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Abstract

EEG classification holds a critical role in neuroscience. The identified lack of trans-
ferability and limited utilization of transformer-based models inspired this study
to explore novel approaches that can enhance EEG classification. This master’s
thesis explores the application of self-supervised learning (SSL) and transformer-
based encoders to EEG classification. It presents a flexible pre-training framework
that supports pre-training on fusion datasets with varying numbers of channels.
This thesis proposes grouping each EEG recording into subgroups of n channels,
and pre-training by encoding these groups individually, rather than encoding the
entire recordings. The proposed pre-training scheme effectively handles data fu-
sion with varying numbers of channels, improving the transferability of learning
between datasets.

The main contributions of this thesis are the introduction of a self-supervised
learning framework called DECCaTNet1, which utilizes contrastive learning on
groups of EEG channels using a hybrid CNN-transformer encoder, and a prepro-
cessing framework capable of processing large datasets from different sources.

A thorough experimental evaluation is performed by examining the effect of
channel grouping and SSL. The findings demonstrate the effectiveness of pre-
training an encoder with n channels for EEG data, with an optimal group size of
n = 4 in the proposed configuration. Results demonstrate an 84.26% classifica-
tion accuracy on the TUH Abnormal test set. Pre-training the encoder on a larger
dataset is found to be beneficial, however, pre-training for an excessive number of
epochs leads to degradation of results. The transformer-based encoder performs
well within the SSL architecture, although direct comparisons with other encoders
are not included.

Overall, this thesis presents a novel approach to EEG signal classification
by introducing channel grouping, combined with self-supervised learning and
transformer-based encoders. The proposed DECCaTNet model, channel grouping
techniques and preprocessing framework contribute to the field of EEG research
and offer potential for advancements in multichannel time series analysis.

1Our implementation can be found at https://github.com/ostormer/deccatnet. For help re-
garding the implementation, feel free to contact the authors via GitHub.
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Sammendrag

EEG-klassifisering spiller en kritisk rolle innen nevrovitenskap. Den oppdagede
begrensningen med overførbarhet og den begrensede bruken av transformer-
baserte modeller inspirerte denne studien til å utforske nye tilnærminger som
kan forbedre EEG-klassifisering. Denne masteroppgaven utforsker bruken av
selvovervåket læring (self-supervised learning (SSL)) og transformer-baserte
modeller til EEG-klassifisering. Den presenterer et fleksibelt rammeverk som
muliggjør forhåndstrening på kombinerte datasett med varierende antall kanaler.
Oppgaven foreslår å gruppere hver EEG-måling i undergrupper av n kanaler og
forhåndstrene ved å enkode disse gruppene individuelt, i stedet for hele målin-
gen. Det foreslåtte rammeverket håndterer effektivt kombinasjoner av datasett
med varierende antall kanaler, og forbedrer overførbarheten av læring mellom
datasett.

Hovedbidragene i denne oppgaven er introduksjonen av et selvovervåket ram-
meverk kalt DECCaTNet2, som bruker kontrastiv læring på grupper av EEG-
kanaler ved hjelp av en hybrid CNN-transformer-modell, og et preprosesser-
ingsrammeverk som er i stand til å behandle store datasett fra forskjellige kilder.

En grundig eksperimentell evaluering blir utført for å undersøke effekten av
kanalgruppering og selvovervåket læring (SSL). Funnene viser at det er effek-
tivt å forhåndstrene modellen med n kanaler for EEG-data, med en gunstig grup-
pestørrelse på n = 4 i den foreslåtte konfigurasjonen. Resultatene viser en klassi-
fiseringsnøyaktighet på 84,26% på TUH Abnormal testsett. Det viser seg å være
gunstig å forhåndstrene modellen på et større datasett, men forhåndstrening over
et overdrevent antall epoker fører til svakere resultater. Transformer-baserte mod-
eller presterer godt innenfor SSL-arkitekturen, men direkte sammenligninger med
andre modeller er ikke inkludert.

Oppsummert presenterer denne oppgaven en ny tilnærming til EEG-
signalklassifisering ved å introdusere kanalgruppering, kombinert med selvovervåket
læring og transformer-baserte modeller. Den foreslåtte DECCaTNet-modellen,
kanalgrupperingsteknikker og forbehandlingsrammen bidrar til videreutvikling
av EEG-forskning og tilbyr potensial for fremskritt innen analyse av flerkanal-
tidsserier.

2Implementeringen vår kan finnes på https://github.com/ostormer/deccatnet. For hjelp med
implementasjonen kan forfatterene kontaktes via GitHub.
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Chapter 1

Introduction

Aiding electroencephalography with deep learning Electroencephalography
(EEG) is a non-invasive technique that measures neuronal activity in the brain by
capturing small differences in electrical potentials in the scalp [1]. This technique
plays a crucial role in both the clinical and academic domains in studying various
brain processes. However, the inherently noisy nature of EEG signals has presented
challenges for accurate analysis and interpretation. Traditionally, EEG analysis
has relied on labor-intensive preprocessing pipelines and manual interpretation
by domain experts. The advent of deep learning techniques, specifically in the
field of EEG analysis (DL-EEG), has shown promising potential in automating and
enhancing these processes, thus optimizing the use of expert resources.

Recent advances have demonstrated that deep learning models can achieve
performance comparable to or superior to classical statistical methods, while also
reducing the dependence on manual analysis [2]. However, supervised deep learn-
ing approaches often require large annotated datasets, which can be challenging
to acquire in the biomedical domain due to the expertise required for accurate an-
notation. Consequently, the availability of large-scale labeled EEG datasets, such
as the Temple University Hospital EEG Corpus [3], has spurred interest in explor-
ing alternative learning paradigms that can leverage unannotated data.

State of the field Significant progress has been made in the field of DL-EEG. Re-
searchers have improved supervised models by incorporating deeper architectures
with more trainable parameters, designing sophisticated convolutional neural net-
works (CNNs), recurrent neural networks (RNNs), and introducing self-attention
mechanisms [4]. Although these advances have shown promise in computer vi-
sion (CV) and natural language processing (NLP), they often require extensive
labeled datasets for training.

To mitigate the burden of annotation and to improve model generalizabil-
ity, self-supervised learning (SSL), a machine learning technique that uses unla-
beled data, has gained attention. SSL involves learning a latent representation of
data from unannotated datasets, followed by fine-tuning using a subset of labeled
data for the downstream task. In EEG processing, SSL has garnered interest, with

1
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several studies demonstrating superior performance compared to state of the art
(SOTA) approaches in various EEG classification tasks. Two prominent categories
of SSL architectures in EEG are contrastive models and predictive models. Con-
trastive models maximize agreement between two augmented versions of an EEG
signal, while predictive models reconstruct the original signal from its augmented
representation. In EEG, contrastive learning has shown the most promising results
so far, with common encoder architectures including CNNs, RNNs, and transform-
ers.

Current challenges and limitations While notable progress has been made in
using SSL and transformer-based architectures for EEG analysis, limited research
has explored the combination of these concepts. To the extent of our knowledge,
only one study has employed a transformer encoder for SSL and subsequent trans-
fer learning [5]. One of the primary objectives of SSL is to learn a robust and gener-
alizable latent representation that can facilitate transfer learning across datasets.
However, EEG recordings exhibit variability in terms of montage, the number of
channels, and the recording environment, which may require different prepro-
cessing steps. Mohsenvand et al. [6] demonstrated improved classification accu-
racy by applying transfer learning between EEG datasets from different domains,
highlighting the potential to leverage SSL in such scenarios. In particular, while
the effectiveness of transformer-based architectures has been observed in other
machine learning domains, their specific impact and performance in EEG analysis
remain relatively unexplored. Thus, there is a need for further investigation into
the interplay between SSL model architecture, transfer learning, and choice of
augmentations, considering their implications on EEG analysis.

Transfer learning and number of channels Variability in the number of chan-
nels between EEG data sets causes difficulties in transfer learning. One common
method is to perform pre-training with a limited number of channels shared by
all data sets used for transfer learning. However, by following this method, vast
amounts of valuable data may be lost. A promising method was proposed by
Mohsenvand et al. [6], where an encoder was pre-trained on single EEG channels
before several encoders were combined to match the number of channels while
fine-tuning. The transfer learning challenge was solved; however, as only single-
channel encoders were explored, inter-channel dependencies are left to be learned
during fine-tuning. The lack of a SSL framework that enables transfer learning be-
tween datasets with different numbers of channels while learning inter-channel
dependencies is evident.



Chapter 1: Introduction 3

Contributions

Listed below are the main contributions of this master thesis. They have been de-
signed as part of this research project, which was aimed at answering our research
questions. The research questions are listed below the contributions.

C1 A self-supervised learning model, called DECCaTNet, using con-
trastive learning to pre-train on groups of channels. The encoder
of DECCaTNet is a hybrid CNN-transformer model. The model dis-
tinguishes itself by splitting each EEG signal into groups of n chan-
nels and encoding the channel groups separately. This supports
dataset fusion and transfer learning more flexibly than previous
methods.

C2 A preprocessing framework, built on MNE and Braindecode, ca-
pable of preprocessing large datasets from different sources, using
serialization and limited parallelization. The preprocessing frame-
work applies a standardized pipeline of rescaling, windowing, re-
sampling, rereferencing, and filtering to all data, before splitting
the samples into channel groups of size n. The framework can be
easily extended to accommodate new datasets.

Research questions

RQ1 How does pre-training an n-channel encoder perform, and how is it
best implemented for EEG data?

RQ2 What is the optimal number of channels in each group when using
SSL with grouped channels on EEG-data?

RQ3 How does a transformer-based encoder perform in an SSL architec-
ture for classifying multichannel EEG data?

These research questions were formed on the basis of a literature review per-
formed as part of our project thesis. As our main contribution, we propose a novel
model architecture that splits the multi-channel EEG input into groups of size n,
encodes each group independently, and combines the encodings in a classifier. The
encoder is pre-trained on data which can be from multiple sources, as long as it
can be split into groups of size n. Furthermore, to answer our research questions,
we needed to implement a preprocessing framework that enables channel group-
ing and works for data from different sources. This model architecture is intended
to open up a new world of possibilities within EEG-research, as it is the first of its
kind.

Thesis structure This thesis is organized as follows:
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Chapter 1, Introduction, briefly introduces EEG and SSL concepts and explains
the objectives of the review.

Chapter 2, Background and related work, describes the background and the-
ory of common concepts and related problems, and explains how they have been
addressed in related studies. The characteristics of EEG, deep learning (DL) ar-
chitectures, SSL methods, and data processing methods are described.

In Chapter 3, Method, our proposed model and preprocessing pipeline are
introduced, with explanations of the choices made during their implementation.

Chapter 4, Experimental setup and results, describes the experimental plan
and the experimental results. Both architecture optimization, hyperparameter
search, and final results are described.

Chapter 5, Discussion, goes into more depth about some of the implementation
choices and discusses the results of our model. Both early results, with compar-
isons to different variations we tested, and final results, which are compared to
other studies are discussed. Then, we propose how the architecture can be further
developed.

Finally, in Chapter 6, Conclusion, our findings are summarized.



Chapter 2

Background and related work

Introduction In order to cover one subtopic at a time and minimize jumping be-
tween topics, we have combined the background theory and related work chapters
into one in this thesis. We believe that this makes for an easier reading experience,
as for each topic, relevant theory and common challenges are introduced before
describing how those challenges have been tackled in related work. This chapter
introduces the basics of EEG and how DL is applied to it, before going into depth
about SSL. Lastly, it describes the data augmentations used on EEG for SSL and
how EEG data is preprocessed for DL.

This chapter is a continuation of our project thesis Transformers and Self-
Supervised Learning in EEG Classification: a Literature Review [7], which was writ-
ten as a preparation for this master thesis.

2.1 Electroencephalography

Electroencephalography (EEG) is a noninvasive method to detect small differ-
ences in electric potential in the scalp and to read the activity of brain neurons [1].
It is widely used to research many different aspects of the brain in academic and
clinical settings. EEG measures the combined electric potential of neurons in a
larger area close to the electrode, compared to invasive methods, which can mea-
sure neuron activity at a more precise and in-depth level and even measure action
potentials in single neurons. Since the EEG signal is noisy, it is possible to get a
better picture of the more widespread activity of the brain by combining readings
from several electrodes.

It is clear that EEG is valuable for disease diagnosis, treatment, and neuro-
logical research in both clinical and academic contexts. EEG recordings are noisy;
therefore, traditional analytical methods have relied on preprocessing pipelines
with results examined by human experts. Expert labor is expensive, but with the
aid of sophisticated signal processing and classification methods, it can be used
more effectively.

5
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2.1.1 Characteristics of time series

Numerous methods for learning time series representations are currently in use,
and many of them are influenced by well-performing techniques from the CV and
NLP fields. Both of the aforementioned domains contain some assumptions that
may not apply to time series representation learning. The images in CV exhibit
strong spatial correlations. For instance, cropping an image would probably result
in minimal information loss, as missing parts are often given by its surrounding
pieces. Contrary to images, a time series cropped into a subsequence may have
a different distribution and semantics than the original time series from which it
was derived. This is because the properties of time series may change over time.

In addition, for a model to be able to infer both long- and short-term trends,
learning time-series representations requires knowledge of various temporal pat-
terns. The existence of some patterns in both fine- and coarse-grained represen-
tations is known as scale invariance. Although some approaches focus on the in-
herent temporal differences of the data, others create frameworks that encourage
learning various temporal dependencies [8–10].

Some time series are multivariate, which means that they were obtained si-
multaneously from multiple related time series. Spatial dependency refers to the
information that is hidden in similarity or dissimilarity between pairs of signals.
For the purpose of producing effective multivariate time series representations, it
is crucial to comprehend domain-specific spatial patterns.

2.1.2 Characteristics of EEG

EEG signals have a high temporal resolution due to the common selection of 128
to 1024 Hz as the sampling frequency range [11]. Given that studying frequency
bands in the range of 1 Hz to 50 Hz is sufficient for emotion recognition [12],
keeping the original sampling frequencies could lead to excessive temporal res-
olution [13]. Each EEG electrode in a typical scalp EEG configuration collects
signals from nearby regions, resulting in coarse spatial resolution (a few centime-
ters). Therefore, EEG signals have a low spatial resolution and a high temporal
resolution [14]. With traditional techniques, the frequency domain has become
the main topic of interest in EEG data because various frequencies have been as-
sociated with various measures of brain activity [15].

Learning effective representations is made more difficult by the added com-
plexities associated with EEG time series. The signal-to-noise ratio (SNR) of EEG
is poor [16, 17]. Multiple layers of skin and bone cover the brain activity that can
be measured with EEG. As a result, when the electric potential reaches the scalp-
mounted sensors, it is contaminated with noisy data. Uncontrollable and ambient
physiological noise is often added in addition, often resulting in more apparent
artifacts. Roy et al. [2] found that 63% of the DL techniques used for EEG classifica-
tion did not systematically remove EEG artifacts despite the numerous guaranteed
problems. A common intuition in AI is that spending time on pre-processing is vi-
tal for good results. However, results may improve by applying models directly to
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raw EEG signals [2].
EEG is a non-stationary signal, as the temporal dependencies fluctuate over

time, even within a single subject [18, 19]. As a result, temporally constrained
data may cause models to overfit on what appears to be a stationary signal. How-
ever, overfitting could result in poor generalization of data from the same subject
recorded at a different time because temporal dependencies are likely to change
over time or within the next recording session. This is a problem that researchers
frequently encounter since EEG data are frequently constrained in terms of both
the number of subjects and the recording time. Understanding intra-subject rela-
tionships is important for brain-computing interfaces (BCI) research, but it is also
important to consider when performing other EEG-realated classification tasks.

Inter-subject variability is also important to consider when working with EEG-
data. Physiological variations in subjects lead to inter-subject variability. As a re-
sult, different abnormal brain activity, especially in terms of magnitude, appears
different for each subject. In DL, deep networks are often assumed to work as
subject-invariant feature extractors. However, the generalizability of models that
classify between subjects can be impacted by the magnitude variation [20]. To
learn subject-invariant representations given the described properties of EEG sig-
nals, adversarial learning has been proposed [21]. Adversarial learning penal-
izes the model for learning representations which enables correctly prediction the
subject’s identity, encouraging subject-invariant representations. The age-related
slowing of EEG signals is another characteristic that some research takes into ac-
count [22]. Due to this phenomenon, the EEG signals of younger subjects should
differ from those of older subjects when it comes to temporal characteristics. In
addition, the subject’s age is often not regarded as an expert label, opening new
opportunities for SSL.

Each EEG signal consists of several signals, referred to as channels. Each chan-
nel shows the difference in voltage between an electrode and the common refer-
ence, usually a common reference electrode. The common reference can also be
digitally calculated, such as the average of all electrode voltages. The number of
sensors (electrodes) used in the corresponding recording session determines the
number of channels. Transfer learning between various EEG-related tasks is com-
plicated due to the inconsistent number of channels in different data sets. As a
result, some transfer learning networks do not make use of all available channels
to handle different downstream tasks.

2.2 Deep learning architectures

Recent research has demonstrated that models based on DL can perform on par
with or better than traditional statistical SOTA methods in many tasks while avoid-
ing expensive expert manpower [2]. In the past ten years, interest in the subfield
of using DL to improve EEG processing (deep learning in electroencephalography
(DL-EEG)) has increased. Recent releases of several large, publicly accessible EEG
datasets, such as the Temple University Hospital (TUH) EEG Corpus [3] and the
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National Sleep Research Resource [23], are likely key contributors to the increased
interest of the DL research community.

In recent years, deep learning has made significant strides in processing com-
plex and information-rich data, including images, audio signals, and text [24]. As
a result, researchers have explored the application of DL techniques to improve
the processing of EEG data. Various DL models for EEG classification have been
developed using different neural network architectures such as convolutional neu-
ral networks (CNN), recurrent neural networks (RNNs), and fully connected net-
works. Recently, transformers and their derivatives, which rely on self-attention
layers, have demonstrated SOTA performance in NLP and CV tasks [4]. As a re-
sult, these models have been applied to EEG data analysis with promising re-
sults. In general, deep learning techniques have shown potential in the analysis
of EEG data, and researchers have proposed various models and architectures to
achieve high classification accuracy. The use of transformers and self-attention
mechanisms has become increasingly popular and has shown promising results in
various domains, including EEG analysis.

2.2.1 Convolutional neural networks

CNNs recognize learned patterns in input data by passing a fixed-size filter with
fixed weights over it, thereby identifying the location of the pattern in the in-
put [25]. CNNs can produce multiple channels by applying convolutional filters in
parallel and deeper networks by stacking multiple layers. To address the problem
of vanishing gradients in deep networks, modern CNN-based approaches incorpo-
rate residual shortcut connections [26]. In particular, ResNet [27] achieved SOTA
performance in computer vision using this idea.

Other advances in CNNs include the combination of filters of different sizes
in the same layer, as demonstrated by the Inception network [28, 29], to better
recognize objects independent of their size. CNNs can also incorporate attention,
which learns which part of the input to pay attention to [30]. Although CNNs were
initially developed for computer vision, many of the concepts and methods can
be adapted for time-series data. Since time-series data have one channel dimen-
sion and one temporal dimension, adjusting a CNN for time-series data involves
treating the temporal dimension as a spatial one, and the time-series channels as
the color channels of an image. This adjustment allows two-dimensional convo-
lutional layers to be replaced by equivalent one-dimensional ones.

2.2.2 Attention and transformers

Self-attention is an attention mechanism that allows different positions in an input
sequence to be related to each other, resulting in a sequence representation based
on internal relationships. Self-attention has been successfully used in conjunction
with RNNs [31, 32] or CNNs [30].

More recently, transformers [4], a model that relies mainly on self-attention
and completely avoids RNNs and CNNs, have gained widespread attention in both
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NLP and CV domains. As of our literature review in October 2022 [7], transformer-
based models were state-of-the-art in language modeling [33] and image classi-
fication [34] among other tasks. In addition, the large NLP model GPT-3 [35],
recently made famous by ChatGPT, is also based on the transformer architecture
and the attention mechanism, which enables ChatGPT to generate high-quality
text that adapts to the input and context provided by the user.

Transformers have a significant advantage over CNNs in that they can more
easily learn long-range dependencies in the data, as the number of operations re-
quired to relate two positions is fixed independent of the distance between them.
The success of transformers in other domains and their ability to model long-range
dependencies have motivated researchers to explore their application in time se-
ries and signal processing tasks. In recent years, several transformer variants have
been developed that have the potential to significantly improve the state-of-the-art
performance of some tasks, such as time series forecasting and classification [36].
The transformer architecture will be explained in-depth in subsection 2.3.1,

2.3 Deep learning architectures in EEG

In the field of deep learning for EEG processing, selecting an appropriate neu-
ral network architecture is a critical step. The selection process may depend on
various factors, including the specific task at hand, properties of the dataset, and
intended use of the model. The popularity of different model architectures in the
DL-EEG field has evolved rapidly over the past 15 years [2]. In their study, Roy
et al. [2] analyzed DL-EEG articles published between 2010 and 2018 and ob-
served that earlier articles commonly employed fully connected networks and re-
lied heavily on pre-processing. However, as the DL field progressed, CNNs for CV
demonstrated impressive results, and DL-EEG articles soon followed this trend.

During the era when RNN-based models, such as long short-term memory
(LSTM) networks, were considered the SOTA for NLP and speech recognition [37],
many researchers developed RNN-based models for EEG classification [38, 39].
From 2015 to 2019, DL approaches to EEG classification were mainly divided
between RNN-based sequence-focused models and CNN-based spatial-temporal
proximity-focused models, and their combinations.

2.3.1 Transformers

Recently, with the success of transformer models in CV, NLP, and speech recog-
nition domains [4, 40], it is natural for time series classification and DL-EEG to
follow this trend. Although transformers typically excel when they can utilize self-
supervision, they have recently also been successfully applied to supervised learn-
ing problems in time series classification [9, 41, 42]. This success is believed to be
due to the multi-head attention layers’ ability to learn long-range dependencies.

The articles reviewed in this study that used supervised transformers all com-
bined CNN and transformer architectures, as discussed in detail in section 2.3.
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Figure 2.1: The transformer architecture. The encoder is on the left and the de-
coder is on the right. Source: [4]

However, two studies also experimented with transformer models that did not in-
clude convolutional layers and were based solely on the transformer architecture
to compare with their hybrid variants [9, 42]. In both studies, the hybrid models
outperformed the pure transformer models, but only by a small margin.

Transformers are most effective when they are able to perform self-supervised
pre-training. Self-supervision has been used to achieve state-of-the-art perfor-
mance in NLP and CV, and researchers are exploring ways to leverage it for EEG
as well. The transformer model was originally designed as an encoder-decoder ar-
chitecture designed for self-supervision using a reconstructive pretext task, with
the encoder being the component of interest for downstream tasks.

The transformer encoder [4] consists of attention modules stacked on top of
each other to create a deep learning model that avoids convolutional or recurrent
layers. The input is first embedded, and then positional encoding is applied before
passing it through the attention modules. The transformer model is illustrated in
Figure 2.1, with the encoder on the left. For EEG and time series data, there are
several approaches to positional encoding. [42] and [9] explore three categories:
relative positional encoding, channel correlation positional encoding, and learned
positional encoding. Relative positional encoding involves embedding a sine or
cosine function of the channel number and time step to each position of the EEG
recording. Channel correlation positional encoding calculates cosine similarities
between a central electrode and all other electrodes for every sample and replaces
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the channel number in the sine and cosine formulas used for the relative positional
encoding technique. With learned positional encodings, a trainable matrix with
the same dimensions as the input samples is embedded in the input, initialized
with random values, and trained by backpropagation. The same learned matrix is
then embedded in all inputs.

Multi-head attention The core component of the transformer encoder is the
stack of attention modules, represented by the grey box on the left in Figure 2.1.
The inputs are passed through the first attention module, with or without posi-
tional embedding, and subsequently through all attention modules in a similar
manner to regular deep neural network layers. Each attention module consists
of two sub-layers, namely a multi-head self-attention mechanism, followed by a
fully connected network. A residual connection is used around each sub-layer, and
these shortcut connections are added to the sub-layer output and normalized. As
mentioned in section 2.2, residual connections address the vanishing gradient
problem and improve the performance of many deep networks [27, 28].

Figure 2.2: Scaled Dot-Product Attention and Multi-Head Attention, both used
in the transformer architecture. Source: [4]

The multi-head attention sub-layers, as shown in Figure 2.2, are composed
of several self-attention heads applied to an input vector. The scaled dot-product
self-attention operation is performed on an input vector by computing the dot-
product of all possible input position pairs, scaling the values by dividing each
value by
p

dk, where dk is the key dimension of the input, and then applying
a softmax function to derive the weights. The original transformer was initially
developed for NLP, where the input is a vector of word embeddings representing
a one-dimensional string of words, and each word is compared with each other
word in the sequence using self-attention. However, for EEG data, the input is a
time series, usually multivariate, and therefore must be handled differently. At-
tention can be applied across all channels at set time points, across all time points
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for each channel, or a combination of both. This will be further discussed later in
this section.

The attention weights are then passed to the next sub-layer, which is the
position-wise feed-forward network. The network has two fully connected layers
with a Rectified Linear Unit (ReLU) activation function between them, as shown
in Equation 2.1. The layers have identical weights for each position but distinct
weights between layers. This is equivalent to having two convolution layers with
kernel size 1 but multiple filters. During training, only the weights in this feed-
forward network are updated via backpropagation.

FFN(x) =max(0, xW1 + b1)W2 + b2 (2.1)

Vaswani et al. found that instead of applying the scaled dot-product attention
as one operation to the entire input with size dmodel , it is advantageous to linearly
project the input into h different, learned, linear projections with size dmodel/h.
The attention function can be executed in parallel on each of these projections.
Although h different projections need to be learned, this approach is more compu-
tationally efficient because the complexity of the self-attention module increases
with O(d2) and h(dmodel/h)2 < (dmodel)2.

2.3.2 Hybrid CNN-transformer models

As the original transformer architecture was designed primarily for NLP, it is not
suitable for processing high sample rate time series with multichannel input with-
out modifications. Therefore, many researchers have introduced modules using
convolution and/or pooling layers before the transformer module to effectively
convert the input signal into a sequence of “subsample embeddings” [5, 9, 41,
42]. Each element in this sequence represents an embedding of the multichannel
EEG signal in a given time slice and is fed into the stack of attention modules with
positional encoding.

Wu et al. [41], create a model where convolution layers are integrated into the
scaled dot-product attention module itself, going beyond simply adding CNNs to
the transformer. The authors employ squeeze-and-excitation convolution submod-
ules [43], which enhance the representational power across different channels by
learning channel features with two convolution layers. The first convolution layer
reduces the number of channels by a factor of 1

2 , hopefully learning relevant fea-
tures, while the second layer restores the original number of channels.

Conformer Another architecture combining CNNs and transformers that is gain-
ing attention in the field of EEG is the Conformer [44]. The Conformer architecture
was first introduced in 2021 by Google researchers as a novel neural network ar-
chitecture that combines the strengths of convolutional neural networks (CNNs)
and transformers. It is designed to handle sequential data with variable lengths
and can capture both local and global dependencies in the data.
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Recently, the conformer has been applied to EEG data, specifically in the con-
text of emotion recognition and motor imagery tasks [45]. Similar to the hybrid
CNN-transformer models, the conformer uses subsampling to reduce the sample
rate of the input signal, which is then fed into the transformer modules. One ad-
vantage of the conformer over traditional CNNs is its ability to capture long-range
dependencies in the data, making it suitable for analyzing EEG signals that may
exhibit complex patterns over longer time periods.

Overall, both the hybrid CNN-transformer models and the Conformer archi-
tecture show promising results in the field of EEG data analysis, demonstrating
the power of combining different neural network architectures to tackle complex
problems.

Spatial and temporal modeling When using transformers on multivariate time
series data, two common approaches are applying multi-head self-attention spa-
tially (channel-wise) or temporally (time-wise). Some researchers have used a
combination of both, by training a fully connected network on the combined out-
puts of a spatial model and a temporal model [42]. Wu et al. combine spatial and
temporal learning by having separate channel attention and time-slice attention
modules [41]. Each of these modules has their initial convolution filters shaped
either along the channel axis or the time axis, before the data is embedded and
passed through a lightly modified transformer architecture. The outputs of both
modules are combined and passed through a final module, in a similar fashion
to [42].

2.4 Self-supervision

SSL aims to solve the problem of supervised learning models requiring large
amounts of labeled data. Labeling data is a resource-intensive and expensive pro-
cess that sometimes requires the precious time of educated experts, which are in
short supply in many fields. Although there are fully unsupervised approaches,
such as reinforcement learning, unsupervised learning cannot be applied to all
problems.

Self-supervised learning aims to use unlabeled datasets to learn a good latent
representation of the data. Training a classifier from this latent space is often much
simpler than from the original input and can achieve good results when fine-tuned
on only a small portion of the data that has been labeled [46].

Manually reviewing and labeling EEG recordings is time-consuming and re-
quires many work hours from neurologists around the world. Ensuring that data
sets follow privacy regulations, are compatible with other data, and are of high
quality further increases the demand for resources. SSL is proposed as a way to
reduce the need for labels in several domains, including health data [47]. Using
SSL, our goal is to learn meaningful representations of the EEG recordings simply
by using the data itself. This, in turn, can be useful for downstream tasks, in our
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case time series classification. SSL often includes a pre-training task, for exam-
ple, reconstructing a masked image [48]. By augmenting an input (for example,
masking), spatial and temporal features can be learned from the data itself, but
the type of augmentation must be adapted to the input data [49]. This happens
because different data types (pictures, time series, or language) have different
spatial and temporal dependencies.

2.4.1 Contrastive learning

Contrastive learning (CL) has emerged as a popular methodology within SSL and
has achieved state-of-the-art results in both image and time series classification,
comparable to supervised approaches [10, 50]. The primary advantage of CL is its
discriminative nature, achieved by creating positive pairs using appropriate data
augmentations during training (such as shifting, masking, or adding noise), forc-
ing similar samples closer and dissimilar pairs further apart in the latent space.
This results in high-quality, generalized representations that are useful for down-
stream tasks like classification. A more detailed explanation of contrastive learning
will come in subsection 2.5.2, explained using EEG data as an example.

2.5 SSL for EEG classification

SSL has shown remarkable success in natural language processing and computer
vision with the use of transformers as feature extractors. Recently, SSL has also
gained attention in the field of EEG classification. In this section, we will focus on
SSL and transformers in EEG classification.

We have mainly reviewed research papers related to the TUH EEG dataset, but
we have also considered other datasets since some studies have demonstrated the
transferability of SSL methods between different datasets and tasks [6, 8, 51]. SSL
for EEG classification differs in two main aspects: the pretext task is different, and
the augmentations applied to the EEG data differ from other domains.

2.5.1 Pretext tasks

The pretext task is the core concept of SSL, as it provides an unsupervised method
for training deep neural networks. Pretext tasks are domain-specific tasks that
neural networks can solve. Unlike supervised learning, which requires labeled
datasets, SSL algorithms leverage the data to obtain “free” labels. Pretext tasks
come in many forms, including contrastive learning and reconstructing masked
data, as mentioned earlier. In contrastive learning, the model learns to distinguish
between similar and dissimilar pairs of samples, while in data reconstruction, the
network attempts to predict the missing parts of a data sample. These “free” labels
serve as proxies for the true labels and enable the network to learn meaningful
representations of the data.
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EEG-specific pretext tasks The choice of pretext task is critical in determining
which properties of the data are learned and can significantly impact the down-
stream classification performance of SSL. According to Wagh et al., EEG requires
domain-specific pretext tasks, and they present three EEG-adapted pretext tasks:
hemispheric symmetry, behavioral state, and age contrast (where age is not con-
sidered an expert label). All these tasks use the unique properties of EEG as “free”
labels.

Hemispheric symmetry utilizes the fact that healthy brains exhibit similar
brain activity across both the left and right hemispheres. Thus, the pretext task pe-
nalizes the model for learning different representations of each hemisphere. The
behavioral state pretext task is based on the assumption that spectral power ratios
in the central brain can be used to estimate the behavioral state of the patient. This
estimate becomes the target value and forces the model to learn representations
sensitive to behavioral states. The age contrast task is based on the importance
of age in modulating brain activity [52]. Age-related slowing in EEG should lead
to different representations for younger and older patients. To achieve this, the
authors use contrastive triplet learning [53], which forces similar age groups to
be closer in the latent space and different age groups to be further apart.

2.5.2 Contrastive learning in EEG

Contrastive learning is a popular technique for self-supervised learning in EEG.
Several studies, [6, 54, 55], have explored the use of contrastive learning in EEG.
In particular, Jiang et al. used a similar contrastive approach to that described in
the first paragraph of subsection 2.4.1, but with the addition of cosine similarity
as the distance metric between vector space representations in the loss function.
This approach aims to maximize the agreement between two representations, as
described in [6]. This method is based on simCLR [56], which is a vision-based
contrastive framework. The loss and similairty functions used are presented in
Equation 2.3 and Equation 2.2, respecitvely. The contrastive loss calculates the
loss for a positive pair, (ei , e j), with respect to all other encodings in the batch,
which serve as negative pairs to ei . It is important to note that this EEG inspired
approach does not rely on a domain-specific pretext-task but depends on domain-
specific augmentations, which will be discussed in section 2.6.

Cosine(x , y) =
x · y
|x ||y|

(2.2)

L(ei , e j) = − log
exp(Cosine(ei , e j)/τ)
∑2BS

k=1 exp(Cosine(ei , ek)/τ)
(2.3)

In the studies by Mohsenvand et al. [6] and Jiang et al. [54], negative pairs
are obtained by considering all other pairs in the given mini-batch as dissimilar. A
visualization of how latent space representations are handled by contrastive loss
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Figure 2.3: Visual representation of contrastive learning for EEG-signals. E1()
and E2() represent an encoding of a positive pair after applying aug1 and aug2.

can be seen in Figure 2.3. The resulting latent space is encouraged to clearly dis-
tinguish EEG-signals containing disimilar semantic information. However, this ap-
proach may cause samples with similar characteristics to be pushed further apart
in the vector space, leading to dissimilar representations even when they belong
to the same class. In EEG, this could result in two samples from the same subject
with seizures being forced to have dissimilar representations. To address this issue,
it is possible to increase the number of positive pairs in the mini-batch by doing
class aware contrastive learning [57, 58], which can improve the performance of
downstream tasks.

To promote the learning of several EEG properties at once (see subsec-
tion 2.1.2), it is possible to combine multiple contrastive learning pretext tasks. For
example, by combining contextual and temporal contrastive loss, representations
that capture temporal features while being discriminative can be created [58].
Temporal contrastive loss is similar to contrastive loss, but it uses the representa-
tions of predicted future time steps to maximize and minimize similarity between
latent space representations, instead of evaluating the current time step repre-
sentations. Ultimately, both normal and temporal contrastive losses are combined
in the loss function, which encourages the model to consider both temporal and
discriminative features.

2.5.3 Predictive pretext tasks in EEG

While predictive pretext tasks are not as clearly defined as contrastive learning,
they involve generating latent space representations by predicting some property
or target, reconstructing missing values, or forecasting future values [59, 60]. As
many downstream tasks involve the prediction of a label or future values, gener-
ating representations through similar problems can improve the transferability to
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downstream tasks [8, 61].

Temporal dependency based pretext tasks For example, in sleep stage classi-
fication, a predictive pretext task inspired by the downstream task could involve
predicting whether EEG signals are close in time or not, as signals from the same
sleep stage are likely to be close in time [62]. This mimics the downstream task
of classifying different sleep stages.

The contrastive learning approach can also be used in predictive pretext tasks
in order to learn discriminative features. This could be done by selecting positive
and negative pairs and predicting their classification instead of altering similar-
ity directly with a contrastive loss [8, 62]. Banville et al. proposes several ways of
creating pairs, where each approach focuses on learning temporal EEG properties.
One approach to incorporating temporal dependencies in predictive pretext tasks
is to focus on the time-based distance between samples when creating pairs. This
helps the model learn that temporal dependencies change over time. Another ap-
proach is to shuffle the order of some samples and predict whether shuffling has
been applied or not. Finally, another proposed method does not utilize pairs but
groups of samples, where the model must predict which sample follows a given
sequence. This encourages the model to learn representations that can identify
similar temporal dependencies from a larger group instead of pairwise identifica-
tion.

Frequency based pretext tasks In order to model EEG signals, it is important to
understand their temporal and spectral properties (see subsection 2.1.2). Ko and
Suk proposed two predictive pretext tasks which were designed to specifically fo-
cus on learning representations dependent on temporal and spectral properties. To
avoid the challenge of learning both representations simultaneously, each prop-
erty is learned separately. Spectral properties are related to different frequency
ranges [63], and the pretext task is designed to learn representations of these.
The proposed task is called stop band prediction, where fake EEG samples are
generated by removing signals in specific frequency ranges. The model is then
trained to identify the removed frequency bands in comparison to the original
EEG sample, thereby forcing it to learn the unique patterns associated with each
frequency band.

Being able to detect both short-term and long-term patterns is crucial for vari-
ous downstream EEG tasks [64, 65]. In many models, local temporal embeddings
are commonly applied, which inherently capture short-term patterns. However,
to learn long-term temporal patterns, a temporal trend identification pretext task
can be employed [59]. This involves adding transformations to the data samples
to create raw, stationary, trend-stationary, or cyclostationary versions of the data.
The pretext task is then to identify which transformation each sample has under-
gone. To distinguish between stationary and cyclostationary samples, temporal
features from a global standpoint are required. Therefore, these two pretext tasks
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can enhance the latent space representations by incorporating both temporal and
spectral features.

Reconstruction based pretext tasks Reconstruction-based pretext tasks are
commonly used in computer vision and natural language processing, but they
have also been applied in multivariate time series analysis [61] and EEG repre-
sentation learning [66]. To make the reconstruction task more challenging, an
augmentation technique (section 2.6) is often used. Although reconstruction is
typically combined with other pretext tasks, it can also be used as a standalone
pretext task in EEG [66]. The main objective is to predict the original signal given
a noisy, or otherwise augmented, signal, and the mean absolute error is used as
a loss function. This approach leads to the development of robust EEG represen-
tations, as domain-specific properties must be learned to perform accurate recon-
structions from noisy data [66].

2.6 Augmentations in EEG

A well-designed pretext task is not sufficient alone to learn useful latent space
representations for the downstream task. Good augmentations are needed to cre-
ate positive pairs or predictive targets, as contrast or reconstruction using exact
copies are too easy tasks. The described tasks would not enable the model to learn
useful EEG semantics for downstream tasks and as a result would be useless for
SSL. To harness the power of generally applicable pretext tasks, combining them
with good augmentations, preferably domain-adapted ones, is vital [56].

In this context, an augmentation is an operation that changes one or several
properties of an EEG signal. By altering the properties of signals, the model uses
the pretext task to learn underlying structures of the signal. In order to learn
meaningful representations of EEG signals, the augmentations should not alter
the semantic information of the signals, but rather alter the numerical values
when transforming signals. In this way, augmentations encourage the model to
shift its focus from value-dependent representations to semantic-dependent rep-
resentations. Carefully designed augmentations can therefore increase the gener-
alization capabilities and encourages overlooking distinct values. With EEG’s chal-
lenges within inter-subject variability in mind, applying the correct augmentations
can be a powerful tool. In this section, we will introduce several augmentations
techniques utilized in EEG classification today.

Augmentations do not necessarily have the domain transferability of pretext
tasks. For instance, color distortion and rotation used in computer vision are not
directly applicable to time series data, and equivalent augmentations should be
discovered. Commonly, time series adapted augmentations are utilized in the EEG
domain as well [10, 58]. However, similarly to time series, the EEG domain has its
own set of challenges, such as inter-subject variability and non-stationary signals,
which in some cases requires augmentations adapted to EEG data [6, 62].
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(a) Time Shift (b) Masking (c) Scaling

Figure 2.4: Augmentations proposed by nuerologists

Common EEG augmentations We have discovered several EEG-related aug-
mentations used in relevant papers. These are presented in Figures 2.4 to 2.7.
Even though several augmentations are commonly used, there is no golden rule
or standard framework within SSL for EEG, as each dataset and pretext task re-
quires its own unique solution to achieve the best possible results. In this section
we look at augmentations used in different studies, and how they are applied to
SSL

Neurologist-proposed augmentations Domain-specific augmentations were
proposed by Mohsenvand et al. To ensure that data augmentation techniques used
on EEG signals were appropriate, EEG specialists were consulted and asked to
propose augmentations that would preserve the interpretability of the EEG sig-
nals [6]. The suggested augmentations include scaling, time shift, DC shift, mask-
ing, jitter, and band-stop filtering. If specialists are able to accurately classify an
augmented signal, it suggests that the relevant semantic information for classi-
fication has been preserved. These augmentations are presented in Figures 2.4
and 2.5.

Time shift (Figure 2.4a) involves shifting the EEG signal along the time axis
by a certain number of samples or time units. This can help simulate temporal
variations and enable the model to recognize the same patterns at different time
points.

Masking (Figure 2.4b) randomly sets a portion of the EEG signal to zero, sim-
ulating missing data or artifacts in the recording. This technique can help the
model to better handle noisy or incomplete data. Additionally, learning to recon-
struct missing data forces the model to learn underlying semantic structures.

Scaling (Figure 2.4c) involves multiplying the amplitude of the EEG signal by
a constant factor to adjust its magnitude that may vary between different record-
ings. This can enable the model to better capture relevant features at different
scales. With the properties of EEG, described in subsection 2.1.2, in mind, such as
inter-subject variability and age-related slowing, scaling may lead to better gen-
eralization.

Another augmentation, proposed by neurologists and capable of better han-
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(a) Band-Stop Filter (b) DC Shift (c) Jitter

Figure 2.5: Augmentations proposed by nuerologists

(a) Average Filter (b) Time Warping (c) Cutout&Resize

Figure 2.6: Weak Augmentations

dling inter-subject variability, is DC shift (Figure 2.5b). DC shift adjusts the base-
line level of the entire EEG signal by adding a constant value. This technique can
help the model handle different intensity levels in the data.

Band-stop filtering (Figure 2.5a) removes a specific frequency range from the
EEG signal. Learning to create robust latent-space representations without all avi-
able frequencies enables the model to better handle data that contains noise or
artifacts. AS previously stated in subsection 2.1.2, EEG-signals have a high noise-
to-signal ratio. Robust representations capable of handling noisy data are there-
fore beneficial for the downstream task.

To further prevent noise from dominating latent space representations, neu-
rolgists suggest introducing jitter (Figure 2.5c) as an augmentation. Jitter adds
random noise to the EEG signal, which forces the model to focus on temporal and
spatial dependencies rather than value-specific properties.

Weak vs. strong augmentations According to Eldele et al. a weak augmentation
(Figure 2.6) applies limited changes to the distinct shape of the signal. Examples
are the augmentations time shift and the DC shift presented previously. Strong
augmentations (Figure 2.7), on the other hand, alter the shape of the signal but
keep some temporal semantics intact, such as permutation (Figure 2.7c) or hor-
izontal flip (Figure 2.7b). When performing permutations, the signal is split into
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(a) Crop&Resize (b) Horizontal Flip (c) Permutation

Figure 2.7: Strong Augmentations

M chunks and then randomly reorganized. The original signal is not easily rec-
ognizable; however, the semantics of each segment is kept intact. For horizontal
flip, each signal is simply flipped around it’s x-axis, keeping useful frequency- and
value-knowledge intact while altering the shape. Crop&rezise (Figure 2.7a) relies
on the assumption that if the target event can be derived from the entire signal,
it should also be obtainable from a subpart of the original signal.

In particular, the weak augmentations presented in Figure 2.6 can be con-
sidered as both strong and weak augmentations depending on the parameters
chosen for each augmentation. For example, cutout&resize (Figure 2.6c), where
a segment is removed and substituded by resizing the remaining signal, is highly
dependent on the segment size. This is also the case for some domain-specific
augmentations presented by neurologists, such as jitter, which depends on the
amplitude of the added noise. As a result, several studies have conducted prelimi-
nary studies to determine the augmentation parameters [30, 54, 58]. Models were
pre-trained on limited data with different fixed augmentation parameters before
results on the downstream task were obtained. By doing this, the most promising
augmentation parameters could be used for pre-training on the entire dataset.

Combining augmentations Mohsenvand et al. were advised by neurologists to
randomize the strength of each augmentation within given ranges for each aug-
mentation. After this, two augmentations were randomly selected from the al-
ready proposed augmentations and applied to the EEG signals to create a positive
pair. The combination of augmentations or the application of the same augmenta-
tions to each input was not discussed with specialists; however, the combination
of several augmentation techniques can lead to increased performance [54, 57,
67].

In contrast to Mohsenvand et al. [6], Eldele et al. [58] conducted an ablation
study in order to select a fixed set of augmentations to apply for each input. Inter-
estingly, performance was partially increased by combing two and two augmenta-
tions leading to stronger augmentations. The increase in performance varied with
the different possible combinations, but all the augmentations performed better
when combined with jitter. Notably, the standard deviation (i.e. the strength) of
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the jitter is considerably smaller than when it is applied alone. The final augmen-
tation set was permutation+jitter (strong augmentation) and scale+jitter (weak
augmentation). Jiang et al. did not experiment with augmentation combinations,
however, the final augmentation set that led to the best performance was permu-
tation and crop&resize. This indicates that permutation, which was not proposed
by neurologists, is a useful augmentation for contrastive pretext tasks.

There is no golden standard for augmentations, and each challenge requires a
unique approach. Testing all possible combinations of augmentations on all data
requires a vast amount of computing power. As a result, it is common to report re-
sults for each composition on limited data or a smaller subtask. A common solution
is to compare the augmentations individually and then select the best performers
as an augmentation base for randomized selection [67]

2.7 Data

In order to achieve satisfactory performance in supervised or self-supervised deep
learning tasks, it is essential to have a dataset of sufficient size and quality. How-
ever, when working with EEG data or medical data in general, we are often faced
with similar challenges. Collecting such data can be resource-intensive and expen-
sive; obtaining crucial data related to rare conditions or events can be particularly
difficult; and ensuring the privacy and rights of the subjects while sharing the data
is a crucial concern. Furthermore, proper data acquisition, examination, and la-
beling of data require trained personnel, whose availability is often limited.

Additionally, in order to increase data quality, it is often normal to do certain
preprocessing steps and to remove noise and artifacts. Relevant theory and pre-
vious approaches to EEG dataset handling and preprocessing are outlined in this
section.

2.7.1 Data aggregation

Dataset differences and challenges There exists a variety of large-scale openly
accessible EEG datasets that are deidentified, facilitating the application of deep
learning and transfer learning techniques. However, these datasets originate from
diverse settings, including clinical epilepsy, sleep staging, and emotion recogni-
tion. Consequently, EEG recordings have different characteristics as a result of
these diverse settings. Despite the inherent dissimilarities among these datasets
and their respective patterns, evidence suggests that pre-training on a combina-
tion of diverse datasets enhances the performance of subsequent tasks targeted
at specific problems. Mohsenvand et al. Mohsenvand et al. demonstrate that com-
bined pretraining on sleep data, abnormality detection, and affective recognition
yields improved performance across all three domains compared to pre-training
solely on data collected within the relevant setting.

One challenge encountered during the implementation of transfer learning lies
in the disparate recording setups employed across different datasets. Factors such
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as the sample rate, number of channels, and EEG montage vary between datasets
or even within the same dataset. The variation in the number of channels is com-
monly addressed by excluding channels that are not shared among all utilized
datasets [8, 51], thereby enforcing a consistent input shape for all data sources in
the model. Another approach, as employed in Mohsenvand et al. [6], involves the
design of a feature extractor for a single EEG channel, enabling the learning of
a latent representation from a chosen channel in a self-supervised manner. Con-
sequently, the single-channel feature extractor can learn from relevant datasets,
regardless of the number of channels or labeling scheme.

TUH EEG Corpus The largest openly available dataset in the field of epilepsy
research is the TUH EEG Corpus (TUEG) [3]. As of May 2023, this corpus com-
prises 26,846 clinical EEG recordings collected between 2002 and 2017 at Temple
University Hospital (TUH) in Philadelphia, Pennsylvania, USA. The dataset is di-
vided into numerous subsets, allowing for targeted training on specific problems
through sampled and labeled classes. However, it should be noted that the TUH
EEG Corpus, which constitutes the majority of the TUH dataset, lacks EEG signal
labeling, only including patient gender, age, and date of recording as potential
prediction targets. These are not considered expert labels. The recordings were
collected for clinical purposes and were not intended for machine learning at the
time of recording. As the corpus is very large but lacks labels to identify diseases,
TUEG presents an excellent opportunity for self-supervised pretraining, as SSL
does not rely on labeled data.

The data in the TUH dataset was collected between 2002 and 2017, and as
EEG recording technology has evolved over time, so has the data [68]. Different
machines were used to collect the data, resulting in variations in data formats
even within the corpus. For example, an examination of 500 arbitrarily selected
recordings from the TUEG subset revealed eight different channel counts rang-
ing from 29 to 36 and five different sample rates ranging from 250 to 1000 Hz.
This demonstrates the necessity of preprocessing steps such as resampling and re-
sizing for this dataset. Furthermore, the length of recordings exhibits significant
variability, ranging from a few seconds to more than an hour. TUEG is comprised
of a combination of recordings using the average (AR) and the linked ear (LE)
references.

Specific subsets within the TUEG, such as the TUAB [69], have been manually
labeled and sampled from TUEG to provide more accessible data for research
on specific problems. The TUAB subset, in particular, is commonly used for EEG
ML Tasks, as it is a balanced dataset with equal parts normal and abnormal EEG
data. TUAB focuses on dataset quality by undersampling the much larger corpus,
selecting files with high data quality. EEG records containing abnormalities are
sampled disproportionately frequently in this data set, better balancing it for ML
purposes.
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2.7.2 Model input selection

Channel selection The vast majority of research projects that we have examined
use the same channel selection for pretraining and fine-tuning, usually selecting a
subset of channels common to all data [5], or a smaller subset believed to contain
sufficient information [5]. Having the input to the self-supervised pretraining on
the same format as the input to the downstream task is helpful, as it allows feeding
the encoder the raw data in the same way both while pre-training and while fine-
tuning. However, when working with data with different numbers of channels,
keeping only common channels may lead to the elimination of large amounts of
usable EEG data.

One notable exception to this convention is SeqCLR [6] by Mohsenvand et al.,
where only single channels are encoded by the encoder during pretraining. This
has the distinct advantage that every channel can be used for pre-training, letting
the encoder learn from a larger body of data.

Window size There have been many different approaches to window size selec-
tion in the recent literature. The size of the classification windows is often closely
related to the classification problem; Sleep staging often has larger window sizes
than emotion recognition [6, 58]. For example, much of the previous literature
on the SEED dataset [13, 70], an emotion recognition dataset, uses 1-second win-
dows [13, 70, 71].

In the epilepsy domain, which we use for testing during the development
of DECCaT-Net, the literature shows many different choices of window sizes.
Mohsenvand et al. use 1 minute windows for the abnormal/normal problem, stat-
ing that most of the prior work considers the first minute of the recordings as
the quality of signals drops with time [6]. Roy et al. demonstrated that using the
first 11 minutes of the recordings can improve the classification results [72]. The
Epileptic Seizure Recognition dataset [73] consists of 23.6 second long recordings,
and as such this window size has also been used in recent literature [58].

Datasets for epilepsy or sleep staging, both clinical domains, commonly con-
tain long recordings that often last a whole night, in the case of sleep staging. This
allows for larger window sizes than those used in BCI or motor function datasets.
This distinction is due to the time scale in which relevant events happen. For BCI,
it is important that the desired machine input is read immediately after it is de-
tectable in the brain. Simply put, we do not want to wait for input lag when we
control the computer directly using our brain. Due to this, studies in the BCI do-
main often use a window length of 1-4 seconds [45], with models working on
shorter windows being preferred. On the other hand, the aim of sleep staging is
to detect long-lasting sleep stages from a whole night’s worth of EEG data, thus
if a sleep stage change only has a precision of ±30 s it is not critical for the task.
Because of this, some sleep staging studies use a window size of 30 s [5, 6].
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2.7.3 Preprocessing of EEG signals

The choice of preprocessing methods for the signals themselves is an important
part of every time series prediction or classification task. Roy et al. observed that
the most common preprocessing steps are downsampling, bandpass filtering, and
windowing [2]; however, many different preprocessing schemes are used. For ex-
ample, Hefron et al. note that a substantial amount of preprocessing was necessary
for evaluating cognitive workload using deep learning techniques [74]. This in-
volved trimming the EEG trials, downsampling the data to a lower frequency and
number of channels, identifying and interpolating bad channels, calculating the
average reference, removing line noise, and high-pass filtering the data at 1 Hz.
In contrast, Stober et al. used only a single preprocessing step by discarding the
bad channels of each recording[75].

These contrasting examples show a challenge in choosing preprocessing steps
for a deep ML task on EEG data. Extensive research has been dedicated to pre-
processing pipelines; however, to the best of our knowledge, there is a lack of
sufficient research investigating the impact of complex preprocessing on the per-
formance of modern deep learning (DL) architectures. Most of the models re-
viewed for this thesis incorporate some form of preprocessing to adapt the data
to their respective models, including downsampling, trimming, and channel re-
moval, among others [75]. Additionally, more intricate preprocessing techniques
are commonly employed, such as rereferencing to a common average, low-pass
and high-pass filtering, and band-pass filtering.

Some studies incorporate even more sophisticated preprocessing approaches,
such as line noise removal [76], interpolation of faulty data points, and trans-
formation to the frequency domain, often through the use of the fast Fourier
transform (FFT) and other similar techniques. Due to the low signal-to-noise ra-
tio (SNR) of EEG signals, noise removal presents challenges and may result in
significant information loss; however, the potential increase in SNR justifies its
consideration. However, a consensus has yet to be established on the optimal ex-
tent of preprocessing for modern DL architectures. Transforming data from the
time domain to the frequency domain using the FFT algorithm can offer insights
into the behavior of time series that are not readily apparent by examining the
data solely in the time domain [77].

Signal filters The most commonly used frequency filters for EEG preprocessing
are low-pass, high-pass, band-pass, and band-stop filters, all shown in Figure 2.8.
In the case of preprocessing for ML purposes, the EEG signals are saved digitally,
and as a result we use digital filters. Digital filters work by transforming the signal
from the time domain to the frequency domain and filtering out certain frequency
bands. Low-pass (Figure 2.8a) and high-pass (Figure 2.8b) filters remove frequen-
cies that are, respectively, higher and lower than a specified threshold. Band-pass
filters (Figure 2.8c) only keep frequencies between a lower and a higher thresh-
old, while band-stop filters (Figure 2.8d) reject frequencies between a lower and
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(a) Low-pass filter (b) High-pass filter (c) Band-pass filter (d) Band-stop filter

Figure 2.8: The most common filters used for EEG preprocessing, shown in the
frequency domain by which frequencies they let pass.

a higher threshold.
In EEG, high-pass filters are used to correct baseline drift [78], low-pass filter

are commonly used to remove random noise [79, 80], and bandpass filters are a
way of combining the two [6]. Band-stop filters have seen use as augmentations
for SSL [6, 59], or to filter out unwanted noise from i.e. ambient electrical voltage
from alternating current, which has a specific frequency of usually 50 or 60 Hz,
in the environment [81].

Downsampling Lowering the sampling rate, called downsampling, comes with
upsides and downsides. The downsampled signal uses less space on disk and in
memory, and leads to faster computation times. Faster computation times allow
the model to be trained for more epochs, be deeper, or be run on a lower-end
system.

Downsampling inherently leads to loss of information. However, not all the
lost information is useful for the ML task, as EEG data have a notoriously low
signal-to-noise ratio (SNR). The small differences between neighboring time
points in EEG signals with high sampling rates are believed to be largely affected
by signal noise, although how much remains an open question. Common practice
shows that when downsampling to around 200 Hz [5, 6, 60, 82] or 100 Hz [8,
51, 59, 80] the performance gains compensate for the information loss, leading
to the best classification results.

EEG rereferencing Each EEG channel represents the voltage difference between
two electrodes, one of which is usually the common reference. Rereferencing is a
fundamental preprocessing step aimed at reducing common artifacts and improv-
ing the interpretability of EEG signals. It involves transforming the recorded EEG
signal by subtracting a reference signal to change the common reference. There
are several different reference schemes that can influence the subsequent analy-
sis and interpretation of EEG data [83]. Neurologists often use rereferencing to
obtain a new view of the data when performing analysis [84].

References can be physical or digital. Physical references are often obtained by
selecting an electrode location that is believed to have low EEG activity, such as the
nose, earlobes, or neck ring. Digital references are computed from multiple EEG
electrodes, such as the average reference (AR) or reference electrode standardiza-
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tion technique (REST) [85]. Rereferencing often changes the common reference
from a physical to a digital reference.

The average reference, where the EEG signal is rereferenced by taking the
average of all electrode channels as the reference, is widely used in the DL-EEG
literature [38, 68]. This method aims to eliminate the contribution of common-
mode signals across the scalp, but assumes that all electrodes contribute equally
to the reference, which may not always be the case.

The REST can be used to obtain an “infinity reference”, which aims to stan-
dardize the reference to a point on at infinity [85]. EEG reference comparison
studies using classical EEG analysis methods have shown that REST performs bet-
ter than AR, which again outperforms physical references.

As an EEG channel represents the voltage channel between a given electrode
and the common reference, any two channels may be subtracted from each other
to produce a new, valid channel. This technique can be used to produce new valid
channels when more EEG channels are desired.

Mohsenvand et al. [6] proposed learning representations of channels one by
one, followed by combining the appropriate number of single channel encoders
when fine-tuning for downstream tasks. Proposing a framework not relying on the
number of channels in a dataset enables the authors to benefit from a EEG-specific
data augmentation technique based on rereferencing. Rereferencing enables us to
obtain N × (N − 1) + N = N2 new channels from an EEG signal that has N chan-
nels by creating all possible electrode pairs. Prior to learning spatial dependencies
during fine-tuning on a downstream task, more data could lead to better repre-
sentations of temporal dependencies during pre-training.

2.7.4 Artifact and noise removal

Sources of random noise and artifacts Noise in EEG can be divided into two
categories, internal and external noise. Internal noise originates from brain ac-
tivity from parts of the brain that are more distant from the electrode [83]. This
noise has a lower amplitude than the signals originating from the brain just below
the electrode, as the electrical voltage needs to propagate through more tissue to
reach the electrode. The removal of internal noise is challenging, as it is present
in all raw EEG data.

External noise can originate from the experiment environment or from the
subjects themselves, such as muscular activity. Muscle activity, such as ocular
movement, blinks, and other facial movements, generate electrical signals that
have a much higher amplitude than brain activity, up to 100 µV for blinks [83].
This causes artifacts in the data, which can be detected due to the way they differ
from brain activity and random noise, mainly by their amplitude. Small patient
movements and sweating, which affects conductivity, are also a source of external
noise. External noise from the environment can, for example, be from ambient
electrical current in the room with from other electrical equipment in proximity
of the EEG sensors, and line noise from the EEG equipment itself.
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Related noise removal practices One of the main goals of preprocessing is re-
moving noise. In this section, we divide noise into two categories, random noise
and artifacts, as the approaches to combat them are different. Random noise, such
as line noise and internal brain noise, is difficult to remove, but some research into
this has been done [76]. Random noise often has a high frequency, and as such
band-pass or low-pass filters are often used to reduce random noise [6, 79, 80].

Artifacts are often very different from normal data and can have a large neg-
ative impact if they are not detected and removed. Ocular artifacts, which arise
from eye movements, are particularly prevalent. Extensive research has been con-
ducted on the handling and removal of artifacts in EEG data [86], while certain
studies opt to discard samples with values that surpass a predefined threshold
indicative of an artifact [6, 38, 87]. Mohsenvand et al. are also able to drop bad
channels during pretraining, as their model is not dependent on using the same
number of channels from each EEG recording when pretraining their encoder [6].

Despite the common practice of artifact removal, a comprehensive review of
154 articles published in the field of DL-EEG led Roy et al. to assert that explicit
artifact removal can potentially be circumvented when employing deep learning
techniques, without adversely affecting task performance [6]. However, common
practice in recent SOTA models shows that discarding some artifacts, such as
spikes due to muscular movement or flats due to dead electrodes, is generally
viewed as helpful [6, 8, 80].

2.7.5 Class distribution and imbalance handling

Class imbalance is a common issue in medical data, which poses challenges for
classifiers striving to achieve optimal performance [88]. This imbalance arises due
to the abnormal occurrence nature of diseases, making it difficult to gather suffi-
cient data for rare events. Various strategies exist to address class imbalance, in-
cluding oversampling, undersampling, augmentation, and imbalanced loss func-
tions.

In SSL, a well-balanced class distribution facilitates the learning of a robust
latent representation by the encoder. However, in the case of pretraining with
unlabeled data, it becomes impractical to measure the class imbalance, as the class
of each data point is unknown. Nevertheless, data set balance assumes particular
importance in supervised learning, and when fine-tuning a pretrained model.

Over- and Undersampling Undersampling the majority classes is a viable ap-
proach to balance data sets, especially when a sufficient amount of data is avail-
able. Although this approach significantly reduces the size of the training dataset
and often leads to a decrease in overall accuracy, it tends to improve the accuracy
of minority class classifications [89]. This is particularly relevant in health-related
data, such as EEG or ECG, where data indicating a disease or significant findings
are typically in the minority compared to normal data. Correct identification of
diseases is crucial and in the majority of cases, a false positive result is less harmful
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than a false negative.
Oversampling is another technique to handle class imbalance, involving the

replication of data samples from the minority class, creating multiple identical
copies. This increases the number of samples from the minority class and has been
proven to be effective with classical machine learning methods [90]. However,
with deep neural networks, oversampling can lead to overfitting and compromise
the model’s generalizability.





Chapter 3

Method

Introduction In this chapter, the implementation details of the proposed self-
supervised model for EEG classification are presented. First, the general frame-
work, system architecture, and the tools used to develop it are presented in sec-
tion 3.1. Then, in sections 3.2 to 3.4, all aspects of the implementation are elab-
orated with detailed explanations and justifications. Finally, in section 3.5, Ex-
perimental cycle, the implementation details of our hyperparameter search and
experiment setup are described.

3.1 Framework overview

We present Dual EEG Contrastive Convolution and Transformer Network
(DECCaTNet), a model and contrastive learning framework for multichannel time
series with a focus on transfer learning capabilities, able to effectively learn from
large quantities of data. We have implemented and tested it on EEG data, but it
is also applicable to multichannel time series from other domains.

Research questions

RQ1 How does pre-training an n-channel encoder perform, and how is it
best implemented for EEG data?

RQ2 What is the optimal number of channels in each group when using
SSL with grouped channels on EEG-data?

RQ3 How does a transformer-based encoder perform in an SSL architec-
ture for classifying multichannel EEG data?

In order to answer our research questions, an SSL framework for pre-training
DECCaTNet on EEG data using the tools presented in section 3.1 was imple-
mented. A general overview of our framework is presented in Figure 3.1. The

31
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framework relies on three main components: data loading and preprocessing, pre-
training, and fine-tuning, all of which are described in the following sections of
this chapter.

First, all data sets are preprocessed with some dataset-specific and some gen-
eral parameters. Then, all recordings used for pre-training are split into chan-
nel groups of n channels per group and saved as new recordings. Moving on,
DECCaTNet is pre-trained on recordings with groups of n channels. The pre-
trained encoder of DECCaTNet can then be saved and used for fine-tuning on a
fine-tuning dataset that keeps its original number of channels. Finally, we obtain
results on the downstream task.

Our framework follows that proposed by Mohsenvand et al., which is again
a modification of the SimCLR contrastive learning framework [56]. However,
the unique properties of our proposed framework is splitting the recordings into
groups of (n ≥ 1) channels, which affects the implementation of other compo-
nents. Similarly to all other parameters, the number of channels in each group,
(n), can be simply altered in a configuration file, which means that the whole
framework must dynamically adapt to the chosen n.

Justification of SSL In our project thesis [7] we found that SSL-based mod-
els consistently outperformed non-SSL models for EEG classification tasks [49,
54, 58, 91]. However, results from other domains suggest that SSL encoders are
dependent on massive datasets to obtain good results. To establish SSL’s value
in EEG applications, it is crucial to demonstrate good performance compared to
SOTA models and showcase transferability across datasets.

The surveyed literature confirms that SSL-based approaches achieve compa-
rable or superior results on all surveyed datasets, even with limited annotated
data. Furthermore, they outperform supervised models in cross-dataset perfor-
mance [59, 62, 80, 82], highlighting the usefulness of SSL in the EEG domain.
The impressive SOTA performance and transferability of SSL-based approaches
warrant further exploration in EEG classification.

Tools

Python1 Python is a powerful and versatile programming language that
is widely used for data analysis, machine learning, and scientific
computing. Python is the backbone for our implementation, all
other packages and tools listed are built upon Python.

Numpy2 Numerical Python library for scientific programming. We use
Numpy to implement our own preprocessing functions and mathe-
matical programming before sending the data to Pytorch Tensors.

1https://docs.python.org/3/
2https://numpy.org/doc/
3https://pytorch.org/docs/
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Figure 3.1: Overview of proposed framework
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Pytorch3 A flexible and efficient open-source machine learning library, with
a dynamic computational graph to build and train neural net-
works. Our SSL-framework is built using PyTorch. Pytorch was
chosen due to its easily customizable training loops and dataset
classes, which we prefer when making an SSL model, as well as
for its parallelization possibilities.

Mne4 Package to explore and analyze neurophysiological data. It pro-
vides a comprehensive set of tools to process and visualize EEG,
MEG, and other electrophysiological data. In order for our frame-
work and preprocessing steps to function as desired, Mne has un-
dergone some small changes presented in section 3.2.

Braindecode5Braindecode is an extension of Mne that enables users to work
with deep learning models on EEG-data more efficiently. Includ-
ing dataset fetchers, preprocessing, and visualization tools. For
our use case, Braindecode has essentially been used as a wrap-
per for Mne-functions, loading and creating datasets. However, as
our framework has some unique features, we ended up creating
our own datasets and rewriting parts of the Braindecode library;
see section 3.2.

YAML6 YAML is a human-readable data serialization format that is used
to store and exchange data between systems. It provides a simple
syntax that is easy to read and write, making it a popular choice for
configuration files and other structured data. We use it in order to
create configuration files for running experiments and obtaining
results. With YAML, our runs can be easily customized through
text.

Ray7 Ray is a fast and simple distributed computing framework for
Python that makes it easy to scale and parallelize Python applica-
tions. Through Ray we utilized Ray.Tune which is a tuning frame-
work allowing us to perform a hyperparameter search for all pa-
rameters in our YAML configuration files. It enables us to use par-
allelization when performing experiments such as the number of
channels and, in general, speeding up the hyperparameter selec-
tion process. Will be further explained in experimental setup sec-
tion 3.5

GitHub8 GitHub is a widely used platform for Git version control and col-
laborative software development. We use GitHub as a code repos-

4https://mne.tools/stable/
5https://braindecode.org/
6https://yaml.org/spec/1.2.2/
7https://docs.ray.io/en/latest/
8https://docs.github.com/
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itory in order to manage code and collaborate while designing the
experiment. We also created forks of both Braindecode and MNE
on GitHub to better keep track of our changes to the libraries.

3.2 Data

3.2.1 Datasets

To demonstrate transfer learning capabilities, we opted to sample datasets from
different sources. To obtain many windows of training data from an easily man-
ageable number of datasets, those with mostly long recordings and a high (more
than 30) number of channels were chosen. As we want to compare the perfor-
mance of pretraining with different channel group sizes n> 1, datasets with fewer
than n channels could not be used. This excludes some popular sleep stage classi-
fication datasets from our list of options, such as SleepEDF [92], which uses only
two channels. In the end, we ended up combining four different datasets, from
three different sources, shown in Table 3.1 and Figure 3.2.

Pre-training Fine-tuning
TUH EEG Corpus (TUEG) ✓

TUH Abnormal EEG Corpus (TUAB) ✓ ✓
SJTU Emotion EEG Dataset (SEED) ✓

BCI Competition IV (BCICIV) 1 ✓

Table 3.1: Datasets used for pre-training and fine-tuning

TUH EEG Corpus As described in section 2.7.1, TUEG is well suited for self-
supervised pretraining. The data being unlabeled is not an issue. However, the dis-
parate sample lengths and various EEG recording setups pose a challenge. TUEG
has been sampled with size as a more important factor than data quality and con-
tains a large number of recordings with bad channels or artifacts.

As the dataset is 1643 GB in size, the training cost of using the entire dataset
would be too large. To demonstrate transfer learning capabilities, we do not wish
TUEG to completely overshadow the other datasets, and only use a subset of 137
GB for our pretraining. From each recording, we drop non-EEG channels and keep
the whole length of the recording.

TUH Abnormal EEG Corpus We use TUH Abnormal EEG Corpus (TUAB) [69]
for both pre-training and fine-tuning. TUAB is a subset of TUEG that has been
hand-picked to have high-quality recordings of at least 15 minutes using the av-
erage reference and only slight variations from the 10-20 international standard
EEG montage. Signals are classified as normal or abnormal and sampled to create
a balanced dataset. It has been divided into a training set and an evaluation set,
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TUEG

137 GB

TUAB

60 GBSEED

34 GB

BCICIV1
3 GB

Figure 3.2: Size of the datasets used by DECCaTNet for pretraining. The com-
bined size is 234 GB. 137 GB is only 8% of the whole TUEG, but this subset was
chosen to not drown out the other datasets and to reduce training time.

the evaluation set being 10% of the size of the training set. The entire TUAB is 60
GB in size, and we use all EEG channels and the entire length of the recordings.

SJTU Emotion EEG Dataset SJTU Emotion EEG Dataset (SEED) [13, 70] is
an emotion recognition dataset collected for emotion recognition experiments at
Shanghai Jiao Tong University. EEGs were recorded while the subjects watched
film clips chosen to elicit specific emotions. The data is labeled by what emotion
the video was supposed to elicit. However, since we chose to use the dataset for
only pre-training, we do not use the labels. The dataset comes with preprocessed
segmented files in addition to raw data. For our experiment we chose to use the
raw data as the samples are longer and it lets us use the same general prepro-
cessing pipeline we have designed for all datasets. The raw files we use in our
experiment are in total 34 GB in size, and again we select all EEG channels and
the entire length of the recordings.

BCI Competition IV Dataset 1 This dataset was one of the datasets used for
BCI Competition IV (BCICIV) which was held in 2008. The dataset is created for
motor imagery experiments and was recorded by the Berlin BCI group [93]. We
have chosen this dataset because it is a bci dataset consisting of relatively long
continuous recordings, from which we can extract sufficiently sized windows for
pre-training. However, it being a BCI dataset, where recordings tend to be much
shorter than in clinical datasets, it is only 3.3 GB in size. We use all EEG channels
and the entire length of each recording.
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3.2.2 Loading and preprocessing

Dataset loading A challenge we face when transfer learning is that different
datasets have different EEG recording environments, and for optimal results, each
dataset could need its own custom-tailored preprocessing pipeline. However, we
want to demonstrate large-scale transfer learning capability, so dataset-specific
preprocessing steps were kept to a minimum. For the TUH datasets, Braindecode
comes with premade loader functions, allowing us to get a Braindecode BaseC-
oncatDataset containing MNE Raw objects from each EEG recording file.

Unfortunately, the Braindecode loader functions had not been updated for the
updates to TUEG v2.0.0 and TUAB v3.0.0, released in December 2023. In these
updates, the directory hierarchy and file naming scheme changed significantly,
breaking the old loading functions. This change was what initially led us to create
our own fork of Braindecode to add our own changes to the library. We submitted
our changes to the Braindecode developer community, who in turn used them
when updating the official library.

For the SJTU Emotion EEG Dataset (SEED) and BCICIV Dataset 1 (BCICIV1)
datasets, we created our own loader functions in the style of Braindecode’s TUH
dataset loader functions. In these functions, we loaded the data files to Raw MNE
objects, manually set the correct channel names and original frequency, and dis-
carded non-EEG channels. As BCICIV1 is stored using datatype int16 the data
needed to be converted to floats.

When working with datasets this large, it may be impossible to keep the data
loaded in memory. Instead, the process needs to be serialized by storing it on disk,
and the recordings are only loaded into memory when they need to be processed.
Braindecode implements serialization in their loading, saving, and preprocessing
functions, though while using them we ran into multiple bugs and challenges.

Parameter Value
Window length 30 s

Peak-to-peak high threshold 8000 µV
Peak-to-peak low threshold 1 µV

Sample rate 200 Hz
Bandpass low 0.3 Hz
Bandpass high 80 Hz

Table 3.2: Preprocessing parameters

Windowing Using the BaseConcatDatasets obtained from the previous dataset
loading step, we apply the exact same preprocessing pipeline, outlined in Fig-
ure 3.3, to each of the datasets from this point forward. All selected values of the
numerical parameters are shown in Table 3.2.

First, all data are rescaled to microvolts (µV), and non-EEG channels that have
manually been selected are dropped. For the fine-tuning dataset we only keep



38 Kamsvåg and Størmer: DECCaTNet

Figure 3.3: Overview of our preprocessing pipeline

common channels for all recordings and ensure the channels are saved in the
same order for all recordings. Then we split all recordings in each dataset into 60 s
long windows using Braindecode’s create_fixed_length_windows() function. To
speed up the rest of the preprocessing pipeline, we wish to downsample the data
to 200 Hz as early as possible, but when windowing MNE objects that have been
downsampled, signal quality decreases, as downsampling effectively jitters trigger
timings9.

The create_fixed_length_windows() function does not save a new file for
each window, but creates an MNE Epochs object that stores window start and stop
time points for each recording. The function also checks each window, marking
windows that pass certain thresholds as “bad”. Bad windows are not returned
when iterating through the object and are thus effectively dropped from the
dataset. The function checks for bad windows by calculating the maximum peak-
to-peak distance in each window, and marks it as bad if it is above the upper limit
of 8000 µV, indicating an ocular or other muscular artifact, or below the lower
limit of 1 µV, indicating a dead channel. The function is implemented with CPU
parallelization, running on multiple cores.

9mne.io.Raw — MNE 1.4.0 documentation, resample; https://mne.tools/stable/
generated/mne.io.Raw.html#mne.io.Raw.resample

https://mne.tools/stable/generated/mne.io.Raw.html#mne.io.Raw.resample
https://mne.tools/stable/generated/mne.io.Raw.html#mne.io.Raw.resample
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Windowed data issues with large datasets in Braindecode After the dataset
is windowed, it is sent through the rest of the signal preprocessing pipeline. As
previously mentioned, when preprocessing datasets this large, the data need to be
serialized, as all data does not fit in memory at the same time. We use Braindecode
BaseConcatDataset object that can keep pointers to the actual data files, while
only recording description data is kept loaded in memory.

When loading windowed files without preloading the data, which is not an op-
tion for large datasets, Braindecode WindowsDataset helper objects keep an open
file pointer to a JSON file with the data description for each recording. For our
large dataset, we ran into multiple issues due to this design choice in Braindecode.
First, we ran into the open file limit of the operating system when loading the en-
tire windowed dataset due to the open description files. We solved this problem
by loading one BaseConcatDataset at a time from each batch of 500 files for fur-
ther preprocessing. Keeping more Epochs helper objects open at a time caused the
OSError from having too many open files.

Another issue caused by the open file identifiers was that operations on the
Epochs objects were no longer serializable, as the open file identifiers cannot be
saved to disk. This stopped us from parallelizing the rest of the preprocessing
pipeline, as objects could not be sent between threads. We chose not to tackle
the open file identifier issue because it would require extensive low-level changes
to the Braindecode package, we found suitable workarounds, and the runtime
without parallelization was still feasible.

Further signal preprocessing steps The rest of our preprocessing pipeline is
heavily inspired by the preprocessing steps used by Mohsenvand et al. [6] in Seq-
CLR, as it is the CL architecture that has inspired DECCaTNet the most. We did not
have the resources to empirically test preprocessing parameters and have there-
fore tried to match SeqCLR to have good grounds for comparison. We needed
to implement our own pipeline, but the numerical values of the preprocessing
parameters were chosen to mirror those used for SeqCLR.

First, we resampled all the data to 200Hz. This was done using the MNE re-
sample method which uses an adapted verion of scipy.signal.resampls’s re-
sampling technique10. We chose to resample all signals to 200 Hz, as this is the
frequency used for SeqCLR. The frequency content of the EEG signals lies mainly
in the 0-40 Hz band, so a minimum sampling rate of 100 Hz is recommended [94].
The maximal frequency allowed in a signal given a sampling rate, called the
Nyquist frequency, is half the sampling rate. So, for 200 Hz, the Nyquist frequency
is 100 Hz, which should allow us to pick up abnormalities in the EEG data with
frequencies up to 100 Hz.

We then rereference all recordings to use the average reference. Of the possible
EEG referencing techniques, we chose to use the average reference, as it is already
used by TUAB and parts of TUEG, and can be calculated for the other datasets

10mne-python/filter.py at maint/1.4 · mne-tools/mne-python · GitHub
https://github.com/mne-tools/mne-python/blob/maint/1.4/mne/filter.py#L1903

https://github.com/mne-tools/mne-python/blob/maint/1.4/mne/filter.py#L1903
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regardless of which reference they originally used. The rereferencing function we
used is implemented in MNE.

Finally, we apply a bandpass filter to the signals, passing the 0.3 to 80 Hz band.
These frequencies are the same thresholds used by Mohsenvand et al. for SeqCLR.
The high-pass limit of 0.3 Hz helps mitigate baseline drift, while the low-pass limit
of 80 Hz helps filter out some high-frequency noise.

After all the signal preprocessing operations are applied, a copy of the dataset
is saved. The fine-tuning dataset does not need any more fine-tuning after this
step, while the pre-training dataset still needs to be split by channel groups.

Figure 3.4: Overview of splitting EEG recordings into channel groups

Channel-grouping Our encoder in DECCaTNet takes groups of channels of size
n, so the final step of our preprocessing pipeline is to split each recording into
separate recordings according to their channel groups. The process is illustrated
in Figure 3.4 for n = 2. We implemented multiple different channel grouping
functions, each transforming a list of channels into several lists of channels of
length n. Each of the channel splitting functions is explained in Table 3.3. Due
to time and resource constraints, we were only able to perform large-scale tests
using make_adjacent_groups, which produces the smallest number of groups and
which we will discuss in more detail in this section.

The make_adjacent_groups function (Algorithm 1) takes a list of channel
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Function name Number of
groups

Description

make_adjacent_
groups

⌈
N
n
⌉

Makes the fewest possible groups of se-
quential channels from the list of chan-
nels, while including each channel at
least once.

make_overlapping_
adjacent_groups

N − n+ 1

Makes groups of n sequential channels
starting from each channel in the list of
channels

make_all_
combinations

C(N , n)

Makes all possible combinations of n
groups.

make_all_
textttpermutations

P(N , n)

Makes all possible permutations of n
groups. Different orderings of the same
n channels are all included.

Table 3.3: Implemented channel grouping functions. N is number of channels in
the EEG recording, n is the number of channels per group, C() is the number of
combinations function, and P() is the number of permutations function.

names and group size as input and makes the smallest possible number of groups.
If the total number of channels N is not divisible by group size n, there will be some
overlap between groups. We ensure this overlap is minimal and evenly spread by
calculating the minimal possible number of groups while including all channels
⌈N

n ⌉, and having group starts evenly distributed between the first and last possible
group index. See Algorithm 1 for the pseudocode of the function.

As each EEG recording can have a different list of channels, Algorithm 1 needs
to be used for each recording. After creating the channel groups, a copy of the
recording is saved to a new file for each group with only the given channels in-
cluded. These copies are the final output of the preprocessing pipeline and what
we use for pre-training the model.

3.3 Pre-training

Pre-training framework Our pre-training implementation is inspired by several
papers using SSL on EEG data [6, 54, 55], but, simply put, is based on the con-
trastive learning framework SimCLR [56]. An overview of the data flow in the
implementation is presented in Figure 3.5.
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Figure 3.5: Pre-training overview, first part is loading data and the second part
is applying contrastive learning to EEG data.
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Algorithm 1 make_adjacent_groups(C , sg)

Input: List<str> C , int sg ▷ C: Channel names, sg : Group size
Output: List<List<str>> Gc ▷ gc: Channel groups

1: N ← leng th(C)
2: ng ← ⌈

N
n ⌉ ▷ ng : Number of groups

3: List S ← arrange(0, N − n, ng) ▷ S: First index of each group
4: List G← new empty list ▷ G: Groups
5: for number sg ∈ S do
6: sg ← round(sg)
7: List g ← C[S : S + sg] ▷ Slice of list C
8: Append g to Gc
9: end for

10: return Gc

As we faced several challenges when it comes to data preprocessing, which are
detailed in subsection 3.2.2, we have created our own custom dataset class called
PathDataset (subsection 3.3.3), which extends Pytorch’s Dataset class [95]. After
loading, two randomly selected augmentations are applied to create a positive
pair. Contrastive learning is then used to force representations of similar pairs
closer and those of negative pairs further apart in the latent space (maximizing
and minimizing agreement between representations). The pre-trained model is
then saved, and DECCaTNet can be loaded to be used in fine-tuning. In addition,
DECCaTNet and the projector can be loaded to continue pre-training at a later
stage.

3.3.1 Pytorch datasets and loaders

Pytorch provides two essential data primitives: torch.utils.data.DataLoader
and torch.utils.data.Dataset. These primitives allow researchers to have
dataset code that is independent of the model training code, enabling readabil-
ity and modularity. Additionally, Braindecode [52] offers specialized datasets for
some of the most popular EEG datasets, which are extensions of Pytorch datasets.
Extending Pytorch datasets enables the use of its data loader, enabling seamless
access to data for training loops.

Previous implementations working with DL on EEG-data have utilized Brain-
decode, Pytorch, or similar libraries for data handling during training [5, 45, 54,
58, 96, 97]. However, since we are the first to split each recording into separate
channel groups, more customization was needed.

3.3.2 Initial Dataset

As preprocessing is a tedious process that takes a long time, we wish to preprocess
only once and load a preprocessed dataset each time we perform an experiment.
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As described in section 3.2, several measures had to be considered during pre-
processing. However, for loading datasets for pre-training our initial thought was
to utilize the proposed method from Braindecode [98]. With Braindeocde, the
pointers and metadata of the dataset are kept in memory, but EEG-signals are
only loaded when necessary, e.g. for training.

Due to the Braindecode windowed dataset bug, described in subsection 3.2.2,
the entire dataset could not be kept in memory simultaneously, even with the
actual EEG data not being loaded. Initializing the dataset using Braindecode’s
built-in functions became unfeasible, requiring either splitting the dataset into
parts, which we would have to keep track of during training, or writing a custom
dataset class.

During pre-training, we only need the data itself, and not target variables or
other features. As a result, in addition to solving the aforementioned problem, a
custom dataset class can save resources by only loading the data itself.

3.3.3 PathDataset

An aim of the custom dataset class, called PathDataset, is that it should be compu-
tationally cheap to initialize and that the pointers to the windows take up minimal
memory. Furthermore, the loading of data from the class as training progresses
should not slow down the training loop. First, the PyTorch dataset class is ex-
tended to ensure compatibility with other PyTorch support functions.

As all groups of n channels are saved as separate files, the PathDataset needs
to contain pointers to each window in each file, keeping a list of the location
of each window. Each pointer is in the format (pathi , window j), where i is the
offset of the saved recording (see Figure 3.6) and j is the index of the window in
the recording. Other than the pointers, no additional metadata about the files is
needed for training.

Attributes and methods

A custom dataset class must implement multiple methods, amongst them
__init__ and __getitem__. Initialization, done in the method __init__, along
with the dataset file structure, are described first, before describing __getitem__.

File structure A general overview of the file structure saved after grouping chan-
nels and loaded by PathDataset is presented in Figure 3.6. For each channel group
size n, a separate folder is created. Then for each value of n, each original record-
ing is assigned an ID offset from increasing multiples of 100 (0, 100,200, · · · ).
Then, as the recordings are split, each new channel group is saved in ascending
order from the ID offset. Each subfolder will contain a .fif file, which is the EEG-
signal and descriptive .json files saved by Braindecode, but not used by the model
during pre-training.
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Figure 3.6: File structure after prerpocessing

self.ids To initialize the PathDataset for a given n, the correct pickled list of
tuples (pathi ,window j) from the Pickles folder and set the root path to the cor-
responding split folder. The list of pointer tuples is saved as an attribute called
self.ids. All .fif file paths are derivable from the list self.ids.

__getitem__ In our self-supervised framework, there is no need for labels or
metadata, just the subchannel signals themselves. We capitalize on this by ignor-
ing Braindecode metadata and only loading the signal we are looking for with
MNE [99] in our __getitem__ function. An overview of the function is presented
in Algorithm 2. For each call to __getitem__, one signal is loaded and then the
correct window is returned as x.

The method then applies augmentations, described later in subsection 3.3.4,
and finally a positive pair (x1, x2) is returned.

Algorithm 2 PathDataset __getitem__(id x)

Input: id x
Output: (x1, x2) positive pair

1: pathi , window j ← sel f .ids[id x] ▷ subsection 3.3.3
2: f ile_path← os.path. join(sel f .root_path, pathi , pathi + ”− epo. f i f ”)
3: window_dataset ← mne.load_si gnals( f ile_path)
4: x ← window_dataset.get_data(i tem= window j)
5: x1, x2← appl y_augmentation(x) ▷ Algorithm 3
6: return x1, x2
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ConcatPathDataset During the pre-training loop, several datasets are used at
once. To enable this, we extend PyTorch’s ConcatDataset [95]. ConcatPathDataset
simply contains a list of all PathDatasets used for pre-training. We had to extend
because we needed a custom split function in order to create test, validate and
train splits from the PathDatasets. Iterating over and feeding data to the training
loop is done via a PyTorch DataLoader [95].

Data loading cost We were afraid that our dataset implementation would slow
down training as several signals are loaded for each batch. Therefore, we timed
each operation in our training loop. The results are presented in Table 3.4. The
timings were measured with batch_size = 128 on two NVIDIA Tesla V100 PCIe
32 GB GPUs.

Operation Average Time (ms)
Load and augment data 0.0595
Encode with DECCaTNet 0.1605
Calculate contrastive loss 0.1093
Calculate delta loss 0.0072
Perform backward propagation 0.4172
Clear CUDA cache 0.5803
Total time 1.3609

Table 3.4: Average time used on pre-training operations

From Table 3.4 it appears that the time used for loading and augmenting data
is sufficiently small compared to the average total time for each epoch. Therefore,
we conclude that our PathDataset meets our requirements of easy initialization
and no noticeable time usage.

3.3.4 Augmentation

As stated in section 2.6, Previous work, Augmentations, each dataset, architec-
ture, and task is unique and would optimally require different augmentation ap-
proaches. However, since the selection of augmentations for EEG-data is still an
open problem [100], we chose to follow the augmentation work of Mohsenvand
et al. [6]. The main reason behind this is that they conducted a comprehensive
ablation study with the help of neurologists, to determine the best augmentations.
Furthermore, their research resembles ours when it comes to datasets, architec-
ture, and approach.

Random parameters We decided to randomize the parameters each time an
augmentation is called to make the contrastive pretext task harder for our model.
By doing this, we ensure that our model does not learn the different parameters
but is faced with a new cross-view prediction task each time [6, 91]. Following
Mohsenvand et al. [6], we define a transformation range for each augmentation
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with sensible min/max values. As there has been success with both fixed augmen-
tation parameters [58] and randomized selection [91], we chose to randomize in
order to have as much variability in our pretext task as possible.

Augmentation method Our augmentation method is presented in Algorithm
3. First, two augmentations are randomly selected from a set of predefined aug-
mentations [6]. It is important to note that the selected augmentations are always
different [54]. Then, the parameters for each augmentation are randomly selected
before the augmentations are applied to the input sample, creating a positive pair.
Since combining different augmentations was not performed by Mohsenvand et
al. [6], we decided to perform an experiment on whether adding jitter would
increase our performance. Therefore, the jitter can be configured from the config-
uration file.

Algorithm 3 apply_augmentation(x)
Input: x
Output: (x1, x2) positive pair

1: aug1, aug2← two random augmentations
2: augparams← randomized parameters
3: x1, x2← aug1(x , augparams), aug2(x , augparams)
4: if AddJitter then
5: x1, x2←Jitter(x1, x2)
6: end if
7: return x1, x2

Chosen augmentations Our chosen augmentations and transformation ranges
are listed in Table 3.5. All augmentations except permutation are obtained from
Mohsenvand et al. [6]. The domain-specific augmentations proposed by neurol-
ogists are chosen because we argue that if specialists are able to classify an aug-
mented signal, the semantic information relevant for classification is kept. Fur-
thermore, further exploration shows that similar augmentations are applied in
other research, without mentioning that these are domain-guided [54, 59, 67,
91]. In addition, most transformation ranges are derived from Mohsenvand et
al. [6].

However, as our window size is larger, we have adjusted transformation ranges
for augmentations that alter the time domain, such as time shift and masking, ac-
cordingly. The transformation range for the permutation augmentation is derived
from Eldele et al. [58] and Jiang et al. [54].

11Gaussian Noise https://en.wikipedia.org/wiki/Gaussian_noise
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Augmentation Parameter description min max Visualization
Permutation Number of permutations 5 10 Figure 2.7c
Masking Masked timepoints in a row 150 500 Figure 2.4b
Band-stop filter 5 Hz width, Hz filter 20 82.5 Figure 2.8d
Additive noise (jitter) Standard deviation GS11 0 0.2 Figure 2.5c
DC-shift Shift in µV -10 10 Figure 2.5b
Amplitude scale Scaling factor 0.5 2 Figure 2.4c
Time-shift Size of shift in timepoints -50 50 Figure 2.4a
Additional noise Standard deviation for GS11 0 0.05 Figure 2.5c

Table 3.5: Chosen augmentations

3.3.5 Pretext-task

The need for domain-specific pretext tasks is reduced by adapting domain-guided
augmentations. This is indicated by Mohsenvand et al. [6] outperforming Wagh et
al. [51], who take advantage of domain-guided pretext tasks. The current SOTA on
the abnormal / normal classification on TUAB also uses a CL-based approach [54].
However, as their supervised counterpart performs well without pre-training, one
could argue that their architectural approach is as important as their pretext task.
However, in our project thesis we observed two things, generally speaking. Most
papers based on CL report increased performance compared to an unsupervised
counterpart, and CL methods [6, 54, 58] often outperformed predictive methods
[8, 51, 82, 101]. This indicates that CL is a valuable pretext task for the EEG
domain.

Contrastive Pretext Task The proposed contrastive learning algorithm is pre-
sented in Algorithm 4. Our contrastive leraning approach is comparable to that
of SeqCLR, and other models [6, 54, 58]. Using the custom dataset class Path-
Dataset, our augmentations are applied by the __get_item__() function of the
dataset.We also utilize the temperature-scaled contrastive loss function presented
in Equation 2.3, Previous work, togheter with a cosine similarity metric (Equa-
tion 2.2).

The lower part of Figure 3.5 provides a simplified visualization of the con-
trastive learning mechanism, showing it maximimzing the agreement between
the encodings of positive pairs. Algortihm 4 provides a more detailed explanation
of the CL algortihm. First, all data are divided into batches of size BS. Then, for
one batch at a time, we obtain an encoding of each positive pair in the batch. After
obtaining all encodings, the cosine similarity between all samples in the batch is
calculated by the Equation 2.2. The cosine similarities are used to calculate the
final contrastive loss by normalizing the loss of each positive pair. We only have to
calculate the loss for each positive pair, as each loss is calculated with regard to all
samples in the batch, resulting in the inclusion of all negative pairs for each loss
calculation. This rewards maximizing the agreement of positive pairs while mini-
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Algorithm 4 Contrastive learning algorithm

Input: ConcatPathDataset X , Batch size BS, Encoder E, and Contrastive loss
L(i, j), see Equation 2.3

Output: Pre-trained model
1: for batch in X do
2: for sample x i1 , x i2 in batch, i ∈ {1,2, ..., BS} do ▷ Positive pair
3: ei , ei+BS ← E(x i1), E(x i2) ▷ enocde positive pairs (subsection 3.3.6)
4: end for
5: for i, j ∈ {1,2, ..., 2BS} do
6: Calculate Cosine(ei , e j) using Equation 2.2
7: end for
8: Final loss L← 1

BS

∑BS
i=1 L(i, i + BS) ▷ Contrastive loss for all positive pairs

9: Update f weights with L
10: end for
11: return f

mizing it for negative pairs. Finally, the weights of the encoder and projector are
updated according to the final loss by backpropagation. After several epochs, the
final DECCaTNet encoder can be saved and used for fine-tuning on a downstream
task.

CL Parameters There are several parameters associated with CL. The relevant
parameters for this thesis are presented in Table 3.6. In the Value range column,
the values given as a range in parentheses are those explored during the hyperpa-
rameter tuning in section 3.5. The ranges were established with inspiration from
related literature [6, 54, 58].
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Parameter Description Value range
Learning rate Step size for weight updates. Influences

the convergence speed and stability.
(1e-4, 1e-1)

Temperature Controls the sharpness of the probability
distribution generated by contrastive loss.
Scales the similiarity scores, affecting the
smoothnes between positive and negative
pairs.

(0.01, 0.2)

Weight decay Increase regularization strength and gen-
eralization performance. Adds additional
term to the loss function which penalizes
large weights.

(1e-5, 1e-2)

Epochs How many training iterations to be per-
formed before DECCaTNet is fine-tuned.

(10, 200)

Batch size Number of samples per batch. Affects
stability of gradients and computational
effiency. Often limited by computational
resources

(64, 1024)

Train split Percentage of data used for training. Dur-
ing pre-training all data is used in order to
train. Set value to constant 1

1

Shuffle Wether the order of which samples are
loaded should be random or not. Ensures
that the model doesnt learn any patterns
or biases present in the order of samples.
Set to True as the model should be encoru-
aged to learn semantics of several datasets
at once, instead of one and one.

True

Table 3.6: Parameters for CL-algorithm

3.3.6 DECCaTNet encoder

DECCaTNet is short for Dual EEG Contrastive Convolutional and Transformer Net-
work, which refers to the entire network from the preprocessing to the down-
stream task. In this section, we will focus on the encoder part of our DECCaTNet
network. The encoder is the backbone of the network, as this is the part that learns
how to encode EEG signals. When contrastive loss is calculated by Algorithm 4,
the encoder weights are updated.

During both pre-training and fine-tuning, the encoder functions as a feature
extractor. While pre-training, the goal is to enhance the semantic EEG features
learned by the encoder. On the other hand, while fine-tuning, the obtained fea-
tures are used as features for a neural network fitted for the donwstream task.
The general idea of the encoder is presented in Figure 3.7. The encoder takes an
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Figure 3.7: Overview of DECCaTNet encoder, tensor shapes in parentheses

input with dimensions (BS, n, window_size), where BS is batch size, n is number
of channels per group, and window_size is the number of samples per window.
The encoder output has dimensions (e, k), where e is the fixed embedding size,
and k is a variable linearly related to window_size.

The encoding produced by the encoder is finally fed to the projector for cal-
culating contrastive loss during pre-training, or to the classifier for downstream
classification during fine-tuning.

Combining CNN and transformers The rise of transformer-based models in
the machine learning community is documented in section 2.3, which includes
success in the time series domain [5, 9, 41, 42, 45].Several transformer-based
models applied to the time series domain are implemented as a combination of
CNN and transformers, and outperform their pure transformer counterparts [9,
42].

The Conformer [45] captures spatial and temporal dependencies in its CNN
module, before feeding the learned embeddinds to a transformer. BENDR, a
self-supervised hybrid model, reports similar results but states that its architec-
ture could benefit from an adjustment to better handle EEG-data [5], showing
that there is a need to further explore self-supervised hybrid models for EEG-
classification.

Taking into account the supervised results obtained, its EEG adjusted design,
and the possibilities for handling variable input lengths, we have chosen to follow
the work of Song et al. [45] and implement an encoder inspired by the EEG Con-
former architecture. All parameters and design choices of the convolution module
follow those of the Conformer.

Architectual overview

A detailed implementation of our DECCaTNet encoder can be seen in Figure 3.8.
As previously mentioned in subsection 3.3.6, the module following the encoder
is decided by the task performed. It is either a projector during pre-training, or a
classifier during fine-tuning. The convolution block follows the conformer of Song
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Figure 3.8: Detailed overview of DECCaTNet encoder, consiting of a convolution-
module, a transformer-encoder and a projector module. The projector is replaced
by a classifier during fine-tuning and classification.

et al. [45], and the transformer encoder (also known as the self-attention module)
is inspired by the work of Vaswani et al. [4].

Temporal and spatial convolution We perform a two-dimensional convoliu-
tion operation when extracting both temporal and spatial features from the input
signal. Following Song et al., we separate the two-dimensional operation into two
one-dimensional convolution layers. First, a convolution with k f il ters kernels of
size (1, 25) and a stride of (1, 1) is applied. By selecting the mentioned kernel size
and stride, the convolution is applied on the time dimension, capturing temporal
dependencies.k f il ters is set to 40, mirroring Conformer.

The second layer has k f il ters kernels of size (n, 1) with stride (1, 1), enabling
it to learn representations of spatial dependencies between different channels.
n equals the number of channels per group in the pre-training dataset. Result-
ing in spatial convolution learning the dependencies between the channels in a
subgroup of channels. A higher n would allow the encoder to learn more spatial
dependencies, while the fine-tuning classifier would need to learn less, and vice
versa for a lower n.

Average pooling and tokenization After spatial convolution, we apply batch
normalization, a dropout layer, and an activation function (exponential linear
unit (ELU)) for nonlinearity following [45], and increase the generalization of
our learned representations. Then we apply an average pooling layer with ker-
nel size (1,75) and stride (1,15). This layer has two purposes; smooth out the
learned representations to avoid overfitting and decrease the size of the repre-
sentations, reducing the computational complexity. Finally, to mimic the behavior
of embeddings and create tokenizations for the transformer encoder, we squeeze
the dimension to the correct embedding size and transpose (also referred to as
rearange) the representation space so that each temporal point can be treated as
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a token by the transformer.

Transformer encoder The transformer encoder follows the standard implemen-
tation of Vaswani et al. As seen in Figure 3.8, we only use the self-attention and
feedforward modules, which are referred to as one transformer encoder block.
We then use nblocks encoder blocks sequentially to obtain our encodings. The in-
ner workings of the transfomrer are described in subsection 2.3.1 and will not be
elaborated here. The implementation is done using PyTorch’s transformer encoder
layer and the transformer encoder [95].

As Song et al. [45] did not perform self-supervised learning, we do not wish
to follow their choices of transformer encoder parameters, as it may not be rele-
vant for our use case. However, since BENDR by Kostas et al. [5] also follows the
implementation of Vaswani et al. [4] and performs self-supervised learning with a
hybrid architecture, its parameters are more relevant to DECCaTNet. BENDR uses
eight transformer encoder layers and has eight repeated transformer encoders in
their work. We choose to follow these parameters to save computational costs and
time.

Embedding size After a signal is sent through the encoder, we obtain an embed-
ding of shape (k, e), where e is the embedding size chosen. The encoder output
is flattened to a fully connected neural layer, and the final embedding size be-
comes k × e. Because different window lengths should preferably be supported
(see section 2.7.2), our model dynamically adapts to the window size selected for
each task. This comes with a drawback, since when window sizes vary, the output
length k of DECCaTNet also varies. The encoder weights remain the same and
the same encoder can be used with different window sizes; however, each task
requires a projector adapted to the output of size k × e. Deciding the embedding
size is therefore highly dependent on the window size of the task at hand.

In the surveyed literature, several different embedding sizes are proposed.
Mohsenvand et al. [6] propose an embedding space of (4 ∗ input_length).On the
other side of the scale, Kostas et al. [5] propose a 1536-dimensional vector space
with up to 15000 samples per input. We observe that the embedding-to-input
ratio ranges from 4:1 to 1:10. Our selected k and e are, respectively, 49 and 40,
creating an embedding size of 1960, and our input size for pre-training is 12000
samples per input. This gives an embedding-to-input ratio of about 1:6. This places
us in the middle of the selected examples. When the window size varies, k will
vary with it, keeping the same order of magnitude between the number of input
samples and the embedding size.

Pre-traning projector To aid contrastive loss calculation during pre-training,
the learned encodings are projected into a latent space for contrastive loss calcu-
lation, following several other relevant papers [6, 54, 56, 58, 67]. This is done
to reduce the dimensionality and introduce nonlinear transformations. Introduc-
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ing nonlinear transformations in fully connected layers may enable the model to
capture more complex relationships and patterns.

For the pre-training task, DECCaTNet follows the simple implementation of
Cheng et al.[67]. We deploy two fully connected layers with a nonlinear activa-
tion function (ReLU()) and a batch normalization layer to further encourage the
model to generalize. Several more advanced projector implementations have been
applied in the literature. However, since we wish to examine the transfer learning
abilities of our DECCaTNet encoder, we do not wish to introduce unwanted noise
from other complex models.

Model parameters The DECCaTNet encoder has some additional parameters
presented in Table 3.7. All parameters are derived from similar papers. The size of
the latent space was selected following the work of Cheng et al. [67]. The dropout
rate follows the official Github implementation of the conformer for EEG [45].

Parameter Description Value
range

Number of transformer
heads

Increased numbers of heads allow for more
fine-grained attention, enables capture of
more detailed and diverse relationships in
the input.

8

Number of transformer
layers

Deeper layers lead to richer representations,
but may affect the models ability to general-
ize. However, more layers increase the com-
putational complexity.

8

Latent space size Size of vector space used to represent the
data after projecting.

128

Dropout rate The rate at which randomly selected neu-
rons are set to 0 during training to pre-
vent overfitting. When performing valida-
tion, the dropout rate is set to zero.

0.5

Table 3.7: Parameters for DECCaTNet-encoder

3.4 Fine-tuning

Fine-tuning architecture The fine-tuning architecture differs from most SSL ar-
chitectures, as the encoder only takes a group of channels as input. Therefore, the
fine-tuning is structured similarly to SeqCLR [6] with its single-channel encoder,
but instead with channel groups. See Figure 3.9 for an overview of the fine-tuning
architecture. When fine-tuning the model, we again split the recordings into chan-
nel groups of size n, and pass each of the groups through the pre-trained encoder,
now with frozen weights. The encodings produced by the encoder are then con-
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Figure 3.9: Architecture used for fine-tuning. This scenario has an EEG signal
with 12 channels and n = 3. The signal is split into groups, then each group is
encoded by the same encoder. The encodings are concatenated and fed to the
classifier.

catenated and fed to a simple classifier. This classifier is the module that is trained
during fine-tuning.

The data used for fine-tuning, and later the classification task, all need to have
the same number of channels. This is because the classifier is trained with a fixed
input size and the encoder produces an encoding for each group of channels. For
the classifier to actually learn the correlations between the channel groups, the
groups must be the same for every recording.

Splitting the fine-tuning recordings into channel groups is not done as a sep-
arate preprocessing step, but during training or classification. This is possible be-
cause, as mentioned in section 3.2, we have ensured that all the recordings in
the fine-tuning dataset have the same channels in the same order. The fine-tuning
module has a dictionary saved with the channel indexes for each channel group.
When a recording is passed through the model, groups are made by extracting the
correct channels from the original file by their indexes read from the dictionary.
Each group of channels is encoded by the encoder, and the encoded outputs of all
the groups are then concatenated into one tensor before being fed to the classifier.

The classifier is kept simple because we believe that the encoder has learned
to create encodings with high expressive power, which can be classified without
the need for a complex model. It is a simple fully connected feed-forward net-
work with two hidden layers, each with ReLU activation and a set dropout rate.
The parameters of the classifier network are shown in Table 3.8. The output uses
softmax activation to make the output a probability distribution of the possible
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classes, as is common for classifiers.

Parameter Value
Input size n_groups × encoding_size
Dropout 1 0.4

Hidden layer 1 size 256
Dropout 2 0.2

Hidden layer 2 size 64
Output size 2 (Normal/Abnormal)

Table 3.8: Downstream classifier parameters

Training and validation We train the classifier for multiple epochs and report
loss and classification accuracy on both the training and validation set. Details of
the number of epochs are discussed in Chapter 2.

3.5 Experimental cycle

In order to conduct experiments and optimize the parameters of our DECCaTNet
framework, we have implemented evaluation functions, parameter search, and
training functionalities. This decision was driven by the realization that investing
time in developing an efficient experiment regime would yield significant time
savings during experimentation and tuning processes. To facilitate these tasks,
we leverage the Python library Ray Tune [102], which provides preexisting func-
tions that align with our requirements. The experimental cycle, depicted in Figure
3.10, follows a cyclical pattern, allowing us to run multiple trials within the same
execution and utilize results from previous cycles to influence upcoming cycles.

RayTune Ray Tune is a flexible and powerful library used for hyperparameter
optimization [102]. It seamlessly integrates with various optimization libraries,
providing users with a wide range of options. Notably, the BOHB scheduler com-
bines Bayesian Optimization and the Hyperband algorithm, enabling efficient and
adaptive hyperparameter search [103]. With Ray Tune, we can easily explore the
hyperparameter space and improve model performance.

Trainable Ray Tune requires minimal code changes. We wrap our training
function in the trainable parameter, allowing Ray Tune to parallelize the pro-
cess, report results, and change hyperparameters during runtime. Our exten-
sive framework is accommodated by using a high-level trainable function
that calls the appropriate operations based on the configuration file. We use
tune.with_parameters() to incorporate the configuration file.
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Figure 3.10: The experimental cycle which is used to perform experiements and
optimize hyperparameters.
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BOHB and ConfigSpace Ray Tune integrates ConfigSpace, a powerful config-
uration space library, with its BOHB scheduler. ConfigSpace simplifies hyperpa-
rameter specification and management, supporting various types and constraints.
By combining ConfigSpace with BOHB, we optimize the hyperparameter search
process efficiently and effectively.

Configuration We use a YAML configuration file to run our entire framework.
Ray Tune selects a defined set of parameters for each trial and updates the corre-
sponding values in the framework. By updating the configuration dictionary for
each run, we achieve efficient hyperparameter search and experiments with min-
imal code additions.

RayTune parameters Ray Tune requires som additional parameters to run as de-
sired. These parameters are presented in Table 3.9. In summary, we run Ray Tune
with a BOHB scheduler for hyperparameter tuning. Furthermore, a grid search is
used in each experiment. The grid search ensures that we avoid the BOHB sched-
uler from early stopping a run or changing experiment parameters during the run.
This will ensure that our hyperparameters are optimized in an efficient way, and
our experiments will run in a straightforward smooth manner.
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Parameter Description Value range
Fine-tune and
pre-train split

Percentage split of available data used for training
when running Ray Tune. This is in order to save
computational time. Initial experiments which is
used to reduce the search space utilizes a smaller
amount of available data than final experiments

(0.1, 1)

Epochs Maximum number of training iterations (epochs)
for each trial of Ray Tune. Used to limit the re-
source usage for each run. Different size for pre-
training and fine-tuning. Set the upper limit for
resource usage for each trial.

(50, 100)

Number of
samples

The number of trials to be performed for the given
search. A larger value leads to a large search space
which is computational expensive, but leads to
more precise results. If a grid search is performed,
a value of one will lead to all possibilities being
explored.

(1, 25)

Mode The goal of the hyperparameter search and exper-
iment, do we want to maximize or minimize the
given metric.

[min, max]

Metric The chosen measurement for each run, will be
handled according to the chosen mode.

[val_loss,
val_accuracy]

Config The parameters to be optimized or explored as
well as the search space associated with each pa-
rameter. For example a list, range or boolean val-
ues.

see experi-
ments (chap-
ter 4)

Table 3.9: Parameters for RayTune experimental setup





Chapter 4

Experimental setup and results

This section presents the experimental setup and results on EEG classification us-
ing self-supervised learning and transfer learning techniques. The focus is on de-
termining the optimal number of channels for pre-training, evaluating the impact
of frozen encoder weights, and exploring different amounts of labeled data dur-
ing fine-tuning. The findings highlight the importance of learned representations,
the increased performance of pre-trained encoders, and the significant difference
in classification accuracy between pre-trained and randomly initialized encoders
when using limited labeled data.

4.1 Experimental setup

The experiments presented in this section were conducted with the goal of an-
swering the research questions of this thesis. The model and data processing are
described in chapter 3, hence this section only describes the experimental setup.
After the experiments’ implementation and used computation resources are in-
troduced, the rest of the section introduces the conducted experiments one by
one.

Experimental plan First, the optimal number of channels, n, in each channel
group is examined. This is done by pre-training several n channel encoders with
different values of n and obtaining results for each encoder on our selected fine-
tuning dataset section 3.2. However, to ensure that the results obtained from this
extensive search are valid, we first review the hyperparameters for fine-tuning and
pre-training through a hyperparameter search. This initial search will also give a
hint whether an n-channel encoder is able to perform fine-tuning on a downstream
task after pre-training. After sufficient hyperparameters have been obtained, we
will examine the optimal number of channels in each group for pre-training. With
the optimal number of channels, we can finally document how well an encoder
of n channels performs on different transfer learning tasks and further examine
different aspects of our proposed method.

61
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Each experiment is performed using the experimental cycle presented in
method3.5. To define the search space for each run in Ray Tune, we pass a con-
figuration file as a dictionary when initializing Ray Tune. The configuration file
consists of the parameter we wish to optimize and how Ray Tune should traverse
the search space. First, we will present the traversing options used.

tune.loguniform(a,b) With tune.loguniform(a,b) values are sampled uniformly
between log(a) and log(b). As we use logarithmic, instead of a normal uniform
distribution, we can sample fairly for values that vary over several orders of mag-
nitude, such as the learning rate or weight decay. This search space definition
is helpful when narrowing down a search space with initial sweeps over a large
range of values.

tune.choice([a,b,...,c]) Samples randomly from a list of categorical values,
[a,b,..,c], uniformly. Helpful when we wish to sample from a defined set, but do
not need that all values are sampled.

tune.grid_search([a,b,...c]) Grid search is used mainly during the experimen-
tal phase in our case of experiments, for example with selecting the number of
channels. Ensures that every value from the given list will be sampled. Addition-
aly, the number of samples presented in Table 3.9 decides how many times each
value in the list will be samples, meaning that we can perform additional param-
eter searches on each value in the list.

4.1.1 Computation resources

Training was performed on a local machine at the Department of Computer Sci-
ence at NTNU. Pre-processing was run on a CPU cluster with 56 Intel® Xeon®

Gold 6132 CPUs running at approximately 2.97 GHz. The use of all 56 CPUs was
not needed, as large parts of the preprocessing pipeline are not parallelized due
to the Braindecode bug described in subsection 3.2.2.

Both pre-training and fine-tuning were run on the same machine’s GPU using
CUDA. The machine has two NVIDIA Tesla V100 PCIe 32 GB GPUs, which were
both utilized during hyperparameter search, training, and testing. The hyperpa-
rameter search experiments were parallelized on the GPUs and took between 8
and 24 hours to complete, depending on the search.

4.1.2 Fine tuning parameters

In order to determine the best fine-tuning parameters, we used Ray Tune to per-
form a hyperparameter search. Listed in Table 4.1 are the parameters explored,
as well as the respective search spaces and values. We ran Ray Tune using BOHB
scheduler section 3.5, which leads to the scheduler allocating resources and con-
trolling the hyperparameter search. As a result, we only need to determine the
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number of samples, which was 20. We selected maximize as mode and validation
accuracy as metric.

Parameter Search space Values
Learning rate tune.loguniform() (1e-5, 1e-1)
Weight decay tune.loguniform() (1e-4,1)
Hidden layer 1 tune.choice() [32,256]
Hidden layer 2 tune.choice() [4,32]
Batch size tune.choice() [32,64,128]

Table 4.1: Experimental setup hyperparameter search for fine-tuning

Unfortunately, we were not able to experiment with the batch size because the
available training resources were not sufficient. We ran into a memory allocation
problem when using a batch size of more than 32, which led to the use of 32 as
the batch size in this experiment.

Dataset and n We used all of TUAB (section 3.2.1) for fine-tuning and used a
0.8 validation / train split, which means that 80% of the data was used for fine-
tuning, while remaning 20% was used for validation. Furthermore, we decided
to select n channels equal to 2 while fine-tuning. This could induce bias when
searching for the optimal number of channels; however, we had to select a value.

4.1.3 Pre-training parameters

For pre-training parameters, we use Ray Tune to pretrain several encoders and
then freeze the encoders for fine-tuning, such that only the last layer is changed
during fine-tuning. We use the parameters obtained from our fine-tuning param-
eter search for fine-tuning and explore the parameters listed in Table 4.2 for pre-
training. The respective search spaces and values are also listed in Table 4.2. The
batch size had to be adjusted to the aviable memory restrictions. The same sched-
uler, number of samples, mode and metric were used as in subsection 4.1.2.

Parameter Search space Values
Learning rate tune.loguniform() (1e-5, 1e-1)
Weight decay tune.loguniform() (1e-4,1)
Temperature tune.loguniform() (1e-3,1)
Batch size tune.choice() [64,128,256]

Table 4.2: Experimental setup hyperparameter search for pre-training

Dataset and n Similar to subsection 4.1.2 we used all TUAB for fine-tuning, 0.8
validation / train split and n channels equalt to 2. Furthermore, we used 10%
of TUEG, 40% of TUAB, all SEED and all BCICIV for pre-training. The reason for
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not using all data for hypersearch is to save computing time. We trained each
model for 4 epochs during pre-training. We prioritized the amount of data over
the number of epochs.

Pre-training parameters 2 As we observed that our initial value ranges for
learning rate and batch size were not sufficient, we decided to conduct another
experiment to further examine the parameters used for pre-training. We follow
the same strategy as in subsection 4.1.3, however, as we experienced that the tem-
perature and batch size parameters were optimized, these were removed from the
search. We also added the number of pre-training epochs performed, as the previ-
ous hyper-parameter search went faster than expected. The new selected values
and parameters are presented in Table 4.3

Parameter Search space Values
Learning rate tune.loguniform() (1e-7, 2e-5)
Batch size tune.choice() [128,256,512]
Pre-training epochs tune.choice() [2,4,10]

Table 4.3: Experimental setup hyperparameter search for pre-training 2

As each sample in a batch now is a 2-channel recording, compared to fine-
tuning which uses 23-channel recodrings. We can experiment with higher batch
sizes for pre-training. Unfortunately, a batch size of 512 caused memory errors,
which meant that only 128 and 256 as batch sizes were surveyed.

4.1.4 Optimal number of channels

In order to find the optimal number of channels, we use Ray Tune to perform a
grid search over some chosen values for n. We selected a range of values, which we
think will indicate which order of magnitude the optimal number of channels is. n
equal 23 was included since this is the number of channels in TUAB, meaning that
this encoder will mimic the behavior of most previous research, with one encoder
for both pre-training and fine-tuning.

Parameter Search space Values
Number of channels tune.grid_search() [1,2,3,5,8,12,23]

Table 4.4: Experimental setup optimal number of channels

Optimal number of channels 2 Following the results of the previous exper-
iment, we performed a second search to find the optimal number of channels.
Since the most promising results were obtained by selecting n = 5, we have se-
lected a new range of values of [4, 7] presented in Table 4.5. All other parameters
follow the previous experiment.
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Parameter Search space Values
Number of channels tune.grid_search() [4,5,6,7]

Table 4.5: Experimental setup optimal number of channels

4.1.5 Frozen encoder weights and random initialized encoder

Now that we have found good hyperparameters and the optimal number of chan-
nels (n = 4) in each group, it is time to examine the quality of the learned rep-
resentations during pre-training. In order to do this, we would like to examine
how a pre-trained encoder performs compared to a randomly initalized encoder
during fine-tuning. Additionally, we will also examine how freezing the weights
of the different encoders affects the downstream classification performance. The
search space is shown in Table 4.6, two coherent grid searches result in 4 trials,
one for each possible combination. By doing this, we can examine whether the
learned representations can be further advanced by adapting to the downstream
task and whether the learned representations are actually useful.

Parameter Search space Values
Freeze encoder weights during fine-tuning tune.grid_search() [True, False]
Load pre-trained encoder tune.grid_search() [True, False]

Table 4.6: Experimental setup freeze encoder and initalization

Dataset and epochs We use the same hyperparameters for pre-training and fine-
tuning as before. However, since we will only train one encoder for this experi-
ment, we increase the pre-training dataset to inlude all of TUAB and 25% of TUEG.
We also increased the number of pre-training epochs to 100; however, as this takes
approximately a day to perform, we conduct experiments underway with encoders
stored each tenth epoch.

4.1.6 Transfer learning

Now that we have conducted a search that determines the usefulness of the
learned representations on TUAB classification. We want to survey how the
learned representations are affected by the number of datasets used for pre-
training. Previously, all datasets were included during pre-training. In this ex-
periment, we will remove all datasets except TUAB during pre-training. By do-
ing this, we can examine the importance of transfer learning during pre-training.
Transfer learning constitutes that other datasets than the fine-tuning dataset are
used during pre-training. We will run the same search space as in Table 4.6 and
the same parameters for fine-tuning and pre-training as subsection 4.1.5. We will
benchmark the pre-trained model without transfear learning with 50 pre-training
epochs, which is the same as in subsection 4.1.5.
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4.1.7 Adding additional noise

As discussed in Method subsection 3.3.4, we wanted to examine how adding a
small noise in addition to already applied augmentations to each sample during
pre-training would affect the learned representations. All previous pre-training
experiments have been conducted without adding any additional noise. DUring
this experiment, we will follow the pre-training strategies presented in subsec-
tion 4.1.5, but we will add a small noise to each signal during pre-training fol-
lowing the work done by Eldele et al. The results will then be compared to those
obtained from subsection 4.1.5. We will also conduct an experiment where we
make the CL pretext task harder by adjusting the augmentation parameters. The
only goal of this experiment is to show the effect on number of required pre-
training epochs, so we increased the parameters with a significant amount each.
The new augmentation parameters are presented in Table 4.7.

Augmentation Parameter description min max Visualization
Permutation number of permutations 5 10 Figure 2.7c
Masking masked timepoints in a row 1500 4000 Figure 2.4b
Bandstop-filter 5 Hz width, Hz filter 20 82.5 Figure 2.8d
Additive noise (jitter) standard deviation GS1 0.05 0.3 Figure 2.5c
Frequency-shift shift in µV -15 15 Figure 2.5b
Amplitude scale scaling factor 0.1 3 Figure 2.4c
Time-shift size of shift timepoints -500 500 Figure 2.4a
Additional noise standard deviation for GS1 0.02 0.1 Figure 2.5c

Table 4.7: Adjusted augmentations to create harder pretext task.

4.1.8 Percentage of labeled data

TUAB is currently one of the largest labeled EEG data sets available for public
research. As several other EEG-datasets contain a significantly smaller amount of
labeled data, we wish to examine how pre-training affects performance on limited
labeled data. We introduced a new parameter: percentage of labels available dur-
ing fine-tuning. This parameter is applied after the train/validation split, in order
to ensure a large and balanced validation set. The different percentages examined
are presented in Table 4.8, these percentages are similar to thos used by Mohsen-
vand et al. We enable trainable encoder weights during fine-tuning to simulate ac-
tual performance and benchmark the performance against a randomly initialized
encoder. All other pre-training and fine-tuning parameters follow subsection 4.1.5.
We use the encoder that are pre-trained for 10 epochs for fine-tuning.

1Gaussian Noise https://en.wikipedia.org/wiki/Gaussian_noise
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Parameter Search space Values
Percentage of labels avaiable during fine-tuning. tune.grid_search() [0.01,0.1, 0.5,1]
Load pre-trained encoder tune.grid_search() [True, False]

Table 4.8: Experimental setup percentage of labelled data

4.1.9 Optimize performance on TUAB

Finally, opmitizing the performane of DECCaTNet on TUAB will give an indica-
tion of how our proposed framework performs compared to comparable studies.
First, the hyperparameter search was performed as described in Table 4.1 with
new value ranges as shown in Table 4.9. All parameter ranges have been adjusted
according to our knowledge gained throughout this thesis. The encoder used is
pre-trained as described in method for 10 epochs and has trainable weights dur-
ing fine-tuning. Additionally, the final hyperparameters are listed in column final
values highlighted in gray.

Parameter Search space Values selected values
Learning rate tune.loguniform() (1e-7, 1e-4) 4e-5
Weight decay tune.loguniform() (1e-6,1e-3) 3e-5
Hidden layer 1 tune.choice() [256,512,1024] 1024
Hidden layer 2 tune.choice() [32,64,128] 64

Table 4.9: Setup final hyperparameter search

Lastly, the model with the best validation accuracy after 30 fine-tuning training
epochs was saved and applied to the unseen official test set of TUAB. We fine-tuned
on all available data in 2 minute windows before we validated DECCaTNet’s per-
formance on the test set by classifying using the first 2 minutes of each recording.

4.2 Results

4.2.1 Initial hyperparameter search

Fine-tuning The results of our hyperparameter search are presented in Ap-
pendix A. Table A.1 contains the results obtained from our hyperparameter search
fine-tuning. We observe that our validation accuracy is almost on par with some
papers surveyed in our project thesis, however, this is only on a validation set,
and not the official test set for TUAB. Furthermore, we observe that the validation
accuracy is moving strongly with the learning rate and weight decay used. Indicat-
ing that our model is sensitive to large variances in important hyper-parameters.
Finally, the best results are obtained with the lowest possible learning rate, indicat-
ing that our search space for the learning rate needs to be extended for additional
searches.



68 Kamsvåg and Størmer: DECCaTNet

Pre-training From Table A.2 we observe that the accuracy obtained with a
freezed, pre-trained encoder is worse than its fine-tuned counterpart. However,
this is only a hyperparameter search, and further results will be reported later on.
Here, we see that the correlation between pre-training learning rate and obtained
validation accuracy is even stronger than for fine-tuning. As before, the lowest
tested learning rate performed best, and further search is required to find a suf-
ficient learning rate. Furthermore, a too high learning rate forced the encoder to
learn no useful repsentations for donwstream tasks at all.

Second pre-training We ran an additional pre-training hyperparameter search
with the reported results presented in Table A.3. Here, we survey the number of
epochs used in pre-training, the batch size, and an even lower learning rate. The
best-performing trial used 10 pre-training epochs, 128 batch size and a learning
rate of approximately 2.4×10−6. It achieved a validation accuracy of 76.6% with
the second-best-performing trial at a validation accuracy of 74.0%. This large gap
could be due to coincidences and the way BOHB chooses which trials to con-
tinue exploring; however, there seem to be some trends in the results, indicating
which parameters to choose moving forward. All trials with 10 pre-training epochs
achieve stable results, with no validation accuracies below 72.9%, which is higher
than the averages of the trials with 2 and 4 pre-training epochs. The learning rate
found in the previous experiment was sufficient, but a learning rate in the magni-
tude of the best trial is slightly better, and if it drops to low, the validation accuracy
drops. ps with it. The batch size is demanding to optimalize, as a too large batch
size leads to erros. However, we observe little difference between the trials with
256 and 128 in batch size. 128 is chosen because this might lead to fewer errors
later, as a higher number of channels in each group will lead to larger memory
requirements.

4.2.2 Optimal number of channels

Our first search for the optimal number of channels for pre-training in TUAB clas-
sification resulted in Table A.4. The best performing trial was with n = 5 chan-
nels. It is important to note that some trials suffered from overfitting, leading to
a lower final validation accuracy than its maximum. Therefore, we have included
train loss and validation loss to give an indication of which trials are overfitted
and not. For example, the trial with n = 12 channels, which was most exposed
to overfitting, reported 71.0% validation accuracy at its best. However, we do not
observe a clear trend with regard to which side of n = 5 is the most beneficial
and will perform another experiment for the optimal number of channels. The
fact that all trials are able to learn useful representations for downstream tasks is
evident from Table A.4.

Loss propagation To show some interesting behavior that occurred during the
search, we have included Figure 4.1. Looking at Figure 4.1a and Figure 4.1b we
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(a) Pre-training loss (b) Fine-tuning training loss (c) Validation accuracy

Figure 4.1: Metrics from channel selection for n= {2,5}

observe that the difference in pre-training loss propagates from pre-training to
fine-tuning. We also observed this for the other values of n, however, not as clearly
as the presented example. Looking at Figure 4.1c, it is clear that the propagation
of pre-training loss affects the final validation accuracy.

Second search We performed a second experiment after reviewing the results
presented in subsection 4.2.2. The results are reported in Table A.5 and shown
in Figure 4.2. Additionally, we observed the same behavior regarding loss prop-
agation as in subsection 4.2.2. For n = 5 channels, the accuracy reported for the
second experiment is approximately 1% lower than in the first, showing that there
is variance outside of our control. Optimally, we would perform more trials in each
experiment, but we are limited by our computational resources and time. How-
ever, these results show that both n= 4 and n= 5 channels are good choices, with
high accuracy and low loss reported. We also observe that selecting n outside of
n = {4,5} leads to worse performance. We use n = 4 channels moving forward
for the next experiments, as n= 5 did worse than n= 4 in the second experiment.

4.2.3 Frozen encoder weights and random initialized encoder

This section present results which indicate the usefulness of the representations
learned during pre-training. The metrics obtained are presented in Table A.6.
Whether the encoder is frozen or not, indicates if the weights of the encoder
will be updated during fine-tuning or not. Pre-trained encoder indicates if the en-
coder used during fine-tuning is pre-trained or has randomly initialized weights.
We also included plots of each metric and how they progress during the epochs
in Figure 4.3. We observe that the best results are obtained with a pre-trained en-
coder with non-frozen weights (83. 3%), beating a randomly initialized encoder
with non-frozen weights of more than 1% (81.9%). The pre-trained encoder with
frozen weights also performs better than previously reported encoders with 79.1%
validation accruacy. These results were obtained with an encoder pre-trained for
50 epochs.
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(a) Fine-tuning training loss (b) Validation accuracy

Figure 4.2: Metrics from channel selection for n = {4,5, 6,7}. We see the vali-
dation accuracy degrades for epoch 11, indicating overfitting, but the reported
results are sampled from epoch 10. Pre-training loss is not shown as the different
values of n all show the same behavior.

(a) Training loss (b) Validation loss (c) Validation accuracy

Figure 4.3: Metrics from finetuning with frozen/unfrozen encoder weights and
random initialized encoder vs pretraining

Fine-tuning trends There are several interesting properties emerging in Fig-
ure 4.3. Firstly, the performance gap between pre-trained and randomly inital-
ized encoders is persistent during all fine-tuning epochs. We observe that the
gap narrows during the first epochs and eventually stabilizes, indicating that pre-
tarning is essential to learn some valuable representations useful for classification
on TUAB.

Second, frozen encoders struggle to increase their performance while fine-
tuning. With a pre-trained encoder, the validation accuracy is marginally improved
during fine-tuning, while a randomly initalized frozen encoder is able to learn
little. This indicates that the classifier is able to project the learned representations
but is not able to learn any representations itself. Showing that the results heavily
depend on the quality of the encoder
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(a) Training loss (b) Validation loss

Figure 4.4: Metrics from pre-training for 100 epochs. Both validation and training
loss behaves gradually decreasing.

Number of pre-trainin epochs During this experiment, we pre-trained an en-
coder for 100 epochs, and saved copies of the encoder for each tenth epoch. To
determine the effect of a larger number of pre-training epochs, we selected some
of the saved models and evaluated their performance on TUAB. The obatined re-
sults are presented in Table A.7.

Looking at Figure 4.4 indicates that our model is gradually becoming better
and better at contrastive learning, decreasing both training and validation loss for
each epoch. These results are not reflected in the results reported in Table A.7, as
the least pre-trained model achieves the best validation accuracy (81.5%). There
is a negative correlation between the number of pre-training epochs and the vali-
dation accuracy obtained, with the model with the most pretraining reaching the
lowest validation accuracy of 79.5%.

4.2.4 Transfer learning

In order to determine the effect of transfer learning, we examined how an en-
coder that only use TUAB for pre-training performs on TUAB during fine-tuning
and compare it with previously obtained results. The results presented in Ta-
ble A.8 suggest that both the frozen (77.7%) and nonfrozen (82.3%) encoder
only pre-trained on TUAB perform approximately 1% worse than its counterpart
pre-trained on several datasets with the same number of pre-training epochs (50).

4.2.5 Additional noise and harder pretext task

To determine the effect of harder augmentations, we performed two experiments.
The results of adding additive noise can be seen in Table A.9 and the results
from making the pretext harder by changing the augmentations can be seen in
Table A.10. The pre-training loss and validation for the different pre-training tri-
als can be observed in Figure 4.5. It is obvious that the changed augmentations
actually made the pretext task harder, hence both the validation and training con-
trastive loss being higher during pre-training. The additional additive noise seams
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(a) Training loss

(b) Validation loss

Figure 4.5: Comparison of metrics from 100 pre-training epochs. Presenting re-
sults from the proposed method, additional additive noise, and harder augmenta-
tions. The last 30 epochs are omitted from the figure, as no new trends appeared.

have very little impact on the loss, except for a small deviation during the first 15
epochs.

We observe that both experiments reduce the validation accuracy; however,
the nature of the obtained accuracies has changed. The differences between the
best and worst obtained valiation accuracy are less than 1% for additional noise
(Table A.9) compared to 2% difference (Table A.7) for the proposed method. For
the harder pretext task, the best validation accuracy is from the encoder pre-
trained for 50 epochs (Table A.10). Also, the worst performing encoder is the
one pre-trained for 10 epochs. By looking at Figure 4.6 we suggest that the pre-
viously observed negative correlation between the number of pretraining epochs
and validation accuracy is not present when increasing the difficulty of the pretext
task.

4.2.6 Percentage of labeled data

To further document the effect of SSL, the effect of different amounts of fine-
tuning data on classification performance in TUAB is examined. The results ob-
tained are presented in Table A.11. There exists a notable difference between
pre-trained and random initialized encoders in classification accuracy when us-
ing as much as 10% of labeled data during fine-tuning. Moreover, the amount of
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(a) Training loss (b) Validation accuracy

Figure 4.6: Metrics for experiment with changed augmentations. Evidently
higher correleation between number of pre-training epochs and fine-tuning ac-
cruacy.

pre-training data from 50% to 100% seams to have little effect on classification
performance. The previously best classification validation accuracy obtained on
TUAB is 83.3%, so results with 50% of the available labeled data for fine-tuning
are comparable (83.0%).

4.2.7 Optimize performance on TUAB

Following 30 epochs of fine-tuning with TUAB, our model achieved its highest
validation accuracy of 84.55% in epoch 24. Subsequently, we saved this model
and evaluated it on the TUAB holdout test set, where it achieved a test accuracy
of 84.26%. Although our thesis does not primarily focus on achieving the high-
est possible accuracy, we provide a comparison of our results with other relevant
research studies in Table 4.10.

While our study yields promising results in EEG classification using SSL and
transfer learning techniques, it is important to note that our performance is still
relatively distant from the SOTA performance achieved in other research studies
[59, 80].

2Amin et al.
3Oord et al.
4 Banville et al.
5Wagh et al.
6 Most precise reported accuracy shown
7Mohsenvand et al.
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Model Accuracy SSL
AlexNet 2 87.32 ✗

Alhussein et al. 87.68 ✗

CPC 3,4 83.51 ✓

RP 4 83.37 ✓

TS 4 84.99 ✓

HS-BSE-AC 5 85.0 6 ✓

Fine-tuned SeqCLR - C 7 87.21 ✓

DECCaTNet (ours) 84.26 ✓

Ko and Suk 87.7 6 ✓

Table 4.10: Final result and comparable results



Chapter 5

Discussion

This chapter contains a discussion of our model. First, the general discussion is
structured by parts of the model, discussing the general attributes and behavior of
the DECCaTNet architecture and how it relates to the experimental results. Finally,
possibilities for future research related to the model are discussed in section 5.4.

5.1 Grouping channels

Inspiration As mentioned earlier, the idea to group channels and use the same
encoder on each group was inspired by Mohsenvand et al.’s SeqCLR model [6].
However, as their encoder only looks at a single channel, the encoder does not
capture inter-channel dependencies, which leaves them to be learned by the clas-
sifier during fine-tuning. As the fine-tuning dataset is typically much smaller than
the pre-training dataset, we view this as a potential weakness. We reintroduce spa-
tial inter-channel dependencies to the encoder while preserving the flexibility of
SeqCLR by grouping the channels into groups of size n. With n= 1, DECCaTNet is
a variant of SeqCLR with different encoder, projector, and classifier architectures,
but otherwise largely similar.

Group size n Deciding the correct group size n is a balancing act between flex-
ibility and task-specific specialization. Lower values of n make it possible to pre-
train on a larger, more diverse selection of data sets with fewer channels, as an EEG
recording needs to have a minimum of n channels to be able to extract groups of n
channels. Higher values of n should allow the encoder to learn more complex spa-
tial dependencies, but for the channel grouping function make_adjacent_groups
it reduces the number of groups that can be used for training. Higher values of n
can also make encodings too varied and worsen the generalizability of the model
as the possible semantic space of the EEG channel group grows exponentially for
each channel added to the group size.

Our architecture creates one encoding per group of channels. Our encoder
implementation uses the same number of spatial convolutions as the number of

75
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channels, ensuring that the output size is independent from n. As a result, having
more groups and thus stacking more encodings during fine-tuning, will lead to
more trainable weights in the initial layer of the classifier. For example, using an
encoder with n = 23 channels in TUAB would create a classifier input size equal
to the embedding size. However, an encoder structure with n= 1 channels would
require 23 encoders, giving a classifier input size equal to 23× (embedding size).

However, a higher n leads to additional spatial convolutions in the encoder,
compensating for the number of trainable weights in the initial classifier layer and
allowing the encoder to learn more complex spatial dependencies.

From our final tests to determine n, we see that n = 4 performed best (Fig-
ure 4.2). This shows that n = 4 is a good middle ground where inter-channel
dependencies are learned during pre-training, while generalizability is kept high.
For our fine-tuning set where we use N = 23 channels, n = 4 leads to 6 groups,
and thus 6 forward passes through the encoder per prediction.

Order of channels for groups The channel grouping function make_adjacent_
groups (Algorithm 1), which we have used in our testing, and make_overlapping_
adjacent_groups both take a list of channel names as input where the order of
channels matters. Groups are created by extracting subsequences of channels from
the full list, so only channels less than n positions apart in the list can end up in
the same group.

After manually reviewing a representative selection of files in each of the
datasets used, we decided to keep the channel lists in the original order in which
they were saved in the EEG recordings. The channels are in a large majority of
recordings saved in an ordered way following the variant of the EEG montage
used, often sorted by electrode location in frontal-dorsal, then medial-lateral or-
der.

Another option was sorting the channel list alphabetically, but we decided that
in the majority of cases the original channel ordering would better reflect physical
location proximity of the electrodes. The initial letters in the channel names of the
10-20 system and its derivatives are chosen for names of parts of the brain, and
thus, their alphabetic order does not reflect physical location as well as the original
order.

Other channel grouping techniques In total we implemented four differ-
ent channel grouping functions, but only make_adjacent_groups was tested
thuroughly. An interesting note about make_overlapping_adjacent_groups,
which makes N−n+1 channel groups, is that the encoder is applied like a convo-
lution filter to the list of channels. This comparison makes the architecture easier
to understand for those familiar with CNNs. Another advantage is that it gener-
ates more groups which can be used for training or classification; however, in our
case, the computational cost and time were the limiting factor, not the amount of
data.
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make_all_combinations and make_all_permutations both have two distinct
advantages over our adjacent groups functions. They generate more groups and
original channel order does not matter as much. make_all_permutations makes
all possible permutations of n different channels, including those using the same
set of channels in a different order. As it generates

P(N , n) =
N !

(N − n)!

groups, which is a truly massive number, we fear it would bloat the dataset too
much even if using the best computational power available. As an example, for
N = 23 channels and group size n = 4, a total of 212520 groups would be cre-
ated from each recording. To reduce this number, it is natural to make all unique
combinations instead of all permutations of channels. make_all_combinations
generates

C(N , n) =
N !

n!(N − n)!

groups. Compared to permutations, combinations significantly reduce the number
of groups while only losing groups that are different orderings of the same chan-
nels. To reuse the same example with N = 23 and n = 4, a total of 8855 groups
would be created from each recording. Still a massive number when compared
to the adjacent group functions, but it could be beneficial in some cases and for
some values of N and n. The number of groups for the N = 23, n= 4 example for
each of the proposed functions are shown in Table 5.1.

Grouping function Number of groups
make_adjacent_groups 6

make_overlapping_adjacent_groups 20
make_all_permutations 212520
make_all_combinations 8855

Table 5.1: Number of groups for the example N = 23, n = 4 for each of the four
channel groupings proposed by us.

It is important to keep in mind that a different channel grouping function
could be used to generate groups for pre-training than the one used for fine-
tuning and the classification task. During fine-tuning and the classification task,
we are limited by having to pass each channel group through the encoder, which
is a major bottleneck if we have a large number of groups. Additionally, with-
out further testing, it remains unclear whether adding more groups with more
duplicates of channels aids in improving the classification performance. Due to
this, we believe that of the functions we propose, make_adjacent_groups or
make_overlapping_adjacent_groups are best suited for use in fine-tuning and
classification. However, this assumption should be verified or disproved through
further tests.
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Given enough computational power and time, the amount of available EEG
data could be the limit to further improve performance. In this case, for example,
make_all_combinations could be used to generate many additional groups that
can be used for pre-training. Generating groups in this way for the sole purpose
of pre-training could be viewed as a data augmentation technique.

5.2 Impact of SSL

Several experiments were performed to determine the effect of the proposed SSL
framework. In this section, we delve into the outcomes and achievements ob-
served during our experiments, shedding light on the impact of SSL on various
aspects of our research domain. By comparing the results obtained from our SSL
framework with those achieved through traditional supervised learning methods,
we aim to provide a comprehensive understanding of the advantages and ad-
vancements brought forth by this novel approach.

5.2.1 Frozen encoder weights

As explained in our experimental plan, we wanted to find sufficient hyperparam-
eters before conducting any experiments. For fine-tuning hyperparameters, we
trained both the encoder and the classifier. This was due to unknow hyperparame-
ters for pre-taining, and we wanted to ensure that we found parameters that allow
training of the classifier during fine-tuning. However, when aquring pre-training
hyperparameters, we froze the encoder weights during fine-tuning. Frozen en-
coder weights are common when evaluating learned representations [6, 54, 58,
67].

As a result of frozen encoders, we can ensure that the difference in donw-
stream classification performance is due to the quality of learned representations.
A clear example of this is the reported result of a frozen randomly initialized en-
coder on TUAB (Table A.6,Figure 4.3). Since we know that the representations
produced by the encoder are most likely very poor, the fact that the classifier
varies and performs poorly shows that the representations produced by the en-
coder are useful for downstream classification results. We also observe this trend
during channel selection (Figure 4.1). The loss propagates from pre-training loss
to validation loss, indicating that bad representations are a direct cause of worse
classification performance. As a result, when finding the optimal number of chan-
nels for pre-training or performing a hyperparameter search, freezing the encoder
weights ensures that it is the learned representations that are examined.

The frozen randomly initialized encoder also indicates that our classifier is
only able to project good representations instead of learning complex patterns
on its own. As our classifier structure is simple, with two fully connected dense
layers, this is no surprise. Additionally, with frozen encoders, the computational
requirements of fine-tuning are limited as the number of trainable weights is re-
duced drastically. We can use this to increase the size of our experimental searches,
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exploring more parameters for both fine-tuning and pre-training.
In subsection 4.2.3 we also observe that due to the simplicity of our classifier,

we struggle to increase the performance of frozen encoders during pre-training.
However, we observe that trainable encoders lead to increased performance, out-
performing its fully supervised counterpart. This indicates that to maximize the
performance of our current architecture, we need to use trainable encoders during
fine-tuning. This should also raise some questions about our classifier structure in
general, as some articles reported their best results with frozen encoders/back-
bones [58, 67].

5.2.2 Transfer learning

Transfer learning aims to leverage and learn knowledge about a specific context
such that it becomes useful for a different one. To determine whether our encoder
is capable of showing transfer learning capabilities, we conducted the experiment
described in subsection 4.1.6. As presented in subsection 4.2.4, the encoder pre-
trained on TUAB performs approximately 1% worse than the encoder utilizing
data from other contexts as well. This may indicate that our model is able to learn
knowledge from other contexts and deploy it in a similar domain. Our findings
follow those of Mohsenvand et al., who increased their performance by some per-
centages by using dataset fusion during pre-training. Dataset fusion constitutes
the use of several datasets during pre-training compared to only using the fine-
tuning dataset during pre-training.

An interesting feat is that when looking at the results obtained with frozen
encoders with and without dataset fusion (Tables A.6 and A.8), we observe that
dataset fusion increases the validation accuracy almost 2%. One might think that
pre-training on only TUAB would create the best encodings for classification on
TUAB, especially since the encoders remain unchanged during pre-training. How-
ever, these results show that our model is able to use meaningful features learned
from other datasets to increase performance during fine-tuning. This is sustained
by the learned representations of dataset fusion remaining better even when train-
ing the encoder during fine-tuning.

However, labeling the mentioned experiment as showing true transfer learning
capabilities might not be correct. This is due to the fact that TUAB was used during
both pre-training runs. A true test would be if TUAB were applied in pre-training
as the sole dataset and compare it with the performance of a run that did not use
TUAB at all during pre-training such as Kostas et al., Eldele et al. Further research
on this matter would be very interesting moving forward.

5.2.3 Percentage of labeled data

The notable difference discovered in subsection 4.2.6 highlights the need for SSL
in EEG classification. One percent of labeled data equal 30 patients, which is a
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comparable number of patients to most EEG datasets 1. DECCaTNet is unable
to generalize at all without a pre-trained encoder with one percent of labeled
data, achieving a validation accuracy of 52.5% which is comparable to random
guessing. Its pre-trained counterpart on the other hand reports accuracy in the
same order of magnitude as a model fine-tuned on all labeled data with accuracy
78.7%. The difference between random guessing and obtaining comparable re-
sults is significant, showcasing the usefulness of our learned representations dur-
ing pre-training. After performing previous experiments, we did not expect such
clear differences and regard these findings as our strongest proof of the quality
of our learned represntations. Even with 10% of the labeled data (300 patients)
used for fine-tuning, which is considered a large data set in the EEG domain, the
difference is notable.

Comparison with other models It is common practice in SSL for EEG to use
limited aviable data to fine-tune the learned representations [6, 54, 58]. Eldele et
al. went as far as only reporting results with 1% and 5% of the available data to
fine-tune, not touching the remaining 95%. This could indicate that others have
also discovered that it is difficult to show the difference between pre-trained and
random initialized encoders when using large amounts of data for fine-tuning.
Following Mohsenvand et al., we can compare our results with limited label data
for fine-tuning with seqCLR [6], Contrastive Predictive Coding (CPC) [8, 101],
Temporal Shuffling (TS) [8], and Relative Positioning (RP) [8].

Model Accuracy
Percentage of labels 1% 10% 50%

CPC [8, 101] 72.04 75.62 81.24
RP [8] 75.17 77.13 82.16
TS [8] 77.84 79.50 82.46

SeqCLR - C [6] 78.53 85.44 85.52
Fine-tuned SeqCLR - C [6] 83.19 86.98 87.21

DECCaTNet 78.87 81.46 82.95

Table 5.2: Model accuracy on TUAB with percentage of labels compared to rele-
vant papers

Table 5.2 shows the classification accuracy compared to other SSL-based ap-
proaches. We see that we cannot improve the results of Mohsenvand et al., how-
ever, we present a consistent improvement compared to other SSL-approaches
for all percentage of labels. Intrestingly, Banville et al. uses a similar classifier
to DECCaTNet and has the same tendency to have a distinct increase in perfor-
mance with more labeled data. Our 1% classification accuracy is similar to Seq-
CLR with frozen weights, but even with frozen encoder weights, SeqCLR is able
to better utilize obatined representations during fine-tuning. Mohsenvand et al.

1https://github.com/meagmohit/EEG-Datasets, Accessed: 2023-06-06

https://github.com/meagmohit/EEG-Datasets
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have a complex classifier based on several bi-directional LSTM’s in parallel with
donwsampling and dense layers. Again, this shows that our learned representa-
tions are useful, but that our classifier may not be sufficient to achieve near SOTA
performance.

5.2.4 Optimized performance on TUAB

Our final test results, as shown in Table 4.10, align closely with our expectations.
Considering that this work represents the first exploration of channel grouping
with n > 1 for pre-training across multiple datasets in any domain, it is not sur-
prising that we did not achieve SOTA performance right from the start. Further-
more, it is important to note that the primary objective of our fine-tuning classifier
was not to maximize accuracy, but rather to explore and evaluate the effectiveness
of our proposed framework.

However, achieving comparable results to existing studies in the field is a sig-
nificant step forward. It showcases the potential of using transformers for SSL in
the EEG domain. While other deep learning architectures could have been em-
ployed within the same framework, these results highlight the promise and worth
of further exploration into the use of transformers for EEG classification.

There is a possibility of increasing the performance of the fine-tuning test set.
As mentioned earlier, we only classified the first 2-minute windows of each record-
ing. Previous research typically focuses on classifying the first minute of record-
ings, considering the decline in signal quality over time due to sensor drying and
sweating. We obtained optimal validation results using 2-minute windows and
decided to stick with this configuration during testing. However, studies by Roy et
al. and Mohsenvand et al. have demonstrated that utilizing the first 11 minutes of
recordings in 1-minute windows can lead to improved classification results. Unfor-
tunately, the details regarding the voting procedure over the 11-minute recording
were not clarified in their work, and we did not have sufficient time to implement
our own version. Exploring this approach could potentially further enhance the
performance of the test set.

5.3 Architecture

This section discusses the architecture of our model, from its SSL architecture and
pretext task, to the details of its submodules, such as the encoder and classifier
networks. We discuss our architectural choices tied to the experimental results.

5.3.1 Pretext task

Our pretext task contrastive learning is popularly deployed in SSL for EEG-
classification (subsection 2.4.1). Initially, we excpected that more pre-training
would increase our performance. Looking at Mohsenvand et al., which pre-trained
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their encoders for 300 epochs without performing any ablation study on the num-
ber of pre-training epochs, we imagined that we would only be limited by training
resources. However, considering the results presented in section 4.2.3, we expe-
rience a decrease in performance after only 10 epochs and observe a negative
correlation between the number of pre-training epochs and the obtained valida-
tion accuracy. It is quite clear that the pretraining loss decreases from Figure 4.4.
This indicates that the observed correlation between pre-training loss and valida-
tion found when selecting the number of channels is not valid when comparing
the same model with different number of pre-training epochs.

However, the number of pre-training epochs used in the litterature varies. For
example, Jiang et al. used 70 pre-training epochs without supporting this choice,
indicating that they may have also struggled with overfitting on the pretext task.
Finally, Eldele et al. pre-trained for 40 epochs, as they noticed that their perfor-
mance did not increase with further training. We are not alone in encounting this
scenario, but we require fewer pre-training epochs before reaching our optimal
number of epochs, which could be due to several reasons.

The first reason could be that compared to Mohsenvand et al., we pre-train on
twice as much data. Larger amounts of data could mean that a fewer number of
epochs are required in order to learn useful representations for the donwstream
task, and that all epochs after this create too specialized representations overfitted
on the pretext task. However, increasing the amount of data is often seen as a way
to increase the generalization in machine learning (ML).

Another reason could be due to the nature of our pretext task implemented.
We hypothesize that an easy pretext task would be easier to overfit on than a
more complex one during pre-training. Meaning that our early overfitting during
pre-training could be a consequence of an easy pretext task. We will not prioritize
changing the nature of our pretext task, as this requires a complete overhaul of our
implementation. However, thoughts on how this could be achieved are included
in further work (section 5.4.1). Althought, what we can examine is if we can
make our already implemented contrastive learning task harder by adjusting our
augmentations, and acquire knowledge about how this affects overfitting during
pre-training.

5.3.2 Augmentations

As previously stated in subsection 3.3.4 most of our data augmentations were
copied from Mohsenvand et al. [6], who chose their augmentations to be domain-
specific with the help of neurologists. They performed sufficient tests to justify
their augmentation choices, and therefore we believe their augmentations to be
good enough to test the performance of our model.

We added a single augmentation that utilizes the multi-channel property of
our encoder, which is channel permutation. This augmentation, which randomly
reorders the channels in a group, makes the encoder stronger, as channel groups
in a data set can consist of many different channel combinations. If the encoder
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learns to see inter-channel dependencies regardless of channel position, it makes
it more robust.

Augmentation parameters In subsection 4.2.5 results that further elaborate
our understanding of pre-training overfitting are presented. The main finding
from these results is that the negative correlation between the number of pre-
training epochs and validation accuracy is not necessarily valid for all augmen-
tation selections. First, by making the pretext task slightly harder by introducing
additive noise for all samples during pre-training, the variation in obtained valida-
tion accuracy decreased from 2% to 1%. Lastly, when altering most augmentation
parameters, the model pre-trained for 10 epochs was evidently worse than the
more pre-trained models, suggesting that our framework may be able to take ad-
vantage of more pre-training epochs in the future.

Notably, even though increasing the hardness of the pretext task enabled more
pre-training epochs, the validation accuracy decreased significantly. This could
indicate that our initial augmentation parameters, inspired by Mohsenvand et al.,
were appropriate for the task at hand. However, as we are able to utilize less
pre-training than similar studies, we suggest that our pretext task is possible to
improve. This would be regarding both designing a new pretext task or altering
the augmentation selection technique.

Seen in the conetx of Eldele et al., all our chosen augmentations, except per-
mutation, would be labeled as weak augmentations. With randomized augmenta-
tion selection, the majority of positive pairs fed to the contrastive learning module
come from two weak augmentations. Simply forcing weak augmentations closer
to strong augmentations by altering the parameters may confuse the encoder more
than enrich the learned representations. Instead of forcing weak augmentations
closer to strong augmentations, perhaps more strong augmentations should have
been introduced in the first place.

The magical effect of additional additive noise seen in Eldele et al. was not
present in our results (subsection 4.2.5). For Eldele et al., adding additive noise
was a way of introducing randomness, as a fixed strong and weak augmentation
was used. In our case, we have alread introduced randomness when selecting
which augmentations to apply and their corresponding parameters. Intorudcing
additional randomess may have led to confusion for the encoder, thus the worse
performance reported. This highlights a minor weakness of our study, that time
was not prioritized towards an augmentation ablation study. Restructuring the
proposed augmentation technique is included in our further work.

5.3.3 Encoder architecture

The objective of enabling large-scale pre-training and transfer learning led us to
select an architecture that excels with extensive pre-training. Existing research has
consistently shown that transformers perform exceptionally well when pre-trained
on massive datasets. Our experiments further support this notion, as our architec-
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ture, based on Conformer [104], demonstrates improved performance with pre-
training compared to without.

However, as previously discussed in subsection 5.3.2, we encountered chal-
lenges regarding the number of pre-training epochs required before overfitting
occurs. This raises the question of whether this issue stems from the architec-
ture of the encoder, classifier, or the nature of the pretext task employed. Unfor-
tunately, our experiments did not incorporate alternative encoder architectures,
limiting our ability to conduct a comprehensive analysis of transformers’ com-
plete learning capabilities for EEG. Exploring different architectures within the
same framework is an important avenue for further research, as mentioned in the
further work section.

While we acknowledge the limitation of not comparing our architecture to
other alternatives in the self-supervised learning framework, we believe our re-
sults, when considered alongside the successes reported in related studies Kostas
et al., Bagchi and Bathula, highlight the untapped potential within EEG classifi-
cation using transformers. Despite the absence of direct comparisons, the com-
parable performance achieved by our architecture and the success observed in
other studies suggest that transformers can play a pivotal role in advancing EEG
classification tasks.

Window size From preliminary experiments it was observed that fine-tuning
and classification results suffer greatly when the window size is too small. We
initially tested fine-tuning on 30 s windows of TUAB normal/abnormal samples,
but the model was unable to classify windows this short. To quote Mohsenvand
et al., “For longer sequences the contrastive loss falls rapidly during training since
distinguishing between long samples is easier; however, the features learned on
longer sequences, do not perform as well in classification” [6].

From this statement, and our own results from early experiments, we see that
for fine-tuning longer window sizes are beneficial, while for pre-training we prefer
shorter window sizes. We chose to use 60 second windows for both pre-training
and fine-tuning during our own tests to keep our preprocessed datasets consistent.

5.3.4 Fine-tuning classifier

Our fine-tuning classifier architecture is as simple as possible. This is to ensure
that the representations learned from SSL determine the performance, and not a
complex projector or classifier. A complex classifier could be used to obtain bet-
ter classification results [6], however, a simple classifier generates reliable results
which correlate with the representations learned for internal ablation stuides [58],
which is our main goal.

During the experiments, the fine-tuner classifier showed a tendency to overfit
during fine-tuning and getting worse validation accuracy as early as in epoch 11,
with the encoder frozen after being pre-trained for 10 epochs on about 50 GB of
data (Figure 4.2). This may indicate that the classifier is too wide and overfits
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the data, but further experiments with the encoder pre-trained for more epochs
showed no signs of overfitting after 20 epochs of pretraining. Improving the en-
coder seems to improve classification stability.

Throughout all experiments, we observed fluctuations in the validation accu-
racy often around 1 and 2% from epoch to epoch during training, but with an
evident rising trend for the configurations that showed the most promise. The
only generalization features included in our classifier are the dropout layers after
each dense layer.

We believe it may be beneficial to experiment with more sophisticated classi-
fier architectures (see section 5.4, Further work), but at the same time our simple
fully connected network shows satisfactory results when the encoder has learned
a good encoding. Its simplicity is also valuable when we mainly want to evaluate
the learned representations of the encoder. However, the encoders limited regular-
ization mechanisms make model tuning harder as validation results are somewhat
unstable.

5.4 Further work

In this section, possible avenues of further research are discussed. Possible vari-
ations to the model that we considered while designing DECCaTNet, but did not
test due to time constraints, are presented. The suggested future research covers
the SSL pretext task, encoder and classifier architectures, and large-scale experi-
ments.

5.4.1 Architecture

SSL architecture The main new contribution of DECCaTNet is the channel
group encoder, but it would be beneficial to further test in what SSL framework it
should be implemented. In our implementation we use a simple contrastive SSL
architecture based on SimCLR [56], but CL architectures have developed further
in the three years since SimCLR was published. Contrastive architectures more in-
spired by MoCo [105], SimSiam [106], BYOL [107], or the like should be explored
further with a group-wise encoder.

Furthermore, the group-wise pre-training approach to multi-channel time se-
ries could work just as well, or even better, with a reconstructive pretext task, such
as masking. Transformers have shown great learning capabilities using masking in
NLP [4], so reconstructive pretext tasks warrant further exploration using a chan-
nel group encoder. Masking out random words has shown good results in NLP, but
for EEG channel groups multiple other augmentations are applicable as well and
would be interesting to implement and compare to our model. In subsection 2.5.3
we present multiple predictive pretext tasks that could be applied.

In related work section 2.6, the need for specific augmentation techniques for
each CL based approach was clearly stated. To further enrich our work, an exten-
sive ablation study on augmentations and selection techniques could be carried
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out. As our results indicate that the parameters used for this experiment are suffi-
cient, exploring new selection techniques could be the way to go. We have shown
that there is an unused pre-training potential in our framework, which is sensitive
to augmentations. This potential could be leveraged in several ways. Having less
randomization and a clearer distinction between the different augmentations like
Eldele et al. [58] would be a possible first step.

Our CL architecture does not utilize any augmentations that capitalize on the
signals having multiple channels. It is possible to further capitalize that for n≥ 2
the encoder works on multi-channel input by designing more specialized augmen-
tations. Masking, which in our implementation masks out all channels in a given
time band, could be adjusted to instead mask out different time bands in different
channels independently, as done by Zerveas et al. [61]. Also, channel permuta-
tion, i.e. reordering the channels in a group, could be helpful. Another idea that
could be interesting to explore would be to randomly select augmentation param-
eters independently for each channel, such as scaling each channel by a different
amount or filtering out a different frequency band of each channel.

Grouping channels There are other options for how to divide channels into
groups which we initially wanted to explore but had to abandon due to the nar-
rowing of the scope of the project as the project developed. One way to group
channels that immediately seems interesting is according to the exact physical
location of the electrode.

As different datasets use different electrode placements, naming schemes, and
only some include the coordinates of each electrode, we found it would be too time
consuming to implement location-based groups. Some datasets have electrode
coordinates stored in the 3D space (SEED), projected to the 2D space (BCICIV1),
or coordinates could be derived from electrode names.

Given a standardized electrode coordinate scheme, channel groups could be
created according to the exact location of the electrodes. It would be interesting
to group channels that are close, to learn local relations, or on opposite sides of
the head, to learn symmetric relations.

Encoder architecture Our encoder architecture is strongly inspired by the EEG
Conformer [45], which achieved SOTA performance in 2022 using fully supervised
learning and combining convolution and transformer modules. We did not test
other encoder architectures or even major adjustments to the conformer model,
such as the number of attention heads or the number of self-attention submodules.
Other, simpler or more complex, encoder architectures should be tested.

As discussed in section 5.1, the output size of the encoder is independent of
the number of channels n, making the number of trainable weights in the fine-
tuning classifier proportional to the number of groups. If the output size of the
encoder was made to depend on the number of channels, it could make the size
of the classifier input less dependent on group size n. This change would, in most



Chapter 5: Discussion 87

cases, increase the number of weights in the encoder and decrease the number of
weights in the classifier and probably affect the optimal value for n.

For further development of a channel-group based encoder we suggest the
encoder to have output shape equal to

(input length, kn)

where k is a small constant (Mohsenvand et al. used k = 4), and n is channel
group size.

Classifier architecture We use a very simple fully connected network with only
two hidden layers as our classifier. More complex classifier architectures can be
tested, similar to SeqCLR which uses an LSTM based classifier. The classifier could
be based on self-attention, CNN, LSTM or other more complex architectures.

For example, if the classifier was changed to a CNN-based module using con-
volution and pooling, it could make the classifier work on different signal lengths
without the need to trim or window each signal to the exact same shape. The con-
volution kernels can learn the same features regardless of shape, and combined
with pooling it could make much of the classifier architecture independent of in-
put size. It could also allow a deeper network without increasing the number of
trainable parameters.

5.4.2 Upscaling

A focus area while developing DECCaTNet was scalability to enable easy transfer
learning and ability to learn on large datasets. In our experiments we used all
the data in TUAB, SEED and BCICIV1, but only 8% of TUEG. In total, we trained
our model on about 234 GB of data (see Figure 3.2), but if we were to use all of
TUEG, and collect all available public EEG datasets we found during our research,
about 2 TB of data could be collected. Our project was limited by training costs,
but it would be interesting to see how more training data would affect the model,
and if it would enable better results and allow the model to perform better using
a deeper encoder. For clinical applications, it is possible to train the network on
private data, making even more data available.

As our results show that increasing the pre-training dataset size helps, while
training for more epochs does not, we believe that running experiments using
more data for pre-training would be beneficial. The results indicate that learning
from even more data would play to the strengths of DECCaTNet.

Other, more optimal, hyperparameter combinations could be found if a single,
more exhaustive hyperparameter search was conducted. Our approach to approx-
imate an optimal configuration was to use a semi-greedy search, optimizing one
subset of parameters at a time. This approach is prone to finding local optima.
With more computing power and time, a larger search could be performed that is
more likely to find the globally optimal model configuration.
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5.4.3 Transferability to other problems

In principle, the concept of the channel group SSL architecture could be applied
to all multivariate time series. DECCaTNet is tailored for EEG, but its only EEG
specific features are the neurologist-chosen augmentations and the preprocessing
pipeline. The rest of the model architecture could be applied to any multivariate
(or even univariate) time-series problem given a fitting set of augmentations and
model parameters. Experiments in domains other than EEG should be conducted.
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Conclusion

This thesis has explored using a new self-supervised learning approach to EEG sig-
nal classification, with a transformer-based encoder, and focused on enabling flex-
ible pre-training across multiple datasets. The objective of this thesis was to create
a self-supervised EEG framework, capable of learning inter-channel dependencies
and pre-training on a fusion of datasets with different numbers of channels. To
accomplish the objective, we have introduced a new model, DECCaTNet, a con-
trastive, self-supervised learning architecture with a transformer-based encoder
applied to a sub-group of n channels at a time.

Groups of size n can be extracted from any EEG recording for pre-training.
For fine-tuning and classification, each recording is split into groups, each group
is encoded, and finally the classification is done on the combined encodings. To
our knowledge, in encoding channel groups of n> 1 channels and combining the
encodings, DECCaTNet is the first of its kind.

Contributions

C1 A self-supervised learning model, called DECCaTNet, using con-
trastive learning to pre-train on groups of channels. The encoder
of DECCaTNet is a hybrid CNN-transformer model. The model dis-
tinguishes itself by splitting each EEG signal into groups of n chan-
nels and encoding the channel groups separately.

C2 A preprocessing framework, built on MNE and Braindecode, ca-
pable of preprocessing large datasets from different sources, using
serialization and limited parallelization. The preprocessing frame-
work applies a standardized pipeline of rescaling, windowing, re-
sampling, rereferencing, and filtering to all data, before splitting
the samples into channel groups of size n. The framework can be
easily extended to accommodate new datasets.

These are the main contributions of this master thesis. They were designed
during our research project, which aimed to answer our research questions. The
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research questions are listed here, with short answers to each.

Research questions

RQ1 How does pre-training an n-channel encoder perform, and how is it
best implemented for EEG data?

Our final classification accuracy on the TUH abnormal/normal
test set was 84.26%. We split each EEG recording into as few
groups as possible, while including all channels at least once.These
groups are fed to the encoder, a CNN-transformer hybrid, which
performed best if its weights were not frozen during fine-tuning.
The validation results show that pre-training on a larger dataset
is beneficial, while pre-training for more epochs after 10 did not
lead to any improvements. Pre-training on a fusion of different
EEG datasets showed improved results compared to only using
the relevant dataset.

RQ2 What is the optimal number of channels in each group when using
SSL with grouped channels on EEG-data?

Our experiments led to us choosing n = 4 channels per group as
the optimal number for our configuration. However, as the evalu-
ation accuracy using n = 5 was negligibly worse, we believe that
with variations in the architecture or the dataset, other values for
n may be optimal.

RQ3 How does a transformer-based encoder perform in an SSL architec-
ture for classifying multichannel EEG data?

The transformer-based encoder performed well when imple-
mented in our contrastive learning architecture. However, since
the transformer-based encoder was not directly compared to other
encoders in the same SSL architecture, we have not proven the an-
swer to this question to a desirable degree.

A limitation of this work is the lack of testing against different encoders or classi-
fiers using the same channel-group based framework. We have shown that many
variations of DECCaTNet can perform well, but do not outperform the state-of-
the-art accuracy of other studies. As this model includes innovations in several
areas, it is difficult to determine exactly where its shortcomings lie, and we did
not have the time required to perform an ablation study.

Another limitation is that we did not test our channel-grouping method in
other SSL frameworks using different pretext tasks. As such, there could be better
options than our simple contrastive framework. Additionally, the stability of our
results suffers from not using cross-validation in the experiments.
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Closing remarks As the reader may have observed, the Further work section
is long and describes many different avenues of improvement. We have shown
that the group-based SSL architecture holds potential, and believe that there are
many different routes to success. The model showed greater learning potential
from more epochs with a harder pretext task, suggesting that a goal of further
improvement could be to make the self-supervised pretext task more difficult.
This could be e.g. by changing the pretext task, augmentations, or window size.
However, we hope DECCaTNet can help the field in the future, bringing a new
idea to EEG classification and, we hope, multichannel time series in general.
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Appendix A

Experimental results

A.1 Hyperparameter search

LR FC 1 FC 2 WD Val. loss Train loss Val. acc. Epochs
0.00212 256 32 0.0854 0.0225 0.0193 0.553 1
0.01132 256 32 0.000244 0.0265 0.0194 0.502 1
0.00355 256 32 0.0517 0.0171 0.0178 0.684 1
0.09083 32 32 0.347 0.0217 0.0218 0.502 1
0.02328 256 32 0.00774 0.0204 0.014 0.657 2
1.234e-05 256 32 0.000796 0.0138 0.0131 0.785 4
2.724e-05 32 4 0.0487 0.0176 0.0187 0.772 2
0.0085 256 32 0.000187 0.0150 0.0110 0.783 16
0.00294 32 4 0.187 0.0229 0.0231 0.544 1
5.519e-05 32 4 0.175 0.0217 0.0217 0.507 1
6.712e-05 32 4 0.184 0.0233 0.0241 0.487 1
0.00128 32 4 0.00294 0.0176 0.0194 0.717 1
0.01622 32 4 0.00379 0.0196 0.0209 0.676 1
1.586e-05 256 32 0.00010 0.0141 0.0124 0.802 8
1.453e-05 256 32 0.000308 0.0186 0.0146 0.723 2
2.915e-05 256 32 0.000991 0.0141 0.0145 0.773 2
0.009622 32 32 0.071 0.0198 0.0209 0.668 1
1.219e-05 256 32 0.000185 0.0127 0.0108 0.821 16
0.00219 32 32 0.00102 0.0132 0.0140 0.812 4
0.0399 32 32 0.0539 0.0180 0.0205 0.686 2

Table A.1: Initial fine-tune net hyperparameter search results. The lowest texted
learning rate did the best, further search is needed to find optimum.
LR: Learning rate, FC: Fully connected layer size, WD: Weight decay
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BS LR τ WD Val. loss Train loss Val. acc. Epochs
64 0.00860 0.0104 0.55196 nan nan 0.5063 1
128 0.0186 0.0355 0.12478 0.0217 0.0217 0.4987 1
128 0.00012 0.0408 0.05328 0.0166 0.0166 0.7413 8
64 0.00036 0.00108 0.00175 nan nan 0.5111 1
256 0.00030 0.00460 0.00109 nan nan 0.5155 2
64 0.0403 0.00972 0.9813 nan nan 0.5037 1
128 5.55e-05 0.177 0.000286 0.0164 0.0152 0.7348 10
64 0.00584 0.0939 0.002674 0.0217 0.0216 0.4957 2
64 0.00756 0.0266 0.1158 0.0217 0.0217 0.5059 2
128 0.0921 0.0408 0.002749 0.0217 0.0217 0.4959 1
128 0.00858 0.314 0.1324 0.0217 0.0216 0.4910 2
64 0.00328 0.440 0.04153 0.0223 0.0171 0.6424 4
128 1.22e-05 0.327 0.003686 0.0156 0.0143 0.7513 10
64 1.77e-05 0.104 0.373 0.0185 0.0182 0.6966 2
64 1.82e-05 0.562 0.003793 0.0173 0.0169 0.7140 4

Table A.2: First pre-training hyperparameter search results. The lowest tested
learning rate did the best, further search is needed to find optimum.
BS: Batch size, LR: Learning rate, τ: Temperature, WD: Weight decay
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BS LR PT epochs Val. loss Train loss Val. acc. FT epochs
256 2.089e-06 10 0.01687 0.01738 0.7231 1
128 3.636e-07 2 0.01783 0.01830 0.7118 1
128 1.658e-05 2 0.01669 0.01556 0.7383 8
128 4.503e-06 10 0.01683 0.01638 0.7328 4
128 5.384e-07 10 0.01698 0.01708 0.7320 2
128 1.503e-05 2 0.01807 0.01789 0.6895 1
128 2.396e-06 10 0.01448 0.01328 0.7659 10
256 1.175e-06 4 0.01656 0.01547 0.7369 10
128 2.508e-07 4 0.01824 0.01776 0.6956 2
128 1.468e-06 2 0.01709 0.01759 0.7190 1
128 2.328e-06 10 0.01715 0.01679 0.7285 2
256 3.568e-06 4 0.01664 0.01630 0.7374 4
256 2.711e-06 10 0.01672 0.01693 0.7395 2
128 5.512e-07 2 0.01807 0.01730 0.6958 2
128 7.091e-06 4 0.01741 0.01795 0.7166 1
512 8.011e-07 10 - - - -
512 4.321e-07 4 - - - -
512 1.816e-05 2 - - - -
512 7.589e-06 10 - - - -
512 3.282e-06 10 - - - -

Table A.3: Second pre-training hyperparameter search results. Adjusted after the
first search with a larger search space for learning rate, batch size and number of
epochs. All runs with batch size 512 overfilled GPU memory and failed.
BS: Batch size, LR: Learning rate, PT: Pre-training, FT: Fine-tuning

A.2 Optimal number of channels

n Val. loss Train loss Val. acc. Epochs
1 0.01674 0.01493 0.7263 11
2 0.01685 0.01615 0.7422 11
3 0.01722 0.01623 0.7294 10
5 0.01478 0.01422 0.7747 11
8 0.01681 0.01537 0.7324 10
12 0.02181 0.01524 0.6466 10
23 0.01753 0.01651 0.7176 10

Table A.4: Results of initial hyperparameter search for optimal n channels. As
n= 5 showed best results, another search was conducted.
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n Val. loss Train loss Val. acc. Epochs
4 0.01596 0.01383 0.7794 10
5 0.01646 0.01533 0.7618 10
6 0.01590 0.01572 0.7547 10
7 0.01640 0.01504 0.7339 10

Table A.5: Results of second hyperparameter search for optimal n channels. n= 4
shows best results by a significant margin.

A.3 Frozen Pre-trained encoders

Frozen encoder Pre-trained encoder Val. loss Train loss Val. acc. Epochs
False True 0.01171 0.01018 0.8325 11
True True 0.01405 0.01381 0.7911 11
False False 0.01284 0.01192 0.8186 11
True False 0.02358 0.02171 0.6137 10

Table A.6: Results of frozen encoder weights and random initialized encoder,
where the pre-trained encoder with unfrozen weights outperform all randomly
initialized encoders with unfrozen weights.

A.4 Number of pre-training epochs

Number of pre-training epochs Val. loss Train loss val. acc. Fine-tuning epochs
10 0.01363 0.01346 0.8151 11
30 0.01336 0.01396 0.8060 11
50 0.01405 0.01381 0.8011 11
70 0.01428 0.01453 0.7952 11
100 0.01427 0.01453 0.7950 10

Table A.7: Results of number of pre-training epochs.
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A.5 Transfer learning

Frozen encoder Pre-trained encoder Val. loss Train loss Val. acc. Epochs
False True 0.01252 0.00971 0.8232 11
True True 0.01587 0.01392 0.7765 11
False False 0.01224 0.01171 0.8201 11
True False 0.02037 0.02065 0.6272 10

Table A.8: Results of frozen encoder weights without transfer learning. Without
transfer learning constitutes that only the fine-tuning dataset is used during pre-
training.

A.6 Harder pretext task

Number of pre-training epochs Val. loss Train loss Val. acc. Fine-tuning epochs
10 0.01361 0.01385 0.7986 11
30 0.01396 0.01389 0.7948 11
50 0.01427 0.01425 0.7895 11
100 0.01437 0.01501 0.7891 10

Table A.9: Results of additive noise. Observe that metrics are worse than for an
encoder pre-trained without additive noise. Remark that there is less degenera-
tion in performance over the number of epochs.

Number of pre-training epochs Val. loss Train loss Val. acc. Fine-tuning epochs
10 0.01554 0.01507 0.7610 14
30 0.01447 0.01427 0.7798 14
50 0.01437 0.01438 0.7852 14
100 0.01464 0.01494 0.7809 15

Table A.10: Results of harder pretext task. Interestingly, the number of pre-
training epochs and validation accuracy seam to correlate in contrast with previ-
ous experiments.
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A.7 Percentage of labels available during fine-tuning

Percentage of labels Pre-trained encoder Val. loss Train loss Val. acc. Epochs
1% True 0.01389 0.01299 0.7867 14
1% False 0.02153 0.01840 0.5251 14
10% True 0.01226 0.01067 0.8146 14
10% False 0.01906 0.01948 0.6710 14
50% True 0.01179 0.00930 0.8295 14
50% False 0.01192 0.01168 0.8197 15

Table A.11: Results of percentage of labels available for fine-tuning with trainable
weights during fine-tuning for all encoders.




