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Abstract: In this paper, we present AWEbox, a Python toolbox for modeling and optimal control
of multi-aircraft systems for airborne wind energy (AWE). AWEbox provides an implementation of
optimization-friendly multi-aircraft AWE dynamics for a wide range of system architectures and
modeling options. It automatically formulates typical AWE optimal control problems based on
these models, and finds a numerical solution in a reliable and efficient fashion. To obtain a high
level of reliability and efficiency, the toolbox implements different homotopy methods for initial
guess refinement. The first type of method produces a feasible initial guess from an analytic initial
guess based on user-provided parameters. The second type implements a warm-start procedure for
parametric sweeps. We investigate the software performance in two different case studies. In the
first case study, we solve a single-aircraft reference problem for a large number of different initial
guesses. The homotopy methods reduce the expected computation time by a factor of 1.7 and the
peak computation time by a factor of eight, compared to when no homotopy is applied. Overall, the
CPU timings are competitive with the timings reported in the literature. When the user initialization
draws on expert a priori knowledge, homotopies do not increase expected performance, but the
peak CPU time is still reduced by a factor of 5.5. In the second case study, a power curve for a
dual-aircraft lift-mode AWE system is computed using the two different homotopy types for initial
guess refinement. On average, the second homotopy type, which is tailored for parametric sweeps,
outperforms the first type in terms of CPU time by a factor of three. In conclusion, AWEbox provides
an open-source implementation of efficient and reliable optimal control methods that both control
experts and non-expert AWE developers can benefit from.

Keywords: airborne wind energy; optimal control; open-source software

1. Introduction

Airborne wind energy (AWE) is a renewable energy technology that aims at harvesting
strong and steady high altitude winds that cannot be reached using conventional wind
technology, at a fraction of the material resources [1]. It is based on the principle of one
or more tethered autonomous aircraft flying fast crosswind maneuvers. In the majority
of AWE concepts, electricity is either produced by onboard turbines on the aircraft and
conducted to a ground station through the tether (drag-mode), or in a periodic fashion
by reeling out the tether at a high tension to drive a winch at the ground station, and
reeling back in at low tension, so as to achieve a net positive energy output over one period
(lift-mode). Although there exist many other interesting AWE concepts, e.g., those based
on tethered rotorcrafts [2,3], we will limit the scope of this paper to rigid-wing lift- and
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drag-mode systems. The reader is referred to [4,5] for a recent and comprehensive overview
of the different technologies.

The principle of AWE was first investigated in 1980 by Miles Loyd, who derived
an upper limit for the power that could be produced by a crosswind AWE system [6].
Since then, in the past two decades, in particular, AWE has gained increasing interest
from both academia and industry, leading to significant technological progress and many
small- to medium-scale prototypes, the largest of which was based on a 26 m wing span
aircraft [7]. While AWE developers are considering a multitude of different designs, most
systems are based on a single-aircraft setup. At this moment, AWE technology is still in a
pre-commercial stage, with some companies taking the first steps towards market entry [8].
One of the central unresolved challenges for AWE developers is achieving techno-economic
performance at utility scale, i.e., designing systems that produce large amounts of electricity
at low cost.

Multi-aircraft systems have been proposed and investigated in the literature as a
more efficient and cheaper way of producing utility-scale electricity [9–12]. In a multi-
aircraft AWE system, two or more tethered aircraft fly tight crosswind maneuvres around
a shared main tether, thereby minimizing the latter’s crosswind motion and hence, the
associated dissipation losses due to aerodynamic drag. These systems can be up to twice as
efficient as their single-aircraft counterparts [10], while having superior, modular, upscaling
properties [12], intrinsically smooth power output profiles [13], and higher potential power
densities in farm configurations [14]. As a consequence of the increased system complexity,
this system class has thus far only been investigated in simulation studies.

A crucial condition for the performance of both single- and multi-aircraft systems is
finding power-efficient flight paths that satisfy flight envelope constraints and airframe
load limits. This is not only necessary for path planning purposes but also for, e.g., offline
performance prediction, design optimization, and control strategy design. Optimal control
is an evidently suitable path planning technique for AWE, given its natural ability to handle
unstable, nonlinear, constrained systems with multiple in- and outputs. In the past decade,
it has become an established method in the field, leading to various applications ranging
from performance assessment studies [15], over model predictive control [16], and system
identification [17], to flight path planning for a real-world soft-kite system [18]. We refer
the reader to [19] for a complete overview of applications.

Despite its obvious advantages, optimal control comes with its own challenges: the
dependence on an accurate model; the computational burden associated with finding a
numerical solution; and a rather complex implementation that heavily relies on expert
knowledge. In case an accurate model is unavailable, it is possible to resort to model-
free, adaptive techniques, such as extremum seeking (ES) [20] or iterative learning control
(ILC) [21]. However, in [22], a validated reference model was proposed for a lift-mode,
rigid-wing single-aircraft system. While identifying the parameters of such a model is a
complicated and time-consuming task [17,23], this shows that deriving a physical model
that fits the measurements very well is, in principle, possible. In the following, we will
focus on the two other challenges mentioned above.

In order to increase computational efficiency, a general model structure based on
non-minimal coordinates was proposed in [24], resulting in smooth dynamic equations of
low symbolic complexity. Additionally, since the system nonlinearity gives rise to highly
non-convex optimization problems, a feasible initial guess is typically needed for fast and
reliable convergence of Newton-type optimization solvers. Such an initial guess is, in many
cases, not available a priori. Therefore, a homotopy procedure was proposed that produces
a close-to-optimal, feasible initial guess based on a generic, naive one [25]. Combined with
a direct-collocation-based transcription method, this led to reported computation times
of below one minute for a representative power cycle of a lift-mode AWE system with a
six-degree-of-freedom aircraft model [26]. Another homotopy variant was investigated
in [27] to efficiently compute drag-mode power cycles for large-scale wind data.
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In this work, we consider direct collocation approaches with local support, i.e., using
several subintervals with each its own, small set of collocation points. However, for smooth
trajectories, it is often more efficient to apply a global support approach [28], using Fourier
interpolating polynomials for periodic solutions. This approach has been proposed for
drag-mode AWE systems in [29], using a frequency-domain formulation. For lift-mode
systems, the optimal solution contains sharp transitions between the reel-out and reel-in
phases, and it is a priori unclear which method will be more efficient. For future comparison,
the global-support approach can be easily implemented using the collocation framework
of the proposed toolbox.

While many open-source AWE control and simulation frameworks exist for single-
aircraft models [30,31], and even for multi-aircraft models [32], there are only a few available
open-source implementations of optimization methods tailored for AWE. The MATLAB

library MegAWES [20] provides an implementation of a megawatt-class system model and of
a power optimization algorithm based on ES. The Optimal Control Library OpenOCL [33]
provides a user-friendly MATLAB interface for formulating and solving OCPs, which can
be linked to the optimization-friendly lift-mode model implemented in the framework
OpenAWE [34]. However, this framework does not offer homotopy-based initial guess
refinement or multi-aircraft models.

In this paper, we present AWEbox, an open-source Python framework for modeling
and optimal control of single- and multi-aircraft AWE systems. The contributions of the
software package can be summarized as follows:

• Usability: the user specifies only high-level modeling and optimization parameters.
AWEbox implements optimization-friendly system dynamics for single- and multi-
aircraft systems, for various system architectures and combinations of model options.
It automatically formulates typical AWE optimization problems and implements and
interfaces the algorithms needed to compute a numerical solution efficiently.

• Reliability: AWEbox increases reliability by efficiently computing a feasible OCP initial
guess via homotopy methods, based on an analytic initial guess defined using a small
number of user input parameters. The framework also implements an algorithm to
efficiently and reliably perform parameter sweeps.

• Extensibility: within the baseline non-minimal-coordinates structure, users can add
new or alternative modeling components (e.g., wind model, aerodynamics, etc.) in
a straightforward fashion. The homotopy procedure for initial guess refinement can
be extended in a modular fashion so that new model components can be introduced
without affecting reliability.

AWEbox is freely available and open-source under the GNU LGPLv3, which allows use
in proprietary software. The toolbox heavily builds on lower-level open-source software
packages such as CasADi [35], a framework for algorithmic differentiation and optimization,
and the nonlinear program (NLP) solver IPOPT [36].

The remainder of this paper is structured as follows. Section 2 discusses the multi-
aircraft modeling procedure, while Section 3 gives an overview of the optimization ingre-
dients used to formulate and numerically solve periodic AWE optimal control problems.
Section 4 then outlines the software implementation details. Section 5 presents two case
studies that highlight the efficiency and reliability of the implementation, as well as its
multi-aircraft capability. Section 6 draws conclusions based on these results and makes
suggestions for further research.

2. AWE Modeling for Optimal Control

In this section, we define the multi-aircraft topologies considered in AWEbox. We outline
the optimization-friendly AWE model structure for six-degrees-of-freedom (6DOF) aircraft
dynamics as described in [22] and the extensions made for the multi-aircraft case [12,37].
The different additional model components presented in this section are not novel per se but
rather collected and integrated from our own previous work as well as from the literature.
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2.1. Topology

We consider any tree-structured multi-aircraft topology as previously introduced
in [12]. Each tree is described by a set of nodes N , where each node n ∈ N represents the
end-point of a tether. All tethers in the tree are assumed to be rigid and straight, which is a
reasonable assumption if tether tension is high compared to gravity and tether drag. Note
that this assumption allows for a very good agreement with experimental flight data of
the single-aircraft system in [22]. In case a higher accuracy is desired, the topology can be
readily extended by discretizing the tethers into finite elements, adding a node for each
segment, as proposed in [10].

Some of the nodes k ∈ K correspond to aircraft nodes, while other nodes l ∈ L
are layer nodes, with L := N\K if |N | > 1 and L := N in the single-aircraft case.
The parent map P(n) uniquely defines the interlinkage between nodes, and the children
map C(n) := { n̄ ∈ N |P(n̄) = n} returns the set of nodes with parent n. Figure 1 illustrates
the proposed notation for some typical examples.

Figure 1. Topologies of a single-aircraft (left), triple-aircraft (middle), and two-layer-dual-aircraft
(right) AWE system.

2.2. System Dynamics and Variables

The considered topologies require a multi-body modeling approach that should exhibit
certain optimization-friendly properties. For one, the dynamics should have a low symbolic
complexity to allow for fast repeated numerical evaluation, in particular of its sensitivities.
Second, model nonlinearity should be kept low in order to enable fast and reliable use of
Newton-type optimization techniques. Third, the model should avoid singularities that
might be visited by and crash the optimization algorithm.

In [24], the efficacy of a non-minimal coordinates modeling approach to describe
the translational and rotational dynamics of multiple interlinked aircraft is demonstrated.
In this approach, each node is considered as a separate rigid body and linked by algebraic
constraints. The aircraft orientation is parametrized in a non-singular fashion using the
direction cosine matrix (DCM).

The resulting multi-body models are of reasonable complexity and nonlinearity but
result in model equations in the form of index-3 DAEs. This representation does not allow
for the deployment of classical integration methods within the optimal control problem [38].
Therefore an index-reduction technique is applied, which involves time-differentiation of
the algebraic constraints. The resulting model equations for both lift- and drag-mode AWE
systems are summarized by the following index-1 DAE:

F(ẋ(t), x(t), u(t), z(t), θ, p) = 0 , (1)

with associated consistency conditions C(x(t)) = 0, ∀t ∈ R.
To define the differential state vector x for both lift- and drag-mode systems, we first

define the basic multi-aircraft state

xbase := (q, q̇, R, ω, δ) . (2)
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This state vector firstly contains q and q̇ that are concatenations of the node positions
qn ∈ R3 and velocities q̇n ∈ R3 respectively, ∀n ∈ N . These are followed by the states
specific to aircraft nodes, namely R, ω, δ, which are concatenations of all Rk, ωk, δk, ∀k ∈
K. The DCMs Rk := [ê1,k, ê2,k, ê3,k] ∈ R3×3 contain the chord-wise, span-wise and
upwards unit vectors of the aircraft body frames, expressed in the inertial frame {ex, ey, ez}.
All DCMs should be orthonormal, i.e., they are constrained to evolve on the 3D manifold
defined by

cR,k := Put(R>k Rk − I) = 0 , (3)

where the operator Put is used to select the six upper triangular elements of a matrix.
The aircraft angular velocities ωk ∈ R3 are given in the body frame. The surface deflections
δk = [δa,k, δe,k, δr,k] ∈ R3 of aileron, elevator, and rudder, respectively, give control over the
aircraft aerodynamics.

The lift- and drag-mode state vector can now be defined as

xlift := (xbase, lt, l̇t) and xdrag := (xbase, κ) , (4)

where the tether length lt ∈ R and speed l̇t ∈ R describe the main tether reel-in and -out
evolution. The variable κ is the concatenation of all κk ∈ R, ∀k ∈ K, which represent the
onboard turbine drag coefficients.

The controls

ulift := (δ̇, l̈t) and udrag := (δ̇, κ̇) (5)

are given by the concatenation of all aircraft surface deflection rates δ̇k ∈ R3 and by either
the tether acceleration l̈t ∈ R or the concatenation of the turbine drag coefficient derivatives
κ̇k ∈ R.

The algebraic variables z := λ describe the concatenation of all Lagrange multipliers
λn ∈ R related to the tether constraints that restrict the position of each node n ∈ N to
evolve on a 2D manifold defined by

cn :=
1
2

(
∆q(n)>∆q(n)− l2

n

)
= 0 , (6)

where

∆q(n) :=

{
qn − qP(n), if n /∈ K,
qn + Rnrt − qP(n), if n ∈ K.

(7)

In these constraints, rt is the tether attachment point described in the aircraft frame.
The variable ln describes the tether length associated with node n and is defined together
with the tether diameter dn as

(ln, dn) :=


(lt, dt), if n = 1,
(ls, ds), if n ∈ K\{1},
(li, di), if n ∈ L\{1},

(8)

with ls and ds the length and diameter of the secondary tethers and li and di those of the
layer-linking tethers in stacked multi-aircraft configurations.

The ground station is located at the origin of the inertial frame, such that q0 := 0.
The variables θ represent variable system parameters that can be optimized over.

In the general stacked multi-aircraft case, they are defined as

θlift := (ls, d) and θdrag := (lt, ls, d) (9)

where d := (dt, ds, di).



Energies 2023, 16, 1900 6 of 32

The constant parameters p allow the dynamics to be evaluated for varying model
parameters, such as aircraft wing span, wind model parameters, etc. The system parameter
values used in the numerical experiments in this paper are listed in Appendix A, Table A1.

2.3. Lagrangian Dynamics

The system dynamics (1) can be derived in accordance with the Lagrangian approach
proposed in [24]. The system Lagrangian is defined as

L := T −V − λ>c , (10)

with c the concatenation of all tether constraints cn for all n ∈ N and with the kinetic
energy T and potential energy V defined as

T := ∑
k∈K

TK,k + ∑
n∈N

Tt,n (11)

V := ∑
k∈K

mKgq>k ez + ∑
n∈N

1
2

mt,ng(qn − qP(n))
>ez . (12)

Here, mK is the aircraft mass, and the tether mass mt,n := ρtln
πd2

n
4 , with ρt the tether

material density, and g is the gravitational acceleration. The kinetic energy related to the
aircraft TK,k and to the tethers Tt,n [39] are given by

TK,k :=
1
2

mKq̇>k q̇k +
1
2

ω>k JKωk , (13)

Tt,n :=
1
6

mt,n(q̇>n q̇n + q̇>P(n)q̇P(n) + q̇>n q̇P(n)) , (14)

with JK the aircraft moment of inertia and with the tether velocity at the ground station
given by

q̇0 := q̇>1 et with et :=
q1

lt
. (15)

Note that for a drag-mode system with constant tether length, this implies that q̇0 = 0.
With the system Lagrangian defined, the translational dynamics read:

d
dt

∂L
∂q̇
− ∂L

∂q
= F + Fcorr (16)

with F the concatenation of the external forces Fn exerted on each of the nodes. The term
Fcorr is a Lagrangian momentum correction term for open systems:

Fcorr := ∑
n∈N

dmn

dt
q̇>n

∂q̇n

∂q̇
. (17)

This term is non-zero for lift-mode systems since tether mass and energy are entering
and leaving the system due to the reeling motion.

The rotational dynamics are projected on a 3D manifold in the aircraft body frame [24]
so as to read:

JK
dωk
dt

+ ωk × JKωk + 2U(R>k ∇Rk λ>c) = Mk , ∀k ∈ K , (18)

with Mk the aerodynamic moment exerted on the aircraft and with U the “unskew" operator,
i.e., U(skew(a)) = a, as defined in [24].

Next to the dynamic equations, also the holonomic constraints c = 0 need to be
enforced. Since these constraints do not explicitly depend on the generalized accelerations
q̈ or on the algebraic variables λ, it is not possible to numerically integrate the resulting
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dynamic equations with standard algorithms. Therefore an index reduction is performed
by differentiating c twice with respect to time. Note that c̈ depends on q̈.

Because of the index reduction, as well as the over-parametrization of the rotational
degrees-of-freedom, the consistency conditions C(x) := (c, ċ, cR) = 0 must be enforced
at an arbitrary time point in the trajectory. These quantities are called invariants, since their
value is preserved by the dynamics. System invariants, when not dealt with carefully, can
lead to failure of the Linear Independence Constraint Qualification (LICQ) in the context
of periodic optimal control. Performing Baumgarte stabilization on the invariants is an
effective way to avoid this issue, while simultaneously ensuring that C(x) = 0 is satisfied
over the entire time period [40]. Therefore the tether constraint dynamics are augmented
with the following Baumgarte stabilization scheme:

c̈ + 2κtċ + κ2
t c = 0 , (19)

with κt a Baumgarte tuning parameter [41].

2.4. System Kinematics

The system dynamics also describe the following trivial kinematics. First, as explained
in the previous section, the rotational kinematics are augmented with a Baumgarte-type
stabilization on the orthogonality conditions [42]:

dRk
dt

= Rk

(κR

2
(I −R>k Rk) + skew(ωk)

)
, (20)

with κR another tuning parameter. The remaining kinematics

d
dt

(q, δ) = (q̇, δ̇) ,
d
dt

(lt, l̇t) = (l̇t, l̈t) (lift-mode),
d
dt

κ = κ̇ (drag-mode), (21)

together with (16)–(20) then complete the system dynamics summarized by (1). The re-
maining modeling effort now focuses on the generalized forces F and moments M.

2.5. Wind and Atmosphere Model

AWE systems typically operate at altitudes of several hundreds of meters, and the
altitude variation within a typical power cycle is of the same order of magnitude [15]. In
particular, the multi-aircraft variant, unhindered by the drag losses caused by main tether
cross-wind motion, can theoretically operate at arbitrarily high altitudes, wherever the
wind power density is highest [10,12]. Therefore, a wind model is needed that accounts for
the varying wind power availability with altitude. Within the community, it is common to
use one of the following approximations:

(a) Logarithmic profile: A logarithmic model [43] is typically used as a very simple wind
shear approximation. Assuming steady, laminar flow, the logarithmic model provides
us with the following expression for the freestream wind velocity u∞(z):

u∞(z) := uref
log z

z0

log zref
z0

ex , (22)

which, in this model, is assumed to be aligned with the x-axis in the inertial frame.
Here, uref is the reference wind speed that is measured at an altitude zref, whereas z0
is the surface roughness length, which depends on local terrain characteristics.

(b) Power-law profile: Another frequent approximation is given by the power law:

u∞(z) := uref

(
z

zref

)cf

ex , (23)
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where cf is a ground surface friction coefficient. We will use this model in the numerical
experiments in this paper, in accordance with case studies in [15,22].

(c) 2D wind data interpolation: The disadvantage of the logarithmic and power-law models
is that they are only useful for representing long-term average wind conditions.
Realistic wind profiles come in a wide variety of shapes and are subject to strong
short-term (hourly, diurnal, seasonal) changes. Furthermore, the approximation
accuracy typically breaks down at altitudes relevant to AWE systems [44] while
failing to account for the effect of vertical atmospheric stability. Hence, for accurate
optimal-control-based power curve and capacity factor estimation, it is often necessary
to generate a more detailed but still differentiable wind model based on highly
spatially resolved wind speed measurements. To achieve this, we adopt the approach
presented in [27,45]. We assume a wind profile that is represented by discrete 2D
wind measurements um,1, . . . , um,nlag ∈ R2. These measurements correspond to a set
of altitudes z1, . . . , znlag . We can then create a smooth wind model to approximate
the measured wind profile, by creating an interpolating function based on Lagrange
polynomials:

W(z, ζ) :=
nlag

∑
i=1

ζ i ·
nlag

∏
k=1
k 6=i

z− zk
zi − zk

 , (24)

with ζ the concatenation of the polynomial coefficients ζ i ∈ R2 obtained by solving
the following optimization problem

ζ∗ := arg min
ζ

1
2

nlag

∑
i=1
‖W(zi, ζ)− um,i‖2 + k

∥∥∥d2W
dz2 (zi, ζ)

∥∥∥2
. (25)

The cost function is tuned with weight k so that ζ∗i ≈ um,i, ∀i = 1 . . . nlag, while
preventing overfitting via the penalization of the second derivative of the interpolating
polynomials. The smooth and differentiable wind model is then given by

u∞(z) := (W(z, ζ∗), 0) . (26)

Wind power availability is linear in the air density, and the atmospheric density drop
is non-negligible in the altitudes relevant to AWE. Therefore the density variation with
altitude ρ(z) is modeled according to the international standard atmosphere model [43]:

ρ(z) := ρ0

(
T0 − TLz

T0

) g
TLR−1

, (27)

where R is the universal gas constant. The parameters T0 and ρ0 are the temperature and
air density at sea level, and TL is the temperature lapse rate.

Alternatively, the user can provide a set of density data points at different altitudes.
The continuous density profile ρ(z) is then constructed similar to the wind profile with
smoothed Lagrange polynomials, cfr. (24) and (25).

2.6. Aerodynamic Model

The apparent wind at each aircraft node k ∈ K is defined as

ua,k := u∞(q>k ez)− q̇k . (28)

We then define the dynamic pressure as qk := 1
2 ρ(q>k ez)‖ua,k‖2. The aerodynamic

forces (in the inertial frame) and moments (in the body frame) on the aircraft wings are
then given using
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FA,k := qkSRkCF,k and MA,k := qkS

 b 0 0
0 c 0
0 0 b

CM,k . (29)

with S the aircraft aerodynamic surface and with the aerodynamic coefficients CF,k :=
(CX,k, CY,k, CZ,k) and CM,k := (Cl,k, Cm,k, Cn,k), which are a function of the angles of attack
αk and side-slip angles βk, given by the small-angle approximations

αk :=
ê>3,kua,k

ê>1,kua,k
and β :=

ê>2,kua,k

ê>1,kua,k
. (30)

The force and moment coefficients C�,k (with � ∈ {F,M}) read as

C�,k := C�,0(αk) + C�,β(αk)βk + C�,ω(αk)

 b 0 0
0 c 0
0 0 b

 ωk
2‖ua,k‖

+ C�,δ(αk)δk (31)

The dependence of these coefficients on αk is approximated by second-order polyno-
mials of the form:

C�,◦(α) :=
[

c�,◦,2 c�,◦,1 c�,◦,0
] α2

α
1

 (32)

with the values of the coefficients c�,◦,i used in this study given in Table 2 in [22].
The tether drag is modeled as follows. Consider the infinitesimal tether drag force

dFtd,n(s) := Ftd,n(s)ds on an infinitesimal segment lnds, for s ∈ [0, 1], with:

Ftd,n(s) :=
1
2

ρ(qt,n(s)>ez)CD,tdnln‖ut,n(s)‖ut,n(s) , (33)

with CD,t the tether drag coefficient, and where the segment position and apparent wind
speed are given by

qt,n(s) := sqP(n) + (1− s)qn (34)

ut,n(s) := u∞(qt,n(s)>ez)− q̇t,n(s) . (35)

It is shown in [39,46] that the total drag force can be exactly distributed into contribu-
tions on node n and on its parent node P(n), so as to read

F1
td,n :=

∫ 1

0
sFtd,n(s)ds and F0

td,n :=
∫ 1

0
(1− s)Ftd,n(s)ds (36)

respectively. In order to be able to numerically evaluate the tether drag, the integrals
in (36) are discretized using the midpoint rule. Typically, a number of Mtd = 5 integration
intervals is sufficiently accurate.

The generalized forces can now be defined for each node as

F?
n :=


FA,n + F1

td,n if n ∈ K ∧ (? = lift)
FA,n + F1

td,n + Fturb,k if n ∈ K ∧ (? = drag)
F1

td,n + ∑
c∈C(n)

F0
t,c if n ∈ N\K

(37)
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and the generalized moments are given by the aerodynamic moments, i.e., Mk := MA,k, ∀k ∈ K.
In the drag-mode case, also the braking force of the onboard turbines is acting on the aircraft:

Fturb,k := κk‖ua,k‖ua,k . (38)

Note that the tether pulling force and moment exerted on the aircraft are implicitly
modeled in the constraint-based dynamics (16) and (18) and should not be considered as
part of the generalized forces.

2.7. Power Output

For lift-mode systems, the generated power is the product of the main tether force
with the tether speed. The pulling force using a tether n experienced at node n is given by
the expression Ft,n := −λn∇qn cn. Note that a positive multiplier corresponds to a positive
pulling force. The power transferred through tether n is then given by Pt,n := F>t,nq̇n. For the
main tether, this expression can be simplified to Pt,1 := −λ1lt l̇t. The mechanical power that
arrives at the ground station is given by Plift := −Pt,1.

In drag-mode systems, electrical power is generated by the onboard turbines and
transferred to the ground station through the tethers. Each aircraft k ∈ K generates
an amount of electrical power Pturb,k := ηturbκk‖ua,k‖3, with ηturb the onboard turbine
efficiency. Note that for the case of power consumption, i.e., κ < 0, the efficiency needs to be
inverted. This can be implemented using the logistic function, as proposed in [29]. The total
power output generated by the drag-mode system is then given by Pdrag := ∑

k∈K
Pturb,k.

3. Optimization Ingredients

In this section, we discuss all the necessary ingredients to formulate, discretize, and
reliably solve power optimization problems for the system model described in the previous
section. We state the periodic optimal control problem formulation in continuous time, and
we discuss common system constraints. We explain the transcription method to convert
the problem into an NLP, and we summarize the interior-point solution strategy used by
IPOPT to solve it. Then we describe how the initial guess is constructed, and how it can
be refined using two different homotopy methods that are tailored for interior-point NLP
solvers. Finally, we discuss a third homotopy method that is tailored to perform parameter
sweeps with interior-point NLP solvers.

3.1. Problem Formulation for Periodic Orbits

The main goal of the toolbox is to facilitate automated computation of dynamically
feasible, power-optimal periodic orbits for both lift- and drag-mode systems while satisfy-
ing a set of relevant system constraints. In order to achieve this, we formulate a periodic
optimal control problem of a free time period T, which has the distinctive property that the
system state at the initial and final time of the OCP time horizon can be chosen freely by
the solver but must be equal. Given that some key system parameters θ, such as the tether
diameters and lengths, have a huge impact on the system power output and the optimal
flight trajectories, they are included as optimization variables as well.

Let the optimization variables be defined as w := (x(·), u(·), z(·), θ, T). Then we can
compute a power-optimal state and control trajectories and a corresponding system design
θ for given parameters p by solving the following continuous-time optimization problem:

min
w

1
T

T∫
0

l(x(t), u(t), z(t))dt (39a)

s.t. F(ẋ(t), x(t), u(t), z(t), θ, p) = 0, ∀t ∈ [0, T], (39b)

h(ẋ(t), x(t), u(t), z(t), θ, p) ≤ 0, ∀t ∈ [0, T], (39c)

x(0)− x(T) = 0, (39d)
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ψ(x(0)) = 0. (39e)

The Lagrange cost term is given by the sum of the negative power output and a penalty
on the controls in order to mitigate actuator fatigue, as well as on the side slip angle and the
angular accelerations in order to avoid aerodynamic side forces and aggressive maneuvers:

l(x(t), u(t), z(t)) := −P(t) + ŵ(t)>Wŵ(t) , (40)

with ŵ(t) := (u(t), β(t), ω̇(t)) and W a constant diagonal weighting matrix. The variables β
and ω̇ are the vertical concatenations of the side slip angles βk and angular accelerations ω̇k,
∀k ∈ K. Proper tuning of the weighting matrix W is necessary to achieve fast convergence
of the optimization algorithm as well as to obtain a locally unique solution. We refer the
reader to the open-source code for the weighting factors used in the numerical experiments
in this study.

The function ψ : Rnx → R is used to impose a technical constraint that removes the
phase invariance inherent to periodic OCPs. For lift- and drag-mode systems, this function
is different and reads as either

ψlift(xlift(0)) := l̇t(0)
!
= 0 or ψdrag(xdrag(0)) := q̇1(0)>ey

!
= 0 . (41)

The inequality constraints h are discussed in the following section.
Note that the consistency conditions C(x(t)) = 0 are not enforced at any given time

within the time horizon of the OCP. In combination with the periodicity constraint (39d),
this would lead to LICQ deficiency for all feasible trajectories. There exist several technical
solutions for this issue [40]. In the dynamic correction approach chosen here, Baumgarte
stabilization is applied to the consistency conditions in the system dynamics, as previously
mentioned in Section 2.3. Therefore the dynamics of C are exponentially stable, and since
with the value of periodicity, it holds that C(x(0)) = C(x(T)), the only feasible periodic
state trajectories are those where C(x(t)) = 0, ∀t ∈ [0, T].

3.2. System Constraints

A particular feature of OCP (39) is that it has an economic cost function, which is not
lower bounded, as opposed to tracking cost functions [47]. OCPs with an economic cost
function tend to have extreme solutions in the absence of constraints. In the context of AWE
power optimization, it is, therefore, crucial to impose constraints that avoid a violation of
the flight envelope, and that preserve the structural integrity of the airframe and the tether.

The flight envelope consists of upper and lower bounds on the angle-of-attack α (to
avoid stall) and the side-slip angle β (to avoid additional drag and preserve model validity)
for all aircraft in the system. Additionally, the stress in the tethers should not exceed the
yield strength with a certain safety factor fs:

σn := fs
4‖Ft,n‖

πd2
n
≤ σmax , ∀n ∈ N . (42)

Here, the tether force magnitude can be simplified to ‖Ft,n‖ = λnln, following the defi-
nition in Section 2.7. The aircraft orientation is also constrained in order to avoid collision of
the airframe with the tether, which might occur during sharp turns in transition maneuvers:

(qk − qP(k))
>ê3,k ≥ cos(γmax)lk , ∀k ∈ K , (43)

where γmax is the maximum angle between the tether vector and the upwards unit vector
of the aircraft body frame, which should be set lower than at most π/2. In the multi-aircraft
case, the following anti-collision constraints might be included:

‖qk − qm‖2 ≥ fbb , ∀k, m ∈ K , k 6= m , (44)

where fb is safety factor in multiples of the wing span b.
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Along these nonlinear constraints, variable bounds are typically imposed on variables
such as flight altitude, tether length, speed and acceleration, aircraft angular velocity,
control surface deflections and their rates, etc. One pair of variable bounds that is crucial in
the context of periodic optimal control are the bounds on the time period T. Since the OCP
will be discretized in a discrete number of numerical integration intervals, the integration
accuracy is variable along with T. Therefore, T should be bounded from above to guarantee
an acceptable simulation accuracy. Also, by translating a priori knowledge on the optimal
value of T into variable bounds, we narrow the search space and exclude many possible
local solutions, which typically increases reliability and speeds up the convergence of the
NLP solver.

3.3. Problem Transcription

The continuous-time OCP (39) has an infinite number of variables and constraints.
Hence, we apply direct optimal control to transcribe the OCP to an NLP. We choose
transcription by direct collocation, which is a fully simultaneous approach, where the
numerical simulation variables are treated as variables in the optimization problem [26].
We choose this approach for the following reasons.

First, fully simultaneous optimal control is characterized by faster contraction rates of
the Newton-type iterations compared to simultaneous and sequential optimal control, in
particular for highly nonlinear and unstable systems [48]. Second, in the fully simultaneous
case, the simulation problem is solved directly by the NLP solver, which is typically more
robust than the rootfinder used in standard available numerical integrators. Finally, since
OCP (39) is highly non-convex, the NLP solver benefits from computing the Newton step
using exact Hessian information. The NLP Hessian becomes considerably cheaper to
evaluate in the fully simultaneous approach.

Although the resulting direct collocation NLP is comparably large, it is also sparse. In
combination with a sparsity-exploiting NLP solver, direct collocation is a highly efficient
transcription method for the models presented in this paper.

In direct collocation, the time horizon is divided into N (usually equidistant) intervals
described by [ti, ti+1], where 0 < t0 < t1 < · · · < tN = T. The control trajectory is
parameterized as a piecewise constant function ũ(t) := ui if t ∈ [ti, ti+1). The state
trajectory is parametrized by piecewise polynomials of order M + 1, i.e., x̃(t) := x̃i(t)
if t ∈ [ti, ti+1), with

x̃i(t) :=
M

∑
j=0

ξ j(τ)x′i,j , (45)

with the normalized time τ := t−ti
∆ti

, τ ∈ [0, 1], with ∆ti := ti+1 − ti and with the variables
x′i,j placed at the time points (τ0, τ), with τ := (τ1, . . . , τM) and with τ0 := 0. The Lagrange
polynomials ξ j are uniquely defined by the choice of collocation grid points τ:

ξ j(τ) :=
M

∏
k=0
k 6=j

τk − τ

τk − τj
. (46)

Note that it holds that x̃i(ti + ∆tiτj) = x′i,j. The state derivative is given by the
derivative of the polynomials, i.e.,

˙̃xi(t) :=
M

∑
j=0

1
∆ti

dξ j

dτ
(τ)x′i,j . (47)

The algebraic variables are also discretized in each i’th time interval as z′i,j, and
allocated to the collocation points τ1, . . . , τM.
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Let us now define xi := x′i,0, Xi := [x′i,1, . . . , x′i,M] and Zi := [z′i,1, . . . , z′i,M]. Then, for
given state vector xi at the start of each interval, the collocation variables Xi and Zi are
uniquely determined by enforcing the system dynamics (1) at the grid points τ1, . . . , τM:

Gi(xi, ui, Xi, Zi, θ, p, T) :=


F
(

˙̃xi(ti + ∆tiτ1), x′i,1, ui, z′i,1, θ, p
)

F
(

˙̃xi(ti + ∆tiτ2), x′i,2, ui, z′i,2, θ, p
)

...
F
(

˙̃xi(ti + ∆tiτM), x′i,M, ui, z′i,M, θ, p
)

 = 0 . (48)

The state transition from one interval node to the next is given by the equation

xi+1 = φ(xi, Xi) with φ(xi, Xi) := x̃i(ti+1) =
M

∑
j=0

ξ j(1)x′i,j . (49)

The system of Equation (48) corresponds to that of an implicit Runge–Kutta integration
scheme, where the choice of collocation grid points τ uniquely defines the Butcher-Tableau
of the specific integration method. Here, we choose as collocation grid points the roots
of Gauss–Radau polynomials, more specifically those corresponding to the Radau IIa
integration scheme because of its high order accuracy and its excellent stability properties
(A- and L-stability), which is particularly relevant for DAE systems [49].

Further, the inequality constraints are imposed on the interval nodes, and the Lagrange
term in the cost function can be computed via a quadrature rule [26]:

ti+1∫
ti

l(x(t), u(t), z(t)dt ≈ ∆ti

M

∑
j=1

b′j · l(x′i,j, ui, z′i,j) , (50)

where the quadrature weights are given by

[
b′1 · · · b′M

]
:=
[

ξ1(1) · · · ξM(1)
]

dξ1
dτ (τ1) · · · dξM

dτ (τ1)
...

. . .
...

dξ1
dτ (τM) · · · dξM

dτ (τM)


−1

. (51)

The NLP resulting from discretizing the OCP (39) using direct collocation is then
formulated as

min
w

1
T

N−1

∑
i=0

∆ti

M

∑
j=1

b′j · l(x′i,j, ui, z′i,j) (52a)

s.t. xi+1 −φ(xi, Xi) = 0, ∀i = 0, . . . , N − 1, (52b)

Gi(xi, ui, Xi, Zi, θ, p, T) = 0, ∀i = 0, . . . , N − 1, (52c)

h( ˙̃xi(ti + ∆iτM), Xi,M, ui, Zi,M, θ, p) ≤ 0, ∀i = 0, . . . , N − 1, (52d)

x0 − xN = 0, (52e)

ψ(x0) = 0. (52f)

with the decision variables summarized by w := (x0, X0, Z0, u0, x1, . . . , uN−1, xN , θ, T).
For the remainder of this text, we will write NLP (52) in more compact form as the para-
metric NLP

Pf(p) := min
w

Φ(w, p) (53a)

s.t. G(w, p) = 0, (53b)

H(w, p) ≤ 0. (53c)
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3.4. Solution Strategy

There are two common solution approaches for inequality-constrained nonlinear
programs such as (53): sequential quadratic programming (SQP) methods and interior-
point (IP) methods [50]. SQP methods are based on iteratively solving a series of convex
quadratic programs (QP) that are local approximations of the NLP. IP methods, on the other
hand, perform iterations directly on a relaxed version of the Karush–Kuhn–Tucker (KKT)
system corresponding to NLP (53), which reads as

∇wΦ(w, p) + λ>∇wG(w, p) + µ>∇wH(w, p) = 0

G(w, p) = 0

H(w, p) + s = 0

diag(s)µ = τ1 ,

(54)

where 1 denotes a vector of ones. Together with the conditions µ ≥ 0, s ≥ 0, the KKT sys-
tem (54) for barrier parameter τ = 0 gives the first-order necessary conditions of optimality.
However, in this case, the KKT system is non-smooth due to the complementarity condition
diag(s)µ = 0, and therefore difficult to solve with Newton-type methods. Therefore, in
IP methods, the iterations generally start on a smooth KKT system related to a barrier
parameter τ0 > 0, which is then gradually reduced to a smaller value τf > 0, so that the
final solution approximates the exact solution of (54) up to sufficient accuracy. It holds that
‖w∗τ −w∗‖2 = O(τ), where w∗τ and w∗ are the solutions to the KKT system for τ > 0 and
for τ = 0, respectively.

The advantage of IP methods is that the iterations are computationally cheaper com-
pared to those of SQP methods: per iteration, only one linear system has to be solved, as
opposed to one QP of equal size. Additionally, because IP methods start iterating on a
problem with relaxed inequality constraints, and only gradually tighten these constraints,
they are particularly robust in case little or no a priori knowledge on the active set of the
optimal solution is available, as is typically the case for AWE systems.

In this work, we use the interior-point NLP solver IPOPT [36] in combination with the
linear solver MA57 [51]. IPOPT implements a particularly reliable algorithm that implements
a filter line search method for globalization [52]. The algorithm also exploits the sparsity of
the direct collocation NLP which makes it particularly efficient for this application.

3.5. Circular Initial Guess Construction

In order to efficiently converge to a solution of a highly nonlinear, non-convex NLP,
even a robust NLP solver such as IPOPT typically requires a good initial guess. Therefore
we propose here a circular flight trajectory initialization based on a limited number of
user-defined parameters π0:

π0 := (q̇0, N0
l , l0

t , θ0
e , θ0

c , ϕ0, θ0) , (55)

where q̇0 is the aircraft flight speed, N0
l the number of loops, l0

t the initial tether length,
θ0

e the (average) elevation angle of the main tether, and θ0
c the trajectory cone angle with

respect to the average main tether vector. The angle ϕ0 denotes the phase angle with which
the periodic initial guess can be shifted in time. The parameter θ0 is a direct guess for the
system parameters θ.

Building on the parameters π0, we then define a stationary tether frame as

e′1 := cos(θ0
e) · ex + sin(θ0

e) · ez , e′2 :=
e′1 × ex

‖e′1 × ex‖
, e′3 := e′1 × e′2 , (56)

after which we can define for each aircraft k a frame that is rotating about the main tether:[
e′′1,k(t) e′′2,k(t) e′′3,k(t)

]
:= Rx(φk(t))

[
e′1 e′2 e′3

]
(57)
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with the rotation angle ϕk(t) for each aircraft defined as

ϕk(t) := ϕ0 + ω0t + 2π(k− P(k)− 1)/|C(P(k))\L| , (58)

and with the rotation radius and speed, and the time period of one loop defined as

R0 := l0
k sin(θ0

c ) , ω0 :=
q̇0

R0 and T0
l :=

2π

ω0 , (59)

respectively.
In the general multi-aircraft case, the node positions and (angular) velocities are then

initialized at each time point on the collocation grid ti by

q0
l,i ← q0

P(l),i + l0
l · e

′′
1,k(ti) , ∀l ∈ L , (60)

q0
k,i ← q0

P(k),i +

√
l0
k

2 − R02 · e′′1,k(ti) + R0 · e′′2,k(ti) , ∀k ∈ K , (61)

q̇0
k,i ← q̇0 · e′′3,k(ti) , ∀k ∈ K , (62)

ω0
k,i ← ω0 · e′′1,k(ti) , ∀k ∈ K . (63)

In the single-aircraft case (K = L = {1}), the aircraft position is initialized using (61).
The layer node velocities are set to zero.

The aircraft DCMs are initialized so that the initial guess meets the flight envelope
constraints rather than exactly satisfying the kinematic relation (20). The apparent wind
speed for each aircraft at time ti is given by

u0
a,k,i := u∞(q0>

k,i ez)− q̇0
k,i , ∀k ∈ K , (64)

with u∞(·) as the user-defined wind profile. The DCM is then initialized to have a zero
angle of attack and a zero side-slip angle:

ê0
1,k,i ←

u0
a,k,i

‖u0
a,k,i‖

, ∀k ∈ K , (65)

ê0
2,k,i ←

e′′1,k(ti)× ê1,k,i

‖e′′1,k(ti)× ê1,k,i‖
, ∀k ∈ K , (66)

ê0
3,k,i ← ê1,k,i × ê2,k,i , ∀k ∈ K . (67)

The tether multipliers are trivially initialized as λ0
n ← 1 Nm−1, ∀n ∈ N , to ensure

a strictly positive tether force. All remaining states and controls are initialized as zero.
Finally, the initial overall cycle period is set to T0 ← T0

l N0
l .

The initial guess is summarized with the vector w̄0. In the following, we will refer to
the method which uses w̄0 as an initial guess for solving Pf as “NH” (no homotopy).

3.6. Homotopy-Based Initial Guess Refinement

Even the educated initial guess defined in the previous section often leads to very slow
convergence or even solver failure when solving Pf(p). In order to increase computation
speed and improve reliability, we propose a refinement procedure based on homotopy
methods that reliably produces a close-to-optimal, feasible initial guess based on the
analytic user-defined initialization.

The basic idea is to first solve a trivial version of the intended NLP, and then to
repeatedly compute the solution while updating the NLP in a controlled and smooth
way to the full nonlinear final problem. Homotopy methods (also known as continuation
methods) are widely used in the field of non-convex optimization when little or no a priori
knowledge of the location of the optimal solution is available [53,54]. Homotopy methods
were originally introduced in the field of AWE optimization in [25]. In this paper, we
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generalize this approach for multiple homotopy stages and discuss particularities when
using interior-point methods.

First we construct a homotopy problemHc(p, φ), with homotopy parameters φ ∈ Rnφ

and φi ∈ [0, 1], ∀i ∈ {1, . . . , nφ}. Note that φ can be multidimensional to allow for a step-
wise introduction of distinct model nonlinearities or couplings. The homotopy problem is
defined as

Hc(p, φ) := min
w

ΦH(w, p, φ) (68a)

s.t. GH(w, p, φ) = 0, (68b)

HH(w, p, φ) ≤ 0 (68c)

with the NLP functions ΦH, GH and HH defined such thatHc(p, 1) = P0(p) andHc(p, 0) =
Pf(p). Here, P0(p) is a simplified problem that is trivial to optimize for a large set of initial
guesses, and Pf(p) is the target optimization problem defined in (53). It can be shown that,
ifHc(p, φ) satisfies the LICQ and second-order sufficient conditions (SOSC) for all p and φ,
there exists a unique and piecewise smooth homotopy path w∗(p, φ) between the optimal
solutions w∗(p, 0) and w∗(p, 1) [54].

Algorithm 1 (CIPH) describes a classic procedure to follow the homotopy path
w∗(p, φ). First, we provide an initial guess w̄0, which is the approximate solution of
the initial problem P0(p). Then, for each step i in the multi-step homotopy, we reduce
the homotopy parameter φi from one to zero with an increment 1

γ in a total of γ itera-
tions. At every iteration, the homotopy problem Hc(p, φ) is solved up to a certain (low)
accuracy level, while the NLP solver is warm-started with the solution of the previous
iteration. To improve performance, the maximum number of NLP iterations can be limited
in this stage.

Algorithm 1 Classic Interior-Point-based Homotopy (CIPH)

Require: w̄0, p, γ > 0
Output: w̄f

φ← 1nφ×1

w(0) ← NLPSOLVER(P0(p), w̄0)
for i = 1, . . . , nφ do

w(i) ← w(i−1)

for j = 1, . . . , γ do
φi ← φi − 1

γ

w(i) ← NLPSOLVER(Hc(p, φ), w(i))
end for

end for
w̄f ← w(nφ)

The output of the homotopy, then, is an approximate solution w̄f to the intermediate
problem Hc(p, 0), which can be used as an initial guess for solving Pf(p) up to high
accuracy. If the LICQ and SOSC conditions are fulfilled, there exists a high enough value of
γ to guarantee convergence of this algorithm [54] (Theorem 5.2).

3.7. Penalty-Based Homotopy

The fixed-step continuation approach described in the previous section is simple to
implement and works well in practice [27,45,55]. Nevertheless, it has two drawbacks. First,
the choice of a fixed homotopy parameter step renders the algorithm less robust than if
an adaptive-step strategy were used. Second, in terms of computational efficiency, γ · nφ

NLPs need to be solved by default even when larger steps would be feasible.
Of course, adaptive step size strategies for the homotopy path following exist and are

well-established [53,54]. However, they increase the complexity of the algorithm as well
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as the number of hyperparameters to tune. Therefore we propose a simple but effective
variation of Algorithm 1, which can be used in particular when the chosen NLP solver
is a well-globalized solver. The idea is to use the underlying globalization routines (e.g.,
line-search) of the NLP solver to choose a suitable homotopy parameter step size.

The resulting homotopy strategy is penalty-based and builds on the reformulationHp
of NLP (68) to read:

Hp(p, φ̂) := min
w, φ

ΦH(w, p, φ) + S>φ (69a)

s.t. GH(w, p, φ) = 0, (69b)

HH(w, p, φ) ≤ 0, (69c)

φ ≥ φ ≥ φ. (69d)

In this formulation, the parameters φ are treated as decision variables with a high linear
penalty S ∈ Rnφ

+ . The homotopy path is now parametrized by the bounds on φ, i.e.,
φ̂ := (φ, φ) ∈ [0, 1].

Algorithm 2 (PIPH) describes the alternative homotopy procedure. The lower bounds
φ are successively set to zero for each homotopy stage, allowing the NLP solver to find a
path for the homotopy parameter φi in stage i, while simultaneously applying correction
steps to the decision variables w. Afterward, the problem is solved again with φi = 0 to
ensure completion of the homotopy stage.

Algorithm 2 Penalty-based Interior-Point-based Homotopy (PIPH)

Require: w̄0, p
Output: w̄f

φ, φ, φ(0) ← 1nφ×1

w(0) ← NLPSOLVER(P0(p), w̄0)
for i = 1, . . . , nφ do

w(i) ← w(i−1)

φ
i
← 0

w(i) ← NLPSOLVER(Hp(p, φ̂), w(i))

φi ← 0
w(i) ← NLPSOLVER(Hp(p, φ̂), w(i))

end for
w̄f ← w(nφ)

Because of the high linear penalty on φ, the NLP solver will take the largest possible
parameter step that is acceptable to the line-search filter, hence providing both robustness
and speed. Additionally, only 2 · nφ NLPs need to be solved instead of the γ · nφ NLPs in
the classic continuation homotopy. This can allow for a significant speed-up even if the
number of iterations per NLP solve is naturally higher.

Note that the convergence of Algorithm 2 is only guaranteed for small enough updates
of the parameter φ̂. In practice, however, convergence is almost always achieved for jumps
from 1 to 0.

3.8. Interior-Point-Based Homotopy

The homotopy methods presented above are based on the idea of solving a sequence
of closely related problems, where the solution of each problem is used to warm-start the
next. However, because an interior-point NLP solver by default starts iterating on the
relaxed KKT problem (54) (with a high barrier parameter τ), it is unable to exploit the
(active set) information contained in the initial guess, if it is the solution to the non-smooth
KKT problem. To circumvent this issue, we apply the following barrier strategy [27,56,57]
throughout the homotopy:
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1. The initial problem P0 is solved from an initial barrier parameter τ0 to an intermediate
τi < τ0, so that the KKT system remains sufficiently smooth.

2. The homotopy problemHp is repeatedly solved for constant barrier parameter τi.
3. The final problem Pf is solved from τi to a final value τf < τi.

Using this strategy, the Newton iterations quickly converge from one intermediate
problem to the next during the homotopy stage.

3.9. Homotopy Design

In this paper, we propose two homotopy stages (nφ = 2). The initial problem P0(p)
thus comprises two alterations with respect to the final problem Pf(p). Firstly, the aerody-
namic forces and moments in the model are replaced with the direct force controls Ff,k ∈ R3

and moment controls Mf,k ∈ R3 for all k ∈ K, which are then added to the control vector u.
This step relaxes the nonlinearities and couplings related to aerodynamics [25]. Secondly,
the initial problem does not optimize the average power output but rather the tracking
error with respect to the user-generated initial guess.

The homotopy problems Hc(p, φ) and Hp(p, φ̂) are then constructed by replacing
FA,k and MA,k in (37) with(

F̂A,k
M̂A,k

)
:= φ1

(
FA,k
MA,k

)
+ (1− φ1)

(
Ff,k
Mf,k

)
(70)

as well as by changing the stage cost function to

l(x(t), u(t), z(t), φ) := −φ2P(t) + (1− φ2)‖x(t)− x̄0(t)‖2
Q + ŵ(t)>Wŵ(t) , (71)

with x̄0(t) the initial state trajectory guess.
Additionally, in order to reduce the initial degrees of freedom, the system parameters

are fixed to their initial values until the second homotopy step. The system parameters are
thus only free optimization variables when the cost function transitions from tracking error
to power output:

(1− φ
2
)θ+ φ

2
θ0 ≤ θ ≤ (1− φ

2
)θ̄+ φ

2
θ0 . (72)

Substituting Equations (70)–(72) into the model, cost function and constraints, we
obtain after repeated discretization with direct collocation the functions ΦH(w, p, φ),
GH(w, p, φ) and HH(w, p, φ).

3.10. Parametric Sweep Warmstarting

Once a solution for NLP (53) has been found, it is often interesting to investigate the
sensitivity of the optimal solution with respect to one or more of the model parameters p.
A typical example is when we compute the NLP solution for different values of uref (in the
case of a logarithmic or power-law wind profile) to compute a power curve for a particular
AWE system. One approach is to apply Algorithms 1 or 2 to compute a solution for all
parameter values based on the same initial guess. However, in case the distance between
the different parameter values is small, it is more efficient and more reliable to compute an
initial guess for one problem from the solution of the previous one.

Algorithm 3 (SIPH) describes how an initial guess for each problem in the set of NLPs
Pf(pi), for i = 1, . . . , p, can be generated efficiently. It starts based on the solution w̄f,0 of
the homotopy problem Hc(p0, 0) for an initial set of parameters p0. This initial solution
can be computed using CIPH or PIPH. We assume that the sequence of parameter vectors
p0, . . . , pp is ordered so as to minimize the distance from one parameter set to the next,
as proposed in [27]. Then, we can compute the initial guess w̄f,i for problem Pf(pi) from
the guess w̄f,i−1 for the previous problem Pf(pi−1), by updating the parameter vector p
from one value to the next via linear interpolation in γp steps and by recursively solving
the problemHc(p, 0). We employ the same barrier strategy as in Section 3.8 and keep the
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barrier parameter at a constant value τi while solvingHc, to guarantee a smooth transition
from one problem to the next.

Algorithm 3 Parametric Sweep Interior-Point-based Homotopy (SIPH)

Require: w̄f,0, p0, . . . , pp
Output: w̄f,1, . . . , w̄f,p

for i = 1, . . . , p do
w̄f,i ← w̄f,i−1
for j = 1, . . . , γp do

p← pi−1 +
j

γp
(pi − pi−1)

w̄f,i ← NLPSOLVER(Hc(p, 0), w̄f,i)
end for

end for
w̄f ← w(nφ)

4. The AWEbox Software Package

The goal of the AWEbox software package is to provide a user-friendly interface that fa-
cilitates the automatic construction of the optimization-friendly dynamics (1). It formulates
the power optimization problem (39) and reliably finds a numerical solution. The toolbox is
written in Python 3 and relies heavily on the following software packages: CasADi, an open-
source symbolic framework for algorithmic differentiation and nonlinear optimization [35];
the interior-point NLP solver IPOPT [36]; and (optionally) the linear solver MA57 [51]. The
six main classes and the basic structure of the package are shown in Figure 2, including the
dependencies on the external packages.

Figure 2. Main AWEbox classes (Python) and overall software structure, including dependencies.

Starting at the lowest level, the Model-class takes the user-provided modeling options
and assembles the according state, control, and algebraic variable vectors. Then, the dy-
namics (1), relevant constraints, and intermediate model outputs are constructed as CasADi
Function objects. Table 1 gives an overview of the main modeling options implemented in
AWEbox. Central here is the use of CasADi to compute the partial derivatives of the system
Lagrangian in (16). Finally, the Model class can also be used in standalone mode, e.g., in
case the user is interested in obtaining the dynamics for simulation purposes only.

The NLP class the dynamics and constraints receives from a Model instance and con-
structs the NLP functions ΦH, GH and HH as CasADi Function objects, using the direct
collocation approach presented in Section 3.3.

From a practical viewpoint, it is essential for the convergence of the NLP solver that
all variables, equations, and cost terms are properly scaled. Therefore, AWEbox implements
a heuristics-based scaling procedure based on the system parameters and the user-defined
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initialization. We refer the reader to the open-source implementation for the scaling factors
obtained in the numerical experiments in this study.

Table 1. Main AWE system modeling options and possible variants implemented in awebox.

Options Variants

Topology
single-aircraft, i.e., (1, 1)
multi-aircraft, e.g., (1, 2)

stacked multi-aircraft, e.g., (2, 3)

Power generation lift-mode
drag-mode

Aircraft DOF 6 DOF
3 DOF [10]

Wind profile

uniform
logarithmic
power-law

custom 2D data points

Atmosphere
uniform

International Standard Atmosphere
custom data points

Induction constant/zero
actuator-disk

The NLP functions are then passed on to the Optimization class, where their first- and
second-order derivatives are constructed using CasADi, which also provides the interface
to IPOPT. The Optimization class then constructs the initial guess from Section 3.5 and
implements both Algorithms 1 and 2 to prepare the homotopy-based initial guess for
solving Problem (53). It is also possible to warm-start of the solver with a user-provided
initial guess. Finally, Problem (53) is solved up to high accuracy. The default linear solver
for computing the Newton step within IPOPT is MUMPS, but in general, higher performance
in terms of speed and reliability is reached using the solver MA57, which has to be installed
separately.

On a higher level, the central class with which the user interacts is the Trial class,
which knits together the functionality of the lower-level classes. To start with, the user
can specify modeling options, physical parameters, discretization options, initialization
parameters, etc., as in the (non-exhaustive) example given in Listing 1.

Listing 1. Example of AWEbox options that can be specified by the user.

1 opts = {}
2 opts['model.topology '] = {1:0} # parent map P(n)
3 opts['model.kite_dof '] = 6
4 opts['model.system_type '] = 'lift_mode '
5 opts['model.wind.model'] = 'uniform '
6 opts['model.wind.u_ref'] = 10. # [m/s]
7 opts['nlp.N'] = 100
8 opts['solver.linear_solver '] = 'ma57'
9 opts['solver.initialization.l_t'] = 400. # [m]

10 opts['solver.homotopy.phi.0'] = 'penalty '
11 opts['solver.homotopy.phi.1'] = 'penalty '

Based on the specified options, the user can create a Trial object, and build the system
dynamics, constraints, and NLP functions, including derivatives, as shown in Listing 2. In
this example, the power optimization is then solved using the penalty-based homotopy. The
Trial class then performs some quality checks on the numerical accuracy of the solution,
e.g., by checking consistency condition satisfaction. The class also contains some basic
plotting functionality for visualizing the optimal solution.
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Listing 2. Set-up and numerical solution of a periodic OCP via the AWEbox interface.

12 from awebox import Trial
13 trial = Trial(opts)
14 trial.build()
15 trial.solve()
16 trial.plot(['states ', 'controls '])

The high-level class Sweep, which builds on the Trial class, can be useful for paramet-
ric sweeps, as illustrated by Listing 3. This class builds the parametric NLP functions and
their derivatives only once, and implements Algorithm 3 for warm-starting the neighboring
NLP problems.

Listing 3. Parametric sweep set-up and numerical solution via the AWEbox interface.

17 from awebox import Sweep
18 sweep_opts = [('model.wind.u_ref ', [4,6,8,10,12,14,16])]
19 sweep = Sweep(opts , sweep_opts)
20 sweep.build()
21 sweep.run()

The MPC class uses the Trial class and the lower level classes to construct the tracking
MPC problem as defined in [58]. The class takes as an input the optimal solution of
Problem (39) to construct a periodic reference on the MPC time grid. It also takes care of
correct initialization, an initial guess, and periodic reference shifting. The MPC problem
can then be recursively solved using IPOPT with the warm-starting strategy from [57].
The main goal of this class is not to provide highly efficient numerical solvers aimed at
embedded optimization, such as those implemented in the software packages acados [59]
or PolyMPC [60]. Rather, this class provides a reliable controller that conveniently allows for
offline closed-loop simulations. Listing 4 provides an example of how such a controller can
be constructed and evaluated based on (solved) Trial-object.

Listing 4. MPC controller set-up and evaluation via the AWEbox interface.

22 from awebox import Pmpc
23 mpc_opts = {}
24 mpc_opts['N'] = 20
25 mpc_opts['terminal_point_constr '] = True
26 Ts = 0.1
27 mpc = Pmpc(mpc_opts , Ts, trial)
28 u0 = mpc.step(x0)

Although the focus here is reliability and not computational efficiency, the user can
also code-generate and compile the MPC solver functions using CasADi for use in an
external codebase or for embedded application.

5. Numerical Results

This section discusses two numerical case studies that highlight the contributions
of the AWEbox software package. In the first case study, we discuss and compare the
computational performance and robustness of the homotopy algorithms CIPH and PIPH,
while solving a single-aircraft lift-mode reference problem. In the second case study, we
compute a power curve for a dual-aircraft lift-mode system and compare the performance
of the algorithms PIPH and SIPH.

In this paper, we focus mainly on algorithmic developments and performance. How-
ever, for validation purposes, we also provide an example in the toolbox repository which
re-implements the case study performed in [15] with a very good agreement of results.
Small remaining discrepancies can be explained by tuning differences since the exact regu-
larization weights and scaling factors used in this case study are not available. For brevity,
we do not discuss these results further in this text.
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5.1. Single-Aircraft Case Study

The first reference problem aims at finding an optimal power cycle for a lift-mode
single-aircraft system, with K = {1}, L = {1}, and P(1) = 0. The aircraft parameters are
taken from the Ampyx AP2 reference model presented in [22]. We adopt the same wind
profile and atmosphere model as presented in [15]. We assume a “reinforced” version of
the AP2 airframe since the real-world airframe load limits lead to an overly pessimistic
average power output estimate. Therefore, compared to the OCP in [15], the airspeed limits
and tether force limits are omitted and replaced only by a tether stress constraint, while the
tether diameter dt is no longer fixed and is treated as an optimization variable. Table A1
in Appendix A summarizes the model parameter values of this reference problem, while
Table 2 lists all variable bounds and path constraints.

Table 2. System variable bounds and path constraints.

Description Variable Min Max Units

Side-slip angle β −20.0 20.0 deg
Angle-of-attack α −6.0 9.0 deg
Tether stress σ 0.0 3.6 GPa
Rotation angle γr −40.0 40.0 deg
Tether length lt 10.0 700.0 m
Tether speed l̇t −15.0 20.0 ms−1

Tether acceleration l̈t −2.4 2.4 ms−2

Flight altitude qz 100.0 - m
Time period T 20.0 70.0 s
Angular velocity ω −50.0 50.0 deg s−1

Aileron deflection δa −20.0 20.0 deg
Rudder deflection δr −30.0 30.0 deg
Elevator deflection δe −30.0 30.0 deg
Deflection rates δ̇ −2.0 2.0 rad s−1

We construct the NLPs (68) and (69) using N = 100 intervals with Radau collocation
polynomials of the order M = 4, and the controls are discretized using a piecewise constant
parameterization. The resulting NLPs have 15,334 variables, 14,323 equality constraints, and
600 inequality constraints. We solve the problem on an Intel Core i7 2.5 Ghz, 16 GB RAM.

The homotopy meta-parameters are experimentally tuned to minimize the associated
CPU time. The intermediate homotopy barrier parameter is chosen as τi = 10−2. For CIPH,
the number of parameter update steps per stage are γ1 = 10 and γ2 = 1. For PIPH, the
homotopy parameter penalties are S1 = 102 and S2 = 1.

In the following, we wish to investigate the performance and robustness of CIPH and
PIPH, compared to the case where the user-provided circular initial guess is applied without
refinement (“no homotopy” - NH). For this purpose, the reference problem described above
is solved for each method for a set of 100 uniformly sampled initialization parameters π0

from the set defined by π0
lb ≤ π0 ≤ π0

ub.
In the NH-case, performance heavily depends on the a priori knowledge of the user.

To account for this fact, we introduce two different users. “User A” is an AWE developer
with little a priori knowledge of the location of the optimal solution. Therefore, this user
has samples from a wide initialization parameter set. “User B,” on the other hand, is a
control engineer who is familiar with the system and its optimal behavior for the given
conditions. Therefore, User B samples from a parameter set that is defined by a range that is
a factor 3 smaller than that of User A, centered around the average parameters as evaluated
at the solution of interest. Table 3 summarizes the sampling range for all initialization
parameters, for both User A and B. The initial number of loops is chosen to be N0

l = 1.
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Table 3. Initialization parameter bounds used for uniform sampling by users A and B.

Description Variable Min (A) Max (A) Min (B) Max (B) Units

Flight speed q̇0 20.0 60.0 30.6 44.0 ms−1

Tether length l0
t 300.0 600.0 300.0 391.8 m

Elevation angle θ0
e 30.0 50.0 26.3 32.9 deg

Cone angle θ0
c 20.0 30.0 14.9 21.5 deg

Phase angle ϕ0 0.0 360.0 0.0 93.9 deg
Tether diameter d0

t 1.0 5.0 1.6 2.9 mm

Figure 3 shows the CPU timing results resulting from the initialization sampling by
User A and User B. For User A, NH leads to highly variable CPU timings, ranging from
a peak timing of up to 12 min down to a minimum of 15 s. In two cases, NH does not
converge as it exceeds the maximum number of iterations of the NLP solver. The minimum
NH-timing is 50% lower than the best timings of the homotopy methods. Hence, it is
possible for User A to “get lucky" and converge to a solution very fast without initialization
refinement. However, the peak NH timing is 8 times higher than the worst PIPH timing
and almost six times higher than the worst CIPH timing. The average NH timing is a
factor of 1.7 times higher than in the PIPH case and a factor of 1.3 higher than in the
CIPH case. Therefore, User A benefits significantly from CIPH/PIPH in terms of expected
computational performance and, in particular, in terms of timing consistency. PIPH is, on
average, 13% faster than CIPH, while the peak timing is 30% lower.

Figure 3. CPU wall time for the NH-, CIPH-, and PIPH-method, obtained by initialization parameter
sampling by User A and User B.

For User B, with much better a priori knowledge, the computation times of NH
significantly improve compared to user A: average timings are reduced by a factor of 2.4, to
a value slightly lower compared to CIPH/PIPH for User B. The peak NH timing is reduced
by a factor of 1.5, which is still a factor 5.5 larger than compared to CIPH/PIPH. Thus,
while User B has a slightly better-expected performance in the NH case, he or she can still
profit from the improved timing consistency provided by CIPH/PIPH. The difference in
timings for the CIPH and PIPH methods is almost negligible. The average timings of these
methods do not change much compared to the timings obtained for User A. This highlights
the property that by pre-structuring the optimization path, the homotopy methods are not
able to exploit a priori user knowledge to achieve better average performance.

Overall the PIPH/CIPH CPU timings range between 30 and 100 s. This is comparable
to the CPU timing range reported in [26] for similar model complexity and identical
collocation grid (but excluding homotopy timings).
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The NLP (53) has multiple local solutions, and the choice of optimization algorithm
influences the frequency with which certain solutions are found by the optimizer. In the
experiments for User A, a total of nine different local solutions were found. Figure 4 shows
the dominant, circular, optimal solution, while Figure 5 shows as an example the third
most frequent optimal solution, which is characterized by the well-known lemniscate flight
pattern. Table 4 summarizes, for each method, the frequency of local solutions.

Figure 4. Locally optimal single-aircraft position and orientation trajectory nr. 1 (circular pattern)
as found by User A. For better visibility, the aircraft are depicted at a scale 5:1. Green color signifies
positive power output, red color negative power output.

Figure 5. Locally optimal single-aircraft position and orientation trajectory nr. 3 (lemniscate pattern)
as found by User A. For better visibility, the aircraft are depicted at a scale 5:1. Green color signifies
positive power output, red color negative power output.
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Table 4. Frequency of occurrence in a set of 100 trials, optimal time period T∗, average power output
P̄∗, and maximum consistency violation of locally optimal solutions (Nrs. 1 - 9) found by User A.

Nr. NH PIPH CIPH T∗ [s] P̄∗ [kW] ‖C(x∗(·))‖∞

1 71% 100% 98% 20.2 8.8 8·10−4

2 15% - - 24.0 8.7 9·10−4

3 7% - - 27.9 9.3 1·10−3

4 1% - 1 % 32.5 9.0 3·10−3

5 1% - - 41.5 10.7 7·10−3

6 1% - - 41.2 10.6 2·10−2

7 1% - - 47.8 10.0 4·10−2

8 1% - - 37.4 10.3 6·10−3

9 0% - 1% 40.4 10.5 1·10−2

Fail 2% - - - - -

The homotopy methods almost always converge to the main solution of interest: out
of 100 trials, 100 for PIPH, and 98 for CPIH. In the NH case, on the other hand, this is
only the case for 71 trials, while failing to converge in two cases. Hence, the homotopy
methods not only improve performance and reliability for User A, but they are also more
stable in terms of optimization outcome. For User B, all methods always converge to the
main solution.

When comparing the different local solutions, we notice that average power output
increases up to 22% with respect to the main solution for solutions with longer optimal
time periods T∗. The solutions with a longer time period typically consist of more than one
loop, which leads to a better ratio of reel-out vs. reel-in time, and, thus, a higher “pumping
efficiency.” This is in line with the results reported in [26].

Note that for increasing time period T∗, consistency condition satisfaction decreases.
This is because the consistency condition trajectory is the periodic solution to the stable
uncontrolled dynamics of the invariants. Hence, as simulation accuracy decreases, consis-
tency conditions are moving away from the theoretically optimal solution of a constant
zero value. For this reason, AWEbox automatically computes the consistency conditions for
each solution and gives out a user warning once a threshold is reached. The user can then
increase the number of collocation intervals and the integration order, or lower the upper
bound on T if applicable.

5.2. Dual-Aircraft Power Curve

In the second case study, we compute the power curve for a dual-aircraft lift-mode
system, i.e., K = {2, 3}, L = {1}, P(1) = 0, P(2) = 1, and P(3) = 1. We retain the model
parameters and constraints and discretization of the single-aircraft case study while adding
the anti-collision constraint (44).

To give more structure to the problem, we propose the following modification to the
OCP. We divide the time horizon into two separate intervals with associated time variables
T1 and T2, and we define the total time period as T := T1 + T2. We then impose that the
first interval is a single reel-out phase, and the second one a single reel-in phase:

l̇t ≥ 0 , ∀t ∈ [0, T1] (73)

l̇t ≤ 0 , ∀t ∈ (T1, T] . (74)

In the discrete time grid, 70 time intervals are allotted to the reel-out phase, and 30
intervals to the reel-in phase. The resulting NLP has 33,464 variables, 31,550 equality
constraints, and 1402 inequality constraints.

The intermediate barrier parameter is tuned manually to be τi = 10−4 for both PIPH
and SIPH. The PIPH tuning is the same as in the single-aircraft case. SIPH performs a
homotopy with γp = 10 steps for every new parameter value. Additionally, the maximum
number of NLP solver iterations is limited to 100 for both methods.
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We search for solutions with three loops, i.e., N0
l = 3. The reason for this is that

the resulting trajectories fit well inside the time period bounds defined in Table 2, for all
considered wind speeds. The remaining initialization parameters are set to q̇0 = 50 m

s ,
θ0

e = 25◦, θc = 20◦, φ0 = 0◦, l0
t = 640 m, l0

s = 100 m, d0
t = 4 mm, and d0

s = 1√
2

d0
t .

The secondary tether diameter is initialized under the assumption that the secondary tether
force equals the main tether force divided by two.

The power curve for the proposed dual-aircraft system is obtained in the following
manner. First, the optimal trajectory and design are computed with PIPH for a reference
wind speed of uref = 10 m

s . The resulting optimal design is given by l∗s = 142.9 m,
d∗t = 4.3 mm and d∗s = 3.2 mm. The average power output is P̄∗ = 42.0 kW. Note that this
is more than a factor of four higher than the single-aircraft solutions in the first case study,
while the number of aircraft has only doubled. The power per wing surface area is thus
more than doubled as a result of the reduced main tether drag and higher flight altitude.
This is in line with the results reported in [10,12].

The optimal design parameters are then fixed, and the NLP is re-solved for uref ranging
from 0 m

s to 20 m
s . This is done once with PIPH, every time starting from the identical

user-defined initial guess. Then, it is done once using SIPH in two separate sweeps: once
downwards and once upwards starting from the solution for uref = 10 m

s .
Figure 6 shows the power curve obtained with SIPH, and, additionally, for each wind

speed, the optimal time period. Similar to the power curve computed in [37], we identify
three operational regions. In the first region of zero wind speed up to the cut-in wind speed
uref = 3 m

s , power is consumed to keep the system airborne. The upper bound on T is
active here, as the aircraft glide downwards about an almost vertical rotation axis during
the reel-out phase. In the reel-in phase, potential energy is injected back into the system
as the aircraft fly slow upward trajectories. In the second operating region, power grows
cubically until the design wind speed is reached. In the third region, power output still
grows with the wind speed, but cubic growth is curtailed in order to satisfy the tether
stress constraints. The main strategy to limit power output here is to increase the tether
reel-out speed so as the decrease the available wind. The optimal time period increases
with respect to the design wind speed, as the reel-out speed increases, while the reel-in
speed is constrained and cannot grow proportionally. Figures 7 and 8 illustrate the reel-out
and reel-in trajectories for uref = 18 m

s .

Figure 6. Average power output P̄∗ and optimal time period T∗ of a dual-aircraft AWE system (top) and
CPU wall time for the PIPH and SIPH method (bottom) as a function of the reference wind speed uref.
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Figure 7. Optimal dual-aircraft flight trajectories for uref = 18 m
s (reel-out phase). For better visibility,

the aircraft are depicted at a scale 3.3:1. Aircraft k = 2 is plotted in blue, aircraft k = 3 in orange.

Figure 8. Optimal dual-aircraft flight trajectories for uref = 18 m
s (reel-in phase). For better visibility,

the aircraft are depicted at a scale 3.3:1. Aircraft k = 2 is plotted in blue, aircraft k = 3 in orange.

Figure 6 also shows for each wind speed the associated CPU time for PIPH and SIPH.
The computation times include both the CPU time for the homotopy procedures and the
CPU time to solve the final problem Pf. PIPH does not converge for the wind speeds of
15 m

s and 17 to 20 m
s . Note that convergence might be recovered for smaller update steps of

the homotopy parameter φ̄. However, this falls outside the scope of this study.
SIPH outperforms PIPH at every single wind speed (where PIPH converges), but

particularly at low wind speeds, when the optimal solution diverges significantly from the
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user-defined initial guess. Up until the wind speed of 15 m
s , the average CPU time is 5 min

and 23 s for SIPH and 15 min and 20 s for PIPH.

6. Discussion

In this work, we presented AWEbox, an open-source Python toolbox for the modeling
and optimal control of single- and multi-aircraft AWE systems. We discussed the general
multi-aircraft modeling structure, optimization ingredients, and implementation details
needed to efficiently compute power-optimal orbits for a wide range of system architectures
and modeling options. In particular, we proposed and implemented two interior-point-
based homotopy method variants, in order to increase the performance and reliability
of the optimization algorithms. These methods produce a feasible initial guess for the
underlying NLP solver, based on an analytic initial guess shaped by the software user. In
a numerical experiment, a reference single-aircraft problem was solved for a large set of
different initial guesses.

The penalty-based homotopy method reduced the average and peak CPU timing with
a factor of 1.7 and 8, respectively, compared to the case when no homotopy method was
applied by a user with little a priori knowledge. With good a priori knowledge available,
the homotopy methods did not improve performance, but still, the peak CPU timing was
reduced by a factor of 5.5. Overall, computation times were in the range of 30–100 s,
which is competitive with those reported in the literature. Additionally, the penalty-based
homotopy method consistently led to the same local solution, whereas the no-homotopy
case resulted in different local solutions in 29 out of 100 cases.

In a second case study, we computed a power curve of a dual-aircraft AWE system and
compared the performance of the penalty-based homotopy method of the previous case
study with that of a third homotopy method tailored for parametric sweeps with interior-
point NLP solvers. The penalty-based method was not able to converge to a solution for
all wind speeds, while the sweep method succeeded in doing so while outperforming
the penalty-based method, on average, by a factor of three in terms of CPU timings. The
average CPU timing per NLP solution was about 5 min.

Future work might entail model accuracy improvements, in particular concerning
tether and induction modeling The tether model can be readily improved to include sagging
by discretizing the tethers into finite elements, linked by algebraic constraints as proposed
in [10]. On the problem formulation side, it can be investigated in which cases global-
support direct collocation using Fourier approximations can improve efficiency in terms
of CPU time and memory usage. Efficient problem formulations and implementations
that include stability and robustness considerations would be a useful contribution, in
particular for multi-aircraft systems. Finally, efficient algorithms that enable simultaneous
trajectory and design optimization with expensive models (e.g., aero-elastic models) could
lead to faster and more accurate system design loops.
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Abbreviations

The following abbreviations are used in this manuscript:

AWE Airborne wind energy
CIPH Classic Interior-Point Homotopy
DCM Direction Cosine Matrix
IP Interior-Point
KKT Karush–Kuhn–Tucker
LICQ Linear Independence Constraint Qualification (LICQ)
MPC Model Predictive Control
NH No-Homotopy
NLP Nonlinear Program
OCP Optimal control problem
PIPH Penalty-based Interior-Point Homotopy
QP Quadratic Program
SOSC Second-Order Sufficient Condition
SQP Sequential Quadratic Programming
SIPH Sweep Interior-Point Homotopy

Appendix A

Table A1. System parameters.

Description Parameter Value Units

Aircraft mass mK 3.6800 · 101 kg
Moment of inertia JK,x 2.5000 · 101 kg·m2

Moment of inertia JK,y 3.2000 · 101 kg·m2

Moment of inertia JK,z 5.6000 · 101 kg·m2

Moment of inertia JKz,xz 4.7000 · 10−1 kg·m2

Wing span b 5.5000 · 100 m
Wing chord c 5.5000 · 10−1 m
Wing area S 3.0000 · 100 m2

Tether drag coefficient CD,t 1.2000 · 100 -
Tether density ρt 1.4642 · 103 kg·m−3

Tether Baumgarte constant κt 1.0000 · 100 -
Tether attachment point rt,x, rt,y, rt,z 0.0000 · 100 m
DCM Baumgarte constant κR 1.0000 · 100 -
Wind friction coefficient cf 1.5000 · 10−1 -
Reference height zref 1.0000 · 102 m
Sea level temperature T0 2.8820 · 102 K
Temperature lapse rate TL 6.5000 · 10−3 K·m−1

Sea level air density ρ0 1.2250 · 100 kg·m−3

Tether safety factor fs 3.0000 · 100 -
Anticollision safety factor fb 4.0000 · 100 -
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