Silje Susort

Distributed Real-Time Systems using
Lingua Franca and Zephyr RTOS

Master’s thesis in Cybernetics and Robotics
Supervisor: Sverre Hendseth
Co-supervisor: Erling Rennemo Jellum

June 2023

.ﬂ
(7]
()

i o
)

0
[
Q
=
(7))
©

=

NTNU

Norwegian University of Science and Technology

Faculty of Information Technology and Electrical Engineering
Department of Engineering Cybernetics

@ NTNU

Norwegian University of
Science and Technology

Silje Susort

Distributed Real-Time Systems using
Lingua Franca and Zephyr RTOS

Master’s thesis in Cybernetics and Robotics
Supervisor: Sverre Hendseth
Co-supervisor: Erling Rennemo Jellum

June 2023

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Engineering Cybernetics

@ NTNU

Norwegian University of
Science and Technology

Table of Contents

1 Introduction
1.1 Problem Context
1.2 Problem Description e
1.3 Related Work o
1.4 Report Outline e
2 Theory
2.1 Real-Time Systems e
2.2 Zephyr RTOS o e
2.3 Networking e
2.4 Distributed Systems L
2.5 The Reactor Model
2.6 Lingua Franca.
2.7 Other Software e
2.8 Hardware Platform
3 Specifications
3.1 Project Objectives and Scope
3.2 Functional Description Lo
3.3 Other Goals e
4 Design
4.1 Hardware Overview
4.2 Choice of Zephyr RTOS
4.3 Federation Topologies L L

15
17
21
30
39
40

41
41
41

45

4.4 Zephyr Platform Support for Federates
4.5 Zephyr Platform Support for RTT

4.6 Adapted Main Function for RTI and Termination

5 Implementation
5.1 Project Structure e
5.2 Custom commands for West 000
5.3 Project Setup
54 Buildand Run o
5.5 Zephyr Configurations L
5.6 Zephyr Platform Support for Federate
5.7 Zephyr Platform Support for the RTT
5.8 Adapted Main Function for RTT
5.9 Zephyr Fatal Errors and Causes

5.10 Github Contributions

6 Evaluation and Results
6.1 Clock Synchronization Test
6.2 Message Sending Testo

6.3 Example: Smart Grid

7 Discussion
7.1 Thesis Outcomes and Future Work

7.2 Areas of Improvement L Lo

8 Conclusion

Bibliography

A Joint RTI main function

B List of Acronyms

C Hyperlink Reference

D Presentation to LF team

52
52
93
o4
o7
o8
61
63
63
64
64

66
66
68
72

78
78
80

81

82

85

86

88

90

ii

Abstract

Real-time systems require careful design and specialized hardware, including the use of
small and scalable real-time operating systems (RTOS), such as Zephyr RTOS. Real-time
systems are often physically distributed by nature or could benefit from a distributed
design. Distributed real-time systems offer benefits like redundancy and load balancing,
but introduce additional design complexities. Coordination languages, such as Lingua
Franca (LF), offer a promising solution for managing interactions between system nodes.
LF provides a framework for distributed coordination, but it is currently only available
for Linux and MacOS. This thesis addresses this limitation by adapting the framework
to Zephyr RTOS, thus allowing use in a range of new applications. Message delays as
low as 4 milliseconds are achieved with the decentralized coordination, and initial clock
synchronization is found to be in the sub-millisecond order. A case based on self-healing
in smart grids is explored, where using logical delays and safe-to-process offsets allow for
explicit manipulation of the system’s reaction time. The outcomes in this report have been
presented to the LF team at the University of California, Berkeley, and contributions have
been made to the open-source LF project.

iii

Sammendrag

Sanntidssystemer krever ngye design, spesialisert maskinvare, og ofte bruk av sma og
skalerbare operativsystemer, som for eksempel Zephyr RTOS. Sanntidssystemer er ofte
allerede distribuerte, eller kan ha mye nytte av et distribuert design. Distribuerte san-
ntidssystemer har fordeler relatert til redundans og balansering av beregningsoppgaver,
men introduserer samtidig hgyere kompleksitet til designet. Koordinasjonssprak, som
Lingua Franca (LF), kan veere en lovende lgsning pa a handtere interaksjoner mellom
distribuerte noder. LF har et rammeverk for distribuert koordinasjon, men det er for
oyeblikket kun tilgjengelig for Linux og MacOS. Dette prosjektet adresserer denne be-
grensningen ved & tilpasse rammeverket til Zephyr RTOS, noe som gjgr det mulig & bruke
det til mange nye applikasjoner. Meldingsforsinkelser sa korte som 4 millisekunder oppnas
med desentralisert koordinering, og initiell klokkesynkronisering er demonstrert til & vaere
under ett millisekund. En demonstrasjon basert pa rekonfigurering i smartnett utforskes,
hvor bruk av logiske forsinkelser og ”safe-to-process” (norsk: trygt-a-prosessere) perioder
tillater eksplisitt manipulering av systemets reaksjonstid. Resultatene i denne rapporten
er presentert for LF-teamet ved University of California, Berkeley, og bidrag er gjort til
LF’s apne kildekode.

v

Preface

This Master’s thesis is the concluding work in the author’s 5-year Master’s degree pro-
gramme in Cybernetics and Robotics. The work has been carried out in the spring semester
of 2023, under the guidance of Sverre Hendseth and Erling Rennemo Jellum. The thesis
is structured as a software report.

There is a small overlap between the work carried out in this thesis with the author’s spe-
cialization project. Firstly, the results achieved in the specialization project provide part
of the motivation for this thesis. Secondly, the following theory overlaps, but is rewrit-
ten for this thesis: the reactor model and Lingua Franca (excluding federated execution),
real-time systems, real-time operating systems, and GDB debugging.

There is an overlap with the subject TTKS, where a report was written on a comparison of
FreeRTOS and Zephyr. Parts of the presentation of Zephyr have been used in this report.

The work on Lingua Franca builds upon the contributions of previous contributors, as it
is an open-source repository. Completing this thesis also involved presenting the work to
the Lingua Franca team, which resulted in valuable perspectives.

I want to thank my supervisor, Sverre, for his belief in me. I want to thank my co-
supervisor, Erling, for his discussions, ideas, insights and proofreading assistance concern-
ing this thesis.

I would also like to thank my boyfriend and life companion, Yngve, for providing emotional
support and exceptional "rubber duck debugging” during this journey.

Chapter 1

Introduction

1.1 Problem Context

A real-time system is a system where the timing of the computational output is as sig-
nificant as the output itself. Real-time systems must adhere to timing constraints, or
deadlines, that are dictated by the environment. To be able to consistently reach its
timing requirements, a real-time system must be carefully designed. The severity of the
real-time constraint will significantly affect the design choices. No matter the severity,
real-time systems require specialized hardware such as embedded systems. To provide
convenient synchronization mechanisms, resource management, and access to hardware
and I/O functions, a specialized type of operating system, a real-time operating system
(RTOS), is used. RTOSes are designed to be small, highly configurable, and cater to the
specific needs of real-time applications. Zephyr is an open-source RTOS that especially
emphasizes connectivity.

As the robustness and reliability of real-time systems are paramount, it is natural to
extend the system to encompass several, physically separate nodes. It is then called a
distributed real-time system (DRTS). Distributed real-time systems have the possibility
of adding redundancy to the design, meaning that even in one node fails, then the system
can keep operating. They can dynamically balance the computational load to reliably
keep execution times within deadlines. Another aspect is that real-time systems are often
distributed by nature, for example by having physically separate measuring units and
computational units.

However, distributed systems introduce new design complexities. Nodes must commu-
nicate reliably through networks, they must keep sufficiently synchronized local clocks,
must sufficiently agree on the system state, and meet temporal real-time requirements.
These challenges pose a significant burden on developers and system designers. At the
same time, real-time processing across multiple nodes is essential in various industries
and applications, especially for safety-critical applications. Everything from monitoring
a patient’s vital signs to flight control systems, or creating a self-healing electricity grid.
DRTS requires cutting-edge solutions from multiple technical disciplines to be employed
for new and innovative applications in our society.

Coordination languages offer a promising solution to effectively handle the intricacies
of distributed real-time systems. These languages focus on managing the interactions
between system nodes rather than the actual computation, enabling developers to design

applications with formal guarantees and intuitive interfaces. Lingua Franca (LF) [1] is an
open-source coordination language that provides an implementation of the reactor model
[2]. The reactor model combines principles from synchronous-reactive models, discrete-
event models, logical execution time models, and the actor model [2].

Xronos [3] is an open-source framework for distributed applications, and provides two
types of predictable coordination based on PTIDES [4], [5] and High-Level Architecture
(HLA) [6]. Xronos is developed on top of the LF coordination language. While parts of LF
are ported to FreeRTOS [7] and Zephyr [8], the Xronos framework has not been ported to
either. In fact, Xronos is currently only available for Linux and MacOS and has not been
run on resource-constrained systems before. This thesis aims to confront this limitation
by adapting the framework to Zephyr and will provide some initial results from testing
the timing properties of the implementation.

1.2 Problem Description

The framework provided by Xronos [3] will be extended to the RTOS domain to allow
coordination of distributed real-time systems. As Lingua Franca handles time explicitly,
this could be a major advantage for handling real-time constraints [2]. A number of
interesting implementations in the framework let the developer directly influence various
trade-offs in distributed system design.

As the Xronos framework, also called federated LF [2], has not been run on resource-
constrained embedded systems or real-time operating systems before, this thesis aims to
experimentally implement this for the Zephyr platform. To do that, the LF runtime must
be modified. A goal of the thesis is to contribute to the open-source Lingua Franca project.
Additionally, it is of interest to find out how to set up a multi-platform federation, and to
sufficiently document it to ease further work.

The central questions to answer are:

e How viable is federated LF on Zephyr RTOS for the design and implementation of
distributed real-time systems?

e What are the strengths and weaknesses of this approach?

In order to investigate the potential of distributed real-time system development using
federated Lingua Franca, some central questions need to be answered:

e What is the achievable clock synchronization error over a LAN network using LF’s
own clock synchronization? Since there is no underlying synchronization from the
network, the implementation is dependent on LF’s own synchronization scheme

e What is the overhead of sending a message using different coordination schemes?
The coordination schemes use a different amount of system resources and could
have interesting effects on inherently resource-constrained platforms.

e What is the maximum possible message throughput that the distributed system can
handle correctly in the different coordination schemes? This measure would depend
on the structure of the distributed system, of course, but a baseline measure would
be ideal for future considerations.

e How fast and how reliable can a federation react to environment input? How do dif-
ferent timing primitives affect these measures? To investigate this, a demonstrative
example based on self-healing in Smart Grid systems will be explored.

1.3 Related Work

Robot Operating System (ROS 1) [9] is a popular, open-source middleware for robotics
systems, usually distributed, and is based on the publish-subscribe coordination mech-
anism. The ROS master sets up peer-to-peer communication between nodes, and nodes
can publish or subscribe to topics [10]. The release of ROS 2 brings many new features,
among them micro-ROS [11] which aim to bridge the gap between resource-constrained
embedded devices and larger processors using ROS. Micro-ROS features several optimiz-
ations for embedded systems, including a new client type, additional drivers and uses a
POSIX-supporting Real-Time Operating System (RTOS), such as Zephyr, FreeRTOS or
NuttX [11].

MQ Telemetry Transport (MQTT) [12] is a popular messaging protocol for Internet of
Things (IoT) applications, and is also based on publish-subscribe coordination. The sender
and receiver are decoupled from one another by communicating through topics. The
MQTT broker holds session data, topology information, authorization of MQTT clients
(which are devices running the MQTT library), receives all messages and relays them
to the correct recipients [13]. Both Zephyr and FreeRTOS provide MQTT client library
implementations [14], [15].

The pub-sub coordination common to ROS and MQTT produce non-deterministic incon-
sistencies in message ordering when published and observed on multiple topics [3]. These
inherent problems lead to additional, error-prone application logic, and it is arguably the
underlying model that should ensure deterministic coordination [3].

Timed C [16] is an extension to the C programming language providing simple timing
primitives aimed at real-time systems. [16] argues that building real-time systems on
RTOS APIs makes the code error-prone, complex, and less portable, and that it is better
to have the programming language itself support simple timing primitives. Timed C
is suitable for non-distributed, resource-constrained embedded systems, and can generate
code for FreeRTOS and POSIX-compliant systems. Timed C is not suitable for distributed
systems, as no network transport is included [17].

Federated Timed C [17] extends Timed C with deterministic network channels in a refer-
ence implementation, such that Timed C can be used to create robust distributed real-time
systems. Time Sensitive Networking (T'SN) [18], which is a networking technology provid-
ing time-triggered networking over Ethernet, is used to provide strict timing guarantees,
such as bounding the end-to-end latency. For hard real-time systems, these guarantees
are critical. A weakness of ROS, MQTT and Xronos is that they are based on TCP and
UDP [10],[13],[3], which cannot guarantee latencies.

1.4 Report Outline

The report is outlined as follows. Section 2 presents the relevant theory related to the
thesis. This section introduces real-time systems and presents a real-time operating system

called Zephyr. Basic networking theory is introduced. Important problems in distributed
systems are outlined. A deterministic and concurrent model of computation called the
reactor model is presented, followed by an implementation of it as a coordination language
called Lingua Franca. Other software used in the project and the hardware platform
are presented at the end. Section 3 covers the specifications of the project, presenting
both functional descriptions and some further goals. Section 4 covers important design
considerations in the project solution. Section 5 covers how the project is structured, how
it should be set up, and how it was implemented. Section 6 presents four tests measuring
some important aspects of the implementation, as well as a study of a larger example using
the implementation. Section 7 discusses the thesis results in a wider sense, and project
improvements and future work is presented.

Chapter 2

Theory

This chapter covers the necessary theory and background for the thesis. The chapter will
start by covering two classes of systems central to this thesis, namely real-time systems and
distributed systems. The real-time operating system called Zephyr will be presented. Next,
a deterministic model of computation called the reactor model, and its implementation in
the coordination language called Lingua Franca will be given a section each. The section
about the reactor model focuses on the model properties, while the chapter about the
language focuses on syntax and how it is implemented using a runtime. Next, networking
concepts are presented. Finally, some information about the software and hardware used
in the thesis will be presented.

2.1 Real-Time Systems

Real-time systems are computer systems characterized by finite time constraints from the
environment [19]. The time constraints are called deadlines. The correctness of a real-time
system is not only based on the calculations, but also on when the calculations arrive.

A consequence of having to meet deadlines is that the worst-case execution times (WCET)
are more important than the best-case and average-case execution times in these systems.
This is contrary to general-purpose computing and CPU design [20], where maximizing
the throughput of the system is the most important consideration. Therefore, real-time
systems often require dedicated hardware systems and special real-time operating systems
[19]. These elements give higher predictability and reliability to the overall system, making
guarantees possible.

The importance of reaching a deadline depends on the severity of the real-time constraint.
There are commonly referred to as three types of constraints, classified by their severity
level: soft, firm and hard real-time constraint [19]. A real-time system may have one or
several real-time constraints. If there are constraints of several types, then it is called a
mixed-criticality real-time system. The least severe constraint is visualized as the leftmost
graph in Figure 2.1. The value of the result will decrease the further it is from the
deadline. An example of such a system could be a measurement system where the older
the measurements are, the less value they have. A more severe constraint is a firm real-
time constraint, shown in the middle graph in Figure 2.1. If the deadline is violated, then
the result is not useful anymore. An example of such a system is a classification system
on an assembly line. If the classification comes too late, then the item may have already

passed, and the result is useless. The rightmost graph in Figure 2.1 shows a hard real-time
constraint, which is characterized by system failure if the deadline is violated. In the most
severe case, damage to people and property could be caused. An example of a system with
a hard real-time constraint is an automatic brake system on a car. If the brake system
fails, then the car could potentially crash.

Soft Real-Time Constraint Firm Real-Time Constraint Hard Real-Time Constraint

Value \ | Value \ | Value \ |
1 1 1
!] x
1 | 1
1 | 1
1 | 1
| | |

1 > 1 > 1 >

Deadline Time Deadline Time Deadline Time

Figure 2.1: The figure shows the common classifications of real-time constraints.

2.1.1 Real-Time Operating Systems

Real-Time Operating Systems (RTOS) are small and scalable operating systems character-
ized by a focus on time predictability. RTOSes are typically used with embedded systems
[19]. The main functions of an RTOS are to provide convenient access to hardware, efficient
resource management and input/output functions [19]. The RTOS kernel is configurable
such that specific application needs can be met [19]. Real-time operating systems are not
only for real-time systems, but also for embedded systems of a certain complexity [21].
RTOSes provide concurrency interfaces, timing APIs, and possibly network stacks.

Tasks are the computational entities executed by the processor, and are also called pro-
cesses or threads [21]. A task consists of instructions, data and task administration in-
formation needed by the operating system [22]. Operating systems have task models which
determine which states a task can be in [22]. The most basic task model is simply if it is
currently running or not running. Usually, the task model will also have states for a ready
state, blocked or waiting state, states related to memory swapping and more.

Scheduling is a crucial process in any operating system, as it is the act of deciding which
tasks should run on the processor over time. Scheduling can refer to three types of schedul-
ing; short-term, medium-term and long-term scheduling [22]. Short-term scheduling is de-
ciding the best task to run at any time. Different scheduling strategies optimize different
aspects of the behavior. A (short-term) scheduler can be preemptive or non-preemptive
[19]. A non-preemptive scheduler will let an already running task complete, or the task
will voluntarily yield, before switching to another task. A preemptive scheduler can switch
tasks even before they have finished. The two scheduling strategies are shown in Figure
2.2. Notice when the tasks are ready to run and when they finish in the two strategies.

Memory management is a complex task in an operating system. Memory management
concerns how to allocate and share memory for tasks. Memory placement algorithms
have consequences for the time overhead of allocating blocks of memory, but also for
memory allocation determinism and the risk of memory fragmentation [22]. Memory
fragmentation is when several blocks of memory are too segmented to use contiguously.
Thus large quantities of memory may become unusable. There are strategies to mitigate

Preemptive Scheduling

High priority task -

Medium priority task

LY

“ Time
Non-preemptive Scheduling
High priority task o -
Medium priority task
¥ Time

Figure 2.2: The figure shows the two types of short-term scheduling. The squares signify
the time the task is ready to run, and the circles when they are finished processing.

memory fragmentation, but in a resource-constrained system, it may be time-consuming
[22].

2.2 Zephyr RTOS

The Zephyr Project was launched in 2016 with the goal as described on their webpage:

”The Zephyr Project strives to deliver the best-in-class RTOS for connected
resource-constrained devices, built to be secure and safe.”

In other words, Zephyr is an embedded RTOS that specifically focuses on connectivity,
security and safety. These points match well with Internet of Things requirements and
technology, and make Zephyr particularly attractive to these applications.

The Linux Foundation is behind the open source project, but it also has several important
semiconductor and other companies as members [23]. The members engage and contribute
to the project. It has an Apache 2.0 license, which is a permissive free software license,
giving few conditions for use, modification and reuse.

Zephyr supports a wide range of boards, see [24].

Most of the information in the following sections is collected from the Zephyr Kernel
Documentation pages [25] and the Github page [26].

- Zephyr”

Figure 2.3: The figure shows the Zephyr logo. Found via Wikimedia Commons, Zephyr
Project, Apache License 2.0.

2.2.1 Structure

Zephyr RTOS on Github [26] is a large project containing the kernel, ports, drivers, lib-
raries, tests, examples, documentation, protocol stacks, file systems and more. The kernel
folder itself contains 37 source files in C, where 10 of those are included in any build. The
10 main kernel files are: main_weak.c, banner.c, device.c, errno.c, fatal.c, init.c, kheap.c,
mem _slab.c, thread.c and version.c. 11 more files will be included if multithreading is
enabled. The rest of the kernel files correspond to certain configurations. Ports to specific
boards and peripheral drivers are not part of the kernel, but part of the operating system.
A part of the structure of Zephyr is summarized in Figure 2.4.

2.2.2 Setup and Configuration

Installation of Zephyr is done by installing all dependencies, downloading and setting up
the Zephyr SDK, installing West and initializing the Zephyr directory. More on this process
in the Zephyr Install Documentation page [27]. Note the minimum required versions of the
dependencies. Creating a Python virtual environment for the installation is recommended
to avoid dependency incompatibilities.

The Zephyr SDK contains a range of samples that can be run with a single command if
the given board is supported. All necessary configurations are contained in the project
configuration file, as well as in the configuration files associated with the board. Build a
basic sample using the following command:

$ west build —b <BOARD> samples/HelloWorld

Zephyr provides an advanced configuration system, both for software properties (Kconfig)
and hardware (Devicetree), together with a custom build tool (west). These systems make
the integration of submodules simple and provide hardware independence.

Kconfig

Kconfig is a configuration system consisting of Kconfig files distributed throughout the
directory tree. The relevant files for a project are then merged. Each Kconfig file contains
some configuration options. The total number of configuration options is very large, so
it is a good idea to look up sample configurations, and search the individual options and
their dependencies at Kconfig Search.

The Kconfig system is used by the Linux kernel [28]. Both application-specific configura-
tion and hardware-specific configuration are handled by Kconfig files. Notice how Kconfig

http://www.apache.org/licenses/LICENSE-2.0
https://docs.zephyrproject.org/3.1.0/kconfig.html

Zephyr
a kernel
Include Contains kernel header files
main_weak.c
banner.c
device.c
erro.c
fatal.c
init.c
kheap.c
mem_slab.c
thread.c
version.c
27 more source files

o drivers Contains supported drivers
adc
bluetooth
can
: Many more driver folders
_Lc: boards Contains supported boards
common
arm Architecture 1
t: arduino_due Board 1

frdm_k22f Board 2

x86 . Architecture 2
: 9 more architecture folders

Figure 2.4: The figure shows part of the structure of the Zephyr RTOS. Note that the
figure is not at all complete and contains much more than is shown.

uses DeviceTree output in Figure 2.5. Application-specific configurations are made in a
file typically called prj.conf in the project folder.

DeviceTree

DeviceTree is a hierarchical hardware configuration system used with Zephyr. Figure
2.6 shows an example of the hierarchical structuring of the hardware for a LED. The
DeviceTree sources, shown in Figure 2.5, consist of a main DeviceTree file, which specifies
the available features on the hardware and its initial configuration. It also possibly consists
of overlay files that can override the main DeviceTree source file. DeviceTree bindings
specify rules for the contents of the DeviceTree, such as structure, possible values, etc.
All this information is then used to produce a final configuration file, zephyr.dts, and
generated C headers.

West

West is a command-line tool developed for the Zephyr project. It is a convenience tool de-
veloped for the most common workflows when developing; repository management, build-
ing and flashing. It is also possible to create custom commands. One of the main mo-
tivations behind developing a new tool (as opposed to using some existing repository
management tool) was to be able to separate externally maintained repositories from the
main Zephyr repository.

—~

Pf]'.con?ar}ql other }/'_ \h} autoconf.h
config files T
[Kconfi | g

[nng

™y \ sr:.npt;/
Kconfig files }\“"i

.config

<BOARD>.dts)
Generated C
\ headers
<BOARD>.overlay > | Dss.\gﬁzi? N
- _/L)
- zephyr.dts
BINDING.yaml
vy

Figure 2.5: The figure shows the input configuration files for DeviceTree and Kconfig, and
how they generate output files.

led-1

/ SOC leds

led-2

Figure 2.6: The figure shows the DeviceTree hardware hierarchy with a LED example.

2.2.3 Task Management

Tasks
In Zephyr, tasks are called threads, but they are the same concept.

A thread will typically run infinitely, but Zephyr also allows for the thread to terminate on
its own. It is then required that it releases any shared resources before doing so. To avoid
race conditions, program code should use synchronization mechanisms, like k_thread_join()
or k_thread_abort().

A thread can be either ready or unready to execute. If the thread is ready, it may be
selected to execute by the scheduler. If the thread is unready, it cannot be selected. A
thread can be unready for a variety of reasons. It may not have started, waiting for
synchronization or time-related events, suspended, terminated, or aborted. An overview
of the thread state structure is shown in Figure 2.7.

In Zephyr, a thread has a given priority. The lower the numerical value, the higher the

10

suspend abort]
New start resume Suspended > Terminated
r .
interrupt
Ready ./ Running
dispatch
Waitin <
g?;,;g;gg : 9 /O or event wait

Figure 2.7: The figure shows the thread states in Zephyr. Based on [25]

priority. The priority is set at thread creation, but may also be changed during runtime.
If the priority value is negative, then the scheduler cannot preempt the thread; it may
only be cooperative. If the priority value is positive; it may be preempted. Thus, two
classes of threads are constructed; cooperative and preemptible threads. A cooperative
thread always has precedence over any pre-emptive threads. The number of priority levels
in both categories may be configured.

Preemptive threads are typically used for prioritizing more or less time-sensitive tasks,
while cooperative threads are typically used for work that is critical for performance, or
for automatic mutual exclusion.

In Zephyr, there are automatically created threads called system threads. The Main
thread is a system thread that is responsible for system initialization and for executing
the main function. The idle thread is a thread that executes when no other thread can,
ie. it has the lowest possible priority and will yield as much as possible. It either activates
power-saving mechanisms or simply busy waits. If the idle thread aborts, the system will
raise a fatal system error.

Scheduling

The scheduler in Zephyr decides which of the tasks in the ready state will execute at
any given time. As indicated above, the scheduler uses a task’s numerical priority value
and whether it is preemptive or cooperative to decide which thread should be the current
thread. The current thread may only be switched at certain rescheduling points; when
a new thread becomes ready, the current thread yields execution, the current thread is
suspended or waiting, or after processing an interrupt.

The scheduler can be configured to use time slicing, ie. partitioning time into a series
of slices with a certain length [25]. Cooperative time slicing is also possible, where a
cooperative thread voluntarily calls k_yield() or k_sleep(). If the thread calls k_yield(), then
the scheduler will check if any threads of equal or higher priority can run. A preemptive
thread may temporarily become a cooperative thread by calling k_sched_lock(), if it needs
to avoid being preempted. When it can be preempted again, it must call k_sched_unlock().

11

The scheduler can be configured to use different implementations for the ready queue,
which will affect overhead and context switch speed.

Interrupt Service Routines (ISR) will always interrupt tasks, no matter the task priority
or class. That is, unless interrupts have been temporarily disabled.

2.2.4 Memory management

Zephyr application memory may be completely statically allocated at compile time, or
may use dynamic allocation. Zephyr allows the use of several different types of heaps in
the same configuration. They have different properties.

k_heap is a heap allocator that uses kernel synchronization tools. It may allocate and
deallocate memory in a way that is very similar to the C standard malloc() and free().

The different heap types can be summarized in the following Table 2.1.

Name m]:i)r(le:s?c][i‘c? Heap size iilgt)crailglomn Fragmentation
No Heap Yes - - Not possible
k_heap No Configurable best fit (buckets) Possible
system heap ~ No Configurable best fit (buckets) Possible
Memory slabs No Configurable first-fit (assumption) Not possible

Table 2.1: The table shows (a subset of) the different dynamic allocation options in Zephyr.

2.2.5 Inter-process communication methods

Table 2.2, collected from Zephyr’s kernel documentation pages [25], summarizes the dif-
ferent inter-task and ISR communication methods.

. ISRs
di?el; ‘. Data]i:’zz;cr? Data can Overrun
. Structure . Alignment receive/ handling
ional? size
send?
FIFO No Queue Arbitrary 4 B Yes N/A
LIFO No Queue Arbitrary 4 B Yes N/A
Stack No Array Word Word Yes Undeﬁned
behaviour
Pend
Ring Power of Power of thread
wEssREs et RN Buffer two two Yes or return
-errno
Mailbox Yes Queue Arbitrary Arbitrary No N/A
Pend
Pipe No gﬁ:"?er Arbitrary Arbitrary Yes Z}rlrfjirn
-errno

Table 2.2: The table shows different data passing structures in Zephyr, and their charac-

teristics.

12

A queue is a data structure that implements ordered data storage, which can be accessed
by both tasks and ISR. It is implemented as a linked list. A FIFO queue is a queue data
structure that has the limiting functionality of being a First In First Out order. The data
elements can be of any size. Multiple items may be added at once if they are chained
together. A LIFO queue is a queue data structure that has the limiting functionality of
being a Last In First Out order. The data elements can be of any size. Multiple items may
be added at once if they are chained together. A stack is a LIFO queue with limitations
on the data elements. A message queue is a data structure that allows for asynchronous
data passing. The data element that is sent by a thread is copied into the message queue.
If it is full, then the thread has the option to wait. A mailbox is a message queue with
extended functionality. It can use both asynchronous and synchronous communication. A
pipe is a synchronous process-to-process data passing method in which streams of bytes
are sent. It can be configured to use a buffer that holds the data.

Synchronization structures like semaphores and mutexes are implemented. A condition
variable is a synchronization structure that enables threads to wait until some condition
is true. Several threads may wait on the same condition variable. It can be used to signal
changing states in threads.

2.2.6 Time Utilities

Zephyr provides different ways to access time, differing in unit and precision. The standard
way is to provide real-time values, in milliseconds or microseconds, which are easy to handle
by the application, but not as precise. To get more precise values, the application designer
can poll the kernel cycle count at k_cycle_get_32(). The kernel also uses ticks for interrupt
handling and internal bookkeeping. All these different values may be easily converted to
the others.

Timers

A Zephyr timer uses the system clock to measure time and generate interrupts as con-
figured by the user. When the timer generates an interrupt, a custom expiry function
will execute (or can be set simply to NULL). The timer first expires after a set duration,
and then every period duration. The period may be set to the macros K_.NO_WAIT or
K_FOREVER to get a one-shot timer instead of a periodic one. A timer has a stop func-
tion in addition to the expiry function, that will execute when the timer has been stopped
too early. There is no set limit on the number of available timers.

2.2.7 Networking

Zephyr comes with a highly configurable, native network stack [29]. The stack is divided
into layers as follows:

e Network Application provides application-level protocol APIs and configuration
options for the related network parameters. A BSD socket implementation is avail-
able to directly interface with connections.

e Network Protocols provide implementations of network protocols. Application-
level protocols like CoAP and MQTT are implemented. Communication protocols
like TCP, UDP, IPv4 and IPv6 are implemented.

13

e Network Interface Abstraction provides the basic network infrastructure, needed
by all protocols.

e L2 Network Technologies provides the underlying data handling from network
devices. This includes technologies like Ethernet, Bluetooth and TEEE 802.15.4.

e Network Device Drivers provides the low-level drivers.

2.2.8 POSIX API

Zephyr offers a partially implemented POSIX API. This API is available under the con-
figuration option CONFIG_USE_POSIX_API. It was developed with the intention of easy
integration with other libraries, and to simplify porting POSIX applications to Zephyr.
The POSIX API is under development, and is not complete. Therefore some functions
may not be implemented.

14

2.3 Networking

This section provides an overview of key networking concepts needed for the thesis.

2.3.1 TCP/IP Protocol Suite

The TCP/IP protocol suite is a model organizing computer networks into five layers. As
this is assumed well-known by the reader, it is only briefly covered.

Layers

The physical and data link layers do not define specific protocols, and support all standard
and proprietary protocols [30]. The network layer supports the Internet Protocol (IP)
versions 4 and 6 (IPv4 and IPv6). The transport layer supports User Datagram Protocol
(UDP), Transmission Control Protocol (TCP) and Stream Control Transmission Protocol
(SCTP). The application layer supports several protocols related to different application
aspects, such as file transfer, hypertext transfer and so on.

Addresses

The TCP/IP model defines four types of addresses, belonging to four of the different layers
[30]. The data link layer has physical addresses, the network layer has logical addresses,
the transport layer has port addresses and the application layer has application addresses.
The physical address is a 48-bit number that must uniquely identify a node on the network
and is commonly referred to as the Media Access Control (MAC) address for ethernet [30].
The logical address for IPv4 is a 32-bit number uniquely identifying a node on the network,
and commonly referred to as the IP address [30]. The port address identifies the process
to communicate with and is a 16-bit number [30].

TCP and UDP

TCP and UDP both provide process-to-process communication. UDP is a very lightweight
transport protocol that offers fast, unreliable and connectionless communication [30]. Tt
is suitable for applications where speed is prioritized over error-free delivery. TCP is a
much more advanced protocol than UDP, and ensures data delivery in the correct order,
without loss, duplication, or corruption [30]. TCP is a connection-based protocol, meaning
TCP establishes a virtual connection between the processes, and exchange data in both
directions.

Ethernet
Ethernet is a protocol for the hardware and data link layer. It is widely used in Local
Area Networks (LANs), and can provide 10 Mbps, 100 Mbps, 1 Gbps and 10 Gbps transfer
rates [30].

2.3.2 Network Switch

A network switch enables connections between devices in a network, and can either be a
two-layer or three-layer switch, depending on which layers in the TCP /IP stack it operates.
A two-layer switch uses the physical and data link layer of the TCP/IP stack only, thus
enabling faster forwarding [30].

15

2.3.3 BSD Sockets

Berkeley Software Distribution (BSD) Sockets are an API for process communication. A
socket is a communication endpoint and must be bound to a local IP address and port
address. The use of a port address enables a device to have several communicating sockets,
for example for different local processes sending and receiving at the same time, or for
loopback communication. Typically, several underlying network transport protocols are
implemented, like UDP and TCP, and are both available for the application.

BSD Sockets are based on the client-server paradigm. The server will be listening for
incoming connections and may be connected to several clients. A client socket will try to
connect to a single server. When connected, the communication may be initiated either
way. In applications, sockets are represented as file descriptors that may be read from or
written to.

A state machine representation of the BSD socket model is shown in Figure 2.8. The
transitions correspond to APT calls, explained in table 2.3. The sockets need to be created
and bound to a local address, meaning an IP address and port combination. The server
address needs to be explicitly specified, while this is optional for the client. If not specified,
the client will be automatically assigned one by the kernel. When the client is ready, it
can actively try to connect. If the server is listening for connections, it can also accept
connections from clients. A three-way handshake is made to establish a connection. After
the sockets are connected, data may be sent over the connection.

The socket connection may be temporarily disabled in one or both ways (ie. receiving or
sending direction). It can also be closed permanently. It is a good idea to disable the
connection before destroying the socket to ensure a clean shutdown. This has to do with
messages already sent being handled correctly.

send()

Sending shutdown()

4

Receiving

socket(); listen() accept() close()

bind() A ' Listening for ~ | .)
T connections C/ Connected

Server ~— — —

Disabled Destroyed ‘

recv()

send()
Sending

| Disabled H Destroyed ‘

';:Ioset)

socket();

bind()* [~
~—)’ Created }-)i Connected
Client E—

connect()

recv() Receiving 1 shutdown()

S ——

Figure 2.8: The figure shows a state diagram of socket creation, communication and
destruction. Some possible transitions are left out for simplicity. The client can optionally
be bound to a specific port, but will otherwise be automatically assigned one by the kernel.
The transitions correspond to API function calls.

16

socket() Server/Client | Create a new socket

bind() Server/Client | Bind a socket to a specified local address (IP:port)
listen() Server Listen for incoming connection requests
connect() Client Attempt to establish a connection

accept() Server Accept a connection

send() Server/Client | Send data over socket connection

recv() Server/Client | Receive data over socket connection

shutdown() Server/Client | Disable connection in some direction or both
close() Server/Client | Destroy a socket

Table 2.3: The table shows the meaning of each mentioned API call, and if it is used on
the client- or server-side.

2.4 Distributed Systems

A system is said to be distributed if message transmission delay is non-negligible compared
to the time between events in the system [31]. This definition includes, and most often
refers to, systems with physically separate nodes. A number of important considerations
and nuances must be handled when dealing with distributed systems. As Schwarz and
Mattern (1994) [32] puts it:

7It seems that implementing distributed programs s still an art rather than an
engineering issue; understanding the behavior of a distributed program remains
a challenge.”

This section will present some of these aspects.

2.4.1 Global Ordering of Events

Distributed nodes should agree on the system state. This is called consistency [33].
Consistency in a distributed system is difficult since causal and temporal relationships
between events are not always clear, and this results in nondeterministic [32] and hard-to-
understand execution sequences.

In a non-distributed system, the concepts of before and after are straightforward. Since
any two time-tagged events share a clock reference, it is easy to establish which one was
first (given enough time precision). There will always be a globally correct order of events.

The ordering of events in a distributed system is conceptually different. If physical time
is to be used to time-tag the events, then each node must use its available physical clock.
The system clocks can be synchronized closely, but will always have some synchronization
error. Physical time must be measured, and is therefore not an available ”true” reference.
In this situation, it can be fundamentally impossible to tell which of two events truly
happened before another [34]. This is because the order of such events depends on the
frame of reference, as in the theory of special relativity. Distributed systems can therefore
have genuinely ambiguous ordering of events.

Consequently, a globally correct order of events based on physical time may not exist
for distributed systems. [31] proposed a method to define a globally correct order using

17

logical clocks. Firstly, the system clocks must be sufficiently synchronized. A logical time
granularity can be based on the maximum allowable synchronization error. This logical
time may then be used to assign event time tags. A semantic global order can then be
defined, even for truly ambiguous events [31]. Simultaneity is then semantically possible
as well, and how to handle this will depend on the application.

Another consequence of this method is that better application time granularity is possible
with better clock synchronization [31].

2.4.2 Clock Synchronization

Some level of clock synchronization is required for distributed systems. Often it is required
that the clocks be synchronized within some bound. Different synchronization algorithms
and protocols have different achievable performances.

The Network Time Protocol (NTP) is a popular synchronization protocol where a
trusted time server synchronizes with clients. It is a hierarchical structure where the first
levels are reference clocks, such as national standard clocks or atomic clocks, and each level
synchronizes with the level below [35]. A survey of NTP in use on the internet showed
that most NTP-synchronized clocks were within 20 - 30 milliseconds of each other [35].
Better precision is achievable within a Local Area Network (LAN) [35].

The NTP synchronization is implemented such that each client sends periodic timestamp
requests to the most suitable server. Which server to synchronize with is decided by
algorithms evaluating the level and synchronization distance. The server will then respond
with its timestamp.

The Precision Time Protocol (PTP), standardized as IEEE 1588 [35], is a high-
precision synchronization protocol initially developed in the automation industry. As with
NTP, PTP uses a hierarchical structure. At the top of the hierarchy is a GPS receiver,
a high-precision local oscillator, or an atomic clock. This clock then sends multicast
messages to the next level, while the lower level responds back with unicast messages.

PTP can be implemented purely in software, but also hardware-assisted software [35].
PTP has been shown to deliver sub-millisecond synchronization on LANs (software imple-
mentation), and sub-microsecond synchronization with hardware implementations [35].

The basic idea is that the clock error e can be estimated by finding the round trip delay
[35]. The error can be estimated with

e=8T3—-MT3—d (2.1)
where d is the one-way delay defined as

MT2— MT1) — (ST2 — ST1)

(
d= 2

(2.2)

Where the timestamps from the slave’s local clock are S7T'1, ST2 and ST3, and from the
master’s clock are MT1, MT2 and MT3. A synchronization round is shown in Figure
2.9. MT1 is the first timestamp sent from the master clock. S7T'1 is the timestamp of the
arrival of MT'1 at the slave’s local clock. The reply is sent at timestamp ST'2 and received

18

at the timestamp MT?2 from the master clock. A last message is sent at MT3 to the
slave, and the error can be estimated as in Equation 2.1. If the communication latency is
exactly symmetric, the error will be exactly determined. The real implementation of PTP
is more involved than described here, see [35] for more details.

MT3

Figure 2.9: The figure shows the conceptual exchange of messages in PTP synchronization.

2.4.3 Consistency/Availability Tradeoff

Hosts that do not share memory must keep individual copies of system state information.
Any change to that state must be propagated through the network until all nodes have
updated their copy. During this time, the state information is inconsistent throughout the
system. If the system must have consistent state information at all times, then the system
must be unavailable during this time. Alternatively, if the system must be available at all
times, then the system must sacrifice consistency. Thus, there exists a fundamental trade-
off between consistency in the system and availability. The CAP theorem, introduced in
[33], formulated the trade-off as that one can only have two of the three following traits
in a shared-data system:

e Consistency: Nodes agree on the value of a shared variable
e Availability: The experienced latency /response time for a user

e Network Partitioning: Tolerance to communication failure between nodes

However, it has been pointed out that network partitioning is not a binary property.
Network partitioning can be seen as an extreme case of network latency. It has been
observed that the consistency/availability trade-off is present to some degree for network
latency in general. Lee et al. [34] has formalized the CAL theorem (L for Latency),
building further on the CAP theorem and the aforementioned observation. Lee et al. [34]
observes that both clock synchronization and execution times have the same effect on
the consistency /availability tradeoff as network latency, and are thus all under the term
"latency”. Lee et al. [34] expands the theorem to include latency instead of network
partitioning, and thus consistency and availability become non-binary properties as well.

e Latency: The total latency from clock synchronization error, execution times and
network latencies

19

The CAP theorem is an edge-case of this theorem when latencies become unbounded. The
reader is referred to Chapter 3 of [34] for the formal theorem and definitions.

2.4.4 Coordination Strategies

Coordination strategies emphasize either consistency or availability. A distributed system
for simulation would prioritize consistency over availability since the most important thing
is for the calculations to be correct in each node [34]. A distributed control system would
prioritize availability since it is more important for nodes to keep operating compared to
agreeing on the system state.

High Level Architecture (HLA) is a centralized coordinator scheme, originally de-
signed for distributed simulations by the US Department of Defense [6]. HLA is now a
fully developed standard specification [6]. In a distributed simulation, it is more important
with consistency in results (ie. getting the same result if running on a distributed system
and a non-distributed system) than with availability.

A key property of the HLA architecture is the separation between computation (sim-
ulations) and coordination (interoperability among simulations) [6]. All computation is
handled in modular components called federates. Little restrictions are put on what is rep-
resented in the federates or how, only that objects must be able to interact with objects
in other federates. The coordination between federates is handled by the RunTime Infra-
structure (RTI). A runtime interface provides specifications for the interactions between
RTI and federates.

PTIDES (Programming Temporally Integrated Distributed Embedded Systems) [4] is a
decentralized coordination scheme that is based on exploiting explicit assumptions on the
communication latency to specify a safe to process event time offset. Google Spanner
[36] developed a very similar strategy independently. The safe-to-process offset allows
for optimistic coordination that opens up for increased fault tolerance and concurrent
execution, without the use of rollback or null messages. There is only a need for null
messages in certain circumstances [4].

The key property of the coordination scheme is the safe-to-process offset. It is the physical
time it takes an entity to decide to send a message until it is received by the recipient.
This would include a bound on communication latency, including network overhead, a
bound on the clock synchronization error and the execution lag [2].

20

2.5 The Reactor Model

This section covers a deterministic concurrent model of computation called the reactor
model, with a special focus on how it handles the coordination of distributed systems.

2.5.1 Overview

The reactor model, introduced in [2], is a model of computation providing deterministic
coordination for cyber-physical systems. The model treats time explicitly as part of the
semantics. The model borrows concepts from the actor model, logical execution time
models, synchronous reactive languages and discrete-event models [3]. The model has
been realized by [2], [1], as a coordination language called Lingua Franca. This language
will be described in detail in chapter 2.6.

Reactors are the primary components in the reactor model. Each reactor consists of an
internal state, blocks of computations called reactions and ports that handle message-
passing communication. Reactors may only communicate with messages containing time-
tagged values, which are discrete events [2]. The reactor model keeps two separate notions
of time; logical and physical time. Logical time progresses only at suitable moments during
execution [2], while physical time is a measure of time from a local clock.

A top-level reactor, called the main reactor, instantiates other reactors and defines their
connections [2]. Reactors can always be composed hierarchically.

2.5.2 Reactions

Reactions contain the blocks of computation that need to be coordinated by the model.
The contents of reactions are abstracted away from the reactor model itself, and are thus
not part of the model analysis [2].

Reactions are triggered by events at the logical time of the triggering event’s tag. If several
reactions in a reactor are triggered simultaneously (i.e. at the same logical time), then
they will execute in the order they are defined within the reactor [2].

The possible output events of a reaction must be declared in its definition, even if it
may not produce such outputs for every execution [2]. The model cannot know if an
event will be produced or not, as this depends on the specific contents of the reaction.
These design choices result in a conservative, but transparent approach. It is conservative
since the model must always allow for the possibility of the event being produced. It is
transparent because all dependency information is available upfront, greatly simplifying
the dependency analysis.

2.5.3 Time

Time and timing are central concerns in the reactor model. Two concepts interact with a
notion of time; logical time and physical time. Logical time is the time controlled by the
model. The model progresses logical time only at suitable moments during execution -
depending on if a logical instance has been completed or not [2]. Physical time is collected
as input to the model from some physical clock [2]. The model has primitives to collect

21

logical and physical time values and compare them. Logical time always lags behind
physical time|[2].

A logical time tag follows the superdense model of time [2]. Tt has two values, a logical
time instance and a microstep value. The microstep is a unitless number that indicates
precedence in case of simultaneous time instances. A useful comparison can be made with
Newton’s cradle impact. As the first ball hits the rest, a simultaneous impulse sends the
energy to the last ball, which swings out. In this almost simultaneous impact, there is a
clear order, or precedence, to the impacts. Equivalently, if an event triggers a reaction that
itself triggers another reaction at the same logical instant, then there is a clear order. The
newly triggered event will be assigned a tag with one microstep more than the previous.
Because of the microstep, two events are only simultaneous if both the logical time value
and the microstep are the same.

1) {2 (k3 1) {t.2)

Figure 2.10: The figure shows Newton’s cradle with illustrating tags. The impact at to
creates three events, with increasing microstep values.

2.5.4 Ports, Actions and Timers

Ports, timers and actions are related concepts. When triggered, ports and actions can
execute a reaction and possibly generate events. While ports can be connected to and
handle events from other reactors, actions are not visible to other reactors. Actions can
schedule events at future logical times.

There are two types of actions; logical actions and physical actions. These differ in what
tag is assigned to the generated event [2]. Events from logical actions are assigned some
logical time tag, while events from physical actions are assigned a physical time value.

Timers generate events either periodically or once (i.e. one-shot timers).

2.5.5 Determinism

Determinism can be defined as, given an initial state and a set of inputs, it produces
exactly one behavior [2]. In order to assert whether a model is deterministic, one has to
define what state, inputs and behavior mean. Timing is not a property of a model, but
rather a property of the physical implementation of it [2]. It is therefore not considered
part of the behavior in the model. Inputs can be defined as a sequence of time-stamped
events, while the behavior can be defined as the sequence of output events.

The reactor model is deterministic in the sense that for a given state and sequence of
time-stamped events, it produces exactly one sequence of time-stamped output events.

22

This is true even for distributed execution (as long as the assumptions hold, see Section
2.5.6).

This is in contrast to the actor model, or pub-sub coordination, as sequences of events can
produce more than one output sequence. These models do not provide any guarantees on
the ordering of messages that have been sent and received (or published and observed) on
multiple channels or topics [2], [3]. In a single channel or topic, ordering will be preserved
due to the underlying network protocol, and not due to the model.

There are three main aspects of the model that need to be proven to be deterministic
in order for the whole execution to be deterministic. Firstly, the model needs to be
deterministic in each tag. Secondly, the model needs to be deterministic over all tags (i.e.
a whole program execution). Thirdly, the contents of reactions need to be deterministic.

This last point is worth noting especially. The contents of reactions are abstracted away
in the reactor model, and are not part of the analysis of it [2]. In practice, this means
that it is up to the application designer to make sure the reactions are deterministic, or to
purposely make some parts nondeterministic. Nondeterminism may be useful when used
consciously, for example performing sensor measurements.

The following sections are meant to give the reader an idea of how discrete-event formalisms
can be utilized to prove deterministic semantics in the reactor model [2]. Some details are
left out.

Determinism in each tag instance To prove the determinism in each tag, a reactor
may be modeled as a function with events as inputs and outputs. An event is simply a
value-tag pair. In addition, events should also have values signaling known absent (symbol:
€) and unknown absent (symbol: L).

T=TuU{L,ée (2.3)

where T represents the set of all possible values of an event. 7T is the relevant set to
represent a single input or output of a reactor. Input dimension N or output dimension
M may then simply be modeled as

F:TN — 1M (2.4)

No input or no output can be modeled with TP, since only one possible value is essentially
that the value does not matter.

Any reactor network can be transformed into an equivalent feedback structure with one
reactor. A tag instance can then be analyzed to see if the structure reaches a fixed point,
expressed mathematically as

F(s)=s5¢ecTN (2.5)

where N is the number of inputs or outputs (which will be equal in the feedback structure).
If such a fixed point can be proven to exist for a given reactor function, then the model
at tag t will converge to a single behavior (i.e. deterministic).

To prove a fixed point we use Kleenes fix point theorem. First, we need to define what a
monotonic function on a partially ordered set means. A partially ordered set is a set with

23

ordering between elements, but not between all the elements. The order in this case is

1l <e

(2.6)
1l<tteT

This ordering means that € and any value ¢ are not comparable. For tuples we can say that
(L, 1) < (L,€) < (e,€). A monotonic function on this set means that for every t,p € TV
where t < p, then f,(t) < fn(p) is also true.

Theorem 2.5.1: Kleenes fix point theorem

For every monotonic function f : A — A on a partially ordered set (A, <) with
finite depth, let
C={f"(L):neN} (2.7)

where C is called a chain. Then the least upper bound of C is also the fixed point
of f.

\.

Determinism over sequences of tags

To analyze the model over sequences of events, a reactor can be modeled as a function
with signals as inputs and outputs. A signal is a sequence of events, modeled as a partial
function mapping tags to values. It is a partial function since only tags corresponding to
ticks are defined.

s: (T —=V) (2.8)
Thus, a reactor function can be expressed as

F:sNV oM (2.9)

F:(T—-V)N 5@ —-vM (2.10)

where N is the number of inputs and M is the number of outputs [2].

To find a fixed point in a function that handles signals, one must have an appropriate
distance measurement. The Cantor metric, defined in 2.11, is possible to use.

d(81,82) = 1/QT (2.11)

where 7 is the index of the first tag where the two signals differ. In the Cantor metric
two signals are more similar if they are alike for longer. The distance metric fulfills the
requirements of an ultrametric space.

A function is contracting in a metric space if the distance between two input points is
larger than the corresponding output points. More precisely, a function is contracting if

d(F(s1), F(s2)) < d(s1, 52) (2.12)

where d is the distance metric. A function is strictly contracting if

24

d(F(s1), F(s2)) < d(s1,s2) (2.13)

and delta contracting if

d(F(s1),F(s2)) < dx*d(s1,s2) (2.14)
where 6 < 1,5 € R.

Now, the Banach fix point theorem gives how to arrive at a fixed point [2].

Theorem 2.5.2: Banach fix point theorem

Let (X,d) be a complete metric space and F': X — X be delta contracting. Then
F has a unique fix point, and the following sequence converges to that point.

Sop — S

o = (2.15)

2.5.6 Distributed Execution

The reactor model has been extended by [3] to be possible to use on a distributed system
of spatially separate hosts, where reactors need to communicate with each other through
a network. This is called a federation. Each instantiated reactor inside the top-level
reactor will become a federate, and can be assigned to run on different hosts. A RunTime
Infrastructure (RTI) [3], [6] acts as a central coordinator at startup and shutdown. This
is necessary for distributed systems, since there is no common physical clock. To have a
consensus on a logical start time, each federate must synchronize its physical clock with
the RTI, and then send a measured time value. The RTT chooses the federation start time
as
maw(6,) +d

where ¢, is the collected list of time values received from federates, and d is an automat-
ically calculated delay based on federation size and communication delay [3].

To handle the shutdown of a federation in a deterministic manner, the RTT is also necessary
[3]. When a federate determines to shut down, it notifies the RTI. The RTI collects
suggestions for a final tag from the rest of the federates, and decides on the maximum of
these. The decided final tag is sent to all federates, which will process events normally up
to, and including, this tag.

A federated LF program must follow the LF semantics. This means that a federate must
not process an event with tag g before it is guaranteed that no event with tag ¢t > ¢
will arrive. To ensure this in the most efficient way possible in a distributed system, two
coordination schemes are proposed by [3]. The first is centralized coordination, which uses
the RTI to handle all federate-to-federate communication and federation and time man-
agement. The centralized coordinator emphasizes consistency over availability, ensuring
correct behavior even if network latency increases and data is unavailable or inconsistent.
This approach is based on the HLA standard. The second approach is to use decentralized
coordination, where the federates themselves handle communication and time manage-
ment. This approach is based on PTIDES and Spanner. The decentralized coordinator

25

emphasizes availability over consistency, ensuring responsiveness even if network latency
increases and data is unavailable or inconsistent.

The choice of coordination scheme will depend on if the application should prioritize
consistency or availability. Two parameters added by [3], stp_offset and after, allow further
control over these properties, letting consistency and availability be prioritized differently
within the same program. For example, this would be used if federates have different
importance, as in a system with one federate reading and reporting sensor measurements
and the other representing an emergency system.

The after parameter represents a logical delay on a connection. This means that if a
message has a tag (x, 0) and the connection has an after delay of a, then the reactor
receiving the message will see its tag as (x + a, 0). This can be useful if tags before x +
a should be allowed to be processed while waiting for the message to be received. If this
is allowed, then the consistency is sacrificed, since events with tag ¢ > x at the receiver
could be executed before the event with tag x, since x has a new tag x + a. The semantics
are followed in regard to the new tag. On the other hand, the availability of the receiver
reactor is increased, since other events (which might be more important) can be processed.
If the logical delay accounts for the whole connection latency, then events may be safely
processed at the tag x + a, without any noticeable delay.

Centralized Coordination

Centralized coordination is achieved with an HLA-like approach, using a control structure
called an RTT. All coordination is handled by the RTI, and all federate-to-federate messages
are passed through it. Tag and event processing information is passed from each federate
to the RTI using control messages. From this information, the RTI can update its state
variables, and let federates advance following the reactor semantics.

The RTTI is a single point of failure in the program. If the RTI becomes unavailable,
no federate may progress. Similarly, if the RTI needs some information from a federate
that has become unavailable, then the rest of the federates may not proceed. Centralized
coordination is a conservative coordination approach with slower performance. This makes
sense as consistency is emphasized over availability.

The different values recorded on each federate by the RTI are listed in Table 2.4. The
Next Message Request (NMR) message contains the Logical Tag Complete (LTC) and
Next Event Tag (NET) values, and is sent from each federate to the RTT at the start of
execution and at the completion of each tag.

The LTC value represents the latest tag in which all events with that tag have been
completed. Consequently, no messages with this tag or smaller should ever be sent to or
received from this federate. The LTC value is recorded separately for each federate, since
the federates may progress asynchronously. The initial LTC value sent is —oco.

The NET value represents the tag of the earliest event in the event queue of a federate.
Since it represents the tag of the next event, it is oo if the event queue is empty. If the
RTT has not received the NET value previously, then the stored value is —oo.

The TAG value is sent from the RTI to each federate. It represents the next tag that the
federate may safely advance to. The evaluation of this value for each federate is the core
of the coordination scheme, and requires all the other values in Table 2.4. The TAG value
is initially —oo.

The EIMT value represents the earliest tag a message from an upstream federate may have.

26

RTI Value

Record

Logical Tag

All reactions or events

Complete with tags smaller RT1/federate Iitial
(LT C% than or equal to LTC (NMR)

have been completed
Next Event The earliest event in RTI /federate | Event queue No NET
Tag event queue of (NMR) ot message
(NET) federate f has tag NET Py recieved
s e | T2
Grant . federate/RTI | - Initial
(TAG) permit advancement

to that tag
Earliest The ef.irhest tag an

. incoming message No upstream

Incoming
Message Tag can have from - federates -
(EIMT) upstream federates for federate f

(recursive)

Table 2.4: The table shows what values the RTI stores, their significance, origin and
special values.

Since any federate may have many upstream federates, this value is found by recursively
checking tags of the next events of those upstream federates. If a federate does not have
any upstream federates, then the value of EIMT is co. This value is important to keep
track of since it is not safe for the federate to progress beyond this value, as upstream
federate messages may generate events with tags at this value or later. The EIMT value
is kept by the RTI, and not sent in any message. Mathematically, the EIMT value can be
calculated with

EIMTy = min (min(EIMT,, NET,) + ayy)

ueU(f)

where U(f) is the set of upstream federates from federate f, EIMT, is the tag of the
earliest event in upstream federates (recursive), N ET, is the next event tag of the upstream
federate u and a,y is the logical delay between the upstream federate u and federate f.

(2.16)

When the RTI receives an NM R message from a federate f (NMRy), it first stores the
new values for LTCy and NET) for that federate, then sends a TAG message to down-
stream federates. This allows downstream federates to advance their tags. The value of
the TAG message sent to downstream federates is the smallest LTC value of their up-
stream federates. This ensures that upstream federates always progress before downstream
federates that possibly depend on them. Mathematically, this can be expressed as

gq = min (LTCy + ayq)

2.17
uel(d) ()

where U(d) means the set of all upstream federates of downstream federate d, LTC,, is
the latest completed tag of the upstream federate u and a,q is the logical delay on the
connection between the upstream federate u and the downstream federate d. The result,
g4, must be compared to the latest TAG . If g4 is larger, then a new T'AG4 value is sent.

If there is a next event at a tag later than what federate f is currently at (i.e. TAG; <
NETY}) and there are no possible messages from upstream federates until after federate

27

f’s next event (i.e. EIMT; >= NETy), then the RTI allows federate f to proceed to its
next event (i.e. setting TAG; = NETy).

A message is called tardy if its tag is smaller than the LTC value of the federate that
received it. This means that the federate has already progressed beyond the relevant tag,
thus not honoring the reactor semantics. The coordination scheme should, by design,
avoid all occurrences of tardy messages.

In cases where there is a feedback loop in the system, and the RTI can not send a TAG,
it can send a Provisional TAG (PTAG). What the PTAG means is that events with no
dependency on network inputs (which can still arrive with the same tag) may execute.
Another way to solve this would be to have logical delays which would allow the RTI to
send a TAG.

If a federate f has a physical action, downstream federates cannot be allowed to proceed
until it is known that the physical action was not triggered at tag t. Therefore, physical
time must exceed N ET}, which does not retain its original meaning. In this case, the
tag of the next event cannot be known, and NET} is therefore simply the next tag. The
federate f must then send updates (NMR messages) to downstream federates every time
physical time exceeds NETy. Only then can downstream federates proceed. Using the
after keyword may relax this constraint, as a degree of inconsistency is then tolerated.

Decentralized Coordination

Decentralized coordination is achieved through a PTIDES-like approach [3], where the
main idea is to optimistically process events based on the calculation of a safe-to-process
(STP) offset. An event with tag ¢ is safe to process if physical time satisfies

T, > t+ S (2.18)

where T; is the local measurement of physical time (i.e. from the federate’s local clock), ¢
is the event tag and .5; is the STP offset.

The offset expresses the necessary time to wait to be sure that no events with tags earlier
than t arrive. The event with tag ¢ may then be safely advanced to and processed, as all
new events will have a tag with a value higher than ¢. Thus, events will be processed in
tag order, honoring the semantics of the reactor model.

The STP offset is calculated based on assumptions on the total latency between a reac-
tion deciding to send a message and the time the message was delivered on the receiving
end. This includes the execution time of the reaction that sends the message, any commu-
nication overhead, physical communication latency and the clock synchronization error.
Additionally, any logical delay (i.e. after keyword) on the connection must be included as
well. A logical delay will increase the time value of the tag at the receiver end by some
amount « > 0. Thus, logical delays will account for some of the STP offset, meaning the
STP offset can be decreased by the equivalent amount. If the logical delay is large enough,
then the STP offset can be negative. If a federate contains physical actions, then the STP
offset must be positive or zero, since a physical event can occur at any current physical
time.

If the STP offset is violated, then the processing of tags can not be guaranteed to happen
in tag order. Since decentralized coordination relies on explicit assumptions on physical
time durations to calculate the STP offset, it gives the possibility to detect when faults
occur. This gives the possibility of recovering after a fault.

28

To calculate the STP offset, it is necessary to identify the bounds of the different contrib-
utors to message delay. These bounds can then be added together to set the final STP
offset.

Assume reaction r must be invoked within a deadline D. The reaction must then be
invoked when physical time satisfies equation 2.20.

T, <t+D; (2.19)

where T; is the local measurement of physical time, ¢ is the event tag triggering reaction
r and D; is the reaction deadline. In addition, no reactions at tag ¢t can be invoked before
physical time satisfies (2.18). The launch lag L can then be defined as

Li=D;— S (2.20)

The launch lag bounds the delay between the start of the step at tag ¢, and the invocation
of reaction r. It contains any scheduling overhead and execution time of any reactions set
to execute before r.

The communication latency bound NV;; is the assumed maximum physical time between
invocation of reaction r at federate i and delivery of the message at the receiving end at
federate j. This includes the execution time of r, any network overhead and the message
propagation time.

Lastly, the clock synchronization error bound Fj; represents the assumed maximum dif-
ference between two synchronized clocks at federates 7 and j.

The STP offset is calculated as the maximum relative offset between any two federates.
The relative offset M;; is calculated as shown in equation 2.18.

S; = max(M;;)
Toier (2.21)
Mij = max(0, Dyj + Nij + Eij — o)

Where «;; is the minimum set logical delay over all connections between two federates i
and j. Equivalently, The STP offset can be expressed as

This can be expressed compactly in Max-Plus algebra, the reader is referred to pages 7-8
in [3].

29

2.6 Lingua Franca

This section covers the programming language Lingua Franca, which realizes program
coordination based on the reactor model. The section will cover both the syntax of the
LF language with examples, but also give an idea of how it is implemented and compiled.

2.6.1 Project Overview

Lingua Franca (LF), introduced in [1], is a realization of the reactor model as a coordin-
ation language. It is currently under development as an open-source project, with major
contributors from universities in Berkeley, Dallas, Dresden, Kiel, and Seoul [37]. The
project was started in 2019, and their logo is shown in Figure 2.11.

A coordination language differs from a general-purpose programming language in that
only coordination between blocks of computation is handled, not the computation itself.
In Lingua Franca, this is implemented such that a range of other programming languages
may be used in the computational code. Currently, languages like C, C++, Python,
TypeScript and Rust are supported target languages.

7= LINGUA

FRANCA

Figure 2.11: The figure shows the LF logo, taken from [37].

2.6.2 Installation

Lingua Franca is possible to install in several ways. The easiest way to install LF is to
use the Visual Studio Code extension. A custom, Eclipse-based IDE is also available,
called Epoch. Epoch can be downloaded from LF’s documentation website at https://
www.lf-lang.org/. A third option is to download the command-line tools. For developers
and contributors to the project, it can be accessed in its entirety on Github.

2.6.3 Syntax and Diagrams

The syntax of Lingua Franca is based on other common programming language syntaxes,
and should be relatively easy to understand. An LF program consists of at least one top
level reactor; the main reactor. The top-level reactor may form a simple program on its
own, but often it instantiates more reactors and sets connections between their inputs and
outputs. All reactors can have a startup and shutdown reaction. See the simplest main
reactor printing ”Hello World!” in Figure 2.12. Another main reactor, which instantiates
other reactors and connects their inputs and outputs is shown in Figure 2.15.

Inputs, outputs, timers, states and actions are declared inside a reactor, see two examples
in Figure 2.13 and 2.14. If a type is relevant, then it must also be declared. The state
variable in Figure 2.13 has also been initialized to a value of zero. The reactors would be
instantiated in the main reactor in Figure 2.15, which also connects the output and input.

30

https://www.lf-lang.org/
https://www.lf-lang.org/

target C;

main reactor {
reaction (startup) {=
printf(”Hello World!”);
—j

Figure 2.12: The figure shows a minimal LF program with a main reactor.

reactor ExampleReactorA {
output SomeQutput:int ;
state SomeState:int (0);
reaction (startup) —> SomeOutput {=
// set output
I1f_set (SomeOutput, self—>SomeState);

Figure 2.13: The figure shows a reactor that has one output and a state variable. The
reactor sends its local state variable to its output.

reactor ExampleReactorB {
input Somelnput:int;
reaction (Somelnput) {=
// Do something with input
=}

Figure 2.14: The figure shows a reactor that has one input.

main reactor {
a = new ExampleReactorA () ;
b = new ExampleReactorB () ;

a.SomeOutput —> b.Somelnput;

Figure 2.15: The figure shows a main reactor that instantiates two reactors and connects
the output with the input.

The content of a reaction is defined with the delimiter symbols = ... =. Inside these
delimiters, there will be code in a target language. The target language is set at the target
declaration, see a basic example at the top of Figure 2.15 and a more advanced version in
Figure 2.16. A target declaration can set a range of application and compilation-related
settings, as in Figure 2.16. In this example an extra compilation flag is given, fast mode
is set, logging is enabled and an application timeout of 1 second is given.

Timers can be defined by specifying a time offset and timer period. Time units are available
as types in LF. The available units are weeks, days, hours, minutes, secs, msecs, usecs and
nsecs. An example is shown in Figure 2.17

31

target C {
flags: 703",
fast: true,

logging: log,
timeout: 1 secs,

IE
Figure 2.16: The figure shows an example of a target declaration.

reactor ExampleReactorA {
timer t(1 secs, 100 msecs);
reaction (t) {=

Figure 2.17: The figure shows a reactor that has a timer that generates events with a
period of 100 milliseconds, after an offset of 1 second.

Preambles are pieces of code that can be specified outside of reactions, and that are avail-
able for the whole file, if specified outside of reactors, or the whole reactor, if specified
inside a reactor. In the C runtime, there is no distinction between these two options. An
example of a preamble is shown in the topmost part of Figure 2.18, and inside ExampleRe-
actorA in the same figure.

preamble{=
#define LED_PIN 2
=}
reactor ExampleReactorA {
preamble{=
void func() {
// some code that can generate events
// through physical action led_blink

}
=}
physical action led_blink;
reaction (startup) {=
If_thread_create(&thread_id, &func, NULL);
=}

reaction (led_blink){=
// toggle LED_PIN

=;

Figure 2.18: The figure shows an example of uses for a preamble in an LF program. This
program starts a thread that can asynchronously interact with the LF program through
a physical action. In this case, it blinks an LED.

Figure 2.18 also shows how to create threads in the application. The function If_thread_create()
uses the runtime API for thread creation. The function to execute can be specified in a
preamble, as shown. This could be useful to execute asynchronous functions, like sensor
measurements. Further, physical actions can be created to interface with the thread.

32

TR W N =

Deadlines can be specified for a reaction. If a deadline is not met (ie. measured physical
time exceeds the deadline), then a deadline handler can define an alternative code block
to execute. The deadline functionality is implemented in a so-called lazy manner, where
it is executed instead of the reaction. It is triggered by the late event, not at the time the
reaction should have been executed. An example is shown in Figure 2.19.

reactor ExampleReactorA {
input i:int;
reaction (i) {=
// main code
=} deadline (500 msecs) {=
// alternative code

=)

Figure 2.19: The figure shows a reactor that has one input with a deadline.

Distributed Execution

Distributed execution of an LF program is implemented as explained in Section 2.5.6. To
run a program as a federation, the main reactor must be changed to federated reactor,
see an example in Figure 2.20. Doing this signals that each top-level reactor should be
an independent binary that could be deployed on different systems. A shell script is also
provided for making the deployment process easier. The shell script is generated together
with the program binaries under the name of the file, see an example in Figure 2.21. Here,
the shell script is bin/Federated, while the two binaries correspond to the top-level reactors
in Figure 2.20.

federated reactor at user@hostl {
ExampleReactorA = new ExampleReactorA () at user@host2;
ExampleReactorB = new ExampleReactorB() at user@host2;

ExampleReactorA . SomeOutput —> ExampleReactorB.Somelnput;

Figure 2.20: The figure shows a basic federation.

bin/Federated
bin/Federated_ExampleReactorA
bin/Federated_ExampleReactorB

Figure 2.21: The figure shows the file output of building Figure 2.20.

To specify where to deploy, LF provides the at keyword. Both the RTI and the federates
may be deployed to another host. How to do this is shown in Figure 2.20. If this is
excluded, then the federation will run on localhost.

The RTI is a separate program entirely and must be installed on the system that should
run it prior to running any federated LF program. Figure 2.22 shows the necessary steps
to install the RTI. As of now, it is only possible to install from source files, meaning

33

(S N N

S N

federated LF is still in a relatively early phase of development. The auto-generated build
script also runs the RTT.

git clone https://github.com/1f-lang/reactor—c. git
cd reactor—c/core/federated /RTI/

mkdir build && cd build

cmake ../

make

sudo make install

L H P H P P

Figure 2.22: The figure shows how to install the RTI on your system.

Centralized coordination is the default coordination scheme. To use Decentralized co-
ordination, the target declaration parameter coordination must be set to decentralized, as
shown in Figure 2.23.

Decentralized coordination provides a unique handler for STP violations, shown in Figure
2.24. This handler works equivalently to a deadline miss handler, where if the STP offset is
violated, the execution is routed to the code within the handler. This gives the opportunity
to handle the fault and recover. As seen in chapter 2.5.6, the STP offset value is based
on explicit assumptions on message delay bounds, which may be violated in any physical
system.

As explained in chapter 2.5.6, an alternative to setting an STP offset is to use the after
construct. The syntax is shown in Figure 2.25. A combination of both may also be used.

target C {
coordination: decentralized
}

Figure 2.23: The figure shows the target declaration if the program should use decentral-
ized coordination instead of the default.

reaction (in) {=
—} STP(0) {=
// Handle input that violates STP offset

=

Figure 2.24: The figure shows the STP handler structure.

The target declaration parameter clock-sync-options allow the user to set options for clock
synchronization.

34

federated reactor {
ExampleReactorA = new ExampleReactorA () ;
ExampleReactorB = new ExampleReactorB () ;

ExampleReactorA —> ExampleReactorB after 200 msec;

Figure 2.25: The figure shows how to set an after delay.

Diagrams

Automatically created program diagrams are synthesized from LF code. The diagrams
help with understanding a program’s structure, especially as they are interactive. An
example diagram is shown in Figure 2.26. The graph represents a distributed program
called ”DistributedMessageTest”, where the RTT is deployed with the visible IP address
and port number. The top-level reactor contains two reactors. The Source reactor sends
messages periodically, using a timer (the clock in the figure). The Drain reactor receives
the messages and executes some reaction at their receipt. Additionally, both reactors have
startup reactions, designated with a circle in the diagram, and shutdown reactions, with
a diamond shape.

DistributedMessageTest 192.0.2.3:15047

Drain

Source OE

OT (O gz —jz) -39
QE (1 sec, 100 msec)

Figure 2.26: The figure shows an LF diagram for a federated program.

2.6.4 LF Compiler

The LF compiler interprets and validates LF code, and generates code in the target lan-
guage. This generated code is then combined with the runtime code (see the next section),
as can be seen in the flow chart in Figure 2.27. It is then compiled by the target com-
piler, and if valid, generates an executable. The compiler is written in Java. To add new
features to the LF language, generate new code, and include new files, the compiler must
be modified.

2.6.5 Runtime Environment

A runtime, runtime system, or runtime environment is, in general, the layer of abstraction
that implements the features of a language. A user of the language will not need to study
this implementation, only use the provided API.

35

Parse and Valid LF No Report Compilation

LF program | —— i
prog validate code? errors errors

Yes
Generate IFVOK? |
target code | arge Executable
compiler
Runtime
code

Figure 2.27: The figure shows the general structure of the LF compilation process.

Lingua Franca uses a runtime environment that implements the reactor model and the
language features. Each supported target language has a runtime written in that language
and must be ported to any new platform. The runtime code is divided into general parts
and platform-specific parts. The parts that depend on the platform are typically the
functionality that directly accesses the platform, such as reading a system clock. All time
values in Lingua Franca are given in nanoseconds, however, the final time granularity is
dependent on the available platform clock.

The C runtime has the least overhead and is the dominant language for use in embedded
systems. It has been ported to various OSes and a few bare-metal platforms [1]. Notably,
a recent addition to the runtime has provided support for Zephyr RTOS, although it is
still experimental for the threaded part of the runtime.

The C runtime keeps track of two queues; the event queue Qr and the reaction queue
Qr- The event queue contains all future scheduled events, sorted after tag order. Physical
time is then compared to the tag of the next event, and if it is greater, then the events at
that tag will be processed. All triggered reactions are put into the reaction queue. Thus,
the reaction queue contains the triggered reactions of the current logical time. This loop
repeats until there is no next event in Qg (unless the keepalive property is specified), the
timeout has been reached, or a call to shutdown is made in the application. This process
is shown in Figure 2.28.

In each step, the reactions are evaluated whether they are ready to execute or not. The
ready-to-execute reactions can not possibly depend on any other reactions in Qg or that
are currently executing. These reactions are then run when there is an available thread.
This is then repeated until all reactions have finished execution.

Roughly, the structure of the code can be summarized in Figure 2.29. The parts common
to all variations of the runtime can be found in the file reactor_common.c. The unthreaded
parts are in reactor.c. The threaded runtime, together with the implemented schedulers
are in the threaded folder. The platform-dependent code is in the platform folder and thus
contains all the platform ports. The federated folder contains the federated parts of the
runtime, together with the self-contained RTT.

36

Ports and Execution

actions

Event Queue, Q_ Reaction Queue, Q_
1 2 3 1 2 3 4

S S T R' |R? |R® |R

Does physical time

? . ;
oqual or exceed g,? INo Reactions are put into Q,

»> R' |R? |R® |R?

Events trigger reactions

Figure 2.28: The figure shows a simplified description of the runtime.

reactor-c/core
— federated
— RTI // Self-contained RTI

message_record //
rti.c // Contains main function
rti_lib.c // RTI function definitions
rti_lib.h // RTI function declarations
— clock-sync.c // Clock synchronization functions

— federate.c // Federated functions

“— net_util.c // Communication related functions
— modal_models //comment

— platform // Platform-dependent functions
t If_zephyr_support.c // Zephyr port

— threaded // Threaded part of runtime
t reactor_threaded.c // Main threaded runtime logic

— utils
— reactor.c // Unthreaded part of runtime

— reactor_common.c // Common runtime logic

Figure 2.29: The figure shows the C runtime code structure.

37

2.6.6 The Federated Runtime

The federated runtime is an expansion of the C runtime that implements the federated
functionality. It uses BSD sockets for communication. Sockets are explained in detail in
Section 2.3. The federated runtime implements decentralized and centralized coordination
as described in Section 2.5.6. Federated execution is only supported on platforms Linux,
Windows and MacOS.

A federate is implemented as a structure containing the federate’s state information.
Threads receive messages on sockets, either connected to the RTI (centralized coordin-
ation) or both the RTI and federates that connect to it (decentralized). There are more
threads in the decentralized coordination scheme. The federated LF runtime supports
IPv4 addresses.

2.6.7 The RTI Program

The RTI, relevant for federated execution as discussed in Section 2.5.6, is implemented
separately from the rest of the runtime environment. It is implemented as an independently
compilable program that can be launched on Linux or MacOS platforms. The RTT accepts
command-line arguments specifying the expected number of federates that should connect
to the federation, the federation ID, the port that federates should connect to, clock
synchronization options and authentication options. Only the number of federates to
connect is mandatory to provide. By default, clock synchronization is set to init, meaning
it is only performed once at the execution start. Authentication is, by default, off.

The RTI utilizes one communication thread per federate, with both centralized and de-
centralized coordination. Although, in decentralized coordination, it is not used during
execution.

2.6.8 LF Clock Synchronization

Clock synchronization can be set to off, init and on. With init, one clock synchronization
round is done once at startup and over the TCP socket. With clock synchronization set
to on, clock synchronization is performed at some frequency over a UDP socket. The tar-
get parameter clock-sync-options specifies more options, for example, whether federates
on the same physical platform should perform it, or the period of the clock synchroniza-
tion. Setting the option to off will turn off LF clock synchronization, and rely on clock
synchronization from the network.

The LF clock synchronization is based on clock synchronization as described in Section
2.4.2.

38

2.7 Other Software

2.7.1 Wireshark

Wireshark [38] is an open-source network protocol analyzer. It allows you to capture and
analyze network traffic in real-time, as packets of data traverse the network interface. It
supports various protocols, including Ethernet, Wi-Fi, TCP/IP, and many others. Wire-
shark provides a detailed and customizable display of the captured data, allowing you to
examine the contents of individual packets, inspect protocol headers, and analyze network
behavior. It is therefore useful for debugging of network-related functionality, as in this
thesis.

2.7.2 PuTTY

PuTTY [39] is an open-source serial console, terminal emulator and network file transfer
application. In this thesis, it is used solely as a serial console. To use it as a serial console,
you need to configure the appropriate serial settings such as the serial line name, baud
rate, data bits, parity, stop bits, and flow control. Once the settings are configured, you
can establish a connection to the serial device and interact with it through the PuTTY
terminal interface.

2.7.3 GNU Debugger (GDB)

GNU Debugger (GDB) is an advanced debugger in the GNU ecosystem [40]. In this
thesis, it will refer to arm-gdb, which is the GNU toolchain version for ARM targets.
The components for debugging embedded applications with GDB are shown in Figure
2.30. The host computer runs a GDB client, which is the GDB user interface. The GDB
client then communicates with a GDB server, which can run on the host computer or on
a remote machine [40]. The GDB server interfaces with a debug probe through a USB
connection [41]. The debug probe can be an external probe or it can be fully integrated on
a board. The debug probe interacts with the debug interface (JTAG or SWD protocols)
on the microcontroller.

f Linux Computer \ / Embedded Platform \

USB (
GDB GDB Server > GDEr(E)t:aebug
Client t

\

Figure 2.30: The Figure shows the components necessary for GDB debugging.

Debug
Interface

N /

39

2.7.4 pyOCD

pyOCD [42] is an open-source debugging tool for Arm Cortex-M microcontrollers based
on Python. It supports several debug probes, and provides a GDB server and flashing
tools.

2.8 Hardware Platform

This section presents relevant hardware information.

2.8.1 NXP MIMXRT1170-EVK

The development platform for this thesis is NXP’s MIMXRT1170-EVK. This development
kit provides high performance and a wide range of features, only some of which will be used
for this thesis. The board uses the i.MX-RT1170 MCU which has two cores; 1GHz Arm
Cortex-M7 and 400 MHz Cortex-M4. The board has an integrated, programmable debug-
ging interface and two ethernet connectors (one with 10/100M and one 10/100/1000M).
The board is supported by Zephyr RTOS and by Lingua Franca’s Zephyr port, although
gigabit ethernet is not yet supported.

Figure 2.31: The figure shows the NXP MIMXRT1170-EVK. Image taken from NXP’s
webpage.

2.8.2 Other hardware

e Two-layer network switch: tp-link TL-SG105

e Oscilloscope: Rhode&Schwarz RTB2004 2,5 GSa/s

40

Chapter 3

Specifications

This section presents the specifications of the project. It must be taken into account
when reading this section that very select parts of a large code (LF runtime) base and
surrounding structures (LF compiler, Zephyr application configurations) will be altered.

3.1 Project Objectives and Scope

The main objective of the project is to expand the platform support of LF, specifically
federated LF, to Zephyr RTOS. The federated functionality as described in Section 2.5.6
is implemented in the C runtime for platforms Linux, MacOS and Windows. A number
of adaptions must be made to be able to expand the platform to Zephyr.

The scope of this project will include adapting federated execution with centralized and
decentralized coordination, initial clock synchronization and continuous clock synchroniz-
ation to the Zephyr platform. The authentication functionality in the federated runtime
will not be included to limit the scope.

3.2 Functional Description

In order to expand the platforms for federates and the RTI, a number of changes to the
runtime, Zephyr application configurations and changes to the LF compiler must be made.
All functional adaptions are listed in specification Tables 3.1, 3.2 and 3.3.

The goals are sorted in a hierarchical structure, where the main points are at the top.
The points needed to adapt in order to reach the main goal are at the second layer, the
points needed for the second layer are at the third layer, etc. Some select points have
additional comments in the ” Comment” column. The last column, ” Where change”, gives
information about where the functional change must be made, either in the LF runtime
(which includes the federated runtime), the RTI (which is not technically part of the
runtime since it is currently its own program), Zephyr config (Zephyr application code,
configuration files, etc.) or Linux config (command-line arguments to configure certain
things).

41

Project Functional Specifications, part 1

Goal Comment Where
change
Federation that
1 Multi-platform federation support may have Zephyr
federates
1.1 Zephyr platform support for federate
1.1.1 Platform-independence for federate runtime
1.1.1.1 Library support runtime
1.1.2 Function porting runtime
1.1.2.1 RTT connection runtime
Federated runtime
creates a number
of threads
1.1.3 Runtime thread creation depending on runtime

coordination scheme,
connections and
clock-sync

1.2 RTI connection

TCP sockets used
for f =

1.2.1 TCP socket support Or. ed‘e rate CO].m@ runtime
unication and inital

clock synchronization

1.2.1.1 TCP socket creation runtime

1.2.1.2 TCP socket connection runtime

1.2.1.3 Send and receive data runtime

1914 TCP socket close and runtime
shutdown

DP k f
1.2.2 UDP socket support v sockets u.s ed. o runtime
clock synchronization

1.2.2.1 UDP socket creation runtime

1.2.2.3 Send and receive data runtime

1994 UDP socket close and untime
shutdown

Table 3.1: The table shows

42

Project Functional Specifications, part 2

Goal Comment Where
change
Linux/
1.2.3 IP address configuration Zephyr
config
. Zephyr
1.2.3.1 Set interface IP addresses
config
Linux/
1.2.3.2 IP address routing Zephyr
config
1.3 Federate connection
1.3.1 TCP socket support Ta;ie as
1.3.2 IP address configuration ?z;n;e as
1.4 Multiple Zephyr federates
1.4.1 MAC address configuration Zephyr
config
. Zephyr
2 Embedded-only federation support foderation
2.1 Zephyr platform support for federate ?alme as
2.2 Zephyr platform support for RTI
2.2.1 Platform-independence for RT1 RTI
9911 Sleep fur'lctlonahty RTI
abstraction
99.1.9 Thread éynchromzatlon RTI
abstraction
2.2.1.3 Thread abstraction RTI
2.2.1.4 Library support RTI
RTI creates a number
2.2.2 Runtime thread creation of threads depending runtime

on connections and

clock-sync
2.3 Federate connection
2.3.1 TCP socket support Same as
1.2.1
2.3.2 UDP socket support Same as
1.2.2
2.3.3 IP address configuration ?agnge as

Table 3.2: The table shows

43

Project Functional Specifications, part 3

Goal Comment Where
change
Main function must be
2.5 Adapted main function changed for the federate compiler

and RTT topology

2.5.1 Hardware initialization compiler
2.5.2 RTI arguments compiler
2.5.3 Create RTI entry thread compiler
2.5.4 Create Federate entry thread compiler

Threads must term-
inate in th

2.6 Thread termination order tnate i the C orrect runtime
order to avoid

race conditions

Table 3.3: The table shows

3.2.1 Target Declaration Functionality

The target declaration options that will be tested are shown in Table 3.4, together with
their priority and a small description. The high-priority options must work for the project
to work. The medium priority would be beneficial if worked. All other target declaration
options are implicitly low priority and will not be tested.

Target Declaration Parameters

Priority ;::;zzneter Description
High coordination Coordination scheme; both decentralized and
centralized coordination should work
High threading Multi-threaded runtime; necessary for federated LF
High workers Number of worker threads to execute program code

Runtime platform to choose; Only Zephyr
will be tested
Clock synchronization setting; either ”init”, ”on” or

High platform

High
lg. / clock-sync 7off”. Only ”init” must work. "on” /”off” is medium
medium .
priority
Medium no-compile LF compiler should not call target language compiler

Clock synchronization options; frequency of UDP

Medi lock- -opti .
editm - cloch-sync-options messages etc. Only relevant for "on” option above.

Table 3.4: The table shows the target declaration options that are important to the project,
ranked after priority.

44

3.3 Other Goals

A goal of the thesis is to contribute to the LF Github project. The possible repositories
to contribute to are lingua-franca, reactor-c and If-west-template. As not all adaptions
listed in the functional specification tables 3.1-3.3 are changes to the runtime, these must
be documented thoroughly and can be added to a README-file in the listed repositories.
Applications, application files and documentation should be merged into If-west-template
repository. Working, simple examples should be provided.

It would be ideal to implement proper integration with the LF language and syntax.
However, as the syntax for federations are not entirely reliable and the scope of the project
is already large, it is not of high priority.

45

Chapter 4
Design

This section presents the design considerations, choices and justifications for those choices.
It also presents a logical separation of the work based on the deployment topology.

4.1 Hardware Overview

The hardware for the project consists of three main units; a Linux computer and two
identical MIMXRT1170-EVK boards. The reason to use MIMXRT1170-EVK boards is
that they have ethernet connectors. The ethernet connector used is 100M ethernet, since
Zephyr has not implemented 1G ethernet. All nodes are connected with ethernet cables
through a 2-layer network switch. Further, USB cables connect the Linux computer to the
two boards through their debug connector. This is both for easily flashing and debugging
the binaries, for powering the boards and to allow serial communication with the boards.

Furthermore, a 4-channel digital oscilloscope with probes will be used to measure timing
with high precision. See Section 2.8 for more information on the hardware.

4.2 Choice of Zephyr RTOS

Zephyr was chosen as the RTOS for this project. The main motivation for choosing
Zephyr instead of, for example, FreeRTOS is for hardware independency. From porting the
single-threaded runtime to FreeRTOS in [7], it was a definite downside that the FreeRTOS
port would need to be ported, to some extent, to each new hardware platform. Because
of Zephyr’s use of Devicetree, explained in Section 2.2.2; almost all hardware-specific
configurations are already taken care of. This is given that the board is supported, and
that the necessary board modules are supported. The MIMXRT1170-EVK and necessary
modules (ethernet, GPIO, etc.) are supported already by Zephyr. The consequence of
using Devicetree is that the actual code will be the same (ie. no need for porting to
another board), only configuration files will differ. Additionally, most configurations (see
Figure 2.5 in Section 2.2.2) are loaded by specifying the board name to the west tool.

Another aspect is that Zephyr has a partial POSIX implementation. This could greatly
simplify the changes that need to be done to the federated runtime. The POSIX im-
plementation is continuously expanded, and so are many other features, such as PTP

46

synchronization, networking technologies, debugging and shell functionality.

Both the unthreaded and threaded runtime has been ported to Zephyr already, although
the threaded port was still in an experimental state at the start of this project. For
FreeRTOS, only the unthreaded runtime has been ported (and not added to the official
repository).

Another conclusion from [7] was that the possible time precision with FreeRTOS was
limited due to hardware clocks not being available, and that the kernel clock could not run
faster than at 1 kHz. For more details about FreeRTOS and timing, the reader is referred
to [7]. Zephyr, on the other hand, can access hardware timers. For MIMXRT1170-EVK,
a high-precision timer running at 26 MHz can be used. The kernel clock cycles can be
read using high-precision APIs, and give highly accurate and stable time measurements.

Overall, Zephyr seems like a solid choice that has the potential to be used for all kinds
of embedded applications with Lingua Franca. It has both good functionality, in terms
of advanced APIs, (partial) POSIX support and an integrated network stack, as well as
good convenience, in terms of hardware independence, configurations and a build tool.

4.3 Federation Topologies

Four main federation topologies can be created in a system with two embedded nodes
and one Linux machine node. The different topologies are shown in Figure 4.1. The
figure shows the physical platforms together with the program components. Federation
topology 1 is the first to implement, as it is the simplest topology. It will involve the
steps listed under point 1 of the specifications in Tables 3.1-3.2 from Section 3. The Linux
computer handles the RTT and all federates, except one federate that is launched on a
board. Federation topology 2 uses both boards with a federate launched on each. The
RTI on the Linux computer may run an arbitrary amount of federates. In federation
topology 3 the RTT is launched alongside a federate on a board. This will involve the steps
listed under point 2 of the specifications in Tables 3.2-3.3 from Section 3. In topology 3,
the whole federation is run on embedded boards. Topology 4 is more of a proof-of-concept
that the platforms running federates or RTT is arbitrary. It will not really be tested during
this project. Although notice that the RTI can be run alone on a board as well, however,
in any real system the RTI would likely run on a central, general-purpose computer if it
is available or jointly with a federate in the decentralized coordination mode.

No connections are shown in Figure 4.1. Physically, all nodes are networked with each
other. The RTI must be able to communicate with all federates, regardless of the coordin-
ation scheme. If the coordination is centralized, the federates do not need to be connected
to each other. If the coordination is decentralized, then a federate must be connected to
another federate if they are to communicate.

4.4 Zephyr Platform Support for Federates

In this section, special considerations regarding point 1.1 Zephyr platform support for
federate from specification Table 3.1 is presented.

47

/ Federation Topology 1 ‘\\ / Federation Topology 3 \

Linux Computer | | pimxRT1170-EVK MIMXRT1170-EVK | | MIMXRT1170-EVK
RTI RTI
]
Federates

Federates | MIMXRT1170-EVK MIMXRT1170-EVK

..................

/ Federation Topology 2 -\\ Federation Topology 4 .
Linux Computer | | piMxRT1170-EVK { | Linux Computer MIMXRT1170-EVK | !

RTI Federates ;

i RTI

Figure 4.1: The Figure shows the relevant federation topologies for the project.

4.4.1 Choice of Zephyr Socket API

The choice of socket library is part of the point 1.1.1 Platform-independence for feder-
ate and 1.1.1.1 Library Support. Zephyr offers two strategies for implementing POSIX
sockets. One strategy is to use Zephyr’s native socket API together with a configuration
option called CONFIG_NET_SOCKETS_. POSIX_NAMES. This option makes Zephyr’s
socket implementation available with the standard POSIX names, such as socket(), send()
and close(). Without it, the functions are available as zsock_socket(), zsock_send() and
zsock_close().

The other strategy is to use the configuration option CONFIG_USE_POSIX_API. This
option also makes the Zephyr sockets available under standard POSIX naming. The main
difference is that this option enables all POSIX library implementations, not just for sock-
ets. This is the ideal option for more advanced applications, like the federated LF runtime,
since it uses several POSIX libraries that need to integrate well together. If these libraries
have been implemented in Zephyr’s POSIX API, then using CONFIG_USE_POSIX_API
is an obvious choice. Using the CONFIG_NET_SOCKETS_POSIX_NAMES is ideal only
for very simple socket applications for this reason.

However, as mentioned in Section 2.2.8, the POSIX API is not completely implemented,
and this should be taken into account by reading the documentation thoroughly. Some
functions might not be available or might not work exactly as expected.

48

4.4.2 RTI Connection function

This section relates to point 1.1.2 Function porting, as the function gethostbyname() is
not supported by Zephyr’s POSIX libraries and is considered obsolete, according to the
Linux man pages. The suggested alternative is getaddrinfo(). This will implicate changes
in the whole RTT connection function.

4.4.3 Static Thread Stack Definition

This section relates to point 1.1.8 Runtime thread creation, as in the Zephyr platform-
dependent runtime files (See Figure 2.29 from Section 2.6.5), thread stack memory regions
are defined statically depending on the number of needed threads. In threaded LF, this
is easy to do, since the only threads are worker threads and user-created threads. The
number of worker threads are available in the runtime, and can thus be used directly. The
number of user threads has been added as a platform target property that the user must
specify. This number could then be used for the static stack definition.

For federated LF, however, there are significantly more threads, as presented in Section
2.6.6. To do this statically, one can utilize macros to define a precise number of needed
threads in each federate or RTT program. This is preferred to defining a maximum amount
of threads, since that would define a hard limit for the number of federates in the applic-
ation, or occupy unused memory area of a potentially significant size.

The main stack size, and other operating system thread stacks, are set in Zephyr’s Kconfig
file.

4.4.4 TP Address Configuration

Regarding points 1.2.8/1.8.2 IP address configuration (also 2.8.3 IP address configura-
tion). The IP addresses of the ethernet interface of the boards can be set using Zephyr
Kconfig options. The IP address of the Linux machine ethernet interface must be set using
Linux command-line options ip. The routing is also possible to set with these tools.

Since the TP addresses are specified manually in Kconfig files, one file per federate is
needed. However, having separate configuration files is natural since each federate may
need totally different configurations.

4.4.5 MAC Address for Multiple Boards

Regarding points 1.4 Multiple Zephyr federates and 1.4.1 MAC address configuration.
The MAC addresses of each board must be unique. The boards will be assigned the
MAC address in their network interface card. This will actually be the same address
for both boards. If left unchanged, then this will surely create problems. In addition,
configuring the MAC address cannot be done using KConfig options. Therefore, a solution
with a DeviceTree overlay file must be used. The local MAC address can be manually
specified with an option called local-mac-address. Thus an overlay file per federate should
be created.

It is also possible to set the option zephyr,random-mac-address instead of specifying the
MAC address manually. Then there would be no need for an overlay file per federate,

49

however, the randomness of this option is limited to only the last byte. This means that
the boards will occasionally be assigned the same MAC address. Therefore, the solution
with multiple overlay files is therefore preferred to setting zephyr,random-mac-address.

Additionally, having separate overlay files is natural if there are several boards, or if the
boards do different things in the application.

4.5 Zephyr Platform Support for RTI

In this section, special considerations regarding point 2.2 Zephyr platform support for RTI
from specification Table 3.2 are presented.

The RTI application was written with the intention of only launching it on a Linux ma-
chine. Therefore it is not made in a platform-independent way. Making the RTT com-
patible with Zephyr should also be a step toward a platform-independent RTI. This can
be done by using the already provided extra layer of abstraction, such as using If thread,
If_sleep and If mutex_t. These structures are implemented by the platform-dependent part
of the runtime and should be relatively easy to extend to the RTI and federate runtime in
general.

The RTT thread creation (2.2.2 Runtime thread creation) will then be adapted easily by
simply adding more thread stacks statically, equivalently to Section 4.4.3.

Some libraries not supported in Zephyr must be excluded (2.2.1.4 Library support).

4.6 Adapted Main Function for RTI and Termination

In this section, special considerations regarding points 2.5 Adapted main function and 2.6
Thread termination order from specification Table 3.3 are presented.

To augment the main function generated by the LF compiler, the compiler itself needs to
be modified. To be able to choose between a standard LF main function, and the adapted
main function, a target property should be added to the language. The target property
could look like in Figure 4.2.

target C {

platform: Zephyr,

joint—rti: true, // new target property
}

Figure 4.2: The figure shows how a target property could be added to Lingua Franca to
allow the joint RTT functionality.

4.6.1 Joint RTI Thread Structure

Regarding points 2.5.83 Create RTI entry thread and 2.5.4 Create Federate entry thread.
When the program has both RTT and federate threads, created from the main function, it
will be referred to as ”Joint RTI” for simplicity. Since the RTI is normally run using its

50

own main function, the RTT main function must be adapted to be available to be launched
in a created thread (ie. creating a function with similar content to the RTI main function).
The federate threads will then be created as normal.

Regarding point 2.5.1 Hardware initialization. Hardware initialization (ie. starting the LF
clock) must be done only once, and at the correct time. To avoid potential race conditions,
it should be done once before starting any of the threads.

Another potential race condition could arise during program termination (2.6 Thread
termination order) if the main thread running a federate exits before the thread running
the RTI, and thus hinders the RTT from notifying other federates to terminate. This means
that the main thread must also wait for the RTI to exit, before exiting.

Since the RTI uses some of the same functions in the federated utility file as federates,
and this file has global variables, then the implementation must be careful to handle this
accordingly.

4.6.2 RTI Command-line arguments

The RTT program takes five command line arguments (2.5.2 RTI arguments), where one
is mandatory. The RTI must be started with an option specifying the total number of
federates in the program. Federation ID, port number, clock synchronization and au-
thentication can be specified additionally. How to give these arguments to a joint RTI
structure is an interesting design choice. The most reasonable way to do this is to set as
many options automatically, using information that is already available through compiler
definitions or other variables in the LF compiler. If the option cannot be set automatic-
ally, then it should probably be set through a joint RTT options structure in the target
declaration, like in Figure 4.3.

target C {
platform: Zephyr,
joint—rti: true,
joint—rti—options: {
federation —id: ExampleFederation , // new target property
port: 8080, // new target property
}
}

Figure 4.3: The figure shows how a target property structure should be added to Lingua
Franca to allow setting RTI options.

o1

Chapter 5

Implementation

This section will give an overview of the project structure, setup and implementation.
The full code is available at the following repositories on Github: If-west-template, lingua-
franca and reactor-c.

5.1 Project Structure

The project stretches out across three repositories: a forked Lingua Franca repository, a
forked reactor-c repository and a forked Zephyr template repository. All these repositories
are part of the Lingua Franca project. The lingua franca repository contains the LF
compiler, command-line tools, automated testing, IDE files, and all target runtimes. The
reactor-c¢ repository is the C runtime. The Zephyr template repository is a basic setup
for building LF applications with West and Zephyr. The template repository has been
expanded on for this project.

The Zephyr template repository has been restructured as shown in Figure 5.1. The top-
most structure mostly contains Zephyr-related files, such as manifest files, custom west
commands, and the Zephyr repository itself. User applications are put in the application
folder. Inside each user application folder, there will be a src folder containing the LF
source code and quite a few configuration files for Zephyr. As explained in Section 2.2.2,
Zephyr uses two configuration systems.

DeviceTree is the hardware configuration system, and as the board in this project is
already supported by Zephyr, most basic hardware configurations are done already. The
only necessary configurations are those that are specific to an application, such as using
an additional LED, GPIO or specifying properties in the ethernet interface. These types
of configurations can be made in overlay files which overwrite certain hardware properties.
As can be seen in Figure 5.1, there are two overlay files, one for each federate. The reason
for this is explained in Section 4.4.5.

Kconfig is the software configuration system. The software configuration files specify which
libraries and functionalities to enable, as well as a range of properties. Each federate has its
own configuration file, as argumented for in Section 4.4.4. A debug.conf file provides ad-
ditional configurations that help with debugging, such as configurations related to logging
and statistics.

To make building and flashing federated programs easier, two custom west commands

52

https://github.com/siljesu/lf-west-template/tree/zephyr-federated
https://github.com/siljesu/lingua-franca/tree/zephyr-fed-support-update
https://github.com/siljesu/lingua-franca/tree/zephyr-fed-support-update
https://github.com/siljesu/reactor-c/tree/zephyr-federated-support

If-west-template
— deps
t zephyr // Zephyr repository with kernel and libraries

// More dependencies

— scripts //comment
t If_build.py // Script containing custom west commands

west-commands.yml // File declaring custom commands to west

“— application
t HelloWorld // Directory containing user application

ExampleFederated // Directory containing user application
— src // Directory containing application code
— ExampleFederated.|If // LF application code

— Kconfig // Kconfig file

— BOARD _fed1.overlay // Hardware configuration file for federate
— BOARD _fed2.overlay

— prj_fedl.conf // Software configuration file for federate

— prj_fed2.conf

“— debug.conf // Software configuration file for debugging

Figure 5.1: The figure shows the application template structure.

have been added to the repository. They can be inspected in the If build.py file under the
scripts folder.

5.2 Custom commands for West

While the custom command If-build was a pre-existing command created for the If-west-
template repository, two additional commands were added in this project. The first one
If-fed-build, builds directly from If-build, but has been altered for federated programs. Es-
sentially, the command finds the names of the federates, copies all necessary configuration
files and other files to each federate folder, and then builds each federate sequentially. An
option to specify which federates to build was added for convenience when dealing with
multi-platform systems. The command and option may be used to build two federates,
for example, as follows.

$ west If—fed—build src/ExampleFederated.1f —w "—b mimxrt1170
_evk_cm7 —p always” —f fedl fed2

Additionally, debug configurations will be added to the build if adding the option ”-c
debug.conf”. An option to not recompile LF code was added, ”-no-lfc/-n”, mostly for
development convenience. It makes it easier to test auto-generated code without having
to change the actual LF compiler, or to modify the main function if deploying federation
topologies 3 or 4.

The command If-fed-flash was added to make flashing to multiple boards easy. This

93

command recognizes how many boards are connected to the computer, and collects their
unique IDs. It then flashes a specified number of federates to the connected boards. This
command can be expanded to launch federations in different topologies, and start the RTI.
The command can be used to flash three federates, for example, as follows.

$ west 1f —fed—flash —mn 3

The code creating both commands can be inspected in the file If build.py under the scripts
folder.

5.3 Project Setup

5.3.1 lf-west-template Setup

Lingua Franca should be set up as described in the Lingua Franca Handbook at [37],
which is simply cloning the lingua-franca repository, and initializing the submodules. For
simplicity, the commands are repeated below.

$ git clone git@github.com:1f-lang/lingua—franca.git
$ cd lingua franca
$ git submodule update —init —recursive

The path to the LF compiler should be added to your path environment variable, so that
is it available simply as [fc. Do this by adding the following line (modified with the correct
path to the LF repository) to your .bashre file.

$ export PATH="<YOURPATH>/lingua—franca/bin :SPATH”

The LF compiler must be built before it can be used, and when changes have been made
to the compiler itself. This can be done by running the following command.

$ sudo <YOURPATH>/lingua—franca/bin/build—1f—cli

To set up Zephyr and west for this project, follow the guide in If-west-template’s README.
The guide mostly follows the steps in Zephyr: Getting Started Guide in Zephyr’s docu-
mentation pages, except for where the Zephyr repository is cloned to. It is recommended
to install Zephyr in a virtual environment to avoid Python dependency incompatibilities.
It should be assumed that this environment is activated for the whole of this project.

5.3.2 Debug and Flashing Setup

Setting up debug and flashing functionality is essential to any embedded project. As
explained in Section 2.8, the board is pre-packed with a full debugging system. The
out-of-the-box firmware is DAPlink (preceded by CMSIS-DAP), which is an open-source
debug interface firmware. There are several debug host tools that are possible to use in
this project. This project uses the pyOCD host tools, which are already compatible with
DAPIlink firmware. However, if Jlink host tools are preferred, then the firmware must be
changed. How to change the firmware and set up JLink host tools are covered in Section
5.4.1 in [7]. The rest of this subsection covers how to set up debugging with pyOCD.

54

https://www.lf-lang.org/docs/handbook/developer-setup?target=c
https://github.com/siljesu/lf-west-template/tree/main#readme
https://docs.zephyrproject.org/latest/develop/getting_started/index.html

Using PyOCD without any setup could be possible, and should be tested first. Run the
following commands to flash a hello world sample program, with the runner specified to
be pyOCD.

$ cd deps/zephyr/samples/hello_world
$ west build src/main.c
$ west flash —r pyocd

The following error could occur: ”[Errno 13] Access denied (insufficient permissions) while
trying to interrogate a USB device. This can probably be remedied with a udev rule. See
https://github.com/pyocd/pyOCD/tree/master/udev for help.”. This means that pyOCD
can not access the debug probe, as permissions to access USB devices must be set up
explicitly in Linux [42]. This is done via udev rules. To add a udev rule, create a new file
as follows

$ cd /etc/udev/rules.d
$ sudo touch 50—cmsis—dap.rules

Then, copy the contents from the file 50-cmsis-dap.rules from pyOCD’s Github repository
into the newly created file. Reload the new rules by running

$ sudo udevadm control —reload
$ sudo udevadm trigger

It should then be possible to run the flash command. Similarly, debugging may be started
with

$ west debug —r pyocd

If several boards are connected, the board to debug must be specified through its unique
ID which can be found by running:

$ pyocd info

5.3.3 Networking Setup for Topology 1

Linux-side Required Setup

To connect the sockets of an external federate (running on the MCU) and the RTI (running
on the Linux machine) both Zephyr configuration and network interface configuration with
Linux is necessary. Firstly, the ethernet interface connecting the physical units must be
initialized with IP addresses on both ends. Check all network interface addresses on the
Linux machine by running

$ ip address

The relevant ethernet interface should start with an ’e’. If several possible interfaces
appear, then it is possible to check further hardware information (like connection info) on
the suspected interface with the command

$ sudo dmesg | grep —i <ethernet interface name>

This should make it possible to differentiate different ethernet interfaces. The Linux
machine side can then be assigned an address as follows

95

https://github.com/pyocd/pyOCD/blob/main/udev/50-cmsis-dap.rules

ol W N

$ sudo ip address add dev <ethernet interface name> 192.0.2.2

To verify the interface address, check the interface addresses again. Then, add an entry
to the routing table with gateway and netmask information, with the following command.
This is needed in order to correctly route the data traffic.

$ sudo ip route add 192.0.2.0/24 dev <ethernet interface name>

The routing table entries can be checked with

$ ip route

Take special note that these changes are not necessarily persistent, and will be lost with a
restart, unless the commands are added to the user’s script file or the Linux distribution
configuration files.

Board-side Required Setup

On the federate application side, the IP address, gateway address and netmask must be set
with Zephyr configuration options, see table 5.4 discussed in section 5.5. The IP addresses
in the network must be in the same subnet. The subnet is defined by the gateway address
and netmask.

Depending on the number of federates, the number of file descriptors and maximum net-
work connections might need to be adjusted.

Max possible network connections
CONFIGINET MAX_ CONN=16
CONFIGNET MAX CONTEXTS=16

Max open file descriptors
CONFIG_POSIX MAX FDS=16

5.3.4 Networking Setup for Topology 2

Setting up two external federates (one for each board) involves all the same steps as in
section 5.3.3. Each board must be assigned its own IP address. This can be done by
creating a configuration file for each federate that will run on a board. Then, simply
specify a unique IP address inside the same subnet as the other addresses.

The MAC address can be set in a DeviceTree overlay file per federate, see section 4.4.5 for
why this particular solution was made. An excerpt from an overlay file is shown in Figure
5.2.

&enet {
local -mac—address = [00 Oa 35 00 00 01];
status = "okay”;

};

Figure 5.2: The figure shows how to specify the MAC address of the ethernet interface
using a DeviceTree overlay file.

o6

5.3.5 Networking Setup for Topologies 3 and 4

Setting up the joint RTI structure requires the same steps as in the two previous topologies.
Some additional configurations are needed. Particularly, the RTT sets timeout values for
each socket, and this needs to be enabled in KConfig options.

Socket timeout configuration
CONFIGNET_CONTEXT RCVTIMEO=y
CONFIGNET_CONTEXT_SNDTIMEO=y

The number of file descriptors and network connections might need to be adjusted when us-

ing the joint RTI topologies. This is done by adjusting the options CONFIG_NET_MAX_CONN,

CONFIG_NET_-MAX_CONTEXTS and CONFIG_POSIX_MAX_FDS from tables 5.1 and
5.2.

5.4 Build and Run

Run Topology 1

As of now, there is no integrated way to specify a platform for each federate, so if launching
federates on different platforms, then the program’s platform needs to be modified and
rebuilt. For an example with two federates, one running on Linux and one on a board,
first build your LF program with the following target declaration.

target C {
platform: ”Zephyr”,
no—compile: true,

Use the custom west commands discussed in section 5.2, specifying the federate that should
run on a board.

$ west lf —fed—build src/ExampleFederated.1lf —w ”—b <BOARD>
—p always” —f fedl

To flash it to the board, run
$ west If fed—flash —m 1

Then, modify the target declaration within your LF application file.

target C {
platform: ”linux” ,

3}

Build using the normal Ifc command:

$ lfc src/ExampleFederated. 1f

Now, launch the RTT by
$ RTI —n 2 —i ”Unidentified Federation”

Launch the board federate by pressing the board reset button, and Linux federate with

57

$ fed—gen/ExampleFederated/bin/federate__fed2

Both federates should then connect to the RTT at the specified IP address and port (default
is 15045). Execution should then start as normal.

Federate 1: Successfully connected to RTI.
Federate 1: Connected to RTI at 192.0.2.2:15045.

Run Topology 2

Only running board federates is easier than topology 1. The target declaration should be
at least this:

target C {

platform: ”Zephyr”
no—compile: true,

Use the custom build command without needing to specify federate

$ west lf —fed—build src/ExampleFederated.1lf —w ”—b <BOARD>
—p always”

To flash it to the board, run
$ west If—fed—flash —n 2

Now, launch the RTT by
$ RTI —n 2 —i ”Unidentified Federation”

Launch the board federates by pressing the board reset buttons. Both federates should
then connect to the RTT at the specified IP address and port (default is 15045). Execution
should then start as normal. Output from the boards is from Putty (see Section 2.7).

Federate 1: Successfully connected to RTI.
Federate 1: Connected to RTI at 192.0.2.2:15045.

Run topologies 3 and 4

Running topologies 3 and 4 involves the same ideas as in the previous sections, depend-
ing on the platform of the federates. Because of time limitations, the joint RTI target
properties envisioned in Section 4.6 and 4.6.2 have not been implemented. The joint RTI
functionality can still be achieved by specifying the correct IP address and port in the
LF code, then generating target code using Ifc. Then, the main function in one of the
federates must be overwritten by a new main function, shown in Section 5.7 and provided
fully in Appendix A.

5.5 Zephyr Configurations

Configuration options in Zephyr are very important, either if it’s enabling crucial features
or allocating enough memory - it could make or break your application. It is therefore ne-
cessary to go through these options in more detail. All configuration options necessary for

o8

federated applications with Zephyr (except for the basic options that are not application-
specific) are listed in tables 5.1, 5.2, 5.3 and 5.4. Some options have the same value as the
default, but they have been included for clarity.

Table 5.1 contains general configurations. As can be seen in the table, the main stack size
is set to be 4096 bytes. This is where all initialization prior to the application will run,
and eventually main() will run. It must be larger than the default since the LF application
(with runtime) is quite large. If the main thread is too small, a "Data access violation”
CPU exception will arise, or the application will not get through Zephyr’s initialization
phase. The test random generator option is necessary when enabling networking. By
enabling this option, the kernel’s random number generator is allowed to use non-random
generation sources, even if a true entropy generator is available. Where possible, the true
random number generator will be preferred. If, in the future, federated LF on Zephyr
will be expanded to include authentification, then this option should be looked more into.
Further, Zephyr’s POSIX API is enabled, as discussed in section 4.4.1. The last option
relates to the available number of file descriptors, which in this case relates to the number
of sockets.

Size of stack for
CONFIG_MAIN_STACK_SIZE | initialization 1024 4096
and main thread

Non-random
number generator | n y
is OK

Use available
CONFIG_POSIX_API POSIX APIs n y
Maximum number

CONFIG_POSIX_MAX_FDS of open file 16 32
descriptors

CONFIG_TEST RANDOM_
GENERATOR

Table 5.1: The table shows Zephyr configuration options related to general options.

Table 5.2 contains general networking configurations. Federated LF uses both TCP and
UDP communication (see points 1.2.1/1.3.1/2.3.1 TCP socket support and 1.2.1/2.3.2
TCP socket support from specification Tables 3.1 and 3.2 in Section 3), and therefore needs
both enabled. The application uses the socket API. Ethernet must be enabled. IPv6 is
not available yet, and thus we must use IPv4 (See Section 4.4.4). The max connections
and contexts must be increased since there will be multiple connections simultaneously.
These numbers should be the same.

Table 5.3 contains networking configurations related to buffers. These options all deal
with the number of possible packets to cache, either in send or receive. These options
have implications for how data will be sent, and can generate errors in the application if
the resources are insufficient.

Table 5.4 contains IP address configurations. To set the IP address, gateway and netmask,
the first setting must be enabled.

Table 5.5 contains debugging options. The type of compiler optimization can be con-
figured. Zephyr offers many types of logs, here only the networking log is included. En-
abling logs makes more information be printed to the serial output. A shell functionality

99

Zephyr Configuration L Default Chosen
: Description
Option Name value value
CONFIG_NETWORKING | “nable link layer n y
and networking
CONFIG_NET_UDP Enable UDP y y
CONFIG_NET_TCP Enable TCP y y
CONFIG_NET_IPV4 Enable IPv4 n y
CONFIG _NET_SOCKETS ﬁ‘;}ale BSD socket n .
CONFIG_NET _L2_ Enable ethernet N
ETHERNET support Y
CONFIG NET MAX_ Number of suppf)rted
CONN network connections, 8 16
including TCP and UDP
CONFIG_NET _MAX_ Number of allocated 6 16
CONTEXTS network contexts

Table 5.2: The table shows Zephyr configuration options related to networking.

Zephyr Configuration L Default Chosen
. Description

Option Name value value
CONFIG_NET PKT _RX | Max number of pending 14 39
_COUNT packet receives
CONFIG_NET _PKT_TX | Max number of pending 1 39
_COUNT packet sends
CONFIG NBT BUF RX | 0% F s a1
_COUNT .

receiving data
CONFIG NET BUF_TX Number of network

buffers allocated for 36 128
_COUNT i

sending data
CONFIG_NET _BUF._ Each network buffer
FIXED_DATA SIZE has fixed size o Y
CONFIG_NET _BUF_ .
DATA SIZE Size of network buffer 128 1024

Table 5.3: The table shows Zephyr configuration options related to network buffers.

can be enabled. This makes it possible to use the serial communication client as input for
some select commands, for example, to print network configuration info from the board.
The command to list network interface information is

$ net iface

Lastly, the stack initialization option is useful if analyzing register values and addresses.

Zephyr Configuration o Default Chosen
. Description
Option Name value value

CONFIG_NET_CONFIG AHOI‘.’V Ste.ttmg i?twor.k
SETTINGS application settings in | n y

config file
CONFIG_NET_CONFIG .
'NEED_IPV4 Application needs IPv4 | n y
CONFIG_NET_CONFIG
MY IPV4 ADDR My IP addr - <FED_IP>
CONFIG_NET_CONFIG
MY IPV4 GW My IP gateway - 192.0.2.0
CONFIG_NET_CONFIG |\ "o 9255.255.
_MY_IPV4_NETMASK y I netmas - 9255.0

Table 5.4: The table shows Zephyr configuration options related to IP address configura-
tion.

Zephyr Debug Configuration
Option Name
CONFIG_DEBUG._

Description

Enable compiler debug optimizations

OPTIMIZATIONS

CONFIG_SHELL Enable Zephyr’s shell functionality
CONFIG_NET SHELL Enable network shell commands
CONFIG_LOG Enable logging
CONFIG_NET_LOG Enable logging from networking
CONFIG INIT STACKS igi;c;zl)ize the stack to a known value

Table 5.5: The table shows Zephyr configuration options useful for debugging.

5.6 Zephyr Platform Support for Federate

Most of the runtime code was directly portable across the platforms because of the POSIX
library configuration option explained in Section 4.4.1. Only macros to handle libraries for
the Zephyr platform, and for other platforms, were added. The RTI connection function
discussed in Section 4.4.2 was implemented.

5.6.1 RTI Connection Function

As discussed in Section 4.4.2, the function handling the RTT socket connection had to be
adapted to use getaddrinfo(). A pseudocode of the change is included in Figure 5.3. The
new function uses a hints structure which constrains which address structures are returned
from the function. These hints are specified to be IPv4 with TCP stream sockets. Refer
to Section 2.3 for what the other functions do.

1.
2 struct addrinfo hints;
3 struct addrinfo x*res;
|

memset(&hints , 0, sizeof(hints));

6 hints.ai_family = AF_INET; /* Allow IPv4 x/
7 hints.ai_socktype = SOCKSTREAM; /* Stream socket =/
s hints.ai_protocol = IPPROTO_TCP; /* TCP protocol x/

9 hints.ai_addr = NULL;
10 hints.ai_next = NULL;
11 hints.ai_flags = AILNUMERICSERV; /* Allow only numeric port numbers x/

13 while (result < 0) {

15 // Get address structure matching hostname and hints criteria , and
16 // set port to the port number provided. There should only

17 // ever be one matching address structure, and we connect to that.
18 int server = getaddrinfo (hostname, &port, &hints, &res);

20 // Create a socket matching hints criteria
21 _fed .socket_-TCP_RTI = socket (res—>ai_family , res—>ai_socktype, res—>
ai_protocol);

23 result = connect(-fed.socket_ TCP_RTI, res—>ai_addr, res—>ai_addrlen);
24 if (result = 0) {

25 // Successfully connected to RTI

26 }

27 ... // function continues
)

Figure 5.3: The figure shows the pseudocode of an excerpt of the RTI connection function.
Some details are left out for brevity.

5.6.2 Static Thread Stack Definiton

As discussed in Section 4.4.3, statically allocating memory for thread stacks was imple-
mented through a number of macros that define the final thread count. The final macro
is shown in Figure 5.4. The macros not shown in the figure were decided from a compiler
definition such as how many federates there were, and also from options being enabled or
disabled, such as clock synchronization.

1
> #define NUMBEROFTHREADS (NUMBER.OFWORKERS \

3 + WORKERS NEEDED_FOR FEDERATE \

1 + RTLSOCKET_LISTENER.THREAD \

5 + FEDERATE_SOCKET LISTENER THREADS \
6 + P2P_HANDLER THREAD \

7 + CLOCKSYNC.THREAD \

8 + USER.THREADS)

Figure 5.4: The figure shows how the NUMBER_OF_THREADS macro is altered to allow
static thread stack allocation for federated LF on Zephyr.

62

10
11

12

5.7 Zephyr Platform Support for the RTI

Most of the RTT code was directly portable across the platforms because of the POSIX
library configuration option explained in Section 4.4.1. Only macros to handle libraries
for the Zephyr platform, and for other platforms, were added, as explained in Section 4.5.
Some naming conflicts with federate.c resulted in function name changes.

The abstractions for sleep functionality, thread synchronization and threads, explained in
Section 4.5 have all been implemented, so that the RTI has become platform independent.

5.8 Adapted Main Function for RTI

Figure 5.5 shows the adapted main function launching the federated program and the RTI
program. Notice how macros are used to decide the clock synchronization scheme, clock
synchronization parameters and number of federates automatically. The port number and
federation ID are hard-coded. The complete code is provided in Appendix A.

void main(void) {

// Set arguments to the RTI

#ifdef _LF_.CLOCK_SYNC_INITIAL

rti_set_args (NUMBER.OF FEDERATES, ” Unidentified Federation”, 15045,
clock_sync_init , CLOCK.SYNCPARAMS) ;

#elif LF.CLOCK.SYNC._ON
rti_set_args (NUMBER.OF FEDERATES, ” Unidentified Federation”, 15045,
clock_sync_on , CLOCKSYNCPARAMS) ;

#else _LF_.CLOCK_SYNC_.OFF

rti_set_args (NUMBER.OF FEDERATES, ” Unidentified Federation”, 15045,
clock_sync_off , CLOCKSYNCPARAMS) ;

#endif

// hardware initialization
If_initialize_clock ();

// Create thread for RTI
If_thread_create (lf_rti_main);

// Call normal runtime main
res = Ilf_reactor_c_main ();
exit (res);

Figure 5.5: The figure shows the pseudocode of the new main function in the joint RTI
structure.

As described in Section 4.6, a new RTI main function had to be added. This function
is available as [f_-rti_main in the rti_lib.c, and is visible in the code in Figure 5.5. It is
almost identical to the original main function, with the exception that it does not handle
command-line arguments. Instead, a function to set these arguments automatically was
added (explained in Section 4.6.2, shown in Figure 5.5). This function takes arguments

63

specified from the new main function. Hardware initialization is done prior to anything
else, as explained in Section 4.6.1.

5.8.1 Integration with LF Language

The joint RTT functionality remains highly experimental, and has not been integrated with
the LF language, as envisioned in Section 4.6 and 4.6.2. The reason for this is that it was
not prioritized, and is therefore left for future work. The consequence of this is that it is
not well-tested and will be more difficult to use for future contributors.

How to set it up experimentally is explained in Section 5.4. Because of its experimental
nature, it is not included in Chapter 6.

5.9 Zephyr Fatal Errors and Causes

If the federated program fails, it is often because of a fatal error from Zephyr. Since these
errors are relatively common, they will be listed here for the reader’s convenience.

During development:

e Unaligned memory access: Something is not initialized before use.
e [llegal use of the ESPR: A socket handle is incorrectly accessed. This could be
because it has not been initialized.
Running an application:
e Buffer allocation failed, followed by connection timeout. Buffer options must be
modified, see section 5.5.

e Data access violation: The thread indicated by fault has a too-small stack. Increase
the stacks in configuration options or, for LF threads, inside the 1f_zephyr_support.c
in the runtime.

e Precise data bus error: Federate ID fails to send. Board federates must connect first
to RTT.

e Illegal use of the ESPR: A socket handle is incorrectly accessed. This could be
because it has already closed.

5.10 Github Contributions

The following has been merged into the main LF repository:
e Platform abstraction replacing POSIX functions in RTI, further simplifying RTI
logic

e Implementation of a target property allowing specification of user threads in LF
programs on Zephyr

64

The following has been added in a pull request to the main LF repository:
e Obsolete function mentioned in Section 5.6 replaced with new alternative, simplifying
the logic
e Federated LF port to Zephyr platform

e Federation examples, new west commands and change of structure in lf-west-template

65

Chapter 6

Evaluation and Results

This section presents tests to evaluate the implementation of Zephyr platform support for
federated LF and its results. First is the clock synchronization functionality, then two
different aspects of message sending and finally a larger example concerning smart grids.
Figure 6.1 shows how the hardware is set up during the evaluation tests.

Figure 6.1: The figure shows the hardware setup.

6.1 Clock Synchronization Test

The clock synchronization functionality is important for distributed programs. To test
clock synchronization, the simple test in Figure 6.2b was made. The test simply consists
of two instances of a reactor that toggles a GPIO pin on each tick of the timer. The
timer is set to a period of 500 milliseconds. The GPIO pin toggles can then be measured
and compared with an oscilloscope. This is a measure of clock synchronization and of
drift, since the program should ideally toggle these GPIOs exactly at the same time. The
difference will be the error in how the local clocks are synchronized.

66

1

ClockSyncTest 192.0.2.2:15047

OD Source

(1sec, 500 msec)

target C { Source

platform: Zephyr,

clock—sync: off/init /on, @--E

clock—sync—options:
{local —federates—on: true,

} period: 500 msec}, O__E
(a) (b)

Figure 6.2: The figure shows the target declaration in (a) and the LF diagram in (b) for
the clock synchronization test.

(1sec, 500 msec)

This test is included to both test the LF clock synchronization functionality, as all the
tests rely on some level of clock synchronization, and to give preliminary results as to the
achievable precision. The target declaration of the test is shown in Figure 6.2a.

6.1.1 Clock Synchronization Test Results

clock-sync: off
As expected, turning off LF clock synchronization yields no clock synchronization, as there
is no underlying clock synchronization present.

clock-sync: on

The test revealed that this feature is not currently working. This is unsurprising as this
feature has not been prioritized during this project. Looking at the network interaction
over Wireshark showed that UDP messages were sent, but that probably the UDP messages
are interpreted incorrectly by the runtime.

clock-sync: init

The result of the test over 60 seconds is shown in Figure 6.3. Only every second toggle
is measured by the oscilloscope, meaning there is a total of 60 data points. The figure
presents the data points, but also a trend line found using linear regression.

The initial synchronization is in the sub-millisecond order. This is consistent with the
reported clock synchronization schemes over LANSs, presented in Section 2.4.2. This result
is quite interesting, and the potential for consistently precise clock synchronization is
present given that this step is repeated periodically, such as in clock-sync: on.

The drift after initial synchronization is about 26 microseconds per second. After one
minute, the clock synchronization error between the boards is still under 2 milliseconds.
It seems like using initial clock synchronization will yield acceptable results in an experi-
mental phase and with short-lived tests.

67

Clock Synchronization Drift
® Error Measurement = 0.0259*x + 0.392

25
20
15
1.0

05

Clock Synchronization Error [ms]

0.0

10 20 30 40 50 60
Time [s]

Figure 6.3: The figure shows measurements over 60 seconds of clock synchronization error
after an initial synchronization round.

6.2 Message Sending Test

A test with a minimal, sender-receiver structure is interesting to test. See the LF diagram
of the test in Figure 6.4 and a pseudocode description in Figure 6.5. The two main aspects
to test are

o Message delay, ie. the time from the end of the sending reaction until the execution
of the receiving reaction, with centralized and decentralized coordination enabled

e Message throughput, ie. a measure of how many messages can be sent (and processed
correctly) per time unit, with centralized and decentralized coordination enabled

DistributedMessageTest 192.0.2.2:15047

Receiver

Sender O'E

OB (O3 -1
QE (1 sec, 100 msec)

PrintTimeElapsed
O-1

Figure 6.4: The figure shows an LF diagram of the message-sending test.

68

1

NONON NN NN N NN
© 0 N O URe W N =

reactor Sender(period: time(100 msec), iterations:int(3000)) {
output y: int
timer t(1 sec, period)
state sendCount: int (0)

reaction (t) —> y {=
sendCount++;
gpio_pin_toggle ();
1f _set (y, sendCount);
if (sendCount = iterations) {
If _request_stop () ;
}

=)
}

reactor Receiver {
input x: int
state receiveCount: int (0)

reaction (x) {=

receiveCount++;

if (receiveCount != x—>value) {
// Received the wrong message
If _request_stop () ;

} else {
gpio_pin_toggle ();

}

=

Figure 6.5: The code snippet shows a pseudocode description of the test.

6.2.1 Message Delay test

For measuring message delay, the timer periods in Figure 6.5 is set to be 100 milliseconds.
The reason for this is that it should be apparent which timer toggles correspond to which
when measuring the output. The oscilloscope is configured to measure the delay between
the rising and falling edges of the square signals.

The expected message delay is in the millisecond range, because TCP communication
over ethernet takes some time, as well as the runtime itself. It is also expected that
centralized coordination will have a longer delay than decentralized coordination. This is
because more messages need to be sent (RTI control messages) and all messages need to
go through an extra device.

Test Results

The test results from examining message delay are shown in the histogram in Figure 6.6.
As expected, decentralized coordination has a lower delay overall, by about 2 milliseconds.
It has a relatively low variance as well. This makes sense because there are not many other
tasks running on the system. In comparison, centralized coordination has a high variance,
and possibly a multimodal distribution. Centralized coordination must have the RTTI as a
middle step in communication, and the RTI runs on a general-purpose operating system
running thousands of other tasks. Therefore, the delay introduced will vary highly. Since
it must go through another device, a multimodal distribution could make sense. Another
system introduces a second independent stochastic variable.

69

Message Delay

125
100
75

50

Count

25

0

9 A o (R > & 5 S
oSy fb'bf;’fb’\'b W u"’ e Vq%\'6(b<a¢)¢3«%QQN%%%VVOQDbq}’\q’\m”\b"\b’\%‘bb%q"bb‘%@%%

Message Delay [ms]

B Centralized Coordination (count) m Decentralized Coordination (count)

Figure 6.6: The figure shows measurements of message delay in a simple source-drain
structure.

6.2.2 Message Throughput test

For measuring message throughput, the timer periods in Figure 6.5 are set to be 100
microseconds, which is much faster than the expected throughput. This is done to ”push”
the system to see what the maximum throughput can be. The test sends a count value that
is compared to a local count to ensure that no messages are skipped or in the wrong order.
The test is set to finish 3000 iterations, ie. send and receive 3000 messages. The time to
finish this is then measured by adding a third reactor, running on the Linux machine, to
the federation. The elapsed physical time is then used to calculate the number of messages
per second.

Message throughput will be limited by the runtime overhead of sending and receiving
messages. The network stack provided by Zephyr will also have a certain overhead affecting
this measure. Decentralized coordination is expected to perform better than centralized
coordination in this measure, since control messages have a limiting factor.

Test Results

The result from 10 iterations of the message throughput test is shown in Table 6.1. The
average throughput is slightly higher for centralized coordination, than for decentralized
coordination, see the averages at the bottom of Table 6.1.

This is a surprising result, as the RTT should be an extra step compared to direct commu-
nication, in addition to that control messages need to be sent back and forth. However,
in a simple source-drain structure, there are not many control messages necessary at all.
The source has no upstream federates, and can therefore execute without receiving TAG
messages from the RTI. What is likely occurring is that the source reactor executes all
sending operations as fast as it can, limited by the network communication buffer struc-
tures (See configuration options in Section 5.5, Table 5.3). The RTI receives the messages,

70

Message Throughput rates [messages/second]

Iteration 1 | Iteration 2 | Iteration 8 | Iteration 4 | Iteration 5
Centralized 604.76 619.56 614.00 616.52 599.82
Decentralized | 583.43 592.86 585.22 589.41 601.12
Iteration 6 | Iteration 7 | Iteration 8 | Iteration 9 | Iteration 10
Centralized 587.96 581.17 674.53 628.42 589.79
Decentralized | 583.03 588.81 590.12 588.02 586.82
Average Standard Deviation
Centralized 611.65 26.84
Decentralized | 588.88 5.27

Table 6.1: The Table shows results from the message throughput test. The average value
and standard deviation over the 10 iterations are shown at the bottom.

and forwards them to the drain reactor, as fast as possible, but is limited by the same
network buffers. In the decentralized coordination mode, the messages are forced to be
sent at regular intervals. The waveforms measured by the oscilloscope, in Figures 6.7 and
6.8, is consistent with this hypothesis. The waveform for the centralized coordination
run in Figure 6.7 shows that the GPIO toggles have been grouped together, both in the
sending end and the receiving end. In the waveform for the decentralized coordination
run in Figure 6.8, the GPIO toggles are more evenly distributed.

Time Scale: 10 ms/

et skt Bt ettt sl i it cack s N it el ol

11 11 S USRS 11 AN S S8 D (S N

Figure 6.7: The figure shows the generated square waveform from the message throughput
test using centralized coordination. The y-axis shows the voltage (though it should be
thought of as a logical signal) and the x-axis shows time.

It is worth mentioning that this test gave errors like ”Cannot allocate TCP buffer of size
x” if the network buffer configurations were a certain way. Probably, setting each network
packet buffer to be large, specifically 2048 bytes, caused the traffic to be forced to slow
down, thus avoiding the errors. This size is larger than the maximum Ethernet packet
payload size, which is 1500 bytes [30]. Thus every message must be sent in two packets.
There seems to be no network flow regulation mechanism implemented, so buffers are
likely to overflow. It is also worth mentioning that the grouped traffic, as in centralized
coordination, is not ideal program behavior, and should be investigated further to find a
solution to preventing this. However, setting the period of the timer to be faster than

71

Figure 6.8: The figure shows the generated waveform from the message throughput test
using decentralized coordination. The y-axis shows the voltage (though it should be
thought of as a logical signal) and the x-axis shows time.

what the system can handle is generally a bad idea.

It was suggested during the presentation to the LF team that this behavior could be due
to network switch flow control actions. In that case, it would be an ethernet flow control
mechanism kicking in. However, this was investigated using Wireshark with a filter on
ethernet pause frames: macc.opcode == pause. No such messages were exchanged during
a run of the test.

The standard deviations at the bottom of Table 6.1 show that decentralized coordination
gave substantially less result variation. This is consistent with what was observed in
the message delay test (Figure 6.6); that the RTI introduces significant execution time
variance.

6.3 Example: Smart Grid

6.3.1 Case Description and Motivation

The importance of our electrical grids is larger than ever, making them at the same
time more vulnerable than ever. Equipment failures, vegetation and weather conditions,
human errors and cyber attacks pose significant risks to the reliability and stability of our
grids. Smart electrical grids aim to remedy the modern challenges of the electrical grid
using instrumentation and automation technology. Particularly, a self-healing system is
envisioned where the system itself will be able to detect, localize, isolate and reconfigure
the grid to minimize the impact of faults in the grid. These tasks are far from trivial, and
require cutting-edge technological solutions.

Detection of a fault comes from a measurement unit. Phasor measurement units (PMUs)
measure voltage and current phasors, usually at 50 Hz in Norwegian grids [43]. PMUs
are possible to use for real-time monitoring over wide areas because of low latency meas-
urement reporting and millisecond-range time synchronization. PMU measurements are

72

reported to Phasor Data Concentrators, which can retransmit the data to other units. In
this example, since PMU data is hard to find and to reduce complexity, a simple time
series of possible voltage measurements will be used.

The localization of a fault is made possible by comparing various aspects of reported
measurements from distributed units, for example by a human operator. A promising
method to do this would be to use an online ML-based algorithm [43]. For the sake of
this example, the localization aspect will be simply comparing the amplitudes of voltage
measurements, under the assumption that higher amplitudes will relate to closer electrical
proximities. This is somewhat realistic to do for the same geographical area. For widely
separated geographical areas, similar reasonings in time can be made, but must be done
using far more advanced techniques than can be illustrated in this example.

Isolation of a localized fault, and reconfiguring of the network, would be done by electric
devices such as relays and circuit breakers. Reconfiguring the network requires an advanced
algorithm which must make several considerations regarding grid stability, constraints and
load balancing. All these considerations would be too complex for this toy example, thus
the only consideration the algorithm must make is how to connect as many consumers as
possible to the grid.

The example system is shown in Figure 6.9. Each unit on the grid is supplied with
measurement units, the ability to localize faults, disconnect and reconnect to the network.
There are supplies from both sides of the line, thus one unit must be disconnected at all
times. When a fault is detected, the units must transmit their synchronized measurements
to each other, and decide which two are the closest to the fault. The correct units must
then break their connection, isolating the fault. The network should then try to reconfigure
the network such that the impact of the fault is minimized, such as Unit D closing in Figure
6.9.

A fault in the power grid can have harmful consequences if left over time. It is therefore
desirable to respond to the fault as quickly as possible to reduce the impact of the fault. If
the distributed system is unable to reach a decision, then all relays must shut down after
some time.

From a computer system perspective, it is apparent that this system constitutes a distrib-
uted real-time system, both in the toy example and in reality. Only time-synchronized
measurements reported within some time are useful to the system. Also, the system is
only useful if it is able to respond to the fault within some time.

Embedded Lingua Franca may be able to provide a distributed real-time system that is
able to handle the timing requirements of this example. It is thus an example that could
demonstrate some deeper aspects of the project implementation.

73

Unit A Unit B Unit C Unit D

Normal operation } I
Supply 1 Supply 2
Unit A Unit B X Unit C Unit D
Fault is detected } I
Supply 1 Supply 2
Unit A Unit B x Unit C UnitD
Grid is restored } — I
Supply 1 Supply 2

Figure 6.9: The figure shows electrical connections in a simplified self-healing smart grid
problem.

6.3.2 Case Model in Lingua Franca

In Lingua Franca this example can be modeled with four composite reactors, connected
in an all-to-all structure. Within each composite reactor, which corresponds to one unit,
there is a voltage measurement reactor (VoltageSensor), distributed algorithm reactor
for handling inputs (DistAlg), and a circuit breaker reactor (CircuitStatus). See Figure
6.10 for how a unit’s input and output signals, and how it is composed. The voltage
measurement reactor has a timer that initiates a voltage measurement. As real voltage
data is not available, a voltage time series featuring a voltage drop has been hardcoded
in. The time series indicates that the fault is between units B and C. When the voltage
drop has been discovered, messages are sent to the other units. A logical action, acting as
a security mechanism, is scheduled within the same reactor. In this example, the security
mechanism is scheduled after 150 milliseconds. The security mechanism will break the
circuit if all messages are not present at the same logical time.

If all replies are received correctly, then the distributed algorithm reactor calculates which
two units should close based on the registered voltage measurement of each unit. It then
notifies the CircuitStatus reactor of the resulting decision for this unit. A logical delay is
added to each connection between units by using the after keyword. See Figure 6.11 for
the connection between the four units.

Units A and D are deployed on a Linux machine, while units B and C are deployed on
the two boards. GPIO toggling is used to indicate the time at which the voltage drop is
measured, and the time at which it is handled. The precise timing can then be measured
by an oscilloscope with four probes. Refer back to Figure 6.1 for the hardware setup.

74

voltageReportAln
>

RelayUnit

VoltageSensor

. voltageReportQOut
P>

O‘ E @ M . measOut

startCountdown
(1 sec, 70 msec)

vc\taqeReportAln DIStAIg

voltageReportBIn |
>

vc\taqeReportBln

h\ distributedDecision

CircuitStatus

o110

countdown
distributedDecision !
»- % 4)._-

voltageReportCin i i

voltageReportCin
>

valtaqeReportDln‘
>

Ll

voltageReportDIn
-

Figure 6.10: The figure shows one of the relay units in the smart grid model in LF.

smartgrid-nxp-after 192.0.2.2:15047

nl

voltageReportDIn
VoltageReporicn
voltageReportBin, itageR 1D q =
ItageReportDlr i
| voltageReporiCh

7
oltageReportout

o voltageReportDin s oitsgereporEin?, RelayUnit puiedcRepor /25 msec)

TosgeReRoriDn . % m;e/—w‘

RelayUnit b~ / / R

T

VoltageReporicn elayUni

[eortagereporoin®
ItageReportA

25 med]

TeE el

, VoltageReporB

TeE maee] / y
- |

4 725 meec]
; /

> RelayUnit >
VortegeRzporion |

Figure 6.11: The figure shows the units and connections in the smart grid model in LF.
The number on each connection is a logical delay on that connection, specified with the
keyword after.

6.3.3 Test Results

Test 1: Logical Delay covers Total Connection Latency

The result of the test over 10 iterations is shown in Figure 6.2. The maximum reaction time
for both units is 26.06 milliseconds, while the average is 25.74 milliseconds, as can be seen
at the bottom of the table. The logical delay (after) was set to be 25 milliseconds. This
time must surpass the total connection latency' between the connections, since there are
no STP violations registered and the program STP value is set to zero. Since logical time
always lags behind physical time, the logical delay results in a physical delay (experienced
by the sender) of at least 25 milliseconds. Thus, the execution of the distributed algorithm
and circuit breaking must take between 0.5 and 1 milliseconds.

Since the logical delay on connections accounts for the total connection latency, the test
gives very consistent results. However, the actual arrival times of the messages could be
faster than 25 milliseconds (see the message delay test results, for example). It could
therefore be imagined that the reaction times could have been a lot faster than what
was achieved in Table 6.2. Using logical delays therefore adds some unnecessary reaction
time delay, but gains low variance in the results. Therefore the line fault is not handled
as quickly as strictly possible. In the context of an electricity grid, the fault should be
handled as quickly as possible, however, the time of the handling in each unit is important
as well. If unit D closes the connection before units B and C have opened them, then
the fault could spread to even more consumers. The fault handling should happen before
the grid reconfigures. It is therefore better to delay the reaction to ensure that all units
react at consistent times, than that they are faster, more unpredictable and happen in an

'Refer to Section 2.5.6 about decentralized coordination for the definition of total latency.

75

arbitrary order.

Smart Grid Reaction Time [ms] ‘

Iteration 1 | Iteration 2 | Iteration 8 | Iteration 4 | Iteration 5
Unit B | 25.67 25.74 25.68 25.90 25.55
Unit C | 25.66 25.68 25.79 25.69 25.68

Iteration 6 | Iteration 7 | Iteration 8 | Iteration 9 | Iteration 10
Unit B | 25.83 25.55 25.84 25.54 25.98
Unit C | 25.89 25.70 25.70 26.06 25.56
Maximum Reaction Time, Average Reaction Time,
Both units Both units

26.06 25.74

Table 6.2: The Table shows the reaction times of units B and C in the Smart Grid example.
The connections between units have a logical delay of 25 milliseconds.

Another aspect of using the logical delay functionality is that the unit is free to do other
work while the messages are in transit or received, but not to be handled yet. As discussed
in Section 2.5.6, using logical delays gives increased availability. In this example, this
availability facilitates that the unit can continue to do voltage measurements, break the
circuit if the deadline is reached, or (in an extended implementation) react to input from
a human grid operator.

Test 2: Logical Delay does not cover Total Connection Latency

The result of the test over 10 iterations is shown in Figure 6.3. The maximum reaction time
for both units is 150.25 milliseconds, while the average is 103.78 milliseconds, as can be
seen at the bottom of the table. The logical delay (after) was set to be 17.5 milliseconds.
It is clear that the assumptions are broken in many (but not all) of the cases. This
would point to that the total latency on the connections is close to 17.5 milliseconds, but
sometimes more. When the assumptions are broken, the inputs are not present in time,
and then trigger a security mechanism to break all circuits at 150 milliseconds after the
measured fault. This mechanism was explained in Section 6.3.2.

Smart Grid Reaction Time [ms] |

Iteration 1 | Iteration 2 | Iteration 3 | Iteration 4 | Iteration 5
Unit B | 18.14 18.72 18.20 148.65 18.18
Unit C | 150.25 149.95 150.08 150.01 149.86

Iteration 6 | Iteration 7 | Iteration 8 | Iteration 9 | Iteration 10
Unit B | 18.21 17.94 17.93 150.10 149.72
Unit C | 149.91 149.82 149.89 149.83 150.16
Maximum Reaction Time, Average Reaction Time,
Both units Both units

150.25 103.78

Table 6.3: The Table shows the reaction times of units B and C in the Smart Grid example.
The connections between units have a logical delay of 17.5 milliseconds.

Test 3: Logical Delay and STP offset cover Total Communication Latency
The result of the test over 10 iterations is shown in Figure 6.4. The maximum reaction time

for both units is 16.32 milliseconds, while the average is 13.90 milliseconds, as can be seen
at the bottom of the table. The logical delay (after) was set to be 12.5 milliseconds, while

76

reactors RelayUnit and DistAlg got STP offsets of 5 milliseconds and 15 milliseconds. From
the last test, we know that the total communication latency is around 17.5 milliseconds.
Here, we achieve good results with a logical delay of only 12.5 milliseconds, but the STP
offset will come in addition. Since we are using the STP offset to compensate for part of
the time, we are letting the unnecessary delay introduced by logical delay be minimal.

Smart Grid Reaction Time [ms] ‘

Iteration 1 | Iteration 2 | Iteration 8 | Iteration 4 | Iteration 5
Unit B | 13.25 13.17 12.99 14.75 13.02
Unit C | 14.18 16.06 13.92 13.35 14.43

Iteration 6 | Iteration 7 | Iteration 8 | Iteration 9 | Iteration 10
Unit B | 13.32 14.27 13.06 13.74 13.26
Unit C | 13.70 15.34 12.77 13.11 16.32
Maximum Reaction Time, Average Reaction Time,
Both units Both units

16.32 13.90

Table 6.4: The Table shows the reaction times of units B and C in the Smart Grid example.
The connections between units have a logical delay of 12.5 milliseconds and an STP offset
of 5 + 15.

Test 4: STP offset covers Total Communication Latency

The last test is setting only STP offsets to account for the total communication latency,
for example, setting an STP of 25 milliseconds for the RelayUnit and DistAlg reactors.
However, the output indicated in Figure 6.12 shows that several STP violations occur.
Since each RelayUnit must have a voltage sensor giving output and computation requiring
input, the whole reactor will get an STP offset when setting RelayUnit. Each logical tag
will be delayed with the STP offset. This means that sending and receiving are still
essentially happening synchronously - but after waiting 25 milliseconds. The problem as
formulated above makes it non-viable to only set STP offset. Even if letting the DistAlg
STP offset be larger than the RelayUnit, the RelayUnit will still experience STP violations.

violation occurred in a tri ~ to reaction 1, and there iz no handler,
ioh 3, and there iz no handler,
- to reaction 1, and there iz no handler,

in a trigger to reaction 4, and there iz no handler,

in a trigger to reaction 4, and there iz no handler,

Figure 6.12: The figure shows the serial output from Putty when STP violations occur
when only using STP offset and with no logical delay.

77

Chapter 7

Discussion

7.1 Thesis Outcomes and Future Work

This thesis has contributed to merge a real-time operating system with a deterministic,
time-managing and distributed coordination language. The innovations associated with
federated LF are thus available to test on a whole new class of systems; distributed em-
bedded systems and real-time systems. This thesis has provided some initial results and a
baseline to improve and investigate further on. A 20-minute presentation was held by the
author to the LF team from the University of California, Berkeley, as well as contributors
from other universities. The presentation triggered discussions and ideas for future work
and testing, as similar tests had not been made previously. The presentation is included
in Appendix D.

Zephyr proved to be a promising platform for further work with Lingua Franca. It has
some great benefits related to timing precision, hardware independency and library im-
plementations. Many additional LF features are possible to port to Zephyr, making it a
good choice for a universal platform for embedded system applications.

Initial clock synchronization was very accurate, with only a few hundred microsecond er-
ror. It is possible several optimizations can be made to decrease this error further, for
example achieving higher precision and stability in the underlying LF clock for Zephyr.
The drift that was measured was also satisfactory for many short-lived applications. While
continuous clock synchronization was not a priority to adapt in this project, it should be
relatively straightforward as Zephyr offers support for UDP sockets and UDP communic-
ation. Continuous clock synchronization could also be implemented using Zephyr’s exper-
imental PTP synchronization scheme, if the board has support for it. Which of Zephyr’s
clock synchronization mechanism and LF’s clock synchronization mechanism will be best,
is left for future work.

The message delay was measured to be very low in a simple Sender-receiver structure.
This delay will increase significantly for more complicated reactor structures, especially
for centralized coordination, since many more control messages must be sent. Thus, the
simple sender-receiver test was the test where one would expect the two coordination
schemes to be the most similar.

Another aspect of the message delay test was the measured variance in the two coordin-
ation schemes. For decentralized coordination, the variance was much smaller due to
skipping the intermediary step through the RTI. As decreased variance is a very good

78

property in DRTSes, having the RTI on an embedded platform could prove beneficial
when using centralized coordination. Although, the average value would then increase as
well, due to an embedded system’s decreased computational capacity.

Since this thesis has adapted the RTI to Zephyr RTOS as well, embedded-only federations
can now be deployed. A side-effect of this port is that the RTI and federate runtime
has become more platform-independent. This is beneficial to any future work involving
federated LF on other widely-used platforms, such as Arduino and FreeRTOS.

The message throughput test pushed the implementation to its limits, and revealed some
behaviors not previously registered (according to the LF team). No mechanism for limiting
a reactor’s output on the network has been implemented, thus buffer overflows will crash
the program at the receiver end. Buffer overflows were relatively frequent for decentralized
coordination as well. The buffer configurations that mitigated these errors were likely
effective due to increased resources in sending a message, and having many enough buffers
allocated to receive messages for the short amount of time (ie. under ten seconds) the
test took place. Thus implementing a message flow control mechanism (ie. a backpressure
mechanism) could be a good idea for future work.

The smart grid example demonstrated concrete results from using LF’s logical delays
and STP offsets to manipulate the program’s timing behavior. In the specific example,
using logical delays was the preferred method. Using logical delays produced remarkably
consistent results when the logical delay exceeded the total communication latency. This
makes sense as all messages were received and processed before the logical tag that they
should execute. After delays promote availability, since the reactor remains available for
other input. For example, if a human operator or other security mechanism were to
intervene, then it could receive and process this.

Using only STP offsets on reactors turned out to be non-viable, as each unit had to both
produce output and receive inputs. The STP offset reduces availability, since the reactor
must physically wait this time before advancing to the next logical time. The consistency
is, on the other hand, better, as the tag it received on the sender side will be the same as
the tag it has on the receiver side. It is also possible to use both options, thus letting the
messages be processed closer to "as fast as possible”. Although, this is hardly a concern
for DRTS, since it also gives higher variance and unpredictability in the reaction times.

Some last remarks regard considerations beyond this thesis. The whole LF runtime fre-
quently uses dynamic memory allocation which will ultimately pose a problem to embed-
ded applications both in terms of performance, but also introduced non-determinism (ie.
memory allocations can fail). For DRTS, this should be taken into account as it is not a
reliable strategy. An effort to add an alternative memory allocation scheme for embedded
systems should be made in order to increase reliability.

Additionally, the runtime uses TCP and UDP communication, which are not reliable.
Both TCP and UDP are best-effort protocols that might fail due to network congestion
or other reasons. Therefore, work tied to Time Sensitive Networks might be interesting
to tie into the federated LF functionality.

Nevertheless, this approach can be used to design and implement soft and firm real-time
systems. Although more work is needed to improve various functionality, the approach
is definitely viable and shows great promise. The strengths are largely related to explicit
control over timing, as demonstrated in the smart grid example, deterministic coordina-
tion, shown in Section 2.5.5, and intuitive modular design. The Zephyr platform provides a

79

good and flexible interface to handle networking and optimizations for embedded real-time
systems.

7.2 Areas of Improvement

The thesis has several areas to improve. The implementation is not thoroughly tested, and
cannot be added to the generic testing framework that the LF project utilizes. Therefore
it remains an experimental addition to LF. All functional specifications except for UDP
socket communication were implemented. All high-priority target declaration functionality
is working. The project has contributed to the open-source repositories. On the other
hand, the integration of the LF language must be improved. However, some of the design
choices are part of a larger direction that the Lingua Franca team will decide.

Some of the results show unexpected behaviors that seem to stem from unwanted ele-
ments in the implementation of this project, the federated runtime or the Zephyr threaded
runtime port. A challenging aspect of this project is that the software base is not a finished
piece of software. It is still under active development and bugs are found continuously.
The kinds of measurements done in this thesis have not been attempted before, so new
bugs might very well be causing some of the unexpected behaviors.

Another consequence of Lingua Franca having various bugs and unworking functionalities
was that a lot of time was spent debugging problems due to largely unrelated things. The
biggest reason for this is that the project integrated new developments from the main
branch on Github, instead of only using a release (which is less likely to contain bugs -
at least obvious functionality-related bugs). However, the argument to do this is that the
project would soon become irrelevant as so many big changes were made to the federated
runtime. It also makes integration of the finished project easier.

Zephyr has some challenging aspects to work with. It is not so thoroughly documented,
especially the configuration options, and not a lot of online resources or examples are
available.

80

Chapter 8

Conclusion

The Xronos framework, or federated LF, has been extended to be compatible with a
real-time operating system called Zephyr. Federations may now be deployed on both
multi-platform systems and purely embedded systems. The setup process, building and
running applications have been documented as part of the contribution to the Lingua
Franca project. Though the implementation is still experimental, it marks a significant
step towards using LF for distributed real-time applications.

Initial clock synchronization is showing promising results, with only a few hundred micro-
seconds error and low drift.

Message delay is largely as expected, with decentralized coordination having the least ex-
pected delay and less variance. Since messages must go through the RTT in the centralized
scheme, message delays must be larger. However, it is a possibility to significantly decrease
the variance by running the RTI on a single-purpose board.

The message throughput test yielded a throughput of around 600 messages per second,
with centralized coordination showing better performance. The test also revealed that a
message flow control mechanism for the federated runtime should be implemented.

The smart grid example demonstrated how federated LF allows direct manipulation of the
properties of the system’s reaction times. For this example, logical delays were the best
option to use, providing reliable and consistent timing results.

Based on all these considerations, federated LF on Zephyr RTOS is definitely viable for
soft and firm distributed real-time systems. Federated LF allows for intuitive design,
deterministic coordination and explicit handling of time. Future work might increase
the viability of DRTS even further, as some weaknesses of the approach are related to
networking and memory handling.

81

Bibliography

[1] Soroush Bateni Marten Lohstroh Christian Menard and Edward A. Lee. ‘Toward
a Lingua Franca for Deterministic Concurrent Systems’. In: ACM Transactions on
Embedded Computing Systems 20.4 (2021), 36:1-36:27.

[2] Marten Lohstroh. Reactors: A Deterministic Model of Concurrent Computation for
Reactive Systems. Technical Report UCB/EECS-2020-235. http://www2.eecs.berkeley.edu/Pubs/Tech
2020-235.html: Electrical Engineering and Computer Sciences, University of Califor-
nia at Berkeley, Dec. 2020.

[3] Soroush Bateni et al. Xronos: Predictable Coordination for Safety-Critical Distrib-
uted Embedded Systems. 2022. DOI: 10.48550/ARXIV.2207.09555. URL: https://arxiv.
org/abs/2207.09555.

[4] Yang Zhao, Jie Liu and Edward A. Lee. ‘A Programming Model for Time-Synchronized
Distributed Real-Time Systems’. In: 18th IEEFE Real Time and Embedded Technology
and Applications Symposium (RTAS’07). 2007, pp. 259-268. por: 10.1109/RTAS.
2007.5.

[5] Jia Zou et al. ‘Execution Strategies for PTIDES, a Programming Model for Distrib-
uted Embedded Systems’. In: 2009 15th IEEE Real-Time and Embedded Technology
and Applications Symposium. 2009, pp. 77-86. DOI: 10.1109/RTAS.2009.39.

[6] J.S. Dahmann. ‘High Level Architecture for simulation’. In: Proceedings First In-
ternational Workshop on Distributed Interactive Simulation and Real Time Applic-
ations. 1997, pp. 9-14. por: 10.1109/IDSRTA.1997.568652.

[7] Silje Susort. Embedded Lingua Franca and FreeRTOS. TTK4550 Specialization Pro-
ject Report. 2022.

[8] Erling Rennemo Jellum et al. ‘Beyond the Threaded Programming Model on Real-
Time Operating Systems’. In: Fourth Workshop on Next Generation Real-Time Em-
bedded Systems (NG-RES 2023). Ed. by Federico Terraneo and Daniele Cattaneo.
Vol. 108. Open Access Series in Informatics (OASlIcs). Dagstuhl, Germany: Schloss
Dagstuhl — Leibniz-Zentrum fiir Informatik, 2023, 3:1-3:13. 1SBN: 978-3-95977-268-6.
DOL: 10.4230/0ASIcs.NG-RES.2023.3. URL: https://drops.dagstuhl.de/opus/volltexte/
2023/17734.

[9] Morgan Quigley et al. ‘ROS: an open-source Robot Operating System’. In: vol. 3.
Jan. 2009.

[10] ROS and Open Robotics contributors. ROS Documentation. URL: http://wiki.ros.
org/ (visited on 1st June 2023).

[11] Micro-ROS: micro-ROS puts ROS 2 onto microcontrollers. URL: https://micro.ros.
org/ (visited on 1st June 2023).

[12] A Stanford-Clark and U Hunkeler. ‘Mq telemetry transport (mgqtt)’. In: Online/.
http://mqtt.org. Accessed June 2023 22 (1999), p. 2013.

82

https://doi.org/10.48550/ARXIV.2207.09555
https://arxiv.org/abs/2207.09555
https://arxiv.org/abs/2207.09555
https://doi.org/10.1109/RTAS.2007.5
https://doi.org/10.1109/RTAS.2007.5
https://doi.org/10.1109/RTAS.2009.39
https://doi.org/10.1109/IDSRTA.1997.568652
https://doi.org/10.4230/OASIcs.NG-RES.2023.3
https://drops.dagstuhl.de/opus/volltexte/2023/17734
https://drops.dagstuhl.de/opus/volltexte/2023/17734
http://wiki.ros.org/
http://wiki.ros.org/
https://micro.ros.org/
https://micro.ros.org/

HiveMQ. MQTT MQTT 5 Essentials. Landshut, Germany: HiveMQ, 2020. ISBN:
978-3-00-067913-1. Ebook.

Members and individual contributors from The Zephyr Project. MQTT. URL: https:
/ /docs.zephyrproject.org /latest / connectivity / networking / api / mqtt. html (visited on
Ist June 2023).

Inc. Amazon Web Services and its affiliates. coreMQTT - MQTT C client library
for small IoT devices. URL: https://www.freertos.org/mqtt/index.html (visited on
1st June 2023).

Saranya Natarajan and David Broman. ‘Timed C : An Extension to the C Pro-
gramming Language for Real-Time Systems’. In: 24TH IFEE REAL-TIME AND
EMBEDDED TECHNOLOGY AND APPLICATIONS SYMPOSIUM (RTAS 2018)
: IEEE Real-Time and Embedded Technology and Applications Symposium. QC
20180920. 2018, pp. 227-239. 1SBN: 978-1-5386-5295-4. DO1: 10.1109 /RTAS.2018.
00031.

Henrik Austad et al. ‘Composable distributed real-time systems with deterministic
network channels’. In: Journal of Systems Architecture 137 (2023), p. 102853. 1SSN:
1383-7621. DOI: https://doi.org/10.1016/j.sysarc.2023.102853. URL: https://www.
sciencedirect.com /science/article/pii/S1383762123000322.

Lucia Lo Bello and Wilfried Steiner. ‘A Perspective on IEEE Time-Sensitive Net-
working for Industrial Communication and Automation Systems’. In: Proceedings of

the IEEFE 107.6 (2019), pp. 1094-1120. por: 10.1109/JPROC.2019.2905334.
K. Erciyes. Distributed Real-Time Systems: Theory and Practice. Springer, 2019.

Erling R. Jellum et al. ‘InterPRET: A Time-Predictable Multicore Processor’. In:
Proceedings of Cyber-Physical Systems and Internet of Things Week 2023. CPS-IoT
Week ’23. San Antonio, TX, USA: Association for Computing Machinery, 2023,
pp. 331-336. 1SBN: 9798400700491. por: 10.1145 /3576914 .3587497. URL: https:
//doi.org/10.1145/3576914.3587497.

Richard Barry. Mastering the freeRTOS Real Time Kernel: A Hands-On Tutorial
Guide. Real Time Engineers Ltd., 2016.

William Stallings. Operating Systems: Internals and Design Principles, 9th edition,
global edition. Pearson Education Limited, 2018.

Members and individual contributors from The Zephyr Project. Zephyr Main Web-
site. URL: https://www.zephyrproject.org/ (visited on 10th Nov. 2022).

Members and individual contributors from The Zephyr Project. Zephyr supported
boards. URL: https://docs.zephyrproject.org/3.2.0/boards/index. html (visited on
10th Nov. 2022).

Members and individual contributors from The Zephyr Project. Zephyr Kernel Doc-
umentation Page. URL: https://docs.zephyrproject.org/latest /kernel /services /index.
html#kernel-api (visited on 15th Sept. 2022).

Members and individual contributors from The Zephyr Project. Zephyr Github Page.
URL: https://github.com /zephyrproject-rtos/zephyr (visited on 15th Sept. 2022).

Members and individual contributors from The Zephyr Project. Zephyr Install and
Getting Started Documentation Page. URL: https://docs.zephyrproject.org/latest /
develop/getting_started /index.html (visited on 15th Sept. 2022).

Members and individual contributors from The Zephyr Project. Zephyr Configura-
tion Documentation Page. URL: https://docs.zephyrproject.org/latest/build /kconfig/
index.html#kconfig (visited on 10th Nov. 2022).

83

https://docs.zephyrproject.org/latest/connectivity/networking/api/mqtt.html
https://docs.zephyrproject.org/latest/connectivity/networking/api/mqtt.html
https://www.freertos.org/mqtt/index.html
https://doi.org/10.1109/RTAS.2018.00031
https://doi.org/10.1109/RTAS.2018.00031
https://doi.org/https://doi.org/10.1016/j.sysarc.2023.102853
https://www.sciencedirect.com/science/article/pii/S1383762123000322
https://www.sciencedirect.com/science/article/pii/S1383762123000322
https://doi.org/10.1109/JPROC.2019.2905334
https://doi.org/10.1145/3576914.3587497
https://doi.org/10.1145/3576914.3587497
https://doi.org/10.1145/3576914.3587497
https://www.zephyrproject.org/
https://docs.zephyrproject.org/3.2.0/boards/index.html
https://docs.zephyrproject.org/latest/kernel/services/index.html#kernel-api
https://docs.zephyrproject.org/latest/kernel/services/index.html#kernel-api
https://github.com/zephyrproject-rtos/zephyr
https://docs.zephyrproject.org/latest/develop/getting_started/index.html
https://docs.zephyrproject.org/latest/develop/getting_started/index.html
https://docs.zephyrproject.org/latest/build/kconfig/index.html#kconfig
https://docs.zephyrproject.org/latest/build/kconfig/index.html#kconfig

Members and individual contributors from The Zephyr Project. Zephyr Network
Stack. URL: https://docs.zephyrproject.org/3.0.0/guides / networking / net- stack-
architecture.html (visited on 10th Nov. 2022).

Behrouz A. Forouzan. TCP/IP Protocol Suite, Fourth Edition. McGraw-Hill, 2010.

Leslie Lamport. ‘Time, Clocks, and the Ordering of Events in a Distributed System’.
In: Communications of the ACM 21.7 (1978), pp. 558-565.

Reinhard Schwarz and Friedemann Mattern. ‘Detecting Causal Relationships in
Distributed Computations: In Search of the Holy Grail’. In: Distrib. Comput. 7.3
(Mar. 1994), pp. 149-174. 1ssN: 0178-2770. por1: 10.1007 /BF02277859. URL: https:
//doi.org/10.1007 /BF02277859.

Eric A. Brewer. Towards Robust Distributed Systems. Keynote from Symposium on
Principles of Distributed Computing (PODC). 2000.

Edward A. Lee et al. ‘Quantifying and Generalizing the CAP Theorem’. In: CoRR
abs/2109.07771 (2021).

Teodor Neagoe, Valentin Cristea and Logica Banica. ‘NTP versus PTP in Com
puter Networks Clock Synchronization’. In: 2006 IEEE International Symposium on
Industrial Electronics. Vol. 1. 2006, pp. 317-362. pDo1: 10.1109/1SIE.2006.295613.

James C. Corbett et al. ‘Spanner: Google’s Globally-Distributed Database’. In: 10th
USENIX Symposium on Operating Systems Design and Implementation (OSDI 12).
Hollywood, CA: USENIX Association, Oct. 2012, pp. 261-264. 1SBN: 978-1-931971-
96-6. URL: https://www.usenix.org/conference/osdil2/technical-sessions/presentation/
corbett.

The Lingua Franca Team. Lingua Franca Website. URL: https://www.If-lang.org/
(visited on 12th Dec. 2022).

Wireshark Foundation. Wireshark - The world’s most popular network protocol ana-
lyzer. URL: https://www.wireshark.org/ (visited on 2nd June 2023).

PuTTY team. PuTTY User Manual. URL: https://the.earth.li/~sgtatham /putty/0.
78/htmldoc/ (visited on 2nd June 2023).

Richard Stallman, Roland Pesch and et al. Stan Shebs. Debugging with GDB, tenth
edition. Free Software Foundation, 2018.

Rocco Marco Guglielmi. Debugging on STM32 with Chibistudio: THe Ultimate Guide.
URL: https://www.playembedded.org/blog/debugging-stm32-chibistudio/ (visited on
2nd Aug. 2019).

PyOCD Authors. pyOCD. URL: https://pyocd.io/ (visited on 2nd June 2023).

Christian Andre Andresen et al. ‘Fault Detection and Prediction in Smart Grids’.
In: 2018 IEEE 9th International Workshop on Applied Measurements for Power
Systems (AMPS). 2018, pp. 1-6. po1: 10.1109/AMPS.2018.8494849.

84

https://docs.zephyrproject.org/3.0.0/guides/networking/net-stack-architecture.html
https://docs.zephyrproject.org/3.0.0/guides/networking/net-stack-architecture.html
https://doi.org/10.1007/BF02277859
https://doi.org/10.1007/BF02277859
https://doi.org/10.1007/BF02277859
https://doi.org/10.1109/ISIE.2006.295613
https://www.usenix.org/conference/osdi12/technical-sessions/presentation/corbett
https://www.usenix.org/conference/osdi12/technical-sessions/presentation/corbett
https://www.lf-lang.org/
https://www.wireshark.org/
https://the.earth.li/~sgtatham/putty/0.78/htmldoc/
https://the.earth.li/~sgtatham/putty/0.78/htmldoc/
https://www.playembedded.org/blog/debugging-stm32-chibistudio/
https://pyocd.io/
https://doi.org/10.1109/AMPS.2018.8494849

Appendix A

Joint RTI main function

The following code must replace the auto-generated main function to try the joint RTI
functionality.

1 #include ”../core/federated /RTI/rti_lib .h”
2 #include ”core/platform .h”
3

1 void main(void) {

5 If _thread_t thread_id;

7 #ifdef _LF_.CLOCK_SYNC_INITIAL

8 rti_set_args (NUMBER.OF FEDERATES, ” Unidentified Federation”, 15047,
clock_sync_init ,

9 _LF_CLOCK_SYNC_PERIOD_NS,
LF_CLOCK_-SYNC_EXCHANGES_PER INTERVAL) ;

10

11 #elif LF_.CLOCK_SYNC_ON

12 rti_set_args (NUMBER.OF FEDERATES, ” Unidentified Federation”, 15047,
clock_sync_on ,

13 _LF_CLOCK_SYNC_PERIOD_NS,
LF_CLOCK_-SYNC_EXCHANGES_PER INTERVAL) ;

15 #else LF_.CLOCK_SYNC_.OFF
16 rti_set_args (NUMBER.OF FEDERATES, ” Unidentified Federation”, 15047,
clock_sync_off , 0, 0);

~

®

#endif

If_initialize_clock ();

If_thread_create(&thread_id, If_rti_main , NULL);

int res = lf_reactor_c_main ();
exit (res);

NONON NN NN

RN

—

85

Appendix B

List of Acronyms

List of Acronyms

Acronym
LF

RTOS
DRTS
RTI

TCP

UDP
1P
GDB

PTIDES
HLA
ROS
POSIX
MQTT
TSN

BSD

WCET
CPU

API

SDK
LED

Meaning
Lingua Franca
Real-Time Operating
System
Distributed Real-Time
System

RunTime Infrastructure

Transmission Control
Protocol

User Datagram Protocol
Internet Protocol

GNU Debugging
Programming Temporally
Integrated Distributed
Embedded Systems

High Level Architecture
Robot Oberating System
Portable Operating
System Interface

MQ Telemetry Transport

Time-Sensitive Networking

Berkeley Software
Distribution

Worst-Case Execution Time
Central Processing Unit
Application Programming
Interface

Software Development Kit
Light Emitting Diode

Acronym
NTP

PTP
CAP
CAL

NMR

NET
LTC
TAG

EIMT
PTAG
STP
OS

1D
SCTP

MAC

USB
JTAG

SWD

MCU
EVK

86

Meaning
Network Time Protocol

Precision Time Protocol

Consistency, Availability,
network Partitioning
Consistency, Availability,
network Latency

Next Message Request

Next Event Tag
Logical Tag Complete
Tag Advance Grant

Earliest Incoming
Message Tag

Provisional TAG
Safe-To-Process

Operating System

Identity
Stream Control
Transmission Protocol

Media Access Control

Universal Serial Bus
Joint Test Action Group

Serial Wire Debug

Microcontroller Unit
Evaluation Kit

List of Acronyms

Acronym Meaning Acronym Meaning

ISR Interrupt Service Routine | IDE 1nt§grated development
environment

FIFO First-In First-Out GPIO General Purpose Input-Ouput

Execution Program
Status Register

LAN Local Area Network

LIFO Last-In First-Out EPSR

CoAP Constrained Application
Protocol
PMU Phasor Measurement Unit | ML Machine Learning

87

Appendix C

Hyperlink Reference

88

Hyperlink Reference

Reference URL
Kconfig Search https://docs.zephyrproject.org/3.1.0/kconfig.html
Reactor-c Fork https://github.com/siljesu/reactor-c/tree/zephyr-federated-support
Lingua Franca
Fork
lf-west-template
Fork
CMSIS-DAP
firmware rules
Zephyr: Getting
Started Guide
lf-west-template
README
Lingua Franca
Handbook

https://github.com/siljesu/lingua-franca/tree/zephyr-fed-support-update
https://github.com/siljesu/lf-west-template/tree /zephyr-federated
https://github.com/pyocd/pyOCD /blob/main/udev/50-cmsis-dap.rules
https://docs.zephyrproject.org/latest/develop/getting_started /index.html
https://github.com/siljesu/lf-west-template/tree/main#readme

https://www.lf-lang.org/docs/handbook/developer-setup?target=c

89

Appendix D

Presentation to LF team

90

Federation Topologies

F d d L F Multi-platform federations Federation Topology 1 Federation Topology 4
e e ra te O n Embedded-only federations Linux Computer | | iMXRT1170-EVK MIMXRTH170-EVK | | MIMXRT1170-EVK
ZephyrRTOS
e p y r Centralized or decentralized
coordination)
. . . Federation Topology 2 Federation Topology 3
Distributed Real-Time Systems e e | ST pE—
Clock synchronization - e
i MIMXRT1170-EVK MIMXRT1170-EVK orats
Joint RTI o i
Benefits of using Zephyr How to set it up
Partial POSIX implementation - makes porting a lot easier Mostly done through application configuration files
Higher possible timing precision than, ex FreeRTOS The process is documented in If-west-app/zephyr-fed-support
Hardware independency through configuration systems like DeviceTree and
Kconfig (The code itself is unchanged using different boards)
A good choice for most embedded applications for LF
.
>A< Z h ™
Experimental setup Experimental results - Initial Clock Synchronization

Sub-millisecond error
initially

Ethernet cables
connect the nodes

After 1 minute, under
2 ms error

An oscilloscope is used
to measure timing of
GPIO toggles at very
high precision

Continuous clock
sync doesn’t work yet
Reactions toggle
GPIOs

91

Clock Synchronization Error [ms]

Clock Synchronization Drift
® Error Measurement = 0.0259*x + 0.392

Time [s]

Experimental Results - Message Delay

Experimental Results - Message Throughput

Simple Message Delay Send messages as fast as possible
Source-Drain 2) R .

Centralized coordination has a higher throughput rate
structure 100

75
g
S = g o eco
Iteration 1 | Iteration 2 | Iteration 3 | Iteration 4 | Iteration 5
25 Centralized 604.76 619.56 614.00 616.52 599.82
Decentralized | 583.43 592.86 585.22 589.41 601.12
o.m I 4 N I.I_ I I I imw Iteration 6 | Iteration 7 | Iteration 8 | Iteration 9 | Iteration 10
S0P DA O D AR PN DA DD PR R P EL PP DS DS Centralized 587.96 581.17 674.53 628.42 589.79
B B A B R T SRR e el A AT R e Decentralized | 533.03 588 81 590.12 588,02 586.82
Message Delay [ms] Average Standard Deviation
Centralized 611.65 26.84
= Centralized C (Gl hl © (count) Decentralized | 588.88 5.27
Some strange behaviors A more advanced example
Each unit need to be able to
UnitA Unit B UnitC Unit D
Centralized i larl Normalaperaion [—1[—1 | 1 | =11
entralize Decentralized - measure regularly [il
Network buffers More even sending and receiving - Report measurements to the other
units UnitA UnitB UnitC Unit D
Fault is detected } 7H
- Receive measurements from other ot "
units to calculate action
. . . UnitA Unit B UnitC Unit D
Reaction time is measured Gridisrestored |1 =) ===l

Using logical delays on connections of 25 milliseconds

Decentralized has less variance

Using Logical delays and STP offsets

d Re 0 e R
a a e O e

Iteration 1 | Iteration 2 | Iteration 3 | Iteration 4 | Iteration 5 Tteration 1 | Iteration 2 | lieration 8 | Tteration 4 | Iteration 5
R 25.67 25.74 25.68 25.90 25.55 Unit B | 13.25 13.17 12.99 14.75 13.02
B 25.66 %.08 25,6 2564 25.68 Unit C | 14.18 16.06 13.92 13.35 14.43

Iteration 6 | Iteration 7 | Iteration 8 | Iteration 9 | Iteration 10 i || Ve dnn il | o | T | il
URIGIBY) 25.83 25.55 25.84 25.54 25.98 Unit B | 13.32 14.27 13.06 13.74 13.26
Unit C | 25.89 [25.70 25.70 26.06 25.56 . EEEO S = T 5
e Average Reaction Time, Maximum Reaction Time, Average Reaction Time,
Bolivnies Ll Both units Both units

26.06 25.74 16.32 13.90

92

Using only STP offset

Each unit is a reactor composed of both input and output functionality
Using only STP offsets delay both input and output equally

It is not a viable solution in this example

93

Questions and Contact

Feel free to send me an email at:

silisus@stud.ntnu.no

@ NTNU

Norwegian University of
Science and Technology

	Introduction
	Problem Context
	Problem Description
	Related Work
	Report Outline

	Theory
	Real-Time Systems
	Zephyr RTOS
	Networking
	Distributed Systems
	The Reactor Model
	Lingua Franca
	Other Software
	Hardware Platform

	Specifications
	Project Objectives and Scope
	Functional Description
	Other Goals

	Design
	Hardware Overview
	Choice of Zephyr RTOS
	Federation Topologies
	Zephyr Platform Support for Federates
	Zephyr Platform Support for RTI
	Adapted Main Function for RTI and Termination

	Implementation
	Project Structure
	Custom commands for West
	Project Setup
	Build and Run
	Zephyr Configurations
	Zephyr Platform Support for Federate
	Zephyr Platform Support for the RTI
	Adapted Main Function for RTI
	Zephyr Fatal Errors and Causes
	Github Contributions

	Evaluation and Results
	Clock Synchronization Test
	Message Sending Test
	Example: Smart Grid

	Discussion
	Thesis Outcomes and Future Work
	Areas of Improvement

	Conclusion
	Bibliography
	Joint RTI main function
	List of Acronyms
	Hyperlink Reference
	Presentation to LF team

