
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f N

at
ur

al
 S

ci
en

ce
s

D
ep

ar
tm

en
t o

f C
he

m
ic

al
 E

ng
in

ee
rin

g

M
as

te
r’s

 th
es

is

Vegard Aas

Distributed Feedback-optimizing
Control Strategies: an Experimental
Validation

Master’s thesis in Chemical Engineering and Biotechnology
Supervisor: Sigurd Skogestad
Co-supervisor: Risvan Dirza
June 2023

Vegard Aas

Distributed Feedback-optimizing
Control Strategies: an Experimental
Validation

Master’s thesis in Chemical Engineering and Biotechnology
Supervisor: Sigurd Skogestad
Co-supervisor: Risvan Dirza
June 2023

Norwegian University of Science and Technology
Faculty of Natural Sciences
Department of Chemical Engineering

Abstract

In industrial settings, processes often consists of multiple subsystems that share a com-
mon constraint, such as a shared resource. This paper focuses on the steady-state
real-time optimization (RTO) problem in a subsea gas-lifted oil production network
comprising multiple wells with constrained access to shared gas-lift. Traditional ap-
proaches to solving such problems often involve computationally expensive centralized
optimization methods, which are known to be slow. To overcome these challenges, the
concept of feedback-optimizing control, as proposed by Morari et al. [21], is explored
in this work. By shifting the optimization problem from numerical optimization tech-
niques to the control layer, the need for complex optimization algorithms is eliminated.
Instead, simpler control tools such as Proportional-Integral-Derivative (PID) controllers
can be employed to achieve the desired optimization objectives. Importantly, this ap-
proach can accommodate diverse operation units characterized by different time scales,
enhancing the flexibility and adaptability of the optimization method.

In previous work, there has been done a comparison between two recently developed
methods of feedback-optimizing controlled which is referred to as primal-based and
dual-based distributed feedback RTO [2]. The primal-based method is based on the
work introduced by Dirza et al. [9], while the dual-based method is based on the work
by Dirza et al. [12]. For the dual-based method the constraints are controlled in a slow
time scale by the dual variables. As a result, it is necessary to employ a back-off strategy
to ensure constraint satisfaction, which again would lead to profit loss. To reduce the
back-off for the dual-based method, Dirza et al. [10] introduced an alternative dual-based
approach with a constraint override controller.

In this paper, it is conducted a comparative experimental validation study of the primal-
based, dual-based and dual-based with override approaches. This is executed in a lab-
scale experimental rig which emulates a subsea gas lifted oil production network. The
gas lift is a shared resource, and must therefore be distributed optimally between the
wells. Based on the experimental results, it can be concluded that the primal-based
method achieves the best performance for the given gas lift constrained scenario

i

Sammendrag

I industrielle settinger består prosesser ofte av flere undersystemer som deler en felles
begrensning, for eksempel en delt ressurs. Denne oppgaven fokuserer på steady-state
sanntidsoptimalisering (RTO) problemet i et subsea gassløftet oljeproduksjonsnettverk
bestående av flere brønner med begrenset tilgang til delt gassløft. Tradisjonelle tilnær-
minger for å løse slike problemer involverer ofte beregningsintensive sentraliserte opti-
meringsmetoder som er kjent for å være trege. For å overkomme disse utfordringene,
utforskes konseptet med tilbakekoblingsoptimerende kontroll, foreslått av Morari et
al. [21], i dette arbeidet. Ved å flytte optimeringsproblemet fra numeriske optimering-
steknikker til kontrolllaget, elimineres behovet for komplekse optimeringsalgoritmer. I
stedet kan enklere kontrollverktøy som Proporsjonal-Integral-Derivativ (PID) regula-
torer brukes for å oppnå ønskede optimeringsmål. Viktigst av alt kan denne tilnær-
mingen tilpasse seg forskjellige driftsenheter med ulike tidsrammer, noe som forbedrer
fleksibiliteten og tilpasningsevnen til optimeringsmetoden.

I tidligere arbeid er det gjort en sammenligning mellom to nylig utviklede metoder
for tilbakekoblingsoptimerende kontroll, kalt primal-basert og dual-basert distribuert
tilbakekoblingsoptimering RTO [2]. Den primal-baserte metoden er basert på arbeidet
introdusert av Dirza et al. [9], mens den dual-baserte metoden er basert på arbeidet
av Dirza et al. [12]. For den dual-baserte metoden styres begrensningene i en sakte
tidsramme av de duale variablene. Derfor er det nødvendig å bruke en "back-off"
strategi for å sikre begrensningstilfredshet, noe som igjen kan føre til tap av fortjeneste.
For å redusere "back-off" for den dual-baserte metoden introduserte Dirza et al. [10] en
alternativ dual-basert tilnærming med en begrensningsoverstyringskontroller.

I denne artikkelen gjennomføres det en eksperimentell valideringsstudie av primal-
baserte, dual-baserte og dual-baserte med overstyring strukturene hvor disse blir sam-
menlignet. Dette blir utført i en lab-skala eksperimentell rigg som etterligner et subsea
gassløftet oljeproduksjonsnettverk. Gassløftet er en delt ressurs og må derfor fordeles
optimalt mellom brønnene. Ut ifra de eksperimentelle resultatene kan det konkluderes
med at den primal-baserte metoden oppnår best ytelse i det gjeldene gassløft begrensede
scenarioet.

ii

Preface

I would like to express my gratitude to my supervisor Sigurd Skogestad and co-
supervisor Risvan Dirza for their guidance and support throughout this master the-
sis. I would especially like to thank Risvan for assisting me throughout the entire
process, both during as well as outside regular working hours, offering valuable input
and assistance not only for my master thesis but also for my specialization project last
semester.

iii

iv

Contents

Abstract i

Sammendrag ii

Preface iii

1 Introduction 1

2 Theory 3
2.1 Feedback Control . 3

2.1.1 PID Control . 4
2.1.2 Digital Implementation of PID Control 5
2.1.3 SIMC Tuning Rules . 5
2.1.4 Anti-windup . 7
2.1.5 Cascade Control . 7
2.1.6 Selector . 8

2.2 Process Control Hierarchy . 9
2.3 Real-time Optimization . 10
2.4 Decomposition . 12
2.5 Distributed Feedback-optimizing Control 12

2.5.1 Primal-based . 13
2.5.2 Dual-based . 15
2.5.3 Dual-based with Override . 18

3 Experimental Setup 19
3.1 Experimental Rig Emulating a Subsea Production System 19
3.2 Optimization Problem Setup . 20

4 Distributed Feedback-optimizing Control Setup 23
4.1 Primal-based . 23

4.1.1 Implemented Control Structure 23
4.1.2 Determine Compensator System 24

4.2 Dual-based . 25
4.2.1 Implemented Control Structure 25

4.3 Dual-based with Override . 27
4.3.1 Implemented Control Setup . 27
4.3.2 Choosing Subsystem with Override Control 28

5 Experimental Results 33
5.1 Disturbances . 33
5.2 Comparison of Distributed Feedback-optimizing Control 33

5.2.1 Constraint Satisfaction . 34
5.2.2 Optimal Setpoints . 35
5.2.3 Lagrange Multipliers . 39
5.2.4 Accumulated Profits . 40

5.3 Consistency of Results . 42
5.4 Performance of the Distributed Feedback-optimizing Approaches 42

v

6 Conclusion 43
6.1 Further Work . 43

6.1.1 Improvements for Dual-based with Override 43
6.1.2 Local Response Time in Dual-based Methods 44
6.1.3 Generalizing of Primal-based Approach 44

A Steady-State Gradient Estimation 47
A.1 Extended Kalman Filter . 47
A.2 Forward Sensitivity Analysis . 47

B MATLAB Code 49
B.1 LabViewMain - Primal-based . 49
B.2 LabViewMain - Dual-based . 54
B.3 LabViewMain - Dual-based with Override 60

vi

List of Figures

2.1 Block diagram of simple feedback control system 3
2.2 Step response of first-order system . 6
2.3 Illustration of the back-calculating anti-windup concept. 7
2.4 Block diagram of series cascade structure. 8
2.5 Block diagram of parallel cascade structure. 8
2.6 Block diagram of system with selector 9
2.7 Process control hierarchy . 10
2.8 Conventional RTO structure . 11
3.1 Experimental schematic . 19
4.1 Comparison of accumulated profit with different compensator, primal

scheme . 25
4.2 Implemented primal-based scheme . 25
4.3 Implemented dual-based scheme . 27
4.4 Gas lift implemented override selection 29
4.5 Constraint satisfaction override selection 30
4.6 Implemented dual-based with override scheme 30
5.1 Disturbances . 33
5.2 The constraint satisfaction of primal-based, dual-based and dual-based

with override. 34
5.3 The constraint satisfaction of primal-based, dual-based, dual-based with

back off and dual-based with override. 35
5.4 Gas lift flow rate setpoints . 37
5.5 Gas lift flow rates measured . 38
5.6 Primal-based Lagrange multipliers . 39
5.7 Dual-based methods Lagrange multipliers 39
5.8 Comparison of total liquid flow rate . 40
5.9 Instantaneous Profits . 41
5.10 Accumulated Profits . 42

List of Tables

4.1 Controller and tuning parameters for primal decomposition 31
4.2 Controller and tuning parameters for dual decomposition 31
4.3 Controller and tuning parameters for dual decomposition with override . 32

vii

1 INTRODUCTION

1 Introduction

Industrial processes often involve the presence of multiple subsystems that share a
common constraint, such as a shared resource. The optimal distribution of such shared
resources among the subsystems becomes a critical objective. A common power plant
where steam is delivered to different sub-processes [14] [29] serves as an example of such
optimization problems. Challenges like this are commonly addressed within the con-
text of real-time optimization (RTO). The conventional approach to RTO involves
solving numerical optimization problems using detailed process models that are con-
tinuously updated based on process measurements. However, this traditional method
often suffers from slow solutions and becoming computational expensive. Moriari et
al. [21] proposed an approach to address this challenge by transferring the optimization
problem from numerical optimization to the control layer. This approach, known as
feedback-optimizing control, enables the utilization of simple tools like proportional-
integral-derivative (PID) controllers. Importantly, this optimization method is able to
handle different operation units with varying time scales. This paper considers a steady-
state RTO problem in the context of a subsea gas-lifted oil production network which
comprises multiple wells and considers a shared gas-lift supply as a constraint [8] [12] [17].
In such scenarios, it is often desirable to decompose the large scale problem into smaller
subproblems and solving them locally. This approach offers several advantages over cen-
tralized optimization on a large scale. Distributed decision making tools are generally
easier to maintain and implement, making them a practical choice for these problems.
The decomposition strategies for such large scale problems can be broadly categorized
as primal-based and dual-based decomposition methods. [5]

In recent work, Krishnamoorthy et al. [16] and Dirza et al. [12] have proposed a ditributed
RTO framework based on dual decomposition, utilizing simple feedback control to en-
sure convergence to a stationary point of the system wide optimization problem. The
suggested method employs Lagrangian relaxation to transform the constrained eco-
nomic optimization problem into an unconstrained optimization problem. The optimal
operation point is achieved through asymptotic convergence by employing constraint
control via the Lagrange multipliers (dual variables) within a central constraint con-
troller operating in the slow time scale. Simultaneously, in a faster time scale, the
gradient of the Lagrangian is controlled to zero using the physical manipulated vari-
ables (primal variables) in a cascade manner, ensuring effective convergence towards
the desired operating conditions.

Recently, Dirza et al. [10] proposed a dual-based decomposition framework implemented
with override constraint control. The suggested method is largely based on the dual-
based method mentioned above. However, the dual-based method could result in dy-
namic constraint violation. To accommodate this problem, override constraint control
is implemented to directly control the active constraint. In the central constraint con-
troller an auxiliary constraint is introduced in order to achieve consistency with the
steady-state optimization, which considers the difference between controller output
from the override constraint and local gradient controllers. As a result, the method
achieves system wide optimal operation without loosing the flexibility of the dual-based
method while minimizing the back-off necessary to achieve feasible operation condition.

Dirza et al. [9] recently proposed a distributed feedback-based real-time optimizing
framework that uses online primal-based decomposition. In this method, the Lagrange

1

1 INTRODUCTION

multipliers corresponding to each individual subproblem are estimated and utilized
within the central constraint controllers to find the optimal operating points. The
utilization of the primal-based decomposition method aim to achieve optimal opera-
tion while minimizing dynamic constraint violations. This is achieved by employing a
compensator in the central constraint control, which ensures constraint satisfaction.

This paper presents a comparative study and experimental validation of three feedback-
optimizing control structures utilizing the decomposition strategies mentioned earlier.
The three approaches is implemented in a lab-scale gas lifted oil well rig which consists
of multiple wells and constrained access to a shared gas lift supply. Given the restricted
access to a shared gas lift supply, it becomes crucial to efficiently allocate the gas
lift among the various wells in the system. However, this work do not consider any
limitations originating from a topside production facility. Hence, it is assumed that the
input shared constraint remains consistently active throughout the analysis.

The work presented in this paper is a continuation of the work done in Aas et al. [2],
where the primal-based and dual-based approaches was compared in a MATLAB model
of the lab-rig utilized for experiments performed in this work.

The remainder of this paper is organized as follows. Section 2 describes some back-
ground theory. Section 3 presents the experimental lab-rig setup. Section 4 present
the implemented control structures. Section 5 present and discuss the results from the
experimental work before the paper is concluded in section 6.

2

2 THEORY

2 Theory

2.1 Feedback Control

The primary goal of process control is to regulate the behavior of an industrial pro-
cess. In numerous applications, it is crucial to regulate process variables such as flow
rates, levels, pressures, or temperatures. Control objectives are commonly focused on
setpoint tracking, disturbance rejection, and process safety. Setpoint tracking requires
the process variable to follow a predetermined path over time. This is necessary since
the optimal operating conditions of a process may change over time. Disturbance re-
jection aims to mitigate any disturbances that may affect the process output, ensuring
consistency and predictability of the process output. In some industrial processes, there
may be potential risks, such as thermal runaway or pressure buildup, that could pose
a threat to the environment or personnel. In such cases, control strategies are essential
to ensure process safety.

This paper employs feedback control, the structure of which is illustrated in figure 2.1.
Feedback control is advantageous because the controller is driven by the error signal
and therefore compensates for disturbances automatically. This feature eliminates the
need for a detailed mathematical model to achieve good controller performance. How-
ever, the error-driven nature of the feedback controller means that it only is able to
take corrective action after the error from the disturbance is detected in the output.
Consequently, any significant delay between the measured output variable and the ma-
nipulated or input variable could significantly impact the controllers performance. [15]

Figure 2.1: Block diagram of simple feedback control system [28]

Figure 2.1 depicts the input to the controller as r−ym, where r represents the controller
setpoint and ym = y + n, where y is the actual value and n is the measurement noise.
Thus, the plant input is expressed as

3

2 THEORY

u = K(r − y − n) (2.1)

As previously stated, the goal of control is to adjust the input such that the error
remains small despite disturbances d. The control error e is defined as

e = y − r (2.2)

This objective can be accomplished through the design of a controller K, which can
be achieved by implementing a Proportional-Integral-Derivative (PID) controller and
SIMC tuning rules.

2.1.1 PID Control

Apart from the on-off controller, the most straightforward feedback controller is the
proportional controller. This controller operates on a linear basis, with the control sig-
nal being directly proportional to the control error. The output signal of a proportional
controller is mathematically given by

u(t) = Ke(t) (2.3)

where K is the proportional gain and e is the control error given by,

e(t) = ys(t)− y(t) (2.4)

where y is the controlled variable measurement and ys is the setpoint. According to
equation 2.4, it is evident that an error must be present for the controller to generate
an output. Consequently, the proportional controller always exhibits an offset between
the measured variable and the setpoint at steady-state. Therefore, the elimination of
this offset requires the implementation of a more sophisticated controller.

The Proportional-Integral-Derivative (PID) controller is extensively employed as the
primary control algorithm in the process industry. The PID algorithm, represented in
the time domain, is described as follows

u(t) = K

(
e(t) +

1

τI

∫ t

0
e(τ)dτ + τD

de(t)

dt

)
(2.5)

where e is the control error, τI and τD are the integral and derivative time respectively,
t is the time and K is the proportional gain.

As observed in equation 2.5, the output of the controller, denoted as u, is determined
by the summation of three components. The proportional term, P-term, is directly
proportional to the error, the integral term, I-term, is proportional to the integral
duration of the error, and the derivative term, D-term, is proportional to the derivative,
or rate of change, of the error. Therefore, the tuning parameters for a PID controller
include the proportional gain, K, the integral time, τI , and the derivative time, τD.

4

2 THEORY

The integral action serves the purpose of correcting any steady-state offset from a
constant reference signal value. Increasing the integral time, τI , reduces the integral
action, resulting in slower control response.

The derivative action aims to predict the control action by utilizing the rate of change in
the error to make the predictions and prevent significant errors in the future. However,
the derivative action is sensitive to measurement noise. Increasing the derivative time,
τD, amplifies the impact of the derivative action, resulting in faster control response. [15]

2.1.2 Digital Implementation of PID Control

When implementing PID control in computers it is not possible to use the continuous
version presented in equation 2.5. In order to implement it in computers the PID
controller can be discretized in the following manner. First a "bias" term is considered,
which includes the integral action

ū(t) = ūk ≈ ūk−1 +K
∆t

τI
ek (2.6)

where ∆t is the time between measurements of the controlled variable, also called the
time period. k denotes the current time t, while k − 1 is the previous sampling time
t −∆t. In order to avoid windup and get smooth transfer between manual and auto,
the bias ūk is adjusted so uk always is equal the actual input. As a result, the digital
PID control is implemented as [25]

uk = uk−1 +K

(
ek +

∆t

τI
ek +

τD
∆t

(ek − ek−1)

)
(2.7)

where the derivative action simply utilizes backward Euler method.

de(t)

dt
=

(ek − ek−1)

∆t
(2.8)

2.1.3 SIMC Tuning Rules

In section 2.1.1, it is mentioned that a PID controller utilizes only three tuning param-
eters. However, determining appropriate tuning parameters can be challenging without
a systematic approach. Various methods for tuning PID controllers have been proposed
in literature, including Ziegler-Nichols [31] and Cohen-Coon [6] methods for example. In
this paper, the Skogestad Internal Model Control (SIMC) method. The SIMC method
was developed by professor Sigurd Skogestad with the objective of creating simple and
easily memorizable rules while ensuring good controller performance. This method
provides guidelines for tuning the PID controller based on the internal model control
principle.

In the SIMC method, the tuning parameters for the controller are determined based
on a first- or second-order plus delay model approximation of the process. The model
information used for tuning includes the following key parameters:

• Plant gain, k

• Dominant time constant, τ1

5

2 THEORY

• Effective time delay, θ

• Second-order time constant, τ2 (only used for dominant second-order process
(τ2 > θ))

The required information can be obtained through various means, including estimation
from an open-loop step response, a closed-loop response using a P-controller, or utilizing
a detailed model with an approximation of the effective dead time using the half rule.
The process of finding these parameters from the open-loop step response is presented
in figure 2.2

Figure 2.2: Step response of first-order system with delay, g(s) = ke−θs/(τ1s+ 1) [27]

By employing the open-loop step response method, the model can be approximated as
a transfer function in the form of a first-order model with an additional time delay as
follows

g(s) = ke−θs/(τ1s+ 1) (2.9)

The SIMC tuning rules are derived based on the principles of Internal Model Control,
which involves specifying the desired first-order closed-loop response with a time con-
stant of τc. Applying the SIMC tuning rules yields the following PI controller settings

K =
1

k

τI
τc + θ

(2.10)

τI = min{τ1, 4(τc + θ)} (2.11)

where τ1 represents the first-order time constant, while k represents the steady-state
plant gain, as illustrated in figure 2.2. Consequently, only one tuning parameter, τc
remains, which represents the desired closed-loop time constant. [27]

6

2 THEORY

2.1.4 Anti-windup

When the output provided from a PID-controller deviate from the plant input, the
integral action on the controller will accumulate error. This is the case when the
controller output is manipulated before being fed into the plant. The manipulation
could be a result of using selectors or saturation of the equipment that is controlled,
for instance a valve that reaches its physical limits of fully closed or fully open.

Methods implemented to avoid such windup of error are denoted as anti-windup. Back-
calculation is one method of implementing anti-windup. This method is presented in
figure 2.3, where the τb is the back-calculation coefficient. This is usually selected as
τb = 1/τI . [19] In the figure, the saturation block is causing the error windup. The
saturation block could also be exchanged with a selector, the back-calculating principle
will still be the identical, where the difference between the controller output u and the
plant input uplant is used to avoid windup of error in the integral controller.

Figure 2.3: Illustration of the back-calculating anti-windup concept.

2.1.5 Cascade Control

The fundamental principle behind cascade control is the existence of an outer control
loop that provides a setpoint for an inner control loop. A cascade loop consisting of
only two controllers is commonly known as a single cascade. However, it is possible to
incorporate additional controller loops on top of the outer control loop. The cascade
control structure can be in series or parallel configuration.

The single series cascade control structure is illustrated in figure 2.4. The outer control
loop, referred to as master controller, provides a setpoint ysp2 for the inner control loop
by controlling the output from process part g1 in controller c1 to the desired setpoint
ysp1 . The inner control loop, referred to as slave controller, consists of controller c2 and
the process part g2. c2 controls y2 to ysp2 . The output from the inner control loop y2
is provided to the process part g1. By employing the cascade principle, the system
operating range is extended by using multiple inputs to control y1.

7

2 THEORY

Figure 2.4: Block diagram of series cascade structure.

The parallel cascade principle is illustrated in figure 2.5. The parallel structure differs
from the series structure by only having one process part or plant which provides both
controlled variables y1 and y2. In this structure there is also a fast slave controller c2 and
a slower master controller c1. In this configuration there is no individual disturbances,
as a result any disturbances in the plant will affect both y1 and y2. In the parallel
structure, one important aspect is that y2 must be closely related to y1

[24]. This
cascade structure is relevant for the control methods implemented later in this paper.

Figure 2.5: Block diagram of parallel cascade structure.

A challenge with the cascade structure is avoiding interactions between the master
and slave controller, which could lead to instabilities and oscillations in the system.
To avoid these interactions, it is important to consider time scale separation between
the two control layers. Therefore, the master controller should be slower than the
slave controller. A rule of thumb is time scale separation of at least 5 between control
layers. [28] To ensure minimal interactions between the cascade layers, the time constant
tc should increase between every control loop increment.

2.1.6 Selector

Selectors serve as a logical component frequently employed in the implementation of
advanced control structures. They are utilized in order to switch between controlled
variables in a single-input system controlling the same process, this concept is called
CV-CV switching. In this arrangement, a single manipulated variable controls multi-
ple controlled variables. To achieve this, one controller is assigned to each controlled
variable within the system. The selectors, typically designed as maximum, minimum,
or mid-range selectors, ensure that the single manipulated variable only controls one
controlled variable at any given time. In figure 2.6 a system with two controllers c1 and
c2 controlling the same process part g1 from outputs y1 and y2 is illustrated. Based
on a logical statement, the selector block determines whether to choose the minimum

8

2 THEORY

Figure 2.6: Block diagram of system with two controllers and a selector choosing input to the process
part.

or maximum from the available manipulated variables u1 or u2 and provides u to the
process part. [18] [19]

2.2 Process Control Hierarchy

The process control hierarchy of an industrial process can be presented as different de-
cision levels as shown in figure 2.7. The lowest level of the hierarchy is the process layer,
which is the process or plant itself that is controlled. The next level is the regulatory
control layer, which is responsible for controlling individual process variables, such as
temperature, pressure, and flow rate. The process layer is typically composed of sim-
ple control loops, each responsible for maintaining the desired setpoint of a particular
process variable.

Above the regulatory layer is the supervisory layer, which manages the interaction
between multiple regulatory systems. The supervisory layer is responsible for coordi-
nating the operation of several regulatory loops to achieve a global process objective.
The supervisory layer also uses more advanced control strategies, such as model pre-
dictive control (MPC) and adaptive control, to optimize process performance.

At the next level is the local optimization layer, which focuses on maximizing profits
by adjusting process variables and setpoints based on economic criteria. The local
optimization layer uses advanced optimization algorithms to find the optimal opera-
tion setpoints for the process variables, taking into account economic factors such as
production costs, market demand, and energy consumption. The local optimization
layer also considers process constraints such as equipment limitations, environmental
regulations, and safety requirements. This layer operates in a relatively fast time scale,
as a result, this layer is also called the real-time optimization layer.

At the next level is the system wide optimization, which makes sure the entire system
is working optimally by considering inter-dependencies across multiple subsystems.
the system wide optimization layer solves optimization problems that involve global
objective, such as maximizing production or minimizing consumption.

In the highest level, the scheduling layer is found. This layer focuses on setting produc-
tion goals in order to meet supply and logistical constraints. This layer is not relevant
for the research in this paper, as the main focus lies within the local optimization and

9

2 THEORY

Figure 2.7: The levels of the process control hierarchy with respective time scales. The layers of
interest in this research is highlighted in the dotted box.

supervisory control layers.

The process control hierarchy provides a systematic approach to control and optimize
industrial processes across multiple levels, allowing for greater control, efficiency, and
profitability. It also enables the integration of different control strategies and technolo-
gies, providing a comprehensive solution for managing industrial processes. [13]

2.3 Real-time Optimization

Traditionally the real-time optimization (RTO) framework solves a steady-state nu-
merical optimization problem in order to compute the optimal steady-state setpoints.
The numerical optimization problem consists of three components.

• Extensive nonlinear steady-state process models.

• Environmental, equipment and process constraints.

• Economic objective function that consists of the value of the products, cost of
raw material, operational cost etc.

Conventional RTO implementations utilize steady-state nonlinear models. These mod-
els are updated by using data collected during time periods corresponding to steady-
state process operation. The objective of this update is to match the plant mea-
surements with the model predictions. When the model is updated, it provides a

10

2 THEORY

Figure 2.8: Conventional RTO structure

re-optimization for the process with new setpoints. The numerical solver-based RTO
framework follows a two-step approach, which involves data reconciliation in step one,
here the nonlinear model is updated by using steady-state measurements. In step two,
new optimal setpoints are computed by performing numerical optimization utilizing
the updated model [23]. The information flow of the conventional RTO implementation
is presented in figure 2.8

Most of the RTO software packages that are available commercially employ a repeated
identification and optimization method that is based on steady-state models. This
method is a suitable approach for continuous processes, as these processes typically
operate at a steady-state to achieve optimal economic operation. Processes with fre-
quent grade changes as cyclic operations and batch processes are exceptions to this rule.
Therefore, in most continuous processes the primary objective is to identify the opti-
mal steady-state operating point that is economically efficient with the given operating
conditions.

In the RTO layer, the decision variables are typically the setpoints for the controlled
variables. These setpoints are subsequently transmitted to the setpoint tracking control
layer situated below. The control layer regulates the manipulated variables to maintain
the process measurements at the optimal setpoints that is determined by the RTO layer
above.

11

2 THEORY

2.4 Decomposition

In the case of process optimization, decomposition refers to breaking down complex
optimization problems into smaller, more manageable subsystems that can be solved
individually. In other words, decomposition simplify the problem solving process by
reducing the complexity of the optimization problem with help of breaking it down into
smaller problems that are easier to solve.

There are two types of decomposition which is vertical and horizontal decomposition.
In vertical decomposition the system is split up in subsystems set up in a hierarchical
structure. Each subsystem is dependent on the solution from the higher levels in the
hierarchy. In horizontal decomposition the system is split up in smaller, independent
subsystems at the same level of the hierarchy [26]. Horizontal decomposition promotes
modularity and allows for distributed processing of the subsystems. Each subsystem
can be solved independently, and the solutions can be combined or coordinated to
obtain the overall solution [4]. In this work, decomposition is referring to horizontal
decomposition.

Distributed control refers to control of a system where decision-making and control
actions are distributed across multiple controllers within one system. However, dis-
tributed systems refer to systems that consists of multiple subsystems that work to-
gether to achieve a common goal. It is possible to have distributed control without the
system being distributed. However, if the system is distributed there is automatically
distributed control. As a result, the distributed feedback-optimizing control approaches
discussed in this work can be categorized as distributed systems with distributed con-
trol.

2.5 Distributed Feedback-optimizing Control

Consider an integrated steady-state optimization problem of N separate subproblems,
also called subsystems.

min
u

J(u,d) =

N∑
i=1

Ji(ui, di) (2.12a)

s.t. g(u,d) =
N∑
i=1

gi(ui, di)− ḡ ≤ 0 (2.12b)

where d ∈ Rnd are the set of disturbances, u ∈ Rnu denotes the set of manipulated
variables, J : Rnu × Rnd → R denotes the cost function, g : Rnu × Rnd → Rng is the
coupling constraints and the limit of the constraints is denoted by ḡ ∈ Rng .

d and u is defined as d =
[
d1, ..., dN

]⊤ and u =
[
u1, ..., uN

]⊤, di ∈ Rndi is the
disturbances and ndi denotes the number of disturbances in subsystem i, and ui ∈ Rnui

is the decision variables and nui denotes the number of decision variables in subsystem
i.

The local objective function and the (in-)equality constraints function in subsystem i
is defined by Ji : Rnui ×Rndi → R and gi : Rnui ×Rndi → Rng respectively. ng defines
the number of coupling constraints.

12

2 THEORY

In this paper, the aim is to convert a large-scale optimization problem 2.12 into smaller
feedback control problems that can be solved with use simple tools as PID controllers,
selector, or a configuration of them. In the following sections three structures of dis-
tributed feedback-optimizing control are described. These schemes aim to solve opti-
mization problem 2.12 in a distributed manner using simple feedback control.

2.5.1 Distributed Feedback-Optimizing Control using Online Primal De-
composition

The primal-based distributed feedback optimizing control method is based on the
method proposed in Dirza et al. [9]. In order to implement the primal-based method
following assumption must be satisfied: Each local system (subproblem) has enough
decision variables/input, ui, to control the active coupling constraints, g.

nui ≥ ng, i = 1, ..., N (2.13)

By introducing a virtual subsystem, called subsystem 0, and defining constraint 2.12b
as a linear constraint,

g(u,d) = g0 +
N∑
i=1

gi(ui, di)− gmax (2.14)

where gmax denotes the limit of the constraint, optimization problem 2.12 can be
reformulated as an equality constraint problem:

min
u

J0 +
N∑
i=1

Ji(ui, di) (2.15a)

s.t g0 +

N∑
i=1

gi(ui, di)− gmax = 0 (2.15b)

J0 will not influence any optimal solution because it is a constant, J0 = 0, g0 functions
as a storage for any unused values, slack variable. As a result, the inequality constraint
2.12b is transformed to an equality constraint. By introducing an initial value of local
constraint, gspi , which is defined by gsp =

∑N
i=1 g

sp
i , for the coupling constraint variables

the active coupling constraint satisfaction can be taken care of by a central problem.
As a result constraint 2.15b can be rewritten as

gi(ui, di)− gspi = 0, i = 0, ..., N (2.16a)
N∑
i=0

gspi = gmax (2.16b)

while equation 2.16b is satisfied, the primal feasibility is guaranteed for the coupling
constraint 2.12b.

13

2 THEORY

By relaxing the local constraint 2.16a, problem 2.15 can be rewritten as a Lagrange
function. This Lagrange function can be decomposed into subproblems, enabling the
optimization problem to be solved for each individual subsystem i.

Pi(g
sp
i) := min

ui

Li(ui, g
sp
i , λi) (2.17)

where

Li(ui, g
sp
i , λi) = Ji + λigi(ui, di). (2.18)

λi is the local Lagrange multiplier, which is linked to the local constraint 2.16a. In
steady-state optimal conditions the local constraint will converge to the same value. [9]

In each subproblem, local Lagrange multipliers are estimated and utilized by the central
constraint controllers. In these controllers the setpoints are updated iteratively, where
the aim is to provide a set of setpoints that satisfy the primal feasibility 2.16b.

min
gsp0 ,...,gspN

N∑
i=0

Pi(g
sp
i) (2.19a)

s.t.
N∑
i=0

gspi = gmax (2.19b)

Pi(g
sp
i) is defined in 2.17, the constraint 2.19b is inherited from 2.16b.

The calculation for one of the local setpoints is performed in the following manner

gsp,k+1
N = gmax − (gsp,k+1

0 + ...+ gsp,k+1
N−1) (2.20)

This is to ensure satisfaction of constraint 2.16b, in other words, ensuring primal fea-
sibility. This subsystem, subsystem N as displayed in 2.20, is referred to as the com-
pensator subsystem.

To determine the local setpoint gspi at time step k + 1 for the remaining subproblems,
j = {0, ..., N − 1}, the steepest descent direction of the central problem 2.19a can be
utilized. This is determined by the subgradient,

∇gspj

(
N−1∑
i=0

Pi(g
sp,k
i)

)
= −λk

j + λk
N (2.21)

The updated local setpoint at time step k + 1 is found by,

gsp,k+1
i = gsp,ki + KI,i∇gspi

(
N−1∑
i=0

Pi(g
sp,k
i)

)
(2.22)

14

2 THEORY

Integrating controllers with integral gain KI,i =
1

Ki(τc,i)
, where the step response gain is

defined by Ki and the closed-loop time constant is given by τc,i, may be utilized here.

Given that a slack variable, gsp0 , has been introduced to store unutilized values, and
the storage never is negative in a physically perspective, it is crucial to employ a max
selector as follows.

gsp,k+1
0 = max

[
0, gsp,k0 + KI,0∇gsp0

(∑N−1
i=0 Pi(g

sp,k
i)

)]
(2.23)

The implementation of the compensator and virtual subsystem strategies ensures that
the setpoints provided by these controllers guarantee the primal feasibility.

To determine the local setpoints, estimations of the local Lagrange multipliers in 2.21 is
required. Normally, this is available when solving the numerical optimization problem
in the traditional RTO framework. However, in this paper, feedback control is used,
therefore are these not directly available. Hence, the multipliers needs to be estimated.
For all subsystems, the stationary point is reached when

∇uiLi(ui, g
sp
i , λi) = 0 (2.24)

according to the Karush-Kuhn-Tucker (KKT) conditions. All multipliers, λi, will con-
verge to the same optimal value. Rearranging 2.24 the local Lagrange multiplier can
be computed in following manner,

λi = −∇uiJi(ui, di)(∇uigi(ui, di))
−1 (2.25)

As mentioned earlier, the amount of local decision variables must be more than or equal
to the amount of constraints, the solution must also be unique.

Note that in order to counterbalance any change in the different subsystems, it is as-
sumed that each subsystem communicates its local Lagrange multiplier, λk

i , to the
compensator subsystem, and receives the local Lagrange multiplier, λk

N from the com-
pensator subsystem.

2.5.2 Distributed Feedback-Optimizing Control using Dual Decomposition

The dual-based distributed feedback optimizing control method is based on the method
proposed in Krishnamoorthy [16] and Dirza et al. [12] [8]. In order to implement the dual-
based method following assumption must be satisfied: The entire system has enough
decision variables/input, u, to control the active coupling constraints, g.

nu ≥ ng (2.26)

Introducing the Lagrangian function for optimization problem 2.12,

L(u,d, λ) = J(u,d) + λ⊤g(u,d) (2.27)

15

2 THEORY

where the constraint and Lagrange multiplier are defined as g =
[
g1 ... gng

]⊤ and
λ =

[
λ1 ... λng

]⊤. Then the necessary condition for optimality, KKT conditions, for
optimization problem 2.12 can be written as

∇uL(u,d, λ) = 0 (2.28a)
g(u,d) ≤ 0 (2.28b)

λ ≥ 0 (2.28c)
λigi(u,d) = 0, ∀ i ∈ [1, ..., ng] (2.28d)

where u and λ are the unknown variables. To solve the equations in 2.28, dual ascent
can be employed. [4] 2.28a is solved for u with a fixed value for λ. The remaining
equations are satisfied by iteratively changing λ in an outer loop. When the constraints
are active, which is the case in this paper, it is crucial to maintain g = 0, this implies a
non-zero λ. Since the constraint value g usually is measured, feedback control can be
utilized to solve the equations. A benefit of using feedback control for solving equation
2.28a with respect to λ is that the constraints g in 2.28b and 2.28d does not need to
rely on a model, eliminating the need for any model update. By implementing this
approach, it is possible to achieve stationary steady-state conditions through control of

c(λ) := ∇uL(u,d, λ) = ∇uJ(u,d) + λ⊤∇ug(u,d) (2.29)

to a stationary setpoint csp = 0 for any λ. The function of achieving stationary steady-
state conditions is carried out by the gradient controllers (fast time-scale), which use
the Lagrange multipliers, λi, as manipulated variables in an outer loop to drive the
corresponding constraints gi(u,d) to 0 for i ∈ [1, ..., ng]. λi and gi(u,d) is paired
together and a max selector is employed to ensure that the conditions λ ≥ 0 2.28c
and the corresponding slackness condition 2.28d are met. The centralized controllers
(slow time-scale) are responsible for satisfying these conditions. Together, the central-
ized constraint and gradient controllers fulfill the necessary optimal conditions 2.28 at
steady-state.

The goal is to decompose the optimization problem and solve it in a distributed fashion.
By defining constraint 2.12b as a linear constraint

g(u,d) =
N∑
i=1

gi(ui, di)− gmax (2.30)

where gmax denotes the limit of the constraint. The structure of 2.12a remain un-
changed, as the cost is assumed to be additively separable. As a result, the integrated
optimization problem 2.12 can be rewritten as the separable problem below by intro-
ducing 2.30

16

2 THEORY

min
u

N∑
i=1

Ji(ui, di) (2.31a)

s.t.
N∑
i=1

gi(ui, di)− gmax ≤ 0 (2.31b)

Then the controlled variable becomes

c(λ) :=

N∑
i=1

∇uiJi(ui, di) + λ⊤
N∑
i=1

∇uigi(ui, di) (2.32)

This expression is additively separable, thus, 2.32 can easily be decomposed and each
subsystem control

ci(λ) := ∇uiJi(ui, di) + λ⊤∇uigi(ui, di) (2.33)

to a setpoint of cspi = 0 by manipulation of ui. By only considering integral action the
controller action is given as

∆ui = KI,ici(λ) (2.34)

where KI,i is the integral gain. For the next timestep, k + 1, ui is found by

uk+1
i = uki +KI,ic

k
i (λ) (2.35)

The Lagrange multiplier λ is found in the central controller in order to control the
constraints, g(u,d) to the setpoint 0,

∆λ = α

(
N∑
i=1

gi(ui, di)− gmax

)
(2.36)

where α is the integral gain. A max selector can be implemented with the controller
action in order to satisfy 2.28c. The Lagrange multiplier at time k+1 is then given by

λk+1 = λk + α

(
N∑
i=1

gki (u
k
i , d

k
i)− gmax

)
(2.37a)

λk+1 = max(0, λk+1) (2.37b)

ci(λ) is controlled in the fast time-scale for each subsystem, while the Lagrange mul-
tiplier λ is controlled in the slow time-scale in the outer layer to regulate the coupling
constraint g(u,d). By assuming that the stationary point represents the local mini-
mum, all local subsystems achieve optimal operation for a specific Lagrange multiplier
λ. Consequently, as the central constraint controller 2.37 updates λ, it enables optimal
performance of the overall optimization problem 2.12. [8] [12]

17

2 THEORY

2.5.3 Distributed Feedback-optimizing Control using Dual Decomposition
with Override

The dual-based distributed feedback optimizing control with override method is based
on the method proposed in Dirza et al. [10]. In order to implement the dual-based with
override method following assumption must be satisfied: The entire system has enough
decision variables/input, u, to control the active coupling constraints, g.

nu ≥ ng (2.38)

This method shares most of it structure with the dual-based method in section 2.5.2.
The structure aim to solve problem 2.31, where each subsystem control

ci(λ) := ∇uiJi(ui, di) + λ⊤∇uigi(ui, di) (2.39)

to a setpoint of cspi = 0, by manipulation of ui. By considering integral action the
controller action is the same as in 2.34.

For the dual-based with override method a override constraint controller is implemented
in one subsystem where the aim is to control 2.31b to 0 by manipulation of udiri as
follows.

udir,k+1
i = udir,ki +Kdir

I,i (
N∑
i=1

gki (u
k
i , d

k
i)− gmax) (2.40)

where Kdir
I,i is the integral gain if integral action is considered. The implemented vari-

able ui, for the subsystem with override, must be selected between udiri and uindi , where
uindi is the output from the gradient controller in the given subsystem. If a small value
is favorable for constraint satisfaction, then

ui = min(udiri , uindi) (2.41)

Otherwise a max selector should be utilized to select ui.

In order to insure consistency between the override constraint controller and the gradi-
ent controller, the constraint g(u,d) ≤ 0 is replaced by the constraint uindi − udiri ≤ 0
in the central constraint controller for the outer control layer. As a result, the cen-
tral constraint controller is responsible for ensuring that uindi and udiri are equal at
steady state. Consequently, the Lagrange multiplier can by manipulated with use of
I-controller as follows

λk+1 = λk + α(uindi − udiri) (2.42)

where α is the integral gain. A max selector can be implemented with the Lagrange
multiplier controller in order to satisfy 2.28c, giving

λk+1 = max(0, λk+1) (2.43)

18

3 EXPERIMENTAL SETUP

3 Experimental Setup

In subsea production systems, hydrocarbon reservoirs trapped in underground reser-
voirs are accessed through wells situated on the seafloor. The extracted oil and gas is
then transferred to a topside processing facility via pipelines along the seafloor, where
a riser pipeline brings it to the surface. In cases where the reservoir pressure is low,
due to natural or depletion-related reasons, artificial lift techniques may be necessary
to counteract the pressure losses and raise the hydrocarbons to the surface. A common
way to overcome this problem is with use of gaslift, in which compressed gases are
injected into the well tubing to reduce the density of the fluid mixture and, in turn,
the hydrostatic pressure losses. However, excessive gas injection elevates the frictional
pressure drop in the well tubing, which has a counteractive effect [1]. As a result, each
well has a local optimum corresponding to the gaslift injection rate. Optimal alloca-
tion of the total available lift gas among the wells is crucial for maximizing the overall
production from the production network since it is often a limited resource.

Figure 3.1: Experimental schematic, adapted from Matias et al. [20]. The system measurements yp
are the liquid flowrates (FI101, FI102 and FI103), the gas flowrates (FIC104, FIC105
and FIC106), the well top pressures (PI101, PI102 and PI103) and the pump outlet
pressure (PI104). The gas flowrates, u = [Qgl,1 Qgl,2 Qgl,3]

T are controlled by three
PI controllers to the calculated setpoints, usp = [Qsp

gl,1 Qsp
gl,2 Qsp

gl,3]
T . The reservoir

valve openings (CV101, CV102 and CV103) are functioning as the system disturbance. In
order to represent different reservoir behaviors they are changing during the experiments.
The pump outlet pressure is kept constant during the experiments by a PI controller.

3.1 Experimental Rig Emulating a Subsea Production System

For the work in this paper we use a lab-scale experimental rig that utilizes water and air
instead of oil and gas as working fluids to emulate the subsea gas-lifted oil production
system. The gas lift phenomenon remains unaffected by the choice of working fluids,

19

3 EXPERIMENTAL SETUP

which one can observe in the lab rig. Therefore, the rig is suitable for investigating
production optimization methods that focus on the gas lift effect as the phenomenon
of interest. The system, comprising of a reservoir, well, and riser section is shown in a
simplified flowsheet depicted in figure 3.1.

The reservoir section contains a stainless steel tank, a centrifugal pump, and the three
control valves (CV101, CV102 and CV103). These valves are used to portray distur-
bances from the reservoir, such as reservoir deplition, or emulate pressure oscillations.
The reservoir can only produce liquid outflow rates ranging from 2 L/min to 15 L/min
in this lab rig. Upstream of the reservoir valves the flow meters (FI101, FI102 and
FI103) are located to measure outflow rates. The outlet pressure of the pump (PI104)
is kept constant at 0.3 barg in this experiment. This is done by using a PI controller
that adjusts the pump rotation.

The wells comprise of three flexible hoses arranged in parallel, each hose having an
inner diameter of 2 cm and a length of 1.5 m. Pressurized air, at around 0.5 barg, is
injected via three air flow controllers (FIC104, FIC105 and FIC106) approximately 10
cm after the reservoir valves. The injection rates of the air flow controllers are within
a range of 1 sL/min to 5 sL/min.

The risers are three vertical pipelines arranged orthogonally to the well section, each
riser having an inner diameter of 2 cm and a height of 2.2 m. At the top of the risers we
measure the pressure using pressure sensors (PI101, PI102 and PI103). Downstream
of these pressure sensors, three manual valves are kept open during the experiments.
The air, used as gas lift, is vented out to the atmosphere, while the liquid is circulated
back to the reservoir water tank. [20]

3.2 Optimization Problem Setup

The objective of the optimization problem in this paper is to maximize the profit from
the network liquid throughput in the experimental lab-rig given a limited amount of
gaslift injection available. Considering problem 2.12, the economic objection function
can be written as

J(u,d) : =
3∑

i=1

fi(ui, di)

= −20Ql,1(u1, d1)− 25Ql,2(u2, d2)− 30Ql,3(u3, d3)

(3.1)

where the produced liquid flowrates of well 1, 2 and 3 are depicted by Ql,1, Ql,2 and Ql,3

respectively. In this work the values of the different hydrocarbon flows are assumed to
vary as shown in equation 3.1 in order to illustrate how the individual subsystems are
affected by the different values. The input vector is defined as

u = [Qgl,1 Qgl,2 Qgl,3]
T

where the injected gaslift flow rates of well 1, 2 and 3 are depicted by Qgl,1, Qgl,2

and Qgl,3 respectively. These flowrates are the decision variables in context of the
optimization. However, for the plant, these flowrates correspond to the setpoints that

20

3 EXPERIMENTAL SETUP

needs to be tracked. The experimental lab rig has three flow indicator and controllers
(FIC104, FIC105 and FIC106) which regulate the air injection to their setpoints by
manipulation of the valve openings, as shown in figure 3.1. As a result of this, we
indicate the decision variables in the optimization problem as

usp = [Qsp
gl,1 Qsp

gl,2 Qsp
gl,3]

T

Considering the valve opening of the FICs as the decision variables could also be a
possibility. Although, this alternative could lead to some practical issues due to the
hysteresis behavior and non-linearity of the valves. In equation 3.1 the cost is also
shown as a function of d. This is the case as the three elements of d, which are the
reservoir valve openings (CV101, CV102 and CV103), are time-varying. The total
availability of gas, which is a shared input constraint, can be expressed as below using
the structure in 2.30.

g(u,d) : =
3∑

i=1

gi(ui, di)− gmax

= Qgl,1 +Qgl,2 +Qgl,3 −Qmax
gl

(3.2)

where the constraint is measured directly, and the FICs is used to drive Qgl,i to Qsp
gl,i.

In this paper we have the assumption of an always active constraint. The constraint
can therefore be treated as an equality constraint. Consequently, the utilization of
the max selectors 2.37b and 2.43 for updating λ in the constraint control of the dual
decomposition structure with and without override, as discussed in section 2.5.2 and
2.5.3, is unnecessary. This is due to the fact that the value of the max selector will
always be positive under these circumstances.

21

3 EXPERIMENTAL SETUP

22

4 DISTRIBUTED FEEDBACK-OPTIMIZING CONTROL SETUP

4 Distributed Feedback-optimizing Control Setup

In accordance with the problem formulation described in section 2.5, the distributed
feedback-optimizing control structure for our experimental setup is implemented. The
experimental setup have three wells, therefore the problem is decomposed into three
subsystems. for each subsystem, we have employed a local gradient estimator that
estimates the gradient of the local constraints ∇Qgl,i and local cost gradients ∇Ql,i.
As there is an available dynamic model of the system which is proven to be reliable [20],
forward sensitivity analysis is implemented in order to estimate the gradients. It is also
necessary to estimate the current states of the system, both differential and algebraic,
to compute the local sensitivities, see section A.2. In this paper, an extended Kalman
filter (EKF), see section A.1, is implemented in each subsystem, this relies only on local
measurements to make these estimations. However, any suitable dynamic estimator
may be utilized, provided it is capable of generating accurate estimates of the states
while properly filtering out measurement noise.

When the control structure is defined the controllers must be tuned. The fastest pos-
sible sampling rate of the data acquisition software in the experimental rig is 1 second.
In theory both the local controllers and the coordinator controllers (central constraint
controllers) could be executed at the same rate. Despite that, the controllers could
start competing against each other, depending on their tuning, this might cause in-
stability in the system. As a result, timescale separation between the controllers are
necessary. Prior to initial runs on the lab-rig, all controller tunings were implemented
and evaluated in a MATLAB model of the lab-rig. This preliminary step ensured that
the controller tunings provided relatively good performance before further testing was
done in the lab-rig itself.

4.1 Primal-based Distributed Feedback-optimizing Control Setup

4.1.1 Implemented Control Structure

Based on the problem formulation in section 2.5.1, a distributed feedback-optimizing
control scheme with online primal decomposition is implemented for the experimental
rig. The central constraint controllers receives the estimated local Lagrange multipliers
for each subsystem, these are derived from the local cost gradient and local constraint
gradient as shown in equation 2.25. The Lagrange multipliers is then utilized to calcu-
late the new setpoints, Qsp

gl,i, which is sent to the individual subsystems. One subsystem
needs to be chosen as the compensator in the central constraint control scheme, the
new setpoint for this specific subsystem is provided by equation 2.20. The reasoning
for choosing a specific subsystem as compensator is discussed in detail in section 4.1.2.

As the controller setup is defined, the central constraint controllers needs to be tuned.
The SIMC tuning rules, described in section 2.1.3, are employed to tune the controllers.
In this paper, integral controllers have been utilized, as proportional-integral controllers
was found to aggressive in the MATLAB model. As a result the integral gain for the
central constraint controllers are given by

KI,i =
1

Kλi
(τc,i + θi)

(4.1)

23

4 DISTRIBUTED FEEDBACK-OPTIMIZING CONTROL SETUP

where Kλi
and θi are the step response and the time delay of the constraints by the

local Lagrange multiplier, τc,i is the closed-loop time constants and i = 1, 2, 3 is the
well index.

In order to determine the Kλ,i and θi, an analysis of the systems step response is
conducted. Ideally, the tuning parameter τc,i can be chosen as 1 to drive the system
to steady-state as fast as possible. However, this aggressive approach may not be
suitable, considering that the time-scale of the central constraint controller should be
slower than that of the plant, where the three FICs has a time-constant of 5. Therefore,
the tuning parameters are adjusted based on observation of the results and practical
justifications. The resulting controller and tuning parameters for the primal-based
method are presented in table 4.1.

4.1.2 Determine Compensator System

For the primal-based distributed feedback-optimizing control setup a compensator sub-
system for the central constraint controller must be determined. In this case study, the
compensator subsystem is determined by comparing the accumulated profit with the
three different subsystems chosen as compensator. This analysis is done with the MAT-
LAB model of the lab-rig. The simulation results is presented in figure 4.1, where the
profit difference is calculated as

P k
diff =

P k
3 − P k

i

P k
i

· 100 (4.2)

where P k
diff is the accumulated profit difference. The accumulated profit with well 3

chosen as the compensator is denoted P k
3 , while P k

i is the accumulated profit with well
i chosen as compensator, where i = 1, 2, at time-step k. The accumulated profit with
the different wells chosen as compensator at time-step k is calculated as

P k =
k−1∑
j=1

P j (4.3)

Based on the plot in 4.1, it is evident that the best performance is achieved when
subsystem 3 is utilized as the compensator subsystem, although the difference between
the different compensators are relatively small. The variation in performance can be
attributed to the controller gains in each subsystem, which is presented in table 4.1.
Notably, subsystem 3 has the highest gain magnitude. Thus, it can be concluded that
in scenarios involving an input shared constraint, selecting the subsystem with the
highest gain magnitude as compensator is recommended.

Given the selected compensator subsystem, and the description of the primal-based
scheme in section 2.5.1 the implemented control structure of primal-based distributed
feedback-optimizing control can be constructed. This is illustrated in figure 4.2, where
well 1, well 2, well 3, FIC104, FIC105 and FIC106, in the experimental lab rig from
figure 3.1, are inside the dashed green lines. The experimental lab rig has both in-
put and output measurement noise, this is labeled by ηi,i and ηo,i respectively. In
the flow controllers in the rig, the real manipulated variables are the valve openings,

24

4 DISTRIBUTED FEEDBACK-OPTIMIZING CONTROL SETUP

0 5 10 15 20 25 30 35

time [min]

0

5

10

15
10

-3

Profit well 3 vs well 1

Profit well 3 vs well 2

Figure 4.1: Comparison of accumulated profit with different compensator wells. Well 3 vs well 1 and
well 3 vs well 2 denotes the comparison of accumulated profit with well 3 as compensator
versus accumulated profit with well 1 and 2 as compensator respectively.

which is labeled by vo,i. The differential states, x̂i, algebraic states, ẑi, and parame-
ters/disturbances, p̂i, are estimated in the local dynamic model adaptation, which in
this paper is an extended Kalman filter as discussed earlier.

Figure 4.2: Primal-based distributed feedback-optimizing control scheme implemented in the exper-
imental lab rig. [7]

4.2 Dual-based Distributed Feedback-optimizing Control setup

4.2.1 Implemented Control Structure

Based on the problem formulation in section 2.5.2, a distributed feedback-optimizing
control scheme with dual decomposition is implemented for the experimental rig. For
each subsystem there is an local gradient controller, which is implemented as a integral
controller, that controls ci(λ) to a setpoint value of 0, from equation 2.33. The output
calculated from the local gradient controllers, Qsp

gl,i, are the gas-lift setpoints for each

25

4 DISTRIBUTED FEEDBACK-OPTIMIZING CONTROL SETUP

individual well. These are provided to the flow indicator controllers, which manipulates
the air injection valve openings to achieve the mentioned setpoints in the experimental
lab-rig for the respective subsystems. For the central constraint controller, the Lagrange
multiplier is updated as shown in equation 2.37. As the constraint g can be directly
measured from the lab-rig estimations are not necessary here. The dual-based scheme
is set up in a cascade structure, where the local gradient controllers are the slaves and
the central constraint controller act as the master.

As the controller setup is defined, the controllers needs to be tuned. The SIMC tuning
rules, described in section 2.1.3, are utilized to tune the controllers. In this paper,
integral controllers have been utilized for both the central constraint controller and the
local gradient controllers, as proportional-integral controllers was found to aggressive
from testing in the MATLAB model. As a result, the integral gain for the central
constraint controller is given by

α =
1

Kλ(τc,λ + θλ)
(4.4)

where Kλ represents the step response and θλ corresponds to the time delay caused by
the Lagrange multiplier in relation to the constraint. τc,λ denotes the closed-loop time
constant, which dictates the progression of the constraints. The integral gain for the
three local gradient controllers is expressed as

KI,i =
1

Kui(τc,ui + θui)
(4.5)

where Kui and θui are the step response and the time delay of the gradients by the
inputs, Qsp

gl,i. τc,ui is the closed-loop time constants that dictates the evolution of ci(λ)
and i = 1, 2, 3 is the well index. To determine Kλ, θλ, Kui and θui the step response
is analysed. The experimental lab-rig has a sampling rate of 1 second, hence, the
central constraint controller and the local gradient controllers could be executed at the
same rate. Nevertheless, depending on their respective tuning, these controllers may
potentially compete with each other, which can result in system instability. Therefore,
it is necessary to establish a time-scale separation between these controllers to mitigate
such issues.

The convergence rate to the setpoint is determined by the closed-loop time constant
τc,i of the control loop for each subsystem. In the case of a linear first-order system, the
approach towards the steady-state can be characterized by (1− e−τc,λ/τc,ui) where τc,λ
represents the convergence time of the central constraint, and τc,ui denotes the closed-
loop time constant of the local gradient control in subsystem i as stated above. Hence,
when τc,λ/τc,ui = 5, approximately 99.3 % convergence is achieved, and is therefore
considered reached. This serves as a rule of thumb for establishing a time scale separa-
tion of at least 5 between control layers. [28] Larger values of time scale separation offer
increased robustness against process gain variations. However, excessively large values
result in slower convergence of the controllers. For practical reasons, a recommended
range for timescale separation is often between 5 to 10.

While tuning the time constant parameters τc,λ and τc,ui the concept of time scale
separation, where ϵi =

τc,ui
τc,λ

should be around 0.2, should be considered. This implies

26

4 DISTRIBUTED FEEDBACK-OPTIMIZING CONTROL SETUP

Figure 4.3: Dual-based distributed feedback-optimizing control scheme implemented in the experi-
mental lab rig. [7]

that the outer control loop should be slower than the inner control loop. The inner
time constants, τc,ui is adjusted from observation of results and practical justifications,
based on the same arguments as for tuning the parameter in the primal-based method,
section 4.1. The resulting controller and tuning parameters for the dual-based method
are presented in table 4.2. The implemented control structure on the experimental
lab-rig is shown in figure 4.3.

4.3 Dual-based Distributed Feedback-optimizing Control Setup with
Override

4.3.1 Implemented Control Setup

Based on the problem formulation in section 2.5.3, a distributed feedback-optimizing
control scheme with dual decomposition with override is implemented for the exper-
imental rig. For each subsystem there is an local gradient controller, which is im-
plemented as a integral controller, that controls ci(λ) to a setpoint value of 0, from
equation 2.39. The output calculated from the local gradient controllers, Qsp

gl,i, are the
gas-lift setpoints for each individual well. These are provided to the flow indicator con-
trollers, which manipulates the air injection valve openings to achieve the mentioned
setpoints in the experimental lab-rig for the respective subsystems. For the central
constraint controller, the Lagrange multiplier is updated as shown in equation 2.42.
It controls the auxiliary constraint uspind,i − uspdir,i. One selected subsystem involves a
override constraint controller, including the local gradient controller, where the actual
constraint g(u,d) is controlled in a fast time scale. The gas-lift setpoint, Qsp

gl,i, for this
subsystem is decided with a selector, which is implemented as min(uspdir,i, u

sp
ind,i).

In addition to the local gradient controllers and central constraint controller mentioned
in section 4.2, an override constraint controller is required for the dual-based with over-
ride method. Implemented as a integral controller, as proportional-integral controllers
was found to aggressive from testing in the MATLAB model, the integral gain is given
by

27

4 DISTRIBUTED FEEDBACK-OPTIMIZING CONTROL SETUP

KI,i =
1

Kg,i(τg,i + θg,i)
(4.6)

where Kg,i and θg,i are the step response and the time delay of the constraint by the
selected input Qsp

gl,i. τg,i is the closed-loop time constant that dictates the evolution
of the constraint g. The implemented controller tuning are determined in the same
manner as explained for the dual-method above.

As mentioned above, the input setpoint Qsp
gl,i is selected by a min selector. As a

result it is necessary to include anti-windup in the override constraint controller. This
must be included to avoid continuous integration of the deviation from the constraint
when the output from the gradient controller is selected. Without anti-windup, the the
override constraint controller could end up having slow response to constraint violation.
Therefore, implementation of back off would be necessary. For this case, the anti-
windup limit the integration of constraint deviation by controlling (Qsp

gl,i−Qsp
dir,i), with

anti-windup gain given as [19]

KAW =
1

τI
(4.7)

where τI is the integral time. As a result, the override constraint controller output is
updated using I-control with anti-windup as follows.

Qsp,k+1
dir,i = Qsp,k

dir,i +KI(7.5−Qgl,tot) +KAW (Qsp,k
gl,i −Qsp,k

dir,i) (4.8)

These controller and tuning parameters are presented in table 4.3. The implemented
control structure on the experimental lab-rig is shown in figure 4.6.

4.3.2 Choosing Subsystem with Override Control

As there is only one constraint and three subsystems in the experimental lab-rig, there
are three possible configurations of implementing override in this system, where the
override scheme only should be implemented in one subsystem. In order to select a
subsystem with the override scheme in this paper, two factors are taken into consider-
ation.

To guarantee that the chosen configuration does not reach local input constraints, the
local maximum or minimum gas lift flow rate mentioned in section 3.1, each is tested
in the lab-rig model developed in MATLAB. It is important to prevent such situations
because the current formulation does not incorporate these local input constraints.
Including these constraints into the problem formulation would increase the complexity,
potentially diverting from the main discussion in this paper. The simulation run results
is shown in figure 4.4, where it is clear that applying the override scheme in subsystem
1 leads to saturation of the local input constraint in the respective system.

The constraint satisfaction of each configuration should also be taken into account. The
metric of interest in this case is the maximum magnitude of the constraint violation.
The results from the lab-rig model developed in MATLAB is presented in figure 4.5,
where the total input constraint, Qmax at 7.5, is the constraint that should be satisfied.

28

4 DISTRIBUTED FEEDBACK-OPTIMIZING CONTROL SETUP

0 5 10 15 20 25 30 35 40 45

time [min]

1

1.5

2

2.5

3

Well 1 Well 2 Well 3

0 5 10 15 20 25 30 35 40 45

time [min]

1

2

3

4

Well 1 Well 2 Well 3

0 5 10 15 20 25 30 35 40 45

time [min]

1

2

3

4

5

Well 1 Well 2 Well 3

Figure 4.4: Comparison of the gas lift flow rates for every well with override constraint control
implemented in the three different subsystems.

From this it is easy to conclude that it should be avoided to add the override scheme
on subsystem 1, as it results in significant constraint violation. Override on subsystem
2 and 3 have more similar behavior. However, override on subsystem 3 has a better
performance in terms of constraint violation. From figure 4.4, it is shown that these two
methods have very similar behavior in therms of violating the local input constraints.
As a result, the override scheme is implemented on subsystem 3 in this work. The
resulting controller and tuning parameters for the dual-based with override method
are presented in table 4.3, while the control structure which is implemented on the
experimental lab-rig is shown in figure 4.6.

Another approach to choosing which subsystem the override scheme is implemented on
is presented in Dirza et al. [11]. In this method, the decision is based on the manipulated
variables sensitivities to its local disturbances.

29

4 DISTRIBUTED FEEDBACK-OPTIMIZING CONTROL SETUP

0 5 10 15 20 25 30 35 40 45

time [min]

6

6.5

7

7.5

8

8.5

9

9.5

Well 1 Well 2 Well 3 Qmax

Figure 4.5: Comparison of the constraint satisfaction (total implemented gas lift) with override con-
straint control implemented in the three different subsystems.

Figure 4.6: Dual-based with override distributed feedback-optimizing control scheme implemented
in the experimental lab rig. [7]

30

4 DISTRIBUTED FEEDBACK-OPTIMIZING CONTROL SETUP

Description Variable Value

Experimental rig sampling time Ts 1 s

Time constant τc,1 25 s
Time constant τc,2 25 s
Time constant τc,3 25 s
Time delay θλ1 0 s
Time delay θλ2 0 s
Time delay θλ3 0 s
Lagrange multiplier gain Kλ1 -2.522
Lagrange multiplier gain Kλ2 -2.918
Lagrange multiplier gain Kλ3 -3.698
Integral gain KI,1 -0.016
Integral gain KI,2 -0.014
Integral gain KI,3 -0.011

Table 4.1: Controller and tuning parameters for primal decomposition

Description Variable Value

Experimental rig sampling time Ts 1 s

Central constraint controller

Time constant τc,λ 125 s
Time delay θλ 0 s
Lagrange multiplier gain Kλ 0.907
Integral gain α 0.0088

Local gradient controllers

Time constant τc,u1 25 s
Time constant τc,u2 25 s
Time constant τc,u3 25 s
Time delay θu1 0 s
Time delay θu2 0 s
Time delay θu3 0 s
Input gain Ku1 2.53
Input gain Ku2 2.93
Input gain Ku3 3.70
Integral gain KI,1 0.016
Integral gain KI,2 0.014
Integral gain KI,3 0.011

Table 4.2: Controller and tuning parameters for dual decomposition

31

4 DISTRIBUTED FEEDBACK-OPTIMIZING CONTROL SETUP

Description Variable Value

Experimental rig sampling time Ts 1 s

Central constraint controller

Time constant τc,λ 125 s
Time delay θλ 0 s
Lagrange multiplier gain Kλ 0.2171
Integral gain α 0.0368

Local gradient controllers

Time constant τc,u1 25 s
Time constant τc,u2 25 s
Time constant τc,u3 25 s
Time delay θu1 0 s
Time delay θu2 0 s
Time delay θu3 0 s
Input gain Ku1 2.53
Input gain Ku2 2.93
Input gain Ku3 3.70
Integral gain KI,1 0.016
Integral gain KI,2 0.014
Integral gain KI,3 0.011

Override constraint controller

Integral Time τI,u3 2.5 s
Time constant τc,u3 10 s
Time delay θu3 0 s
Input gain Ku3 1
Integral gain KI,3 0.1
Anti-windup gain Kaw 0.4

Table 4.3: Controller and tuning parameters for dual decomposition with override

32

5 EXPERIMENTAL RESULTS

5 Experimental Results

5.1 Disturbances

Using the control and tuning parameters presented in section 4 above, the three ap-
proaches, primal-based, dual-based and dual-based with override, are implemented.
In figure 5.1 the reservoir valve openings, CV101, CV102 and CV103, development
throughout the experiment is presented. These are considered the disturbance in this
work. The first disturbance occurs when CV101 gradually close from t = 6.5 to t = 14
minutes. During this time period, it is expected a decrease of gas lift injection for
well 1, and a redistribution of the excess gas lift among the other wells. The second
disturbance occurs when CV103 also gradually close from t = 15.5 to t = 21 minutes.
During this time period, it is expected a decrease of gas lift to well 3. This is also
expected to reduce with a higher rate because the "value" of this well is higher than
the others. As a result, the other wells will receive more gas lift with a higher rate.
The third disturbance occurs when CV103 is gradually opened from t = 24 to t = 29.5
minutes. The behavior of the gas lift distribution is expected to have the reverse reac-
tion to that of the second disturbance. The fourth, and last, disturbance occurs when
CV101 gradually open from t = 33 to t = 42.5 minutes. As before, it is expected an
reverse reaction to what happens during the first disturbance. In this work, sudden
disturbance change is avoided to ensure that the plant is adjusted smoothly by the
implemented controllers.

In the experimental rig, a programming environment, LABVEIW [3], is used to auto-
mate the implementation of the disturbances. As a result, it is possible to use the same
disturbance profile in independent experiments. The control is not activated during
the first minute of the experiments. Therefore, all runs start with the same amount of
gas lift injection in every well.

0 5 10 15 20 25 30 35 40 45

time [min]

0

0.2

0.4

0.6

0.8

1

CV101 CV102 CV103

Figure 5.1: Disturbances implemented in the experiments

5.2 Comparison of Distributed Feedback-optimizing Control

In order to evaluate the effectiveness of the implemented control structure, a series
of experiments were conducted. Multiple experiments were performed for each control
method to ensure reliable results. The outcomes presented in this paper are the averages
of the three best, or most average results obtained for each method. This approach was
adopted to mitigate the influence of potential outliers and to provide a more robust
assessment of the different control structures performances.

33

5 EXPERIMENTAL RESULTS

The averaged results presented in the following sections provide valuable insights into
the performance of the different implemented control structures. These outcomes serve
as a basis for understanding the effectiveness of the different control methods and their
suitability for real-world applications.

5.2.1 Constraint Satisfaction

0 5 10 15 20 25 30 35 40 45

time [min]

6.5

7

7.5

8

8.5

Primal Dual Override Q
gl,max

Figure 5.2: The constraint satisfaction of primal-based, dual-based and dual-based with override.

In figure 5.2 the constraint satisfaction of the three implemented approaches are dis-
played. It is clear from this result that the primal-based approach has a better con-
straint satisfaction than dual-based with and without override approaches, as it pro-
vides a total implemented gas lift of 7.5 sL/min during the whole time frame of the
experiment. This behavior is desirable, as it is considered an always active input shared
constraint in this case study. The reason why primal-based has this property, is be-
cause of the compensator subsystem, in this case subsystem 3, absorbs the deviations
from the constraint. This absorbing ability stems from how the gas lift setpoint for
the compensator subsystem is calculated, see equation 2.20. In relation to the opera-
tional implications, by implementing the primal-based method it is possible to operate
the experimental lab-rig without any significant back off while maintaining feasibility
consistently.

For the dual-based method however, it becomes evident that the implementation of back
off is necessary, particularly from t = 26 minutes when the disturbances is increasing.
In figure 5.2 this time period is highlighted in gray, in this area the dual-based method is
violating the constraint and is therefore not a valid approach. The constraint violation
is a result of the necessary time-scale separation between the control layer, from the
plant to the local gradient controllers as well as from the local gradient controllers
to the central constraint controller. Due to the comparatively slower nature of the
central constraint control in the dual-based method, it is unable to effectively track
the disturbances to the same extent as the primal-based central constraint controllers.
In figure 5.3 the result of dual-based with back off is included as well. The back
off is set to ξ = 0.5 because at t = 29, when the dual-based approach achieves the
highest magnitude of constraint violation, the total implemented gas lift for the dual-
based approach is around Qgl,tot = 8 sL/min. As a result, dual-based with back
off implemented have no violation of the total implemented gas lift constraint and is
therefore feasible during the entirety of the experimental runs.

34

5 EXPERIMENTAL RESULTS

0 5 10 15 20 25 30 35 40 45

time [min]

6

6.5

7

7.5

8

8.5

Primal Dual Dual Back off Override Q
gl,max

Figure 5.3: The constraint satisfaction of primal-based, dual-based, dual-based with back off and
dual-based with override.

For the dual-based with override, the results in figure 5.2 and 5.3 show that the method
remain valid throughout the whole experiment. The override constraint controller
ensures that the total gas lift input is satisfying the maximum constraint, Qgl,max.
However, for this case, the dual-based with override method can be classified as worse
than the primal-based method in therms of the constraint satisfaction. This is because
it is considered an always active constraint, therefore, the dual-based with override
is guaranteed not achieving optimum performance for the time period from t = 0 to
t = 26. This is because the total gas lift implemented is not 7.5 sL/min during this
time period.

For all implemented dual-based approaches the total implemented gas lift moves away
from the constraint at around t = 1. As stated earlier, the control structures are
activated around this time. This behavior is a result of both the initial value of the
Lagrange multipliers and the initial implemented gas lift for each well, Qgl,i, is deviating
from the optimal operation point. As a result, the faster responding gradient controllers
drive the system away from the constraint before the central constraint controller has
time to reach the optimum operation point. From figure 5.7, it can be observed that
the Lagrange multipliers for the dual approaches starts of at 9.5 before decreasing.
In other words the Lagrange multipliers is larger than the optimum operation point
initially.

5.2.2 Optimal Setpoints

In figure 5.4 the gas lift setpoints which is implemented in the FICs in the experimental
lab-rig provided from the different control approaches is presented. As the dual-based
and dual-based with override method do not satisfy the constraint during the entire
experiment, as is the case for the primal-based method, one might expect that the
dual-based methods have a slower response in the setpoints changes than the primal-
based method. However, for the disturbance behavior in these experiments, this is not
the case for the subsystems which is undergoing disturbance changes. During the time
period from t = 6.5 to t = 14, when there is a disturbance in well 1, figure 5.4 shows
that the dual-based approaches provide a slightly faster setpoint response for subsystem
1 compared to the primal-based approach. However, for the remaining subsystems, the
primal-based approach demonstrates a faster response.

This behavior is rooted in the characteristics of the local gradient controllers within the

35

5 EXPERIMENTAL RESULTS

dual-based methods framework. When a disturbance occurs in one of the subsystems,
the associated local gradient estimators have a fast response to it, which leads to
a fast response in the corresponding gradient controller. This can be observed for
subsystem 1 in figure 5.4 from t = 10 to t = 15, because they are directly affected by
the local disturbance, which is shown in equation 2.33 and 2.39. On the other hand,
the remaining local gradient estimators are only directly influenced by their respective
local disturbances. As a result, there is no response from these controllers until the
central constraint control reacts to the constraint violation. The delay in response
is therefore due to the necessary time scale separation between the central constraint
controller and the local gradient controllers in the dual-based approaches framework,
as explained in section 4.2 and 4.3. In comparison, for the primal-based structure,
all subsystem have the same reaction time in regards of local disturbances. This is
because the distribution of the gas lift is "negotiated" by the estimated local Lagrange
multipliers in the central constraint controllers. As a result, all wells responds to any
disturbances at the same time. Consequently, the dual-based methods achieve faster
rejection to local disturbances in the respective subsystems. However, the primal-based
method demonstrates better constraint control.

Figure 5.5 shows the actual gas lift flow rates in the experimental lab-rig. This plot
differs slightly from the provided input setpoints presented in figure 5.4. This difference
is a result of two factors: input measurement noise and the time required for the gas
flowrate controllers, FIC104, FIC105 and FIC106 from figure 3.1, to adjust the actual
gas lift flow rate, Qgl,i to match the setpoint gas lift flowrate, Qsp

gl,i.

As the dual-based approach required back off, which is discussed in section 5.2.1, the
gas lift flow rates from dual-based with back off approach is also included in figures
5.4 and 5.5. This approach results in the same behavior as the dual-based approach,
the only difference being a downward shift in the injected gas lift flow rates, which is
expected.

36

5 EXPERIMENTAL RESULTS

0 5 10 15 20 25 30 35 40 45

time [min]

1.5

2

2.5

Primal Dual Dual Back off Override

0 5 10 15 20 25 30 35 40 45

time [min]

2

2.5

3

Primal Dual Dual Back off Override

0 5 10 15 20 25 30 35 40 45

time [min]

2

2.5

3

3.5

Primal Dual Dual Back off Override

Figure 5.4: The gas lift flow rate setpoints, Qsp
gl,i, for every well for primal-based, dual-based and

dual-based with override control setup.

37

5 EXPERIMENTAL RESULTS

0 5 10 15 20 25 30 35 40 45

time [min]

1.5

2

2.5

Primal Dual Dual Back off Override

0 5 10 15 20 25 30 35 40 45

time [min]

2

2.5

3

Primal Dual Dual Back off Override

0 5 10 15 20 25 30 35 40 45

time [min]

2

2.5

3

3.5

Primal Dual Dual Back off Override

Figure 5.5: The measured gas lift flow rates, Qgl,i, in every well for primal-based, dual-based and
dual-based with override control setup.

38

5 EXPERIMENTAL RESULTS

5.2.3 Lagrange Multipliers

Figures 5.6 and 5.7 show the Lagrange multipliers from the experimental results. The
Lagrange multipliers from the primal-based method is presented in figure 5.6, from the
result it is clear that these are controlled fast, and they converge to the same values.
As they respond fast, the result is presented with a moving mean of 10 seconds, this
is done to get a better presentation of their development throughout the experiment.
This fast behavior is due to the fast time scale the central constraint controller operates
in for the primal-based method, which is presented in section 4.1.

0 5 10 15 20 25 30 35 40 45

time [min]

7

8

9

10

11

Figure 5.6: Local Lagrange multipliers from experimental runs with primal-based method with a
moving mean of 10 second.

0 5 10 15 20 25 30 35 40 45

time [min]

7.5

8

8.5

9

9.5

10

Figure 5.7: Local Lagrange multipliers from experimental runs with dual-based and dual-based with
override methods.

Figure 5.7 show the Lagrange multiplier for the dual-based and dual-based with over-
ride methods. From comparison with the result from primal-based method, it is clear
that these methods have a slower response in the control of the Lagrange multiplier.
This behavior is due to the tuning of the controllers and the fact that the central con-
straint controllers for both dual-based methods operates on a slower time scale, which
is explained in sections 4.2 and 4.3. At time t = 10 minutes the dual-based Lagrange
multiplier is converged for a short period. This can be confirmed in figure 5.2 as the
total input constraint is satisfied at this time for this method.

From t = 26 and on wards in figure 5.7 it can be observed that the evolution of the
Lagrange multiplier in the dual-based with override approach is much slower than for

39

5 EXPERIMENTAL RESULTS

the dual-based approach. During this time frame the override constraint controller is
activated. As a result, the control of the auxiliary constraint in the central constraint
controller becomes to slow and consequently the Lagrange multiplier does not converge
during the time frame of the experiments. This problem could be accommodated by
reducing the time scale separation between the control layers. However, this could lead
to instabilities when the override constraint controller is deactivated.

5.2.4 Accumulated Profits

0 5 10 15 20 25 30 35 40 45

time [min]

16

18

20

22

24

26

Primal Dual Back off Override

Figure 5.8: Comparison of the total liquid flow rate in the experimental runs for primal-based, dual-
based and dual-based with override control setup

For the economic evaluation of the different implemented control approaches, the basic
dual-based approach is not considered. This is because of the constraint violations
shown in figures 5.2 and 5.3. Consequently, this approach is not feasible and the dual-
based with back off is considered instead. In figure 5.8 the total liquid production of the
three implemented control schemes is presented. However, it is not possible to gather
any valuable information in terms of how the economic performances of the different
methods compare to each other. To better display the economic performance of the
implemented methods, they are compared to a naive approach in therms of gas lift
distribution in figures 5.9 and 5.10. For the naive approach the inputs are considered
fixed as

u =

[
Qmax

gl

3

Qmax
gl

3

Qmax
gl

3

]T
(5.1)

This is a representation of the case where no information is available. As a result,
the best solution is to divide the available gas lift equally among the three wells in
the system as the constraint is considered always active at the optimal operation point.
The profit difference between the implemented control methods and the naive approach
in figure 5.9 is calculated as

Pdiff =
P − Pnaive

Pnaive
· 100 (5.2)

where Pdiff is the percentage of profit difference, P is the profit of the method of
interest, while Pnaive is the profit of the naive approach. It is used a moving average

40

5 EXPERIMENTAL RESULTS

0 5 10 15 20 25 30 35 40 45

time [min]

-1

0

1

2

Primal

0 5 10 15 20 25 30 35 40 45

time [min]

-2

-1

0

1

2

Dual Back off

0 5 10 15 20 25 30 35 40 45

time [min]

-2

-1

0

1

2

Override

Figure 5.9: The instantaneous profit difference of the primal-based, dual-based and dual-based with
override methods compared to the naive approach.

of 60 seconds in order to smoothing out the instantaneous profit profiles, because the
measurements are noisy.

In figure 5.10, the cumulative profit
∑

Pdiff of the implemented methods are compared.
From this result it is clear that the primal-based method is more profitable than the
other methods in this experimental case.

For the dual-based method and dual-based with override method it is expected similar
economic performance during the first 26 minutes of the experiment. However, this is
not the case because of the back-off implemented for dual-based method in order to
satisfy the input shared constraint. As a result, the dual-based method has a smaller
cumulative profit than the naive approach and is therefor worse than not controlling
the gas lift distribution for this case.

41

5 EXPERIMENTAL RESULTS

0 5 10 15 20 25 30 35 40 45

time [min]

-10

0

10

20

30

40

Primal Dual Back off Override

Figure 5.10: The accumulated profit difference between the primal-based, dual-based and dual-based
with override methods and the naive approach.

5.3 Consistency of Results

Several measures have been taken to ensure the reliability of the experimental results
presented in section 5. Firstly, there have been conducted at least five runs for each
implemented method in order to account for random fluctuations, system variations and
other factors that may influence the results. By having more runs, the robustness of the
findings is enhanced, providing a more reliable assessment of the different implemented
feedback-based optimization control structures performance.

Furthermore, the averaging of the three most normal runs is a sensible approach to
mitigate the impact of outliers. Outliers can arise due to various factors, such as
measurement errors or unexpected disturbances. By excluding abnormal results from
the average calculation, the influence of such outliers is removed from the results. This
filtering process aims to obtain a more better and stable representation of the system
behavior during the experiments.

The averaging of the results also serves to reduce measurement noise in the result
plots. Measurement noise can be a result of measurement error, environmental factors,
or system noise. By averaging the results, the random noise tend to cancel out, leading
to smoother and clearer result plots. As a result, the interpretation of the results
becomes easier and allows for a more accurate assessment of the performance of each
implemented control structure.

5.4 Performance of the Distributed Feedback-optimizing Approaches

The results in section 5 indicates that the primal-based feedback optimization method
outperforms the dual-based and dual-based with override feedback optimization meth-
ods for the case of input shared constraint. However, it is important to consider the
dual-based approaches, as these are more general in terms of number of constraints it is
able to handle. The primal-based method has mathematical limitations when it comes
to multiple constraint problems. As presented in section 2.5.1, there must be less than
or equal number of active coupling constraints as decision variables in each subsystem
for the primal-based method while this is not the case for the dual-based methods.

42

6 CONCLUSION

6 Conclusion

In this work, three distributed feedback-optimizing control schemes, primal-based, dual-
based and dual-based with override, have been validated in a experimental lab-rig
emulating a subsea oil production network. Based on the experimental results following
conclusions can be made.

All three schemes yield are able to yield the same asymptotic optimal performance
without the use of a numerical solver. However, there is differences is the transient
behavior in each control scheme. This is a result of the implemented control structure
and control tuning chosen for the different schemes.

In both dual-based approaches, considering timescale separation between the local gra-
dient controllers and the central constraint controller is necessary. When the central
constraint controller is tuned to operate on the same timescale as the local gradient
controllers, instability and oscillatory behavior can arise. The timescale separation
ensures that the control actions of the central constraint controller do not interfere
with the dynamics of the local gradient controllers, preventing such behavior. On the
other hand, if the central constraint controller is tuned excessively slow, it can lead to
slow convergence to the optimal steady-state, which result in suboptimal performance.
Therefore, finding the appropriate timescale separation between the control layers is
essential to ensure acceptable system control.

By inclusion of an override mechanism, the dual-based scheme offers the advantage of
better active constraint satisfaction while at the same time preserving the favorable
characteristics of the dual-based scheme. As a result, the economic performance is
enhanced as the requirement of back off is vastly reduced or eliminated. However, the
convergence of the dual variable throughout the experimental runs is unsatisfactory.
To address this issue, one solution could be to consider the implementation of gain
switching in the central constraint controller in order to accommodate the nonlinearity
in the auxiliary constraint.

In this specific case, with always active input shared constraints, the primal-based
scheme has the best performance both in terms of economics and constraint satisfaction
among the three schemes. The good constraint satisfaction is made possible by the
compensator subsystem, which ensures that all available gas lift is utilized.

6.1 Further Work

6.1.1 Improvements for Dual-based with Override

In this work, the dual-based with override method is implemented with an integral
action controller in the central constraint controller, as the other two methods. From
the results presented in section 5.2.2 and 5.2.3 it is clear that this method did not
reach steady-state during the experimental run time. This is a consequence of the
central constraint controller becoming to slow when the override constraint controller
is activated. However, this could be overcome by implementing the central constraint
controller as a PI-controller, rather than solely an I-controller. This will drive the sys-
tem to the optimal point faster compared to the current implemented central constraint
controller. In spite of that, implementing a PI-central constraint controller could be to
aggressive when the override constraint controller is inactive, where the control of the

43

6 CONCLUSION

Lagrange multiplier is relatively effective with the existing implementation.

This behavior is a consequence of that the auxiliary constraint is non-linear. As it
controls the difference between the override constraint controller and local gradient
controller, not the difference between a given setpoint and total input, which is the
case for the normal dual-based method. In nonlinear cases, gain scheduling could be an
option to effectively address the non-linearity and improve controller performance. [22]

This could be implemented with a switch for when the output from the override con-
straint controller is chosen or not in the selector. For this case it would be sensible
to apply proportional gain, Kp, equal to zero when the override constraint controller
is not active, and KP = τI

k(τc+θ) when it is active. By implementing this, it would be
possible to overcome the slow convergence rate in the central constraint controller while
maintaining stability for all system states. This idea is currently investigated further
in Dirza et al. [7].

6.1.2 Local Response Time in Dual-based Methods

As mentioned in section 5.2.2, the dual-based and dual-based with override respond
faster to the local disturbance changes in the respective subsystem. In this paper, only
the case with one disturbance parameter is changing at a time is considered. If instead,
the case was simultaneous disturbance changes in all subsystems, which would be a
more realistic case, there would still be fast response to the local disturbance changes.
However, since the central constraint controller operates in the slow timescale, this
could lead to significant constraint violations as the local gradient controllers deal with
the local disturbances before the central controller reacts. As a result, it would be
required even more back off, which would result in less profitable operation.

6.1.3 Generalizing of Primal-based Approach

The primal-based approach suggested in this work exhibits a limitation when it comes
to managing constraint switching scenarios. When multiple constraints are involved, it
becomes necessary to compute the local Lagrange multipliers for each individual con-
straint. To address this challenge, a potential solution is to employ multiple primal-
based feedback-optimizing control structures in parallel, where each structure is ded-
icated to handling a specific constraint. A logical decision making mechanism must
then be implemented to determine which constraint should be controlled based on the
magnitude of the Lagrange multipliers at any given time. To ensure fairness in select-
ing the constraint to be considered, normalization of the Lagrange multipliers would
be required. This normalization process enables the structure to decide which set of
central constraint controllers should be active. However, all of these premature sugges-
tions should proceed through further investigation before making any conclusions or
recommendations.

44

REFERENCES

References
[1] O. M. Aamo, G. Eikrem, H. Siahaan, and B. A. Foss. Observer design for mul-

tiphase flow in vertical pipes with gas-lift—-theory and experiments. Journal of
process control, 15(3):247–257, 2005.

[2] V. Aas, R. Dirza, D. Krishnamoorthy, and S. Skogestad. A comparative study of
distributed feedback-optimizing control strategies. 2022.

[3] R. Bitter, T. Mohiuddin, and M. Nawrocki. LabVIEW: Advanced programming
techniques. CRC press, 2017.

[4] S. Boyd, N. Parikh, E. Chu, B. Peleato, J. Eckstein, et al. Distributed optimiza-
tion and statistical learning via the alternating direction method of multipliers.
Foundations and Trends® in Machine learning, 3(1):1–122, 2011.

[5] S. Boyd, L. Xiao, A. Mutapcic, and J. Mattingley. Notes on decomposition meth-
ods. Notes for EE364B, Stanford University, 635:1–36, 2007.

[6] G. Cohen and G. Coon. Theoretical consideration of retarded control. Transactions
of the American Society of Mechanical Engineers, 75(5):827–834, 1953.

[7] R. Dirza, V. Aas, S. Skogestad, and D. Krishnamoorthy. A comparative study
of distributed feedback-optimizing control schemes: An experimental validation.
2023. To appear.

[8] R. Dirza, J. Matias, S. Skogestad, and D. Krishnamoorthy. Experimental valida-
tion of distributed feedback-based real-time optimization in a gas-lifted oil well
rig. Control Engineering Practice, 126:105253, 2022.

[9] R. Dirza, M. Rizwan, S. Skogestad, and D. Krishnamoorthy. Real-time opti-
mal resource allocation using online primal decomposition. IFAC-PapersOnLine,
55(21):31–36, 2022.

[10] R. Dirza and S. Skogestad. Online feedback-based optimization with multi-input
direct constraint control. IFAC-PapersOnLine, 55(7):149–154, 2022.

[11] R. Dirza and S. Skogestad. Systematic pairing selection for economic-oriented
constraint control. In Computer Aided Chemical Engineering, volume 51, pages
1249–1254. Elsevier, 2022.

[12] R. Dirza, S. Skogestad, and D. Krishnamoorthy. Optimal resource allocation
using distributed feedback-based real-time optimization. IFAC-PapersOnLine,
54(3):706–711, 2021.

[13] J. Hahn and T. Edgar. Process Control. 04 2014.

[14] R. A. Jose and L. H. Ungar. Pricing interprocess streams using slack auctions.
AIChE Journal, 46(3):575–587, 2000.

[15] M. King. Process control: a practical approach. John Wiley & Sons, 2016.

[16] D. Krishnamoorthy. A distributed feedback-based online process optimization
framework for optimal resource sharing. Journal of Process Control, 97:72–83,
2021.

45

REFERENCES

[17] D. Krishnamoorthy, M. A. Aguiar, B. Foss, and S. Skogestad. A distributed
optimization strategy for large scale oil and gas production systems. In 2018
IEEE Conference on Control Technology and Applications (CCTA), pages 521–
526. IEEE, 2018.

[18] D. Krishnamoorthy and S. Skogestad. Online process optimization with active
constraint set changes using simple control structures. Industrial & Engineering
Chemistry Research, 58(30):13555–13567, 2019.

[19] D. Krishnamoorthy and S. Skogestad. Systematic design of active constraint
switching using selectors. Computers & Chemical Engineering, 143:107106, 2020.

[20] J. Matias, J. P. Oliveira, G. A. Le Roux, and J. Jäschke. Steady-state real-time
optimization using transient measurements on an experimental rig. Journal of
Process Control, 115:181–196, 2022.

[21] M. Morari, Y. Arkun, and G. Stephanopoulos. Studies in the synthesis of control
structures for chemical processes: Part i: Formulation of the problem. process
decomposition and the classification of the control tasks. analysis of the optimizing
control structures. AIChE Journal, 26(2):220–232, 1980.

[22] W. J. Rugh and J. S. Shamma. Research on gain scheduling. Automatica,
36(10):1401–1425, 2000.

[23] D. E. Seborg, T. F. Edgar, D. A. Mellichamp, and F. J. Doyle III. Process dynamics
and control. John Wiley & Sons, 2016.

[24] S. Skogestad. course5 - advanced, ntnu: Tkp4555. https://folk.ntnu.no/skoge/
vgprosessregulering/lectures/. Accessed 01.06.2023.

[25] S. Skogestad. Sis7pid controller, ntnu: Tkp4140. https://folk.ntnu.no/skoge/
prosessregulering/lectures/2021/. Accessed 07.06.2023.

[26] S. Skogestad. Plantwide control: The search for the self-optimizing control struc-
ture. Journal of process control, 10(5):487–507, 2000.

[27] S. Skogestad. Simple analytic rules for model reduction and pid controller tuning.
Journal of process control, 13(4):291–309, 2003.

[28] S. Skogestad and I. Postlethwaite. Multivariable feedback control: analysis and
design. john Wiley & sons, 2005.

[29] G. Stojanovski, L. Maxeiner, S. Krämer, and S. Engell. Real-time shared resource
allocation by price coordination in an integrated petrochemical site. In 2015 Eu-
ropean Control Conference (ECC), pages 1498–1503. IEEE, 2015.

[30] E. Walter, L. Pronzato, and J. Norton. Identification of parametric models from
experimental data, volume 1. Springer, 1997.

[31] J. G. Ziegler, N. B. Nichols, et al. Optimum settings for automatic controllers.
trans. ASME, 64(11), 1942.

46

https://folk.ntnu.no/skoge/vgprosessregulering/lectures/
https://folk.ntnu.no/skoge/vgprosessregulering/lectures/
https://folk.ntnu.no/skoge/prosessregulering/lectures/2021/
https://folk.ntnu.no/skoge/prosessregulering/lectures/2021/

A STEADY-STATE GRADIENT ESTIMATION

A Steady-State Gradient Estimation

In this paper, the estimation of gradients is performed using forward sensitivity analy-
sis. The gradient estimation involves two steps. Firstly, the current plant information
is utilized to update the state and parameters of the model using a dynamic adapta-
tion scheme (in this work, extended Kalman filter). Secondly, the updated model is
employed to compute the steady-state gradients using forward sensitivity analysis.

Remark. The system has a dynamic model which is utilized for state and parameter
estimation. This model is derived by Matias et al. [20], the reader is referred to this
work for further details.

A.1 Extended Kalman Filter

In order to apply the Kalman filter equations, the model needs to be linearized. The
model is an index-1 differential algebraic equation (DAE) system, which easily can
be transformed into an ordinary differential equation (ODE) system. the unknown
parameters in the model are assumed to vary with time, and their dynamics are modeled
using a random walk model,

pk+1 = pk + vk (A.1)

where vk follows a normal distribution with a mean zero and a covariance Vθ. Addi-
tionally, it is assumed that vk is independent of v̸=k.

By combining the dynamics of the parameters and the system an extended model for
parameter estimation is obtained. As the model has been linearized, the extended
Kalman filter equations can be applied to simultaneously estimate pk, xk and zk. For
a comprehensive derivation of the EKF equations, the reader is referred to the work of
Walter and Pronzato [30].

A.2 Forward Sensitivity Analysis

The original nonlinear DAE model is expressed in the following form

xk+1 = F̌ (xk, zk,uk,pk)

0 = Ǧ(xk, zk,uk,pk)
(A.2)

The steady-state gradients are estimated by utilizing the stationary values of the for-
ward sensitivity equation.

0 =
δF̌⊤

δx
SSS +

δF̌⊤

δz
RSS +

δF̌⊤

δu

0 =
δǦ⊤

δx
SSS +

δǦ⊤

δz
RSS +

δǦ⊤

δu

(A.3)

where the sensitivities SSS and RSS represent the differential states x and algebraic
states z with right to the inputs u. In this scenario, the objective J and constraint g

47

A STEADY-STATE GRADIENT ESTIMATION

can be expressed as the linear functions of the algebraic states, J = ȞJz and g = Ȟgz.
Therefore, the chain rule can be applied to compute the gradients ∇uJ and ∇ug,

J = ȞJz ⇒ ∇uJ = ȞJRSS

g = Ȟgz ⇒ ∇ug = ȞgRSS

(A.4)

48

B MATLAB CODE

B MATLAB Code

B.1 LabViewMain - Primal-based

% Main program
% Run Initialization file first

%%%%%%%%%%%%%%%%
% Get Variables
%%%%%%%%%%%%%%%%
% disturbances
%valve opening [%]
cv101 = P_vector(1);
cv102 = P_vector(2);
cv103 = P_vector(3);
% cv101 = 0.8; cv102 = 0.4; cv103 = 0.6;
% if value is [A] from 0.004 to 0.020
% if you want to convert to 0 (fully closed) to 1 (fully open)
% vo_n = (vo - 0.004)./(0.02 - 0.004);

%pump rotation [%]
pRate = P_vector(4);
% if value is [A] from 0.004 to 0.020
% if you want to convert to (min speed - max speed)
% goes from 12% of the max speed to 92% of the max speed
% pRate = 12 + (92 - 12)*(P_vector(4) - 0.004)./(0.02 - 0.004);

% always maintain the inputs greater than 0.5
% inputs computed in the previous MPC iteration
% Note that the inputs are the setpoints to the gas flowrate PID's
fic104sp = P_vector(5);
fic105sp = P_vector(6);
fic106sp = P_vector(7);
%current inputs of the plant
u0old=[P_vector(5);P_vector(6);P_vector(7)];

% cropping the data vector
nd = size(I_vector,2);
dataCrop = (nd - BufferLength + 1):nd;

% liquid flowrates [L/min] %INCLUDE NOISE???
fi101 = I_vector(1,dataCrop);
fi102 = I_vector(2,dataCrop);
fi103 = I_vector(3,dataCrop);

% actual gas flowrates [sL/min] %INCLUDE NOISE???
fic104 = I_vector(4,dataCrop);
fic105 = I_vector(5,dataCrop);
fic106 = I_vector(6,dataCrop);

% pressure @ injection point [mbar g]
pi105 = I_vector(7,dataCrop);
pi106 = I_vector(8,dataCrop);
pi107 = I_vector(9,dataCrop);

49

B MATLAB CODE

% reservoir outlet temperature [oC]
ti101 = I_vector(10,dataCrop);
ti102 = I_vector(11,dataCrop);
ti103 = I_vector(12,dataCrop);

% DP @ erosion boxes [mbar]
dp101 = I_vector(13,dataCrop);
dp102 = I_vector(14,dataCrop);
dp103 = I_vector(15,dataCrop);

% top pressure [mbar g]
% for conversion [bar a]-->[mbar g]
% ptop_n = ptop*10^-3 + 1.01325;
pi101 = I_vector(16,dataCrop);
pi102 = I_vector(17,dataCrop);
pi103 = I_vector(18,dataCrop);

% reservoir pressure [bar g]
% for conversion [bar g]-->[bar a]
% ptop_n = ptop + 1.01325;
pi104 = I_vector(19,dataCrop);

%%%%%%%%%%%%%%%%%%%%%%%%%%%
% CODE GOES HERE
%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% number of measurements in the data window
dss = size(pi104,2);

% we do no consider SS detection here
flagSS = 1;

% check for first iteration
if ~exist('dxHatkk','var')

%initial condition
[dx0,z0,u0,theta0] = InitialConditionGasLift(par);

dxHatkk = dx0;
zHatkk = z0;
thetakk = theta0;

load('EKFconf');
qThres = ekf.qThresk;
Pkk = ekf.Pkk;
%ekf.R = noise.output; %added (different from Rig Implementation)

lambda = 9.5;

lambda_1 = 1;
lambda_2 = 1;
lambda_3 = 1;

err0 = zeros(3,1);
end

50

B MATLAB CODE

if flagSS == 1
%%
% Estimating SS model parameters (dynamic) %
%%
yPlant = [fi101;

fi102;
fi103;
1.01325 + 10^-3*pi101; %[mbarg]-->[bar a];
1.01325 + 10^-3*pi102;
1.01325 + 10^-3*pi103];

uPlant = [fic104; %conversion [L/min] --> [kg/s]
fic105;
fic106;
cv101*ones(1,dss); %workaround - i just have the last measurement here. Since it is the disturbance, it doesn't really matter;
cv102*ones(1,dss);
cv103*ones(1,dss);
pi104 + 1.01325];

try
% running casadi - getting the last measurement and last
% input that generated that measuremnt
[dxHatkk,zHatkk,thetakk,Pkk,qThres] = RExtendedKalmanFilter(yPlant(:,end),uPlant(:,end - 10),dxHatkk,zHatkk,thetakk,Pkk,F_model,S_xx,S_zz,S_xz,S_xp,S_zp,ekf,par);

% everything normal
flagEst = 1;

catch
warning('Dynamic Estimation Problem!');
beep
% estimation problem
flagEst = 0;

% Note that in this case, we dont update
% dxHatkk,zHatkk,thetakk,Pkk,qThres

end

if flagEst == 1
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Optimizing Systems %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Gradient Estimation
%conversion
CR = 60*10^3; % [L/min] -> [m3/s]

%%% NEED TO CHECK
F_zp = full(S_zp(dxHatkk,zHatkk,[uPlant(:,end);thetakk;1e4]));

%F_zp = full(S_zp(dxHatkk,zHatkk,[uSPPlantArray(1:3,end);uPlant(4:end,end);thetakk;1e4]));

J_qgl1 = - 20*((1*1e-2)*CR/par.rho_o(1))*F_zp(22,1);
J_qgl2 = - 25*((1*1e-2)*CR/par.rho_o(2))*F_zp(23,2);

51

B MATLAB CODE

J_qgl3 = - 30*((1*1e-2)*CR/par.rho_o(3))*F_zp(24,3);

g_qgl1 = 1;
g_qgl2 = 1;
g_qgl3 = 1;

%------- Calculating lambda's -------
lambda_1 = -(J_qgl1)/g_qgl1;
lambda_2 = -(J_qgl2)/g_qgl2;
lambda_3 = -(J_qgl3)/g_qgl3;

lambda = [lambda_1 lambda_2 lambda_3];

%------ g_i --------
%choose compensator
well_comp = 3;
lambda_c = lambda(well_comp);

%------ Controller Tunings --------
%--------------- 1 ----------------

K_1 = -2.522;
tauC_1 = 25;
theta_1 = 0;

Ki1 = 1/(K_1*(tauC_1 + theta_1));

%--------------- 2 ----------------

K_2 = -2.918;
tauC_2 = 25;
theta_2 = 0;

Ki2 = 1/(K_2*(tauC_2 + theta_2));

%--------------- 3 ----------------

K_3 = -3.698;
tauC_3 = 25;
theta_3 = 0;

Ki3 = 1/(K_3*(tauC_3 + theta_3));

%----- Primal Decomposition Controller -----

if well_comp == 1
%----- Subsys 1 Compensator -----
g2new = u0old(2) + Ki2*(-lambda_2 + lambda_c);
uOpt(2,1) = max(1.0,min(7.5, g2new));
g3new = u0old(3) + Ki3*(-lambda_3 + lambda_c);
uOpt(3,1) = max(1.0,min(7.5, g3new));
g1new = 7.5 - (uOpt(2,1) + uOpt(3,1));
uOpt(1,1) = max(1.0,min(7.5, g1new));

end

52

B MATLAB CODE

if well_comp == 2
%----- Subsys 2 Compensator -----
g1new = u0old(1) + Ki1*(-lambda_1 + lambda_c);
uOpt(1,1) = max(1.0,min(7.5, g1new));
g3new = u0old(3) + Ki3*(-lambda_3 + lambda_c);
uOpt(3,1) = max(1.0,min(7.5, g3new));
g2new = 7.5 - (uOpt(1,1) + uOpt(3,1));
uOpt(2,1) = max(1.0,min(7.5, g2new));

end
if well_comp == 3

%----- Subsys 3 Compensator -----
g1new = u0old(1) + Ki1*(-lambda_1 + lambda_c);
uOpt(1,1) = max(1.0,min(7.5, g1new));
g2new = u0old(2) + Ki2*(-lambda_2 + lambda_c);
uOpt(2,1) = max(1.0,min(7.5, g2new));
g3new = 7.5 - (uOpt(1,1) + uOpt(2,1));
uOpt(3,1) = max(1.0,min(7.5, g3new));

end

flagOpt = 1;

if flagOpt == 1
%%%%%%%%%%%%%%%%%%%%%%%%%%%
%Send Variable
%%%%%%%%%%%%%%%%%%%%%%%%%%%
% compute new values for the gas flow rate setpoints
%Filter for optimum
fic104sp = uOpt(1);
fic105sp = uOpt(2);
fic106sp = uOpt(3);

O_vector = vertcat(fic104sp,fic105sp,fic106sp)';
SS = 1;
Estimation = 1;
Optimization = 1;
Result = lambda;
Parameter_Estimation = thetakk';
State_Variables_Estimation = (par.H*zHatkk)';
State_Variables_Optimization = ([J_qgl1;J_qgl2;J_qgl3;L_qgl1;L_qgl2;L_qgl3;])';
Optimized_Air_Injection = uOpt';

else
%%%%%%%%%
%(dummy)%
%%%%%%%%%
% compute new values for the gas flow rate setpoints
O_vector = vertcat(fic104sp,fic105sp,fic106sp)';

SS = 1;
Estimation = 1;
Optimization = 0;
Result = 0;
Parameter_Estimation = [0,0,0,0,0,0];
State_Variables_Estimation = [0,0,0,0,0,0];

53

B MATLAB CODE

State_Variables_Optimization = [0,0,0,0,0,0];
Optimized_Air_Injection = [0,0,0];

end

else
%%%%%%%%%
%(dummy)%
%%%%%%%%%
% compute new values for the gas flow rate setpoints
O_vector = vertcat(fic104sp,fic105sp,fic106sp)';

SS = 1;
Estimation = 0;
Optimization = 0;
Result = 0;
Parameter_Estimation = [0,0,0,0,0,0];
State_Variables_Estimation = [0,0,0,0,0,0];
State_Variables_Optimization = [0,0,0,0,0,0];
Optimized_Air_Injection = [0,0,0];

end

else
%%%%%%%%%
%(dummy)%
%%%%%%%%%
% compute new values for the gas flow rate setpoints
O_vector = vertcat(fic104sp,fic105sp,fic106sp)';

SS = 0;
Estimation = 0;
Optimization = 0;
Result = 0;
Parameter_Estimation = [0,0,0,0,0,0];
State_Variables_Estimation = [0,0,0,0,0,0];
State_Variables_Optimization = [0,0,0,0,0,0];
Optimized_Air_Injection = [0,0,0];

end

B.2 LabViewMain - Dual-based

% Main program
% Run Initialization file first

%%%%%%%%%%%%%%%%
% Get Variables
%%%%%%%%%%%%%%%%
% disturbances
%valve opening [%]
cv101 = P_vector(1);
cv102 = P_vector(2);
cv103 = P_vector(3);
% if value is [A] from 0.004 to 0.020

54

B MATLAB CODE

% if you want to convert to 0 (fully closed) to 1 (fully open)
% vo_n = (vo - 0.004)./(0.02 - 0.004);

%pump rotation [%]
pRate = P_vector(4);
% if value is [A] from 0.004 to 0.020
% if you want to convert to (min speed - max speed)
% goes from 12% of the max speed to 92% of the max speed
% pRate = 12 + (92 - 12)*(P_vector(4) - 0.004)./(0.02 - 0.004);

% always maintain the inputs greater than 0.5
% inputs computed in the previous MPC iteration
% Note that the inputs are the setpoints to the gas flowrate PID's
fic104sp = P_vector(5);
fic105sp = P_vector(6);
fic106sp = P_vector(7);
%current inputs of the plant
u0old=[P_vector(5);P_vector(6);P_vector(7)];

% cropping the data vector
nd = size(I_vector,2);
dataCrop = (nd - BufferLength + 1):nd;

% liquid flowrates [L/min] %INCLUDE NOISE???
fi101 = I_vector(1,dataCrop);
fi102 = I_vector(2,dataCrop);
fi103 = I_vector(3,dataCrop);

% actual gas flowrates [sL/min] %INCLUDE NOISE???
fic104 = I_vector(4,dataCrop);
fic105 = I_vector(5,dataCrop);
fic106 = I_vector(6,dataCrop);

% pressure @ injection point [mbar g]
pi105 = I_vector(7,dataCrop);
pi106 = I_vector(8,dataCrop);
pi107 = I_vector(9,dataCrop);

% reservoir outlet temperature [oC]
ti101 = I_vector(10,dataCrop);
ti102 = I_vector(11,dataCrop);
ti103 = I_vector(12,dataCrop);

% DP @ erosion boxes [mbar]
dp101 = I_vector(13,dataCrop);
dp102 = I_vector(14,dataCrop);
dp103 = I_vector(15,dataCrop);

% top pressure [mbar g]
% for conversion [bar a]-->[mbar g]
% ptop_n = ptop*10^-3 + 1.01325;
pi101 = I_vector(16,dataCrop);
pi102 = I_vector(17,dataCrop);

55

B MATLAB CODE

pi103 = I_vector(18,dataCrop);

% reservoir pressure [bar g]
% for conversion [bar g]-->[bar a]
% ptop_n = ptop + 1.01325;
pi104 = I_vector(19,dataCrop);

%%%%%%%%%%%%%%%%%%%%%%%%%%%
% CODE GOES HERE
%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% number of measurements in the data window
dss = size(pi104,2);

% we do no consider SS detection here
flagSS = 1;

% check for first iteration
if ~exist('dxHatkk','var')

%initial condition
[dx0,z0,u0,theta0] = InitialConditionGasLift(par);

dxHatkk = dx0;
zHatkk = z0;
thetakk = theta0;

load('EKFconf');
qThres = ekf.qThresk;
Pkk = ekf.Pkk;
%ekf.R = noise.output; %added (different from Rig Implementation)

lambda = 9.5;
err0 = zeros(3,1);

end

if flagSS == 1
%%
% Estimating SS model parameters (dynamic) %
%%
yPlant = [fi101;

fi102;
fi103;
1.01325 + 10^-3*pi101; %[mbarg]-->[bar a];
1.01325 + 10^-3*pi102;
1.01325 + 10^-3*pi103];

uPlant = [fic104; %conversion [L/min] --> [kg/s]
fic105;
fic106;
cv101*ones(1,dss); %workaround - i just have the last
cv102*ones(1,dss); %measurement here. Since it is the
cv103*ones(1,dss); %disturbance, it doesn't really matter;
pi104 + 1.01325];

try

56

B MATLAB CODE

% running casadi - getting the last measurement and last
% input that generated that measuremnt
[dxHatkk,zHatkk,thetakk,Pkk,qThres] = RExtendedKalmanFilter(yPlant(:,end),uPlant(:,end - 10),dxHatkk,zHatkk,thetakk,Pkk,F_model,S_xx,S_zz,S_xz,S_xp,S_zp,ekf,par);

% everything normal
flagEst = 1;

catch
warning('Dynamic Estimation Problem!');
beep
% estimation problem
flagEst = 0;

% Note that in this case, we dont update
% dxHatkk,zHatkk,thetakk,Pkk,qThres

end

if flagEst == 1
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Optimizing Systems %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%---------------------------------
%--- Central Constraint Control --
%---------------------------------
%--- Update Lambda ---
%---------------------------------

Total_Qgl = fic104(end) + fic105(end) + fic106(end);

K_ccc = 0.907;
tau_ccc = 125;
theta_ccc = 0;
KI_ccc = 1/(K_ccc*(tau_ccc+theta_ccc));

lambda_next = max(0,lambda + KI_ccc*(Total_Qgl - 7.5));

lambda = lambda_next;

%---------------------------------
%--- Gradient Estimation ---
%---------------------------------
%conversion
CR = 60*10^3; % [L/min] -> [m3/s]

F_zp = full(S_zp(dxHatkk,zHatkk,[uPlant(:,end);thetakk;1e4]));

J_qgl1 = - 20*((1*1e-2)*CR/par.rho_o(1))*F_zp(22,1);
J_qgl2 = - 25*((1*1e-2)*CR/par.rho_o(2))*F_zp(23,2);
J_qgl3 = - 30*((1*1e-2)*CR/par.rho_o(3))*F_zp(24,3);

g_qgl1 = 1;
g_qgl2 = 1;
g_qgl3 = 1;

57

B MATLAB CODE

L_qgl1 = J_qgl1 + lambda.*g_qgl1;
L_qgl2 = J_qgl2 + lambda.*g_qgl2;
L_qgl3 = J_qgl3 + lambda.*g_qgl3;

%---------------------------------
%--- Local Gradient Control ---
%---------------------------------

% --------- Well 1 ---------
K_1 = 2.53;
tauC_1 = 25;
theta_1 = 0;

Ki1 = 1/(K_1*tauC_1 + theta_1);
err_1= -L_qgl1;

uOpt(1,1) = max(1,min(5.5, u0old(1) + (Ki1*err_1)));

err0(1) = err_1;

% --------- Well 2 ---------
K_2 = 2.93;
tauC_2 = 25;
theta_2 = 0;

Ki2 = 1/(K_2*tauC_2 + theta_2);
err_2 = -L_qgl2;

uOpt(2,1) = max(1,min(5.5, u0old(2) + (Ki2*err_2)));

err0(2) = err_2;

% --------- Well 3 ---------
K_3 = 3.70;
tauC_3 = 25;
theta_3 = 0;

Ki3 = 1/(K_3*tauC_3 + theta_3);
err_3= -L_qgl3;

uOpt(3,1) = max(1,min(5.5, u0old(3) + (Ki3*err_3)));

err0(3) = err_3;

flagOpt = 1;

if flagOpt == 1
%%%%%%%%%%%%%%%%%%%%%%%%%%%
%Send Variable
%%%%%%%%%%%%%%%%%%%%%%%%%%%
% compute new values for the gas flow rate setpoints
%Filter for optimum

58

B MATLAB CODE

fic104sp = uOpt(1);
fic105sp = uOpt(2);
fic106sp = uOpt(3);

O_vector = vertcat(fic104sp,fic105sp,fic106sp)';
SS = 1;
Estimation = 1;
Optimization = 1;
Result = lambda;
Parameter_Estimation = thetakk';
State_Variables_Estimation = (par.H*zHatkk)';
State_Variables_Optimization = ([J_qgl1;J_qgl2;J_qgl3;L_qgl1;L_qgl2;L_qgl3;])';
Optimized_Air_Injection = uOpt';

else
%%%%%%%%%
%(dummy)%
%%%%%%%%%
% compute new values for the gas flow rate setpoints
O_vector = vertcat(fic104sp,fic105sp,fic106sp)';

SS = 1;
Estimation = 1;
Optimization = 0;
Result = 0;
Parameter_Estimation = [0,0,0,0,0,0];
State_Variables_Estimation = [0,0,0,0,0,0];
State_Variables_Optimization = [0,0,0,0,0,0];
Optimized_Air_Injection = [0,0,0];

end

else
%%%%%%%%%
%(dummy)%
%%%%%%%%%
% compute new values for the gas flow rate setpoints
O_vector = vertcat(fic104sp,fic105sp,fic106sp)';

SS = 1;
Estimation = 0;
Optimization = 0;
Result = 0;
Parameter_Estimation = [0,0,0,0,0,0];
State_Variables_Estimation = [0,0,0,0,0,0];
State_Variables_Optimization = [0,0,0,0,0,0];
Optimized_Air_Injection = [0,0,0];

end

else
%%%%%%%%%
%(dummy)%
%%%%%%%%%
% compute new values for the gas flow rate setpoints
O_vector = vertcat(fic104sp,fic105sp,fic106sp)';

59

B MATLAB CODE

SS = 0;
Estimation = 0;
Optimization = 0;
Result = 0;
Parameter_Estimation = [0,0,0,0,0,0];
State_Variables_Estimation = [0,0,0,0,0,0];
State_Variables_Optimization = [0,0,0,0,0,0];
Optimized_Air_Injection = [0,0,0];

end

B.3 LabViewMain - Dual-based with Override

% Main program
% Run Initialization file first

%%%%%%%%%%%%%%%%
% Get Variables
%%%%%%%%%%%%%%%%
% disturbances
%valve opening [%]
cv101 = P_vector(1);
cv102 = P_vector(2);
cv103 = P_vector(3);
% if value is [A] from 0.004 to 0.020
% if you want to convert to 0 (fully closed) to 1 (fully open)
% vo_n = (vo - 0.004)./(0.02 - 0.004);

%pump rotation [%]
pRate = P_vector(4);
% if value is [A] from 0.004 to 0.020
% if you want to convert to (min speed - max speed)
% goes from 12% of the max speed to 92% of the max speed
% pRate = 12 + (92 - 12)*(P_vector(4) - 0.004)./(0.02 - 0.004);

% always maintain the inputs greater than 0.5
% inputs computed in the previous MPC iteration
% Note that the inputs are the setpoints to the gas flowrate PID's
fic104sp = P_vector(5);
fic105sp = P_vector(6);
fic106sp = P_vector(7);
%current inputs of the plant
u0old=[P_vector(5);P_vector(6);P_vector(7)];

% cropping the data vector
nd = size(I_vector,2);
dataCrop = (nd - BufferLength + 1):nd;

% liquid flowrates [L/min] %INCLUDE NOISE???
fi101 = I_vector(1,dataCrop);
fi102 = I_vector(2,dataCrop);
fi103 = I_vector(3,dataCrop);

60

B MATLAB CODE

% actual gas flowrates [sL/min] %INCLUDE NOISE???
fic104 = I_vector(4,dataCrop);
fic105 = I_vector(5,dataCrop);
fic106 = I_vector(6,dataCrop);

% pressure @ injection point [mbar g]
pi105 = I_vector(7,dataCrop);
pi106 = I_vector(8,dataCrop);
pi107 = I_vector(9,dataCrop);

% reservoir outlet temperature [oC]
ti101 = I_vector(10,dataCrop);
ti102 = I_vector(11,dataCrop);
ti103 = I_vector(12,dataCrop);

% DP @ erosion boxes [mbar]
dp101 = I_vector(13,dataCrop);
dp102 = I_vector(14,dataCrop);
dp103 = I_vector(15,dataCrop);

% top pressure [mbar g]
% for conversion [bar a]-->[mbar g]
% ptop_n = ptop*10^-3 + 1.01325;
pi101 = I_vector(16,dataCrop);
pi102 = I_vector(17,dataCrop);
pi103 = I_vector(18,dataCrop);

% reservoir pressure [bar g]
% for conversion [bar g]-->[bar a]
% ptop_n = ptop + 1.01325;
pi104 = I_vector(19,dataCrop);

%%%%%%%%%%%%%%%%%%%%%%%%%%%
% CODE GOES HERE
%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% number of measurements in the data window
dss = size(pi104,2);

% we do no consider SS detection here
flagSS = 1;

% check for first iteration
if ~exist('dxHatkk','var')

%initial condition
[dx0,z0,u0,theta0] = InitialConditionGasLift(par);

dxHatkk = dx0;
zHatkk = z0;
thetakk = theta0;

load('EKFconf');
qThres = ekf.qThresk;
Pkk = ekf.Pkk;

61

B MATLAB CODE

%ekf.R = noise.output; %added (different from Rig Implementation)

lambda = 9.5;
lambdaOrg = 9.5;
lambda_hat = 9.5;
Total_uOpt = 7.5;
udirtot = 7.5;
uOpt = u0old;
uDir = u0old;

err0 = zeros(3,1);
end

if flagSS == 1
%%
% Estimating SS model parameters (dynamic) %
%%
yPlant = [fi101;

fi102;
fi103;
1.01325 + 10^-3*pi101; %[mbarg]-->[bar a];
1.01325 + 10^-3*pi102;
1.01325 + 10^-3*pi103];

uPlant = [fic104; %conversion [L/min] --> [kg/s]
fic105;
fic106;
cv101*ones(1,dss); %workaround - i just have the last measurement here. Since it is the disturbance, it doesn't really matter;
cv102*ones(1,dss);
cv103*ones(1,dss);
pi104 + 1.01325];

try
% running casadi - getting the last measurement and last
% input that generated that measuremnt
[dxHatkk,zHatkk,thetakk,Pkk,qThres] = RExtendedKalmanFilter(yPlant(:,end),uPlant(:,end - 10),dxHatkk,zHatkk,thetakk,Pkk,F_model,S_xx,S_zz,S_xz,S_xp,S_zp,ekf,par);

% everything normal
flagEst = 1;

catch
warning('Dynamic Estimation Problem!');
beep
% estimation problem
flagEst = 0;

% Note that in this case, we dont update
% dxHatkk,zHatkk,thetakk,Pkk,qThres

end

if flagEst == 1
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Optimizing Systems %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

62

B MATLAB CODE

% MV Selector Matrix
Hc = [0; 0; 1]';

%---------------------------------
%--- Central Constraint Control --
%---------------------------------
%--- Update Lambda ---
%---------------------------------

Total_Qgl = fic104(end) + fic105(end) + fic106(end);

K_ccc = 0.2171164;
tau_ccc = 125;
theta_ccc = 0;

KI_ccc = 1/(K_ccc*(tau_ccc+theta_ccc));

lambda_next = lambda + KI_ccc*(Hc*uOpt - Hc*uDir);

lambda = max(0,lambda_next);

%---------------------------------
%--- Gradient Estimation ---
%---------------------------------
%conversion
CR = 60*10^3; % [L/min] -> [m3/s]

%%% NEED TO CHECK
F_zp = full(S_zp(dxHatkk,zHatkk,[uPlant(:,end);thetakk;1e4]));

J_qgl1 = - 20*((1*1e-2)*CR/par.rho_o(1))*F_zp(22,1);
J_qgl2 = - 25*((1*1e-2)*CR/par.rho_o(2))*F_zp(23,2);
J_qgl3 = - 30*((1*1e-2)*CR/par.rho_o(3))*F_zp(24,3);

g_qgl1 = 1;
g_qgl2 = 1;
g_qgl3 = 1;

L_qgl1 = J_qgl1 + lambda.*g_qgl1;
L_qgl2 = J_qgl2 + lambda.*g_qgl2;
L_qgl3 = J_qgl3 + lambda.*g_qgl3;

% --------------------------------- %
% ----- Direct Const. Control ----- %
% --------------------------------- %
taui_dc = 2.5;
K_dir = 1;
tauc_dc = 10;

KI_dir = 1/(K_dir*tauc_dc);
KP_dir = taui_dc/((K_dir*tauc_dc));

63

B MATLAB CODE

K_aw = 1*(KI_dir)/KP_dir;

udir1 = max(1,min(5.5, uDir(1) + Hc(1)*KI_dir*(7.5 - Total_Qgl)+ K_aw*(u0old(1)-uDir(1))));
udir2 = max(1,min(5.5, uDir(2) + Hc(2)*KI_dir*(7.5 - Total_Qgl)+ K_aw*(u0old(2)-uDir(2))));
udir3 = max(1,min(5.5, uDir(3) + Hc(3)*KI_dir*(7.5 - Total_Qgl)+ K_aw*(u0old(3)-uDir(3))));

uDir = [udir1; udir2; udir3];

% --------------------------------- %
% -- Local Gradient Controllers --- %
% --------------------------------- %

% ------------ Well 1 ------------- %

K_1 = 2.53;
tauC_1 = 25;
theta_1 = 0;

Ki1 = 1/(K_1*tauC_1 + theta_1);

err_1= -L_qgl1;

uOpt(1,1) = max(1,min(5.5, u0old(1) + (Ki1*err_1)));

err0(1) = err_1;

% ------------ Well 2 ------------- %

K_2 = 2.93;
tauC_2 = 25;
theta_2 = 0;

Ki2 = 1/(K_2*tauC_2 + theta_2);

err_2 = -L_qgl2;

uOpt(2,1) = max(1,min(5.5, u0old(2) + (Ki2*err_2)));

err0(2) = err_2;

% ------------ Well 3 ------------- %

K_3 = 3.70;
tauC_3 = 25;
theta_3 = 0;

Ki3 = 1/(K_3*tauC_3 + theta_3);

err_3= -L_qgl3;

uOpt(3,1) = max(1,min(5.5, u0old(3) + (Ki3*err_3)));

err0(3) = err_3;

64

B MATLAB CODE

flagOpt = 1;

Total_uOpt = uOpt(1) + uOpt(2) + uOpt(3);

if flagOpt == 1
%%%%%%%%%%%%%%%%%%%%%%%%%%%
%Send Variable
%%%%%%%%%%%%%%%%%%%%%%%%%%%
% compute new values for the gas flow rate setpoints
%Filter for optimum
fic104sp = uOpt(1);%min(uOpt(1),uDir(1));%
fic105sp = uOpt(2);%min(uOpt(2),uDir(2));%
fic106sp = min(uOpt(3),uDir(3));%uOpt(3);%

O_vector = vertcat(fic104sp,fic105sp,fic106sp)';
SS = 1;
Estimation = 1;
Optimization = 1;
Result = lambda;
Parameter_Estimation = thetakk';
State_Variables_Estimation = (par.H*zHatkk)';
State_Variables_Optimization = ([J_qgl1;J_qgl2;J_qgl3;L_qgl1;L_qgl2;L_qgl3;])';
Optimized_Air_Injection = uOpt';

else
%%%%%%%%%
%(dummy)%
%%%%%%%%%
% compute new values for the gas flow rate setpoints
O_vector = vertcat(fic104sp,fic105sp,fic106sp)';

SS = 1;
Estimation = 1;
Optimization = 0;
Result = 0;
Parameter_Estimation = [0,0,0,0,0,0];
State_Variables_Estimation = [0,0,0,0,0,0];
State_Variables_Optimization = [0,0,0,0,0,0];
Optimized_Air_Injection = [0,0,0];

end

else
%%%%%%%%%
%(dummy)%
%%%%%%%%%
% compute new values for the gas flow rate setpoints
O_vector = vertcat(fic104sp,fic105sp,fic106sp)';

SS = 1;
Estimation = 0;
Optimization = 0;
Result = 0;
Parameter_Estimation = [0,0,0,0,0,0];
State_Variables_Estimation = [0,0,0,0,0,0];

65

B MATLAB CODE

State_Variables_Optimization = [0,0,0,0,0,0];
Optimized_Air_Injection = [0,0,0];

end

else
%%%%%%%%%
%(dummy)%
%%%%%%%%%
% compute new values for the gas flow rate setpoints
O_vector = vertcat(fic104sp,fic105sp,fic106sp)';

SS = 0;
Estimation = 0;
Optimization = 0;
Result = 0;
Parameter_Estimation = [0,0,0,0,0,0];
State_Variables_Estimation = [0,0,0,0,0,0];
State_Variables_Optimization = [0,0,0,0,0,0];
Optimized_Air_Injection = [0,0,0];

end

66

	Abstract
	Sammendrag
	Preface
	Introduction
	Theory
	Feedback Control
	PID Control
	Digital Implementation of PID Control
	SIMC Tuning Rules
	Anti-windup
	Cascade Control
	Selector

	Process Control Hierarchy
	Real-time Optimization
	Decomposition
	Distributed Feedback-optimizing Control
	Primal-based
	Dual-based
	Dual-based with Override

	Experimental Setup
	Experimental Rig Emulating a Subsea Production System
	Optimization Problem Setup

	Distributed Feedback-optimizing Control Setup
	Primal-based
	Implemented Control Structure
	Determine Compensator System

	Dual-based
	Implemented Control Structure

	Dual-based with Override
	Implemented Control Setup
	Choosing Subsystem with Override Control

	Experimental Results
	Disturbances
	Comparison of Distributed Feedback-optimizing Control
	Constraint Satisfaction
	Optimal Setpoints
	Lagrange Multipliers
	Accumulated Profits

	Consistency of Results
	Performance of the Distributed Feedback-optimizing Approaches

	Conclusion
	Further Work
	Improvements for Dual-based with Override
	Local Response Time in Dual-based Methods
	Generalizing of Primal-based Approach

	Steady-State Gradient Estimation
	Extended Kalman Filter
	Forward Sensitivity Analysis

	MATLAB Code
	LabViewMain - Primal-based
	LabViewMain - Dual-based
	LabViewMain - Dual-based with Override

