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and multilayer probe recordings in the
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describe the effects of input-driven,

network-state transitions on the temporal

organization of place cell activity. Phase

precession and theta sequences are

shown to be complementary phenomena,

independently modulating spatial

representations across the population.
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SUMMARY
Theta sequences and phase precession shape hippocampal activity and are considered key underpinnings
of memory formation. Theta sequences are sweeps of spikes from multiple cells, tracing trajectories from
past to future. Phase precession is the correlation between theta firing phase and animal position. Here,
we reconsider these temporal processes in CA1 and the computational principles that they are thought to
obey. We find stronger heterogeneity than previously described: we identify cells that do not phase precess
but reliably express theta sequences. Other cells phase precess only when medium gamma (linked to ento-
rhinal inputs) is strongest. The same cells express more sequences, but not precession, when slow gamma
(linked to CA3 inputs) dominates. Moreover, sequences occur independently in distinct cell groups. Our
results challenge the view that phase precession is the mechanism underlying the emergence of theta
sequences, suggesting a role for CA1 cells in multiplexing diverse computational processes.
INTRODUCTION

According to current theories,1–3 the hippocampus combines

heterogeneous information from both memory and the outside

world to generate representations of episodes and complex

occurrences, with space and time as the main organizing princi-

ples. Within the hippocampus, the CA1 subfield sits at the

confluence of two information streams: the first, directly arising

from layer III pyramidal cells in the entorhinal cortex (EC3),

carries signals about the animal’s position in space and highly

processed sensory information about landmarks and other rele-

vant environmental features.4–6 The second, arising from the

Schaffer collaterals coming from the CA3 subfield, is thought

to mostly reflect activity shaped by the recurrent connectivity

in that area, conducive tomemory retrieval and sequence gener-

ation.7 In CA1, these two streams come in contact with each

other, providing a neural mechanism that may enable the com-

paration of memories with incoming external information, and

their updating.8,9

To subserve such a complex function to the rest of the brain,

the hippocampus likely makes use of temporal codes. The activ-

ity of hippocampal neural ensembles is organized in sequences

that can be replayed during short pauses in behavior or

sleep.10–14 Neuronal sequences also emerge at a compressed

timescale in individual cycles of the ongoing theta rhythm, mir-

roring the order of activation at the behavioral timescale.15,16

Since the timescale at which theta sequences occur is compat-

ible with spike-timing-dependent synaptic plasticity rules,17 they
C
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have been deemed the main mechanisms for storing spatial and

non-spatial episodic memory traces.18 Theta phase precession,

the systematic backing up in the firing phase of place cells with

respect to theta as the animal advances in the place field,19 has

been seen as a key organizing principle for hippocampal tempo-

ral codes. While the mechanisms giving rise to phase precession

are still widely debated,19–24 two functional roles have been

generally assumed for it. First, phase precession would induce

a phase coding,25 that is, the theta firing phase of place cells

would be a key conduit for information about the animal’s loca-

tion. Second, phase precession would be the main ‘‘engine’’

behind sequence formation: under certain assumptions, the

presence of phase precession implies theta sequences, that is,

amillisecond-scale temporal ordering between the firing of place

cells with neighboring place fields, favoring spike-timing-depen-

dent plasticity.26–28 While theta is most evident in rodent, similar

mechanisms may exist also in species where no theta oscilla-

tions are observed.29

Both of these functional roles, however, depend on phase pre-

cession and theta sequences taking place in a reliable, nearly

noise-free fashion coherently across neurons and would break

down under high-variance conditions. Yet, while we know that

phase-precession patterns change on a lap-by-lap basis21,30

and that theta sequences and phase precession do not always

co-exist,31–33 a full picture of how hippocampal temporal coding

varies under the influence of the network state is not available.

Here, we present a comprehensive analysis of the variability of

temporal coding in mouse CA1 place cells. We observe that
ell Reports 42, 112022, February 28, 2023 ª 2023 The Author(s). 1
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from being a stable property of all place cells, phase precession

varied in degree from neuron to neuron. While some cells

showed full-blown phase-precession patterns, others were

phase locked to the theta rhythm in a place-independent

manner. Furthermore, each neuron could change its phase-pre-

cessing pattern from one spatial location to the next. On a

moment-by-moment basis, ‘‘phase-precessing’’ and ‘‘phase-

locking’’ neurons appeared to form distinct functional networks,

as they independently express theta sequences in different theta

cycles.

The emerging picture suggests that temporal coding depends

on which network state and which constellation of inputs each

neuron is subject to at any given time. We characterize the

CA1 network state by a precise, layer-resolved determination

of the instantaneous balance of activity of the medium and

slow gamma circuits, which changes from one theta cycle to

the next. This is also a proxy for the instantaneous balance of

CA1 inputs: inputs from EC3 and CA3 to CA1, respectively, are

linked, with the emergence of medium gamma oscillations (60–

90 Hz) in the stratum lacunosum moleculare (slm), whereas the

CA3 contribution is associated with slow gamma oscillations

(20–45 Hz) in the stratum radiatum (sr).34–38 Medium gamma

has been previously associated with stronger phase preces-

sion39 and slow gamma with more precise theta sequences.40

Here, we show that, indeed, these two coding schemes are

dissociated, and the inputs favoring phase precession are detri-

mental for theta sequences.

Our results highlight the strong heterogeneity of hippocampal

temporal codes, which should be taken into account by any the-

ory of hippocampal function, including those linking phase pre-

cession and theta sequence and those assuming that CA1 is

generating a unitary and coherent representation through time.

The outcoming picture points to a multiplicity of mechanisms

and coding schemes being ‘‘dynamically multiplexed’’ in CA1.

RESULTS

The hybrid drive enables large-scale place cell
recordings with layer-resolved oscillations in freely
moving mice
We implanted 6 mice with the hybrid drive (Figure 1A;41), a

recording device that combines linear silicon probes with high-

density tetrode arrays. Tetrodes were individually lowered to

target pyramidal cell bodies in the stratum pyramidale of the

CA1 region (Figures 1B and 1C) and enabled us to collect large

ensemble activity of pyramidal neurons (up to z100) for up to

10 days. The vertical span (960 mm) of the silicon probe yielded

local field potentials (LFPs) from all CA1 layers (Figures 1C, 1G,

and S1).

This combination of within-layer and across-layer recording

techniques enabled us to obtain a layer-resolved picture of hip-

pocampal LFPs (Figure 1G; Lasztóczi and Klausberger37) while

simultaneously monitoring the activity of large populations of

place cells (Figure 1H; Lasztóczi and Klausberger42) as animals

alternated runs between the two ends of a linear track

(Figure 1D).

Over the course of 10 consecutive days, mice learned to

collect rewards at both ends of a 1-m-long linear track. While
2 Cell Reports 42, 112022, February 28, 2023
mice were never food or water deprived, we nevertheless

observed that performance quickly increased in the first few

days and then improved steadily, as measured by the number

of laps completed on each day (Figure 1F). For analysis, we

considered data from the two running directions separately by

dividing left-to-right from right-to-left runs (Figure 1E, violet

and light blue, respectively). Among pyramidal neurons, we

selected those with significant spatial modulation (see place

cell identification). These place cells exhibited place fields that

tiled the whole linear track in both running directions (Figure 1H).

To investigate properties of stable, well-learned hippocampal

spatial representations, we focused on the data obtained from

the later recording sessions (between day 7 and 10 of training),

which also were the most consistent in terms of number of

laps and velocity profiles.

Fine-scale temporal organization of place cell activity
within theta rhythm
Theta oscillations shape the temporal organization of the firing of

hippocampal neurons in many ways. There are two simple

models that may account for variability in the data: first, each

neuron will fire preferentially around a certain theta phase, i.e.,

it is phase locked. Second, place cells will display a phase-pre-

cession pattern as discussed above (Figure 2A). We found high

degrees of variability for these two properties across cells and

even for the same cell, depending on the animal location on

the track. Thus, cells showed varying degrees of phase locking

and phase precession, and these properties are place

dependent.

To fully characterize this variability, for each cell, we computed

a theta score, defined as the difference between circular-linear

correlation between theta phase of firing and animal location (a

common measure for phase precession43) and Rayleigh vector

length (estimate for phase locking). This theta score places

each place cell on a spectrum and enables us to study how

phase-locking and -precession properties are distributed in pop-

ulations of place cells. We consistently observed theta scores to

have a unimodal, Gaussian-like distribution across place cell

populations (Figure 2B). Cells at the two ends of the interval pre-

sented good approximation of either perfect phase locking or

phase precession, but most of the population could be

described as a mixture of varying degrees of the two modalities

(Figure 2B). Theta score appeared to be largely independent of

other properties of place cells: a weak correlation was found

with the cell Skaggs information (Figure 2D; Spearman’s rho =

0.096; p = 0.006), while no correlation was found with maximum

firing rate (Figure 2E; Spearman’s rho = - 0.001; p = 0.957), place

field size (Figure 2F; Spearman’s rho = - 0.017; p = 0.624), and

place field activity baricenter (Figure 2G; Spearman’s rho =

0.027; p = 0.438). Additionally, we estimated the correlation

between the theta score and themean andmaximum (max) firing

rate using only the in-field firing rate (Figure S2A). Next, we inves-

tigated how the locking/precessing properties of a cell vary on

the track and how they interact with the mean firing rate at a

given location to provide a picture of the interplay between place

cells’ phase and rate coding.25 As a location-dependent mea-

sure of phase precession and locking, we took the spatial deriv-

ative of the cell’s preferred firing theta phase along the track



Figure 1. Simultaneous recordings of CA1 place cells and layer-resolved oscillations during goal-oriented behavior in freely moving mice

(A) Illustration of the hybrid drive implanted on a mouse.

(B) Image from the Allen Brain Explorer (beta), a three-dimensional volumetric reference atlas of the mouse brain. Image credit: Allen Institute. The dorsal CA1

region of the hippocampus is highlighted in green. The bold black lines estimate the coverage of the implant array across the distal, intermediate, and proximal

subregions of CA1.

(C) Left: representative histology image from an example animal (mouse 6). Red rectangles highlighted the tetrode tracks, reaching the pyramidal layer. The red

arrow points to the silicon probe entry point. Right: adapted image from the two-dimensional coronal reference atlas, all CA1 layers. Image credit: Allen Institute.

(D) Schematics of the linear track paradigm. Ten consecutive days of training without food or water deprivation.

(E) Example of a linear track session from late training days (day 10). Top: directions of motion are highlighted in two different colors (light pink: up; light blue:

down). Bottom: velocity profiles are superimposed on each lap of the session.

(F) Behavioral performance of all animals (N = 6) across the 10 days of linear track training. Average performance is highlighted in dark blue.

(G) Color-coded depth profile of current sink and sources. LFP traces are superimposed in black. Silicon probe contacts (indicated on the left) span all CA1 layers

and partially reach the molecular layer (ML) and the granular cell layer (GCL) of the dentate gyrus (DG).

(H) Example place field maps (same session as in G). Each row represents the spatial firing of one cell along the length of the track. Firing rate in color coded and

scaled to the peak firing rate for each cell. Cells are sorted according to the position of peak spatial firing on the linear track. Place field maps for both running

directions are showed.
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Figure 2. CA1 place cells’ relationship to the theta rhythm is characterized by a multiphase nature

(A) Visualization of the twomodes of place cells’ temporal organization to theta. Phase precession is described as the systematic advancement of spiking phases

as the animal traverses the place field. Phase locking describes the tendency of firing at the same phase of the underlying oscillation.

(B) Theta score distribution of all recorded place fields (n = 800) across all sessions (n = 12) and all animals (N = 6). For each field, the theta score is calculated as

the difference between circular-linear correlation (a common measure for phase precession43) and Rayleigh vector length (estimate for phase locking).

(C) Examples from individual place cells from different portions of the theta score distribution. Top to bottom: color-coded spatiotemporal maps showing the

mean firing rate (color) as a function of position (x) and phase (y); linearized firing rate (FR) maps in solid black lines and phase-positionmaps (DeltaPhi) in light gray

lines.

(D) Scatterplot of theta score values versus Skaggs information measure (bits), for field one of all recorded place cells (Spearman’s rho = 0.096; p = 0.006).

(E) Scatterplot of theta score values versus max FR (Hz), for field one of all recorded place cells (Spearman’s rho = - 0.001; p = 0.957).

(F) Scatterplot of theta score values versus place field size (cm), for field one of all recorded place cells (Spearman’s rho = - 0.017; p = 0.624).

(G) Scatterplot of activity baricenter (cm) versus theta score, for field one of all recorded place cells (Spearman’s rho = 0.027; p = 0.438).
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(DeltaPhi). As many cells displayed multiple place fields along

the track (here, we consider runs in the two running directions

separately), by comparing DeltaPhi and the location-based

average firing rate (FR), we can evaluate the degree of phase pre-

cession on a field-by-field basis. In this framework, phase-pre-

cessing fields are described by consistently negative values of
4 Cell Reports 42, 112022, February 28, 2023
DeltaPhi (Figure 2C, top row), whereas phase-locking place

fields display near-zero (or positive) DeltaPhi (bottom row exam-

ples in Figure 2C). Similar to the theta score, each cell activity

relationship with the phase of theta can be summarized by

computing the correlation along the track between the cell FR

and the associated DeltaPhi (phase-precessing cells being



Figure 3. Phase-coding granularity between fields and running directions
(A) Schematic representation of independent phase codes (phase-coding granularity) in fields one and two.

(B) Scatterplot of theta score values of field one versus field two, for all recorded place cells with at least two fields in the same running direction (Spearman’s rho =

0.154; p = 0.018).

(C) Examples from individual place cells. Note how field one expresses a phase-precession pattern, while the spikes of field two have a non-phase-precessing

relationship (top rows), and vice versa (bottom rows).

(D) Schematic representation of independent phase codes (phase coding granularity) in the place fields in the two running directions.

(E) Scatterplot of theta score values of the field in one running direction (left to right) versus the field in the other running direction (right to left), for all recorded place

cells with two place fields in the both running direction (Spearman’s rho = 0.092; p = 0.113).

(F) Examples from individual place cells. Note how the same place cell is expressing a phase-precession pattern in one running direction, while in-field phase

precession is absent in the other running direction (same session).
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expected to have an inverse relationship between FR increases

and negative deflection of the preferred phase of spikes). This

measure and the theta score are significantly correlated (Fig-

ure S2B; Spearman’s rho = �0.175; p = 1:2326e� 05). The

DeltaPhi measure has been utilized as an additional visualization

tool; further analyses are based solely on the theta score

classification.

Place cells’ phase-coding properties vary across fields
Phase-coding modalities are not an intrinsic property of place

cells but rather have a high spatial dependence. In fact, when

comparing multiple place fields from the same cell, we found

that their phase-coding profiles were largely independent from

one another (Figure 3A). The probability to precess of field one

(defined as the field with the highest peak FR; see place cell iden-

tification) was weakly (albeit significantly) correlated (Spear-

man’s rho = 0.154; p = 0.018) to the probability to precess the

secondary field of the same cell (Figure 3B; see Figures S2C

and S2D for spike-sorting information for the example neurons).

Examples from single cells also illustrate how the DeltaPhi mea-

sure of field one reflects a phase-precessing pattern, while the
spikes of the secondary field exhibit a non-precessing relation-

ship, and vice versa (Figure 3C). Similarly, such phase-coding

granularity was even more strongly expressed when we consid-

ered place cells having place fields in both running directions of

the track (Figure 3D). The tendency to precess of a field in one

running direction was found to be statistically independent

from the phase relationship of the field in the other direction (Fig-

ure 3E; Spearman’s rho = 0.092; p = 0.113). The propensity of

single fields to precess can be thus conceived as a map-specific

property not unlike the peak FR and place field size.44

Current source density analysis reveals layer-specific
theta-gamma interaction in dorsal CA1
After characterizing the spatial modulation of phase precession

within CA1 place fields, we sought to explore temporal modula-

tion to phase precession by disentangling the contributions of

different input streams in the CA1 circuit, their local integration.

In order to obtain a clear picture of the interactions of theta

and gamma oscillations in the network, we applied current

source density (CSD) analysis, a standard tool to estimate the

contribution of local circuits to the LFP signal that enables
Cell Reports 42, 112022, February 28, 2023 5
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precise layer-level resolution (which, in the hippocampal CA1 cir-

cuit, relates neatly to different afferent pathways and groups of

cells). For each CSD time series, we then computed the

phase-amplitude relationship between the theta oscillation (6–

10 Hz) and the power of oscillations at higher frequencies (15–

250 Hz). Since theta power is maximal in the deeper portions

of CA1 and theta oscillation presents a high degree of coherence

across layers, we decided to use the signal from the slm probe

contact as the reference theta oscillation signal. This signal

was then used to produce a depth-specific profile of fre-

quency-resolved gamma-theta couplings. Note that slm theta

is 180� shifted from pyramidal layer theta, which is used as a

reference in some studies.

Following Lasztóczi and Klausberger,37 we characterized

gamma oscillations in a tri-dimensional ‘‘gamma space’’ with

anatomical depth, frequency, and preferred theta phase as di-

mensions. Significant components in this space were then

defined as contiguous regions of above-mean correlation

strength. Once points in gamma space with significant coupling

values found at different depths were concatenated, we

obtained a three-dimensional structure that represents theta-

gamma interactions (Figure 4A). We then isolated individual vol-

umes of significant coupling with consistent spatial extension

and termed them ‘‘basins.’’ These basins provide a data-driven

definition of independent gamma oscillators in the CA1 circuit.

We found 3 of these basins, coinciding with 3 separate ranges

of gamma: 20–45, 60–90, and 100–150 Hz. In the following,

they are identified as low (Figure 4B), medium (Figure 4C), and

fast gamma (Figure 4D), respectively. Each component can be

characterized by its distinctive depth profile, most evident in

the location of maximal coupling with theta phase (Figure 4F).

While slow gamma (Figure 4B) showed minimal variability along

the CA1 depth profile, with a mostly constant theta coupling

strength across CA1 layers (Figure 4F), we could observe a

gradual shift in the preferred coupling theta phase from more

superficial layers (pyramidal) to deeper ones (slm) (Figure 4E).

On the contrary, themedium gamma component (Figure 4C) dis-

played a spatially localized pattern, with coupling strength peak-

ing in the slm (Figure 4F). Different from slow gamma, medium

gamma theta phase preference shifts abruptly between the

pyramidal layer and the sr and stays constant in the deeper

layers (Figure 4E). Finally, the fast gamma component (Figure 4D)

emerges only in proximity to the pyramidal layer, maintaining a

constant phase preference value (Figure 4E).

Based on this detailed description and visualization of gamma

generators provided by the basins, we then set out to disen-

tangle the contributions of these circuit elements to the spike

timing of place fields and place cell ensembles.

Phase precession arises in a subset of place fields when
medium gamma dominates the CA1 network state
Because place fields do not appear to have consistent phase-

coding properties, we speculated that their temporal codingmo-

dalities may be affected by variability in the inputs to CA1,

reflecting changing environmental conditions. We therefore

investigated how the cycle-by-cycle balance of different gamma

regimes, considered proxies for the influence of those different

input sources,35,42 control the organization of the phase-preces-
6 Cell Reports 42, 112022, February 28, 2023
sion pattern within individual place fields. We used a generalized

linear model (GLM) to describe the spike probability of each

place field given (1) the position within the place field, (2) the

instantaneous theta phase, and (3) the instantaneous power in

a specific gamma range and layer (slow gamma from the sr

andmedium gamma from the slm). Depending on the theta score

values of field one (described as the field with the highest peak

FR; see place cell identification), we divided the place field pop-

ulation in three equally distributed groups. Intermediate fields

occupy the center of the theta score distribution, while phase

precessing and phase locking occupy the extremes. Crucially,

we found that fields within the phase-precessing population

were not performing phase precession in every theta cycle but

rather that phase precession could be seen to gradually appear

in association with the increasing presence of medium gamma in

the theta cycle. The spike density plot in Figure 5A reveals how

the phase-precession pattern gradually emerges as medium

gamma becomes more dominant in the CA1 network state.

The contour plots of the spike density distributions show how

the appearance of spikes in the early portion of the theta cycle

is conditioned to the increase of medium gamma power (Fig-

ure 5B). Conversely, changes in gamma balance do not affect

the spike distributions of the phase-locking and intermediate

population. This is replicated for each animal separately

(Figure S4). Importantly, a further analysis using velocity as an

additional factor in the GLM shows that the observed gamma

modulation of the phenomenon of phase precession is indepen-

dent of changes in the running speed of the animals (Figure S6).

Long dendritic depolarizations45–47 may induce bursts of

spikes in CA1 pyramidal cells, and it is therefore interesting to

explore whether bursting dynamics differs between precessing

and non-precessing fields. We considered separately spikes

that where either emitted in bursts or in isolation (interspike inter-

val [ISI] > 7ms; see single spikes and burst spikes classification),

and we found a significant modulation of burst propensity by

theta score, with phase-precessing fields having, on average,

a higher burst fraction (Figure 5C; p = 0.022, two-sample t test).

Contour of regions of highest density of spikes further reveal

how the population of phase-precessing fields is more affected

by the instantaneous balance of gamma oscillations, while the

population of phase-locking fields tends not to vary the in-

field/phase organization of spikes (Figure 5D; Kolmogorov-

Smirnov on spike densities, all animals [N = 6], all sessions

[n = 12]). Moreover, for phase-precessing cells, the higher num-

ber of burst events was not evenly distributed over the theta cy-

cle. During medium-gamma-dominated cycles, they appeared

to concentrate at the earliest phases of the cycle, ahead of the

phase interval containing the most single spikes, while during

slow-gamma-dominated cycles, the phase preference of burst

spikes was more evenly distributed along the phases of the

ongoing theta cycle (Figure S7C; significant Rayleigh vector

length difference against shuffling, t test: p < 0.01).

When looking at single-field cases (phase-position slopes of

individual fields), the effect is still present (Figure 5E). With

increasing dominance of medium gamma, fields with a higher

theta score tend to acquire a steeper phase-position slope

(Figures 5E and S5). This medium-gamma-related effect is only

visible for fields with higher theta score, while slow gamma



Figure 4. Theta-gamma interactions in a three-dimensional phase-amplitude-depth structure

(A) CSD-derived basin profiles, along one shank (16 recording sites; spaced at 60 mm) spanning the entire CA1 region (2–10) and part of the DG (12–15). The basin

structure is repeated across 3 theta cycles.

(B) Isolated slow gamma (20–45 Hz) basin component from (A).

(C) Isolated medium gamma (60–90 Hz) basin component from (A).

(D) Isolated fast gamma (100–180 Hz) basin component from (A).

(E) Theta phase preference profiles of the three basin components across all CA1 layers. Data are presented as mean ± SEM.

(F) Coupling strength profiles of the three basin components across all CA1 layers. Data are presented asmean ± SEM. Theta is extracted from the contact in the

stratum lacunosum moleculare.
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Figure 5. Phase precession arises in a subpopulation of place fields during periods of medium gamma dominance

(A) Spike density plot of all cells from one example animal (mouse 1). Global average of the in-field spike probability, plotted as a function of the instantaneous

gamma coefficient, for each subset of place fields (precessing, intermediate, and locking). The phase-precession pattern gradually emerges only in the phase-

precessing subgroup with increasing medium gamma power.

(B) Contour plot of the same spike density plot in (A), highlighting the progressive, selective emergence of a phase-location dependence for precessing cells (in

association with medium gamma dominance).

(C) Burst fraction in the phase-precessing, intermediate, and phase-locking populations (p = 0.022, two-sample t test). Data are presented as mean ± SEM.

(D) Contour of regions with highest density of spikes for single spikes during slow gamma (solid blue line) and medium gamma (solid red line), for burst spikes

during slow gamma (dashed blue line) and medium gamma (dashed red line) network states. Kolmogorov-Smirnov test on spike densities ðp = 10�5Þ.
(E) Phase-position regression slope values for each individual field, averaged stratified across the theta score (x axis), as a function of slow-medium gamma

balance (blue-red color scale). Mouse 3, all sessions, all fields. p = 0.03; df = 5; Spearman correlation.
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does not modulate the phase-position slope and the theta score.

Once again, this is replicated for each animal separately (Fig-

ure S5). Together, these observations suggest that phase pre-

cession selectively arises in a subset of place fields as a function

of the oscillatory state of the CA1 network.

Organization of theta sequences during slow and
medium gamma network states
Until now, we have been looking at phase coding, a potential way

for single receptive fields (place fields), to convey spatial infor-

mation in addition to what is already contained in the FRs.25

Yet, a key role that theoretical models ascribed to phase preces-

sion is the shaping of the activity of one place field with neigh-

boring fields into temporal sequences spanning one theta

cycle.26 Because we observed an effect of gamma oscillations

on phase precession, we therefore askedwhether such theta se-
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quences were likewise affected by changes in medium and slow

gamma power. We first addressed pairwise co-activation pat-

terns, a basic, but sensitive, index of sequential activation.15,32,48

Similar to Dragoi and Buzsáki15 and Middleton and McHugh,32

we measured the correlation between the distance between

the place fields of a place cell pair and the average theta phase

difference of their first spikes in each theta cycle (Figures 6A and

6B). This correlation measure reflects how much a spatial

distance could be reliably inferred from a temporal one. We

repeated this procedure by further separating spikes according

to the gamma dominating the theta cycle in which they were

emitted.

Measuring the gamma-dependent spatiotemporal correlation

betweenspikepairs lead to twoobservations: fieldscharacterized

by a strong phase locking showed a significant degree of spike

ordering, independent of the gamma configuration at the time of



Article
ll

OPEN ACCESS
the spike emission, while phase-precessing fields presented a

variable amountof temporal ordering, depending on the slow-me-

dium gamma balance (Figures 6A and 6B). Crucially, for phase-

precessing fields, spatiotemporal correlation of spike pairs was

only present in coincidence with strong slow gamma periods,

that is, only at times when phase precession was at its weakest

(Figure 6B). Therefore, the ability to carry information about

macro-scale ordering of place fields within the microscale

arrangement of spikes at the tens of milliseconds scale differs

across fields and depends on the current state of the networks

generating gamma in CA1. Importantly, the states of these

gamma networks conducive to phase precession and to pairwise

ordering of spikes appeared tobe complementary to one another.

Pairwise interactions between fields provided a first approxima-

tion to evaluate the degree to which neural activity in CA1 place

cells populations is sequentially organized. We took this analysis

a step further by implementing a decoding procedure, aimed at

estimating the level of sequential information contained in the

entire population of recorded place cells. Because this type of

analysis cannot distinguish between spikes belonging to different

fields of the same place cell, we extended our definitions of lock-

ing and precessing to cells rather than single fields. Each cell was

assigned the identity of its place fieldwith thehighest FR (field 1as

shown inFigure3A,whenmultiplefieldswerepresent).Bydividing

each theta cycle into a set of small subwindows,wecomputed the

likelihood of the activity contained in each of them to encode one

of the positions of the track. Using these probability density

matrices, we evaluated the degree of non-locality of the encoded

positions, that is, to what degree the encoded positions within a

theta cycle (1) reflected the current position of the mouse on the

track or (2) formed a theta sequence, that is, they represented a

set of positions sequentially distributed in time around and inde-

pendently from the current position of the animal. Again, such

computation was repeated separately using spikes from either

the entire population or from specific groups of cells and also by

subdividing theta cycles according to the corresponding slow-

medium gamma power balance. Results obtained with Bayesian

decodingconfirmedandexpanded thosebasedonpairwisemea-

sures (Figure 6C).Wefirst considered the temporal organizationof

the positional and sequential coding scores by computing the

auto-correlation of the scores obtained for theta periods at

different time lags. The encoding of sequences showed almost

no temporal correlation already in neighboring theta cycles, while

positional coding appeared to retain some degree of continuity

within short stretches of theta cycles (Figure 6D). As partially ex-

pected by their definition, the two scores turned out to be anti-

correlated within the same theta cycle. The spatial information

content carried by either locking and precessing cells was found

to be different and to be gammamodulated (similar to what found

with pairwise ordering); while, on average, precessing cells better

encoded position, the representation of spatial sequences over

thecourseof a thetacyclewasselectivelyenhanced inprecessing

cells during periods of strong slow gamma power. During periods

dominatedbymediumgamma instead, thesequential codingwas

comparable in the two populations of cells (Figure 6E). Indeed,

whenwedirectlymeasured the effects of relative gammabalance

in each of the two populations, we found no effect in the locking

group and an enhancement of sequential coding for precessing
cells (Figures 6F and 6G). Interestingly, such an increase in

sequential-like activation in precessing cells led to a widening of

the position-to-sequence score range (computed as a difference

between the two scores). That is, during slow gamma periods,

each theta cycle was more strongly biased toward either posi-

tional or sequential coding. We directly measured this temporal

segregation of spatial-related coding schemes by measuring the

cycle-by-cycle correlation of the two scores. On top of the previ-

ously notedanti-correlation,we foundagamma-inducedmodula-

tion in precessing cells. Consistent with the previous measure of

the score difference variance, the anti-correlation between the

two scores was found to be stronger during periods of slow

gammaprevalence (Figure6H).Consistentwithour previousanal-

ysis, thus, the population approach confirmed that for specific

subsets of cells, phase precession and sequential coding

emerged in CA1 under different network conditions.

Independent spatial coding in hippocampal
subpopulations
We then asked how the instantaneous expression of a specific

spatial coding scheme coordinated across the CA1 network.

To do so, we first computed again the pairwise spatiotemporal

correlation we used before but this time considering cell pairs

across the two cell groups of locking and precessing fields (Fig-

ure 7A). We found that slow gammamodulations reshaped these

groups: an increase in the slow gamma power coincided with an

increase in the pairwise score for cell pairs within the same theta

score group (thus strengthening sequential coding within each

group) and a small but significant decrease in the correlation of

across-group pairs (although this effect was stronger for pre-

cessing cells), thus decoupling the two groups. When medium

gamma dominated, the cell pair slopes calculated within and

across groups were indistinguishable and were also not different

from reshuffling the theta scores across cells from the same ses-

sion. Together, these data suggest that slow gamma increases

order in the precessing and in the locking groups separately.

We observed a similar phenomenon when considering the

results of Bayesian decoding. In this case, we compared the de-

coding scores obtained from different place cell groups for the

same theta cycle. Inspecting the distribution of this simultaneous

decoding score combining locking and precessing cells (Fig-

ure 7B), we observed that while for positional coding, points

tended to concentrate around the diagonal (indicating a high de-

gree of coordination between the coding in the two group of

cells), in the case of sequential coding, points tended instead

to be located away from the diagonal, especially for increasing

values of the score, showing that the two groups express theta

sequences in separate theta sequences and rarely simulta-

neously. We quantified this effect by measuring the average dis-

tance of points from the diagonal as a function of the combined

decoding score for each theta cycle (Figure 7C; see STAR

Methods). Co-occurent dissociated theta sequences are also

visible from individual examples (Figure 7D). This analysis

confirmed our previous observation, showing a significant

distancing of high-score sequential events from the diagonal

and a substantial uniformity in the case of positional coding.

Finally, we compared the place field shape in the different tem-

poral windows defined in our analysis. First, the effect of gamma
Cell Reports 42, 112022, February 28, 2023 9
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modulation was identified in a backward shift of place fields in

correspondence with periods of high slow gamma power, with

the effect being stronger for precessing fields (Figure 7E, top

panels). Then, we also observed that identifying temporal win-

dows based on the nature of the expressed spatial coding (either

positional or sequential) led to ameasurable change in the shape

of place fields. In fact, when taking only periods characterized by

a high degree of sequential organization of spikes, we observed

a flattening of the measured place field shape, with no observ-

able rate tuning left (Figure 7E, bottom panels).

Interestingly, further evidence for the presence of a theta-

score-based segregation of cell groups organizing in theta

sequences was given by looking at the enlargement of fields

when detecting sequences separately for locking or precessing

cells (Figure S8A). Indeed, we could observe a double dissocia-

tion: periods of precessing-cell-detected sequences corre-

sponded to an enlargement of precessing cell fields but to no

significant modulation in the locking cell fields, and vice versa.
DISCUSSION

The data we presented here highlight the heterogeneity of tem-

poral coding schemes in CA1 activity. We first showed that

phase precession is not a general feature of place fields (Fig-

ure 2). Rather, we observed a continuum between purely

phase-locked and phase-precessing fields, with no or very little

correlation with spatial tuning and neural activity parameters.

Fields at the precessing and locked ends of this spectrum differ

in non-space-related properties, such as their theta phase lock-

ing during active behavior (or during rapid eye movement [REM]

sleep; Figure S7B), suggesting that intrinsic differences in anat-

omy and physiology, as, for example, belonging to the deep or

superficial pyramidal sublayer,49–52 may affect only to some

extent a place field’s propensity to phase precess. Yet, by

analyzing phase precession as a function of location on the track

(Figure 3), we show that the same place cell may substantially

vary its phase-precessing behavior at different locations on the

track. Thus, intrinsic cell properties may explain only a small

portion of the total variance at best, and the causes of phase pre-

cession may have to be searched not only in the circuit layout

but, most poignantly, in the precise constellation of inputs,
Figure 7. Locking and precessing cells show segregated spatial codin

(A) Spatiotemporal pairwise spike correlation computed for cell pairs either with

instantaneous gamma balance. Left, only pairs of cells in which one is locking. Rig

SEM.

(B) Distribution of simultaneously measured decoding scores (left: position; right: s

by the score obtained using either only spikes from precessing cells (y axis) or only

slow gamma. Right panel: data from temporal periods dominated by medium ga

(C) Average distance of points in (B) from the diagonal (corresponding to a perf

combined value. Left panel: data from temporal periods dominated by slow gam

Shaded lines represent shuffled distributions. Position: p = 0.0001, df = 952; sequ

mean ± SEM.

(D) Examples of encoded position (y axis) reconstruction over an entire theta cycle

simultaneously.

(E) Place field shape obtained when considering different temporal intervals. Top:

defined by the type of spatial coding observed by selecting theta cycles based

p = 0.001, 0.0001, 0.0004, 0.04; df = 1,091, 1,241, 1,352, 2,644. Data are presen
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cellular and network states affecting a neuron in a given

contingency.

Second, when looking on a theta cycle-by-cycle basis, CA1

population activity either expresses a forward-sweeping (on

average, but seeWang et al.53) sequence or a stable representa-

tion of animal location. The sequential content of the representa-

tion fluctuates very rapidly, and the probabilities to observe theta

sequences in consecutive theta cycles are virtually uncorrelated

(Figure 6D). Third, theta sequences are not expressions of

the CA1 cell population as a whole. Rather, locking and precess-

ing subpopulations may form, at least momentarily, separate

coherent groups, as shown by the fact that they express theta

sequences independently and at different times (Figure 7). For

example, it is possible that one group expresses a sequence

while the other encodes current position. Whether a single

‘‘position readout’’ decoded from CA1 activity is fully represen-

tative of information processing in the hippocampus is called

into question by these results.

Fourth, rather than one being the cause of the other, phase

precession and theta sequences are by and large independent,

if not downright in opposition, meaning that they tend to occur

at different moments, at least in one group of cells. Our results

point at different CA1 inputs being responsible for the two phe-

nomena, with CA3 inputs being conducive to sequences and

E3 inputs to precession. It has been previously shown that strong

slow gamma periods (putatively, with predominant CA3 influ-

ence) are related to tighter theta sequences.40 We show here

that the effect is to be ascribed to phase-precessing fields

only, whereas cells that do not exhibit phase precession reliably

show sequences regardless of gamma oscillations (Figure 6).

Conversely, increased medium gamma intensity (proxy for EC3

inputs) is related to tighter phase precession.39 Here, as well,

we show that this is only due to the phase-precessing fields,

whereas phase-locking cells never precess. Furthermore, we

characterize how the phase precession pattern arises as a new

cluster of spikes emerges in the position by firing phase plane

(Figure 5) at the trough of the slm theta. That cluster of spikes

may act as a disturbance for theta sequence expression,

causing the decline in sequence score displayed in Figure 6.

The phase-precession phenomenon19–22 and its links to theta

sequences26–28 have been the object of multiple theories and

models. We believe that the high level of heterogeneity and
g

in the same cell group or across theta score cell groups as a function of the

ht, only pairs of cells in which one is precessing. Data are presented asmean ±

equence). Each point represents a single theta cycle, and its position is defined

from locking cells (x axis). Left panel: data from temporal periods dominated by

mma. Color coding represent distance from the diagonal.

ectly equivalent coding in locking and precessing cells) as a function of their

ma. Right panel: data from temporal periods dominated by medium gamma.

ence: p = 0.03, 0.01; df = 1,477, 1,553. t test (*p < 0.05). Data are presented as

(x axis, 1 bin = 10ms) for locking (top rows) and precessing (bottom rows) cells

slow- vs. medium-gamma-dominated theta cycles. Bottom: temporal windows

on the position vs. sequential decoding scores. t test (***p < 0.01). Sequence:

ted as mean ± SEM.
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temporal variability shown here represents a challenge for all

those mechanistic theories. Instead, a simpler account by F.

Chance24 fit the present data quite well. In this model—as

already hypothesized by Yamaguchi et al.23—spikes form two

clusters in the animal position by theta phase plane. The cluster

corresponding to entry into the place field and later phase is

ascribed to CA3 inputs, whereas EC3 inputs would be instead

responsible for the spike cluster at the exit of the place field.

The theta phases of the two clusters are consistent with CA3 in-

puts lagging EC3 inputs by a quarter theta cycle. If we assume

that medium gamma covaries with the EC3 inputs’ strength,

that model would explain the result in Figure 5 (and in Bieri

et al.39). The Chance model, augmented with time-fluctuating

CA3 and EC3 input strengths, and slow and medium gamma in-

tensity being their respective proxies, is consistent with a num-

ber of observations in the literature. In particular, the model

would predict the fact that slow gamma induces a backward

(prospective coding54) shift in place field location,39,55 whereas

the field moves forward (retrospective coding) with elevated me-

dium gamma. We reproduced this effect in our data (Figure 7D).

Furthermore, spike-triggered averages of medium and slow

gamma power, respectively, increase and decrease with place

field traversal37 (also reproduced here Figure S8B). As an impor-

tant technical aside, here, we recorded laminarly resolved LFPs,

and neural ensembles are recorded from separate sites41 (Fig-

ure 1), which avoids any spillovers of spiking activity in the

LFP, which may bias LFP-spike association measures. We

then used an analytical procedure (Figures 4 and S3) derived

from Lasztóczi and Klausberger37 to separate the different gen-

erators at different hippocampal layers, making explicit use of

preferred theta phase information. It is possible that some

discrepant results in the literature38 are due to different ap-

proaches in computing the time series of gamma intensity. While

we use a CSD analysis (following Lasztóczi and Klausberger37),

Fernández-Ruiz et al.38 use an independent component analysis

(ICA) approach. Whether ICA is the ideal approach remains to be

seen because the slow andmedium gamma components are ex-

pected not to be statistically independent—as, for example, they

are both modulated by the theta oscillation.

Limitations of the study and future directions
It is possible that behavioral and other external factors may

affect the temporal structure of CA1 activity. It has been shown

that running speed has an effect on the dominant frequency of

gamma oscillations.56 Furthermore, it has been proposed that

running speed is one of the determinants of the span of theta

sequences57; however, we show here that the interaction be-

tween medium/slow gamma oscillations and phase-precession

patterns does not change with running speed (Figure S6). Like-

wise, it has been shown that local somatosensory cues alter

spatial coding differentially for deep and superficial CA1 pyra-

mids.58 In this study, we used a track devoid of local cues, so

we were not able to test how those cues would affect our find-

ings. Rather, we are providing a ‘‘baseline’’ for the delicate inter-

actions we describe. Future work will have to assess how factors

such as cues, rewards, and task requirements change the

balance of temporal coding in CA1 and how microcircuit deter-

minants might constrain the phase-coding dynamics, for
example proximodistal (Figure S7A) or medio-lateral effects in

the proportion of precessing or locking place fields.

In sum, we show here that there is a cell population, hereby

named phase precessing, that shows a broader range of tempo-

ral coding regimes and changes most markedly as the input bal-

ance in CA1 changes, with respect to the rest of CA1 neurons.

The makeup of this group varies even from one spatial location

to the next. An enticing hypothesis is that the distribution of

inputs on the dendritic tree is the determinant of this behavior.

Dendritic targeting interneurons may shift the balance of the

inputs between CA3 and EC3.59–61 It is also known that EC3 in-

puts induce ‘‘plateau potentials’’ in CA1 pyramids’ distal apical

dendrites47,62,63 and that thesemay last for hundreds of millisec-

onds, possibly linking inputs occurring within that time interval.

The testable prediction is that cells that would be classified

here as phase precessing are those that are mostly activated

by dendritic branches under the tightest interneuronal control

and/or expressing more plateau potentials. Which dendritic

branches activate a neuron is likely to change from one location

to the next andmay explain the shift in the cell’s temporal coding

properties. Notably, both precessing and locking cells express

theta sequences in the absence of phase precession. Themech-

anisms for this are currently unknown. One possibility is that

sequences are encoded and retrieved by recurrent networks in

CA3 and transferred to CA1. Another possibility is that, as

pointed out by Navas-Olive et al.,64 local CA1 circuits can

change place cells’ theta phase preference based on the EC3/

CA3 input balance. If this takes place in a coordinated fashion

across CA1 cells, these may indeed support the formation of

theta sequences. Future interventional work should aim to selec-

tively interfere with the direct projections of the EC3 to the distal

dendrites of CA1 pyramidal cells—or disrupt the activity of neu-

rogliaform cells, key regulators of EC-CA1 information

routes65—to disentangle the origin of CA1 sequences and their

relationship with single-cell phase precession.

Our data suggest that CA1, the output stage of the hippocam-

pus, does not condense one single representation of ‘‘position’’

for upstreamareas but rathermultiplexesmultiple transformation

of the hippocampal inputs and autonomously generated repre-

sentations. This may provide the brain with a palette of computa-

tional schemes53 that may be leveraged to flexibly tackle

complex and diverse cognitive tasks. A role for gamma oscilla-

tions in switching between different spatial representations in

CA1 has been proposed,66 and the effects we describe here

give initial hints at how that may come about mechanistically.
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

Animals
6 male C57BL6/J mice (Charles River) were used in this study, all implanted with a Hybrid Drive. All animals received the implant

between 12 and 16 weeks of age. After surgical implantation, mice were individually housed on a 12-h light-dark cycle and tested

during the light period. Water and food were available ad libitum. In compliance with Dutch law and institutional regulations, all animal

procedures were approved by the Central Commissie Dierproeven (CCD) and conducted in accordance with the Experiments on

Animals Act (project number 2016–014 and protocol numbers 0029). No randomization of animals was implemented, and experi-

menters were not blinded to animal group or behavioral task. Sample sizes for all experiments were determined based on previously

published work, and statistical significance was determined post hoc.
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METHOD DETAILS

Surgical procedures
The fabrication of the Hybrid Drives and the implantation surgeries were done as described earlier.41 In order to target the dorsal CA1

region of the hippcampus, a craniotomy was made over the right cortex (top-left corner at AP: �1.20 mm; ML: 0.6 mm relative to

bregma; bottom-right corner at AP: �2.30 mm; ML: 2.10 mm relative to bregma) using a 0.9 Burr drill. The dura was removed,

and the drive’s array was carefully lowered into the brain, with the silicon probe shaft already set to the correct depth. Tetrodes

were individually lowered into the brain (5 turns - z 900 m m). Mice were given at least seven days to recover from surgery before

the experiments began.

Neural and behavioral data collection
Animals were brought to the recording room from post-surgery day 3 and electrophysiological signals were inspected during a rest

session in the home cage. Tetrodes were lowered individually, in 45/60 m m steps, until common physiological markers for the hip-

pocampus were discernible (SWR complexes during sleep or theta during locomotion). The majority of the tetrodes reached the CA1

pyramidal layer in 7–10 days.

An Open Ephys acquisition board68 was used to acquire electrophysiological data. Signals were referenced to ground, filtered

between 1 and 7500 Hz, multiplexed, and digitized at 30 kHz on the headstages (RHD2132, Intan Technologies, USA). Digital

signals were transmitted over two light, custom-made, 12-wire cables (CZ 1187, Cooner Wire, USA) that were counter-balanced

with a pulley-system. Waveform extraction and automatic clustering were performed using Dataman (https://github.com/

wonkoderverstaendige/dataman) and Klustakwik,67 respectively. Manual waveform curation was performed using the MClust soft-

ware suit. ACMOS video camera (Flea3 FL3-U3-13S2C-CS, Point Gray Research, Canada; 30Hz frame rate) wasmounted above the

linear track and used to record video data.

Behavioral paradigm
Each behavioral session was preceded and followed by a rest session in the animal’s home cage (‘‘Pre sleep’’ and ‘‘Post sleep’’).

For the training of the linear track paradigm, mice were positioned at one end of the linear track (1 m long) with the task to run to

the other end to collect a reward (a piece of Weetos chocolate cereal). Another reward was positioned on the opposite end of the

track only if the animal consumed the current reward. Each lap was defined as an end-to-end run only if the animal’s body started

from the first 10 cm of the track and reached the last 10 cm at the other end of the track, without backtracking. Experiments were

performed on 10 consecutive days and each behavioral session lasted between 20 and 30 min. Mice were never food or water

deprived. We avoided food or water deprivation to reduce biases in the content of hippocampal sequence dynamics, as previously

showed by Carey et al.69

Histology
After the final recording day tetrodes were not moved. Animals were administered an overdose of pentobarbital (300 mg/mL) before

being transcardially perfused with 0.9% saline, followed by 4% paraformaldehyde solution. Brains were extracted and stored in 4%

paraformaldehyde for 24 h. Then, brains were transferred into 30% sucrose solution until sinking. Brains were quickly frozen, cut into

coronal sections with a cryostat (30 mm), mounted on glass slides and stained with cresyl violet. The location of the tetrode tips was

confirmed from stained sections (Figure S1), in combination with previously mentioned electrophysiological markers. Cells were

identified as distal or proximal depending on the final position of the tetrodes tips.

Neural data analysis
Before applying other analysis, continuous (LFP) signals were down-sampled to 1 kHz. Most importantly, LFP across the 16 contacts

was used to compute the corresponding Current Source Density signal. Since this transformation is based on computing the discrete

laplacian along the probe axis (that is along the direction running through CA1 layers), the resulting CSD signal is limited to 14 chan-

nels (16 minus the 2 extremes).

Basins
The CSD signal was used to compute the phase-amplitude coupling strength between a reference theta oscillation and faster oscil-

lations comprised in the [15,250]Hz range. We first applied a wavelet transform (built-in MATLAB ‘cwt’ function in the [0.1 300]Hz

interval, using an analytic Morlet wavelet, for a total of 116 scales) to the CSD to obtain the analytical signal over time. We then sepa-

rately extracted the instantaneous phase of the theta oscillation (taken between 6Hz and 10Hz) and the amplitude at the higher

frequencies. Theta oscillation reference was generally taken from the stratum lacunosum moleculare, where theta modulation of

the LFP is stronger, but the same procedure using a theta from another layer gave equivalent results. Instantaneous theta phase

was binned (32 bins) and for each interval the average amplitude of oscillations at each of the higher frequencies was computed,

resulting in a coupling strength matrix with frequency and phase as the two dimensions. We then applied a discrete laplace operator

to the frequency-phase matrix so obtained, to identify portions of the matrix characterized by negative curvature. These regions are

found by requiring the laplace operator to be negative. For each of these regions, we further selected only the bins that showed a
18 Cell Reports 42, 112022, February 28, 2023
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coupling strength above 1STD of the average of the coupling of the respective frequency over the entire theta cycle. After this double

thresholding, the coupling matrix was reduced to a sparse version in which only significantly coupled regions had non-zero values.

Such operation was repeated for the CSD computed for each contact of the probe, resulting in a set of coupling matrices, each char-

acterizing one of the probe contacts. To identify continuities and changes in the couplings across hippocampal layers we then

stacked all the sparse-couplingmatrices on top of each other, adding a third dimension to the coupling arrangement and thus looking

at complete depth-related structure of the couplings. Again, we looked for continuous 3D regions of contiguous significant bins. We

dubbed each of these regions, a basin. Small Basins (comprising less than 40 bins in total) were removed from further analysis and

from visualizations to improve readability. This data was then used to track the evolution of the phase-amplitude couplings across

different layers and frequencies. For each of the identified main gamma frequency ranges (slow [20–45]Hz; medium [60–90]Hz; fast

[120–180]Hz) we extracted layer-specific coupling strength and phase of themaximum coupling. In the rest of the paper slow gamma

power was computed using the signal extracted from the radiatum layer, while medium gamma power was taken from the probe

contact in the stratum lacunosum moleculare.

REM sleep detection
Following an established practice,46,49 periods of REM sleepwere classified offline based on the ratio between LFP power in the theta

frequency range (5-9Hz) and the power in delta range (2-4Hz). REMperiods were identified in the rest period that followed exploration

sessions by combining the theta/delta ratio with an additional requirement for absence of animal movement.

Gamma coefficient
The instantaneous balance between the power in the slow gamma ðPSlowðtÞÞ and medium gamma ðPMedðtÞÞ frequency range was

computed as follow. First both the slow gamma power and medium gamma power during running periods were separately z-scored.

Then a power-ratio score, spanning the [-1 1] interval was computed as:

g =
Pz
SlowðtÞ � Pz

MedðtÞ
Pz
SlowðtÞ � Pz

MedðtÞ
Equation 1

so that a value of �1 would correspond to total medium gamma domination and +1 to slow gamma completely dominating.

Place cell identification
Putative excitatory pyramidal cells were discriminated using their auto-correlograms, firing rates and waveform information. Spe-

cifically, pyramidal cells were classified as such if they had a mean firing rate < 8 Hz and the average first moment of the auto-

correlogram (i.e., the mean value) occurring before 8 ms.70 Only cells classified as pyramidal cells were used for further place cell

analysis. Place cells were defined applying a combination of different criteria. All analysis were performed on speed-filtered

activity, after removing periods in which the animal speed was smaller than 5 cm/s. Then, only cells with an average activity

above 0.3 Hz were taken into account. Then for each of these cells, the Skaggs information per second I =
P
x
xðxÞlog xðxÞ

< x> x
was

compared to distribution of information values resulting from randomly shuffling cell spike times. A cell passed the selection if

its Skaggs information was significantly higher than the ones of the surrogate distribution. Last, only place cells with peak firing

rate higher than 1 Hz were kept for further analysis. Place fields were isolated as continuous regions in the rate map with rate

higher than 20% of the cell maximum activity. Multiple fields (field one and field two) were then sorted according to their respective

peak firing rate.

The modulation of place field shape by gamma power was evaluated by first estimating the place field boundaries using all spikes

from a cell. Then the place field extension was divided in 7 spatial bins. For each of these bins we computed the spike rate of the cell

using only spikes emitted in association of a specific range of the slow-to-medium gamma power ratio. For each cell the overall spike

probability over the bins was normalized to 1 and the final value for each bin was obtained as an average over all cells in the dataset.

Opposite running directions were treated separately.

Place cell classification
Spikes were filtered both in speed (> 5 cm/s) and in position, by taking only those emitted within the boundaries of the cell place field

(field one in the case of multiple fields). For each place cell, wemeasured to what degree the phase (with respect to theta oscillations)

of spikes was concentrated and to what extent it was modulated by the respective position within the place field. In the first case we

computed the length of the Reyleigh vector associated to the distribution of spike phases with respect to the instantaneous theta

phase (slm theta). In the second case we used a circular-linear correlation to measure the degree of dependency between the spike

phase and the position within the field. Both measure yielded a score between 0 and 1, with 1 meaning perfect phase locking and

perfect phase-position relation, respectively. We combined the two scores into a ‘Theta Score’ subtracting one from the other: Theta

Score = Precession Score - Locking Score. Because of the similar interval of the twomeasures, negative Theta Scoreswould indicate

spikes probability being mostly modulated by specific phases of theta, while positive Theta Scores would point to a substantial

presence of phase precession.
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Single spikes and burst spikes classification
We subdivided spikes from a cell into single and bursts by applying a temporal interval filter. Any spike occurring within 7ms of

another was labeled as belonging to a burst, all the others were considered as single spikes. If not otherwise stated, spike probability

evaluation and other analysis were performed using only single spikes. Burst spikes were analyzed separately.

Significance of theta phase selectivity for either single or burst spikes was evaluated with a shuffling procedure. The probability of

spikes in any bin along the [0 2p] interval was computed by dividing the number of spikes of each cell by the probability of observing a

specific gamma coefficient in the same theta phase interval. For each cell, this ratio was compared to an equivalent measure applied

to a surrogate version of the cell activity, where spike times had been randomly reassigned to any of the temporal bins characterized

by a slow-to-medium gamma power ratio in a specific range. Such comparison was repeated 1000 times for each cell, each time

repeating the shuffling procedure. Statistics were computed on the distribution of differences between the real spike distribution

and the surrogate ones.

Generalized linear model (GLM)
As described in previous work71 we used a maximum entropy model inference paradigm to reconstruct the distribution of each cell’s

firing probability. As a statistical model, we considered the maximum entropy model known as kinetic Ising model. We first separated

running periods from periods of quiescence by applying a 5 cm/s speed filter. The activity of the cells was binned in 10 ms bins, and a

binary variable SiðtÞ was assigned to each neuron for each temporal bin. SiðtÞ was taken to be a binary variable, with +1/ � 1 values,

depending on the presence/absence of spikes emitted by neuron i within time bin t. Since the length of time bins was relatively short,

this was a reasonable approximation as the case of multiple spikes per bin was rare. Letting the state of each neuron at time t depend

on the state of the population in the previous time step t� 1, themaximumentropy distribution over the stateSiðtÞ of neuron i at time t is

PðSiðtÞÞ =
exp½SiðtÞHðt � 1Þ�
2 cosh½Hðt � 1Þ� Equation 2

where HðtÞ is a time dependant covariate having the role of the external field in statistical physics. Equation 1 defines a GLM (Gener-

alized Linear Model), where, in each time bin, mostly only one or zero spikes per bin are observed and the interaction kernel extends

one time step in the past. To find what values of HðtÞ are the most likely to generate the observed data given Equation 1, we

maximized the log likelihood function

L½S;H� =
X
i;t

SiðtÞHiðt � 1Þ � log½2 cosh½Hiðt � 1Þ�� Equation 3

with respect toHðtÞ. The log likelihoodmeasures howwell themodel explains the statistics in the observed data. In our analysis, we

have used the natural logarithm. Since the external field,HðtÞ, can explain the variations in the firing rate as the rat navigates in space,

it becomes important to model it appropriately. Here we assumed that the spatial input arises as the sum of one-dimensional

Gaussian basis functions centered on evenly spaced L intervals covering the linear track. Opposite running directions were treated

as distinct environments and analyzed separately. The spatial field of cell i at time t is then

HSpat
i ðtÞ =

X
k

aikexp

"
�ðx � xkÞ2

l2

#
+ hi Equation 4

where hi is a unit-specific spatially and temporally constant baseline, and xk and l are the centers of the regular intervals and the

widths of the basis functions, respectively.We expanded this purely spatial description of cell activity by combining the spatial contri-

bution to activity with that of specific phases of theta oscillation and a specific slow-medium gamma balance. To do so, we tiled the

3-dimensional space obtained from combining i) the position on the track, ii) the theta phase (in the [0 2p] interval) and the relative

strength of the instantaneous power in the slow and medium gamma range, computed as a normalized difference: g =
Pz
Slow

ðtÞ�Pz
Med

ðtÞ
Pz
Slow

ðtÞ�Pz
Med

ðtÞ
(spanning the [-1 1] interval), where the z apex indicates previous z-scoring of both power time-series. Such space was tiled with a

regular square lattice of L x T x G three-dimensional Gaussians, with 0 off-diagonal terms and variance l, t and g in the three direc-

tions. The external field of cell i can thus be expressed as:

HiðtÞ =
X
kqp

aikqpexp

"
� ðx � xkÞ2

l2
� ð4 � 4qÞ2

t2
�

�
g � gp

�2
g2

#
+ hi Equation 5

where we introduced the dependency on the current phase 4 of the theta oscillation and current gamma balance g. An accurate

representation of the cell activity in the space-phase configuration, can be found by inferring the parameters aikqp of the linear com-

bination of the Gaussian basis function. We first optimized the values of L and T (the number of Gaussian basis functions in the lattice)

and l, t (their widths), while keeping G and g fixed (G = 6 and g = 0.4). Wemaximized the likelihood over a range of values of L (from 15

to 25), T (from 4 to 10), l (from 5 to 30 cm) and t (from 0 to p=2) and chose the values of the parameters that gave the highest Akaike-

adjusted likelihood value. The Akaike information criterion (AIC) is a measure to compensate for overfitting by models with more

parameters, where the preferred model is that with the minimum AIC value, defined as
20 Cell Reports 42, 112022, February 28, 2023
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AIC = 2 ln ðL½S;H; ðL; T ; l; tÞML�Þ+ 2n Equation 6

where L is the likelihood at the maximum likelihood (ML) estimates of the parameters a’s and hi) for a given value of M, N, r and p. n is

the number of parameters (here r and p do not affect this number as it is a scale factor for Gaussian basis functions, while larger values

of M and N result in more parameters a included in the model). The procedure was performed over all available sessions at once so

that the resulting optimal parameters (L = 20, T = 6 and l = 8 cm, p = p=3) were applied to all of them. Firing rate maps can then be

expressed for an arbitrary combination of position, phase and gamma balance as

HiðtÞ =
X
kqp

aikqpexp

"
� ðx � xkÞ2

l2
� ð4 � 4qÞ2

t2
+ �

�
g � gq

�2
g2

#
+ hi Equation 7

where x, 4 and g are the desired values of position, theta phase and gamma balance. In all our analysis, we considered a partition of

the environment in bins of 2.5cm. The effects of speed on the firing probabilities was addressed in a similar manner, by including the

instantaneous velocity of the animal as a further covariate in the Gaussian decomposition method. The GLM was then ran to infer a

set of aikqpz weights covering a 4D space of position x phase x gamma x speed. The parameters of the Gaussian-basis along the

speed dimension were not optimized but were taken as V = 4 Gaussians with a standard deviation of 6 cm/s.

Pairwise spike timing
For each cell, spikes emitted during running were further filtered so that: i) only first spikes in each theta cycle (taking the peak of the

theta oscillation as the starting point of the cycle) and ii) only spikes emitted within the cell place field one, were considered. For each

of these spikes we also computed the simultaneous slow/medium gamma power ratio which we then used as a label to further sub-

divide the spikes. We then considered all the cell pairs in the population of simultaneously recorded place cells. Each pair (A,B) of

place cells was then defined by i) the spatial distance between the place fields of cell A and B (computed as the distance between

the centers of mass, but using the distance between the fields peaks did not change the results) and ii) the average phase interval

between the spikes of the two cells. The latter was computed by taking spikes of cell A as reference and within each theta cycle (for

which a spike from both cells was available) taking the dqA�>BðkÞ (where k stands for the kth theta cycle), that is the (signed) differ-

ence between the phase of the spike of cell A and that of cell B spike.We then computed the center ofmass of the dqA�>B distribution

and used it as a measure of the average phase offset between that cell pair. Spatial distance and phase distance were then arranged

in a 2-dimensional space and the average phase offset was computed over different ranges of spatial distances as long as at least 10

pairs of cells were available. The analysis was repeated using cell pairs from specific populations subgroups and by restricting the

use of spikes to those emitted in the presence of a certain gamma balance.

Bayesian decoding
To reconstruct the position on the track encoded in theta associated spiking activity, we implemented a standard Bayesian decoding

procedure.72 Periods of active locomotion were first segmented using the peaks of theta oscillation (extracted from the stratum

lacunosum moleculare). Each theta period was further subdivided using a sliding window of 30ms length and with an offset of

10ms. A population vector was then built for each of these sub-windows hðtÞ, where t indicates the time within the theta cycle sub-

division. The likelihood PðxjhðtÞÞ of position on the track x given the population activity was then computed according to Bayes’

formula using the set of probabilities PðhðtÞÞjxÞ obtained from marginalizing the result of the GLM (see above) over the phase of

spiking. The resulting probability density Pðx; tÞ was normalized so that
P
x
Pðx; tÞ = 1 for each time window t that contained 3 spikes

or more, and was otherwise set to 0 and ignored in the following analysis. Theta cycles with less than n ‘active’ time windows were

removed from the following analysis (where nwas set to 5 when considering the entire cell population and lowered to 3 when decod-

ing from subgroups of cells). Using the normalized probability density, for each theta cycle we computed two scores. We first eval-

uated the amount of ‘local’ information in the activity by summing the probability concentrated around the current position of the

animal gLocal =
P
t

Pðx�; tÞ where x� denotes the set of spatial bins in a range of 5cm of the animal position at time t. The presence

of ‘non-local’ sequence-like activity spanning a significant spatial interval around the animal position was instead evaluated by

running a set of linear regression over a modified version of the P�ðx; tÞ matrix where the ‘local’ decoding probability density had

been subtracted out of the original Pðx; tÞ (so that we could factor out the effect of positional decoding from the reconstructed tra-

jectory). Among these regressions, we searched for the best-fit, overlapping with the largest amount of probability density. That is,

gNonLocal = maxb
P
k

P�ðxbðkÞ; tbðkÞÞwhere b indicates a set of linear parametrizations of x and: x = b1 + t3 b2. Importantly b2 was taken

to be always > 0 so to exclude fits very close to the gLocal defined above. The same procedure was applied using different set of cells

to compute the probability density, so to obtain an estimation of the spatial information carried by specific cell groups (in our case, the

entire population and either phase precessing or phase locking cells). Theta cycles were further classified according to the simulta-

neously expressed gamma power ratio. The average ratio between the power of slow and medium gamma over the interval of the

theta oscillation was used as a label for that theta cycle and used to subdivide the set of cycles depending on the relative strength

of the slow and medium gamma component. These scores were used to evaluate the content of activity in different theta cycles. An

additional step was then taken to compare the nature of activity across different cell populations. In this case the decoding scores
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obtained from each cell group were first normalized to maxQg = 1 (where the max is taken over all available theta cycles). For each

theta cycle in which enough spikeswere emitted by cells from both independent cell groupswe computed the difference between the

two obtained decoding scores g1 and g2 (either Local or NonLocal) as the distance of the point ðg1;g2Þ from the equal-score diagonal

g1 = g2.

QUANTIFICATION AND STATISTICAL ANALYSIS

Data analyses were performed using custom MATLAB scripts (The Math Works). Paired and unpaired t-tests, Kolmogorov-Smirnov

tests were performed using standard built-in MATLAB functions. 2-D Kolmogorov-Smirnov test was performed using custom code

based on the Peacock algorithm. All tests were two-tailed, except where stated otherwise. Linear regressions and confidence

intervals over the fit parameters were obtained using standard MATLAB functions (i.e. ‘fit’ and ‘confint’). The significance of the

difference between two fit slopes was estimated using the degree of overlap between the two confidence intervals. For permutation

tests, independent variables were shuffled 1000 times and this null distribution was compared to the one obtained from data.
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