et 

al. proposed an ENL-SAE framework that utilizes the sparse autoencoder for fault 

diagnosis, particularly with regards to emerging new classes [127]. In another study, a 

deep adversarial transfer learning network was introduced for emerging new fault 

detection [128]. This method was specifically designed to address the imbalance in 

transfer learning when the target domain encompasses more fault types than the source 

domain. However, it does not account for situations where the emerging new faults are 

completely absent from the training dataset. 

2.3.3 Challenges 

Some limitations of contemporary SENC frameworks are summarized:  

(1) The lack of effective DL-based frameworks: Currently, most state-of-the-art 

SENC frameworks rely on shallow learning approaches and heavily depend on 

manually designed features. There is a need for more robust DL-based 
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frameworks that can effectively handle the challenges posed by SENC, 

eliminating the dependency on manually crafted features and improving overall 

performance. 

(2) Limited applicability to ICM: Existing SENC frameworks primarily focuses on 

streaming image classification tasks, lacking specific methodologies tailored to 

the requirements of ICM. Consequently, there is a need for the development of 

SENC methodologies specifically designed for condition monitoring 

applications. 

(3) Reliance on pre-defined thresholds: Existing SENC frameworks rely on pre-

defined thresholds for novelty detection. However, these thresholds often need 

to be adjusted for different testing conditions, leading to challenges in rigorous 

threshold setting. Furthermore, the threshold-based mechanism shows limited 

performance in low-α SENC tasks and struggles to effectively differentiate 

between different emerging new classes.  

Addressing these limitations is crucial to advancing the field of ICM, especially for 

online monitoring. Future research efforts should focus on developing DL-based 

frameworks, extending the applicability of SENC methodologies to online ICM of 

bearings.  

2.4 Summary 

This chapter encompasses the literature review of three topics: AE-based monitoring of 

bearings, ICM of bearings, and the introduction of SENC problem. These topics are 

aligned with the three RQs presented in Chapter 1. To provide a clear overview of the 

research gaps and challenges discussed, we present a summary in Figure 2.5, illustrating 

how these gaps and challenges are relevant to the RQs addressed in this study.  
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Figure 2. 5 A summary of the discussed research gaps and challenges. 
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Chapter 3  

Contributions overview  
In the previous chapter, we discussed the research gaps and limitations pertaining to the 

relevant topic in AE technology and ICM. The purpose of this chapter is to highlight 

the significant contributions made by this Ph.D. research work in addressing these gaps 

and establishing connections with the  three RQs derived in Chapter 1. We begin by 

focusing on the EFD problem as a starting point and gradually delve into the 

investigation of conventional methods employed in this area. Through this initial 

exploration, we gained valuable insights that guided our research journey. Then, we 

critically reflected on the existing limitations and identified key research gaps that 

warranted further attention. The ultimate objective was to develop novel and more 

effective approaches for online ICM of bearings, surpassing the shortcomings of 

conventional methods. 

Our work has led to the development of new algorithms and techniques that are capable 

of addressing the above-mentioned challenges including the EFD, IFD, and SENC 

problems. The research work has resulted in five journal papers and a conference paper. 

A visual representation of the interconnections between the conducted papers is 

provided in Figure 3.1. In the following sub-sections, the research objectives and 

contributions of each paper will be briefly introduced, and the connections of each work 

and their relevance to the target RQs will be presented as well.  
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Figure 3. 1 A sketch of the connections between the papers produced in this Ph.D. 
research.   
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3.1 Paper A:  

3.1.1 Objective 

To begin with, we delved into the performance of conventional parameter-based 

methods, as they remain prevalent in the philosophy of AE waveform analysis. This 

provided a solid foundation for comparison with more advanced technologies utilizing 

intelligent algorithms. Following this, various data processing techniques, such as those 

based on time domain, frequency domain (FFT), and time-frequency domain (STFT, 

WT, and WPT) have been explored. The primary objective of this paper is to develop a 

sensitive HI that can effectively detect the onset of early damage in bearings during the 

run-to-failure process, which is crucial for predictive maintenance in many industries. 

3.1.2 Relevance to the thesis 

Throughout the research work presented in this thesis, the first and basic target was on 

answering the RQ1, how to derive useful information from AE signals based on 

intelligent analytics that can reveal the emergence and development of damages in 

bearings? Two keywords are highlighted: ‘AE signals’ and ‘intelligent analytics’.  

Literature review in Chapter 2 uncovered a research gap, revealing that the combination 

of the AE technique with AI-based paradigms has received relatively less attention 

compared to the extensive research conducted on vibration signals. This paper marks 

our first attempt to address this question using DL technology.  

3.1.3 Contributions 

This paper addresses the existing research gap within Section 2.1.3, where limited 

studies have been conducted on the integration of AE technology with AI-based 

paradigms. To this end, we aim to provide a new parameter to characterize the evolution 

of the AE waveforms during a run-to-failure process in combination with DL method. 

To investigate the capacity of the AE technique in subsurface fault detection of bearings, 

a laboratory durability test of a roller bearing element was carried out; roller contact 

fatigue damage was initiated under controlled conditions, and the accompanying AE 

waveforms were acquired. The contributions are summarized as follows. 
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(1) A new qualitative parameter called Information Entropy Penalty Factor (IEPF) 

was proposed to monitor the evolution of the AE waveforms. The proposed 

parameter measures the periodicity and disturbance of the AE waveforms based 

on the assumption that the routine operation of the rotating machine  results in 

periodical behavior in the AE waveforms. However, the AE signals generated 

by defects are paroxysmal and non-stationary, which will cause disturbance and 

deformation of the original waveforms. The proposed IEPF describes the AE 

waveforms from a different perspective, which contributes to the diversity of 

the existing AE parameters. 

(2) The high sampling frequency of AE technology poses limitations on the 

application of DL methods. To overcome this challenge, the paper introduced 

the utilization of a Moving Variance Window (MVW) technique, which 

effectively reduced the dimensionality of the raw AE signals. 

(3) An autoencoder-based deep neural network architecture was incorporated into 

the data processing pipeline. This integration effectively reduces noise from the 

AE signals, resulting in clearer and more prominent characteristics. We proved 

that reconstruction error itself is insufficient to reflect the initiation of early 

faults, and proposed a way of combining the reconstruction error and 

reconstructed signal to maintain the relatively complete information of the 

signal.  

(4) We conducted a thorough examination of the effectiveness of conventional 

parameters derived from the time, frequency, and time-frequency domains. By 

examining the effectiveness of conventional parameters, we were able to 

establish a baseline for evaluating the performance of more advanced techniques 

and determine their potential value in developing sensitive HIs for early damage 

detection in bearings. 

3.1.4 Results 

To characterize the evolution of the AE waveforms during a run-to-failure process, a 

new qualitative parameter called IEPF was  proposed to measure the periodicity and 

disturbance of in the signal. A series of experiments were carried out to assess the 

effectiveness of the proposed method. Our finding revealed that conventional 

parameters, such as RMS, skewness, crest factor, and impulse factor, were insufficient 
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to fully characterize the evolution of AE signals in relation to the initiation and 

propagation of damage. The superiority of the proposed IEPF feature against many 

other statistical features has been demonstrated. To be more specific, the proposed IEPF 

successfully characterized the waveforms changes of the recorded signal, and most 

importantly reflected the breakpoint between the healthy and damaged stages from the 

early detected crack. Besides,  it was more sensitive to small disturbance of the signal 

in comparison with conventional statistical parameters, and thus, provided a better rate 

of fault alarms at the early stage the damage evolution.  

3.2 Paper B:  

3.2.1 Objective 

Let us take a deviation from the EFD problem for a while and have a look at neural 

network and DL technology. While DL is revolutionizing CM in the 21st century, its 

application in practice still faces considerable challenges as many proposed networks 

are tailored for specific conditions or datasets. Neural network architectures mainly 

comprise four elements: (i) the number of layers; (ii) the number of neurons in each 

layer; (iii) the activation function of each neuron; (iv) the training algorithms. Due to 

the nonlinearity of the net, minor changes to any element can result in significantly 

different outcomes, making it difficult to guarantee consistent performance across tasks. 

Additionally, neural networks are highly sensitive to training parameters such as 

learning rate and iterations, necessitating careful consideration of these variables. The 

open question remains of how to improve the neural network's generalization and 

adaptability.  

The focus of this paper is not on improving the architecture or training methods of deep 

networks, but rather on exploiting the potential of deep networks that has not been 

disclosed to a full extent. We can see that by properly utilizing these most common tools 

in modern neural network; the performance of deep networks can be further improved 

in a general sense. Additionally, the approach can also be easily applied to practical 

application due to its robustness and simplicity. This research is expected to benefit our 

following applications of neural networks across a range of tasks as well as real-time 

testing scenarios. 
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3.2.2 Relevance to the thesis 

The second paper addresses RQ2 and focuses on enhancing the model’s performance 

by increasing its robustness to hyperparameters. This improvement reduces the need for 

expert knowledge to fine-tune the optimal parameters, resulting in more accessible end-

to-end modeling. The present paper endeavors to explore an effective and reliable 

approach to enhance the overall performance of deep neural networks. Specifically, the 

approach has the potential to (i) improve model accuracy, (ii) withstand variations in 

parameters, and (iii) work effectively across different network architectures. The 

findings derived from the present paper benefit our subsequent research in Paper C, 

Paper E, and Paper F, regarding RQ1 and RQ3, respectively.  

3.2.3 Contributions  

This paper proposed the ensemble technology as a viable approach to accomplish this 

objective. Traditional ensembled neural networks are perceived as costly in complexity 

as it involves intricate network architecture design, training approaches, and additional 

hyper-parameters to be tuned.  To this end, an easy-to-implement ensemble technology 

was investigated in the present paper, referring to as the History-State Ensemble (HSE) 

method. The main contributions include: 

(1) We proposed a straightforward yet efficient approach for performing ensemble 

learning on deep networks. The HSE-based approach offers several advantages: 

(i) it eliminates the need for additional training costs to generate multiple base 

models, making it a cost-effective solution; (ii) it can be applied to all types of 

neural networks without the requirement of tuning the network architecture. 

(2) We conducted extensive investigation of various ensemble strategies applied to 

deep networks. Through comparative experiments, our proposed method 

demonstrated superior overall performance. The findings derived from this 

study offer valuable guidelines to practitioners for the rational selection of 

ensemble strategies. 

(3) Furthermore, we presented a novel approach to explore the tradeoff between 

diversity and accuracy of base models within the ensemble. This unique 

perspective provides fresh insights into the underlying mechanisms of ensemble 
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learning, shedding light on how diversity and accuracy interact to influence 

ensemble performance. 

3.2.4 Results 

The proposed method was tested on eight prevalent deep network architectures and six 

datasets constructed from Case Western Reserve University (CWRU) Bearing Data 

Center and Konstruktions-und Antriebstechnik (KAt) - Bearing Data Center for bearing 

fault diagnostics. This paper decomposed the ensemble learning process into two 

components: (i) A training strategy that encourages the generation of accurate base 

models with diversity; and (ii) a learning strategy which combines acquired base models 

to form a stronger classifier. Over 20 ensemble strategies were investigated in this paper. 

Taken the accuracy and standard deviation as the metrics of model performance, 

extensive experiments demonstrated that the proposed HSE ensemble strategy exhibited 

higher classification accuracy and lower standard deviation, indicating the effectiveness 

and robustness of the methodology. These results supported the notion that the proposed 

approach could improve the overall performance of neural networks for a variety of 

datasets and deep network architectures. 

3.3 Paper C:  

3.3.1 Objective 

Despite the successful detection of sub-surface cracks in roller bearing tests based on 

an effective HI described in our previous work, the approach is specific to the 

periodicity characteristics in AE signals, and thus, falls into the common limitations of 

conventional approaches as manually engineered feature. There are several reasons why 

we should avoid relying on manual feature engineering: (i) Such an approach is usually 

tailored to a specific problem or domain, which limits their applicability to other 

problems or domains.  (ii) Manual feature engineering may not be able to capture 

intricate patterns in the data, especially if the data is high-dimensional or consists of 

non-linear relationships between the features. Moreover, (iii) this technique heavily 

relies on the domain expert's assumptions and prior knowledge, potentially introducing 

introduce human bias into the feature design. Thus, it can be particularly difficult during 



3. CONTRIBUTIONS OVERVIEW 

40 
 

real-time testing scenarios where prior knowledge about the potential damages may not 

be avaliable. 

As a result, there is a growing need for intelligent models that can perform end-to-end 

learning, which involves directly learning from raw input data without the use of 

manually engineered features. Deep neural networks have emerged as a promising 

solution to this challenge. The objective of the present paper is to develop a novel end-

to-end learning model that is capable of automatically learning high-level 

representations of AE signals. By doing so, we aim to minimize the need for expert's 

assumptions and prior knowledge in the learning process.   

3.3.2 Relevance to the thesis 

Our ongoing efforts on RQ1 for extracting useful information from AE signals are 

furthered in the third paper, where we reflect on the limitations of the methods probed 

in paper A and introduce a novel approach to address EFD with AE signals. In addition, 

the present paper also contributes to addressing RQ2, which aims to reduce the model’s 

dependence on expert assumptions and prior knowledge for achieving end-to-end 

modeling.   

3.3.3 Contributions 

This paper contributes to address the research gaps in existing EFD methods that (i) 

Most existing methods are tailored for vibration signals, and (i) they often require 

manually feature engineering. To achieve the research goal of end-to-end learning, we 

developed a new HI that can directly process the raw AE signals, thereby reducing the 

need for human expertise in the modeling process. The approach follows the prevalent 

EFD framework by constructing a sensitive HI, and the decision-making process is 

realized by applying a threshold marking the boundary for the normal operating state, 

as depicted in Figure 2.2. The main contributions are summarized as: 

(1) In this paper, a novel convolutional GAN was introduced and employed for EFD 

in a run-to-failure test of a roller bearing. To enhance the learning capacity of 

the Generator, an Autoencoder-based Generator architecture was devised. This 

architecture incorporated two convolutional blocks to extract local information 
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from the data, while two LSTM cells were integrated into the bottleneck layer 

to capture the time-series correlation of the signal. 

(2) We proposed utilizing the output of the Discriminator as the HI to discriminate 

between normal and abnormal behaviors. To address the issue of unstable 

training in the GAN, a novel ensembled health indicator (EHI) leveraging the 

Discriminator score and HSE method (proposed in paper B) was constructed.  

(3) Furthermore, the present paper re-evaluated the effectiveness of the HSE 

method on GAN and EFD task. This allows us to validate the applicability of 

the HSE method beyond its original implementation and provides additional 

evidence for its effectiveness. Overall, this paper represents a step forward in 

developing more effective and efficient methods for EFD with AE signals.   

3.3.4 Results 

The presented approach followed the prevalent EFD framework by constructing a 

sensitive EHI leveraging GAN for intelligent learning. The decision-making process 

was realized by applying a threshold marking the boundary for the normal operating 

state. The proposed EFD framework was applied to our roller bearing test rig, and 

results showed that the novel EHI provides higher accuracy (0.8732) than our previous 

research of IEPF (0.8583) on the same device and dataset. Besides, the present paper 

extended our previous efforts to study and promote the HSE method to non-destructive 

testing applications. Parameters analysis revealed that not only the HSE method 

improves the diagnostics of incipient flaws in specific rolling bearings elements under 

contact fatigue conditions, but it is also an efficient vehicle to enhance the performance 

and capacity of convolutional GAN in a general sense.  

3.4 Paper D:  

3.4.1 Objective 

The pursuit of intelligent analytics is an ongoing progress, as there are constantly new 

challenges to address and opportunities for improvement. The objective of the present 

paper is to further improve the approach by achieving the intelligent ‘decision-making 
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process’, which refers to the ability of a model or system to identify patterns and make 

decisions without human intervention.  

Up to now, an ‘end-to-end’ learning model that can process AE signals without the need 

for manual feature engineering has been presented in paper C, which is a significant 

step towards the intelligent ‘learning process’ of EFD. However, the contemporary 

approaches still have limitations in meeting the requirements for intelligent decision-

making due to the need for a pre-set threshold to distinguish between normal and 

abnormal signals. As a standard approach used in EFD, the threshold-related issues have 

been seldomly discussed, they include: (i) The threshold is a hard boundary which can 

be easily impacted by noise; (ii) The values of the thresholds can vary for different 

testing conditions, leaving users with a thorny problem of rigorous threshold setting; 

furthermore (iii) the threshold may need to be updated as the system evolves, or new 

operating conditions are introduced. To this end, the strategic idea and motivation of 

the present paper is to develop a model with higher intelligence eliminating the 

threshold-related issues.  

3.4.2 Relevance to the thesis 

The present paper advances our previous research with the goal of developing a new 

technique that eliminates the need for a pre-set threshold in the EFD problem. The 

primary research question  that this work aims to solve is ‘reduces the model’s 

dependence on expert assumptions and prior knowledge, while facilitating intelligent 

learning and decision-making processes?’ of RQ2 by enhancing the EFD process on 

the decision-making process. Additionally, the paper lays a solid foundation for future 

research that addresses the SENC problem corresponding to the RQ3.  

3.4.3 Contributions  

This paper makes a significant contribution by eliminating requirement for pre-set 

threshold in in existing EFD methods. The key contributions of this work are as follows.  

(1) This paper introduced a novel and robust GAN-based network architecture 

specifically designed for EFD problems in rotating machinery. This architecture 

exhibits high versatility and can be applied to different condition monitoring 
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techniques, enhancing its applicability in various scenarios. To evaluate the 

performance of the proposed method, both benchmark vibration datasets and 

two experimental AE dataset were utilized. The experimental results obtained 

from these datasets demonstrated the feasibility and effectiveness of the 

proposed method in accurately detecting and diagnosing faults.  

(2) The proposed method offers a notable advantage over traditional EFD models 

by not requiring a pre-set threshold. Instead, it directly produces the probability 

that the measured signal originates from healthy or faulty states. This approach 

eliminates the dependence on subjective threshold settings, providing a more 

robust and reliable detection framework. 

In summary, this paper sets the stage for our future work by addressing the limitations 

of the previous model and paving the way for the development of more sophisticated 

and intelligent models for EFD and SENC problems. 

3.4.4 results 

This paper constructed a novel BC-GAN architecture for improving intelligent 

decision-making of EFD process. The proposed approach overcomes a significant 

limitation of contemporary EFD approaches that rely on manually determined pre-set 

thresholds. Unlike conventional methods, the proposed EFD framework is not only 

threshold-free, but also indicates the confidence level to its prediction. By doing so, we 

have improved the intelligence and automation of EFD models.  

To validate the effectiveness of the presented model, the Intelligent Maintenance 

System (IMS) database was taken as a benchmark which consists of four run-to-failure 

bearing tests monitored by vibration sensors. Additionally, the method was deployed 

on our roller bearing and ball bearing test rigs for evaluation. We further improve the 

EFD accuracy on our roller bearing test rig to 0.9191, which is a significant 

improvement of our previous research on this dataset (0.8732 in Paper C and 0.8583 

in Paper A). Extensive experiments were conducted on both vibration and AE signals, 

demonstrating the versatility of the proposed network in various laboratory and 

industrial settings. The results show that the proposed BC-GAN method outperforms 

conventional methods in terms of accuracy and automation.  
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3.5 Paper E:  

3.5.1 Objective 

Previous research presented in Paper D has established a solid foundation for the 

development of an end-to-end model that can achieve intelligent learning and decision-

making. Building upon this work, the objective of the present paper is to further advance 

the field by addressing the challenges of online concept drift detection and classification 

under more complex scenarios, which is referred to as the SENC problem in this thesis. 

This is a particularly challenging task, as it requires the model to not only detect and 

adapt to changing data patterns over time but also handle new data points that belong to 

previously unseen classes in a streaming environment. The SENC problem adds another 

layer of complexity to this task by requiring the model to operate in a semi-supervised 

setting, where only a limited amount of labeled data is available for training. By 

addressing this problem, we aim to contribute to the development of more robust and 

adaptable models capable of handling the challenges of real-world data streams from 

the installed sensors.  

3.5.2 Relevance to the thesis 

The present paper builds upon the findings of our previous research in order to address 

the RQ3- ‘how to incorporate the model trained on a closed dataset into an open 

environment for real-time online monitoring?’ To tackle this problem, a novel SENC 

framework is developed in this paper which serves as an extension of our previous work 

on the EFD problem (as discussed in Paper D) to a more generalized scenario known 

as the standard SENC problem. Additionally, the paper re-evaluates the effectiveness 

of the HSE method (Paper B) in a new context of the standard SENC task. The 

utilization of the HSE method plays a pivotal role in enhancing the stability of the 

proposed SENC framework. The development of the SENC framework, along with the 

re-examination of the HSE method, contributes significantly to the creation of more 

resilient and efficient models for real-time online monitoring.  
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3.5.3 Contributions  

In this paper, we proposed that real-time online monitoring can be seen as a SENC 

problem. Section 2.3.3 highlights certain limitations of current SENC frameworks, 

including the lack of effective DL-based frameworks, limited applicability to ICM of 

RM, and reliance on pre-defined thresholds. To address these research gaps, we 

introduced a novel SENC framework, which offers the following key contributions:  

(1) We devised a novel DL-based architecture called MC-GAN. The method is 

notable for its capability of addressing multiple challenges with an integrated 

framework, including: (i) pattern recognition of already known fault types with 

high accuracy; (ii) timely detection of emerging new fault types; (iii) automatic 

model update to adapt to new fault types, and (iv) discriminating between 

different emerging new fault types. The framework can be applied to various 

practical challenges in ICM of bearings including EFD, IFD, and monitoring of 

the damage’s progression. 

(2) Compared with existing SENC frameworks, the proposed method is threshold-

free, achieve intelligent learning and decision-making. To the best of our 

knowledge, this is the first DL-based framework for SENC problem that 

eliminates the need for a pre-determined threshold. 

(3) The MC-GAN architecture was further enhanced by incorporating a novel 

ensemble technique proposed in Paper B called the HSE method. We further 

tailored the HSE method for GAN by introducing a model filter mechanism. 

This method significantly improves the performance of the model without 

requiring additional training resources, thereby increasing its practicality and 

effectiveness. 

(4) To validate the proposed framework, we conducted four simulated SENC tasks 

using benchmark vibration signals. Through these tasks, we demonstrated the 

effectiveness and robustness of the framework in accurately detecting and 

classifying early novelty events in real-time monitoring scenarios. 

3.5.4 Results 

A novel SENC framework was developed in the present paper. In contrast to peer 

methods, the merit of the proposed method is highlighted as that it realizes intelligent 
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learning and decision-making simultaneously. The EMC-GAN can not only learn 

implicit features directly from raw signals, but also can generate automotive decision 

without pre-set thresholds. To evaluate the effectiveness of the proposed method in 

detecting and differentiating various faults in bearings, four datasets were created using 

the CWRU database. These datasets were specifically designed to represent different 

types of faults occurring in the inner race, outer race, and rolling element of bearings.  

3.6 Paper F:  

3.6.1 Objective 

Up to now, we have successfully developed a DL-based SENC framework. Nonetheless, 

the validation of this method has been limited to a benchmark database, highlighting 

the importance of further validating its effectiveness and exploring its potential across 

a wider range of applications. 

3.6.2 Relevance to the thesis 

This paper is an extended version of our previous work, specifically Paper E, as we 

strive to evaluate and enhance the effectiveness of the EMC-GAN method for 

addressing the real-time online monitoring problem (RQ3) in various application 

scenarios. Building upon the foundation laid in Paper E, we have expanded the scope 

and explored additional applications to provide a more comprehensive analysis. 

Furthermore, we have revisited the effectiveness of the HSE method proposed in Paper 

B, conducting further evaluations and refining our understanding of its capabilities.  

3.6.3 Contributions  

 Compared with the work in Paper E, the contribution of this paper is presented as 

follows: 

(1) A comprehensive explanation of EMC-GAN, including its implementation 

details, was provided. We pointed out a prevalent issue referred to as the ‘buffer 

contamination’ problem within existing SENC frameworks. To mitigate this 

issue and ensure the reliability of the system, we introduced a novel safety 
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measure called the ‘Buffer filter’, drawing inspiration from Shannon's entropy 

concept.  

(2) We introduced the EMC-GAN and model update mechanism to address the EFD 

problem. In contrast to the traditional EFD framework as well as our previous 

work in Paper D, the presented approach in this work is capable to achieve the 

following goals: (i) Identifying the onset of damage. (ii) Providing an adequate 

number of fault alarms related to the damage. (iii) Indicating the development 

of the damage. This marks a substantial advancement towards our desired 

intelligent modeling compared with traditional EFD methods that can only do 

binary classification between normal and abnormal stages.   

(3) In order to provide a more comprehensive evaluation of the model performance, 

we conducted a thorough analysis that involved tackling more challenging tasks 

and performing ablation analysis.  

3.6.4 Results 

We conducted extensive validations on more demanding tasks to demonstrate the 

superiority of EMC-GAN. The results highlight how this method can effectively 

address the EFD problem, allowing the model to not only detect the early onset of 

bearing damage but also track its progression through a model update mechanism.  

3.7 Summary  

In conclusion, the Ph.D. research conducted in this study has resulted in six research 

papers that align with the proposed objectives. The work has progressively advanced 

from unsupervised EFD questioning to addressing the SENC problem. Throughout this 

process, innovative techniques and approaches were developed to tackle challenges 

related to EFD, IFD, and SENC. 

To evaluate the effectiveness of the proposed methods in analyzing AE signals, two 

run-to-failure test rigs, namely the ‘Roller Bearing test rig’ and the ‘Ball Bearing test 

rig’, were constructed, with AE sensors used for health monitoring. The research 

outcomes extend beyond AE signals and show potential applicability to other sensor 

data, including vibration signals. The introduction of three benchmark vibration datasets 
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allowed for a comprehensive evaluation of the proposed approach. The results 

demonstrated the method's ability to detect faults in diverse scenarios, highlighting its 

versatility for solving problems beyond the project's scope. A summary of the utilization 

of these five databases can be found in Table 3.1. 

Overall, this research contributes to the ICM field, offering novel insights and practical 

techniques for analyzing AE data. The developed methodologies have the potential to 

enhance fault detection and monitoring systems, benefiting various industries and 

applications. 
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Table 3.1 Connections between the utilized datasets and the research papers 

Utilized datasets 
Research papers 

 Data type 
A B C D E F 

 
1. Roller bearing fatigue test 

√  √ √   AE 

 
2. Ball bearing fatigue test 

   √  √ AE 

 
3. CWRU 

 √   √ √ Vibration 

 
4. Kat 

 √    √ Vibration 

 
5. IMS 

   √   Vibration 
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Chapter 4 

Discussion 
Let us revisit the research questions (RQs)  derived in Chapter 1. The primary aim of 

this chapter is to thoroughly explore the connections between the six research papers 

conducted and the three targeted RQs, which are visually depicted in Figure 4.1. 

Through a comprehensive analysis of the findings presented in each paper, we will 

uncover how their contributions address and provide valuable insights into the 

corresponding RQs.  

 

 

Figure 4. 1 A sketch of the connections between the conducted research papers and 
RQs.   
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4.1 RQ1: How to derive useful information from AE signals? 

The entire Ph.D. project revolves around the early material damage detection by 

extracting useful information from AE signals. Through the literature review conducted 

in Chapter 2, a research gap was identified, shedding light on the relatively limited 

exploration of combining the AE technique with AI-based paradigms, particularly in 

comparison to the extensive research conducted on vibration signals. Consequently, the 

corresponding RQ is derived as follows:  

• RQ1: How to derive useful information from AE signals using intelligent 

analytics that can reveal the emergence and development of damages in 

bearings?  

This question can be approached by different methods, in this Ph.D. research, four DL-

involved tools have been developed to extract useful information from AE signals. 

These tools are discussed in papers A, C, D, and F, as depicted in Figure 4.1. In the 

following, we will provide a chronological elaboration of these four tools, highlighting 

their respective contributions and methodologies to address the RQ1. 

Paper A provided an improved manual feature engineering method by incorporating 

AE technology and DL. The AE signal is characterized by high dimensionality due to 

its high sampling frequency, typically ranging between 100 kHz and several MHz, 

posing computational challenges for DL methods. To this end, an efficient MVW 

method was leveraged to compress the AE signals. By shifting the MVW along the 

signal, we calculated the variance of the covered data and transform it into a numerical 

value. This de-dimensionalized each windowed data, producing a dimensionless 

number that measures the data dispersion. The method was proven to be effective and 

preserve useful information in AE signals.   

Another contribution of Paper A is the introduction of an Autoencoder powered by 

CNN to denoise the raw AE signals that masked by heavy background noise. 

Autoencoders have proven to be effective in feature extraction tasks by reconstructing 

their own input data. This method operates on the assumption that Autoencoders can 

effectively capture the essential characteristics of the input data while disregarding 

irrelevant noise. Thus, the Autoencoder serves as a denoising mechanism, allowing the 

extraction and enhancement of the key features within the AE data. The benefits of this 
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approach can be observed in two ways: (i) the removal of redundant noise from the AE 

signal and (ii) the enhancement of the sensitivity of the IEPF metric to transient AE 

bursts. Figure 4.2 presents a comparison result that clearly demonstrates the enhanced 

characteristics of the reconstructed data. 

  

Figure 4. 2 Comparison between the raw AE data and reconstructed AE data (Paper 
A [12]). 

 

After denoising, a novel AE parameter, referred to as IEPF in Paper A, was derived as 

∑ (𝑃𝑘̃𝑙𝑜𝑔2𝑃𝑘̃ −
1

𝑛𝑘
𝑙𝑜𝑔2

1

𝑛𝑘
)

𝑛𝑘
𝑖=1  by leveraging Shannon's entropy. The parameter is 

aimed to characterize the periodicity and chaos within the AE data. To interpret the 

result, when the IEPF value is close to 0, it signifies that the signal exhibits strong 

periodicity. Conversely, a higher value of IEPF indicates a greater disturbance in the 

AE  signal, as shown in Figure 4.3.  

 

Figure 4. 3 The scores of IEPF from the durability test of the RB test. 
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Paper C contributes to RQ1 by introducing a novel GAN-based architecture for EFD 

problem. One contribution of this paper is on the development of a specialized 

‘Generator’ that learns the data distribution of AE signals during the normal operation 

stage. This architecture comprises three essential components: the encoder block, the 

decoder block, and the bottleneck block, as depicted in the Figure 4.4. The encoder 

block incorporates two convolutional layers and two down-sampling layers, working 

synergistically to extract local information from the input AE data. Conversely, the 

decoder block is responsible for reconstructing the input signal and consists of two 

convolutional layers, one up-sampling layer, and one fully connected layer. The 

bottleneck block, consisting of two Long Short-Term Memory (LSTM) cells, plays a 

critical role in capturing the time-series correlation present in the AE signal. The 

primary objective of this novel architecture is to extract more valuable information from 

AE signals, thereby significantly enhancing the understanding and analysis of these 

signals for the EFD problem.  

 

Figure 4. 4 Architectures of the proposed network architectures (Paper C [14]).  

 

Paper D builds upon the basic concept of GAN but shifts its focus towards enhancing 

the ‘Discriminator’ component of the GAN framework. To address RQ1, a novel 

architecture called BC-GAN was proposed in Paper D. The re-designed Discriminator 

comprise two channels involving four functional modules and each of them plays a 

different role, as schematically depicted in Figure 4.5. This two-channel approach 
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allows for learning the differences between real and fake data from different 

perspectives, driven by distinct loss functions. By leveraging these complementary 

channels, the BC-GAN architecture enhances the Discriminator’s ability to discern 

between real and fake instances, ultimately improving the overall performance of the 

GAN framework for early fault detection applications. 

 
Figure 4. 5 Schematic of BC-GAN for EFD in run-to-failure process (Paper D [15]).  

 

Paper F makes a significant contribution to addressing RQ1 by presenting a solution 

that extracts valuable information from AE signals to indicate the development of 

damages in bearings. In this paper, an EMT-GAN framework was introduced, which 

built upon the foundations of the BC-GAN architecture. By adding multiple neurons to 

the classification module as shown in Figure 4.5, the EMT-GAN is able to handle the 

multi-classification, allowing for more comprehensive analysis and detection of 

different types of damages in bearings.  

In summary, various approaches exist for extracting valuable information from AE 

signals through intelligent analytics. Paper A focused on uncovering the periodicity 

and disturbance characteristics embedded within AE waveforms using a manually 

designed feature. On the other hand, Papers C, D, and F employed deep neural 

networks to learn tailored representations from each AE waveform, enabling more 

effective and generalized interpretation. Table 4.1 summarized the comparison of the 

four tools from the following aspects: (i) achieving end-to-end modeling, (ii) learning 

tailored representations, (iii) being threshold-free, and (iv) adapting to evolving learning 

tasks. Overall, these research papers collectively demonstrate the progression and 
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evolution in the field, showcasing our footprints of developing advanced techniques for 

extracting meaningful information from AE signals and addressing the challenges posed 

by RQ1.  

Table 4.1. Comparison of the tools developed in different papers. 

Paper A C D F 
Method IEPF Convolutional GAN BC-GAN EMT-GAN 
End-to-end modeling × √ √ √ 
Tailored Representation 
Learning × √ √ √ 

Threshold-free  × × √ √ 
Track the Damage 
Development × × × √ 

4.2 RQ2: How to perform end-to-end modeling? 

End-to-end modeling is an AI-based paradigm that enables a system or model to directly 

process raw input data and produce the desired output without the need for explicit 

intermediate representations or separate modules for different processing stages. This 

approach brings several advantages, including flexibility, simplicity, and improved 

performance. However, its application in the analysis of AE signals remains relatively 

understudied. Therefore, the second research objective focuses on tackling the existing 

limitations and research gaps in the field of end-to-end analysis of AE signal. The RQ2 

is presented as follows. 

• RQ2: How to perform end-to-end modeling that minimizes the model’s 

dependence on expert assumptions and prior knowledge, while facilitating 

intelligent learning and decision-making processes? 

Paper B contributes to this question by introducing an effective but easy-to-implement 

ensemble technology, referring to as HSE method. The method is constructed based on 

the assumption that neural network can produce multiple 'local sub-optima' with 

diversity during training, and the combination of these local sub-optima can generate a 

stronger model. By doing so, the proposed method avoids the intricate process of 

defining qualified base models in contrast to traditional ensemble method, resulting in 

reduced complexity. The merits of the proposed approach are highlighted as: (i) The 

approach does not increase the training budget of the neural network; (ii) The approach 
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can be applied to all types of neural networks without twisting of network architecture; 

and (iii) the approach is highly accessible and straightforward, making it easy for 

practitioners to comprehend and implement. We analyzed the feasibility of the proposed 

method in terms of improving accuracy and robustness to hyper-parameters. The HSE 

method was further applied to our following research in Paper C, Paper E, and Paper 

F. The application of the HSE method in these domains has significantly reduced the 

need for human experts to manually define the optimal hyperparameters, such as the 

number of training epochs, in the DL model, which is the main contribution to RQ2.  

Paper C also contributes to RQ2 by addressing how to reduce model’s dependence on 

expert assumptions and prior knowledge. A remaining problem in Paper A pertains to 

the IEPF method, which relies on manually designed features tailored to specific 

assumptions regarding the faulty information of the damage. This approach inherently 

possesses limited generalization ability due to its dependency on predetermined 

assumptions. To this end, a novel EFD framework leveraging convolutional GAN was 

designed for intelligent analysis of AE signals. The key idea is to take the signals from 

health stage as the real input of GAN, and a Generator is trained to produce synthetic 

data that is close to the real data, as depicted in Figure 4.4. While a Discriminator is 

trained to discriminate between the synthetic and real data. The output of the 

Discriminator is a single value, with high values assigned to real data and low values 

assigned to fake data. We proposed that the scores obtained by Discriminator forms a 

natural HI indicating the deviation of the signals. Hence, the method is capable of 

learning information direct from raw input data without manually engineered features.   

 
Figure 4. 6 The basic structure of GAN (Paper C [14]).  

 

The convolutional GAN in Paper C follows the prevalent EFD framework (as shown 

in Figure 2.2) by extracting a sensitive HI, and the decision-making rely on a pre-set 

threshold. The threshold-related issues have been discussed in Section 3.4.1. Paper D 

aims to enhance the intelligence of the model by eliminating the need for pre-set 

thresholds in the traditional EFD approach, thereby promoting a more intelligent 
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decision-making process. To achieve this, a threshold-free deep architecture, referred 

to as BC-GAN, was constructed in the present paper. The workflow of the BC-GAN 

model and the traditional EFD models are compared in Figure 4.7. Unlike modern 

methods like the one presented in Paper A and Paper C, BC-GAN directly produces 

the probability of the input belonging to either the normal or abnormal state, without 

relying on any pre-set threshold. This results in a more concise framework for analysis. 

Additionally, the concept was further extended to our subsequent research papers, 

namely Paper E and Paper F, which explore the application of the concept to the SENC 

problem.  

 
 Figure 4. 7 Comparison of the framework of (a) traditional EFD models, and (b) BC-
GAN, for end-to-end analysis of AE signals (Paper D [15]).  

4.3 RQ3: How to handle real-time online monitoring? 

The third research objective aligns with the project goal of designing and testing 

software systems to process AE signals in real-time for monitoring the emergence and 

development of damages. and the third question is presented as below. With this goal, 

the third question is proposed as below. 

• RQ3: How to incorporate the model trained on a closed dataset into an open 

environment for real-time online monitoring?   
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Paper E makes a significant contribution to addressing this question by highlighting 

the limitations of existing supervised AI paradigms for online ICM, as discussed in 

Section 2.3. It proposed treating the online ICM of bearings as the SENC problem, 

enabling the model trained on a closed dataset to adapt to an open environment with 

new information that was not present in the training dataset. This assumption is more 

practical for real-world applications. To address this, a novel network architecture 

called EMC-GAN was introduced, which is a direct extension of the BC-GAN proposed 

in Paper D. The present paper also introduced a model update mechanism that allows 

the model to automatically update itself as the learning task evolves. An overview of 

the EMC-GAN framework for the SENC problem is illustrated in Figure 4.8. 

 
Figure 4. 8 The overall framework of EMC-GAN for classification in SENC problem 
(Paper E).  

 

In Paper F, the aforementioned concept was further extended to the EFD of bearings 

utilizing AE technology. We treated the EFD as a specific scenario within the broader 

SENC problem, where 𝑘 = 1  and 𝑐 = 𝑛 . The present paper demonstrated the 

effectiveness of the DL-based method in interpreting AE signals. Furthermore, it was 

demonstrated that AE technology could effectively track the progression of damage in 

bearings by categorizing them into different classes using the model update mechanism.  

To summarize, the two works contribute to overcoming the limitations of existing 

SENC frameworks in the following ways. Firstly, a novel DL-based SENC framework 

is introduced, offering a fresh approach to address the problem. Secondly, the 

effectiveness of the proposed method is validated through its application to ICM of 
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bearings, utilizing both vibration and AE signals. This validation demonstrates the 

framework’s generalization ability across different sensor data. Lastly, the proposed 

method is threshold-free and facilitates intelligent learning and decision-making 

processes, further enhancing its practicality and utility.  
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Chapter 5  

Conclusions and future work 
In this final chapter, we provide a summary of this thesis and highlight the key 

conclusions derived from this research. Additionally, we also offer suggestions for 

future work in the field. 

5.1 Conclusions 

The Ph.D. research revolved around early material damage detection in bearings using 

AE technique and intelligent analytics. Three RQs were derived in the first chapter as 

the guidance of this thesis, and a total of six papers were conducted to address the RQs.  

The primary research objective is to extract sensitive information from AE signals based 

on intelligent analytics, capable of detecting the emergence and progression of damages 

in bearings. To accomplish this, four research papers, referred to as Paper A, Paper C, 

Paper D, and paper F, were devoted to investigating this issue. These works initially 

began with conventional methods, and building upon prior research, progressively 

delved deeper into the problem. As a result, four EFD frameworks were established, 

gradually advancing towards the goal of achieving end-to-end modeling for EFD.  

After the model with the desired functionality was developed, we delved into 

contemplating its generalization ability for real-world applications. Consequently, the 

second research objective was formulated: how to enhance model performance, 

automate the EFD process, and minimize the model’s dependence on human expertise 

by leveraging machine learning tools. We introduced a generalized ensemble method 

that enhances the overall robustness of neural networks in Paper B. This approach was 
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further validated extensively in Paper C, Paper E, and Paper F, showcasing its 

effectiveness across different tasks, ranging from EFD, IFD, and SENC problem. 

Finally, we move to the online monitoring of bearings for EFD as indicated in the third 

research objective. We connected the online ICM with SENC problem, which, to the 

best of our knowledge, is a pioneering attempt in the realm of EFD. A novel SENC 

framework leveraging GAN was proposed in Paper E, and then, we further applied the 

method to EFD problem in Paper F. In contrast to traditional EFD models, the proposed 

method in this Ph.D. research not only detects early damage but also evolves itself to 

indicate the progression of the damage.  

5.2 Future work 

The search for better solutions is an ongoing process, and here we list some suggestions 

that deserve deeper investigation in the future. 

• Advanced signal processing: AE signals exhibit high dimensionality, and in our 

research, we employed a simple MVW approach to compress these high-

dimensional signals. However, there is ample room for future exploration and 

development of proper and advanced signal processing methods. Such 

advancements are significant for enhancing the performance of AI models. 

• Advanced model design: A novel SENC framework based on the EMC-GAN 

architecture was introduced in our research papers E and F. While the current 

version of EMC-GAN has shown promising results for the SENC problem, there 

is potential for further improvement through fine-tuning the loss function, 

refining the training method, and exploring innovative network architectures.  

• Improved model efficiency: As a limitation, the current version of EMC-GAN 

for the SENC problem is time-consuming compared to many traditional 

methods. Therefore, it is important to explore more effective and efficient 

methods that can significantly reduce the computational time required for model 

training and updating. This will not only improve the overall efficiency of the 

framework but also enhance its practical applicability in real-time or online 

scenarios.  
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• Model interpretability: Explainable artificial intelligence (XAI), also known as 

explainable artificial intelligence, has received increasing attention in recent 

years. DL algorithms are often perceived as ‘black box’ methods, lacking 

transparency in their decision-making processes. Therefore, the development of 

XAI techniques in ICM field is significant for enhancing the trustworthiness, 

interpretability, and overall effectiveness of AI models. 

• Broader applications: The outcome of this research hold the potential for 

broader applicability beyond AE analysis and can be extrapolated to other sensor 

sources and industrial sectors.  
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Abstract
Bearings are a crucial component of wind turbines. The acoustic emission (AE) technique offers
the advantage of earlier detection of defects and failures of bearings in comparison to traditional
vibration techniques. Parameter-based analysis is the most widely used approach to interpret AE
waveforms, partly due to the challenges arising in the processing of large amounts of streaming
data. In this work, the AE technique is applied to monitor a run-to-failure process of a roller
bearing, and it is found that the use of multiple known parameters, such as the root mean square,
skewness, crest factor, impulse factor etc, fails to characterise the evolution of the acquired AE
signals, thus highlighting the long-standing necessity and significance of developing new AE
indicators that are more adequate to detect the failure of rotating machines. We propose a hybrid
parameter—the information entropy penalty factor (IEPF)—which uses the advantages of the
entropy theory and deep learning methods. The effectiveness of the proposed method has been
investigated and demonstrated for roller bearing contact fatigue experiments, and the results
show that IEPF can timely and accurately detect the incipient sub-surface faults.

Keywords: sub-surface fault detection, bearings, acoustic emission signal, parameter analysis,
energy entropy
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1. Introduction

Condition monitoring (CM) of rotating machines has been a
hot topic for decades.Wind turbines are rotating machines that
have evolved to become pivotal components for the genera-
tion of green energy. Wind turbines are usually installed in
extreme and harsh environments and are prone to a high fail-
ure rate. Bearings are essential and highly demanding com-
ponents of wind turbines. Faults in the bearings can lead to
critical failures, breakdowns and consequent losses associated
with the downtime of wind turbines. Therefore, CM and timely
and accurate fault diagnosis offers substantial benefits to oper-
ating equipment with rolling element bearings by identify-
ing incipient damage at as early stage as possible before the
faults evolve to a critical stage. This is especially important
for machines, where a fault can cause irrecoverable damage
to the environment, and not least to avoid losses of human
life or health.

Multiple sensing techniques have been employed in bear-
ing CM systems used in industrial settings in general and for
wind turbine CM in particular. Monitoring and trending the
temperature of a bearing is a simple and cost-effective method
to identify a bearing condition. However, in most applica-
tions, the temperature measurements are not sensitive enough
to detect an early stage of fault development in a roller bear-
ing. Instead, vibration analysis has become the most wide-
spread and market-leading technology due to its simplicity,
robustness and multiple uses for custom-built solutions. Vari-
ous acquisition and analysis tools have been established and
proven effective for vibration data. However, the vibration sig-
nals induced by tiny defects at the early stage of their devel-
opment can be easily masked by the uncontrolled mechanical
disturbances from the rotating machine. Moreover, the vibra-
tion acceleration signals can go undetected in heavy or slowly
rotating structures until the fault increases significantly to a
large (detectable) scale, by which stage it is often too late
for preventive/corrective maintenance and is close to a cata-
strophic failure. As opposed to vibrations, acoustic emissions
(AEs) reflecting the dynamics of the sources evolving under
load can be generated even by microscopic flaws, such as
breaks of hard non-metallic inclusions, incipient cracks, etc
[1]. Moreover, the AE signal tends to increase with the grow-
ing scale of the sources. Therefore, the potential of the AE
technique for early fault detection enjoys growing recognition
in the industrial domain. AE methods have become an import-
ant companion of reliablemonitoring systemswhen the impact
of wear and friction of rotating components is of concern.
AE is commonly defined as a phenomenon whereby transi-
ent elastic waves are spontaneously emitted by the rapid stress
relaxation within localised sources in material under load.
Plastic deformation and fracture associatedwith the nucleation
and growth of cracks represent the primary mechanisms of the
sources releasing the elastic strain energy associated with AE
transients [2]. In contrast with the vibration signal, the sources
generating AE signals are characterised by a much wider fre-
quency range (100 kHz and 1 MHz) [3], which does not
overlap significantly with low-frequency mechanical vibra-
tion signals caused by imbalance or misalignment of machine

components [4, 5]. A great deal of evidence has been accumu-
lated, suggesting that AE parameters can reveal the faults in
rotating equipment before they show up in the vibration accel-
eration range. Since the early work by Yoshioka et al [6], these
results have been investigated and confirmed in abundant lit-
erature over the last 30 years; see [2, 7, 8] for examples.

With the advent of artificial intelligence, machine learning
methods have become more and more extensively applied in
the field of fault diagnosis. Deep learning (DL) technology is
the most prominent branch of machine learning (ML) method-
ology, and refers explicitly to artificial neural networks with
a multi-layered architecture. A number of DL architectures,
such as convolutional neural networks (CNNs) [9, 10], long
short-term memory (LSTM) [11] and autoencoder [12, 13],
have been applied in the CM field and demonstrated outstand-
ing potential and practicality. However, most of the relevant
methods developed in this field are based on artificially seeded
defects and supervised circumstances. In the reality of the run-
to-failure scenario, only the data characterising the ‘healthy’
status of the object under inspection are accessible before the
emergence of the faults. Hence, the detection of defect initi-
ation is fundamentally an unsupervised task, and relevant stud-
ies are still scarce. Although some unsupervised DL archi-
tectures have been developed, e.g. the stacked autoencoder,
deep brief network and deep Boltzmann machine, they are
mainly employed with only an auxiliary role on supervised
subjects; this is generally followed by a supervisedmodel or an
extra fine-tuning procedure, as proposed in [12–15]. Aiming at
early fault detection, Lu et al proposed a DL-based architec-
ture comprising three network blocks—a basic autoencoder, a
feature extraction layer and an LSTM-based autoencoder [16].
Autoencoder is a prevalent unsupervised DL model designed
to reconstruct its own input data with the learning objective
to minimise the reconstruction error. It is reasonable that the
reconstruction error can indicate emerging faults. Since the
acquired signal may suffer serious distortion during the run-
to-failure process, it can be foreseen that autoencoder will
be unable to reconstruct the input correctly, thus leading to
increasing reconstruction errors, which serves as a fault indic-
ator; see [17, 18]. The above-cited works are based on vibra-
tion data. The application of AE has yet to be tested. In addi-
tion, one needs to bear in mind that the tolerance of the neural
network to small variations in the data may limit the effective-
ness of the entire ML-based approach. Thus, the application of
DLmodels to early fault detection in the run-to-failure process
faces serious challenges.

Up to now, the vast majority of existing studies deal with
vibration signals, while attempts to pair DL methods and the
AE technique are still limited. The parameter-based methods
still dominate the philosophy of the AE waveform analysis.
Therefore, the relevance of the involved parameters strongly
affects the performance of the detectors. The conventional
AE features extracted from AE waveforms include, but are
not limited to, AE hit parameters such as counts, duration,
rise time, counts to peak, amplitude, etc [2, 19, 20], as well
as statistical parameters/features such as root mean square
(RMS), kurtosis, crest factor, skewness, etc [5, 7, 21], defined
in the time domain. In addition, multiple signal processing
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techniques involve spectral decomposition techniques, such as
Fourier transformation [22], wavelet analysis [23–25], vari-
ational mode decomposition [26], etc, to assess the AE sig-
nal in the frequency and time–frequency domains. As is com-
monly seen in the general statistical analysis of random data,
different features characterise the AE waveforms from differ-
ent angles, thus providing a great variability in features, as well
as a range of strategies and options for their analysis, interpret-
ation and decision-making.

Raw pseudo-AE waveforms harvest a wealth of mechan-
ical interactions from rotating components, splashing oil, elec-
trical interferences and multiple other noise-like sources of
unknown origin. Therefore, the AE signal represents period-
ical patterns arising in response to the roller movement. To
characterise the periodicity and its disturbance embedded in
AE signals, a hybrid parameter that combines DL and the
information entropy (IE) theory is introduced in this work. As
a natural measure of uncertainty and chaos, IE provides new
insight into the underlying AE process. There is no standard
way to acquire IE from the AE signal. Elforjani and Mba [27]
adopted the probabilities of AE events in a given AE signal
to obtain the IE value. They showed that IE was more sensit-
ive and representative than the kurtosis and crest factor. Amiri
et al calculated the AE entropy based on counts [28]. Kahirdeh
et al proposed three similar IE models using AE counts, accu-
mulated counts or the estimated histogram of the AE signal
[29]. However, these methods commonly suffer from short-
comings associated with the AE hit (and corresponding para-
meters) definition depending heavily on the present amplitude
threshold, which introduces irrecoverable uncertainty in low-
amplitude and/or overlapping signal detection. Thus, the early
AE events are hard to identify because the AE signals caused
by incipient faults are usually of low amplitude and can be
masked by strong noise. This conclusion concurs with the lit-
erature review provided in [30]. Several studies have been pro-
posed to obtain IE from the histogram of the AE signal, as
documented in [29–31].

The main contributions of this work can be summarised as
follows. (1) To investigate the capacity of the AE technique in
sub-surface fault detection of bearings, a laboratory durability
test of a roller bearing element was carried out; roller contact
fatigue damage was initiated under controlled conditions, and
the accompanying AEwaveforms were acquired. (2) Aimed at
detecting the emerging faults timely and accurately, a health
indicator combining the IE theory and autoencoder was pro-
posed to describe the evolution of AE waveforms during the
run-to-failure process, which is referred to as the information
entropy penalty factor (IEPF). (3) The proposed parameter is
demonstrated to be more sensitive to the periodicity and dis-
turbance in the AE signal. (4) The high sampling frequency of
AE technology limits the application of DL methods; thus, a
moving variance window (MVW) was utilised to reduce the
dimensions of raw AE signals. Then, autoencoder was applied
to denoise the signal for feature augmentation.

The rest of the paper is organised as follows. Themathemat-
ical details of the proposed method are unfolded in section 2.
The test rig and the implementation details of the proposed

method are introduced in section 3, along with the experi-
mental results and discussion. Conclusions are formulated in
section 4.

2. Methodology

2.1. Basic theory of autoencoder

Since it is an unsupervised task to detect the onset of early fault
during the durability test to failure, a prevalent unsupervised
network architecture—autoencoder—is chosen for the present
work. The theoretical background of the involved neural net-
work architectures is presented in the following sub-sections.
Autoencoder aims at reconstructing its own input data. The
basic form of the autoencoder is relatively simple—it is a sym-
metrical three-layer neural network consisting of input, hidden
and output layers representing an encoder and decoder pair.
For a given dataset X, the mathematical details for encoding
and decoding are represented as follows:

Encoder : H= Activ
(
WT

e ∗X+ be
)

(1)

Decoder : X̃= Activ
(
WT

d ∗H+ bd
)

(2)

where WT
e and WT

d stand for the weights of the encoder and
decoder, respectively, and be and bd are the corresponding
biases. The encoder is regarded as a feature extractor, and
the output H is the latent representation containing the main
information of the input data. X̃ is the reconstructed data that
is decoded from the latent representation H.

To minimise the distance between X and its reconstruction
X̃, the mean square error (MSE) loss function JMSE is generally
used, which is expressed as

JMSE =
1
n

n∑
i=1

(
1
2

∥∥Xi− X̃i
∥∥)2

(3)

where n denotes the total number of samples.

2.2. Energy entropy (EE)

The EE is a measure of IE, which is based on the change in
the energy of the signal. A moving energy window (MEW)
is applied to slide over the signal to construct the probability
distribution of the energy. Given a recorded AE signal X, the
moving window is defined as

winXk,l,s = X
[
xk,sstart : x

k,s
start+ l− 1

]
(4)

xk,sstart = (k− 1)× s+ 1, k= 1,2, . . .nk (5)

wherewinXk,l,s represents the area of the signalX covered by the
moving window; k, l and s are integers specifying the moving
step, window length and moving stride, respectively; xk,sstart is
the start point of the window on the signal X. The energy of
the overlaid region is extracted at each moving step. The total
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number of moving steps is nk = [(N− l)/s] + 1, where N is
the length of the recorded AE signal. Therefore, the partial
energy of the signal Ek and its probability distribution Pk are
obtained as

Ek =
∑

x∈winXk,l,s

|x|2 (6)

Pk =
Ek∑nk
k=1Ek

. (7)

The MEW length is recommended to contain informa-
tion about at least one entire axel revolution of the rotating
machine. Thereby, it is determined by the lowest axle rota-
tion frequency and sampling frequency. With the probability
distribution, the EE is acquired based on Shannon’s entropy
formula:

H=−
nk∑
k=1

PklogbPk. (8)

The logarithmic base ‘b’ defines the unit of the measured
information. The units include bits (b= 2), nats (b= e), and
bans (b= 10) [32]. In the case of Pk = 0, the value of 0logb0
is taken to be 0; therefore, the minimum value of entropy is 0.

2.3. The proposed method

In this paper, a new fault indicator combining the EE and
reconstruction error of autoencoder is proposed, which is
referred to as IEPF. The details are presented below.

2.3.1. Feature augmentation. To capture transient changes
within the signal, an MVW, which calculates the sample vari-
ance, is applied to the original signals. For a recorded AE sig-
nal X, the procedure is formulated as follows:

XMVW =
1
l

∑
x∈win

XMVW
k,l,s

|x−µ|2 (9)

where µ is the mean of x within winXMVWk,l,s . The function of the
MVW is to capture the transient events and highlight some
important detailed information about the data. The output is a
dimensionless number thatmeasures the dispersion of the data,
and thereby, the signal is de-dimensionalised. Additionally, the
dimension of the original signal is largely reduced through this
process, which makes it easier to be processed by the neural
network.

Then, autoencoder is employed in this work to denoise and
enhance the main features of the signal. With the target of
reconstructing its own input data, autoencoder has beenwidely
used for feature extraction. However, the reconstruction error
is inevitable, which compels the network to outline the main
features of the input data and neglect some redundant noise.
To better reconstruct the input data, the CNN architecture is
used to extract detailed information. The applied autoencoder
architecture is shown in figure 1.

Figure 1. The neural network architecture used in the present work.

2.3.2. IEPF. During the run-to-failure process, the acquired
AE signal may experience serious changes with the dam-
age propagation through the test piece. It can be foreseen
that autoencoder will eventually be unable to reconstruct the
deformed signal and cause the MSE value to increase. Several
researchers proposed the reconstruction error of autoencoder
as an indicator of an early fault or anomaly in the mechanical
behaviour of the system [16–18]. However, the neural network
has a certain tolerance to waveform changes; i.e. if the discrep-
ancy between signals is not very large, autoencoder can still fit
the data with a relatively low reconstruction error. Since MSE
is inevitable, the information provided by the reconstructed
data itself is incomplete. Therefore, the EE is further adapted
to utilise the advantages of autoencoder. To implement this
coupling, equation (6) is rewritten as

Ẽk =
∑

x∈win
XMVW
k,l,s

∣∣x̃MVW+ δ
∣∣2 (10)

where x̃MVW stands for the reconstruction of data covered by
winXMVWk,l,s , and δ is the corresponding MSE value. By plug-

ging Ẽk into equation (7), a new probability distribution of the
reconstructed data is adopted as P̃k.

The maximum value of Shannon’s entropy is obtained
when all elements are identically distributed, i.e. when the

dynamic range of H is limited to
[
0,−

∑
nk

1
nk
logb

1
nk

]
. The

maximum value is greater than 0, increasing monotonically
over the range of nk. Theoretically, the greater the disturbance
of the AE signal, the smaller the value of Shannon’s entropy.
However, for the sake of convenience, one can modify the
entropy calculation in such a way that it will increase with the
variation in the AE signal as

IEPF=

nk∑
i=1

(
P̃klog2P̃k−

1
nk
log2

1
nk

)
. (11)

If the IEPF value is close to 0, it indicates that the signal
has strong periodicity and vice versa.
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2.3.3. General procedures. The general fault detection pro-
cedures are summarised as the following five steps:

Step 1: Data acquisition. AE sensors are installed on the
testing rig machine; the machine runs to failure of the rolling
bearing element, and the AE waveform is recorded periodic-
ally. The acquired AE signals at the initial stage of the experi-
ment serve as training data, and are utilised for training autoen-
coder and constructing a fault threshold. The rest of the data
are the testing set.

Step 2: Signal pre-processing. Two moving windows are
applied to the acquired AE signal.

(1) MVW is first applied to the original signal for dimension
reduction and extracting detailed information.

(2) MEW is applied to the data; instead of extracting the
energy feature at each moving step immediately, the
covered data are prepared as the input of autoencoder.

Step 3: Data reconstruction. The processed signals are fed
into autoencoder for denoising.

Step 4: Obtain health indicator. Calculate the energy prob-
ability distributions of the reconstructions. A fault alarm
threshold is constructed on the basis of the IEPF values cal-
culated from the training data.

Step 5: Decision making. The IEPF value of the testing set
exceeding the threshold is considered a fault alarm.

3. Experiment and discussion

3.1. Test rig and data acquisition

To monitor the rolling contact fatigue phenomenon occurring
in a roller bearing element, a run-to-failure test was carried
out using an instrumented special-purpose testing rig designed
at SINTEF Industry (Trondheim, Norway). The experimental
setup is schematically illustrated in figure 2(a). The test spe-
cimen (central roller) is supported by three rollers, and each
roller is supported by two needle bearings SKF NA 6914-zw.
The wideband differential (WD) sensors (MISTRAS, USA)
(only one sensor was used during the test) were connected
to the data acquisition system as displayed in figure 2(b).
The signal was amplified by 40 dB in the frequency band
20–1200 kHz by a 2/4/6 low-noise preamplifier (MISTRAS,
USA).

The AE recording started automatically when the axle rota-
tion frequency was greater than the threshold. After warming
up to 47 ± 2 ◦C, the initial axle rotation frequency was set
at 364 rpm at the initial load of 67.1 kN, corresponding to
1807 MPa contact stress. The test was interrupted periodic-
ally, as is indicated by the vertical lines in the test diagram rep-
resented in figure 6 for ultrasonic inspections performed with
an Olympus OMNISCAN SX phase array ultrasonic scanner
(PAUT). As the PAUT inspections revealed no faults after ini-
tial cycling up to approximately 3× 106 cycles (106 axel rota-
tions), the load gradually increased in a stepwise manner up
to 91.3 kN (2002 MPa contact stress). The cumulative number
of fatigue cycles reached 2.7 × 107 cycles. Excessive vibra-
tions were detected in the machine at this load when running

Figure 2. Rolling fatigue test rig: photographic image and
schematics of the geometry of supporting rollers and the testing
roller (a), and a close-up view of the setup instrumented with AE
sensors (b).

Table 1. Number of AE records for different stages of damage
propagation.

Health condition
Number
of records

Number of
fatigue cycles

No damage 542 2.8 × 107
0.5 mm crack 377 3.6 × 107
1 mm crack 809 4.8 × 107
1.5 mm crack 718 6.5 × 107
2 mm crack 25 6.6 × 107

at a rotational speed of 364 rpm. Therefore, the axle rota-
tion frequency was reduced to 256 rpm until the end of the
test. The test was continued with a 91.3 kN load, and the first
sub-surface crack that was detected by the PAUT was after
2.8 × 107 fatigue cycles at approximately 4 mm below the
contact surface. The smallest detected crack was estimated
to be 0.5 mm long. The continued regular PAUT inspections
revealed continuous slow crack growth in the longitudinal dir-
ection up to 2 mm length along the roller axis before the test
was terminated. The test roller was then sectioned for metal-
lographic inspection and verification of the PAUT results. As
predicted by PAUT, three sharp fatigue cracks were observed
beneath the surface.

The AEwaveforms were continuously recorded at a 2MHz
sampling frequency for 2 s per record using the Kongsberg
HSIO-100-A high-speed acquisition module. At the beginning
of the test, AE streams were collected every 60 min. After
the confirmation of the first sub-surface crack, the time inter-
val between the successive AE acquisitions was reduced to
20 min. In total, 2471 records were qualified for the analysis.
The number of records corresponding to different stages of
crack growth is presented in table 1. The records are indexed
from 1 to 2471 according to the time of acquisition. The recor-
ded raw AE signals are plotted in figure 3 for illustration. An
appreciable change in the AE amplitude is first observed after
4.6 × 107 fatigue cycles. Ultrasonic inspections revealed a
crack of 1 mm at this stage.

Several randomly chosen AE records, which are typically
observed during different stages of the damage propagation,
are shown in figure 4. The evolution of the AE waveforms can
be observed. At first, theAEwaveforms exhibited evident peri-
odical characteristics as shown in figure 4(1) due to the routine
operation of the rotating machine. After the fatigue cycle was
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Figure 3. Diagram showing the raw AE signals against the number
of fatigue cycles.

Figure 4. Examples of randomly chosen representative AE records
at different stages of damage propagation.

accumulated to 2.8× 107, the initial periodic behaviour in the
waveforms disappeared—the effect is assumed to be related to
the generation of AE signals from the defect. The continuous
background quasi-steady AE signal is assumed to be produced
primarily by the over-rolling of roughness asperities [23]. If a
defect forms on either the surface or in the bulk of the test
roller, and if the sensor successfully captures it, the two ran-
dom processes—the background noise and the defect-induced
AE—overlap additively. The AE associated with the defect
can be considered as a disturbance, distorting the waveform of
the original signal. Assuming that the AE signal recorded from
the healthy stage is X, the AE signal reflecting fatigue damage
is denoted as X= X+ τ , where τ represents the AE response
to the defect that emerged in the roller. This type of signal
appears as illustrated in figure 4(2–3). With the propagation
of the fault, the peak amplitude of the corresponding AE burst
signal clearly exceeds the noise threshold at periodic intervals,
as shown in figure 4(4–5). The triple roller arrangement shown
in figure 1 assumes that each point of the test roller interacts
with the support rollers three times per revolution. When the
test roller containing the surface (or sub-surface) faults con-
tacts the support roller, the stress concentration in the bearing
elements along the defect boundary is expected to cause an
increase in the released elastic energy [2], resulting in period-
ical spikes in the AE waveforms.

Table 2. Autoencoder architecture.

Layer Key parameters Output size
Activation
function

Input / 1× 1024 /
C1 1× 25@16 1× 1000@16 ReLu
P1 1× 5@16 1× 200@16 /
C2 1× 16@32 1× 185@32 ReLu
P2 1× 5@32 1× 37@32 /
FC1 / 1× 1184 /
FC2 1184× 100 1× 100 ReLu
Output / 1× 1024 Sigmoid

Note: C, P and FC denote the convolutional layer, pooling layer and fully
connected layer, respectively. The notation ‘a × b@c’ describes the kernel
size and the output size, where a and b represent the row and column of the
matrix, and c denotes the number of channels.

3.2. Implementation details

TheMEW should contain information about at least one entire
axel revolution. For instance, the lowest axle rotation fre-
quency in the present work is 254 rpm, i.e. for a 2 s record-
ing, eight complete rotations are captured. Therefore, the mov-
ing step of MEW should be 8, and the maximum value of
IEPF is calculated as 3. Based on the sampling frequency used
(2 MHz), the window length and the moving stride of MVW
and MEW are set at 464 and 1024, respectively.

The first 60% of healthy data (325 recorded AE fragments)
were used to train the neural network and calculate the fault
alarm threshold. The threshold is calculated conventionally
as mean(x)± 3× std(x), where x denotes the IEPF values of
training data, and mean and std stand for the mean value and
the standard deviation, respectively. Since each record con-
tains eight complete rotations, after being processed by MVW
and MEW, 2471 training samples were constructed to train
autoencoder. The size of the training dataset is 2471× 1024.
The rest of the records are testing data. Both the training
and testing data are normalised using the maxminmap method
before feeding into autoencoder. Details of the network archi-
tecture are presented in table 2.

The reconstructed data are randomly exemplified from dif-
ferent stages of the experiment, as shown in figure 5. Each
image represents eight stacked sub-signals covered by MEW.
It is hard to identify the difference between healthy and faulty
data from the raw signal by the naked eye, especially at the
early damage stage featured by the 0.5 mm crack length; see,
for example, indices 448, 452, 561 and 805. However, the
reconstructions unveil more clear features if compared to those
of the raw signal. The reconstruction error (MSE) of autoen-
coder is shown in figure 6. As mentioned before, autoencoder
is reasonably tolerant to waveform changes; i.e. if the discrep-
ancy between signals is not very large, the neural network can
still fit the data with a low reconstruction error. As shown in
figure 6, the reconstruction error of the trained network is still
very low, especially at the earliest crack growth stage. The
drastic increase in the reconstruction error appears only with
the emergence of AE bursts. Mathematically, this is because
the sigmoid activation function maps the output to the range
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Figure 5. Visualisation of the reconstructed data from different stages of damage propagation.

Figure 6. MSE (reconstruction error) of autoencoder; the inset
shows a magnified view of MSE in the range of record indices from
0 to 2000.

of (0, 1); however, the peak of the AE burst will exceed the
upper boundary of the sigmoid function without the corres-
ponding training data. The results manifest that theMSE indic-
ator taken alone is not sufficient to identify early faults.

3.3. Evaluation methods

In the following analysis, the performance of conventional
statistical parameters is investigated and compared with the
one proposed in this work. The quality of the probed para-
meters is assessed from two aspects: (1) timely and accur-
ate detection of emerging faults and (2) better description
of the AE waveform evolution. The 19 statistical parameters

Table 3. Statistical parameters extracted from time domain,
frequency domain and time–frequency domain.

Domains Parameters

Time domain (1) Root mean square (RMS); (2) skewness;
(3) kurtosis; (4) shape factor; (5) crest factor;
(6) impulse factor; (7) margin factor;
(8) histogram-based information entropy (IE);
(9) energy entropy (EE); (10) power.

Frequency
domain

(11) Mean frequency (MF); (12) RMS of
frequency (RMSF); (13) standard deviation of
frequency (SF).

Time–frequency
domain

(14) STFT + power entropy; (15) STFT + MF
entropy; (16) STFT + RMSF entropy;
(17) STFT + SF entropy; (18) wavelet packet
energy entropy (WPEE); (19) wavelet packet
singular entropy (WPSE).

Note: (14–17) short-time Fourier transform (STFT) was implemented with a
hamming window with a length equal to 4096 readings. The window slid
over the original data to calculate the discrete Fourier transform of the
windowed data, and the overlap of each moving step was 512. (18–19)
Wavelet packet transform was applied to perform three-layer decomposition
of the original AE signal using the ‘dmey’ wavelet, and results in eight
decomposed frequency bands.

listed in table 3 were extracted from the time domain, fre-
quency domain and time–frequency domain and were probed
for the sake of comparison. To quantify the performance of
all these indicators, the data were categorised into two classes
as ‘healthy’ and ‘faulty’, and three evaluation indicators—
Accuracy, Specificity and F1-score were measured, as defined
below [33]:

Accuracy=
TP+TN

TP+TN+ FP+ FN
(12)

Specificity=
TN

TN+ FP
(13)
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Figure 7. Definition of the confusion matrix.

Figure 8. Accuracy, specificity and F1-score of the probed
parameters sorted in descending order.

F1-score= 2× Precision×Recall
Precision+Recall

(14)

where TP, FN, FP and TN are abbreviations of true positive,
false negative, false positive and true negative, respectively, as
described in figure 7. Accuracy measures all correctly classi-
fied samples. Specificity quantifies the ratio of negative class
predictions of all negative samples. The F1-score provides
a single score that balances both the concerns of precision
and recall. Precision and recall are defined as TP/TP+ FP
and TP/TP+ FN, and quantify the number of correct posit-
ive results divided by all positive results and relevant samples,
respectively.

Accuracy, Specificity and F1-score of the probed paramet-
ers are compared in figure 8. Based on these three quality
indicators, the proposed parameter exhibits the highest scores.
IEPF generates fewer false fault alarms and more true fault
alarms compared with other parameters tested. Although para-
meters such as RMS, skewness, crest factor, impulse factor,

etc, have been used with greater or lesser success by many
researchers, in the present settings, they perform quite unsat-
isfactory. This prompted us to seek new reliable parameters.

The top eight parameters performing better in Accur-
acy (excluding IEPF) were selected for further comparison.
Table 4 presents the values of accuracy of the selected para-
meters at different experimental stages. The accuracy at each
stage was obtained using the formula F/N, where N denotes
the total number of records at a specific experimental stage,
and F represents the true fault alarms at this stage. Most of
the parameters indicated the AE waveform changed substan-
tially when the crack was propagated to the mature stage with
a final length of up to 2 mm. Although parameters like wave-
let packet singular entropy (WPSE) and standard deviation
of frequency show relatively high accuracy at the 0.5 mm
crack stage, WPSE exhibits a higher rate of false alarms at
the healthy stage, and standard deviation of frequency (SF)
fails to detect the propagation of the fault. Since failure is an
irreversible and progressively propagating process, the indic-
ator is expected to be continuous and monotonic. Compared
with other parameters, the IEPF generates notably fewer false
alarms and more true fault alarms.

Scores of IEPF are plotted in figure 9 against the cumulat-
ive number of fatigue cycles. The red dots represent the events
with IEPF values exceeding the threshold, which are denoted
as fault alarms. One can see that IEPF transparently character-
ises the evolution of the recorded AE waveforms from the fol-
lowing aspects. First, the IEPF value corresponding to the ini-
tial healthy stage is approximately 0 (the average IEPF value
of the recordedAE signal at the healthy stage is 0.0026), which
indicates that the recorded AE signals present strong period-
ical patterns. The IEPF increases steeply in the second stage
when the first 0.5 mm crack is detected. Thus, a breakpoint
between the healthy and faulty stages can be easily identified.
Second, the IEPF value captures the initiation of the persistent
AE bursts at the intersection of the 1 mm crack and 1.5 mm
crack. Additionally, the results successfully characterise the
increase in the AE bursts after the 2000th record while main-
taining the general trend towards higher values.

To further compare the performance of IEPF with other
parameters, figure 10 shows the variation of the selected para-
meters from the beginning of the test to failure. Although EE
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Table 4. The accuracy of selected parameters at different stages of damage propagation.

Parameter

Fault conditions

No damage 0.5 mm crack 1 mm crack 1.5 mm crack 2 mm crack

IEPF 0.9742 0.4259 0.9148 0.9791 1
EE 0.9723 0.4233 0.8938 0.9652 1
Shape factor 0.9815 0.3836 0.6642 0.9889 1
STFT + power entropy 0.9705 0.4233 0.5889 0.9819 1
Kurtosis 0.9760 0.3307 0.5691 0.9833 1
STFT + SF entropy 0.9797 0.3598 0.3370 0.8428 1
WPSE 0.8930 0.6614 0.1037 1.0000 1
SF 0.9779 0.6111 0.1938 0.5369 0.3462
IE 0.9742 0.0397 0.1889 0.7650 1

Figure 9. The scores of IEPF from the durability test of the roller
bearing element.

Figure 10. The scores of selected parameters of the AE signals
from the durability test of the roller bearing element.

also presents relatively high accuracy in figure 8, it fails to
characterise the AE behaviour in response to the crack growth
up to 1 mm and further to 1.5 mm length. Compared to other
parameters, the IEPF shows excellent sensitivity to the emer-
gence of periodical AE impulses and exhibits a clearer descrip-
tion of the waveform evolution corresponding to the propaga-
tion of internal fatigue cracks.

4. Conclusion

In this paper, a durability test of a roller bearing element was
carried out to investigate the application of the AE technique
to sub-surface fault detection in a roller. The experimental res-
ults show that many known parameters, such as RMS, skew-
ness, crest factor, impulse factor etc, fail to characterise the
evolution of AE signals in relation to the damage initiation
and propagation. Therefore, a hybrid parameter called IEPF
is proposed to assess the fault behaviour through the evolution
of AEwaveforms. The proposed method combines the advant-
ages of information theory and autoencoder to achieve a high
sensitivity to the periodicity and its disturbance in AE signals.
Comparative tests were carried out to assess the quality of the
health status indicators from two aspects: (i) timely and accur-
ate detection of emerging faults and (ii) a more elucidative
description of the AE waveform evolution in response to the
emerging and propagating fatigue damage. The experimental
results verify the effectiveness of the proposed data processing
scheme for fault monitoring and possible diagnostics in roller
bearings. The proposed methodology can be reasonably easily
adapted to the CM of other rotating machines since it is driven
primarily by data and does not rely on specific knowledge of
the mechanical features of the system under control.

Data availability statement

The data generated and/or analysed during the current
study are not publicly available for legal/ethical reasons but
are available from the corresponding author on reasonable
request.

Acknowledgments

The financial support from the Norwegian Research Council
through RCN Project No. 296236 is gratefully appreciated.

ORCID iD

Yu Wang https://orcid.org/0000-0003-0854-6975

9

https://orcid.org/0000-0003-0854-6975
https://orcid.org/0000-0003-0854-6975


Meas. Sci. Technol. 34 (2023) 064008 Y Wang et al

References

[1] Wadley H and Mehrabian R 1984 Acoustic emission for
materials processing: a reviewMater. Sci. Eng. 65 245–63

[2] Choudhury A and Tandon N 2000 Application of acoustic
emission technique for the detection of defects in rolling
element bearings Tribol. Int. 33 39–45

[3] Liu Z, Yang B, Wang X and Zhang L 2021 Acoustic emission
analysis for wind turbine blade bearing fault detection
under time-varying low-speed and heavy blade load
conditions IEEE Trans. Ind. Appl. 57 2791–800

[4] He Y and Zhang X 2012 Approximate entropy analysis of the
acoustic emission from defects in rolling element bearings
J. Vib. Acoust. 134 061012

[5] Hemmati F, Alqaradawi M and Gadala M S 2016 Optimized
statistical parameters of acoustic emission signals for
monitoring of rolling element bearings Proc. Inst. Mech.
Eng. J 230 897–906

[6] Yoshioka T and Fujiwara T 1982 A new acoustic emission
source locating system for the study of rolling contact
fatigueWear 81 183–6

[7] Al-Ghamd A M and Mba D 2006 A comparative experimental
study on the use of acoustic emission and vibration analysis
for bearing defect identification and estimation of defect
size Mech. Syst. Signal Process. 20 1537–71

[8] Caso E, Fernandez-del-rincon A, Garcia P, Iglesias M and
Viadero F 2020 Monitoring of misalignment in low speed
geared shafts with acoustic emission sensors Appl. Acoust.
159 107092

[9] Prosvirin A, Kim J and Kim J-M 2018 Bearing fault diagnosis
based on convolutional neural networks with kurtogram
representation of acoustic emission signals Advances in
Computer Science and Ubiquitous Computing (Singapore)
vol 474 pp 21–6

[10] Hasan M J, Manjurul Islam M M and Kim J-M 2019 Acoustic
spectral imaging and transfer learning for reliable bearing
fault diagnosis under variable speed conditions
Measurement 138 620–31

[11] Shi H, Guo L, Tan S and Bai X 2019 Rolling bearing initial
fault detection using long short-term memory recurrent
network IEEE Access 7 171559–69

[12] Li X, Li J, He D and Qu Y 2019 Gear pitting fault diagnosis
using raw acoustic emission signal based on deep learning
Eksploat. Niezawodn. 21 403–10

[13] Zhiyi H, Haidong S, Lin J, Junsheng C and Yu Y 2020
Transfer fault diagnosis of bearing installed in different
machines using enhanced deep auto-encoderMeasurement
152 107393

[14] He Z, Shao H, Wang P, Lin J, Cheng J and Yang Y 2020 Deep
transfer multi-wavelet auto-encoder for intelligent fault
diagnosis of gearbox with few target training samples
Knowl.-Based Syst. 191 105313

[15] Zhu H, Cheng J, Zhang C, Wu J and Shao X 2020 Stacked
pruning sparse denoising autoencoder based intelligent fault
diagnosis of rolling bearings Appl. Soft Comput. 88 106060

[16] Lu W, Li Y, Cheng Y, Meng D, Liang B and Zhou P 2018
Early fault detection approach with deep architectures IEEE
Trans. Instrum. Meas. 67 1679–89

[17] Dwiputranto T H , Setiawan N A and Aji T B (eds) 2017
Machinery equipment early fault detection using artificial
neural network based autoencoder 2017 3rd Int. Conf. on

Science and Technology-Computer (ICST) (IEEE) (https://
doi.org/10.1109/icstc.2017.8011854)

[18] König F, Sous C, Chaib A O and Jacobs G 2021 Machine
learning based anomaly detection and classification of
acoustic emission events for wear monitoring in sliding
bearing systems Tribol. Int. 155 106811

[19] Caesarendra W, Kosasih B, Tieu A K, Zhu H, Moodie C A and
Zhu Q 2016 Acoustic emission-based condition monitoring
methods: review and application for low speed slew bearing
Mech. Syst. Signal Process. 72 134–59

[20] Mano R, Yoshioka T, Miti A K and Yamamoto T 2000
Relationship between growth of rolling contact fatigue
cracks and load distribution Tribol. Trans. 43 367–76

[21] Morhain A and Mba D 2003 Bearing defect diagnosis and
acoustic emission Proc. Inst. Mech. Eng. J. 217 257–72

[22] Wang Z, Chegdani F, Yalamarti N, Takabi B, Tai B, El
Mansori M and Bukkapatnam S 2020 Acoustic emission
characterization of natural fiber reinforced plastic
composite machining using a random forest machine
learning model J. Manuf. Sci. Eng. 142 031003

[23] Bianchi D, Mayrhofer E, Gröschl M, Betz G and Vernes A
2015 Wavelet packet transform for detection of single
events in acoustic emission signals Mech. Syst. Signal
Process. 64 441–51

[24] Gao Z, Lin J, Wang X and Xu X 2017 Bearing fault detection
based on empirical wavelet transform and correlated
kurtosis by acoustic emission Materials 10 571

[25] Liu D, Tao J, Luo A and Wang Q (eds) 2018 An optimized
kurtogram method for early fault detection of rolling
element bearings using acoustic emission 2018 Int.
Conf. on Information Systems and Computer Aided
Education (ICISCAE) (IEEE) (https://doi.org/
10.1109/iciscae.2018.8666929)

[26] Liu L, Chen L, Wang Z and Liu D 2020 Early fault detection
of planetary gearbox based on acoustic emission and
improved variational mode decomposition IEEE Sens. J.
21 1735–45

[27] Elforjani M and Mba D 2010 Accelerated natural fault
diagnosis in slow speed bearings with acoustic emission
Eng. Fract. Mech. 77 112–27

[28] Amiri M, Modarres M and Droguett E L (eds) 2015 AE
entropy for detection of fatigue crack initiation and growth
Austin 2015 IEEE Conf. on Prognostics and Health
Management (PHM) (IEEE) (https://doi.org/10.1109/
ICPHM.2015.7245038)

[29] Kahirdeh A, Sauerbrunn C and Modarres M 2016 Acoustic
emission entropy as a measure of damage in materials AIP
Conf. Proc. vol 1757 060007

[30] Chai M, Zhang Z and Duan Q 2018 A new qualitative acoustic
emission parameter based on Shannon’s entropy for damage
monitoringMech. Syst. Signal Process. 100 617–29

[31] Karimian S F, Modarres M and Bruck H A 2020 A new
method for detecting fatigue crack initiation in aluminum
alloy using acoustic emission waveform information
entropy Eng. Fract. Mech. 223 106771

[32] Shannon C E 1948 A mathematical theory of communication
Bell Syst.Tech. J. 27 379–423

[33] Amin H U, Mumtaz W, Subhani A R, Saad M N M and
Malik A S 2017 Classification of EEG signals based on
pattern recognition approach Front. Comput. Neurosci.
11 103

10

https://doi.org/10.1016/0025-5416(84)90086-7
https://doi.org/10.1016/0025-5416(84)90086-7
https://doi.org/10.1016/S0301-679X(00)00012-8
https://doi.org/10.1016/S0301-679X(00)00012-8
https://doi.org/10.1109/TIA.2021.3058557
https://doi.org/10.1109/TIA.2021.3058557
https://doi.org/10.1115/1.4007240
https://doi.org/10.1115/1.4007240
https://doi.org/10.1177/1350650115619611
https://doi.org/10.1177/1350650115619611
https://doi.org/10.1016/0043-1648(82)90314-3
https://doi.org/10.1016/0043-1648(82)90314-3
https://doi.org/10.1016/j.ymssp.2004.10.013
https://doi.org/10.1016/j.ymssp.2004.10.013
https://doi.org/10.1016/j.apacoust.2019.107092
https://doi.org/10.1016/j.apacoust.2019.107092
https://doi.org/10.1007/978-981-10-7605-3_4
https://doi.org/10.1016/j.measurement.2019.02.075
https://doi.org/10.1016/j.measurement.2019.02.075
https://doi.org/10.1109/ACCESS.2019.2954091
https://doi.org/10.1109/ACCESS.2019.2954091
https://doi.org/10.17531/ein.2019.3.6
https://doi.org/10.17531/ein.2019.3.6
https://doi.org/10.1016/j.measurement.2019.107393
https://doi.org/10.1016/j.measurement.2019.107393
https://doi.org/10.1016/j.knosys.2019.105313
https://doi.org/10.1016/j.knosys.2019.105313
https://doi.org/10.1016/j.asoc.2019.106060
https://doi.org/10.1016/j.asoc.2019.106060
https://doi.org/10.1109/TIM.2018.2800978
https://doi.org/10.1109/TIM.2018.2800978
https://doi.org/10.1109/icstc.2017.8011854
https://doi.org/10.1109/icstc.2017.8011854
https://doi.org/10.1016/j.triboint.2020.106811
https://doi.org/10.1016/j.triboint.2020.106811
https://doi.org/10.1016/j.ymssp.2015.10.020
https://doi.org/10.1016/j.ymssp.2015.10.020
https://doi.org/10.1080/10402000008982352
https://doi.org/10.1080/10402000008982352
https://doi.org/10.1243/135065003768618614
https://doi.org/10.1243/135065003768618614
https://doi.org/10.1115/1.4045945
https://doi.org/10.1115/1.4045945
https://doi.org/10.1016/j.ymssp.2015.04.014
https://doi.org/10.1016/j.ymssp.2015.04.014
https://doi.org/10.3390/ma10060571
https://doi.org/10.3390/ma10060571
https://doi.org/10.1109/iciscae.2018.8666929
https://doi.org/10.1109/iciscae.2018.8666929
https://doi.org/10.1109/JSEN.2020.3015884
https://doi.org/10.1109/JSEN.2020.3015884
https://doi.org/10.1016/j.engfracmech.2009.09.016
https://doi.org/10.1016/j.engfracmech.2009.09.016
https://doi.org/10.1109/ICPHM.2015.7245038
https://doi.org/10.1109/ICPHM.2015.7245038
https://doi.org/10.1063/1.4959066
https://doi.org/10.1016/j.ymssp.2017.08.007
https://doi.org/10.1016/j.ymssp.2017.08.007
https://doi.org/10.1016/j.engfracmech.2019.106771
https://doi.org/10.1016/j.engfracmech.2019.106771
https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
https://doi.org/10.3389/fncom.2017.00103
https://doi.org/10.3389/fncom.2017.00103


 

105 

 

 

 

 

 

 

Paper B: 

 

Yu Wang, A. Vinogradov, Simple is good: Investigation of history-state ensemble deep 

neural networks and their validation on rotating machinery fault diagnosis,  

Neurocomputing, vol 548, pp. 126353, September, 2023  

URL: https://doi.org/10.1016/j.neucom.2023.126353   

 

 

 

 

 

 

 

 

 

 

 

https://doi.org/10.1016/j.neucom.2023.126353


 

 
 

 

 

 

 



Neurocomputing 548 (2023) 126353

Contents lists available at ScienceDirect

Neurocomputing

journal homepage: www.elsevier .com/locate /neucom
Simple is good: Investigation of history-state ensemble deep neural

networks and their validation on rotating machinery fault diagnosis

AV Average voting
BMA Base model accuracy

fault diagnostics (IFD) techniques are burgeoning in new dimen-

enses
Yu Wang ⇑, Alexey Vinogradov
Department of Mechanical and Industrial Engineering, Norwegian University of Science and Technology – NTNU, Trondheim 7491, Norway

a r t i c l e i n f o a b s t r a c t
Article history:
Received 23 September 2022
Revised 11 April 2023
Accepted 14 May 2023
Available online 24 May 2023

Keywords:
History-state ensemble (HSE)
Ensemble learning
Deep neural networks
Average voting (AV)
Fault diagnosis
The present work is motivated by the desire to find an efficient approach that can improve the perfor-
mance of deep neural networks in a general sense. To this end, an easy-to-implement ensemble approach
is proposed in this paper leveraging the ‘local sub-optima’ of deep networks, which is referred as to
history-state ensemble (HSE) method. We demonstrated that neural networks can naturally generate
multiple ‘local sub-optima’ with diversity during training process, and their combination can effectively
improve the accuracy and stability of the single network. The merits of HSE are twofold: (1) It does not
require additional training cost in order to acquire multiple base models, which is one of the main draw-
backs limiting the generalization of ensemble techniques in deep learning. (2) It can be easily applied to
any types of deep networks without tuning of network architectures. We proposed the simplest way to
perform HSE and investigated more than 20 ensemble strategies for HSE as comparison. Experiments are
conducted on six datasets and eight popular network architectures for the case of rotating machinery
fault diagnosis. It is demonstrated that the stability and accuracy of neural networks can be generally im-
proved through the simplest ensemble strategy proposed in this paper.
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With the recent rapid advent of artificial intelligence, intelligent
sions. IFD generally refers to the application of Machine Learning
(ML) algorithms in fault diagnostics to reduce human labour de-
mand and cost [1]. Among all branches of ML, Deep Learning
(DL) technology has attracted the most attention for its capacity
to extract implicit features automatically from training data
through multi-layered hidden neurons. Moreover, the procedures
of feature extraction and fault recognition in DL are integrated,
which makes it suitable to deal with the raw signal directly with-
out any pre-processing. Since 2015, the area of DL applications has
expanded rapidly; thus, the DL-based machine fault diagnostics
framework has become the mainstream of IFD de facto [2]. Up to
now, hundreds of deep networks have been designed and applied
to IFD of bearing to take advantage of DL philosophy. Just to name
some of them: back propagation neural network [3,4], convolu-
tional neural network (CNN) [5–9], deep Boltzmann machine
[10], deep belief network (DBN) [11], stacked autoencoder [12–
15], long short-term memory network [16–18] and their modifica-
tions are among the most popular examples.
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Deep network architectures mainly comprise four elements: (i)
the number of layers, (ii) the number of neurons in each layer, (iii)
the activation function of each neuron, and (iv) the training algo-
rithms [19]. Due to the nonlinear nature of the network, a slight
change in one element may lead to a significantly different result.
Therefore, substantial research efforts have been devoted to the
design of network architectures. Increasingly, people are looking
to improve network performance by increasing network complex-
ity or adopting more complicated approaches. Indeed, this has
achieved remarkable success in many fields, including rotating ma-
chinery fault diagnostics. However, the performance of a carefully
designed neural network may decline when applied to tasks differ-
ent from what they had been originally intended for. For example,
for the multi-scale cascade convolutional neural network proposed
in [10], the classification accuracy varied between 99.7% and 96.9%
when the authors tested the same network with different scales of
the convolutional kernel. Besides, the neural network is sensitive
to training parameters such as the learning rate (LR) and the train-
ing epochs.

To this end, we endeavor to develop an efficient and robust ap-
proach that can improve the performance of deep networks in a
general sense. The ensemble strategy is a promising technique
for improving the performance of a single model [20]. Generally,
it comprises a great number of weak classifiers like Decision Tree
and combines them to form a stronger model. Classical ensemble
models are known as Random Forest [21], Adaboost [22], Xgboost
[23] and so on. Thomas et al. demonstrated in their investigation
that an ensemble of different types of classifiers leads to an in-
crease in accuracy [24]. In recent years, ensemble strategy has
gained increasing attention in DL. In [25], an ensemble strategy
that combines a convolutional residual network, deep belief net-
work and deep autoencoder was proved to be more effective than
a single model. Cruz et al. proposed an evolutionary way to ensem-
ble a fixed number of CNNs [5]. A multiobjective deep belief net-
works ensemble method was proposed in [26] for the remaining
useful life estimation of engineering systems. Zhang et al. proposed
an ensemble deep network architecture based on sparse deep au-
toencoder, denoising deep autoencoder and contractive deep au-
toencoder in [27] for the rotating machinery fault diagnostics. At
the same time, Yang et al. [28] proposed another ensembled fault
diagnostics scheme based on Sparse Autoencoder [29] and Denois-
ing Autoencoder. The bootstrap sampling and plurality voting were
employed for the ensemble in this paper. In ref. [30], a new ensem-
ble deep network was developed to combine the result generated
by fifteen different activation functions. To make use of the advan-
tages offered by different neural networks, Ma et al. applied a mul-
tiobjective optimization algorithm to integrate CNN, DBN and deep
autoencoder [25]. Zhang et al. proposed an ensemble learning
model based on convolutional neural network [31]. Their method
is implemented by adding multiple classification layers to generate
a ’poll matrix’ before the majority voting is used to generate the
ensembled classification result. Li et al. proposed an optimal
ensemble deep transfer network [32], and parameter transfer
learning was used to initialize the start points of several base mod-
els with different kernels of maximum mean discrepancy. Howev-
er, these ensemble strategies involve an intricate network
architecture design, training approaches, and additional hyper-
parameters to be tuned.

In this paper, we do not concern with improving the structure
or training of deep networks; instead, our goal is to exploit the po-
tential of deep networks that have been overlooked. We can see
that by virtue of adequately organized and together-tuned com-
monly accessible tools, the performance of deep networks can be
greatly improved in a general sense. In this connection, a simple
yet efficient ensemble strategy referred to as history-state ensemble
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(HSE) method is proposed in the present paper. The ’history-state’
in the method is represented by the network weights after the net-
work update in each training cycle. We hypothesize that network
performance can be further improved in terms of stability and ac-
curacy by incorporating these history-states that should be cov-
ered after each model update. Details will be elaborated on in
the following section. In comparison with the ensembled deep net-
works introduced above, the advantages of the proposed method
are twofold: (1) it offers an improvement in the efficiency of the
network by acquiring multiple base models without increasing
training costs, and (2) the method is versatile and can be easily ap-
plied to different neural networks without a re-design or tuning of
network architectures.

Some related works of HSE are to be mentioned. Back in 2013,
Xie et al. proposed a series of ensemble methods for DL, including
vertical voting, horizontal voting, and horizontal stacked ensemble,
of which horizontal voting has a similar concept to the proposed
HSE [33]. However, there is not enough experimental verification
in this work, the approach has not received considerable attention.
To encourage the deep networks to produce diverse base models,
Huang et al. have proposed that cyclic cosine annealing learning
rate (CCALR) helps the deep networks to attain multiple local min-
ima, and a Snapshot ensemble method was introduced in their
work [34]. There have been two applications of the Snapshot
ensemble in the field of machinery fault diagnostics. Wen et al.
[35] improved the original CCALR of the Snapshot ensemble and
applied it to a CNN-based model for the fault diagnostics of bear-
ings. Another Improve Snapshot Ensemble CNN was proposed in
[36] using diversity regularization to encourage the diversity of
the training history-states. Zhang et al. [37] proposed the Snapshot
boosting to improve the snapshot ensemble.

These works are similar to our proposed method in that they all
assume that the deep networks can generate multiple base models
during the training process for ensemble learning; in this sense,
they all refer to HSE methods. However, the difference lies in
how the ensemble strategy is designed. There are several signifi-
cant gaps in the current research landscape that need to be filled.
(1) While the ensembled deep networks have been compared with
a single deep network, the generalization of the ensemble method
has yet to be done to adapt the concept to various network archi-
tectures. (2) Different ensemble strategies have to be systematical-
ly compared. (3) The HSE methods remain to be only scarcely
studied, and their effectiveness needs to be examined and docu-
mented in a broader range of applications. This motivated us to ad-
dress these specific issues on the examples of case studies relevant
to practically significant problems of condition monitoring and
fault diagnostics in rotating machinery. To this end, we investigat-
ed the efficiency and robustness of different HSE methods with
various deep network architectures and proposed the ensemble
strategy with the best generalization ability. Compared to previous
works, our contributions are summarised as follows.

(1) We propose the most straightforward yet efficient way to
perform ensemble learning on deep networks. It has been
experimentally confirmed that deep networks can generate
multiple local sub-optima during the training process, and
the combination of them improves the network performance
on average without increasing training costs.

(2) We conduct an extensive investigation of various ensemble
strategies on deep networks in order to address the afore-
mentioned existing issues. Through the comparative experi-
ments, our proposed method demonstrates the best overall
performance. The conclusions derived from the study pro-
vide practitioners with the guidelines for the rational selec-
tion of the ensemble strategy.
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(3) We present a novel approach to investigate the tradeoff be-
tween the diversity and accuracy of base models, which pro-
vides new insights into the underlying mechanisms of
ensemble learning.

The rest of the paper is organized as follows. The basic theory of
HSE method is described in Section 2. The experimental setup and
contrastive methods are introduced in Section 3. Experimental re-
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sults of the probed methods are discussed in Section 4. Conclusions

are drawn in Section 5.

2. Methodology

The training of neural network consists of two stages: (i) the
forward propagation of input data from the first layer to the last
layer of the network structure for feature extraction; (ii) the back-
ward propagation of the prediction error from the opposite direc-
tion for network optimization. A closed loop is formed through
forward and backward propagation, and the updated weights after
each cycle are referred to as one history-state of the network in
this paper. In general, a single network model is trained on fixed
training cycles or iterations. However, it is hard to choose a ’magic’
training budget to build a reliable model [34], as the acquired local
optimum based on training dataset cannot represent the true local
optimum of the whole dataset especially in practical applications.
Local optimum denotes a solution that is optimal within a neigh-
boring set of candidate solutions. Loss value is usually served as
a measure of how well or poorly the network behaves after each
optimization cycle. If the network is properly trained, the evolu-
tionary trend in the loss value has the ’elbow-like’ shape, as shown
in Fig. 1: it drops sharply at the first iterations and then decays
slowly before converging finally at very low values. At the same
time, the network accuracy shows the opposite trend.

We assume that (1) a neural network can produce multiple ’lo-
cal sub-optima’ with diversity during training; (2) the combination
of these local sub-optima improves the network performance in
terms of stability and accuracy. We use the term’ local sub-
optima’ to indicate that the solution is merely approximate to
the true ’local optima’. In this paper, they refer to all the history-
states of neural networks when the training process enters a stable
phase, i.e., the loss value converges to a small value. Therefore, to
obtain base models for ensemble learning using a neural network,
one only needs to preserve these history states or local sub-optima
of the network that should be covered after each training cycle, and
the time cost of this is negligible. Since there is no requirement for
the network structure, the method can be applied to all neural
networks.
Fig. 1. Illustration showing the typical behaviour of the training loss value and the
accuracy as a function of the number of iterations; the definition of parameters h1
and h2 is illustrated (see the text for details)

3

2.1. Feasibility analysis

The feasibility of the proposed ensemble method is analyzed
below.

2.1.1. Improve network stability
The network stability is evaluated by the variability of perfor-

mance under randomly initialized weights. The variance or stan-
dard deviation is utilized as the metric. With the previous
hypothesis on local sub-optima, we assume the acquired base
models are (i) unbiased, (ii) with the same variance, and (iii) uncor-
related with each other. The accuracy of the i-th base models is
modeled as: ai ¼ Aþx, where A stands for the accuracy of the true
local optimum to be estimated, x is random noise caused by the
diversity of base models. Based on the minimum variance unbaised
estimator, a reasonable estimator of a can be expressed as

a
� ¼Pn

i¼1ai=n ¼ E Að Þ, assuming the x is Gaussian noise, and n rep-
resents the base model number. Then, the variance of the estimator

a
�
is expressed as:

var a
�� � ¼

Pn
i¼1var aið Þ

n2 ¼ var að Þ
n

ð1Þ

where var að Þ denotes the variance of a single base model. Since
var að Þ=n < var að Þ, i.e., the variance of the ensemble network is
smaller than the single network. Hence, it can be inferred that the
ensemble method reduces the performance variability.

2.1.2. Improve network accuracy
For better illustration, we enumerate possible scenarios when

comparing the single network with the ensemble network by in-
troducing a simple example of binary classification, as displayed
in Fig. 2. In case 1–1 and 1–2, most base models produce the true
labels, thus underlying the efficacy of the ensemble. However, the
single network might fail. And cases 2–1 and 2–2 are the opposite.
The ensemble method will fail if most base models produce false
labels, whereas the single network might succeed. If the two sce-
narios have the same frequency, then the ensemble and single net-
work should have the same performance on average. Since deep
networks are generally considered to be a strong classifier, we hy-
pothesize that the first scenario is more frequent than the other
one, and the ensemble method has a higher chance to output a true
label, which remains to be proven in the following experiments.

2.2. The proposed ensemble strategy

Similarly to conventional ensemble techniques, the implemen-
tation of the HSE method faces two challenges: (1) a training strat-
egy that encourages the generation of accurate base models with
diversity [5,24]; and (2) a learning strategy which combines ac-

Neurocomputing 548 (2023) 126353
Fig. 2. Graphical illustration of possible scenarios when comparing the single
network with the ensemble network. Assuming there are 10 base models, and the
prediction of the ensemble is given by majority voting of all base models, whereas
the prediction of a single network is given by the last base model.



quired base models to form a stronger classifier [38]. In this paper,
we are not concerned with improving the training of neural net-
works; instead, our goal is to show the potential of current neural
networks with the most common tools we already have.

2.2.1. Training strategy
To improve the ensemble performance, it is pivotal to balance

the diversity and accuracy of the base models. We propose that
the simple combination of the widely used MBGD and CLR in the
network training process is sufficient to produce the required base
models.

MBGD is a variant of the gradient descent algorithm whereby
the whole training dataset is divided into multiple small batches,
and only one batch is used to calculate the gradient at each itera-
tion. The iteration refers to the number of batches or steps through
partitioned packets of the training data. One epoch is counted after
all batches of training data are fed into the neural network. For ex-
ample, if the dataset is divided into m batches with k training
epochs, the total number of iterations is m� k. The application of
MBGD increases the model update frequency, thus giving rise to
a larger number of base models generated for the ensemble
classification.

CLR is a de facto tool for training modern neural networks,
which is advocated in HSE for the following reasons: (1) it ap-
proaches local minima in a noisy manner, which helps to encour-
age the diversity of base models; (2) as a rule of thumb, it will
not deviate far from the local minimum, which guarantees the ac-
curacy of the acquired base models to a certain extent. Neverthe-
less, the hypothesis is based on experience, which needs to be
proven experimentally. To demonstrate this, different LR sched-
ulers are investigated in the following experiments, and analysis
of the diversity-accuracy tradeoff has shown that CLR exhibits bet-
ter balance in the acquired base models.

2.2.2. Learning strategy
A SoftMax layer is generally attached after the last hidden layer
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of a neural network to normalize the output of a network to a prob-
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ability distribution over the predicted output classes. The AV
method takes the average score of all the recorded base models,
which is mathematically described as follows:

Ej ¼ 1
N
�
XN
i¼1

expðbi þW i
j �HÞPc

j¼1expðbi þW i
j �HÞ

ð2Þ

where N denotes the number of base models, and c represents the
number of categories. H stands for the input of the Softmax layer,
W and b are weights and bias, respectively, which connect the Soft-
max layer and the last hidden layer of the neural network. Ej is the
predicted probability that the input data is classified as the category
j, and the predicted class of HSE is given by max Ej

� �
.

2.2.3. Model selection
We do not propose strict selection criteria for base models in

HSE for the following reasons: (1) to avoid overfitting; (2) to be
consistent with the previous assumptions of base models, namely,
that they are unbiased and have the same variance. Nevertheless,
the ensemble model performance is affected by three factors: the
number, the accuracy, and the diversity of base models, which
are closely correlated with the following parameters: (i) the S rep-
resents the applied training cycles; (ii) the h1 represents the re-
quired training cycles for model warm-up; and (iii) the h2
denotes the update frequency between two adjacent base models.
Generally, the larger h2 can reduce redundancy and increase the di-
versity of base models. The total number of the acquired base mod-
els is calculated as:
N ¼ intðS� h1
h2

Þ ð3Þ

where intð�Þ returns an integer number. The key to improving
ensemble performance is the balance between the diversity and ac-
curacy of base models, which needs to be investigated
experimentally.

3. Experimental setup

3.1. Description of datasets

The utilized datasets are acquired from two bearing data centers:
Case Western Reserve University (CWRU) Bearing Data Center and
Konstruktions-und Antriebstechnik (KAt) – Bearing Data Center
[39].Details of theuseddata aredescribed inTable2. TheCWRUdata
centre provides vibration signals of bearing with various artificial
damages. It has been widely used as benchmark data to evaluate
the effectiveness of the proposed models. Table 1 summarises the
use of CWRU data in recent publications. The vibration signals data-
base comprises samples collected at both 12 k and48 k samples/sec-
ond rates. The highest accuracy for the signals from the 12 kHz
dataset was observed to be 99.94%, while for signals from the
48kHzdataset, itwas 98.95%. Ten categories of bearingunder differ-
ent fault levels are used in this study, as presented in Table 2 (Index
1–10). Each category of vibration data is collected from 3 different
loads (1, 2, 3hp) at a sampling frequencyof 48kHz. TheKAtdata cen-
tre provides real bearing damage signals caused by the accelerated
lifetime test. The test rig and experimental details can be found in
[39]. Ten categories of faulty bearings with different fault levels in
different locations are gathered in Table 2 (Index 11–20). Each bear-
ing was tested under four different operating conditions, which are
denoted as N1, N2, N3, and N4 in Table 3.

In this study, six datasets are constructed from the above-
gathered bearing vibration data to validate the proposed method,
as described in Table 3. Among them, dataset A and dataset E are
collected from CWRU and KAt datasets, respectively, with the same
operating condition on training and test data. It can be concluded
from the previous study that it is more difficult to classify the data-
sets with different operating conditions on training and test data.
Therefore, datasets B-D and dataset E are constructed to evaluate
the performance of the proposed method under various operating
conditions.

3.2. Evaluation method

Each model runs ten times with random initial conditions, and
the average classification accuracy and standard deviation are used
to evaluate the probed models, which are defined as follows:

Acc ¼ TP þ TN
TP þ FN þ FP þ TN

ð4Þ

Std ¼ 1
n

Acci � lð Þ2 ð5Þ

where TP, FN, FP and TN abbreviate the True Positive, False Nega-
tive, False Positive and True Negative, respectively, n denotes the
number of trials, Acci is the accuracy of the i-th trial, l is the mean:
l ¼ 1

n

Pn
i¼1Acci.

3.3. Implementation details and comparison methods

3.3.1. Comparison with single deep networks
Various deep neural network architectures with increasing

depths are proposed in this work for comparison, which are de-
tailed as follows:
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(1) Fully connected neural network (FCNN).
(2) Stacked Autoencoder with supervised fine-tuning (SAE).
(3) Gaussian-Bernoulli Deep Belief Network with supervised

To probe their performance under a relative fair circumstance,
all networks are trained with same hyperparameters. The Adam
stochastic optimization algorithm is applied to update the network

Table 1
Summary of the use of CWRU dataset in recent publications.

Refs Load (HP) Frequency (kHz) Class Training/test samples Accuracy (%)

[4] * 12 12 4200/600 98.47
[8] 3 48 10 1680/720 98.46
[9] 0 ! 0/0 ! 1/0 ! 2 12 12 2400/1200 98.5/97.1667/95.8333
[11] 0/1/2/3 12 10 1000/1000 99.57/99.32/99.54/99.43
[14] 0–3 12 8 * 99.94
[15] 0–3 * 12 1800/900 96.44
[18] 0–3 48 10 * 98.95

Table 2
Description of the gathered vibration signals from CWRU and KAt data centers.

Data base Index Fault location Fault level Data base Index Fault location Bearing code Fault type Fault level

CWRU 1 – 0 KAt 11 – K001 – 0
2 IR 0.007 12 IR KI16 Fatigue pitting 3
3 IR 0.014 13 IR KI17 Fatigue pitting 1
4 IR 0.021 14 IR KI18 Fatigue pitting 2
5 Ball 0.007 15 OR KA16 Fatigue pitting 2
6 Ball 0.014 16 OR KA22 Fatigue pitting 1
7 Ball 0.021 17 OR KA15 Indentations 1
8 OR 0.007 18 OR + IR KB23 Fatigue pitting 2
9 OR 0.014 19 OR + IR KB24 Fatigue pitting 3
10 OR 0.021 20 OR + IR KB27 Indentations 2

Table 3
Description of the extracted six datasets under various operating conditions.

Datasets Class number indices Training set Test set

Operating condition Sample number Operating condition Sample number

A 10 1–10 L1, L2, L3 4500 L1, L2, L3 4500
B L1 3000 L2, L3 6000
C L2 3000 L1, L3 6000
D L3 3000 L1, L2 6000
E 11–20 N1, N2, N3, N4 8000 N1, N2, N3, N4 8000
F N1, N2 8000 N3, N4 8000
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fine-tuning (DBN).
(4) Gate Recurrent Unit Network for fault diagnostics (GRU)

[40].
(5) One-dimensional LeNet5 (1D-LeNet5).
(6) One-dimensional AlexNet (1D-AlexNet).
(7) One-dimensional Deep Residual Network (1D-ResNet).
(8) One-dimensional Deep Densely Connected Network (1D-

DenseNet).

Among the above eight architectures, (1)-(3) are fully connected
networks with the shared architecture configuration of
1024;512;256;128½ �. SAE and DBN are employed to learn unsuper-
vised features from data which are followed by a supervised fine-
tuning process for fault diagnostics. The unsupervised learning is
trained for 30 epochs. (4) is a fault diagnostics-based recurrent
neural network architecture proposed in [40], which consists of a
linear layer, a GRU layer and a classification module with a multi-
layer perceptron. To maintain the consistence of the input of all
probed networks, the data length is set as 1024, which is converted
to a 16� 64½ � image, i.e., the sequential length of GRU cell is 16. The
linear layer maps the dimension of the raw image to 16� 1024½ �,
and the output is fed into GRU cell with a hidden size of 1024.
The classification module consists of two hidden layers with
1024 neurons and an output layer. (5)-(8) are convolutional neural
networks with increasing depth of hidden layers, the configuration
of their network architectures is detailed in Tables 4 and 5.
weights [55]. Epoch number and batch size are set as 50. The initial
LR is set as 0.001 and decreases with a decay rate of 0.001 for each
iteration after 20 training epochs. The LR with decay is denoted as
LRD in this work. The deep network without HSE is denoted as a
single network. Single networks are served as references to the
ensembled neural networks.

3.3.2. Comparison with different ensemble strategies
Several ensemble approaches designed for neural networks are

investigated. They are roughly divided into two categories in this
study: training strategy and learning strategy. The training strategy
aims at encouraging the diversity of the acquired base models,
while the learning strategy provides optimal solutions to combine
these base models. The implementation details are presented
below:

3.3.2.1. Training strategies:.
(1) MBGD + CLR (the proposed).
(2) CCALR in Snapshot ensemble [34].
(3) Boosted framework.
(4) Snapshot boosting ensemble [37].

In (2), the models are warmed up for 20 epochs with initial LR of
0.001, and then the LR is scheduled with CCALR, and a snapshot or
history-state of the model is taken when the LR reaches its mini-
mum at each cycle. The Snapshot number of 5 and 30 are investi-



gated in this work, i.e., 5 and 30 base models are acquired, which
are denoted as ’Snap50 and ’Snap300, respectively. (3) The models

3.3.3. Comparison with shallow learning algorithms
The performance of several types of classical shallow learning

Table 4
The proposed 1D-CNN architectures with increasing network depths.

1D-LeNet-5 1D-AlexNet 1D-ResNet 1D-DenseNet

Layers Output size Layers Output size Layers Output size Layers Output size

Input 1024@1 Input 1024@1 Input 1024@1 Input 1024@1
C125; S1; P0
A12; S2; P0

� �
445@16 C125; S1; P0

A12; S2; P0

� �
445@16 C125; S1; P0

A12; S2; P0

� �
445@16 C125; S1; P0

A12; S2; P0

� �
445@16

C7; S2; P0½ � 220@16 C7; S1; P3
A7; S2; P0

� �
220@16 RL� 2 445@16 DL� 2 445@16

C5; S1; P0½ � � 3 220@32 C5; S2; P0½ � 221@16 TL 221@16
RL� 2 221@32 DL� 2 221@32
C5; S2; P0½ � 109@32 TL 109@32
RL� 2 109@64 DL� 2 109@64
C5; S2; P0½ � 53@64 TL 53@64
RL� 2 53@64 DL� 2 53@64

A5; S5; P0½ � 44@32 A5; S5; P0½ � 44@32 C5; S2; P0
A4; S1; P0

� �
22@64 C5; S2; P0

A4; S1; P0

� �
22@64

Flatten 1408@1 Flatten 1408@1 Flatten 1408@1 Flatten 1408@1

Note: C denotes the convolutional kernel, A denotes the average pooling kernel, S and P are the stride and padding number of each kernel, respectively. Flatten stands for the
concatenated layer. The output size is denoted by the notation ‘a@b’, where a represents the length of the output vector, and b is the number of output channels.

Table 5
Description of RL, DL, and TL.

Layers Description Parameters

RL Residual block C15; S1; P7
C15; S1; P7

� �
DL Densely connected block C1; S1; P0

C15; S1; P7

� �
TL Transition layer C1; S1; P0

A5; S2; P0

� �
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are warmed up for 20 epochs and then trained with the boosted
framework as described in subsection 3.2.2. The sample weights
are updated every epoch after the first 20 epochs, and a total of
30 history states are recorded. (4) The Snapshot boosting ensemble
is introduced in [37]; the original method is based on an image
processing task. The models are warmed up for 20 epochs, and
then both boosted framework and CCALR are applied to train the
models. The Snapshot number is 30.

3.3.2.2. Learning strategies:.
(5) AV.
(6) Ranking voting.

(7) Weighted voting + PSO.

cy fea

C

0.808
(8) Selective voting + PSO.

In (6), a validation set is used to evaluate the performance of the
recorded base models, and only the base models with the top n
classification accuracy on the validation set participate in the vot-
ing. In this work, 10% of training samples are randomly extracted
out as a validation set, and n is set as 3. The PSO algorithms are
served as meta-learner to implement (7) and (8). The swarm size

Table 6
Fault diagnostics accuracy of shallow learning algorithms based on time and frequen

Models Datasets

A B

KNN 0.8658 0.8085

SVM 0.9106 0.8362 0.864
RF 0.9251 0.8303 0.836
Adaboost 0.8802 0.7945 0.808
GBDT 0.9195 0.8271 0.833
XGboost 0.8716 0.7728 0.790

6

and the number of iterations are set as 100. Acceleration coeffi-
cients, c1 and c2, are set as 0.5. The inertia weight is 0.9. In (7), par-
ticle swarm optimization (PSO) is utilized to adaptively learn the
weights of all base models based on their performance on the val-
idation set, and the prediction is given by the weighted base mod-
els. While in (8), only the base models with positive weights
participate in the voting, and the prediction is given by the aver-
aged output of the selected base models.
and ensemble algorithms are probed as comparison methods, as
listed below.

(1) k-nearest neighbors (KNN).
(2) Support Vector Machine (SVM).
(3) Random forest.
(4) AdaBoost.
(5) Gradient-Boosted Decision Trees (GBDT).
(6) XGBoost.

Common time- and frequency-dependent features are extracted
from the raw signal as the input of each model as Root Mean
Square, Skewness, Kurtosis, Shape factor, Crest factor, Impulse fac-
tor, Margin factor, Power, Mean frequency, RMSF, RVF. In model
(1), the number of neighbors is set as 1. (2) The Gaussian kernel
is employed, and the kernel coefficient is defined by
1= L� varðXÞð Þ, where L denotes the number of classes, varðXÞ rep-
resents the variance of input X. The regularization parameter is 1.
DT is served as the base model for (3–6), and the number of base
models is set as 50. In (4), the LR value is 0.5, and the maximum
depth of the individual model is 3. (5) LR is 0.5, and the maximum
depth of each individual tree is 5. (6) The LR value is 0.9, L1 regu-

tures.

D E F

5 0.7395 0.7059 0.6609

2 0.8053 0.7592 0.7035
0 0.7891 0.8084 0.7047
0 0.7332 0.7374 0.6500
6 0.7716 0.7916 0.6874
1 0.7492 0.6910 0.6193
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4.2. Discussion on the comparison results
larization term is 0.1, and the maximum depth of each individual
tree is 5.

4. Results and discussion

We first look at the influence of different LR schedulers on the
loss value of deep networks, as shown in Fig. 3. It can be observed
from Fig. 3a that the loss value converges with the decay of LR,
which indicates that the model gradually reaches a local minimum.
Fig. 3c shows the loss value of the model with the CCALR scheduler.
There are obvious ups and downs of loss value with the cyclic eval-
uation of LR, which manifests the CCALR encourages the model to
attain multiple local minimums. Fig. 3b and d show the loss value
of the same network architecture, which has been trained by CLR.
Compared with Fig. 3a, their loss value converges at a higher level
and exhibits more significant fluctuations. The observation of LR
and its corresponding loss value indicates that the models have
been adequately trained.

Then, each probed method runs ten times on every network
with the randomly generated training dataset and weights, and
the average classification accuracy is measured. Detailed experi-
mental results on datasets A-F of each method are shown in Tables
8–13 in the appendix. When comparing with recent publications
cited in Table 1, which employed the same datasets sampled at
48 kHz (data A), it was observed that 1D-DenseNet using the pro-
posed ensemble method (MBGD + CLR + AV) achieved the highest
average accuracy of 99.19% on dataset A. This result is superior to
what has been reported earlier, c.f., Table 1.

To facilitate the observation of the results, the average accuracy
of 1D-LeNet5, 1D-AlexNet, 1D-ResNet and 1D-DenseNet are plot-
ted in Fig. 4. To measure the effectiveness and robustness of DHSE
on different network architectures and datasets, the accuracy and
standard deviation of the probed eight deep networks on datasets
A-F are averaged and shown in Fig. 5.

4.1. Display of comparison experiments
4.1.1. Ensemble networks compared to single networks

7

LR scheduler is crucial for network training. We probed the sin-
gle networks in two cases: trained by CLR and LRD schedulers, re-
spectively. LRD is a widely used tool, which encourages the
network to converge to a local minimum. It can be seen in Fig. 5
that the average accuracy of single networks with CLR is 0.7584,
which is improved to 0.7861 through the utilization of LRD. In ad-
dition, the average standard deviation of single networks with LRD
is smaller than CLR. The result reveals that for single networks, the
use of LRD helps to improve the performance and stability of the
model. For comparison, the ensemble method was applied to single
networks, which are denoted as ’MBGD + CLR + AV’ and ’MBGD +
LRD + AV’, respectively. Among them, the ’MBGD + CLR + AV’ is
the strategy advocated in this work. Through HSE, the performance
of ’single + LRD’ is further improved to 0.7883 in Fig. 5. More no-
tably, the performance of ’single + CLR’ is largely improved up to
0.7994 average accuracy by ’MBGD + CLR + AV’. A conclusion can
be drawn that for HSE the CLR scheduler works better than LRD,
which is the opposite of the case of single networks. And this is
not just a coincidence; the same behaviour can be observed in all
probed network architectures on each dataset, as shown in Fig. 4
(more details can be found in Tables 8–13 in the appendix). The
reason is presumed to be the balance between the diversity and ac-
curacy of the base models, which will be discussed later.

Besides, it is worth noting from Fig. 4 that although 1D-
DenseNet exhibits the best performance on datasets A, E and F,
its performance decreases on datasets B, C and D compared with
other networks. The result confirms the above statement that the
performance of a carefully designed network architecture might
decrease on other tasks. However, the model performance can be
generally improved by HSE regardless of the network architectures
and datasets, demonstrating the general capability of the proposed
method to be self-adapted to different network structures.

4.1.2. Comparison of different ensemble strategies
Through different combinations of training and learning strate-

gies, a total of 21 ensemble strategies for HSE are probed in this
work. Taking the performance of ’single + CLR’ and ’single + LRD’
as baselines, Figs. 4 and 5 show that most of the ensemble strate-
gies outperform the ’single + CLR’ model. Besides, this model also
exhibits the highest average standard deviation. However, only
seven probed ensemble strategies work better than the ’single +
LRD’ model. Among them, the proposed ’MBGD + CLR + AV’ strate-
gy exhibits the highest average accuracy and lowest standard devi-
ation, thus demonstrating the relative effectiveness and robustness
of the method.

4.1.3. Comparison with shallow learning methods
The performance of shallowing learning methods is presented

in Table 6. It can be concluded that deep networks like 1D-
LeNet5, 1D-AlexNet, 1D-ResNet and 1D-DenseNet are much supe-
rior to shallow learning methods. Thus, we demonstrated that
ensemble learning combined with strong classifiers could make
full use of the advantages of both methods.
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The ensemble performance is directly affected by the diversity
and accuracy of the acquired base models. To uncover their inner
working mechanism, the diversity and base model accuracy
(BMA) acquired by the probed ensemble strategies are quantified
as:

Diversity ¼
XN
i¼1

XN
j¼1

Pm
k¼11 f ki –f kj

� �
m

0
@

1
A=N2 ð6Þ

BMA ¼
XN
j¼1

Pm
k¼11 f mi ¼ yk

� �
m

 !
=N ð7Þ

where 1 �ð Þ is an indicator function, which output is 1 when the re-
sult of the Boolean operation is true, otherwise, it is 0. N and m rep-
resent the number of base models and test samples. f mi stands for
the predicted label of the i-th base model and the k-th test sample.
ym represents the true label of the k-th test sample. Therefore,
Diversity measures the ratio of the two base models generating dif-
ferent labels for the same sample, and BMA measures the mean ac-
curacy of all base models. The average Diversity and BMA of all
probed network architectures and datasets are plotted in Fig. 6.
One can observe that the diversity of base models is roughly in-
versely proportional to the accuracy of base models. The training
strategies and learning strategies are discussed separately. More de-
tails will be u below.

4.2.1. Discussion on the training strategies
Then, we discuss the experimental results with diversity-

accuracy tradeoff.

4.2.1.1. Discussion of LRD and CCALR. As concluded above, although
LRD effectively increases the accuracy of single networks, its per-
formance is inferior to CLR in HSE. This is because LRD encour-
ages the network to converge to one local minimum; thus, the
acquired base models have low diversity. The same reason ap-



plies to the CCALR scheduler in Snapshot ensemble. However,
CLR usually approaches the local minima in a noisy manner
which encourages the diversity of base models. It can be seen

CCALR, both ’Boosting’ and ’MBGD + CLR’ training strategies gener-

Fig. 3. Loss value of different training methods - exemplified from 1D-LeNet5 of trial 1 on dataset A. (a) The LRD is initially set as 0.001 and then starts to decrease with a
decay rate of 0.001 for each iteration after 20 epochs. (b) CLR+MBGDwith a constant value of 0.001 (the proposed method). (c) CCALR with Snapshot number of 5. (d) Boosting
+CLR with a constant value of 0.001, 10% of training samples are randomly extracted out as validation set.

Table 7
Training and test cost time of 1D-LeNet5 trained by ‘MBDG + CLR’ methods on dataset
A with different learning strategies.

Learning
strategy

Number of
base models

Training time (s)/
Sample number

Test time(s)/
Sample number

Single 1 25.56/4500 0.1/4500
AV 30 25.75/4500 2.96/4500
Ranking

voting
3 24.26/4500 0.38/4500

Weighted
voting + PSO

30 29.29/4500 3.17/4500

Selective
voting + PSO

14 29.37/4500 1.43/4500
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that the ’Snap50, ’MBGD + LRD’ and ’Snap300 occupy the top
three positions of BMA across all methods. But their diversity
Fig. 4. The average accuracy of the selected four network architectures on datasets A-F. Pl
each dataset.
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is low. Hence, the performance increment of these methods to
single networks is limited. Although, theoretically, the Snapshot
ensemble provides the likelihood to jump out of the current lo-
cal minimum in some cases, it is practically difficult to guaran-
tee a successful result. Instead, the ’MBGD + CLR’ is easier to
implement and more robust.

4.2.1.2. Discussion on the boosted framework. Contrary to LRD and
ate high diversity in base models; however, the BMA of the ’Boost-
ing’ method is much lower than ’MBGD + CLR’. The reason
presumably is that the ’Boosting’ method forces each base model
to focus on these currently difficult-to-classify samples; conse-
quently, the total training sample of each base model is reduced
and biased. Although the diversity of base models has increased,
the accuracy has also decreased. The combination of ’Boosting’
and CCALR in Snapshot ensemble still cannot overcome the
above-mentioned problems.
ots are sorted by the descending order of the average accuracy of the four models on



4.2.2. Discussion on the learning strategies
Three learning strategies are introduced as a comparison, in-

cluding ’Ranking voting’, ’Weighted voting’ and ’Selective voting’.
The probed methods apply different selection criteria to the
ensemble method, endowing different degrees of freedom to the

performance is highly related with base model number; (2) with
the same number of base models, larger h2 tends to have higher ac-
curacy, this is presumably because each base model is updated
more often with larger h2 which encourages the diversity of base
models. The two rules can be regarded as the selection criteria of

unchanged. The performance of the proposed HSE method is com-
pared with the corresponding single model under different training

Fig. 5. The averaged classification accuracy and standard deviation of DHSEs with various ensemble strategies and single model on datasets A-E and different network
architectures. (a) Average classification accuracy in descending order. (b) Average standard deviation in descending order.

Fig. 6. Measure of diversity and mean accuracy of base models. The picture is
sorted by the descending order of the average diversity of the probed network
architectures and datasets.

Fig. 7. Average accuracy of MBGD+CLR+AV with different selection of parameters
h1 and h2.
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obtained base model, among which the proposed ’AV’ gives the
highest degree of freedom to the base models, followed by the ’se-
lective voting’, ’Ranking Voting’, and ’Weighted Voting’. As can be
observed from Fig. 5, the ensemble performance is highly correlat-
ed with the selection criteria, and the methods with a higher de-
gree of freedom tend to perform better. The reason presumably
is that the strict selection criteria formulated on training or valida-
tion datasets are likely to cause overfitting.

4.3. Parameter analysis

4.3.1. Ensemble parameters
The selection of the parameters h1 and h2 directly affects the

number of base models. Fig. 7 shows the average accuracy of
’MBGD + CLR + AV’ with different selection of parameters h1 and
h2 as well as corresponding base model number. Take the perfor-
mance of ’Snap50 and ’Single + LRD’ as two base lines, it can be con-
cluded from the experimental results that: (1) the ensemble
the proposed method. However, the specific setting of h1 and h2 de-
pends on the specific task. Nevertheless, the performance of Snap-
shot ensemble does not show a direct relationship with the base
model number through the comparison between ’Snap50 and
’Snap300.

4.3.2. Training epochs
We investigated the influence of training budget to the model

performance. To facilitate analysis, the ensemble parameter h2 is
fixed as 1, and the number of base models is fixed as 10; the
warm-up parameter h1 is defined as N � 10, where N denotes the
number of training epochs. The other hyper-parameters remain



epochs ranging from 10 to 100, as displayed in Fig. 8. The example
is taken from 1D-LeNet5. The red line represents the accuracy of
the proposed method under different training epochs. The black

bility of bearing fault diagnostics by introducing an effective and
user-friendly HSE strategy, which is evaluated across various net-
work architectures. The experimental results reveal that deep net-

Fig. 8. Accuracy of the probed methods with different training epochs.
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line represents the accuracy of a single network corresponding to
training epochs, while the blue line is the moving average accuracy
of the single network with a window length of 10. One can observe
that the ensemble network shows less fluctuation in accuracy with
different training epochs. The blue line and red line show similar
performance variability; however, the accuracy of the proposed
method is maintained on the upper envelope of the single network.

4.4. Computational cost

As has been noted, the DHSE does not increase the training time
of the model. However, the test time is inevitably increased to
t � N, where t denotes the test time of a single network, and N rep-
resents the number of base models. Table 7 presents the training
and test cost time of 1D-LeNet5 using the ’MBDG + CLR’ training
method on dataset A. The training cost of ’Weight Voting’ and
’Selective Voting’ is increased because of the use of PSO algorithms.
Although the test time is increased, it is small for every single
sample.

5. Conclusion

In this paper, the ensemble techniques combining the ’history-
states’ generated during network training are denoted as HSE
methods. The proposed methodology aims at enhancing the relia-
works can produce multiple base models for ensemble learning
using a combination of MBGD, CLR, and AV methods once the
training process reaches a stable phase. Compared with peer meth-
ods, the proposed ensemble strategy benefits from simplicity,
which is evident from the following aspects:

(1) Ensemble strategy: this work integrates existing concepts in
an enhanced accuracy-improving workflow. The use of de
facto accepted tools enhances the method’s accessibility
and applicability, making it an easy-to-implement option
for practitioners seeking to improve the model performance.

(2) Selection of base models: the proposed method differs from
many peer methods like Snapshot ensemble struggling to
encourage neural networks to reach different local optima.
Instead, the proposed method focuses on utilizing ’local
sub-optima’ to achieve its goals. By doing so, the proposed
method avoids the intricate task of defining qualified base
models, resulting in reduced complexity.

(3) Hyper-parameters: the proposed method requires fewer hy-
perparameters to be tuned and exhibits robustness to the se-
lection of hyperparameters through parameter analysis.

Comparing the experimental findings with peer methods
demonstrates that the proposed ’MBGD + CLR + AV’ exhibits a bet-
ter classification accuracy while having a lower standard deviation,



Zt�1

1; iff t xið Þ ¼ yi



GRU

0.94
0.90
0.95
0.95
thus showing the relative effectiveness and robustness of the pro-
posed methodology.

Nevertheless, the efficiency of HSE methods still needs to be in-
vestigated in a broader range of applications, which is in the focus
of our further study. Up to now, we have successfully tested the
proposed methodology against several other applications, includ-
ing unsupervised early fault detection and the problem of stream-
ing data with emerging new classes, the readers can find more
details in [41,42].
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Appendix

1. Cyclic cosine annealing learning rate
Snapshot ensemble adopted a cyclic cosine annealing learning

rate (CCALR) schedule to encourage the model to reach multiple lo-
cal minima during training [34]. The LR is lowered at a very fast
pace at first, encouraging the neural networks to converge towards
its local minimum. Then the optimization continues at the initial
LR, and the procedure repeats several times. The shifted cosine
function is used to obtain the LR at each iteration, which is math-
ematically described below.

a tð Þ ¼ a0

2
cos

p �mod t � 1; T=M½ �ð Þ
T=M½ �

� 	
þ 1

� 	
ð8Þ

where a tð Þ denotes the LR at the iteration number of t, a0 is the ini-
tial LR, T represents the total number of training iterations and M is
the number of cycles the procedure is repeated. A ’snapshot’ of the
model is taken when the LR reaches its minimum at each cycle;
thus, a total of M models are acquired. The snapshot of the model
is also referred as the history-state of the model in this work. There-

Table 8
Average accuracy of the probed methods on dataset A.

Methods BPNN SAE DBN

Single + LRD 0.8407 0.8402 0.8377
Single + CLR 0.7861 0.7827 0.7786
MBGD + LRD + AV 0.8433 0.8418 0.8393
MBGD + CLR + AV 0.8698 0.8700 0.8689
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Snap5 + AV 0.8573 0.8509 0.8540 0.95
Snap30 + AV 0.8516 0.8495 0.8497 0.94
Boosting + AV 0.8366 0.8388 0.8402 0.94
Boosting + Snapshot + AV 0.8265 0.8300 0.8263 0.94
MBGD + CLR + Ranking 0.8265 0.8246 0.8310 0.94
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fore, Snapshot ensemble can be regarded as an implementation of
DHSE with scheduled LR, and CCALR is a type of training strategy.

2. Boosted training strategy

Boosting technique trains a number of weak learners sequen-
tially through an iterative arrangement of training samples to form
a stronger model. The technique gives larger weights to those sam-
ples that were misclassified by the previous weak learners; in this
way, the classifiers are supposed to have less overlap in the set of
samples they misclassify. A boosted framework for the neural net-
work was proposed in [37], the data distribution of each classifier
is arranged as follows:

Wt ið Þ ¼ 1=n
e�bt�1 �a; i ¼ 1;2; � � �n: ð9Þ
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bt ¼
1
2
log

1� �t
�t

þ 1
10

log k� 1ð Þ ð10Þ
�t ¼ 1
n

Xn
i¼1

I f t xið Þ–yið Þ ð11Þ
a ¼ �1; iff t xið Þ–yi
ð12Þ

where Wt ið Þ denotes the weight of i -th sample for the t-th classi-
fier, �t counts the number of misclassified samples. A higher value
of �t yeilds a smaller value of the coefficient bt , which will be further
reflected in a higher value of weight. Zt is a normalization factor,
which is defined as

Pn
i¼1e

�bt�1yif i xið Þ. The difference between the
boosted framework for a deep network with AdaBoost is: (1) A val-
idation set is used to count the �t , while conventionally, it is calcu-
lated by all training samples. (2) The weights Wt is updated from
the uniform distribution of 1=n for each classifier: note that in the
conventional procedure, it is updated from Wt�1 sequentially. (3)
The boosted framework used a meta-learner to combine the weak
classifiers with a validation set.

3. Weighted learning strategy

The weighted ensemble output is expressed as:

Ei ¼ wi �
XN
i¼1

expðbi þW i
j �HÞPc

j¼1expðbi þW i
j �HÞ

ð13Þ

Compared with AV, the weighted voting applies a meta-leaner
to adaptively learn the weight of each base model wi.

4. The detailed experimental results on dataset A-F are presented
in Tables 8–13.

1D-LeNet5 1D-AlexNet 1D-ResNet 1D-DenseNet

94 0.9846 0.9835 0.9855 0.9907
94 0.9783 0.9750 0.9536 0.9873

01 0.9846 0.9843 0.9866 0.9913
43 0.9850 0.9852 0.9868 0.9919

16 0.9851 0.9845 0.9872 0.9917
97 0.9851 0.9847 0.9874 0.9909
75 0.9848 0.9837 0.9862 0.9903
58 0.9842 0.9845 0.9866 0.9899
16 0.9834 0.9820 0.9850 0.9903

(continued on next page)



Table 8 (continued)

Methods BPNN SAE DBN GRU 1D-LeNet5 1D-AlexNet 1D-ResNet 1D-DenseNet

Snap5 + Ranking 0.8317 0.8346 0.8316 0.9450 0.9831 0.9833 0.9865 0.9911
Snap30 + Ranking 0.8213 0.8229 0.8241 0.9444 0.9839 0.9833 0.9859 0.9907
Boosting + Ranking 0.8082 0.8116 0.8120 0.9391 0.9834 0.9815 0.9838 0.9894
Boosting + Snapshot + Ranking 0.8144 0.8176 0.8194 0.9437 0.9837 0.9831 0.9854 0.9899
MBGD + CLR + Weight 0.7897 0.7969 0.7834 0.9111 0.9744 0.9684 0.9708 0.9883
Snap5 + Weight 0.8247 0.8295 0.8272 0.9434 0.9827 0.9827 0.9861 0.9911
Snap30 + Weight 0.8028 0.8031 0.8048 0.9390 0.9804 0.9771 0.9802 0.9897
Boosting + Weight 0.7793 0.7769 0.7830 0.9171 0.9745 0.9682 0.9676 0.9886
Boosting + Snapshot + Weight 0.7978 0.7999 0.8041 0.9308 0.9793 0.9771 0.9798 0.9895
MBGD + CLR + Select 0.8485 0.8499 0.8500 0.9486 0.9843 0.9839 0.9860 0.9911
Snap5 + Select 0.8335 0.8375 0.8329 0.9451 0.9835 0.9834 0.9865 0.9910
Snap30 + Select 0.8272 0.8292 0.8312 0.9453 0.9841 0.9837 0.9869 0.9909
Boosting + Select 0.8341 0.8362 0.8366 0.9463 0.9844 0.9832 0.9860 0.9904
Boosting + Snapshot + Ranking 0.8254 0.8295 0.8259 0.9456 0.9842 0.9841 0.9868 0.9899

Table 9
Average accuracy of the probed methods on dataset B.

Methods BPNN SAE DBN GRU 1D-LeNet5 1D-AlexNet 1D-ResNet 1D-DenseNet

Single + LRD 0.5719 0.5754 0.5777 0.8608 0.9252 0.8934 0.8667 0.8856
Single + CLR 0.5316 0.5533 0.5435 0.8190 0.9115 0.8869 0.8344 0.8932
MBGD + LRD + AV 0.5777 0.5799 0.5809 0.8609 0.9275 0.9011 0.8692 0.8901
MBGD + CLR + AV 0.5968 0.6041 0.6050 0.8635 0.9266 0.9098 0.8732 0.8989
Snap5 + AV 0.5803 0.5839 0.5851 0.8594 0.9280 0.9018 0.8685 0.8906
Snap30 + AV 0.5804 0.5827 0.5837 0.8584 0.9287 0.9049 0.8724 0.8940
Boosting + AV 0.5874 0.5942 0.5868 0.8685 0.9192 0.9044 0.8741 0.8974
Boosting + Snapshot + AV 0.5667 0.5698 0.5717 0.8653 0.9233 0.9017 0.8673 0.8970
MBGD + CLR + Ranking 0.5734 0.5769 0.5696 0.8572 0.9233 0.9024 0.8628 0.8939
Snap5 + Ranking 0.5686 0.5721 0.5678 0.8631 0.9228 0.9049 0.8685 0.8961
Snap30 + Ranking 0.5675 0.5709 0.5666 0.8665 0.9230 0.9009 0.8589 0.8972
Boosting + Ranking 0.5661 0.5747 0.5643 0.8602 0.9143 0.8984 0.8635 0.8963
Boosting + Snapshot + Ranking 0.5651 0.5665 0.5692 0.8659 0.9214 0.8973 0.8642 0.8971
MBGD + CLR + Weight 0.5482 0.5572 0.5481 0.8287 0.8994 0.8737 0.8451 0.8951
Snap5 + Weight 0.5649 0.5718 0.5697 0.8631 0.9229 0.8986 0.8655 0.8978
Snap30 + Weight 0.5622 0.5679 0.5582 0.8592 0.9201 0.8962 0.8534 0.8935
Boosting + Weight 0.5477 0.5459 0.5369 0.8141 0.9126 0.8518 0.8249 0.8881
Boosting + Snapshot + Weight 0.5566 0.5581 0.5624 0.8564 0.9131 0.8877 0.8483 0.8906
MBGD + CLR + Select 0.5892 0.5954 0.5915 0.8654 0.9250 0.9008 0.8654 0.8993
Snap5 + Select 0.5698 0.5731 0.5708 0.8619 0.9232 0.9014 0.8685 0.8966
Snap30 + Select 0.5677 0.5744 0.5684 0.8656 0.9240 0.9016 0.8647 0.8987
Boosting + Select 0.5858 0.5921 0.5849 0.8662 0.9187 0.9031 0.8732 0.8970
Boosting + Snapshot + Ranking 0.5668 0.5698 0.5716 0.8651 0.9237 0.9024 0.8683 0.8978

Table 10
Average accuracy of the probed methods on dataset C.

Methods BPNN SAE DBN GRU 1D-LeNet5 1D-AlexNet 1D-ResNet 1D-DenseNet

Single + LRD 0.5375 0.5383 0.5389 0.8357 0.9053 0.9002 0.8922 0.8976
Single + CLR 0.5150 0.5106 0.5096 0.8096 0.8964 0.8804 0.8445 0.9068
MBGD + LRD + AV 0.5403 0.5402 0.5421 0.8362 0.9066 0.9014 0.8940 0.9021
MBGD + CLR + AV 0.5606 0.5599 0.5596 0.8457 0.9092 0.9031 0.8973 0.9065
Snap5 + AV 0.5455 0.5472 0.5438 0.8362 0.9055 0.8965 0.8898 0.9015
Snap30 + AV 0.5424 0.5408 0.5438 0.8334 0.9086 0.8993 0.8951 0.9000
Boosting + AV 0.5440 0.5464 0.5466 0.8478 0.9074 0.9009 0.8877 0.9055
Boosting + Snapshot + AV 0.5294 0.5339 0.5326 0.8352 0.9049 0.8978 0.8802 0.9021
MBGD + CLR + Ranking 0.5338 0.5378 0.5372 0.8345 0.9054 0.8982 0.8861 0.9041
Snap5 + Ranking 0.5279 0.5349 0.5317 0.8363 0.9070 0.8955 0.8803 0.9057
Snap30 + Ranking 0.5264 0.5293 0.5265 0.8357 0.9056 0.8918 0.8801 0.9040
Boosting + Ranking 0.5255 0.5251 0.5276 0.8374 0.9047 0.8897 0.8805 0.9041
Boosting + Snapshot + Ranking 0.5239 0.5279 0.5311 0.8319 0.9027 0.8940 0.8776 0.9012
MBGD + CLR + Weight 0.5144 0.5198 0.5214 0.8187 0.8912 0.8684 0.8648 0.9081
Snap5 + Weight 0.5256 0.5316 0.5299 0.8337 0.9064 0.8954 0.8788 0.9068
Snap30 + Weight 0.5211 0.5221 0.5251 0.8320 0.9015 0.8860 0.8672 0.9022
Boosting + Weight 0.5114 0.5083 0.5147 0.8055 0.8851 0.8713 0.8448 0.9014
Boosting + Snapshot + Weight 0.5181 0.5243 0.5255 0.8290 0.8951 0.8882 0.8687 0.9010
MBGD + CLR + Select 0.5456 0.5486 0.5472 0.8449 0.9079 0.9002 0.8869 0.9062
Snap5 + Select 0.5284 0.5354 0.5336 0.8368 0.9066 0.8952 0.8819 0.9054
Snap30 + Select 0.5297 0.5311 0.5298 0.8352 0.9050 0.8957 0.8826 0.9042
Boosting + Select 0.5423 0.5448 0.5441 0.8466 0.9087 0.9001 0.8888 0.9050
Boosting + Snapshot + Ranking 0.5287 0.5330 0.5324 0.8349 0.9046 0.8978 0.8808 0.9027
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Table 11
Average accuracy of the probed methods on dataset D.

Methods BPNN SAE DBN GRU 1D-LeNet5 1D-AlexNet 1D-ResNet 1D-DenseNet

Single + LRD 0.5283 0.5351 0.5314 0.7932 0.8844 0.8556 0.8655 0.8666
Single + CLR 0.4991 0.4983 0.5006 0.7773 0.8755 0.8424 0.8451 0.8594
MBGD + LRD + AV 0.5324 0.5380 0.5344 0.7959 0.8893 0.8609 0.8721 0.8726
MBGD + CLR + AV 0.5499 0.5479 0.5519 0.8036 0.8911 0.8712 0.8762 0.8774
Snap5 + AV 0.5281 0.5339 0.5323 0.7949 0.8894 0.8635 0.8699 0.8817
Snap30 + AV 0.5332 0.5349 0.5336 0.7947 0.8888 0.8612 0.8718 0.8725
Boosting + AV 0.5332 0.5308 0.5365 0.7966 0.8883 0.8692 0.8707 0.8656
Boosting + Snapshot + AV 0.5241 0.5202 0.5194 0.7931 0.8853 0.8560 0.8728 0.8592
MBGD + CLR + Ranking 0.5214 0.5226 0.5266 0.7901 0.8904 0.8666 0.8704 0.8689
Snap5 + Ranking 0.5268 0.5201 0.5233 0.7897 0.8873 0.8655 0.8719 0.8669
Snap30 + Ranking 0.5224 0.5168 0.5172 0.7919 0.8895 0.8495 0.8707 0.8752
Boosting + Ranking 0.5209 0.5143 0.5176 0.7959 0.8842 0.8552 0.8622 0.8692
Boosting + Snapshot + Ranking 0.5219 0.5172 0.5160 0.7918 0.8907 0.8585 0.8645 0.8605
MBGD + CLR + Weight 0.5020 0.4978 0.5036 0.7709 0.8698 0.8169 0.8468 0.8581
Snap5 + Weight 0.5227 0.5198 0.5217 0.7902 0.8874 0.8620 0.8683 0.8642
Snap30 + Weight 0.5166 0.5124 0.5135 0.7958 0.8780 0.8502 0.8551 0.8698
Boosting + Weight 0.4944 0.4908 0.4994 0.7518 0.8627 0.8160 0.8262 0.8626
Boosting + Snapshot + Weight 0.5133 0.5073 0.5149 0.7905 0.8712 0.8225 0.8475 0.8580
MBGD + CLR + Select 0.5367 0.5362 0.5397 0.7943 0.8913 0.8674 0.8792 0.8726
Snap5 + Select 0.5261 0.5206 0.5233 0.7887 0.8865 0.8641 0.8722 0.8667
Snap30 + Select 0.5251 0.5185 0.5210 0.7924 0.8868 0.8645 0.8750 0.8716
Boosting + Select 0.5339 0.5311 0.5339 0.7960 0.8860 0.8674 0.8713 0.8643
Boosting + Snapshot + Ranking 0.5239 0.5204 0.5194 0.7928 0.8851 0.8545 0.8728 0.8602

Table 12
Average accuracy of the probed methods on dataset E.

Methods BPNN SAE DBN GRU 1D-LeNet5 1D-AlexNet 1D-ResNet 1D-DenseNet

Single + LRD 0.6306 0.6293 0.6286 0.9093 0.9392 0.9572 0.9598 0.9735
Single + CLR 0.5860 0.5874 0.5916 0.8588 0.9153 0.9183 0.9274 0.9615
MBGD + LRD + AV 0.6305 0.6296 0.6295 0.9100 0.9418 0.9585 0.9610 0.9746
MBGD + CLR + AV 0.6555 0.6554 0.6545 0.9213 0.9445 0.9602 0.9628 0.9762
Snap5 + AV 0.6475 0.6456 0.6442 0.9202 0.9433 0.9594 0.9650 0.9753
Snap30 + AV 0.6412 0.6418 0.6415 0.9185 0.9430 0.9606 0.9630 0.9760
Boosting + AV 0.6363 0.6383 0.6388 0.9132 0.9344 0.9462 0.9499 0.9689
Boosting + Snapshot + AV 0.6292 0.6309 0.6337 0.9122 0.9345 0.9496 0.9553 0.9705
MBGD + CLR + Ranking 0.6216 0.6199 0.6207 0.9000 0.9328 0.9505 0.9561 0.9723
Snap5 + Ranking 0.6236 0.6257 0.6252 0.9086 0.9357 0.9522 0.9619 0.9734
Snap30 + Ranking 0.6172 0.6191 0.6192 0.9028 0.9344 0.9516 0.9596 0.9721
Boosting + Ranking 0.6110 0.6163 0.6106 0.8977 0.9317 0.9485 0.9447 0.9680
Boosting + Snapshot + Ranking 0.6125 0.6169 0.6199 0.9014 0.9338 0.9518 0.9536 0.9704
MBGD + CLR + Weight 0.5900 0.5927 0.5928 0.8517 0.9172 0.9294 0.9359 0.9682
Snap5 + Weight 0.6196 0.6212 0.6197 0.8994 0.9337 0.9514 0.9599 0.9725
Snap30 + Weight 0.6085 0.6051 0.6054 0.8758 0.9265 0.9419 0.9503 0.9689
Boosting + Weight 0.5837 0.5902 0.5861 0.8543 0.9165 0.9303 0.9286 0.9637
Boosting + Snapshot + Weight 0.5968 0.6011 0.6004 0.8718 0.9255 0.9392 0.9440 0.9662
MBGD + CLR + Select 0.6405 0.6401 0.6408 0.9131 0.9374 0.9506 0.9606 0.9749
Snap5 + Select 0.6287 0.6319 0.6308 0.9126 0.9358 0.9527 0.9620 0.9737
Snap30 + Select 0.6254 0.6245 0.6270 0.9106 0.9362 0.9531 0.9611 0.9730
Boosting + Select 0.6347 0.6369 0.6368 0.9116 0.9343 0.9476 0.9493 0.9686
Boosting + Snapshot + Ranking 0.6278 0.6307 0.6324 0.9113 0.9346 0.9497 0.9556 0.9705

Table 13
Average accuracy of the probed methods on dataset F.

Methods BPNN SAE DBN GRU 1D-LeNet5 1D-AlexNet 1D-ResNet 1D-DenseNet

Single + LRD 0.5755 0.5752 0.5769 0.7430 0.7348 0.7870 0.8063 0.8326
Single + CLR 0.5345 0.5353 0.5375 0.6999 0.7173 0.7629 0.7624 0.8114
MBGD + LRD + AV 0.5759 0.5760 0.5774 0.7434 0.7326 0.7903 0.8078 0.8336
MBGD + CLR + AV 0.6033 0.6022 0.6031 0.7513 0.7380 0.7927 0.8114 0.8360
Snap5 + AV 0.5930 0.5920 0.5900 0.7446 0.7372 0.7915 0.8120 0.8321
Snap30 + AV 0.5906 0.5868 0.5901 0.7483 0.7345 0.7932 0.8093 0.8312
Boosting + AV 0.5874 0.5852 0.5854 0.7456 0.7276 0.7932 0.7934 0.8336
Boosting + Snapshot + AV 0.5773 0.5808 0.5776 0.7406 0.7259 0.7878 0.7945 0.8348
MBGD + CLR + Ranking 0.5671 0.5690 0.5689 0.7272 0.7273 0.7873 0.7854 0.8292
Snap5 + Ranking 0.5750 0.5767 0.5744 0.7343 0.7259 0.7892 0.7940 0.8316
Snap30 + Ranking 0.5656 0.5642 0.5675 0.7304 0.7244 0.7842 0.7929 0.8333
Boosting + Ranking 0.5568 0.5641 0.5592 0.7296 0.7264 0.7882 0.7833 0.8309
Boosting + Snapshot + Ranking 0.5629 0.5661 0.5670 0.7309 0.7262 0.7850 0.7932 0.8336
MBGD + CLR + Weight 0.5413 0.5377 0.5482 0.6815 0.7140 0.7665 0.7588 0.8217

(continued on next page)
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Table 13 (continued)

Methods BPNN SAE DBN GRU 1D-LeNet5 1D-AlexNet 1D-ResNet 1D-DenseNet

Snap5 + Weight 0.5688 0.5702 0.5717 0.7285 0.7239 0.7883 0.7898 0.8296
Snap30 + Weight 0.5496 0.5490 0.5528 0.7108 0.7183 0.7762 0.7798 0.8274
Boosting + Weight 0.5417 0.5384 0.5406 0.6908 0.7127 0.7592 0.7573 0.8279
Boosting + Snapshot + Weight 0.5423 0.5481 0.5498 0.7072 0.7155 0.7699 0.7809 0.8276
MBGD + CLR + Select 0.5886 0.5889 0.5885 0.7480 0.7294 0.7937 0.7959 0.8317
Snap5 + Select 0.5791 0.5819 0.5781 0.7358 0.7258 0.7894 0.7939 0.8320
Snap30 + Select 0.5738 0.5783 0.5762 0.7348 0.7254 0.7882 0.7970 0.8350
Boosting + Select 0.5857 0.5848 0.5863 0.7456 0.7266 0.7934 0.7917 0.8318
Boosting + Snapshot + Ranking 0.5761 0.5802 0.5779 0.7395 0.7253 0.7874 0.7950 0.8349
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Abstract: Early fault detection (EFD) in run-to-failure processes plays a crucial role in the condition
monitoring of modern industrial rotating facilities, which entail increasing demands for safety, energy
and ecological savings and efficiency. To enable effective protection measures, the evolving faults have
to be recognized and identified as early as possible. The major challenge is to distil discriminative
features on the basis of only the ‘health’ signal, which is uniquely available from various possible
sensors before damage sets in and before the signatures of incipient damage become obvious and
well-understood in the signal. Acoustic emission (AE) signals have been frequently reported to be
able to deliver early diagnostic information due to their inherently high sensitivity to the incipient
fault activities, highlighting the great potential of the AE technique for EFD, which may outperform
the traditional vibration-based analysis in many situations. To date, the ‘feature-based’ multivariate
analysis dominates the interpretation of AE waveforms. In this way, the decision-making relies
heavily on experts’ knowledge and experience, which is often a weak link in the entire EFD chain.
With the advent of artificial intelligence, practitioners seek an intelligent method capable of tackling
this challenge. In the present paper, we introduce a versatile approach towards intelligent data
analysis adapted to AE signals streaming from the sensors used for the continuous monitoring of
rotating machinery. A new architecture with a convolutional generative adversarial network (GAN)
is designed to extract the deep information embedded in the AE waveforms. In order to improve the
robustness of the proposed EFD framework, a novel ensemble technique referred to as ‘history-state
ensemble’ (HSE) is introduced and paired with GAN. The primary merits of HSE are twofold: (1) it
does not require extra computing time to obtain the base models, and (2) it does not require a special
design of the network architecture and can be applied to different networks. To evaluate the proposed
method, a durability rolling contact fatigue test was performed with the use of AE monitoring. The
experimental results have demonstrated that the proposed ensemble method largely improves the
robustness of GAN.

Keywords: early fault detection; acoustic emission signal; unsupervised learning; ensembled method;
convolutional GAN

1. Introduction

A rolling bearing is the core component in many rotating machines. Any failure in
rolling bearings can lead to a chain reaction of faults in the whole mechanical system,
causing the rapid and unexpected breakdown of the machine. Being an essential part of
condition monitoring, the early and accurate identification of an imminent failure is deemed
effective in reducing property loss and even possible casualties caused by catastrophic in-
dustrial breakdowns. Recent years have seen the rapid development of innovative artificial
intelligence (AI) algorithms, including two major groups: machine learning (ML) and deep
learning (DL). Inspired by the progress in this field on the one hand, and informed by the
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long-standing unaddressed challenges faced by traditional ‘feature-based’ approaches, prac-
titioners strive to find new solvers—intelligent methods capable of detecting the emerging
faults early, reliably and seamlessly, without heavy reliance on human labor and expert
experience [1,2]. To date, numerous intelligent fault diagnosis schemes have been proposed.
Lei et al. have analyzed the relevant bibliometric data in this field [2]. The application of DL
started to thrive after 2015 and it gradually surpassed traditional ML models. At present, the
DL-based machine fault diagnosis framework has become the mainstream of intelligent fault
diagnostics. Compared with traditional ML models, the procedures of feature extraction and
fault recognition are integrated within the DL approach. The DL approach is unique in that
it is capable of extracting features automatically from the input data through multiple layers
comprising processing units called hidden neurons. This makes DL suitable to process the
raw signal straightforwardly, without any signal pre-processing. Classical DL architectures
include the Back Propagation Neuron Network (BPNN) [3], Convolutional Neuron Network
(CNN) [4,5], Deep Boltzmann Machine (DBM), Deep Brief Network (DBN), Autoencoder
(AEN) [6,7], Long Short-Term Memory (LSTM) network [8,9] and their variants.

The emerging damage in the machine can be communicated through different sig-
nal sources. Among them, the vibration-based technique is the most widely used one
owing to its simplicity, the transparency of the analysis based on spectral features and
cost advantages. However, there are shortcomings of vibration signals, which are to be
mentioned. Firstly, the vibration acceleration signals can hardly be detectable until the
damage develops significantly to a mature stage, corresponding to large-scale faults causing
vibrations in heavy or slowly rotating structures. It is often too late to use this information
for preventive maintenance [10]. Secondly, the vibration signals induced by early defects
are easily masked by the routine background mechanical vibration of the rotating machine.
It has been frequently reported that acoustic emission (AE) signals can detect the incipient
crack earlier than traditional vibration signals [11–14]. Even if this claim is not always
justified, the modern AE technique provides a promising means for EFD in roller bearings.
The AE is referred to as a phenomenon of transient elastic wave generation by a sudden
local drop in internal stress within the material. Compared to the vibration signal, AE
has a much wider frequency range (20 kHz to 10 MHz), and, thus, it does not overlap or
interfere with low-frequency mechanical vibration signals. To date, the ‘feature-based’ para-
metric analysis prevails in interpreting information derived from AE waveforms [15–17].
However, these hand-designed features are inherently linked through AE to the specific
signal processing techniques in the time, frequency or time–frequency domains [15,18,19].
These features need to be carefully extracted and analyzed by experts, and there is no
guarantee that the features tailored to a specific fault diagnosis condition are applicable for
other tasks.

To reduce the risk of biased opinions, we leverage the DL technique to explore the
implicit fault information embedded in AE signals. Among all types of DL models, the gen-
erative adversarial network (GAN) has shown a remarkable capacity to perform distribution
fitting. GAN is a powerful generative model that was first proposed by Goodfellow et al. in
2014 [20]. Unlike conventional neural networks, GAN implements generative modeling as a
game between two separated networks: a Generator is trained to produce synthetic data
that are close to the real data, while a Discriminator is trained to discriminate between the
synthetic and real data. During this training process, the probability distribution of the real
data can be learned by the Generator. There are many successful applications of GAN in
the fault diagnosis field. Existing research mainly focuses on the problem of ‘unbalanced
data’, i.e., the sample size of anomal data is much smaller than that of regular data [21–26].
GAN is utilized to generate synthetic abnormal data to assist model training. These studies
have demonstrated that GAN has an excellent ability to learn representative features from
mechanical signals. Xia et al. summarized the applications of GAN to anomaly detection in
a number of fields [27]. It can be concluded that GAN is suitable for early fault detection
(EFD) problems in two ways [28]: (1) it shows superiority in fitting the distribution of health
signals; the Generator can be trained to learn rich and hierarchical information from the data
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characteristic of the normal operating state of the machine; thus, these abnormal data should
be poorly reconstructed; (2) the Discriminator forms a health indicator (HI) to indicate the
abnormal signals.

Although GAN is a promising approach for EFD, it faces a well-known issue of
unstable training. In contrast to traditional supervised networks, whose performance can
be well reflected by the loss value, GAN consists of two networks’ fighting’ with each
other, so the loss values of the two networks show a relationship of ‘as one falls, the other
rises’. The balance between the Generator and Discriminator is subtle. Therefore, it is
difficult to determine when the Discriminator is well-trained, leading to the problem of
instability. In order to improve the robustness of GAN in the EFD problem, we introduced
a new ensemble technique referred to as the ‘history-state ensemble’ (HSE) [29] method.
HSE assumes that neural networks can generate multiple local optima during the training
history. Our previous experimental results [29] have demonstrated that these local optima
are diverse, and their combination improves the accuracy and stability of the single network.
The ensemble method is generally perceived to be time-consuming. However, the benefit
of the HSE is that it does not require extra training costs to obtain multiple base models.
We only need to record the historical training model weights that should be discarded
after each model update when using the backpropagation algorithm to adjust the model.
Therefore, it does not require a specially designed network architecture. These historical
training model weights are denoted as ‘history states’ or base models.

In a brief summary, the main contributions of this paper are as follows.

(1) We proposed a novel architecture of GAN consisting of convolutional blocks and
LSTM for EFD in the run-to-failure process.

(2) A new ensembled health indicator (EHI) is constructed by integrating GAN and a
novel ensemble technique called the HSE method.

(3) A laboratory durability test of a roller bearing element monitored by the acoustic emis-
sion technique was carried out to evaluate the effectiveness of the proposed method.

2. The Proposed Architecture of Convolutional GAN

We first introduce the basic theory of traditional GAN, and the architecture of the
proposed convolutional GAN is elaborated.

2.1. Basic Theory of GAN

The basic structure of GAN consists of two networks, as illustrated in Figure 1. The
main idea is to construct a neural network model, known as the ‘Generator’, in order
to map the random noises z into a new data space G(z). The goal is to minimize the
discrepancy between the ‘fake data’ from the mapped space G(z) and the ‘real data’ from
the target space pr(x). In contrast to traditional neural networks such as the Autoencoder,
which directly minimizes the distance through the mean square error (MSE), one more
neural network is introduced in GAN, referred to as the ‘Discriminator’, which is aimed to
distinguish G(z) from pr(x).
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The above stated goal can be achieved through the joint training of the two networks,
and the original loss functions for the Generator and Discriminator are express as follows:

max
D

L(D) = Ex∼pr(x)[logD(x)] + Ez∼pz(z)[log(1− D(G(z)))] (1)

min
G

L(G) = Ez∼pz(z)[log(1− D(G(z)))] (2)
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where G and D represent the Generator and Discriminator, respectively. The D outputs a
score ranging from 0 to 1 for each sample. In order to distinguish between the ‘fake data’
and ‘real data’, D tries to assign a value close to 1 for the sample x from ‘real data’, and
a value close to 0 for the sample G(z) from ‘fake data’. Then, the loss function for D is
maximized. On the other hand, G attempts to produce ‘fake data’ to fool D; thus, it will be
adjusted to produce ‘fake data’ that are close to ‘real data’, allowing D(G(z)) to be close to
1; therefore, the loss function of G is minimized. If both networks have sufficient capacity,
they will reach a point at which both models cannot be improved anymore because the
generated distribution approximates the real distribution well enough.

The original loss function of GAN has been reported with challenges, such as unstable
training and the poor quality of generated data. The key problem stems from the embedded
Jensen–Shannon divergence (JSD) as a measure of the distance between real and gener-
ated distribution; the details can be found in [30]. To overcome the training challenges,
Arjovsky et al., proposed to replace JSD with the Wasserstein distance (WD) defined as

W(pr, pθ) =
1
K

sup‖ f ‖L≤1 Ex∼pr [ f (x)]− Ex̃∼pg [ f (x̃)] (3)

where f : x→ R is a set of Lipschitz functions satisfying the condition | f (x1)− f (x2)|
|x1−x2|

≤ K,
and K is the Lipschitz constant. It can be observed that the absolute value of the derivative
of f does not exceed K. By applying this distance metric in GAN, the function f is referred
to as a ‘critic’ in the original paper, which can be approximated by D, and pg is the model
distribution implicitly defined by x̃ = G(z), z ∼ pz(z). The variant of GAN with WD is
known as Wasserstein GAN (WGAN). Compared with JSD, WD has a smoother change rate
when measuring the distance between two distributions; thus, it can provide meaningful
gradient information to G.

The original WGAN applies a ‘weight clipping’ method to enforce a Lipschitz con-
straint by clamping the network weights to a fixed range [−c, c] after each gradient update.
This method still leads to optimization difficulties such as gradient vanishing [23,31]. There-
fore, Gulrajani et al. proposed an alternative solution by enforcing a soft version of the
Lipschitz constraint with a penalty on the gradient norm of random samples x̌ ∼ px̌, which
is expressed as

δ = Ex̃∼px̃

[
(‖∇x̃D(x̃)‖2 − K)2

]
(4)

where x̌ = εx + (1− εx̃), with x ∼ pr, x̃ ∼ pg, and ε ∼ N[0, 1]. The K is generally set as 1.
With the gradient penalty, a new objective is proposed as

max
D

L(D) = Ex̃∼pθ
[D(x̃)]− Ex∼pr [D(x)] + βEx̃∼px̃

[
(‖∇x̃D(x̃)‖2 − 1)2

]
(5)

min
G

L(G) = −Ex̃∼px̃ [D(x̃)] (6)

where β is the penalty coefficient, and the WGAN with a gradient penalty is referred to
as gp-WGAN.

2.2. Design of Generator and Discriminator

It is well-known that GAN is difficult to train, even with the use of WD and gradient
penalty methods. One of the prime challenges is the diversity of the generated data, which
is needed to cover the data distribution sufficiently. Otherwise, the Generator may become
‘lazy’, therefore producing the homogeneous data fooling the Discriminator. However,
a good point in early fault detection, i.e., in early anomaly detection in the streaming of
diagnostic data, is that the primary focus should be the performance of the Discriminator.
This is the difference between our task and many other tasks, such as image generation
or imbalanced data problems in fault diagnostics. In our work, it is not necessary that the
Generator’s input is a random signal. Hence, the Autoencoder-based Generator architecture
is adopted in this work, i.e., both the input and output of the Generator are real data. The
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Autoencoder is known as a powerful and versatile non-linear dimensionality reduction
technique employing neural networks for which the target output is the same as the input.

The proposed architectures of the Generator and Discriminator are shown in Figure 2.
The Generator comprises an encoder block and a decoder block with a bottleneck block
between them. The encoder is built of two convolutional layers to learn hierarchical
representations of the real input, and each convolutional layer is followed by a down-
sampling layer to reduce the feature size. Moreover, the down-sampling layer helps to
boost the model’s robustness to noise and variations in input data. Then, the real input is
compressed into a compact representation called the bottleneck. In this paper, the LSTM
cell is used in the bottleneck layer to capture the time-series correlation in data. By stacking
two layers of LSTM cells, the network can learn more complex patterns in the input data
and have better long-term memory retention. Next, the compressed representation is
fed into the decoder, which consists of two convolutional layers, one up-sampling layer
and one fully connected layer that finally reconstructs the input. In the competition
between the Generator and the Discriminator, if the Discriminator is too powerful, it
will quickly converge before the Generator can learn useful information from the input.
Therefore, a more concise structure is used in the Discriminator, which is composed of
three convolutional layers, three down-sampling layers, two fully connected layers and a
one-dimensional output layer.
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Figure 2. Architectures of the proposed Generator and Discriminator.

The most important mathematical details related to the above structure are presented
below.

(1) Convolutional layer. The convolution process refers to a specialized linear operation
where a small window called a kernel or filter overlays and slides through the entire
input with a preset stride, which is mathematically expressed as

Hk = Activ

(
inMap

∑
i=1

Conv(Wk, Xi) + bk

)
(7)

where Conv(·) denotes the convolution window, Wk is the kernel that slides through the
data X and bk is the corresponding bias. Activ(·) represents the activation function, Hk
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stands for the feature vector extracted by the k-th kernel and the subscript k defines the
number of kernels.

(2) Average down-sampling layer. The down-sampling layer is also referred to as the
pooling layer, which is commonly applied after a convolution layer to reduce the
dimension of the feature maps. It refers to a special type of convolution whereby the
kernel slides through the entire input map, and, generally, instead of creating the
element-wise product, the average value of the overlaid input region is extracted; this
quantity is the so-called ‘average pooling’.

(3) Up-sampling layer. In contrast to down-sampling, up-sampling is generally used
after the encoder to restore the resolution of the original data. The most common
up-sampling techniques include Nearest Neighbor, Bilinear and Bicubic [32]. The
Bilinear method is adopted in the present work.

(4) Fully connected layer. The fully connected layer refers to the type of neural network
where all the input from the previous layer is connected to every neural node of the
next layer:

Ĥ = Activ(W ∗H + b) (8)

where H stands for the neural nodes of the previous layer; W and b represent the weights
and bias.

(5) LSTM cell. LSTM is a variant of Recurrent Neural Network (RNN), which has the
advantage of exploiting the information of time-series signals. LSTM alleviates the
vanishing gradient problem in the original RNN by introducing a memory cell, as
described in Figure 3. The memory cell consists of a forget gate, input gate, output
gate and state gate, which are mathematically described as follows:

ft = σ
(

W f ·[xt, ht−1] + b f

)
(9)

it = σ(Wi·[xt, ht−1] + bi) (10)

ot = σ(Wo·[xt, ht−1] + bo) (11)

C̃t = tanh(Wc·[xt, ht−1] + bc) (12)

Ct = ft·Ct−1 + it·C̃t (13)

ht = ot·tanh(Ct−1) (14)

where the ft, it, ot and Ct represent the forget gate, input gate, output gate and state gate,
respectively. xt is the input vector of the LSTM unit at the current time t, and ht−1 is the
hidden vector of the previous time t− 1. Therefore, LSTM considers the information at the
current time and the previous time. σ and tanh represent the ‘sigmoid’ and ‘tanh’ activation
functions, respectively.
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It is worth noting that the input of LSTM should be a matrix, but the AE signal is a
vector. Thus, the original 1D data should be converted to two-dimensional space. To this
end, we simply divide the signal into multiple segments along the time axis. Thus, the
input is reshaped into a N ×M matrix, where N denotes the number of segments, and M
stands for the length of each segment. The matrix is firstly processed by the encoder as M
separated samples to capture detailed information about each segment, and the extracted
features are stacked as a matrix and fed into the bottleneck layer. The output of the
bottleneck layer is again processed by the decoder as a separate dataset. The reconstructed
data are concatenated by the last fully connected layer. The data flow in the Generator is
illustrated in Figure 4.
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3. The Proposed EFD Framework Based on Convolutional GAN and
History-State Ensemble
3.1. Definition of a Health Indicator (HI) Based on GAN

The output of the Discriminator is a single value that distinguishes the fake data from
real data. If the input is identified as real, the Discriminator will ascribe a high value to
it, whereas a low value will be set otherwise. If we apply this to the early fault detection
problem with the training data from only the normal operating state, the Discriminator will
ascribe the faulty data to the low value based on the assumption that the defect has distorted
the normal AE waveform, which is successfully captured by the sensors. Therefore, the
Discriminator naturally determines the health indicator HI, as presented below:

HI = D(X) (15)

where X denotes the evaluated data.

3.2. Ensembled Health Indicator
3.2.1. Motivation

The remaining question is how to determine whether the Discriminator has been well-
trained or not. Differing from traditional supervised networks, whose performance can
be assessed by the loss value, GAN benefits from the competition between the Generator
and Discriminator. Therefore, the loss values of the two networks exhibit a relation of ‘as
one falls, the other rises’. To overcome this problem, we introduce a simple yet effective
ensemble technique referred to as the history-state ensemble (HSE) method, as described in
our dedicated study [29]. The advantages of the HSE method are twofold: (1) it does not
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require extra computing time to obtain the base models, and (2) it is versatile enough to be
seamlessly applied to plain neural networks without readjusting the network architecture.
Similarly to traditional ensemble techniques, the implementation of HSE methods assumes
(i) encouraging the model to generate accurate base models with high diversity, and
(ii) assembling these models to create a more robust classifier.

3.2.2. Base Model Generation

To obtain the base models, HSE is based on the assumption that the neural networks
can generate multiple local optima, also referred to as ‘history states’, during the training
process, and these local optima can be taken as base models for ensemble learning. There-
fore, to generate multiple base models, one only needs to preserve the historical weights of
the network, as illustrated in Figure 5. Hence, the time cost of this procedure is negligible.
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Figure 5. Illustration showing the typical behavior of the training loss value as a function of the
number of training epochs; the definition of parameters θ1 and θ2 is clarified graphically (see the text
for details).

The obtained base models have a direct impact on the model performance, which is
affected chiefly by three factors: (1) the number of base models, (2) the accuracy of each
base model and (3) the diversity within all base models. In order to encourage the diversity
of base models, the Mini-Batch Gradient Descent (MBGD) is recommended in the training
process. MBGD is a variant of the gradient descent algorithm whereby the whole training
dataset is divided into multiple small batches, and only one batch is used to calculate the
gradient at each iteration. The application of MBGD increases the model update frequency,
which helps to generate more models and encourages their diversity. Moreover, two extra
parameters need to be defined, as illustrated in Figure 5. Here, θ1 denotes the number of
training epochs at which the first base model is acquired, and θ2 indicates the model update
frequency. The total number of acquired base models is calculated as

N = int
(

S− θ1

θ2

)
(16)

where S is the total number of training epochs.

3.2.3. Ensemble Results

Average voting (AV) is used to integrate the results of all base models, and, for the
case of this paper, a new ensembled HI (EHI) can be constructed:

EHI =
N

∑
i=1

Di
(
X̂
)
/N (17)
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where Di
(
X̂
)

represents the score given by the i-th base model, and N is the total number
of the base models.

To define the fault alarm, a threshold th is set as

th = min(EHItrain)− C ∗ std(EHItrain) (18)

where HItrain represents the HI values obtained by training signals. min(·) selects the
minimum value of all the HItrain values, and std represents the standard deviation. C is the
constant that reflects the confidence of the result. In this paper, the C is set as 3.

3.3. Dimension Reduction of the Raw AE signals

The high sampling frequency of AE signals results in a large amount of acquired data,
which increases the computational burden of the model. Therefore, a Moving Variance
Window (MVW) is applied to the raw AE signals for dimension reduction, as illustrated
in Figure 6. With the step-wise shifting of the window, the variance of the covered signal
is calculated, i.e., each windowed data segment is transformed into a single value of the
variance. The output is a dimensionless number, which measures the dispersion of the
data; thereby, the sub-signal is de-dimensionalized. The function of MVW is to capture
the transient events and highlight some essential detailed features of the data. Moreover,
since the signal dimension is vastly reduced, processing by the neural network is faster and
easier. The MVW is mathematically described as follows:

X̂ =
1
l ∑

x∈winX
k,l,s

|x− µ|2 (19)

winX
k,l,s = X

[
xk,s

start : xk,s
start + l − 1

]
(20)

xk,s
start = (k− 1)× s + 1, k = 1, 2, . . . nk (21)

where X denotes the raw AE signal, winX
k,l,s represents the area of signal X covered by the

moving window, and k, l and s are integers specifying the moving step, window length and
moving stride, as illustrated in Figure 6. xk,s

start is the start point of the window on signal
X. The total number of moving steps is computed as nk = [(N − l)/s] + 1, where N is the
length of the recorded AE signal; µ in definition (19) denotes the mean of winX

k,l,s. The
MVW applies a moving window slide over the original AE signal to extract the variance;
thus, the signal dimension can be largely reduced, which makes it easier to be processed
by the neural network. Additionally, the MVW helps to capture the transient events and
highlight some important detailed information in the data.
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3.4. Overall Framework

With the pre-processing of dimensional reduction, the original high-dimensional AE
signals can be processed by the proposed ensembled convolutional GAN. The general
procedures of the proposed EFD framework are summarized as follows.

Step 1: Data acquisition. AE signals are acquired at fixed time intervals from sen-
sors mounted on the test machine. The signals received at the initial health stage of the
experiment are treated as the training set, and the remaining serve as the test set.

Step 2: Dimension reduction The MVW is first applied to the raw signals to reduce
the dimension.

Step 3: Model set-up.

(1) Offline training stage: the pre-processed training data are fed into the convolutional
GAN. During the training phase, the history states are recorded at fixed training
epochs. Thus, N base models are obtained.

(2) Setup threshold: the training set is fed into the Discriminator only, and N scores
are generated by the base models for each sample. The EHI and the threshold are
calculated by Equations (17) and (18).

Step 4: Online test stage. The samples in the test set are sequentially fed into the
Discriminator to calculate the EHI. The EHI values exceeding the threshold are considered
a fault alarm.

4. Experimental Validation
4.1. Test Rig and AE Data Acquisition

One can find more details of the experimental setup and durability test in [17]. To
evaluate the performance of the proposed method, a rolling contact fatigue test was carried
out in this section. The test rig, designed at SINTEF Industry (Trondheim, Norway),
consists of four roller bearings, as illustrated in Figure 7a. The test specimen is in the
central position, supported by another three rollers. Each roller is supported by two needle
bearings (type SKF NA 6914-zw). To monitor damage associated with the rolling contact
fatigue, the broadband WD (MISTRAS, Princeton, NJ, USA) sensors were mounted on the
housing of the needle bearing supporting the test roller. A close-up view of the sensors
and their location on the rig is presented in Figure 7b. The streaming AE signals were
recorded periodically at fixed time intervals, and each data file contains 2 s of streaming
AE waveforms sampled at 2 MHz using the Kongsberg HSIO-100-A (Kongsberg Maritime,
Trondheim, Norway) high-speed acquisition module. At the beginning of the test, the
recording time interval was set at 60 min. When the first damage was confirmed by periodic
ultrasonic inspections of the test roller, the recording time interval was reduced to 20 min
to obtain more AE realizations containing information about the faults. At the end of
the experiment, 2471 AE records were qualified for the analysis. Figure 8 displays the
amplitude of the raw AE signal against contact fatigue cycles. An appreciable change in
the AE amplitude is observed for the first time after 4.6 × 107 fatigue cycles.
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Figure 7. Display of the rolling fatigue test rig. (a) Photographic image and schematics of the
geometry of supporting rollers and the testing roller, and (b) a close-up view of the setup instrumented
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Figure 8. Display the raw AE signals according to the fatigue cycles.

To monitor and visualize the development of incipient damage, ultrasonic inspections
were performed periodically during the test using the Olympus OMNISCAN SX (Olympus,
Tokyo, Japan) phase array ultrasonic tester (PAUT). According to the PAUT inspection
results, the health condition of the test specimen was divided into five stages, as indicated by
different colors in Figure 8. The number of records for each state is presented in Table 1. The
short-time Fourier spectrograms of several randomly chosen AE signals, which are typically
observed during the five stages of the damage propagation, are presented in Figure 9. It
can be seen that the fault signatures at the early stage of the damage (corresponding to
0.5 mm and 1 mm length of the internal crack) are still invisible to the naked eye. As the
faults grow up to 1.5 mm, some high-frequency components induced by AE bursts emerge
gradually, and the number of AE bursts increases with the damage development.

Table 1. The number of AE records for different stages of damage propagation.

Health Condition Number of Records Number of Fatigue Cycles

No damage 542 2.8 × 107

0.5 mm crack 377 3.6 × 107

1 mm crack 809 4.8 × 107

1.5 mm crack 718 6.5 × 107

2 mm crack 25 6.6 × 107
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4.2. Results and Discussion
4.2.1. Data Preprocessing

Original high-dimensional AE signals are firstly processed by MVW with the moving
step k of 8192. The window length l and moving stride s are set as 464. Therefore, each AE
file is downsized to a shorter vector with a length of 8192. Let us recall the structure of the
Generator, where two LSTM cells are utilized to capture the time-series correlations in the
data. To fit the Generator, each input datum is divided into N segments with length M,
as described in Figure 4. We recommend that each segment should contain information
about at least one entire axel revolution. In this way, LSTMs can capture the correlation
of AE signals generated in continuous axel revolutions. For instance, the lowest axel
rotation frequency in the present work is 254 rpm, i.e., for a 2-s recording, 8 complete
rotations are captured. Therefore, the segment parameters N and M are defined as 8 and
1024, respectively.

4.2.2. Network Training

The proposed method was implemented with the open-source PyTorch machine learn-
ing framework. The detailed architectures of the proposed Generator and Discriminator
are described in Table 2. The first 60% of healthy data (325 recorded AE signals) are used
for training the convolutional GAN, and the EHI of each training sample is calculated by
Equation (17). Then, a fault alarm threshold can be obtained according to Equation (18).
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Table 2. The detailed parameters of the proposed Generator and Discriminator.

Generator Discriminator

Layers Output size Layers Output size

Input 1024@1 Input 8192@1

[C : 25, S : 1, P : 12] 1024@16 [C : 125, S : 1, P : 63] 8192@8[
A : 2, S : 2, P : 0

Batchnorm

]
512@16 [A : 2, S : 2, P : 0] 4096@8

[C : 5, S : 1, P : 2] 512@1 [C : 25, S : 1, P : 12] 4096@16[
A : 2, S : 2, P : 0

Batchnorm

]
256@1 [A : 2, S : 2, P : 0] 2048@16

LSTM× 2 256@1 [C : 25, S : 1, P : 12] 2048@1

[C : 5, S : 1, P : 2] 256@16 [A : 2, S : 2, P : 0] 1024@1[
Batchnorm

Up : 2

]
512@16 FC : 512@1

[C : 5, S : 1, P : 2] 512@1 FC : 256@1

[Batchnorm] 512@1 FC : 1 1@1

FC : 1024 1024@1

Note: C denotes the convolutional kernel, A denotes the average pooling kernel, S and P are the stride and
padding numbers of each kernel, respectively. FC stands for the fully connected layer. The output size is denoted
by ‘a@b’, where a represents the length of the output vector, and b is the number of output channels.

The network was trained by 500 epochs, and the loss values of the Generator and
Discriminator are shown in Figure 10. It can be observed that these loss values oscillate,
indicating that both the Generator and Discriminator concurrently attempt to improve
their individual capacity during training. To implement the HSE method, two ensemble
parameters, θ_1 and θ_2, need to be preset. In this section, the values for θ_1 and θ_2 are
set at 300 and 20, respectively, and a total of 10 base models are obtained from Formula
(16). Then, averaging voting is applied to the ensemble and the results according to
Equation (17). The EHI generated by the proposed method is shown in Figure 11.
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Figure 11. The generated EHI of the acquired AE signals.

We assess the performance of HIs from the following aspects: (1) the ability to re-
flect the breakpoint between the healthy stage and the onset of defects; (2) the ability to
characterize the waveform change of the signal; since failure is an irreversible process,
(3) HI is expected to be continuous and monotonic. Figure 11 shows the obtained EHI of
all of the 2471 AE data files. Observations show that the EHI successfully characterizes
the evolution of the recorded AE waveforms from the following aspects. Firstly, the EHI
value shows rapid growth at the stage of the 0.5 mm crack, and a breakpoint between the
healthy and fault stage is easily observed. Secondly, the IEPF value captures the initiation
of the continuous AE transient bursts at the intersection of the 1 mm crack and 1.5 mm
crack. Additionally, the EHI presents excellent monotonicity.

In order to evaluate the proposed method and highlight its superiority over existing
conventional procedures, the following techniques are introduced and compared with
each other.

Statistical parameters: (1) Mean; (2) Variance; (3) Root Mean Square (RMS); (4) Skew-
ness; (5) Kurtosis; (6) Shape Factor; (7) Crest Factor; (8) Impulse Factor; (9) Margin Factor;
(10) Information Entropy (IE); (11) Energy Entropy; (12) Mean Frequency (MeanFreq);
(13) RMS Frequency (RMSF); (14) Root Variance Frequency (RVF); (15) Median Frequency (Med-
Freq).

Machine learning models: (16) One-Class SVM (17) Local Outlier Factor (LOF);
(18) Isolation Forest (iForest); (19) Autoencoder.

The samples are fed into the probed models sequentially. The streaming accuracy (SA)
is used as a metric to quantify the performance of each model, which is expressed as

SAt = nt/Nt (22)

where Nt denotes the total number of samples from the start to time t; nt denotes the
number of the correctly classified samples until time t. SAt shows the performance of
the probed methods against the acquisition time of each AE signal, and their results are
compared in Figure 12, while the average accuracy is plotted in Figure 13. It can be seen
that the superiority of the proposed method becomes gradually more and more obvious
during the 1 mm crack growth stage, where the developed ensembled convolutional GAN
shows the highest average accuracy among all probed contenders.
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Finally, we investigate the influence of the ensemble parameters on the model perfor-
mance. The ensemble model performance is impacted by the two ensemble parameters θ1
and θ2, and the model training epoch S. To facilitate the analysis, we set the parameter θ2
at 1, and examine the influence of θ1 and the training epochs at fixed base model numbers.
With fixed θ2 and training epochs, the ensemble parameter θ1 is defined as S− n, where
S denotes the current training epoch, and n represents the base model number. Figure 14
shows the experimental results with different training epochs ranging from 50 to 500. The
black line presents the average accuracy of the convolutional GAN, while the red lines show
the ensembled model accuracy with different base model numbers ranging from 5 to 30.
Figure 15 represents the result of the quantitative analysis of the accuracy improvement of
the model after applying the HSE procedure. Based on the observation of Figures 14 and 15,
the following conclusions can be drawn.
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(1) The HSE effectively reduces the accuracy fluctuation of a single GAN under different
training epochs.

(2) One can observe that the accuracy of the ensembled model remains at the upper
bound of the single GAN, indicating that the proposed method can improve the
performance of convolutional GAN in a general sense.

(3) With a smaller number of training epochs ranging from 50 to 300, the HSE method
can effectively improve the model accuracy by an average of 10% or more, as shown
in Figure 15. It also indicates that the proposed ensemble method can improve the
model efficiency with a smaller training budget

(4) The model performance is directly related to the number of base models, i.e., the
robustness of the ensembled model increases with the number of base models.

In summary, we have demonstrated that HSE improves the overall performance of
the single GAN in terms of model stability and accuracy.

5. Conclusions

The present paper extends our previous efforts to study and promote the HSE method
to non-destructive testing applications: here, we tested its effectiveness for early fault
diagnostics in rotating machinery. The main findings can be summarized as follows.

(1) A new convolutional GAN is designed in this paper and applied for EFD in the
run-to-failure test of a roller bearing. To boost the learning capacity of the Generator,
an Autoencoder-based Generator architecture is designed in this work. Two convo-
lutional blocks are used to extract the local information of the data, and the Long
Short-Term Memory (LSTM) cells are embedded in the bottleneck layer to extract the
time-series correlation of the signal.

(2) A novel HSE method is introduced in the designed convolutional GAN to establish
an ensembled health indicator (EHI). The proposed ensembled convolutional GAN
is combined with the AE technique. There have been limitations in the use of AE
technology for condition monitoring, partly due to challenges with processing a large
amount of data; thus, a smoothing Moving Variance Window (MVW) is used in this
work to reduce the dimensions of the raw AE signal.

(3) We demonstrate the effectiveness of the HSE method when applied to GAN and EFD
problems. Roller fatigue test monitoring by AE sensors was performed to evaluate
the proposed method. Experimental results demonstrate the effectiveness of the
proposed method.

(4) The HSE-based approach benefits from the fact that (i) it does not require extra training
costs to generate multiple base models, and (ii) it can be applied to all types of neural
networks without tuning the network architecture. Experimental results indicate
that not only does the HSE method improve the diagnostics of incipient flaws in
specific rolling bearing elements under contact fatigue conditions, but it is also an
efficient vehicle to enhance the performance and capacity of convolutional GAN in a
general sense.
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BC-GAN: a threshold-free framework for unsupervised early fault detection in rotating machinery 

Yu Wang1*, Szymon Bernat 2, Alexey Vinogradov1 

 
1Department of Mechanical and Industrial Engineering, 

Norwegian University of Science and Technology – NTNU, Trondheim, 7491, Norway. yuwa@ntnu.no (Y.W.); 
alexei.vinogradov@ntnu.no (A.V.)  

2SINTEF Industry, Trondheim, 7465, Norway. Szymon.Bernat@sintef.no (S.B.). 

Abstract: Early fault detection (EFD) is a crucial component of proactive maintenance that can prevent expensive downtime, 
enhance safety, and optimize equipment performance and longevity. Existing limitations of the contemporary EFD  approaches 
frequently include: (1) manually designed features relying on expert skills and knowledge, (2) the vaguely determined pre-set 
thresholds to distinguish between the faulty and healthy state of the testing object (however, the threshold value can vary 
notably from task to task), and (3) most methods, which have been originally designed for vibration data, cannot be generalised 
to other techniques, for example acoustic emission (AE) signals. To address these issues, a novel binary-classification 
generative adversarial network (BC-GAN) is designed for general EFD problems and applied to several specific datasets 
acquired from different run-to-failure tests of rotating components. Compared with conventional methods, unsupervised BC-
GAN directly outputs the probability that an input belongs to either the "health" or "fault" state of the rotating machine without 
a priory threshold setting. Experimental results demonstrate the high versatility of the proposed network, which can be applied 
in various laboratory and industrial settings to both vibration and AE signals. 

Key words: Binary-Classification Generative Adversarial Network (BC-GAN), early fault detection, run-to-failure process, 
unsupervised learning, threshold-free. 

 

1. Introduction 

Early diagnosis of defects in rotating machinery is an 
effective way to avoid downtime and loss of revenue as well 
as to protect both assets and employees, which has been a 
hotspot for decades. Fault detection strategies are roughly 
categorized as model-driven and data-driven methods in 
abundant literature. The first one is based on physical insight 
into the machine system, which is represented by a dynamic 
mathematical model with a set of descriptive parameters. 
Alternatively, data-driven fault diagnosis models depend on 
mathematical models that explore the statistical features 
hidden in the data acquired by the array of monitoring 
sensors. With the development of artificial intelligence, 
especially the advent of deep learning, modern industries are 
seeking techniques that rely less on human experience and 
prior knowledge. Under this circumstance, data-driven 
methods have gained increasing attention and become the 
mainstream in the field (Lei et al., 2020).  

Up to date, the vibration-based analysis is the most 
commonly used technique to monitor the condition of 
rotating machinery due to its simplicity, robustness and wide 
availability. However, vibration signals ranging from several 
Hz to several kHz, which are induced by small surface flaws, 
especially at the very early stage of their propagation, can be 
easily masked by the mechanical vibration of the system or 
may simply not exist in heavy structures until the fault grows 
up significantly to a scale large enough to cause a measurable 
vibration. There are some alternative techniques that can 
compensate the limitations of vibration technique. For 
example, acoustic emission (AE) signals have different 

dynamics and are characterized by a much wider frequency 
range (typically from 20 kHz to 2 MHz) (Z. Liu et al., 2021), 
which does not overlap significantly with low-frequency 
mechanical vibration signals caused by imbalance or 
misalignment (He & Zhang, 2012; Hemmati et al., 2016, 
2016). However, there is still a huge black gap in the 
combination of AE technique with the prevalent deep 
learning techniques, and parameter-based analysis still plays 
a dominant role in this field. For these approaches, which 
work well in vibration data, there may be degradation in the 
AE signal. We need a general method that is feasible and 
immune to data source, it helps us to study and compare 
different condition monitoring techniques under the same 
standard. Although it is out of the scope of this work, in this 
paper, we aim to propose a threshold-free early fault 
detection (EFD) model and verify the superiority of the 
method.  

EFD from the run-to-failure cyclic loading process is a 
typical unsupervised problem because only the data from the 
healthy stage are available for the training phase. When 
tackling such a problem, the crucially important task is to 
identify unexpected events as early as possible. The problem 
is therefore generally considered as novelty detection or 
anomaly detection. A traditional way is to extract a health 
indicator (HI) that reveals the trend of the equipment 
degradation process. Thus, the emerging faults can be 
observed by the changes in HI values, as illustrated in 
Fig.1(a). The decision is made by applying a threshold 
marking the boundary for the normal operating state, and the 
signal is used as a fault indicator if its HI value exceeds the 
pre-set threshold.  
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Although machine learning algorithms have been widely 
used in EFD problems, the limitations of contemporary 
approaches still exist, and these are listed as follows. (1) 
Most of the methods require manually constructed features, 
and the model performance is heavily dependent on the 
quality of extracted features (C. Liu & Gryllias, 2020; H. Liu 
et al., 2018; Xu et al., 2021). Thus, the entire approach relies 
on the vaguely defined expert's skills, and the risks of 
misinterpretation are exacerbated when a novice is 
performing the EFD procedure. (2) The methods that can 
directly process the raw mechanical signals still require the 
pre-set thresholds delineating healthy and faulty states 
(Hidle et al., 2022; C. Liu & Gryllias, 2020; Lu et al., 2018; 
Luo et al., 2018; Mao et al., 2022). The values of the 
thresholds can vary for different testing conditions, leaving 
users with a thorny problem of rigorous threshold setting. (3) 
Most existing methods are originally designed specifically 
for the vibration signal and cannot be generalised to other 
techniques like AE time series (C. Liu & Gryllias, 2020; Lu 
et al., 2018; Luo et al., 2018; Mao et al., 2022; Song et al., 
2022). The motivation of this work is to construct an 
intelligent unsupervised model that is effective on different 
data sources, and we specifically validate on vibration and 
AE signals.  

To this end, a novel Binary-Classification Generative 
Adversarial Network (BC-GAN) is proposed in this paper, 
aiming to address the EFD problem of the cyclic run-to-
failure process. Generative Adversarial Network (GAN) has 
been shining for addressing the fault diagnosis issues by 
supplementing the unbalanced dataset with generated data 
(Gao et al., 2020; Li et al., 2021; J. Liu et al., 2019; S. Liu et 
al., 2022; Wang et al., 2020; T. Zhang et al., 2020). Although 
promising results have been reported in the cited works, the 
approaches used are essentially built upon a supervised 
learning strategy, whereas the unsupervised approaches are 
still scarcely probed. To make the method easy to 
implement, we maintain the architecture of standard GANs 
to the maximum extent possible: Generator learns the 
probability distribution of data from the normal operating 
stage to produce synthetic data, while a specially designed 

Discriminator is applied to determine whether an instance 
belongs to either a synthetic or real distribution. Binary 
classification is performed between the health and fault 
states using an unsupervised strategy, i.e., only data from the 
normal (health) state are required. The keys to the successful 
training of BC-GAN will be detailed in the next section.   

The main contributions of this work are as follows.  
(1) A novel and stable GAN-based network architecture 

has been proposed in this work for EFD problems in 
rotating machinery, which has high versability on the 
application to different condition monitoring 
techniques.  

(2) The proposed method does not require a pre-set 
threshold. It can directly produce the probability that 
the measured signal is from the healthy or faulty 
states, as illustrated in Fig.1(b), which is the main 
advantage over traditional EFD models.  

(3) Validation experiments on benchmark vibration 
datasets have demonstrated the feasibility and 
effectiveness of the proposed method. Besides, two 
durability tests of roller element bearings have been 
performed using AE technique as the monitor of the 
failure process. Comparison experiments have 
demonstrated that the proposed BC-GAN can 
accurately and timely detect the emergence of faults. 
The generality of the proposed method to different 
data source has also been verified by its application 
to both vibration and acoustic emission signals.  

The rest of the paper is organized as follows. The details 
of the proposed BC-GAN are unfolded in Section 2, and 
benchmark vibration datasets are used to validate the 
approach and assess its effectiveness. Two instrumented 
bearing contact fatigue testing rigs are introduced in Section 
3 and the experimental results exemplifying the proposed 
method with AE signals are presented and discussed. Section 
4 summarizes all findings and concludes the present study. 

2. Details of the proposed method  

Before introducing the proposed method, let us first look 
at the basic structure of GAN, which comprises two neural 
networks  - a generative model and a discriminative model 
(Goodfellow et al., 2014), referring to as Generator and 
Discriminator, respectively, as illustrated in Fig. 2. The 
Generator takes random noise 𝒛  as input and attempts to 
produce the synthetic or fake data with the same 
dimensionality as the real training samples. On the other 
hand, the Discriminator takes both real data and the fake data 
as input, which is trained to judge whether an input 
originates from the real distribution or the fake distribution 

 
Fig. 1. Comparison of the framework of traditional EFD models 
and the proposed BC-GAN. 
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produced by the Generator. Both networks are trained 
simultaneously like a two-player minimax game aiming at 
obtaining a generative model that can approximate the real 
data distribution. The loss function is usually expressed as: 

min
𝐺

max
𝐷

𝐿(𝐷, 𝐺) = 𝐸𝒙~𝑝𝑟(𝒙)[𝑙𝑜𝑔𝐷(𝒙)] 

+𝐸𝒛~𝑝𝑧(𝒛) [𝑙𝑜𝑔 (1 − 𝐷(𝐺(𝒛)))] 
(1) 

where 𝐺(∙)  and 𝐷(∙)  represent the Generator and the 
Discriminator, respectively.  𝒙 denotes the real dta, 𝑝𝑟(𝒙) 
stands for the real probability distribution of data 𝒙. 𝑝𝑧(𝒛) is 
generally a normal distribution, and the noise 𝒛 is randomly 
sampled as the input of 𝐺. The output of 𝐺(𝒛) is the fake 
data with the same dimension as 𝒙 generated by 𝐺, and the 
𝐷(𝒙) and 𝐷(𝐺(𝒛)) output a score for the real and fake data, 
respectively.   

Based on the traditional EFD scheme in Figure 1(a), the 
standard GAN can be applied to EFD by introducing the 
output of Discriminator 𝐷(𝒙) as HI, as used in (Wang & 
Vinogradov, 2023), which is employed to indicate the health 
condition, for example, of the rolling element bearings, by 
applying a threshold. Although it is theoretically feasible, the 
uncertainty in thresholding it is an apparent "classic" 
limitation of conventional EFD models. Hence, the strategic 
idea and motivation of BC-GAN is to develop a model with 
higher intelligence eliminating the threshold-related issues. 
In contrast to many modern methods, the proposed BC-GAN 
directly produces the probability that the input belongs to 
either the normal or abnormal state. The details of the 
proposed framework are elaborated in the following sub-
sections.  

2.1 Model establishment 

The basic architecture of the proposed network 
configuration is presented in Fig 3. For EFD in the run-to-
failure process, only the signals from the healthy stage are 
available to construct the training dataset. The Generator 
remains to be used for learning the distribution of the training 

data. However, this task differs from traditional generative 
objectives, such as image generation or tackling imbalanced 
data issues in fault diagnostics, which focus on developing a 
strong Generator whereas our goal here is to obtain a ‘well-
trained’ Discriminator. Therefore, to reduce the training 
difficulty, the Generator takes the health signals as input, 
which also referred to as real data. The remaining data flow 
is similar to that in traditional GAN applications, and both 
real and fake data are sent to the Discriminator for judgment.  

The design of the Discriminator is pivotal for the 
proposed method. As illustrated in Fig 3, the re-designed 
Discriminator features two channels on its input layer and 
comprises four neural network modules. It is worth noting 
that the first channel maintains the original function of 
traditional GAN, which produces a score for each input 
sample as described before. By utilising the second channel, 
the probability of an input instance belonging to either the 
real or fake class can be acquired. In EFD problems, 
incorporating the two channels prompts the Discriminator to 
distinguish between real and fake data through multiple 
learning objectives, thereby enabling a comprehensive 
understanding of the differences between them. Detailed 
network configurations are quite flexible as long as the 
following four functional modules are included; each 
module is a multi-layer neural network block.  
1) Discriminator module ← 𝐷𝑀: receives input data in the 

first channel. The module is designed to maintain the 
original function of traditional GAN, and scores are 
calculated based on the extracted features of its last 
hidden layer. A linear fully connected layer is attached 
at the end of 𝐷𝑀 to compute the scores as: 

𝑠𝑐𝑜𝑟𝑒(𝒙) = 𝜔𝑠𝑐𝑜𝑟𝑒𝐷𝑀(𝒙) + 𝑏𝑠𝑐𝑜𝑟𝑒 (3) 
where 𝒙 is the input instance of the Discriminator, 𝜔𝑠𝑐𝑜𝑟𝑒 
and 𝑏𝑠𝑐𝑜𝑟𝑒  represent the weight and bias of the linear layer, 
respectively. 𝐷𝑀  assists the training of the Generator to 
produce the fake data that is close to the real data.  
2) Siamese module ← 𝑆𝑀: receives input data in the second 

channel, which is employed to learn the implicit features 
that distinguish the real and fake data, albeit from a 

 
Fig. 3.  Schematic of BC-GAN for EFD in run-to-failure process. 
 
  

Probability of being
health

Discriminator

Fake data

...
... ...

...
......

...

......
...

Scores: Output        or

Probability of being
fault

Real / Health 
data Generator ...

Discrminator module

Fusion module

Classification module

Siamese module

Data flow during Generator training
Data flow during Discriminator training

C
ha

nn
el

 1
C

ha
nn

el
 2



 

 

distinct aspect driven by a different learning objective. 
It is worth noting that 𝑆𝑀 is not involved in the training 
of Generator and only focuses on classification. 

3) Fusion module ← 𝐹𝑀(𝐷𝑀 , 𝑆𝑀) : is employed to fuse the 
features extracted from 𝐷𝑀 and 𝑆𝑀, which is designed 
as a two-channel convolutional neural network block 
corresponding to 𝐷𝑀 and 𝑆𝑀:  

𝐹𝑀 = 𝑓(𝐷𝑀(𝒙), 𝑆𝑀(𝒙)) (4) 
4) Classification module ← 𝐶𝑀 : receives the fused feature 

from 𝐹𝑀, and outputs the predicted probability that the 
input 𝒙 belongs to either normal or abnormal states. A 
SoftMax layer is utilized as the classifier, which is 
expressed as  

𝐶𝑀(𝑦𝑖|𝒙) =  
𝑒𝑥𝑝(𝜔𝐶𝑀

𝑘 𝐹𝑀)

∑ 𝑒𝑥𝑝 (𝜔𝐶𝑀

𝑗
𝐹𝑀)1

𝑗=0

 (5) 

 
where 𝑦𝑖 ∈ [0,1] denotes the corresponding label of 𝒙. Since 
our target is to differentiate between the normal and 
abnormal states, which is a binary classification problem. As 
shown in Fig. 3, 𝐶𝑀 comprises two output neurons, which 
indicate the likelihood of the Discriminator's input instances 
belonging to healthy and faulty categories, respectively. 

Novelty detection: Recall the assumption of the EFD task 
is that only data from the healthy stage are available at the 
training phase, which is labelled as 0. To perform the binary 
classification, the remaining problem is to define the 
negative training dataset representing abnormal states. The 
core idea of BC-GAN is to take the fake data produced by 
Generator as the negative training dataset to train the entire 
network. Therefore, the network is enforced to dig the 
implicit features of the data from the normal state and 
distinguish it from abnormal data. It is worth noting that 
although the final decision does not depend on the 
discriminator scores given by 𝐷𝑀, it still plays an important 
role in keeping the training of the entire network stable. A 
well-known fact is that GAN is hard to train, by preserving 
the original function of traditional GAN, it helps us to apply 

these new findings that can improve the stability of the 
training. In addition, the scores can also be served as an 
auxiliary tool to observe the evolution of streaming data.  

2.2 Model training 

Up to now, the feedforward process of BC-GAN for EFD 
problem has been revealed, this sub-section will discuss the 
optimization of the model. The training details of the BC-
GAN is described in Algorithm 1. Fig. 3. displays the data 
flow of the Generator and Discriminator throughout the 
optimization process. During the feed-forward phase, the 
Generator creates the fake data, which is then fed along with 
the real data into the re-designed Discriminator. The 
Discriminator generates both a score and predicted 
probabilities for them concurrently. However, it is an 
important detail that the 𝐿𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟  shall not be involved 
during the optimization of the Generator as illustrated by the 
magenta line in Fig. 3, thus, the loss function of the 
Generator is expressed as:  

𝑚𝑖𝑛 𝐿𝐺 = −𝐸𝒙′~𝑝
𝒙′

[𝑠𝑐𝑜𝑟𝑒(𝒙′)] (6) 
where 𝒙′ = 𝐺(𝒙)  denotes the generated fake data, and 𝒙 
represents the real data. The 𝑠𝑐𝑜𝑟𝑒(𝒙′)  is defined in 
equation (3). The objective of training the Generator is to 
maximize the 𝑠𝑐𝑜𝑟𝑒(𝒙′), which is analogous to minimizing 
𝐿𝐺.  
    As illustrated by the dotted line in Fig. 3, the optimization 
of the Discriminator consists of two tasks, which are 
reflected in a combined loss function as: 

𝑚𝑖𝑛 𝐿𝐷 = 𝜌 × 𝐿𝑠𝑐𝑜𝑟𝑒 + (1 − 𝜌) × 𝐿𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟   (7) 
where 𝐿𝑠𝑐𝑜𝑟𝑒 denotes the loss function of 𝐷𝑀, which has no 
difference with general GAN, and the 𝐿𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟  is the loss 
function of 𝐶𝑀. The 𝜌 ∈ (0,1)is a trade-off parameter that 
balances the discriminator score and classifier. The 
optimization of BC-GAN is realized by minimizing the 
combined loss function 𝐿 . If 𝜌 = 1 , the model can be 
regarded as a general GAN.  

Let us first define the 𝐿𝑠𝑐𝑜𝑟𝑒 . The original loss function of 
GAN in Eq. (1) has challenges such as unstable training and 
poor quality of generated data. The central problem stems 
from the embedded Jensen-Shannon divergence (JSD) 
serving as a measure of the dissimilarity between real and 
generated distributions (see (Arjovsky et al., 2017; Gulrajani 
et al., 2017) for details). To overcome the training 
challenges, Arjovsky et al. proposed to replace JSD with 
Wasserstein distance (WD) (Arjovsky et al., 2017). 
Introducing the gradient penalty method (Gulrajani et al., 
2017), a new objective is expressed as: 

𝐿𝑠𝑐𝑜𝑟𝑒  =  𝐸𝒙′~𝑝
𝒙′

[𝑠𝑐𝑜𝑟𝑒(𝒙′)] − 𝐸𝒙~𝑝𝑟
[𝑠𝑐𝑜𝑟𝑒(𝒙)] 

+𝛽𝐸𝒙′~𝑝
𝒙′

[(‖∇𝒙′𝑠𝑐𝑜𝑟𝑒(𝒙′)‖2 − 1)2] (8) 

where 𝒙′ and 𝒙 stand for the fake data and real, respectively. 
𝛽  is the penalty coefficient, and GAN with Wasserstein 
distance and gradient penalty is referred to as gp-WGAN.  
    The 𝐿𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟  is presented by the prevalent Mean Square 
Error (MSE). 

𝐿𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟 =  𝐸[(𝐶𝑀(𝑦𝑖|𝒙) − 𝑦𝑖)2] (9) 
 

Algorithm 1 Training of BC-GAN using RMSprop stochastic 
gradient descent. We use default value of RMSprop hyper-
parameters: 𝑙𝑟 = 0.0001, α = 0.99. 
Input: Training dataset 𝑇 = {(𝒙𝑖 , 𝑦𝑖)}𝑖=1

𝑐 ; Initial Discriminator 
weights 𝜔0; Initial Generator weights 𝜑0; Initial training hyper-
parameters, including, epoch number 𝑁 , batch size 𝑚 , critic 
number 𝑛𝑐𝑟𝑖𝑡𝑖𝑐, penalty coefficient 𝛽, and balance coefficient 𝜌.   
Output: Well-trained 𝜔𝑁 and 𝜑𝑁.  
1:  for 𝑒𝑝𝑜𝑐ℎ = 1, … , 𝑁 do 
2:         for  𝑏𝑎𝑡𝑐ℎ = 1, … , 𝑚 do 
3:             Train Discriminator 
4:             Sample 𝑚 real data 𝒙~𝑇 
5:             Generate fake data 𝒙′ ← 𝐺(𝒙) 
6:             𝐿𝑠𝑐𝑜𝑟𝑒 ← 𝐸𝑞. (8) 
7:             𝐿𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟 ← 𝐸𝑞. (9) 
8:             𝐿𝐷 ← 𝐸𝑞. (7) 
9:             𝜔 ←  RMSprop(∇𝜔𝐸(𝐿𝐷), 𝜔, 𝑙𝑟, α )  
10:           Train Generator 
11:           if 𝑟𝑒𝑚(𝑏𝑎𝑡𝑐ℎ, 𝑛𝑐𝑟𝑖𝑡𝑖𝑐) = 1, … , 𝑚 do 
12:               𝐿𝐺 ← 𝐸𝑞. (6) 
13:               𝜑 ←  RMSprop(∇𝜑𝐸(𝐿𝐷), 𝜑, 𝑙𝑟, α ) 

 
 



 

 

where 𝐶𝑀(𝑦𝑖|𝒙) represents the predicted probability that 𝒙 
belongs to class 𝑦 , and 𝑦  is a two-dimensional one-hot 
vector. 

Model selection: Determining whether the Discriminator 
has been adequately trained is a tricky problem. We propose 
the 𝐿𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟  as a metrics to evaluate the performance of the 
Discriminator. A snapshot of the Discriminator with the 
smallest 𝐿𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟  is captured as the optimized model for 
testing which will be elaborated in the following 
experiments.  

2.3 Overall framework 

When applying BC-GAN to EFD of bearing elements 
experiencing contact fatigue damage, the overall framework 
of the proposed method is illustrated in Fig. 4, which is 
summarized below. 
    Step 1: Data acquisition.  

(1) Sensors are installed on the test machine, and signal 
snapshots are recorded at specific time intervals.  

(2) The signals acquired in the early stage of the 
experiment under a normal operating state form the 
training set, and the remaining signals are for 
testing. 

Step 2: Model training. The acquired training data are 
normalized using ‘z-score’ method, and then, feed into the 
BC-GAN. The model is trained according to Algorithm 1. 

Step 3: Model selection. The Discriminator’s snapshot 
with the smallest 𝐿𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟  is chosen.  

Step 4: Model test. The test data are fed into the selected 
Discriminator, and the predicted probabilities are obtained 
directly from equation. (5). 

Step 5: Decision making. The predicted probabilities 
represent the level of the predictive confidence of the model. 
To reveal more information, the condition of an instance is 
divided into three stages directly based on the predicted 

probability given by BC-GAN, as explained in the equation 
(10):  

{
𝐻𝑒𝑎𝑙𝑡ℎ,     𝑃 ≤ 0.5

 𝐹𝑎𝑢𝑙𝑡 𝑎𝑙𝑎𝑟𝑚,      0.5 < 𝑃 ≤ 0.9
𝐹𝑎𝑢𝑙𝑡,      𝑃 > 0.9

 (10) 

where 𝑃 represents the predicted probability of an instance 
being fault. It is worth noting that the division of the model's 
confidence levels is based on human intervention and does 
not impact the outcome of the model. 

2.4 Validation on benchmark vibration dataset 

    To validate the effectiveness of BC-GAN, the Intelligent 
Maintenance System (IMS) database is taken as a 
benchmark to probe the proposed method. The database 
refers to four bearings on the shaft. Three run-to-failure tests 
were performed, and the results were tabulated. At the end 
of the three experiments, four tested bearings were found to 
be differently damaged. Fig. 5 shows the original vibration 

 
Fig. 4. Workflow the proposed EFD method.  
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Fig. 5. The raw vibration signal of the tested four bearings. (a) 
Bearing 3 of test 1: run-to-failure signals ending with an inner race 
defect. (b) Bearing 4 of test 1: run-to-failure signals ending with a 
roller element defect. (c) Bearing 1 of test 2: run-to-failure signals 
ending with an outer race defect. (d) Bearing 3 of test 3: run-to-
failure signals ending with an outer race defect. 
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signals of the four bearings evolving from the healthy to the 
faulty stage. Each data stream is divided into individual 
realizations of 1-second vibration signal snapshots recorded 
at specific time intervals. Thus, each file represents a 
snapshot containing 20480 readings, and all files relevant to 
one bearing constitute a pseudo-data stream reflecting the 
evolution of the vibration signal during the run-to-failure 
test.  

In this work, we use only 8192 points of each file as input 
to train the model. The first 30% fragment of each data 
stream is used to train BC-GAN without any pre-processing, 
and the rest represents the test set. Fig 6 displays the 
predicted probability given by BC-GAN. The number of 
training epochs is determined when the loss value 𝐿𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟  
converges to a low level, which will be further discussed in 
Section 4. The y-axis denoted the probability of being fault. 
The magenta markers are used to highlight these snapshots 
with probabilities between 0.5 and 0.9, which means they are 
highly likely to be faults. When the probability reaches 0.9, 
the model is confident that this is a fault. The formation of 
fault is a gradually evolving process, which BC-GAN can 
reveal by observing the predicted probability. The 
juxtaposition of our results with the peer studies (Haidong et 
al., 2020; C. Liu & Gryllias, 2020; Lu et al., 2018; Song et 
al., 2022) shows that the proposed method successfully 
detects the occurrence of faults. 

3 Experimental verification 

In this section, the effectiveness of BC-GAN is validated 
in bearing elements using AE signals, and two run-to-failure 
tests of roller element bearings and ball bearings were 
performed. We introduced two different dilemmas that may 
be encountered in the EFD problem. In the first case, the 
breakpoint between health and fault is difficult to be defined, 
while in the second case,  a breakpoint can be easily 
observed, but the threshold cannot be well-defined using 
training data as we have mentioned before. We have shown 
that the threshold-free BC-GAN can easily tackle the EFD 
task in these cases and achieve the best performance among 
the probed contrastive methods.  

 

3.1 Dimension reduction of the original AE signals 

    The high-sampling frequency of AE signal results in a 
huge amount of data, which increases the computational 
burden of the model. Therefore, a Moving Variance Window 
(MVW) is utilized to reduce the dimension of raw AE signals 
(Wang & Vinogradov, 2023), as defined below: 
 

𝑿̂ =
1

𝑙
∑ |𝒙 − 𝜇|2

𝒙∈𝒘𝒊𝒏𝑘,𝑙,𝑠
𝑿

 (10) 

where 𝑿 denotes the raw AE signal, 𝒘𝒊𝒏𝑘,𝑙,𝑠
𝑿  represents the 

area of the signal 𝑿 covered by the moving window; 𝑘 , 𝑙 , 
and 𝑠  are integers specifying the moving step, window 
length and moving stride, respectively. The MVW procedure 
applies a moving window sliding over the original AE signal 
to extract the variance. In this way, the signal dimension can 
be largely reduced, which makes it easier to be processed by 
a neural network. Additionally, MVW helps to capture the 
transient events and highlight important information in the 
data.   

3.2  Contrastive methods 

    To evaluate the effectiveness of the proposed method, the 

performance of several conventional HIs of different types 

are employed as baselines. These HIs are listed below: 

Statistical parameters (Wang, Hestmo, et al., 2023): (1) 

Mean; (2) Variance; (3) Root Mean Square (RMS); (4) 

Skewness; (5) Kurtosis; (6) Shape factor; (7) Crest factor; 

(8) Impulse factor; (9) Margin factor; (10) Information 

Entropy (IE); (11) Energy Entropy; (12) Mean frequency 

(MeanFreq); (13) RMS Frequency (RMSF); (14) Root 

Variance Frequency (RVF); (15) Median frequency 

(MedFreq). 

    Machine learning methods: (16) one-class SVM (Saari 

et al., 2019); (17) Local Outlier Factor (LOF); (18) Isolation 

Forest (iForest) (Mao et al., 2022); (19) SENCForest (Mu et 

al., 2017); (20) SENNE (Cai et al., 2019); (21) KNNENS (J. 

Zhang et al., 2022).  

    Deep learning methods: (22) Deep autoencoder: The HI 

is constructed from reconstruction error; (23) GAN: The HI 

is constructed from the output of traditonal Discriminator, 

which is expressed as 𝐷(𝑿) (Wang & Vinogradov, 2023), as 

illustrated in Fig. 2.  

For these models that cannot process the raw mechanical 

signals directly, the statistical parameters are served as their 

input. Traditional EFD frameworks identify the occurrence 

of defects based on a threshold, which should have different 

values from task to task. Therefore, a heuristic approach is 

used to define the threshold level for these comparison 

methods, by adjusting its value to ensure at least 98% of 

training data can be recognized as "health". 

3.3 Roller bearing (RB) test  

    To monitor the rolling contact fatigue (RCF) phenomenon 

occurring a roller bearing element, a run-to-failure test was 

carried out using an instrumented special purpose testing rig 

 
Fig. 6. The classification results using BC-GAN. (a) Bearing 3 of 
test 1, with training epoch 114. (b) Bearing 4 of test 1, with 
training epochs 500. (c) Bearing 1 of test 2, with training epochs 
450. (d) Bearing 3 of test 3, with training epochs 203.  
  



 

 

designed at SIN TEF Industry (Trondheim, Norway). The 

experimental setup is schematically illustrated in Fig 7 (a). 

The test specimen (central roller) is supported by three 

rollers, and each roller is supported by two needle bearings. 

Two broadband WD sensors (MISTRAS, USA) (only one 

sensor was used for the analysis) were connected to the data 

acquisition system, as displayed in Fig 7 (b). The signal from 

the transducer was amplified by 40 dB in the frequency band 

20-1200 kHz by the 2/4/6 low-noise preamplifier 

(MISTRAS, USA).  

The test was interrupted periodically for non-destructive 

inspections performed with the Olympus OMNISCAN SX 

phase array ultrasonic tester (PAUT) with the Dual Linear 

Array 7.50L32-REX1-IHC sensor and MX2 control box. 

The AE waveforms were continuously recorded at 2 MHz 

sampling frequency for 2s per snapshot using the Kongsberg 

HSIO-100-A high-speed acquisition module. For details of 

the experimental setup and the roller durability test itself, the 

readers are encouraged to read the recent publication (Hidle 

et al., 2022).  
The first sub-surface crack of approximately 0.5 mm was 

detected by the PAUT at 2.8 × 107 fatigue cycles (see (Hidle, 

et al., 2022) for details of PAUT inspections and 
metallographic observations). The crack then slowly 
expanded up to 2 mm before the test was terminated, and the 
appearance of internal cracks was confirmed by the post-
mortem destructive metallographic examination unveiling 
several macroscopic cracks in the transverse cross-section of 
the tested roller as shown in Fig. 8 illustrating three major 
cracks in the subsurface area and propagating towards the 
rolling contact surface. No surface damage has been detected 
on the test roller of support rollers after the test.  

Totally, 2471 AE records were qualified for the analysis 
and indexed from 1 to 2741 according to their acquisition 
time. Raw streaming AE data and two typically extracted 
representative features - root mean square voltage (RMS) 
and kurtosis of the AE waveform - are presented in Fig. 9 (a-
c), respectively (note here that these features are shown as an 
example; many more statistical features have been extracted 
and analysed, albeit without much success for potential use 
of health indicators which motivated us turn to artificial 
intelligence in data analysis in this case). The appreciable 
change in the original AE amplitude has been firstly noticed 
after 4.6×107 (or even more reliably only after 5.5×107 
fatigue cycles or 2100 AE snapshots, when the crack reached 
the terminal size of 2 mm according to PAUT observations). 
No apparent breakpoint can be determined by means of 
traditional statistical features around 2.8 × 107 fatigue cycles 
corresponding to the 543rd snapshot in Fig. 9 (b) when actual 
incipient subsurface damage has been unveiled by ultrasonic 
inspections.  

The predicted probability of each data fragment being 
identified as “fault” is displayed Fig. 10 (a). In the sharp 

 
Fig. 7. Rolling fatigue test rig: photographic image and schematics 
of the geometry of supporting rollers and the testing roller (a), and 
a close-up view of the setup instrumented with sensors (b), and a 
view of PAUT inspection performed periodically on the test roller 
(c) (see (Hidle et al., 2022)). 
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Fig. 8. Subsurface cracks observed in transverse metallographic 
sections of the test roller (a) and magnified views of three major 
subsurface contact-fatigue induced cracks marked 1-3 (b,c). 

 
Fig. 9. The acquired run-to-failure AE signals of RB test ending 
with a sub-surface crack. (a) Original AE signals according to 
fatigue cycle, and selective features (b) RMS, and (c) kurtosis. 
 

Table 1 
Comprehensive classification outcomes of BC-BAN on roller bearing experiment, as well as the chosen comparative models.  

Method Threshold Health conditions False 
alarm Health 0.5mm crack 1mm crack 1.5mm crack 2mm crack 

BC-GAN / 542 273 604 715 25 0 
OCSVM 0.77 531 210 428 712 25 11 

Shape factor 1.26 532 124 458 697 25 2 
SENCForest 1.66 528 159 387 693 25 14 

Kurtosis 0.12 533 99 369 680 25 9 
LOF -2.15 539 260 222 643 25 3 

KNNENS 1.6 537 50 187 653 25 5 
 



 

 

contrast with the conventional data representation shown 
above, BC-GAN classified the first input as fault alarm at the 
543th snapshot, i.e., pretty much at the same time as the 
incipient  subsurface crack was detected by PAUT.  

The F1 score and recall were used as the performance 
metrics for the diagnosis system. Using the 543rd snapshot as 
a breakpoint, the dataset is divided into two classes – 'health' 
and 'fault' (including fault alarms and faults). The results of 
the comparison of results obtained by different probed 
methods are presented in Fig.10 (b). Recall measures the 
percentage of actual positve/negative signals that are labeled 
as positive/negative among all corresponding samples. The 
recall of the proposed method reaches 0.9191 followed by 
0.8461 of OCSVM. A higher recall indicates that the 
proposed BC-GAN is effective for identifying both healthy 
and fault instances. F1-score balances the importance of 
precision and recall. The proposed method attains the highest 
F1-score among all contrastive methods. While SENNE 
demonstrates the high F1-score for this dataset, its recall is 
only 0.6502, indicating a considerable number of healthy 
signals being misidentified as faults.  

 Table 1 presents the comprehensive classification 

outcomes of BC-BAN for the roller bearing experiment, as 

well as the chosen comparative models, based on the top 6 

recall values. It provides the number of the accurately 
classified samples for each bearing health condition, and the 
thresholds of the comparison methods are also presented. A 
competent HI is anticipated to yield a higher number of faults 
and fewer false alarms. Observing the results, it is apparent 
that BC-GAN provides the highest faults of 273 during the 
initial falting stage corresponding to the smallest 
observabale crack of 0.5 mm, followed by LOF at 260. 
However, the LOF's performance deteriorates as the crack 
grows to 1 mm. In contrast to comparison methods, BC-
GAN delivers the best performance throughout all stages of 
the fault progression without generating any false alarms.  

3.4 Ball bearing (BB) test 

    The second experiment was designed to enable 

accelerated subsurface white-etching cracking (WEC) in 

running ball bearings. The setup is illustrated schematically 

in Fig.11. The base unit of the test setup comprises an AC 

variable-speed gear-motor, sealed test chamber, electrically 

insulated rotating shaft on which the test bearing is mounted, 

DC power, load cell and AE sensor. The load to the bearing 

was applied by a screw directly located on the top of the 

bearing and measured by a load cell. All the metallic parts of 

the equipment were electrically isolated by using Teflon 

rings or Teflon sleeves as illustrated in Fig. 11 (b), while the 

 
Fig. 10. Results of RB test. (a) Visualization of the classification result using BC-GAN with 2000 training epochs; (b) Measure of F1 score 
and recall of the probed methods. Plots are sorted by the descending order of recall. 

 
Fig. 11. Schematics of BB test: (a) illustration of the test rig 
promoting the white etched crack formation, and (b) close-up 
view of the bearing assembly. 
  

 
Fig.12. Examples of incipient white etched cracks (WECs) 
initiated at non-metallic inclusions on the outer raceway of the ball 
bearing tested (the courtesy of T. A. Nymark and A. B. Haagen).   
  



 

 

bearing was separated by a metallic ring that allowed 

electricity to flow between the outer and inner race. To 

promote the formation of white-etched cracks, a plasma 

discharge was initiated in the lubricating film through the 

DC current applied between the two bearings. The negative 

pole was attached to the outer race, while the positive pole 

was connected to the inner race. LD 75W-80 oil with ZDDP 

anti-wear additive was used as the lubricant. The tests were 

carried out under contact pressures up to 1.9 GPa and 2000 

rpm at 50 °C.   

When the test was terminated, the inner and outer race of 

the test bearing were sectioned in the circumferential plane 

in the middle of the ball track for crack observations by 

means of the scanning electron microscopy (SEM) in the 

secondary electron contrast (see (Nymark, 2022) for 

experimental details and examination results). Multiple 

microscopic cracks (identified as WECs), like those shown 

in Fig.12, were readily observed on the sections at the depth 

of 30-150 μm from the rolling contact surface. The 

microcracks up to 15 mm initiate primarily from non-

metallic inclusions and are surrounded by the so-called white 

etched matter, which has been investigated in detail in 

(Nymark, 2022).  
The AE waveforms were continuously recorded at 2 MHz 

sampling frequency for about 1s per record (snapshot), and 

a total of 1433 records were acquired. The raw noise-like 

continuous AE signal and a couple of statistical features 

chosen example are presented in Fig.13 (a-c), respectively. 

No appreciable change in the AE amplitude can be observed 

from the original AE signals throughout the test. However, a 

sharp increase in the RMS value and mean frequency of the 

AE power spectral density is observed around the 1010th 

snapshot, which is presumably caused by the emergence of 

the internal damage development associated with the 

microcracks illustrated in Fig. 12. Since ultrasonic 

inspection was not possible in this experiment, the exact time 

of the first occurrence of the crack is unknown. Based on the 

analysis of the data stream, the 1010th snapshot is thought as 

the approximate watershed dividing the healthy and faulty 

stages of the bearing and the corresponding data for 

assessing the model performance. The experimental result 

shown in this example differs from the EFD problem in RB 

test. In the second case, a breakpoint can be likely observed 

from traditional parameters, However, it is still challenging 

 
Fig. 13. The acquired run-to-failure AE signals of BB test ending 
with a crack. (a) Original AE signals over recording time, and 
selective features (b) RMS, (c) mean frequency. 
 

 
Fig. 14. Results of BB test. (a) Visualization of the predicted result using BC-GAN with 300 training epochs; (b) Measure of F1 score and 
recall of the probed methods. Plots are sorted by the descending order of recall. 

Table 2 
Comprehensive classification outcomes of BC-BAN on ball bearing 
experiment, as well as the chosen comparative models.  

Method Threshold Health conditions False 
alarm Health Fault 

BC-GAN / 1008 419 1 
LOF -1.51 969 420 41 

SENCForest 1.13 1007 331 3 
SENNE 0.1 787 423 223 
Medfreq 0.48 1006 261 4 
iForest -0.58 1001 237 9 

OCSVM 1.89 940 257 70 
 



 

 

to define a proper threshold that can delineate the healthy 

stage from the onset of the faulty stage in the ball bearing 

behaviour. Most importantly, we want a roust model that can 

be generalized and adapted flexibly to notably different 

situations.  

Fig. 14 (a) shows the obtained probability using BC-GAN. 

The first instance that is classified as "fault alarm" is reported 

as the 1010th snapshot, and the first "fault" is reported as the 

1022nd snapshot which is in excellent agreement with the 

breakpoint anticipated from the observations of the RMS and 

AE mean frequency behaviour shown in Fig.13 (b). The 

recall and F1-score of the probed methods are compared in 

Fig. 14 (b). The comparison of results reveals that C-GAN 

exhibits the highest recall of 0.9952, while LOF comes 

second with the recall value of 0.9552. Furthermore, the BC-

GAN has the highest F1-score compared to all other 

methods.  

Table 2 outlines the comprehensive classification 

outcomes of BC-BAN on the ball bearing experiment, as 

well as the chosen comparative models based on the top 6 

recall values. Despite LOF achieving largest fault alarms of 

420, it is also associated with a significantly higher number 

of false alarms. The BC-GAN achieves a better balance 
between fault alarms and false fault alarms. Comparing 
Table 1 and Table 2, it is evident that while the probed 
methods may exhibit good performance in one task, they 
tend to experience a decline in performance in another task, 
which is hard to predict a priory. Furthermore, their optimal 
threshold settings vary across different tasks. In contrast, 
BC-GAN delivers exceptional performance in both 
experiments, with the added advantage of being threshold-
free.     

4 Discussion and conclusion 

    In summary, the proposed method has been tested against 

four vibration benchmark datasets and two original 

experimental datasets. The discussion and conclusions of the 

experimental results are presented in this section. 

 (1) Loss value and model selection. The relationship 

between the model performance and the training loss value 

is investigated. We first have a look at the 𝐿𝐺  and 𝐿𝑠𝑐𝑜𝑟𝑒 

utilized in general GAN. Traditionally, it is difficult to judge 

if the network has been well-trained by observing the loss 

values of Generator and Discriminator. Unlike traditional 

regression or classification models, 𝐿𝐺  and 𝐿𝑠𝑐𝑜𝑟𝑒  will not 

 
Fig. 16. Visualization of the hidden features extracted from 𝐷𝑀 and 𝑆𝑀. Experiment 2 is taken as an example. 
 

 
Fig. 15. Observation of loss values. (a) Visualization of 𝐿𝐺  and 
𝐿𝑠𝑐𝑜𝑟𝑒 over training epochs for different datasets; (b) Visualization 
of 𝐿𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟  and accuracy over training epochs for different 
datasets. 
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converge to zero with the increasing number of training 

epochs, as displayed in Fig.15 (a). The oscillating behavior 

observed in their loss values corresponds to the fact that the 

two networks are battling with each other during training. 

Therefore, determining whether GAN has been well-trained 

on not is a thorny problem for general GAN. However, BC-

GAN provides an indicator that helps to evaluate the model 

performance during training by introducing the 𝐿𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟 . 

Fig.15 (b) shows the evolution of 𝐿𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟  as well as test 

accuracy over training epochs. One can see that the 

prediction accuracy is highly correlated with the value of 

𝐿𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟 . The training of the model can stop at a sub-

optimal point when 𝐿𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟  converges to a low value.  

 (2) Visualisation of the features extracted from 𝑫𝑴 

and 𝑺𝑴 . In the proposed architecture, the Discriminator 

module 𝐷𝑀  and the Siamese module 𝑆𝑀  are two separated 

neural network blocks. They, however, share essentially the 

same network architecture. These modules have different 

initial network weights but receive the same input 

simutaneously. This design encourages the network to learn 

implicit features from different perspectives. The 𝐷𝑀  aids 

the training of Generator to produce the fake data that is 

close to the real data, in contrast, 𝑆𝑀 is not involved in the 

Generator training and focuses on classification. The 

features learned by the two modules are displayed in Fig 16. 

Observing the results, it is apparent that the two channels 

extract different features from the input data. However, the 

features learned by the 𝑆𝑀  module appear to be more 

effective in distinguishing between different health and fault 

stages.  

(3) Generated data. In contrast to traditional GAN, BC-

GAN is aimed at training Discriminator that captures the 

implicit features from health data for the EFD problem. 

Therefore, it does not require that Generator to produce very 

authentic 'fake data' that can entirely fool Discriminator. In 

fact, a slight difference between the generated data and the 

real data helps to produce a more powerful Discriminator in 

our problem. Fig.17 displays the generated signals at 

different training epochs. One can see that the generated 

signals gradually approach the real signals as the number of 

training epochs increases. However, the generated signals 

are not completely consistent with the real data.  

(4) Trade-off parameter. The influence of the trade-off 

parameter 𝜌 is studied in this sub-section. Fig.18 displays 

the F1 score of BC-GAN with different 𝜌 values ranging 

from 0 to 0.9. When 𝜌=0, 𝐿𝑠𝑐𝑜𝑟𝑒  has no influence on the 

model. Although 𝐿𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟  rapidly converges to zero, in this 

case, Discriminator fails to set the fault alarms correctly. The 

reason presumably is that 𝐿𝑠𝑐𝑜𝑟𝑒  and 𝐿𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟  have 

different functions in the training of the networks. The 𝐿𝑠𝑐𝑜𝑟𝑒 

value is essential for Generator training, while 𝐿𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟  

focuses mainly on the classification between real and 

generated data. According to the parametric analysis, the 

performance of BC-GAN is relatively stable with the choice 

of the trade-off parameter. Nevertheless, 𝜌 =0.5 can be 

recommended in general applications. 

 
Fig. 18. Display of the 𝐿𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟  and F1 score under different values of trade-off parameter 𝜌 ranging from 0-0.9. Dataset B and experiment 
2 are taken as an example.  
 

(a) Dataset B (b) Experiment 2

 
Fig. 17. Comparison of real data and generated signals under 
different epochs; dataset A is taken as an example. 
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    (5) Advantages and disadvantages. The main 

advantages of the proposed EFD method are summarized as 

follows: (i) BC-GAN directly processes the raw mechanical 

signals without manually extracted features; experimental 

results have demonstrated that the method is effective on 

both vibration and AE signals; (ii) the method directly 

produces the predicted probability that the captured input 

signal belongs to either a "health" or "fault" class without 

any pre-set threshold; (iii) by introducing the  𝐿𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟 , the 

model performance of BC-GAN can be monitored by 

observing the loss value, which helps to find a local optimum 

of the model. (iv) The BC-GAN model is versatile, and its 

application is not limited to the EFD problem. It can be 

further extended to address a wide class of problems dealing 

with streaming data with emerging new classes (SENC), the 

readers can find more details in our further study with this 

(Wang, Wang, et al., 2023).  

    Finally, the limitations of the proposed method are to be 

mentioned. The training phase is relatively time-consuming 

if compared with traditional machine learning methods. 

Besides, BC-GAN still suffers from unstable training, and 

the balance between Generator and Discriminator is crucial 

for the overall performance. These issues will also be the 

focus of our further study. 
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Appendix  

We propose a general framework for EFD problem on the 

basis of deep learning principles. The proposed model is 

implemented with pytorch. RMSprop stochastic gradient 

descent is utilized for training the model with the learning 

rate of 0.0001. The batch size 𝑚 is 50, critic number 𝑛𝑐𝑟𝑖𝑡𝑖𝑐 

is 3, penalty coefficient 𝛽 is 2, and balance coefficient 𝜌 is 

set at 0.5 for all experiments. Instead of feeding random 

noise into the generator, an autoencoder-structured generator 

is used in this work, and the input is formed by training 

examples. We construct 𝐷𝑀 , 𝐹𝑀  and 𝐶𝑀  using a 

convolutional block consisting of three convolutional layers 

and average pooling layers, the detailed architectures of the 

utilized Generator and Discriminator are displayed in 

Appendix-A, where 𝐶 denotes the convolutional kernel, 𝐴 

denotes the average pooling kernel, 𝑆 and 𝑃 are the stride 

and padding number of each kernel, respectively. 𝐹𝐶 stands 

for the concatenated layer. For simplicity, we adopted the 

same network structure in the three main modules of the 

Discriminator, a straightforward improvement of this work 

is to construct a more powerful network structure. The 

number after the symbol @  stands for the number of 

channels. ‘LeakyReLU’ is employed as the nonlinear 

transfer function with negative slope of 0.2, however, it is 

worth noting that linear mapping is utilized in the output 

layer of Generator and 𝐷𝑀.  
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Abstract. Condition monitoring (CM) process can be viewed as the problem of 
streaming classification with emerging new classes (SENC). There are four fun-
damental challenges we are faced with: (1) timely detection of emerging new 
classes; (2) model update to adapt to new classes; (3) pattern recognition of these 
already known classes with high accuracy and (4) distinguishing between differ-
ent new classes. Although intelligent surrogate models like deep learning have 
achieved remarkable success in the field of CM, SENC still remains a thorny 
challenge that has seldom been studied. This paper presents an approach to ad-
dress the challenge of SENC using an ensembled multi-classification generative 
adversarial network (EMC-GAN). The proposed method includes a novel deep 
network architecture called MC-GAN that integrates the tasks of novelty detec-
tion and multi-classification into a single framework. To address issues of model 
stability, an efficient history-state ensemble (HSE) method that does not require 
additional training costs to generate multiple base models is introduced. Experi-
mental validation is conducted on four simulated SENC tasks using benchmark 
data, and the results have shown the effectiveness of the proposed approach.   

Keywords: Streaming data with emerging new classes (SENC), condition mon-
itoring (CM), history-state ensemble (HSE), generative adversarial network, 
novelty detection. 

1 Introduction 

Condition monitoring (CM) of rotating machinery is a continuous process of identify-
ing changes that are indicative of the developing failures. The main objectives include: 
(1) timely detection of the breakpoint when the monitored machine deviates from its 
normal operating condition, (2) accurate pattern recognition for multiple failure types, 
and (3) quantification of the damage development rate. With the improvement in com-
putational ability, intelligent surrogate models based on deep learning have achieved 
remarkable success in multiple fault diagnosis [1–4], early fault detection [5–7] and 
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remaining useful life prediction [8], etc. Traditional CM frameworks attempt to tackle 
these tasks separately, and their limitations are standing out from the surroundings. 
Most existing surrogate models are built on an ideal assumption that when we perform 
CM on a particular machine, failures encountered in the real streaming data must be 
included in the categories of training data. Nevertheless, this requirement is hard to 
meet in real-world applications because the signals acquired from sensors are fed into 
the CM system over time, one cannot access the whole dataset to train the surrogate 
models. A common solution is to utilize historical datasets to train the models, however 
in practice, it is rather difficult to obtain a representative set of actual fault data, not to 
mention the problem complexity due to numerous possible failure types and their loca-
tions. It is impossible to create an all-round dataset that contains all failure signals. 
Therefore, the surrogate models must have the ability to handle these unseen failure 
types in streaming data while identifying these already-known faults, a scenario known 
as streaming classification with emerging new classes (SENC), where most state-of-art 
approaches fail. 

The challenges faced in traditional SENC problem are decomposed as follows [9]: 
(1) timely detection of emerging new classes that are not included in the training da-
taset; (2) automatically model update in order to adapt to new classes; (3) multi-classi-
fication of the already known classes, and (4) discriminating different new classes. The 
surrogate models are required to preserve the historical health condition memories of 
the machine, which contributes to maintenance efficiency. Due to the growing need to 
reduce reliance on expert knowledge and manpower, it is required that (5) the surrogate 
models are capable to extract features and make the data-driven decisions automati-
cally. To this end, a novel SENC framework is proposed to address the above chal-
lenges. The main contributions of this paper are briefly summarized as: 

(1) A new architecture called MC-GAN is proposed to tackle the SENC problem 
by integrating novelty detection into the multi-classification framework. 

(2) The MC-GAN architecture is further improved by incorporating a novel en-
semble technique known as the "history-state ensemble" (HSE) method, which 
significantly enhances the model's performance without requiring additional 
training resources. 

(3) The effectiveness of the proposed framework is validated through four simu-
lated SENC tasks using benchmark vibration signals. 

2 Methodology 

2.1 Notations 

Given a training dataset 𝑇 = {(𝒙𝑖 , 𝑦𝑖)}𝑖=1
𝑚 , where 𝒙𝑖 ∈ 𝑅𝑑 is the i-th training instance 

and 𝑦𝑖  represents the corresponding label or class which belongs to 𝑌 = {1,2, … 𝑐}, 𝑐 is 
the total number of known classes. The task is to build an initial multi-classification 
model based on the given dataset 𝑇 so as to process the stream data 𝑆 = {(𝒙𝑡 , 𝑦̃𝑡)}𝑡=1

∞ , 
where 𝒙𝑡 ∈ 𝑅𝑑 is a streaming instance at time t, and the corresponding class 𝑦̃𝑡 ∈ 𝑌̃ =
{1,2, … 𝑐, 𝑐 + 1, 𝑐 + 2,… 𝑐 + 𝐾}, 𝐾 is the number of all new classes. 
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2.2 Basic structure of the proposed MC-GAN 

Fig. 1 illustrates the main structure of the proposed model, comprising a Generator and 
a Discriminator that are inherited from traditional GAN. Similarly, the Generator is 
employed to produce the fake data that are close to the input real data, and the Discrim-
inator is trained to distinguish between the real and fake data. As the original Discrim-
inator in traditional GAN is designed as a binary classifier, its network architecture is 
required to be modified to accommodate multi-classification tasks. As depicted in Fig. 
1, the designed Discriminator's architecture consists of two distinct channels, which are 
employed to learn implicit features from different aspects of the signals.  

 

 
Fig. 1. Basic structure of the proposed MC-GAN. 

The ‘channel 1’ contains a ‘Discriminator module’, which is used to learn the simi-
larities of all real data from different categories that can distinguish them from the fake 
data. Therefore, the module does not distinguish between different classes of real data. 
It takes in all input instances and outputs a ‘score’ for each of them that indicates 
whether the instance belongs to fake or real.  A linear fully connected layer is employed 
to compute the score, expressed as: 

𝑠𝑐𝑜𝑟𝑒(𝒙) = 𝜔𝑠𝐷𝑀(𝒙) + 𝑏𝑠 (1) 
where 𝒙 ∈ 𝑇, 𝐷𝑀 represents the Discriminator module, which is a neural network block 
consisting of multiple convolutional layers and pooling layers.  

The ‘channel 2’ comprises three models including:  
(1) A Siamese module, 𝑆𝑀, that also takes in all input instances. But different from 

the previous 𝐷𝑀, it is designed to learn the difference between different classes of real 
data.  

(2) A Fusion module, 𝐹𝑀(𝐷𝑀 , 𝑆𝑀), that receives the extracted features, generally the 
last hidden layer of  𝐷𝑀 and 𝑆𝑀. 

(3) A Classification module, 𝐶𝑀, that receives the fused feature from 𝐹𝑀. A SoftMax 
layer is utilized with the number of hidden neurons of 𝑐 + 1, where 𝑐 is the number of 
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all known classes of training instances, and an additional hidden neuron is added as the 
detector of emerging new classes.  

𝐶𝑀(𝑦𝑖|𝒙) =  
𝑒𝑥𝑝(𝜔𝐶𝑀

𝑘 𝐹𝑀)

∑ 𝑒𝑥𝑝 (𝜔𝐶𝑀

𝑗
𝐹𝑀)

  1
𝑗=1

 (2) 

where 𝑦𝑖 ∈ 𝑌 ∪ {𝑐 + 1}. The equation outputs the probability of  𝒙 belongs to label 𝑦𝑖 , 
the 𝑐 + 1 represents the label of a new class that does not belong to the training dataset 
𝑇.  
Detection of a new class.  The basic idea of MC-GAN is to take the fake data produced 
by Generator as a new class to train the entire network. Given a training dataset 𝑇 with 
𝑐 known classes, in the feed-forward phase, the input real data that are randomly sam-
pled from 𝑇 are fed into the Generator to produce fake data. The fake data 𝐺(𝒙) is con-
sidered as a new class labeled as ‘𝑐 + 1’. Then, both fake and real data are fed into the 
modified Discriminator. The MC-GAN can directly output the predicted probability 
that an instance belongs to each known class or a new class. The training of MC-GAN 
is detailed in Algorithm 1. 
Training of Generator.  The data flow during the training of Generator is depicted by 
magenta line in Fig. 1. The Generator is optimized by minimizing the following loss 
function:  

 𝐿(𝐺) = −𝐸[𝑠𝑐𝑜𝑟𝑒(𝐺(𝒙))] + 𝛾 ∙ ‖𝒙 − 𝐺(𝒙)‖1 (3) 
where 𝛾 is a penalty coefficient, the second term measures the L1 distance between the 
real data 𝒙 and generated data 𝐺(𝒙) [10]. 
Training of Discriminator.  The discriminator is optimized by minimizing the follow-
ing combined loss function: 

𝐿(𝐷) = 𝜌 × 𝐿𝑑 + (1 − 𝜌) × 𝐿  (4) 
where 𝜌 ∈ (0,1) in formula (4) is a trade-off parameter, 𝐿𝑑 and 𝐿  represents the loss 
functions of the ‘channel 1’ and ‘channel 2’, respectively, which are defined as: 

𝐿𝑑 = 𝐸[𝑠𝑐𝑜𝑟𝑒(𝐺(𝒙))] − 𝐸[𝑠𝑐𝑜𝑟𝑒(𝒙)] + 𝛽𝐸[(‖∇𝒙′𝑠𝑐𝑜𝑟𝑒(𝒙
′)‖ − 1) ] (5) 

𝐿 = 𝐸[(𝐶𝑀(𝒙) − 𝑦) ] (6) 
where the 𝐿𝑑 adopts the Wasserstein distance (WD) as a measure of the distance be-
tween real and generated data distribution; the details of gp-WGAN are presented in 
[11,12].   𝒙′ = 𝛼 ∙ 𝒙 + (1 − 𝛼) ∙ 𝐺(𝒙) in formula (3) represents the interpolation of 𝒙 
and 𝐺(𝒙), where 𝛼 ∈ (0,1). 𝒙 = 𝐹𝑀(𝐷𝑀(𝒙), 𝑆𝑀(𝒙)) represents the output of Fusion 
module.  
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Algorithm 1 Training of MC-GAN using RMSprop stochastic gradient descent. We use de-
fault value of Adam hyper-parameters: 𝑙𝑟 = 0.0001, α = 0.99. 
Input: Training dataset 𝑇 = {(𝒙𝑖 , 𝑦𝑖)}𝑖=1

 ; Initial Discriminator weights 𝜔0; Initial Generator 
weights 𝜑0; Initial training hyper-parameters, including, epoch number 𝑁, batch size 𝑚, critic 
number 𝑛 𝑟𝑖𝑡𝑖 , penalty coefficient 𝛽, and balance coefficient 𝜌.
Output: Well-trained 𝜔𝑁 and 𝜑𝑁. 
1: for 𝑒𝑝𝑜𝑐ℎ = 1,… ,𝑁 do 
2:    for  𝑐𝑟𝑖𝑡𝑖𝑐 = 1,… , 𝑛 𝑟𝑖𝑡𝑖  do 
3:       for  𝑏𝑎𝑡𝑐ℎ = 1,… ,𝑚 do 
4:      Sample a batch of real data 𝒙~𝑇 
5:      Generate fake data 𝐺(𝒙) 
6:      𝐿𝑑 ← 𝐸𝑞. (5) 
7:         𝐿 ← 𝐸𝑞. (6) 
8:     𝐿(𝐷) ← 𝐸𝑞. (4) 
9:    𝜔 ←  RMSprop(∇𝜔𝐸(𝐿(𝐷)), 𝜔, 𝑙𝑟, α ), optimize the Discriminator. 
10:    End for 
11:     End for 
12:     Sample a batch of real data 𝒙~𝑇  
13:     Generate fake data 𝐺(𝒙) 
14:    𝐿(𝐺) ← 𝐸𝑞. (3) 
15:     𝜑 ←  RMSprop(∇𝜑𝐸(𝐿(𝐺)), 𝜑, 𝑙𝑟, α ), optimize the Generator. 
16: End for 

2.3 History-state ensemble (HSE) 

As the Generator and the Discriminator are competing with each other during training, 
their performance tends to fluctuate, which makes it challenging to assess whether the 
Discriminator has been sufficiently trained for the SENC task. To address the challenge, 
a novel ensemble technique referred to as history-state ensemble (HSE) method is in-
troduced in this work [13]. The HSE method operates on the assumption that neural 
networks can generate several local optima or ‘history-states’ during training, which 
can serve as base models for ensemble learning. To generate multiple base models, only 
the historical weights of the network need to be retained, as shown in Fig. 2. As a result, 
the time cost of this procedure is negligible.  

In order to minimize redundancy among the base models, we introduce two param-
eters: 𝜃1 and 𝜃 . The former parameter, 𝜃11, specifies the number of epochs required
for model warm-up, while the latter parameter, 𝜃 , sets the update frequency between 
two consecutive base models. Besides, to effectively leverage the HSE, an important 
conclusion drawn from our previous work is applied, which pointed out that the perfor-
mance of MT-GAN is strongly related to the loss value 𝐿 , as presented in formula (6). 
Therefore, the model selection is crucial. A simple model selection approach is adopted 
in this paper. By sorting the 𝐿  values corresponding to each base models, these base 
models with smaller 𝐿  are selected. With the selected base models,     
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𝑌𝑖 =
1

𝑚
∑ 𝑃𝑗(𝑦 = 𝑖|𝒙)

𝑚

𝑗=1
 (7) 

where 𝑃(𝑦 = 𝑖|𝒙) denotes the predicted probability that a given instance 𝒙 belongs to 
label 𝑖 ∈ {1,2, … 𝑐, 𝑐 + 1}. 𝑚 represents the number of base models, and 𝑃𝑗 denotes the 
predicted probability given by the 𝑗-th base model.  
 

 
Fig. 2. Illustration of ensembled MC-GAN based on HSE.  

2.4 The proposed SENC framework 

The proposed workflow is shown in Fig 3. In order to detect multiple new classes, the 
model is required to update itself over time. Like traditional SENC models, we apply a 
fix-sized buffer to store the instances from the detected new class. Given an initial train-
ing dataset 𝑇 = {(𝒙𝑖 , 𝑦𝑖)}𝑖=1

𝑚  with 𝑐  known classes, a streaming dataset 𝑆 =
{(𝒙𝑡 , 𝑦̃𝑡)}𝑡=1

∞  with 𝐾 new classes and a fix-sized buffer 𝐵, the primary procedures of the 
proposed workflow are summarized as follows:  

(1) The initial training dataset 𝑇 is normalized to train the initial MC-GAN.  
(2) Choose fix-sized Discriminator snapshots with the smallest 𝐿  as base models 

to construct the EMC-GAN.   
(3) Each instance 𝒙𝑡 from the streaming dataset 𝑆 is fed into the ensembled Dis-

criminator sequentially. If the predicted label of  𝒙𝑡 is 𝑐 + 1, then feed the in-
stance into the buffer 𝐵.  

(4) If the buffer is full, then merge the instances in buffer into the original 𝑇, and 
re-normalized the new training dataset.  

(5) Re-train the MC-GAN with updated 𝑇 and repeat steps (2-4) until the last in-
stances in 𝑆.  
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Fig. 3. The workflow of classification in SENC with EMC-GAN. 

3 Experimental validation 

3.1 Dataset description 

We used a prevalent benchmark dataset collected by Case Western Reserve University 
(CWRU) Bearing Data Center [14] to evaluate the proposed method. The CWRU Bear-
ing dataset contains a collection of vibration signals acquired from ball bearings 
mounted on a motor. Different levels of artificial damages were seeded on the three 
different locations of the bearings, namely the inner raceway (I), outer raceway (O), 
and rolling elements or balls (B). The seeded fault sizes were 0.007, 0.014, and 0.021 
inches in diameter. Together with health bearing, a total of ten categories are used in 
this work, including Health (H), inner race faults (I7, I14, I21), outer race faults (O7, 
O14, O21) and rolling element faults (B7, B14, B21). The vibration signals of the uti-
lized faulted bearings were recorded for motor loads of 1 to 3 horsepower. The sam-
pling frequency is 12kHz. Each category contains 750 samples with dimension of 1024. 
Please note that the first paragraph of a section or subsection is not indented.  

Table 1 illustrates the four datasets that were generated to evaluate the proposed 
method. The Data A-C solely comprise of one known class, namely 'Health,' in the 
initial training dataset 𝑇, while the test set 𝑆 encompasses four fault conditions, includ-
ing three new classes that were not present in the training dataset. Data A-C were em-
ployed to investigate the model’s ability to detect and differentiate between faults in 
the inner race, outer race, and rolling elements of the bearings, respectively. On the 
other hand, Data set D further increases the complexity of the problem by introducing 
four known classes and six emerging new classes, featuring distinct fault locations and 
sizes in the training and test datasets. 

Train
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Model building
MC-GAN

Model training
EMC-GAN

Ensembled
Discriminator
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Initial training 
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Model update 

Initial 

Buffer
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YES
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Table 1. The utilized datasets. 

Datasets 
Training set Test set 

Fault condition Number Fault condition Number 
A H 250  H, I07, I14, I21 500*1+750*3 
B H 250 H, O07, O14, O21 500*1+750*3 
C H 250 H, B07, B14, B21 500*1+750*3 

D H, I07, I14, I21 250*4 
H, I07, I14, I21 
O07, O14, O21, 
B07, B14, B21 

500*4+750*6 

 
The simulated SENC tasks using the utilized datasets are visualized in Fig. 4. The 

health conditions designated by the color black indicate the initial known classes, while 
several new classes emerge at different times, represented by different colors. As shown 
in Fig. 3, instances will be fed into the model one by one, and to evaluate the perfor-
mance of the model on ‘known classes’, samples from known classes or previously 
detected new classes will reappear with a certain probability.  

 

 
Fig. 4. Visualization of the utilized datasets.  

 
3.2 Results and discussion 

The proposed method is implemented using Pytorch. The RMSprop stochastic gradient 
descent is utilized for training the model. The learning rate is set at 0.0001, and the 
model is trained for 300 epochs on dataset A-C and 500 epochs on dataset D. The batch 
size is set at 20, and the trade-off parameter 𝜌 is set to 0.5. The buffer size for model 
updates is set at 200. For ensemble learning, the warm-up epochs (𝜃1) is set to 100, 
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stride (𝜃 ) is set to 1, and the number of base models is set at 5 for dataset A-C and 15 
for dataset D.  

Fig. 5 displays the comprehensive outcomes of the probed methods using confusion 
matrix. Based on the observations, the following points can be concluded: (1) The pro-
posed method proved to be highly effective in detecting all types of emerging unseen 
instances, exhibiting the excellent classification accuracy on the four datasets that were 
evaluated. (2) The proposed method also demonstrated remarkable performance in dif-
ferentiating between various emerging new classes, with an impressive number of in-
stances being correctly classified. This indicates that the proposed method has the po-
tential to perform reliably in diverse real-world scenarios where emerging new classes 
are present.  

 
Fig. 5. The confusion matrix of the proposed method.  

For comparison, three state-of-art SENC approaches are introduced:  
(1) SENNE [15], a cluster-based ensemble method which is built based on k-

Nearest neighbor ensembles and can be used for both new class detection and 
known class classification after training.  

(2) KNNENS [9], another cluster-based ensemble method derived from SENNE 
and incorporates a reliable model retirement mechanism. 

(3) SENCForest [16], which incorporates a completely-random tree technique for 
identifying newly emerging classes by generating an 'outlying' anomaly sub-
region. Additionally, to establish a comprehensive framework for SENC, 
multi-classification is performed by capturing the class labels within the leaves 
of the previously trained trees. 

    As comparative methods are based on shallow learning algorithms that exhibit inad-
equate performance on raw mechanical signals, 15 features extracted from both the time 
and frequency domains were utilized as their input. These features encompass several 

Data A: c=1, K=3 Data B: c=1, K=3

Data C: c=1, K=3 Data D: c=4, K=6
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statistics such as mean, variance, root mean square (RMS), skewness, kurtosis, shape 
factor, crest factor, impulse factor, margin factor, entropy, energy entropy, power, mean 
frequency, root mean square frequency, and the standard deviation of frequency. A grid 
search approach is employed to identify the optimal combination of key parameters that 
yield the best performance of the competing methods. Determining the decision bound-
aries is heavily dependent on the threshold value [9]. Nevertheless, the selection of 
suitable thresholds is contingent on the particularities of each dataset. Therefore, the 
threshold value is calibrated to guarantee that no less than 98% of the training data can 
be accurately identified as known.  
    Initially, we examine the collective performance of the evaluated methods over time 
compared with the above competitor. By utilizing classification accuracy as the metric, 
we compute the streaming accuracy (SA) as follows:  

𝑆𝐴(𝑡) = 𝑛𝑡 𝑁𝑡⁄  (8) 

where 𝑁𝑡 denotes the total number of instances from the start to time t, 𝑛𝑡
𝑗 represents 

the number of instances being correctly classified as the corresponding labels.  
Fig. 6 presents the 𝑆𝐴 of the probed method on the employed four datasets, the best 

performance of the probed methods is chosen for exhibition. The following observa-
tions are worth noting: (1) Initially, all methods perform well on data A-C during test-
ing, but around the 250th instance, the performance of SENNE and SENCForest begins 
to decline. Meanwhile, KNNENS and the proposed EMC-GAN maintain excellent per-
formance on dataset A and B. However, (2) KNNENS's performance starts to decrease 
around the 1500th instance on datasets C and D, and the proposed EMC-GAN maintains 
the highest accuracy at the end of the test. (3) Although the proposed EMC-GAN also 
experiences a decrease in performance around the 800th instance on data C and 1500th 
instance on data D, indicating some incorrect predictions at that time, it subsequently 
recovers and exhibits an increase in performance.   
 

 
Fig. 6. The streaming accuracy (𝑆𝐴) of the probed methods.  
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The model update information of the probed methods is illustrated in Fig. 7. The 
baseline signifies the precise time when the model should be updated to detect all new 
classes. If the probed methods update the model for a new class before the baseline, it 
implies that some known instances are being erroneously classified as new. On the other 
hand, if the probed methods update the model for a new class after the baseline, it sug-
gests that some new instances are being inaccurately classified as known.  

The following points are noteworthy: (1) The frequent updates of SENNE and 
SENCForest, as compared to the baselines, suggest that these methods have detected 
numerous false new classes. This observation elucidates why these methods exhibit a 
decline in performance after the 250th instance on data A-C. (2) The KNNENS only 
update twice for dataset C, however, there are three new classes, which means that the 
model has poor performance to detect the third new classes. The same behavior can 
also be observed from data D, the KNNENS only update three times for this dataset 
given six new classes. In contrast, the proposed EMC-GAN successfully detected and 
distinguished all the emerging new classes of the four datasets.  
 Table 2 presents the average accuracy and standard deviation of the probed methods. 
It can be seen that the EMC-GAN achieves over 90% accuracy on the four datasets. 
However, the SENNE and SENCForest perform poor because they tend to provide 
many false new classes after model update.  
 

 
Fig. 7. The comprehensive illustration of the model update timestamp and frequency of the 
probed methods.  
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Table 2. Comparison of the average accuracy/standard deviation among probed methods. 

Methods 
Datasets 

A B C D 
EMC-GAN 95.12% /0.06 94.21% /0.0574 92.21% /0.0086 91.72% /0.0069 
KNNENS 94.49% /0.0974 89.66% /0.1178 79.45% /0.0653 55.17% /0.0479 
SENNE 18.81% /0.0818 21.52% /0.0938 19.81% /0.0831 39.74% /0.2295 
SENCForest 22.44% /0.021 22.47% /0.0207 23.17% /0.0257 33.17% /0.0114 
 

4 Conclusion 

In this paper, a novel framework, namely EMC-GAN, is proposed to tackle the chal-
lenges associated with SENC. The effectiveness of the proposed method is investigated 
through four simulated SENC tasks based on well-established benchmark datasets. The 
proposed method offers several advantages over traditional SENC models, including: 
(1) being threshold-free, the EMC-GAN approach integrates novelty detection proce-
dures with the multi-classification task and can accurately predict whether a signal be-
longs to one of the known classes or a new class; (2) the proposed EMC-GAN method 
can process raw signals directly without requiring any manual feature extraction which 
is in line with the modern pursuit of intelligent model; and (3) the EMC-GAN model 
achieves high classification accuracy between different emerging new classes. Overall, 
the proposed EMC-GAN approach has the potential to significantly enhance the accu-
racy and efficiency of SENC systems, enabling more reliable and effective monitoring 
of mechanical systems. 
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Appendix B 
 

 

 

 

 

GitHub repository 
 

This repository contains the source code of the algorithms developed in Paper E and 

Paper F. The repository can be found at: 

https://github.com/YuWa1994/EMC-GAN  

 

 

 

 

 

https://github.com/YuWa1994/EMC-GAN
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