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ABSTRACT

Improved transcriptomic sequencing technologies
now make it possible to perform longitudinal ex-
periments, thus generating a large amount of data.
Currently, there are no dedicated or comprehensive
methods for the analysis of these experiments. In this
article, we describe our TimeSeries Analysis pipeline
(TiSA) which combines differential gene expression,
clustering based on recursive thresholding, and a
functional enrichment analysis. Differential gene ex-
pression is performed for both the temporal and con-
ditional axes. Clustering is performed on the identi-
fied differentially expressed genes, with each cluster
being evaluated using a functional enrichment anal-
ysis. We show that TiSA can be used to analyse lon-
gitudinal transcriptomic data from both microarrays
and RNA-seq, as well as small, large, and/or datasets
with missing data points. The tested datasets ranged
in complexity, some originating from cell lines while
another was from a longitudinal experiment of sever-
ity in COVID-19 patients. We have also included cus-
tom figures to aid with the biological interpretation
of the data, these plots include Principal Compo-
nent Analyses, Multi Dimensional Scaling plots, func-
tional enrichment dotplots, trajectory plots, and com-

plex heatmaps showing the broad overview of re-
sults. To date, TiSA is the first pipeline to provide
an easy solution to the analysis of longitudinal tran-
scriptomics experiments.

INTRODUCTION

Transcriptomic analyses are used in a wide range of fields to
observe the effect of genes on cellular activity. Commonly,
two methods are used for these analyses, microarray and
RNA sequencing (RNAseq) (1). RNAseq has been shown
to be the preferred method due to lower false positives and a
higher reproducibility (2,3). Microarrays remain in use due
to their relative low cost and easy handling (4).

With the diminishing cost and complexity of both
RNAseq and microarrays, an increasing number of experi-
ments introduce the dimension of time. A time series exper-
iment or longitudinal study involves the use of two or more
time points in the experimental design. Longitudinal stud-
ies allow for the identification or estimation of onset times,
time-varying factors, as well as the measurement of genetic
trajectories (5).

Few tools exist to analyse longitudinal transcriptomic
data, even though none of them have been specifically de-
signed to do so. Commonly, a differential gene expression
analysis of time series data will require the design of a spe-
cific matrix using one of the differential gene expression
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pipelines, such as DESeq2 (6) or limma (7). An alternative
method is to perform a permutational multivariate analy-
sis of variants (PERMANOVA) (8). Both methods are im-
plemented in a time series visualization pipeline (9) for the
analysis of RNAseq data. However, these methods yield
a single list of differentially expressed genes. This limits
the exploration of individual time points and can lead to
loss of valuable information. The PERMANOVA method
has the added caveat of requiring numerous replicates to
yield significant results. In pilot studies or animal model re-
search, small amounts of replicates are often used due to
their high cost. This information reveals that the current
methods for the analysis of time series data are not ade-
quate as they can be complicated to implement and may
often be unreliable for experiments with lower numbers of
replicates.

TiSA aims to solve the above caveats while providing a
user friendly solution for the analysis of time series data of
both RNAseq and microarray origin. We eliminate some
of the complexity of other existing pipelines, and enable
the investigation of individual time points without the need
for extra analyses. TiSA also provides solutions to the in-
terpretation of the identified differentially expressed genes
(DEGs) by using a novel clustering method followed by a
functional enrichment analysis.

To test and validate our TiSA’s ability to analyse large,
small, and unevenly sampled transcriptomic data, three sep-
arate datasets were used. The first is a in house RNAseq
dataset created to evaluate Activation Induced Cytidine
Deaminase (AICDA/AID) stimulation cocktails in periph-
eral blood mononuclear cells (PBMC). The over-expression
of AID has been associated to several types of cancer such
as B cell lymphoma (10–12). The over-expression has also
been linked to disease progression, relapse, resistance to sal-
vage therapy and a poor overall remission rate particularly
for B cell lymphoma patients (13,14). Since this dataset re-
sults from a cell line, we expect very low variability between
replicates of the same time points.

The second is a murine dataset with a similar experimen-
tal design to the first one. We use this dataset to test TiSA’s
capabilities with data from an animal organism as well as
data with only one replicate per time point and group.

The third dataset is a microarray based analysis per-
formed to identify differences between non-critical and crit-
ical patients of SARS-CoV2 infection. SARS-CoV-2 is a
virus which emerged in late 2019 causing a world-wide pan-
demic. The coronavirus disease 2019 (COVID-19) is pri-
marily a respiratory disease. As of March 20th, 2022, the
World Health Organization has stated that the number of
global cases is nearing 600 million with over 6 million
deaths globally. This disease has been the primary focus
of thousands of researchers worldwide, however there are
still many unknown elements which affect disease progres-
sion, severity, and persistence (15,16). The intent of the third
dataset is to test TiSA’s ability to handle microarray data
as well as data with uneven sampling, that is to say an un-
even amount of samples per time point/group. The third
dataset will also test TiSA’s ability to identify relevant re-
sults despite of the natural variability found in human gene
expression.

MATERIALS AND METHODS

Production of cell lines

Peripheral blood mononuclear cells (PBMC) were ordered
and B cells were isolated using the Magnetic-activated
cell sorting (MACS), specifically the human Miltenyi B-
cell isolation kit II. Cells were then seeded. Controls
were stimulated with LPS while non-controls were stim-
ulated using one of the following stimulation cocktails:
IgM.acD40.IL4.IL21, TGFb.acD40.IL4. Cells were har-
vested at days 1, 3 and 9 following seeding. The time course
experiment was performed twice in parallel resulting in two
replicates for every condition at all three time points.

RNA isolation from cell pellets of cell lines

Cells were pelleted by centrifugation and flash frozen
with liquid nitrogen. Cell pellets were then shipped on
dry ice. A human cell pellet from a blood sample was
used as a positive control. Samples in 96-well plate were
placed on dry ice and 3 times 150 ul of RNA shield
(DNA/RNA Shield by Zymo, cat. no. R1100-250) was
added. The pellets were resuspended in RNA shield and the
plate was transferred to room temperature and incubated
at room temperature (RT) for 30 min. The plate was
centrifuged for 4 min at 5400 × g. Supernatant was trans-
ferred to a new plate and remaining pellets were frozen.
Qiagen’s RNeasy Plus 96 Kit (cat. no. 74192) was used
for RNA isolation. RLT buffer was supplemented with
�-mercaptoethanol (�-ME) before use. 1 volume of RLT
plus buffer was added to samples, and samples were mixed
by vigorous shaking. The following steps were according
to the RNeasy® Plus 96 Handbook, as available from
https://www.qiagen.com/de/resources/download.aspx?
id=4842d50e-a987-477a-a819-98a017445ccd&lang=en.
RNA was eluted with 45 ul of RNAse free water. Next,
samples were quantified with RiboGreen RNA Reagent,
RediPlate™96 RiboGreen™RNA Quantitation Kit, cat. no.
R11490.

Sequencing and processing of cell lines

Libraries were prepared using an RNA Kit from Takara
(Takara Bio USA, Inc. SMARTer® Stranded Total RNA-
Seq Kit v2 - Pico Input Mammalian) according to the man-
ufacturer’s instructions. Libraries were then pooled and an-
alyzed by Agilent 5200 Fragment Analyzer system (Agilent
Technologies) for quantity and size distribution. Sequenc-
ing was done on the Illumina NovaSeq platform using an
S2 flow cell with 2 × 50 bp reads. 8379591470 passed filter
reads were produced with a mean Q of 36, equaling 63 Mio
read pairs per sample on average. The produced double-end
reads which passed Illumina’s chastity filter were subject to
de-multiplexing and trimming of Illumina adaptor residu-
als using Illumina’s bcl2fastq software version 2.20.0.422
(no further refinement or selection). Quality of the reads in
fastq format was checked with the software FastQC (https://
www.bioinformatics.babraham.ac.uk/projects/fastqc/) (ver-
sion 0.11.8). Raw reads having average Q-values below
20 or incorporating uncalled ‘N’ bases were filtered using
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the BBTools (https://jgi.doe.gov/data-and-tools/software-
tools/bbtools/) software suite (version 38.86). The splice
aware RNA mapping software STAR(17) (version 2.7.7a)
was used to map the surviving reads to the reference genome
UCSC hg38 provided by IGenomes. To count the uniquely
mapped reads to annotated genes, the software htseq-count
(18) (HTSeq version 0.13.5) was used. DNA extraction, li-
brary construction, sequencing and data analysis described
in this section were performed by Microsynth AG (Balgach,
Switzerland).

Murine sequencing and data processing

SmallRNA-seq and mRNA-seq was performed on primary
B-cells isolated from mice. 10 samples were collected at the
following time points after stimulation with LPS, IL-4 and
TGF-beta-1: 0 h, 15 min, 30 min, 1 h, 2 h, 3 h, 6 h, 12 h, 24
h, 48 h. The cells were analysed by flow after 4 days to con-
firm that they had undergone class switch recombination.
For each stimulated sample there was also one unstimulated
control sample. The RNA for small RNA and mRNA-seq
were isolated from the same tube of cells. The TruSeq proto-
cols (small RNA and poly-A) were used for both sequenc-
ing experiments. The raw sequencing data was aligned to
the mouse genome (GCF 000001635.23 GRCm38.p3) us-
ing STAR-aligner, chimSegmentMin was set to 30, outFil-
terMultimapNmax to 20, alignSJoverhangMin to 8, align-
SJDBoverhangmin to 1, outFilterMismatchNmax to 10,
outFilterMismatchNoverLmax to 0.04, alignIntronMin to
20, and alignIntronMax to 1 000 000. Genes were then
counted using htseq-count with the following GFF file:
GCF 000001635.23 GRCm38.p3 genomic.gff along with
the following parameters: stranded (-s) is set to no, idattr
(-i) is set to gene, and type (-t) is set to exon.

Data normalization

RNAseq count files were split into their respective groups
and attributed defining conditions, such as ‘control’ and
‘experiment’. The counts for the respective conditions are
merged, genes which have no values for every sample are re-
moved. A sample defining file containing the sample names
along with their associated condition is also created, this
file contains the relevant information for the samples within
the merged count file. The values are then normalized us-
ing the DESeq2 (6) normalization method. The subsequent
DESeq2 object is stored in the time series object. If the data
originates from microarrays, TiSA expects that the data be
inputted as an Elist with the data being already normalized
to the users specifications.

Differential gene expression––conditional and temporal

Differential gene expression is performed with either DE-
Seq2 (6), version 1.32.0 or limma (7), version 3.48.1. Differ-
ential gene expression is performed on the conditional and
temporal axes. The conditional axis consists of performing
a differential gene expression at every time point while us-
ing the conditions (experiment vs control). The temporal
axis is analysed by comparing each time point with the next
time point in the series while using the later time point as

the experiment, and the earlier time point as the control.
Using three time points, two temporal analyses would be
performed, one with time point 2 versus time point 1 and
another with time point 3 versus time point 2. Each differ-
ential gene expression experiment is saved to the time series
object using a unique key for the analysis.

A list of differentially expressed genes is obtained by re-
trieving all significant differentially expressed genes above
a user-specified log2foldchange (or foldChange if using
limma) threshold. Significance is established using a false
discovery rate (FDR) threshold of 0.05. TiSA enables the
use of P-value instead of FDR as a measure of significance,
but retains the FDR threshold as the default.

Large heatmaps summarizing each dimension of the dif-
ferential gene expression were designed using the Complex-
Heatmap package (19), version 2.8.0.

PART clustering

Clustering is performed using the PART method from the
clusterGenomics R package (20), version 1.0. The PART
function was set using a minimum cluster size of 50, and a
recursion of 100. The subsequent hclust function’s distance
parameter was set to ‘euclidean’ and clustering method was
set to ‘hclust’. For the purpose of reproducibility, a custom
seed was set to ‘123456’.

Gene scaling for plotting

Trajectories of gene clusters are obtained by first calculating
the value of each gene per time point and group (experiment
or control). This is done by calculating the mean expression
of the replicates for a time point and group. The genes are
then scaled by dividing each gene by the sum of all the val-
ues for that gene. The illustration method for the trajectory
plots were inspired by (9).

Gprofiler2––GO ancestor method, semantic similarity for up-
stream clustering

The gprofiler2 R package (21), version 0.2.1 was used to run
each individual cluster through the gprofiler tool. In addi-
tion to the standard gprofiler figures, TiSA also provides al-
ternative plotting solutions. Ancestor queries search gpro-
filer results of each cluster for GO terms which are affiliated
to the requested ancestor GO IDs. This is done by using the
GO.db package (22), version 3.13.0, which provides a list of
children terms for all known GO terms. The children found
for the queried ancestors are extracted and plotted.

Multi-dimensional scaling (MDS) plots are made avail-
able by exploiting the semantic distance. The semantic sim-
ilarity is obtained by using the godata function of the
GOSemSim R package (23), version 2.18.1. For a standard
MDS plot, the semantic similarity between each GO is cal-
culated using the mgoSim function using Wang’s measure
method (24), the combination method is set to ‘NULL’.
The semantic similarity between each go is then inputted
in the cmdscale function to obtain the multi-dimensional
values. In addition, a nearest ancestor approach is imple-
mented where each GO term is brought up to it’s nearest
common ancestor. This illustration method is inspired by
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Figure 1. Samples indicate temporal trend. PCA plot showing each sample of all three groups contained within the analysis. Groups are distinguished by
color, with IgM in red, TGFb in green, and LPS in blue. The shapes of each sample distinguishes the time points, with circle being the first time point,
triangles the second, and crosses the third. In this PCA, time points are days 1, 3 and 9 respectively.

(25). The semantic similarity between terms is calculated the
same way as previously described, a clustering is performed
using the ‘ward.D2’ aggregation method with a minimum
cluster size of two. To represent the found clusters (or an-
cestors), their semantic similarity must be calculated. Since
ancestors represent two or more GOs, the semantic simi-
larities of the GOs within an ancestor must be combined.
The mgosim function is used along with Wang’s measure-
ment method and the best mean average (BMA) combining
method.

RESULTS

Analysis of AID stimulation cocktails in PBMCs

Two AID stimulation cocktails were compared to an LPS
control. The first contained anti-IgM, anti-CD40, IL-4 and
IL-21 (IgM.acD40.IL4.IL21) from here on named the IgM
cocktail. The second cocktail contained tumor growth fac-
tor beta (TGFb), anti-CD40 and IL-4 (TGFb.acD40.IL4)
from here on named the TgFb cocktail. LPS was used as
a control to ensure the activation and proliferation of the
PBMC cells (26). To evaluate the performance of both stim-
ulation cocktails, each were compared with the LPS stimu-
lation cocktail. A time series PCA illustrating the different
groups as well as the time points for each sample was created

(Figure 1). The PCA showed that the stimulation cocktails
are distinguishable from one another. With the IgM and
LPS groups being relatively similar and the TGFb group
separated by the second principal component (PC2). PC1
appears to explain variability over time, while PC2 picked
up on differences between groups. This indicates that vari-
ation over time is stronger than variation between groups.

For both cocktails of interest, differential gene expres-
sion was performed both conditionally and temporally, with
significant genes defined as having a FDR below 0.05 and
an absolute log2FoldChange greater or equal to 2. Condi-
tional differential gene expression analysis consist of com-
paring the two groups at each time point separately. The
temporal analysis compares each subsequent time point ir-
relevant of grouping. This method allowed for the extrac-
tion of DEGs of significance within all dimensions of the
dataset. The number of DEGs found for each experiment is
seen in table (Table 1).

PART clustering was then performed using all significant
differentially expressed genes. This resulted in 14 clusters
for the IgM group comparison and 12 for the TGFb group
comparison. The overview of the clustering can be viewed in
a heatmap format, as seen in (Figure 2). To further explore
the differences between the clusters, Gprofiler was utilised
as it has the ability to query many databases (27). First, the
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Table 1. Number of significant differentially expressed genes. Summari-
sation of the number of DEGs found in the conditional and temporal dif-
ferential gene expression experiments for all stimulation cocktails tested.
The number of unique genes after merger of differential gene expression
experiments are shown per conditional and temporal respectively. The to-
tal number of unique genes (conditional and temporal merged) is shown
in the right-most column

REACTOME database was used to obtain an overview of
cellular processes (28) involved in the different clusters. This
revealed that both stimulation cocktails induced strong cell
cycle activity, the most significant activity being seen in the
IgM group. Both cocktails also indicated immune activa-
tion, however the REACTOME results did not distinguish
which immune activity was being activated by the stimula-
tion cocktails.

To further explore the immune activation induced by
these cocktails, a dotplot was designed to illustrate the re-
sults from a query of any terms which are children for the
following parent immune biological processes: regulation of
immune system process (GO:0002682), immune response
(GO:0006955), and immune effector process (GO:0002252)
(Figure 3A). The dotplot showed that most immune related
pathways were more significant in the IgM group. Addition-
ally, the ‘adaptive immunity’ GO term was highly significant
in the IgM group, while it was present in the TGFb group,
it was at a much lower significance. This indicated that B
cells are more strongly activated in the IgM group leading
to class-switch recombination and somatic hyper mutation,
the two activities in which the AICDA gene participates.

Additionally, the trajectory of the genes within the two
largest immune clusters was measured. Cluster 14 of the
IgM stimulation cocktail and cluster 11 of the TGFb stim-
ulation cocktail contained the majority of immune related
GO terms. The values of these 262 genes were scaled and
their trajectory measured for both stimulation cocktails and
the LPS control (Figure 3B). Some genes only appeared in
one of the two clusters, therefore the genes were merged into
a single plot to better represent the pathways of interest.
This figure shows that the TGFb group had some genes with
a marginal increase compared to the control while all of the
cluster’s genes in the IgM stimulation cocktail were much
higher in expression when compared to both the LPS con-
trol and the TGFb group.

Analysis of AID stimulation cocktail in a murine model

A similar AID stimulation cocktail experiment was per-
formed with a murine model. This experiment had two
mice, one control and one treated, blood was harvested and
sequenced at 10 different time points. Due to having single
replicates, each subsequent time point was merged in or-
der to create time points with two replicates per group. A
PCA plot showing all samples at their respective time points
was created to validate this approach (Supplementary Fig-

ure S1). The PCA showed that the time points were close in
proximity to each other, which validated our approach to
the analysis of this dataset.

Using the same approach as the previous dataset, a search
for GO children of various immune GO ancestors was per-
formed and a multi-dimensional scaling (MDS) plot was
generated (Figure 4A). The MDS plot isolates the various
GO children found for the queried ancestors and colors
them based on their associated ancestor. In addition, it in-
dicates to which cluster the children were associated. This
MDS plot shows that the immune ancestors group quite
well, but more importantly it reveals a child of the ‘Immune
response’ ancestor, found in cluster 22. This child represents
adaptive immunity linked to somatic recombination, which
served as an indication for CSR activity. The trajectory of
cluster 22 showed that the mouse treated with the stimula-
tion cocktail had increased CSR activity at later time points
(Figure 4B). Earlier time points showed similar expression
for both treated and untreated mice, however the beginning
of an increase in expression for the treated mouse was ob-
served at 180 min (3 h), the expression continued to increase
and appeared to slowly fall off during the last two time
points (24 and 48 h).

These results indicated that the stimulation cocktail acti-
vated adaptive immunity. Flow cytometry experiments con-
firmed class switch recombination for the treated mouse
(Supplementary Figure S2).

Identification of biological pathways relevant to SARS-CoV-
2 infection severity

A longitudinal covid study using microarray was performed
by Prebensen et al. in a currently unpublished study. This
longitudinal covid analysis utilized three time points. All
patients were able to give a sample at the first time point,
however some patients did not return for sampling at time
point two. The drop-out was more pronounced at the third
time point, a common feature of clinical datasets. Con-
ditional differential gene expression was performed and a
summary heatmap drawn (Figure 5), it illustrates TiSA’s ca-
pability of adapting to missing samples.

868 differentially expressed genes were identified and
clustered using the PART method, 9 clusters were found.
A REACTOME analysis of these 9 clusters was performed,
with enriched terms found in seven of the clusters, as seen
in (Figure 6A), five of these clusters were of immunological
interest (Figure 6B).

Cluster 9 showed very strong similarity with both the
non-critical and critical group, while the other four clus-
ters showed either different trajectories or expression lev-
els. Cluster 2 seemed to be primarily defined by innate im-
mune processes and these were found to be activated in the
critical patient group. Cluster 6 results seemed to indicate
a diversity of immune pathways, in order to get a better
view of the cluster the top biological processes were fur-
ther analysed. This revealed that the cluster mainly maps
to adaptive/humoral immune responses, phagocytosis, and
B-cell activation. This cluster’s trajectory suggests that lev-
els of adaptive immunity drop between time point 2 (3 days)
and time point 3 (8 days) in the case of severe patients,
specifically B-cell related immunity. Cluster 7 showed trans-
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Figure 2. Summarisation of the PART clustering results for both AID stimulation cocktails. The heatmap for the IgM versus LPS comparison (A) and the
TGFb versus LPS comparison (B). Each heatmap shows the PART clustering results of the indicated stimulation cocktail comparison. The genes shown
are significant genes with a log2foldchange greater than 2 or below –2. There are 1691 genes in (A) and 1194 in (B). Clusters are indicated with the vertical
colored bar on the left-hand side of the heatmap. Groups are indicated by the color at the top of the heatmap, with blue being the control (LPS) and red
being the stimulation cocktail. Time points are shown with the yellow/orange bar below the groups. Illustrated within the heatmap itself is the z-score.

lation related pathways, along with a higher expression and
an elevated trajectory in critical patients. Cluster 8 showed
one immune related pathways, though on it’s own it is not
very informative. Some biological processes of this cluster
indicated inflammation, however most processes pointed
towards general immune related pathways.

DISCUSSION

We report here our transcriptomic time series analysis
pipeline, TiSA for short, which can be used with both mi-
croarray and RNAseq data. Our objective was to provide
an easy to use pipeline which can analyse longitudinal tran-
scriptomic data from any annotated organism while cater-
ing to both clinical and biological researchers. Both of these
fields often have difficulties obtaining large and/or com-
plete datasets. This was the motivation to develop TiSA in
a way where it only requires two replicates per time point.
Provided there are two replicates per time point, TiSA will
adjust for any uneven sampling, such as nine samples at
the first time point and only four at the second. To test the
TiSA’s capability of handling various datasets and still ex-
tract valuable biological information, we tested it with three
datasets.

With the first dataset we sought to determine which AID
stimulation cocktail best simulates AID over-expression in
PBMCs. To test and validate the most appropriate AID
stimulation cocktail, we designed a time series experiment
for two different stimulation cocktails along with two differ-
ent controls. The time series format was selected to properly
identify the time point where AID expression is at its peak
following activation.

Of the two cocktails used, (IgM.acD40.IL4.IL21 and
TGFb.acD40.IL4), we expect the IgM-containing cocktail
to have the best performance. This is based on the findings
of Van Belle et al. (29). We expect anti-IgM to mimic the

binding of an antigen via the internalization of the B-cell
receptor (BCR), the anti-CD40 to mimic the ligation of a
T-cell and thus induce the expression of AID (30). IL-4 and
IL-21 are expected to further stimulate T-cell assistance,
specifically the T cell activation step which induces B cell
proliferation and the terminal B-cell differentiation (30,31)
respectively. Interestingly, the TGFb component is expected
to inhibit B-cell differentiation (32) and circumvent the need
for BCR activation. However, the TGFb cocktail has previ-
ously been observed to enhance AID expression (33) as well
as induce class switch recombination (CSR) (34). We expect
the IgM cocktail to generate a stronger AID induction as
well as a stronger CSR activity.

Our analysis was able to identify AID activation us-
ing both stimulation cocktails, however only the IgM-
containing cocktail was observed to have significantly ac-
tivated CSR indicating that the IgM cocktail was the bet-
ter of the two cocktails in regards to the activation of AID.
These were the expected results and indicate that our an-
cestor querying approach (Figures 3 and 4) proved to be
useful in the evaluation of CSR activation. It also suggests
that this approach could be used in other query based ap-
proaches, for example, the evaluation of a treatments effect
on neuronal related biological processes.

In line with our exploration of the ideal AID stimu-
lation cocktail, we also tested TiSA’s effectiveness with a
murine dataset which uses the LPS.CD40L.TGFb-1 stim-
ulation cocktail (34). With this dataset we sought to de-
termine TiSA’s ability to process datasets with few repli-
cates but with many time points. It is common for pi-
lot biological studies to utilize single replicates when em-
ploying animal models due to the complexity and cost of
developing and maintaining these models, it is therefore
of great importance that a time series analysis pipeline
be able to analyse data with the minimum number of
replicates.
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Figure 3. Immune related results found for both AID stimulation cocktails. A dotplot of all GO terms with a adjusted P-value <0.05 and affiliated to
three immune related GO IDs (GO:0002682, GO:0006955, GO:0002252) (A). GO terms found are split based on the cluster in which they were found, with
the first three clusters (C14, C13 and C8) originating from the IgM group and the last three (C11, C2 and C8) from the TGFb group. Clusters which map
to adaptive immune response (C14 and C11) have been merged, the scaled trajectory of the genes (262) for both stimulation cocktails and the LPS control
is shown (B). In (A) the color represents the negative log transformation of the adjusted pvalue, with red being most significant and blue less significant.
Term size (amount of genes contained in the GO) is indicated by size of dot while term names are indicated on the y axis. (B) shows time on the x axis and
scaled value on the y axis.

For this analysis, we utilized a log2foldchange threshold
of 1 for the DEGs to be inputted to the PART clustering
method. This resulted in 2851 unique significant differen-
tially expressed genes across the conditional and/or tem-
poral analysis. Twenty two clusters were identified by the
PART method.

Between the results of cluster 22 seen in (Figure 4)
and the flow cytometry results seen in (Supplementary
Figure S2), we show that the cocktail used was in-
deed able to induce AID expression as well as CSR.
In addition, we have demonstrated TiSA’s ability to
utilize a murine dataset as well as a dataset with a
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Figure 4. Presence of adaptive immunity and class switch recombination. A MDS plot showing the various immune GOs found in the dataset (A). MDS
plots show the semantic similarity between GOs; a reflection of their similarity in regards to the genes which are associated to them. The figure also
highlights one specific child from the ‘Immune response’ ancestor––‘adaptive immune response based on somatic recombination of immune receptors
build from immunoglobulin superfamily domains (GO:002460)’. This GO was found in cluster 22, whose trajectory in both groups (B). In the trajectory
plot, the y axis is the scaled expression of the genes while the x axis is the log 10 transformed time points in minutes.

Figure 5. An overview of the SARS-CoV2 severity dataset. A heatmap summarizing the conditional differential gene expression analysis. Each row rep-
resents a individual patient and columns represent genes. Patients are grouped by condition (non-critical in orange and critical in mauve) while genes are
grouped based on the differential gene expression analysis performed at various time points, starting from the left at time point 1 and progressing to time
points 3. Illustrated in the heatmap itself is the log transformed intensity values. The histogram below the heatmap shows the log transformed fold change
for the gene above it. Horizontal gray lines represent missing samples for those patients.

very small amount of replicates, something that is of-
ten the case in pilot studies within the molecular biology
field.

The SARS-CoV-2 pandemic has been of scientific inter-
est since it’s beginning in 2019. Prebensen et al. (a cur-
rently unpublished study) obtained several micro array re-
sults for non-critical and critical patients at three differ-
ent time points, where critical and non-critical is defined

as patients being placed on mechanical ventilation or not.
This project utilized TiSA as described in this article to
identify the genomic differences between non-critical and
critical patients. We used the dataset in this article to il-
lustrate TiSA’s ability to handle a microarray dataset as
well as datasets with uneven sampling, that is datasets
which may not have all time points available for each
replicate.
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Figure 6. Clusters of importance in the SARS-CoV2 severity dataset. Dotplot of the top 10 REACTOME pathways for all clusters (A). The color represents
the negative log transformation of the adjusted pvalue, with red being most significant and blue less significant. Term size is indicated by size of dot while
term names are indicated on the y axis. The scaled trajectory of the five clusters (C2, C6, C7, C8 and C9) for which REACTOME pathways were found
(B). The names and quantity of genes as well as grouping is indicated in the title of each subplot. Time points are indicated on the x axis and the scaled
value on the y axis.

Several clusters were found to be of interest (Figure 6).
Cluster 2 indicates that innate immune responses were
higher in the critical group as opposed to the non-critical
group. This observation follows what is already known of
the disease, that neutrophil levels are elevated based on dis-
ease severity (35–37). Cluster 6 seems to show a trend found
in naturally infected SARS-CoV2 patients, where adaptive
immunity is stable in non-critical patients, but inconsistent
in critical patients (38).

The information revealed in this analysis fits with what is
already understood between the differences of critical and
non-critical SARS-CoV2 patients. As such, we have demon-
strated TiSA’s ability to analyse microarray datasets as well
as datasets which possess uneven sampling. In addition, we
have shown that the TiSA is capable of extracting meaning-
ful results from patient derived data, data which inherently
carries much variability within each group.

Overall TiSA has demonstrated the ability to analyse a
variety of datasets, however like any method some limi-
tations exist. As seen with the first dataset, TiSA is lim-
ited to comparative analyses of two groups. This was by
design as the intent was to preserve simplicity within the
pipeline. In addition, TiSA is primarily designed to func-
tion on local computers in order to maximize it’s avail-
ability to a diversity of users. This comes with the caveat
that TiSA will be limited by the resources available. The
main bottleneck in this pipeline will be the time required for
PART clustering which will strongly vary based on the com-

puter’s resources and the number of genes inputted. As a re-
sult, we have implemented three separate parameters within
the pipeline which can adjust the number of genes submit-
ted to PART clustering or adjust the clustering parameters
such as number of recursions and minimum cluster size.
Adjusting both of these parameters will adjust the speed
and which PART clustering is performed. More informa-
tion on these parameters can be found within the pipeline
itself.

CONCLUSION

We show that TiSA can be used for the analysis and inter-
pretation of both microarray and RNAseq data. We also
demonstrate TiSA’s ability to solve certain challenges faced
with biological data such as few replicates and uneven sam-
pling within experimental groups. TiSA utilizes the PART
clustering method which identifies small genomic clusters,
with each cluster being analysed independently by gprofiler.
Many of the plots designed for TiSA aid in the visualization
and biological interpretation of the data.

TiSA has already been successfully used to evaluate the
performance of two AID stimulation cocktails using PBMC
cells. It has also been able to validate the activation of
AID in a murine time series experiment with few repli-
cates. Lastly, it has shown to be capable of analysing un-
evenly sampled and highly variable dataset all while provid-
ing meaningful biological results. This was seen through the
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analysis and interpretation of a SARS-CoV-2 longitudinal
microarray experiment.

Overall, we show TiSA’s ability to analyse longitudinal
transcriptomic data from both RNAseq and microarray
sources. TiSA is capable of identifying meaningful biologi-
cal pathways in difficult datasets, such as datasets with a low
number of replicates or high variability. TiSA is also made
accessible to users with minimal R knowledge as it comes
equipped with a clear installation tutorial on our github
page as well as several analysis tutorials using a Rmark-
down format.

DATA AVAILABILITY

TiSA along with the tested datasets can be found on github
(https://github.com/Ylefol/TimeSeriesAnalysis).

The three datasets presented in this manuscript are also
available at the gene expression omnibus (https://www.ncbi.
nlm.nih.gov/geo/) using the accession identifiers below.

• PBMC AID stimulation cocktail - GSE213255
• Murine AID stimulation cocktail - GSE212955
• Longitudinal covid severity experiment - GSE213313
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