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Abstract

Nurse scheduling is essential for all hospitals to ensure sufficient patient treatment and a

balanced workload for the nurses. It is a complex problem, and the schedules are subject to

uncertainties in both supply and demand for nurses. Despite this complexity, scheduling

is often done manually, which is time-consuming for managers. A poorly constructed

schedule leads to nurse rescheduling, resulting in additional time and cost burdens for the

hospital and inconvenience for nurses. Nurse rescheduling refers to the reactive process of

making adjustments to the schedule due to unexpected events such as nurse absences or

changes in patient load. To combat disruptions, proactive strategies can be implemented to

improve the robustness or flexibility of the schedule. Robustness refers to the schedule’s

ability to absorb disruptions, and flexibility is the ability to efficiently reestablish the

schedule. It is interesting to identify how the interplay between proactive strategies in

scheduling and reactive strategies in rescheduling can improve the overall quality of the

schedules and facilitate reactive measures in rescheduling.

This thesis combines operations research and machine learning to improve the scheduling

and rescheduling processes using real-life data from the Clinic of Cardiology at St. Olavs

Hospital. We formulate a baseline multi-objective mixed-integer scheduling model. The

objectives aim to create schedules that reflect the actual schedules at the clinic. We

extend this model using a cross-section buffer strategy and flexible assignment strategy

for increased robustness and flexibility. The generated schedules are used as input to the

rescheduling problem, formulated as a baseline mixed integer model to minimize total

rescheduling costs related to increased wage costs from reactive actions. To evaluate the

schedule, the rescheduling model is embedded in a simulation framework using historical

data from the clinic to imitate the supply of nurses and actual demand for the simulation

period. We have developed two machine learning models for predicting future demand.

The results from the most promising model are used in combination with the rescheduling

model to improve the rescheduling costs.

Our results show that proactive strategies achieve similar objective values as the baseline

schedule while outperforming the total costs of the baseline schedule during rescheduling.

Cross-section buffer schedules efficiently distribute nurses by adapting to daily demand.

The flexible assignments strategy demonstrates favorable cost outcomes, although with

potential for improving the distribution of workload for the nurses. Machine learning

predictions consistently decrease rescheduling costs.
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Sammendrag

Turnusplanlegging er avgjørende for alle sykehus for å sikre tilstrekkelig pasientbehandling

og balansert arbeidsbelastning for sykepleierne. Det er et komplekst problem, og turnus-

planen er utsatt for usikkerhet b̊ade i tilbud og etterspørsel av sykepleiere. Til tross for

denne kompleksiteten blir planleggingen ofte gjort manuelt, noe som er tidskrevende for

lederne. En d̊arlig konstruert turnus fører til replanlegging, noe som er kostbart for syke-

huset, tidkrevende for lederne og upraktisk for sykepleierne. Replanlegging refererer til

den reaktive prosessen med å gjøre justeringer i planen p̊a grunn av uforutsette hendelser

som sykepleierfravær eller endringer i pasientbelastningen. For å motvirke behovet for re-

planlegging kan proaktive strategier implementeres for å forbedre robusthet og fleksibilitet

i turnusen. Robusthet refererer til turnusplanens evne til å absorbere forstyrrelser, mens

fleksibilitet er evnen til å gjenopprette turnusplanen effektivt. Det er interessant å identi-

fisere hvordan samspillet mellom proaktive strategier i planlegging og reaktive strategier i

replanlegging kan forbedre turnuskvaliteten, samt legge til rette for de reaktive tiltakene

i replanlegging.

Denne masteroppgaven kombinerer optimering og maskinlæring for å forbedre prosessene

for turnusplanlegging og replanlegging ved hjelp av reell data fra Klinikk for hjertemedisin

ved St. Olavs sykehus. Vi utvikler en grunnleggende flerobjektiv, blandet heltallsmodell

der m̊alene er å skape turnusplaner som gjenspeiler de faktiske planene ved klinikken. Vi

utvider denne modellen ved å implementere en bufferstrategi som g̊ar p̊a tvers av seksjoner

og en fleksibel strategi for økt robusthet og fleksibilitet. Modellen utvides ved å imple-

mentere strategier for å øke planenes robusthet og fleksibilitet. De genererte turnusene

brukes som input til replanleggingsproblemet, som brukes for å evaluere turnusplanene.

Replanleggingsproblemet er formulert som en grunnleggende blandet heltalls modell med

objektiv om å minimere totale kostnader knyttet til økte lønnskostnader som følge av

reaktive tiltak. Det integreres i et simuleringsrammeverk som benytter seg av historiske

data fra Klinikk for hjertemedisin for å etterligne tilbudet etter sykepleiere og faktisk et-

terspørsel i simuleringsperioden. Vi har utviklet to maskinlæringsmodeller for å forutsi

fremtidig etterspørsel. Resultatene fra den mest lovende modellen brukes i kombinasjon

med replanleggingsmodellen for å forbedre replanleggingskostnadene.

Resultatene viser at de proaktive strategiene konstruerer turnuser med tilsvarende objekt-

ivverdier som de grunnleggende turnusene, samtidig som de reduserer de totale kostnadene

for replanlegging. Bufferstrategien tilpasser seg den daglige etterspørselen for hver seksjon

og fordeler tilgjengelige sykepleiere effektivt.Den fleksible strategien viser gunstige kost-

nadsresultater, selv om fordelingen av arbeidsbelastning for sykepleierne kan forbedres.

Maskinlæringsprediksjoner reduserer konsekvent replanleggingskostnadene.
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Chapter 1

Introduction

The global nursing shortage results from a growing demand for healthcare with little

resource increase. The aging population contributes to a growing need for healthcare ser-

vices, resulting in a shortage of nurses (Helsedirektoratet, 2022). This shortage manifests

in various ways, including a lack of nurses to meet fluctuating demand and disruptions due

to nurse absences (Skjøstad, 2017). In addition, hospitals operate with limited budgets,

and personnel cost is the main component of hospital operating costs. The combination of

nurse shortage, unpredictable demand, and high hospital costs emphasizes the importance

of efficiently utilizing existing nursing resources.

Hospitals usually provide around-the-clock services that require employees to work in

shift rotations organized through a nurse schedule. Thus, scheduling the work for nurses

is an essential task of hospital management. Creating high-quality nurse schedules is a

complex and time-consuming process. The process involves complying with various laws

and regulations and considering prohibited shift patterns to avoid fatigue. The nurses

should work according to their contracted hours. There should also be sufficient staffing

for each individual shift. In addition, nurses must be assigned weekend shifts in specific

weekend rotations.

The nurse schedule is affected by uncertainties in nurse supply and patient load. Nurses

may become unavailable for their scheduled shifts, or patient load may increase. These

disruptions can lead to insufficient coverage for adequate patient care, requiring nurses to

work unplanned shifts. This alteration of the schedule is known as nurse rescheduling.

The rescheduling process modifies the schedule to address understaffed shifts caused by

disruptions while still adhering to critical constraints such as required nurse demand and

workload limits. To ensure that the rescheduling is solved correctly, previously executed

schedule rearrangements must also be considered when resolving the problem. Demand

predictions can be a key factor in enhancing the performance of the rescheduling. Accurate

predictions of nurse demand for upcoming days help decision-makers preemptively find

replacements or additional nurses.

Managing schedule disruptions is both costly and time-consuming for decision-makers.

It is desirable to have some protection against disruptions in the nurse schedules. This

can be handled by utilizing proactive strategies when generating the schedule, which can

1



CHAPTER 1. INTRODUCTION

improve the robustness and flexibility of the schedule. Robustness is defined as the ability

to absorb disruptions, while flexibility is defined as the ability to reestablish the schedule

efficiently. Utilizing such proactive strategies in nurse scheduling can facilitate more robust

and flexible reactive strategies in the rescheduling problem.

The purpose of this thesis is to evaluate the effectiveness of proactive scheduling to facil-

itate cost-efficient reactive rescheduling with a focus on cross-section utilization of nurses.

We aim to further enhance this evaluation by introducing machine learning models. These

models are designed to predict nurse demand during the rescheduling phase and invest-

igate its potential impact on decreasing rescheduling costs. The predictions are based on

historical data from the Clinic of Cardiology at St. Olavs Hospital.

Our work is among the first to study the nurse scheduling problem and the nurse res-

cheduling problem together while accounting for uncertainties. To our knowledge, we

are the first to make a rescheduling model that takes predicted demand from a machine

learning model as input. Additionally, we introduce a novel proactive strategy combined

with cross-section utilization. Studying the problems together enables a more realistic

evaluation of proactive strategies. Moreover, all proposed models are based on real-world

data from the Clinic of Cardiology, making them among the most realistic and applicable

to date. Although the developed models are based on specific information, they are gen-

eric models that can be adapted to similar departments in other hospitals that wish to

facilitate the utilization of resources across sections.

1.1 Outline

Chapter 2 provides background information on the Clinic of Cardiology and its nurse

scheduling challenges. Chapter 3 provides the necessary background theory to give an

understanding of machine learning methods and the field of operations research. Chapter

4 places our work within the existing literature. Chapter 5 provides a detailed description

of the problem in this thesis, while Chapter 6 presents the corresponding optimization

models. Chapter 7 outlines the simulation framework. Chapter 8 discusses real-world

data and machine learning models used in this thesis. The results of the computational

study are discussed in Chapter 9. Chapter 10 explores future research opportunities, and

Chapter 11 concludes the thesis.

2



Chapter 2

The Clinic of Cardiology

This chapter presents the relevant background information connected to the Clinic of

Cardiology (CC) at St. Olavs Hospital. Section 2.1 explains important terminology to

understand the presented information. Section 2.2 gives an overview of St. Olavs Hospital

and CC. Section 2.3 presents relevant laws and regulations before Section 2.4 describes

the nurse scheduling and rescheduling processes at CC.

2.1 Terminology

• Section. A section is a unit within a hospital department.

• Shift. A shift is a defined working time on a given day.

• Nurse schedule. A nurse schedule is a complete shift plan for the nurses within a

period. It shows which nurses are assigned to each shift.

• Scheduling period. The period a nurse’s schedule is set for.

• Competence. Competence is a nurse’s ability to perform specific tasks or cover

specific types of demand. Competence is based on educational level.

• Minimum staffing level. The minimum staffing level describes the minimum number

of nurses that must be present for a specific shift to deliver the required care level.

• Staffing plan. The staffing plan provides an overview of the minimum staffing level

per shift. It lays the foundation for the creation of the nurse schedule.

• Rescheduling. Rescheduling is the process that ensures that the supply for a given

shift meets demand in the occurrence of unforeseen absence or an increase in patient

load.

• Planning period. The planning period is the period considered when rescheduling.

• Additional hours. Additional hours are defined as work beyond agreed working hours

but within the statutory limit of a full-time equivalent.

3
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• Overtime payment. Overtime payment is defined as all work hours that exceed a set

number of working hours within a day or a week.

• Bonus payment. Bonus payments are additional payments for inconvenient shifts

such as evening-, night- and weekend shifts. The main tariff agreement defines each

type of bonus payment as a percentage of the nurse’s base salary payment.

• Compensation payment. Compensation payment is given when a nurse is swapped

from their original shift to work another shift. This payment takes effect if the swap

is notified before the day of the original shift. If it is given on the day of the original

shift, overtime payment is used instead.

• The Working Environment Act. The Working Environment Act is a Norwegian

law that dictates regulations to ensure safe and fair employment conditions for all

workplaces in Norway.

• The main tariff agreement. The main tariff agreement regulates wages, working con-

ditions, pensions, and insurance schemes for nurses working in Norwegian hospitals.

The agreement is made in collaboration with The Norwegian Nurses Organisation

(NSF).

• The Specialist Health Services Act. The Specialist Health Services Act contains rules

on responsibilities, duties, rights, and organization for anyone who offers or provides

specialist health care services in Norway.

• Local agreements. The hospital departments can enter into local agreements that

allow deviations from other central laws and agreements.

2.2 Description of the Clinic of Cardiology

St. Olavs Hospital in Trondheim is one of Norway’s largest hospitals, with close to 11,000

employees, working about 9000 full-time equivalents (Helse Midt-Norge, 2021). The Clinic

of Cardiology (CC) at this hospital specializes in cardiac disorders. The clinic’s main goal

is to provide the necessary help and treatment to patients with cardiac disorders. The

organization structure in Figure 2.1 shows that CC is split into two departments, one for

the medical services and the other for the nursing services. This thesis focuses on the

Department for Nursing Services.

The Department for Nursing Services comprises seven sections, each specializing in dif-

ferent areas related to cardiac disorders and patient severity levels (St. Olavs Hospital,

2023). The Lab is responsible for examining patients within invasive cardiology and elec-

trophysiology, while the Outpatient Clinic provides care for cardiac patients who are not

hospitalized but have a referral from their doctor. The Intensive Care section is dedic-

ated to treating patients with acute and critical cardiac disorders, while the 5-day section

mainly deals with elective procedures. Patients are referred to this section by their doctors

or local hospitals. Although the bed wards treat all types of cardiac disorders, each section

has its specialization. Bed Ward 1 specializes in Transcatheter Aortic Valve Replacement

(TARV), Bed Ward 2 focuses on patients with heart rhythm disorders, and Bed Ward 3
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specializes in treating patients with cardiac failure and disorders in the heart valves. This

thesis concentrates on the three bed wards mentioned: Bed Ward 1, Bed Ward 2, and Bed

Ward 3.

Figure 2.1: Structure of the Clinic of Cardiology

The three bed wards provide around-the-clock services all week and have a total of 104

employed nurses, with 32, 33, and 39 nurses assigned to Bed Ward 1, Bed Ward 2, and Bed

Ward 3, respectively. While the nurses are primarily employed in one bed ward, they are

also qualified to work in the other two bed wards. The employees in the bed wards have

varying levels of competence and experience. The nurses’ competence is categorized into

three levels: assistant nurse, nurse, and specialized nurse. The experience level denotes

the number of years of employment at CC.

The patients admitted to the bed wards all have a cardiac disorder, but the severity and

how demanding a patient is can vary greatly. The primary factor is the type of cardiac

disorder the patient has been admitted for, but other factors such as age and co-morbidities

can also affect the patient’s needs and level of care required. Different cardiac disorders

require different treatment procedures, some more demanding than others.

2.3 Laws and regulations

Laws and regulations apply to nurses working in the hospital. The Working Environment

Act and the main tariff agreement are the primary sources and form the foundation for

hospital work laws (Arbeidsmiljøloven, 2022; NSF, 2022). Together, these regulate wages,

working conditions, pensions, and insurance schemes for nurses in Norway. Most nurses

work in a rotation and are obliged to work at inconvenient times, i.e., night shifts and

weekend shifts. Nurses are scheduled to at least one weekend every three weeks. It is

essential to follow the laws and regulations to take care of the nurses’ health and well-

being.
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Due to the around-the-clock service and work at least every third Sunday, a standard

workweek for a full-time nurse amounts to 35.5 hours. The contracted work hours for each

nurse are the average work hours for the whole scheduling period. This means that the

nurses can be scheduled to work more than 35.5 hours one week and less another week

and still not get any overtime payments.

The local agreements for the bed wards have rules for rest time for working in rotational

shifts. The minimum consecutive rest between shifts in any 24-hour window is specified to

be at least 9 hours. However, the local agreements for CC specify that this number is set

to 10 hours daily. Also, there is a minimum of 35 hours of rest between two consecutive

shifts at least once every week.

Bonus payments are used for inconvenient shifts, such as evening, night, and weekend

shifts. All bonus payments are illustrated in Table 2.1. For everyday work between 00:00

on Saturday and 24:00 on Sunday, the nurses get a weekend bonus of 23% of the hourly

wage. For work between 17:00 and 23:00, there is an evening bonus of 28% of the hourly

wage; for night work between 22:00 and 08:00, there is a night bonus of 28%.

Table 2.1: Bonus payments (Norsk Sykepleierforbund, 2022b).

Type of extra payment Percentage addition of hourly wage

Weekend bonus 23%

Evening bonus 28%

Night bonus 28%

Overtime pay 100%

Swap shift before the day before

the original shift
85%

Swap shift on the day of the ori-

ginal shift
100%

For nurses with full-time positions, all extra shifts worked outside of what is scheduled

are considered overtime work and come with overtime payment. Furthermore, nurses with

part-time positions are qualified for overtime pay if they work more than 35.5 hours during

a week. Overtime pay is 100% of the hourly wage.

If a section manager needs to move a nurse from their scheduled shift to another, it is

referred to as a swap. When a swap occurs, the nurse is entitled to a bonus payment.

The amount of the bonus payment varies depending on the timing of the notification of

the shift change. If the nurse is notified on the same day as their original shift, they are

entitled to a percentage addition of 100% for the entire shift, which is the same rate as

regular overtime pay. However, if the nurse is notified of the shift change prior to the day

of their original shift, they are entitled to a compensation payment. This compensation

payment is less than regular overtime pay and varies depending on the shift the nurse is

swapped to. On average, the compensation payment is 85% of the regular overtime pay

rate.
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In addition to these laws and regulations, CC must comply with the Specialist Health

Services Act, which deals with the hospital’s duty of responsibility (Spesialisthelsetjen-

esteloven, 2022). This means that the hospital must also be organized so that the health

personnel can provide professionally sound health care. The hospital should comply with

its responsibilities to provide the individual patient with a comprehensive and coordinated

health care service. This requirement dictates that the department’s operations must be

planned to ensure that the department has sufficient staff with the right expertise available

for the patients at all times (Helsepersonelloven, 2022).

2.4 Scheduling

The around-the-clock service in the bed wards at CC requires a work distribution that

covers all week hours. These coverage requirements result in a carefully planned nurse

schedule. A nurse schedule outlines the assignment of nurses to work specified shifts

over a predetermined scheduling period. The nurses are assigned to shifts to cover the

demand for competencies and experience. The section managers are responsible for the

creation and management of the schedules, with each section having its own schedule. The

scheduling period for the bed wards at CC is one year, which presents challenges about

the uncertainty in supply and demand over the long scheduling period.

Each section has a set of nurses, which should be distributed in the schedule. The nurses

are only scheduled to the section they belong to, with the exception of weekend shifts.

During the weekends, the three bed wards borrow nurses from the sections that only

operate on weekdays, such as the Outpatient Clinic and the 5-day Clinic. The allocation

of nurses to shifts in the bed wards is based on a staffing plan for each section. The

section managers are responsible for scheduling the nurses for the whole scheduling period

based on the staffing plan. Although the bed wards operate with different shift types, the

schedule is generally simplified and divided into three main working shifts: day, evening,

and night, denoted as D, E, and N, respectively.

The staffing plan specifies a minimum staffing level for each shift throughout the week,

which typically remains constant weekly throughout the year. Ensuring that the minimum

staffing level for each shift is fulfilled is crucial to ensuring adequate patient care. Weekend

shifts tend to have a lower minimum staffing level. Table 2.2 provides an example of the

minimum staffing levels for Bed Ward 2, which remain relatively unaltered throughout the

scheduling period.

Table 2.2: One week in the staffing plan for Bed Ward 2.

Week X Mon Tue Wed Thu Fri Sat Sun

D (day) 6 6 6 6 6 5 5

E (evening) 5 5 5 5 5 5 5

N (night) 3 3 3 3 3 3 3

The nurse scheduling process is complex for the section managers and requires much time
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and effort. The process starts with the section managers receiving the nurse’s vacation and

working preferences. Furthermore, they create the schedule based on these preferences, the

nurse’s contracted working hours, the minimum staffing level, and the laws and regulations

described in 2.3. The section managers use the last year’s resulting schedule as a base for

creating the new schedule. According to the section managers at CC, generating nurse

schedules for a scheduling period usually takes at least two weeks.

All nurses have competence and education in cardiac disorders and qualify to take any

shifts at any of the bed wards at CC. A shift can have a set minimum or maximum number

of nurses in a specific skill level. In addition, the section managers experience that a variety

of experience and competence levels for the nurses for each shift are more efficient.

2.4.1 Rescheduling

When unforeseen events occur, for instance, when a nurse reports absence for their shift

or the demand is higher than expected, the section managers must find nurses to step in

and work a shift they are not initially assigned to. These unforeseen events happen daily

at CC, and the work of finding a replacement is called rescheduling. Table 2.3 highlights

the hierarchy of the different planning problems at CC.

Table 2.3: The hierarchy of staffing problems at CC.

Staffing Problem Description Rate of change

Staffing plan
Find the minimum staffing

level per shift.
Rarely changed

Scheduling
Assign the nurses to work

shifts in a scheduling period.

Once for every scheduling

period, at least once a year.

Rescheduling

Finding replacements when

adjustments to the schedule

are required.

Every day

At the bed wards, the section managers first look towards their own employees to see

if someone is available to step in. If not, they will look into the schedule of the other

sections to see if there are some possibilities there. Each section’s schedule is created

independently, but it is possible to utilize nurses from the other sections in rescheduling.

This is referred to as cross-section rescheduling.

Nurse absences can encompass both short-term and long-term absences. In both cases,

reported absences lead to changes in the schedule, but different approaches are used to

reschedule the vacant shifts. It is not known in advance how many schedule disruptions

will occur for a given shift or for how many shifts a disruption will apply. The sick leave at

CC mainly varied between 7% and 18% from 2020 to 2022, depending on the section and

month. These percentages depict the many schedule disruptions and that some shifts have

multiple disruptions simultaneously. Appendix B presents the numerical absence data.

In addition to nurse absences, the patient load varies at the bed wards. Some days and
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shifts are more demanding than others. This variation depends on many factors, but

the main factors are the degree of severity of the patients and the turnover of patients.

If multiple demanding patients are simultaneously hospitalized at the same section, this

will increase the demand at the section. Also, if the patients are hospitalized for a short

period, and new patients arrive frequently, this increases the demand. The number of

nurses needed depends to some degree on the sum of patient load at each bed ward.

The rescheduling process can be complex, as multiple ways exist to fill a vacant shift. The

rescheduling actions are described in Table 2.4.

Table 2.4: Actions for filling a vacant shift.

Action Description

Swap
To swap shifts entail a nurse’s scheduled shift being

moved to another shift

Extra shift Assign an extra shift to a nurse

Double shift

Assign a shift to a nurse already scheduled to a shift

on the same day. This results in the nurse working two

consecutive shifts

In rescheduling, various criteria are considered to determine which nurse should work a

vacant shift. Even though the section managers strive to fulfill the laws and regulations

for nurse scheduling, some are flexible when rescheduling. The priority is to meet the

shift’s demand and ensure that at least the minimum staffing level is met. Beyond this,

the schedule planners need to balance several factors:

• Cost - The department runs on a strict budget and wishes to save money on salaries

and the possibility of extra- and overtime pay.

• Skills - The nurses in the department have a wide variety of competence, qualifica-

tions, and experience.

• Preferences - The nurses plan their personal lives around the schedule. Therefore,

the section managers strive to comply with the nurses’ preferences and requests.
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Chapter 3

Background Theory

This thesis takes an interdisciplinary approach; therefore, this chapter provides readers

with the necessary background theory to give a basic understanding of machine learning

and operations research. Section 3.1 provides an overview of the theory underlying the

relevant machine learning paradigm. Section 3.2 describes the operations research theory

necessary to comprehend the optimization methods utilized in this thesis. Finally, Section

3.3 highlights the interplay between these two fields and their prior applications.

3.1 Machine Learning

Machine learning is a subfield within artificial intelligence. Machine learning algorithms

can enable machines to learn from data and make decisions or predictions based on what

it learns. There are different machine learning algorithms based on the type of input

data available and the desired outcome. It is common to consider three main types of

learning; supervised, unsupervised, and reinforcement learning. Supervised learning uses

labeled data, unsupervised learning uses unlabeled data, and with reinforcement learning,

the machine learns from being rewarded or penalized for different decisions. This chapter

mainly focuses on supervised learning, as this is the method used for the data we have

been provided.

Supervised learning entails learning a mapping between a set of input variables, X, and

output variables, Y (Cunningham et al., 2008). Using the input-output pairs, the al-

gorithm can learn patterns and can use this knowledge to predict the output of unlabeled

data with a matching set of features. Supervised learning is applicable to both classific-

ation and regression problems. In classification, the algorithm produces a discrete value

from a predetermined set of classes, while in regression, the output is a float.

3.1.1 Machine Learning Methods

This section presents the theory behind the two supervised machine learning models ex-

plored in this thesis. Both these methods can handle classification and regression problems.
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Artificial Neural Network

Artificial Neural Network is a type of machine learning based on the hypothesis that

the mental activity in the human brain consists primarily of electrochemical activity in

networks of brain cells called neurons (Russell & Norvig, 2010).

An artificial neural network consists of neurons, and these are connected by directed links

(Nielsen, 2015). Figure 3.1 shows one type of an artificial neural network, the perceptron.

This example shows that the perceptron takes the binary inputs, x0, x1, andx2, and gives

a single binary output. Each link is applied with a weight, wi, which tells something about

the strength of the connection between the neuron and its inputs. The neuron’s output is

determined by whether the weighted sum,
∑

j wjxj , is less or greater than a set threshold.

We can also consider the neuron’s threshold as the bias, b. The bias is the negative of

the threshold and measures when the output should be 1. Equation (3.1.1) shows the

activation function for the perceptron. The activation function decides whether or not a

neuron should be activated. There are different activation functions, each with different

behavior.

Figure 3.1: Perceptron

output =

{
0 if w · x+ b ≤ 0

1 if w · x+ b > 0
(3.1.1)

Some of the most common activation functions are the Sigmoid, Rectified Linear Unit

(ReLU), and Softmax activation functions. Equation (3.1.2) is the Sigmoid function,

which outputs a value between 0 and 1 based on the input. It is often used for binary

classification problems. Equation (3.1.3) is the ReLU function. If the input is positive, it

outputs a value bigger than 0; otherwise, it outputs 0. The Softmax activation function

is used to predict the probabilities of the different outputs when making a prediction.

Equation (3.1.4) shows the mathematical formulation of the Softmax function. The task

of the activation function is to add non-linearity to the input data.
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f(x) =
1

1 + e−x
(3.1.2)

f(x) = max(0, x) (3.1.3)

f(xi) =
exi∑K
j=1 e

xj
(3.1.4)

There are two main types of neural networks; feed-forward neural networks and recurrent

neural networks. These differ in the way they handle sequential data. In a feed-forward

neural network, the data will only pass from input to output in that direction. In a

recurrent network, the data moves in cycles between the layers. This is more complex than

a feed-forward neural network due to its ability to retain and utilize sequential information.

A neural network can consist of several neurons in several layers. The input and output

layers are essential components of a neural network, providing the necessary connections

for data input and output. In addition to these layers, neural networks can incorporate

hidden layers that perform nonlinear transformations in the neural network. Figure 3.2

illustrates a neural network with an input layer, one hidden layer, and an output layer.

For a classification problem, the output layer will have the same number of neurons as

classes to predict, while for a regression problem, the output layer will only contain one

neuron, which produces one numeric value. In each layer, each neuron performs the steps

shown in the perceptron in Figure 3.1, and the new value is then transferred to the next

layer. The same procedure is performed until it reaches the output. This process is known

as forward propagation.

Figure 3.2: Architecture of a Feed-Forward Neural Network with input and output layer

and a single hidden layers.

For the neural network to train and learn, the weights and biases of the neurons need to be

adjusted to minimize the distance between the predicted output and the correct output.
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For this to happen, forward and backward propagation is used. The error between the

predicted output value and the correct target value is calculated when the neural network

has done the forward propagation. The neural network utilizes a loss function to calculate

the error. There are different loss functions for classification problems and regression prob-

lems. For classification problems, the most common loss function, presented in Equation

3.1.5, is the Categorical Cross-Entropy (CCE) which measures the dissimilarity between

the predicted class probabilities, pi, and the true class labels, yi for each class C. For

regression problems, the most commonly used loss functions are the mean squared error

(MSE) and mean absolute error (MAE). Equations 3.1.7 and 3.1.6 present the mathem-

atical formulas for calculating the MSE and MAE, respectively, where yi is the true label

and ŷi is the predicted value for the label.

CCE = −
C∑
i=1

yi log(pi) (3.1.5)

MAE =
1

n

n∑
i=1

|yi − ŷi| (3.1.6)

MSE =
1

n

n∑
i=1

(yi − ŷi)
2 (3.1.7)

In backpropagation, the neural network uses an optimization algorithm to adjust the

weights and biases of the neural network. The most basic among the optimizers is the

gradient descent, which is presented in Algorithm 1. In gradient descent, a gradient of the

error is computed concerning the output weights. The gradient is then used to adjust the

weights and biases in each layer by moving backward until the input layer. A learning rate,

α, is used in the backpropagation process to determine the size of the weight adjustments.

A learning rate too low may result in the network converging too slowly or being stuck in

the local optima, and a learning rate too large may result in the network diverging. Each

iteration containing both forward and backward propagation is called an epoch, and it is

essential to choose a number of epochs such that the loss converges to a value. Each epoch

considers all data points in the training set.

Algorithm 1 Gradient Descent Algorithm

1: w←any point in the parameter space

2: for each epoch do

3: for each wi in w do

4: wi ← wi − α ∂
∂wi

Loss(w)

To validate the performance of a trained neural network, the data is first split into two

sets: a training and a test set. It is also common to create a validation set by randomly

splitting the data between the training set and testing the performance of these random

data points. The trained model should be able to predict the output of the test set, and

the accuracy of the predictions can be computed by measuring the distance between the

correct and predicted output. This is the score of how well the neural network can learn

patterns in the data set.
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Like many other machine learning methods, neural networks are sensitive to overfitting.

Overfitting happens when the model becomes overly complex and excessively fits the train-

ing data, making it less capable of generalizing to new, unseen data. This phenomenon

often occurs when the input data contains many features or the model has many para-

meters relative to the available training examples.

Decision Trees

Decision Trees are simpler supervised machine learning methods (Russell & Norvig, 2010).

A decision tree consists of several nodes in a hierarchical structure, starting with the

root node at the top and ending with leaf nodes at the end of each branch. Figure 3.3

shows a decision tree representation. Each decision node represents a specific condition

or attribute, and based on the outcome of the decision, the tree branches out to different

paths. Each decision node examines a feature of the data and determines which branch

to follow based on a specific splitting criteria. The leaf nodes represent the final output

of a combination of decisions made in the decision nodes.

Figure 3.3: Decision tree with root, decision, and leaf nodes.

For classification problems, decision trees rely on computed Information Gain, and a split-

ting criteria is used to make each decision. Entropy and Gini Impurity are examples of

splitting criteria represented as mathematical formulations. They aim to maximize the

Information Gain at each split within the tree. The difference between the two is that

the Entropy quantifies the randomness and uncertainty in the data. At the same time,

the Gini Impurity calculates the probability of misclassification of a randomly selected

element in the dataset. Equations (3.1.8) and (3.1.9) are the mathematical formulation of

the Entropy and Gini Impurity for each class C, where pi is the predicted probability for

sample i. Features with the highest Information Gain are considered the most important

since they provide more valuable information for decision-making. When dealing with a

substantial number of features and the objective is to prioritize predictions on the most
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important features. Therefore, the Gini Impurity is often preferred over Entropy.

Entropy = −
C∑
i=1

pi log(pi) (3.1.8)

Gini Impurity = 1−
C∑
i=1

p2i (3.1.9)

For regression problems, the splitting criteria most commonly used is the MSE or MAE.

Both these criterion calculates the distance between the predicted and actual values. The

MSE is more sensitive to outliers in the dataset than the MAE.

Decision trees are subject to overfitting but can be handled with a technique called decision

tree pruning (Russell & Norvig, 2010). This works by eliminating nodes that are not

relevant to the decisions made. For decision trees, different parameters can be chosen to

cause the predictions to be more accurate. For instance, it is possible to set a maximum

depth or number of splits for the tree to perform. This allows the tree’s complexity to be

controlled, preventing it from overfitting the training data.

3.2 Operations Research

Optimization is the science of making the best possible decision for some goal given a set of

restrictions (Lundgren et al., 2010). The decisions are made using a defined objective and

restrictions on the decisions that can be made. The field of optimization can be viewed

as part of operations research. Operations research encompasses a variety of quantitative

methods for improving decision-making in complex systems. Mathematical programming

is one of this field’s most important and widely used techniques. Other operations research

fields include statistics, queuing theory, simulation, control theory, and game theory (Lun-

dgren et al., 2010). This section focuses on the theory in operations research relevant to

this thesis.

3.2.1 Mathematical Programming

Mathematical programming is a subfield within operations research that focuses on optim-

izing mathematical models while adhering to a set of constraints (Lundgren et al., 2010).

A mathematical model attempts to describe some part of the real world in mathematical

terms for a particular purpose (Meyer, 2004).

When a decision problem is identified, the relevant aspects of the problem are formulated

as a mathematical model. Equations (3.2.1) - (3.2.3) illustrate how a linear programming

problem can be expressed in a general form.

min z =

n∑
j=1

cjxj (3.2.1)
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s.t.

n∑
j=1

aijxj ≤ bi i = 1, ...,m (3.2.2)

xj ≥ 0 j = 1, ..., n (3.2.3)

The objective of a problem is expressed through an objective function that is to be max-

imized or minimized and depends on decision variables. Equation (3.2.1) represents the

objective function of a general minimization problem. The restrictions on the values of

the decision variables are expressed through a set of constraints, illustrated in Equations

(3.2.2)-(3.2.3) in the example. The constraints define a set of feasible solutions for the

problem. This set of feasible solutions creates the solution space for the problem, whose

size and structure are affected by the problem’s complexity and the number of constraints.

Mathematical programming uses techniques to identify the optimal solution to the problem

among this set of feasible solutions.

Mathematical models can be formulated with one or more objectives. In single-objective

optimization problems, it is always possible to say that one solution is better or worse than

another. However, a wide variety of problems involve the simultaneous optimization of

several objectives that present some conflict among them. These are referred to as multi-

objective optimization problems (Jaimes et al., 2009). These problems usually seek a set of

good alternative solutions with different trade-offs between the objectives. As there is no

straightforward method to determine if a solution is better than another, multi-objective

optimization methods rely heavily on the problem’s decision-maker to provide information

to find solutions that better fit their preferences.

There are several mathematical programming techniques for solving multi-objective op-

timization problems. These can be classified into three categories: a priori approaches,

interactive approaches, or a posteriori approaches, depending on when preferences from

the decision maker are incorporated into the search process (Jaimes et al., 2009). The lex-

icographic method is an example of an a priori approach. The problem is solved iteratively

as a series of single-objective optimization problems, where the most important objective

is solved first. The optimal value found for each objective is added as a constraint for

subsequent iterations.

Mathematical programming can be classified into two main categories: deterministic and

stochastic modeling (Kall et al., 1994). The main difference between them is how one

should describe a problem in terms of uncertainty. Deterministic modeling is an approach

where all input parameters are assumed to be precisely known. In other words, it is a

model with no random component. As a result, a deterministic model has an unambiguous

solution, and the result can often be obtained by direct calculation.

In contrast to deterministic modeling, stochastic modeling studies how to incorporate un-

certainty in optimization problems into the model through probability distributions (King

&Wallace, 2012). Stochastic programming requires assumptions about the probability dis-

tributions for uncertain parameters. Making correct assumptions about the distribution

can lead to reliable results. However, with multiple possibilities for uncertainty realiz-

ation, the estimations may be difficult, and finding a solution can be computationally
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demanding.

Simulation is a method that is used to assist in decision-making under uncertainty. In

the context of operations research, simulation refers to the imitation of the behavior of a

real-world process or system. Simulation is often used when there is a need to describe and

model uncertainty in optimization and decision-making, particularly in dynamic systems

that change over time (Figueira & Almada-Lobo, 2014). Simulation can be used in both

deterministic and stochastic programming. In the approach of combining simulation and

deterministic programming, uncertainty is not explicitly modeled as random variables

but rather by running multiple scenarios or replications to capture the range of possible

outcomes. If the problem can be accurately represented by a deterministic model but with

some uncertainty in the input data, then simulation with deterministic modeling may be

a more practical and efficient approach.

3.2.2 Solution Methods

Solution methods for optimization problems can be roughly divided into two categories:

exact algorithms and heuristics (Lundgren et al., 2010; Sörensen, 2015). Exact algorithms

are guaranteed to find the optimal solution within a finite amount of time, while heuristics

aim to find a good solution quickly without such a guarantee. The choice of solution

method depends on the type of problem, the available resources, and the desired level of

accuracy. This section provides an overview of the solution methods and presents their

strengths and shortcomings.

Exact Methods

One solution method that is widely used in mathematical programming is exact methods.

They involve the use of algorithms to search the solution space and guarantee to find

the optimal solution. However, they can be computationally expensive and may not be

practical for large-scale problems.

There is a large number of commercial solvers for solving different optimization problems.

The Simplex method is a commonly used method for solving linear programming (LP)

problems, implemented in many commercial solvers. An LP problem involves optimizing

a linear objective function under a set of linear constraints where all the variables are

continuous. In R2, LP problems can be graphically solved and illustrated. Figure 3.4

shows an example of a graphical illustration of an LP problem, where the feasible region

is denoted by X. The Simplex method systematically explores the feasible region of the

problem. The algorithm starts at one of the extreme points of the feasible region. At

each iteration, the algorithm moves from one extreme point to another in a systematic

way, improving the objective function value. The algorithm terminates when no further

improvement is possible and the current solution is optimal.

The Simplex method is designed to handle LP problems with continuous variables. When

all the variables in an LP problem are required to be integers, the optimal solution may

not be found at an extreme point. The branch and bound methods are better suited for
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Figure 3.4: Graphical illustration of a LP problem. Figure based on illustration from

Lundgren et al. (2010).

handling integer LP problems (Lundgren et al., 2010). In the branch and bound method,

the problem is divided into subproblems and solved recursively by exploring a tree-like

structure of potential solutions. The subproblems are then evaluated systematically until

the best solution is found.

Figure 3.5 illustrates an example of a branch and bound tree for solving a maximization

problem. At each node in the tree, a linear relaxation of the problem is solved using

the Simplex method, giving a partial solution to the problem. This relaxation involves

allowing the variables to take on fractional values, relaxing the integrality constraint. The

edges represent the new constraints that define the new subproblems. The algorithms use

bounds to help guide the search for the optimal solution and serve as a measure of the

quality of the current solution. Bounds provide an estimation of the objective function

value for each subproblem. For maximization problems, the lower bound represents the

best feasible solution found so far, while the upper bound provides an upper limit on

the optimal solution. The result from the subproblem is discarded if it cannot produce a

better solution than the lower bound. The optimality gap is the difference between the

upper bound and the lower bound, indicating the potential improvement in the solution.

It is common to represent the optimality gap as the percentage distance from the current

best solution to the current best bound. Optimality is proven when the gap reaches zero.

By iteratively solving subproblems and updating the bounds, the branch and bound

method aim to minimize the optimality gap and prune subproblems that cannot yield

better solutions. The algorithm terminates when the optimality gap becomes sufficiently

small or when all subproblems have been explored. The branch and bound method guar-

antees to find an optimal solution to an integer LP problem, although it can be slow and

require effort that grows exponentially with the problem size.

The Gurobi solver is an example of a commercial solver used to solve complex optimization

problems efficiently and effectively. It is a widely used mathematical optimization solver
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Figure 3.5: Example of a branch and bound tree for a maximization problem. The

subproblem is computed at every node. The optimal solution is found in node P6.

developed by Gurobi Optimization, LLC. The Gurobi interface allows users to build an

optimization model, pass the model to Gurobi, and obtain the optimization result. The

solver utilizes a combination of state-of-the-art algorithms and techniques to find optimal

or near-optimal solutions for linear programming (LP), mixed-integer programming (MIP),

and other types of mathematical optimization problems. It automatically selects the most

appropriate algorithm based on the problem characteristics. The solver’s implementation

and algorithms are proprietary to Gurobi Optimization. The point of the solver is that the

users generally do not need to worry about the details of how the different techniques work.

However, the solver is based on the branch and bound method, in addition to strategies

like simplex-based methods, primal-dual interior-point methods, heuristics, cutting-plane

techniques, and parallelism (Gurobi Optimization, n.d). Gurobi is known for its speed,

reliability, and robustness, making it a popular choice among researchers, practitioners,

and organizations across various industries for tackling optimization challenges.

Heuristics

Realistic formulations of the natural world are likely to lead to mathematical problems

which are very difficult, if not impossible, to solve with exact methods in a reasonable

amount of time and using reasonable amounts of computational resources (Juan et al.,

2023). This is usually due to the combinatorial nature of practical problems. As a result,

the search space of problems of high complexity is often too large or of too high dimension-

ality to be effectively solved to optimality, making mathematical programming impractical

or too time-consuming to use. Using approximate heuristic solution methods is a common

approach in complex computational problems instead of exact methods (Juan et al., 2023;

Lundgren et al., 2010).
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There are several definitions of heuristics. Silver et al. (1980) use the definition ”heuristic

methods are used for solving problems by an intuitive approach in which the structure

of the problem can be interpreted and exploited intelligently to obtain a reasonable solu-

tion.” They are often denoted as ”rules of thumb” (Lundgren et al., 2010). Heuristics use

previous experience and intuition to solve a problem (Petropoulos et al., 2023). A heur-

istic algorithm is designed to solve a problem in a shorter time than exact methods by

using different techniques ranging from simple greedy rules to complex structures, which

could be dependent on the problem’s characteristics. However, their performance can vary

depending on the problem being solved. In contrast to exact methods, heuristics do not

guarantee to find the optimal solution and, therefore, generally return solutions that are

worse than optimal (Sörensen, 2015).

Greedy algorithms are common examples of heuristics (Lundgren et al., 2010). They

belong to the group of heuristics called construction heuristics, where one component is

added to the solution in each iteration until a feasible solution is reached. Using a greedy

heuristic entails that the element which provides the best contribution to the objective

function is that which is added to the solution set. Greedy heuristics, like most heuristics,

do not guarantee any solution quality (Lundgren et al., 2010).

3.3 Machine Learning and Operations Research

Optimization is a multidisciplinary field (Lundgren et al., 2010). For a successful result in a

practical application, one often needs skills and competence in mathematics and computer

science combined with technical or economic competence. Burke et al. (2004) believe that

interdisciplinary collaborations are essential to make serious scientific advances in nurse

scheduling research and to increase the utilization of that research in the real world. This

will mainly require expertise from operations research and artificial intelligence.

There has been a significant increase in exploring machine learning in other scientific

disciplines in the last decade, mainly using machine learning for optimization (Petropoulos

et al., 2023). They are two closely related fields with many overlapping application areas,

making machine learning a natural candidate for further research on optimization methods

(Bengio et al., 2021). Machine learning approaches may exploit the patterns or specific

characteristics that often occur for problems in practical situations of interest. The aim is

that one can develop faster algorithms for practical cases by exploiting common patterns

in the given instances.

There are several ways for interdisciplinary collaborations between operations research and

machine learning. Bengio et al. (2021) have surveyed the existing literature by grouping

the main contributions of machine learning for optimization into families of approaches.

They classify three main groups: end-to-end learning, learning to configure algorithms,

and machine learning alongside optimization algorithms.

End-to-end learning describes approaches where machine learning acts alone to provide a

solution to the optimization problem. The machine learning model is trained to output

solutions directly from the input instance. One example highlighted by Bengio et al. (2021)

trains a neural network to predict the solution of a problem with uncertainty. The problem
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is formulated as a deterministic mixed-integer linear programming. The application needs

to make decisions under incomplete information, so machine learning is used to predict

solutions for the uncertainty aspect of the problem based on the available information.

Figure 3.6 illustrates the process in end-to-end approaches.

Figure 3.6: End-to-end learning. Figure from Bengio et al. (2021).

In cases where it is not sufficient to only use machine learning to tackle a problem, ma-

chine learning can be applied to provide additional information to an optimization al-

gorithm. These approaches fall into the second group for combining machine learning and

optimization, learning to configure algorithms, as defined by Bengio et al. (2021). Figure

3.7 illustrates the process for these approaches. An example approach in this group is

when machine learning models are used to select the input parameters of an optimiza-

tion method. Another example, highlighted by Bengio et al. (2021), is using machine

learning on mixed-integer linear programming problems to estimate whether applying a

Dantzig-Wolfe decomposition will reduce the solving time.

Figure 3.7: Using machine learning to augment an optimization algorithm. Figure from

Bengio et al. (2021).

In the approaches where machine learning is used alongside optimization algorithms, the

two methods interact during the solving process, as defined by Bengio et al. (2021). This

approach differs from the other two groups in that the optimization algorithm repeatedly

queries the same machine learning model to make decisions, using the current state of

the algorithm as input. By integrating machine learning with optimization algorithms,

the machine learning model is leveraged to help solve complex problems more efficiently.

Bengio et al. (2021) highlight an example where a branch and bound method is used to

solve a mixed-integer linear programming problem. Selecting the branching variable is

either too heuristic or too slow, so machine learning is used for the branching decisions

made at every node. Figure 3.8 illustrates the process for these approaches.
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Figure 3.8: Using machine learning alongside optimization algorithms. Figure from

Bengio et al. (2021).
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Chapter 4

Literature Review

This chapter comprehensively reviews the literature on scheduling and rescheduling prob-

lems in hospital management. Section 4.1 outlines our search strategy, explaining how

we identified relevant literature for this review. In Section 4.2, we position our research

problem within the literature. Section 4.3 describes the nurse scheduling and rescheduling

problems and compares different approaches to addressing these problems. Section 4.4 re-

views aspects for handling demand uncertainty in nurse scheduling and includes reviewing

the use of machine learning in personnel scheduling and rescheduling. Finally, Section 4.5

concludes the literature review and motivates this thesis.

4.1 Search Strategy

The literature reviews on personnel planning by Van den Bergh et al. (2013) and Mutingi

and Mbohwa (2017) were important to discover the relevant literature presented in this

chapter. Other parts of the literature were found using the search engine Google Scholar.

The keywords used include nurse/ personnel scheduling/ rostering, nurse/ personnel res-

cheduling/ rerostering, shift scheduling, scheduling problem, rescheduling problem, oper-

ations research, demand prediction, and machine learning.

To find the most relevant literature for our study, we narrowed our literature review to

focus solely on personnel scheduling, which has a wide range of applications in various

industries. As reported by Van den Bergh et al. (2013), nurse scheduling is the most

commonly studied area within personnel scheduling. Although other industries such as

transportation, military, manufacturing, retail, and service personnel have also explored

personnel scheduling in operations research, we prioritized literature on nurse scheduling

as it is directly relevant to our research problem. However, the literature on nurse res-

cheduling was primarily retrieved from the literature review in our Specialization Report

(Johansen et al., 2022). The machine learning literature was narrowed down to focus on

personnel demand predictions within hospital scheduling.
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4.2 Positioning in the literature

During recent decades, the interest in studying the healthcare industry in the context of

operations research has increased (Van den Bergh et al., 2013). There is a growing demand

for healthcare with little increase in resources, leading to a capacity problem and a staff

shortage (Helsepersonellkommisjonen, 2023). This ever-increasing pressure leads to the

desire for better use of available resources. There is much potential to organize hospital

processes more efficiently and effectively (Hans et al., 2012).

Hulshof et al. (2012) provide a comprehensive overview of the typical decisions to be made

within the managerial area of resource capacity planning and control in healthcare. To

position and structure all healthcare planning and control decisions, they present a tax-

onomy that provides a method to identify, break down and classify these decisions. The

taxonomy aims to support healthcare professionals in improved decision-making, result-

ing in improved performance in healthcare delivery. The taxonomy is divided into four

hierarchical levels of control and six vertical areas of healthcare services. We use this tax-

onomy to position our work in the relevant literature and to put the scheduling problem

at CC into a broader context of healthcare services. The taxonomy is illustrated in Figure

4.1.

Figure 4.1: The taxonomy by Hulshof et al. (2012) for resource capacity planning and

control decisions in healthcare.

The taxonomy’s columns represent the different healthcare industry services. This aims

to illustrate the context in which resource capacity planning and control decisions are

made. We position our work within the inpatient care service. Inpatient care services

provide care to hospitalized patients that are admitted overnight. This typically concerns

24-hour-a-day staffing levels, where the personnel works shifts. General nursing wards are

examples of inpatient care services relevant to our nurse scheduling focus.

The hierarchical levels represent the hierarchical nature of decision-making in healthcare
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organizations and are divided into strategic, tactical, and operational. The operational

level is then subdivided into offline and online operational planning. Problems related to

the lower hierarchical levels can have less uncertainty as more information is known and

the planning horizon is shorter.

The first hierarchical level is known as the strategic planning level. This level addresses

the structural decision-making processes within hospital resource planning. Within the

inpatient care service, the strategic level includes capacity dimensioning. This encompasses

deciding on an appropriate number of employed nurses to meet demand variability.

Tactical planning is the second level within the hierarchy and addresses the organization

and execution of the healthcare delivery process operations. Within the inpatient care

service, tactical planning involves staff shift scheduling. This concerns deciding the exact

staffing level to meet demand, where demand is based on forecasted assumptions.

The taxonomy’s lowest level of the vertical axis represents the operational planning level.

This involves the short-term decisions related to the healthcare delivery process execution.

The operational planning level is separated into online and offline operational planning.

Offline operational decisions concern capacity resource planning, where the decisions are

made before executing the schedule. Within the inpatient care service, offline operational

planning involves the nurse scheduling problem. It includes deciding what staff should be

assigned to which shifts. The objective is to satisfy a complex set of restrictions involving

work regulations and employee preferences while creating a schedule that can cope with

future supply and demand uncertainties.

Online operational decisions regard time-critical decisions such as emergency coordina-

tion, rush orders, and decisions involving patient complications. Within the inpatient care

service of Hulshof et al. (2012) ’s taxonomy, online operational planning involves staff res-

cheduling. At this level, uncertainties in demand and supply are realized with the current

demand fluctuations and nurse absences. Decisions on this level can therefore involve the

reassignment of dedicated nurses. In the related literature, this problem of reestablishing a

feasible schedule as a reaction to uncertainty is known as the nurse rescheduling problem.

This thesis focuses on personnel planning at the operational level. Decisions made at the

strategic and tactical levels are considered out of scope. However, they affect the decisions

made at the lower levels. The workforce size determined at the strategic level regulates

the supply level for the scheduling and rescheduling problem. Decisions at the tactical

level form a basis for the long-term forecasted demand.

At the operational level, both online and offline operational planning are studied. The

problem at the offline level is creating a schedule for a fixed workforce. The problem at

the online operational level is solved by a realization of the uncertainties in evaluating the

performance of different schedules.

4.3 The Nurse Scheduling and Rescheduling Problem

The nurse scheduling problem has been widely studied in recent decades (Abdalkareem et

al., 2021). The aim is to create an optimal schedule for nurses that meets patient demand
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while considering factors such as nurse preferences and labor regulations (Van den Bergh et

al., 2013). The nurse scheduling problem is particularly challenging due to the complexity

of nurse shift patterns and the need to balance the workload and preferences of nurses

with varying patient loads.

The nurse rescheduling problem has attracted less attention in the literature than the

nurse scheduling problem but is becoming increasingly popular. Moz and Pato (2003,

2007) were the first to formally define the nurse rescheduling problem using optimization

methods (Mutingi & Mbohwa, 2017). As described in their study, nurse rescheduling

problems occur when there is a disruption to the schedule. This happens due to unforeseen

events such as nurse absences or increased demand. These disruptions lead to an imbalance

between the supply and demand for nurses, which means the schedule for the given shift

becomes infeasible. An efficient method to rebuild the schedule is required to meet the

demand, which may result in multiple alterations.

The nurse scheduling problem and the nurse rescheduling problem are closely related

problems that arise in healthcare operations management. Although the nurse scheduling

and rescheduling problems are related, they are often studied separately in the literature.

The strategies used in nurse scheduling will significantly impact the performance of the

rescheduling strategies. Studying combinations of strategies in the two problems together

is important to develop a more comprehensive scheduling model that can handle the

complex and dynamic nature of nurse scheduling.

This section provides a comprehensive overview of the nurse scheduling and reschedul-

ing problems and the associated uncertainty aspects. Section 4.3.1 first explores the key

aspects of the nurse scheduling problem. Subsequently, Section 4.3.2 delves into the un-

certainty aspects that affect nurse scheduling. Section 4.3.3 looks at how these uncertainty

aspects are handled in the related literature. Building on this, Section 4.3.4 presents the

key aspects of the nurse rescheduling problem.

4.3.1 Key Aspects in The Nurse Scheduling Problem

This section aims to provide an overview of the key aspects of the nurse scheduling problem

to provide a better understanding of the problem and the various approaches that have

been proposed to tackle it.

Demand

Hospitals must ensure that they have an adequate number of nurses with the right skill sets

available to meet patient needs. Demand constraints may involve specifying a minimum

number of nurses needed for each shift and the skills required to provide adequate care.

Hard constraints are commonly used to guarantee that the minimum demand for each shift

is fulfilled (Van den Bergh et al., 2013). Alternatively, understaffing and overstaffing are

penalized in the objective (Ingels & Maenhout, 2015). Recently, it has become common

to model demand as a soft constraint by including desired demand, where deviations from

the desired demand penalize the objective (Bard & Purnomo, 2005b; Beckmann & Klyve,
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2016; Fügener et al., 2018; Turhan & Bilgen, 2020).

With the demand for specific skills, it is common to include competence requirements

within the demand requirements. Van den Bergh et al. (2013) present user-definable and

hierarchical skills. In the case of user-definable skills, the scheduler has the freedom to

define skills for every personnel member. Hassani and Behnamian (2021) and Schoenfelder

et al. (2020) use definable skills. For hierarchical skills, the personnel with a higher

skill classification can carry out the tasks of a lower-ranked employee but not vice versa

(Beckmann & Klyve, 2016; Cowling et al., 2002; Lim & Mobasher, 2011).

Hours and shifts

The decision process in nurse scheduling is impacted by governing laws and regulations.

Many studies limit schedules to assign a maximum of one shift per day per nurse (Bard &

Purnomo, 2005b; Fügener et al., 2018; Hassani & Behnamian, 2021; Ingels & Maenhout,

2015; Schoenfelder et al., 2020; Turhan & Bilgen, 2020). Lim and Mobasher (2011) use

an upper limit for the number of shifts assigned to a full-time nurse within the scheduling

period. Some studies include an upper bound for weekly working hours (Beckmann &

Klyve, 2016; Løyning & Melby, 2018).

Consecutiveness

A central aspect of scheduling is the distribution of work. It is common to include limits on

the number of consecutive work shifts. Beckmann and Klyve (2016), Fügener et al. (2018),

Ingels and Maenhout (2015) and Turhan and Bilgen (2020) include a maximum limit for

consecutive working days. Turhan and Bilgen (2020) also include a minimum limit for

consecutive working days in their model. Some studies penalize undesirable distribution

of off-days in the objective, and some extend to include isolated off-days. Turhan and

Bilgen (2020) do not allow isolated work days, as they are considered undesirable.

Illegal combinations

Due to laws and regulations, some shift combinations are illegal to schedule. There are

various approaches to handling illegal shift assignments. One approach is to use minimum

rest regulations as hard constraints (Bäumelt et al., 2016; Clark & Walker, 2011; Ingels

& Maenhout, 2015, 2017; Kitada & Morizawa, 2013; Maenhout & Vanhoucke, 2011; Moz

& Pato, 2003, 2004, 2007; Pato & Moz, 2008). Daily rest is the most common to include.

Another approach is to prohibit certain shift combinations. Lim and Mobasher (2011)

prohibit scheduling an early shift to follow a night shift. Cowling et al. (2002) assign

shift patterns instead of individual shifts and connect a penalty value for each pattern

assigned. Similarly, Beckmann and Klyve (2016) and Løyning and Melby (2018) combine

hard constraints for daily rest with a reward for assigning desirable shift patterns.
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Contracted Work

In most cases, the employees have a defined number of contracted hours in the scheduling

period. Hassani and Behnamian (2021), Ingels and Maenhout (2015) and Schoenfelder

et al. (2020) solve this by defining a minimum and a maximum number of assigned shifts

per nurse during the scheduling period. Fügener et al. (2018) set the contracted hours

in the scheduling period as an upper bound for the number of assigned hours per nurse.

Maenhout and Vanhoucke (2013) use soft constraints for the minimum and maximum

working hours during a week and penalize any violations of these limits in the objective.

Bard and Purnomo (2005c) limit the number of overtime hours that a single nurse can

be scheduled for. The scheduling rules and requirements regarding skill mix can make

it challenging to create schedules with the same working hours every week. To facilitate

more flexibility in the scheduling, some utilize the possibility of scheduling fewer hours

during some weeks for some nurses and more hours in others where the average number

of hours corresponds to the nurses’ contracted hours (Beckmann & Klyve, 2016; Løyning

& Melby, 2018).

Weekends

Weekend shifts are generally considered undesirable among nurses. Lim and Mobasher

(2011) and Turhan and Bilgen (2020) set an upper limit for the number of weekend shifts

assigned to each nurse. Maenhout and Vanhoucke (2013) handle varying policies across

different departments, including partial and complete weekends, and penalize any policy

violations or limits regarding weekend staffing. Beckmann and Klyve (2016) and Løyning

and Melby (2018) state that nurses should work an entire weekend or no weekend shifts

in a given week. Løyning and Melby (2018) use predefined weekend groups for the nurses

to simplify the solution process.

Preferences

Nurses have different needs and obligations outside of work that affect their preferences

to work certain shifts. Several studies in the literature have proposed different methods

to handle nurse preferences in the scheduling models. Bard and Purnomo (2005b), Has-

sani and Behnamian (2021), Ingels and Maenhout (2015), Løyning and Melby (2018),

Maenhout and Vanhoucke (2013) and Turhan and Bilgen (2020) incorporate preferences

in the objective function to reward preferred shift assignments and penalize unpreferred

shift assignments. Others, such as the model developed by Lim and Mobasher (2011),

have assigned grades to employee preferences. Beckmann and Klyve (2016) maximize the

number of respected requests in combination with preferable patterns, while the model

by Schoenfelder et al. (2020) incorporates preferences through constraints by limiting the

total number of unpreferred shift assignments for a given nurse.

Hassani and Behnamian (2021) and Turhan and Bilgen (2020) have extended their models

to include planned vacations and restrict scheduling shifts within preplanned vacation

periods for specific nurses. However, a focus on maximizing the number of fulfilled requests

can sometimes lead to an imbalance in the perceived schedule for employees. In the
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worst case, one employee will be the victim of all the violations. For instance, the study

by Wolbeck (2019) proposes a measure of fairness to maximize the quality of the worst

individual schedule, while others have focused on minimizing the perceived difference

between the best and worst schedules.

Cross-Section Scheduling

It is common to use a decentralized scheduling practice where each section within a hospital

schedules its assigned nurses independently. However, due to the rise in personnel costs

and shortage of full-time nurses, the cross-utilization of nurses is an approach that has

gained attention (Brusco, 2008).

Cross-section scheduling entails utilizing resources across hospital sections to improve the

efficiency of nurse scheduling. It refers to the process of assigning nurses to work in different

sections within a hospital. Several articles have studied the effect of the cross-utilization

of resources within healthcare and other industries. These studies found that coordination

across sections in scheduling could be an effective strategy for hospitals. It improves the

flexibility in responding to changes in demand and reduces staffing costs and undesirable

staff schedules (Campbell, 1999; Fügener et al., 2018; Wright & Mahar, 2013).

Cross-section scheduling can be utilized to resolve structural personnel shortages (Maen-

hout & Vanhoucke, 2013). Studies that consider cross-section scheduling at the offline

operational level often look at pools of cross-trained nurses who can work in different

sections (Gnanlet & Gilland, 2014; Wright & Mahar, 2013). Both studies address the

decision of which budget of float nurse hours should be available during a given period.

Kortbeek et al. (2015) highlight the importance of cross-utilization when studying the im-

pact of demand variability and supply buffers in nurse scheduling. With cross-utilization,

the variability in demand balances out due to economies of scale, so less buffer capacity

is required. Without cross-utilization, the buffer capacity required to protect against un-

certainty in demand can lead to regular overstaffing. Similarly, Maass et al. (2017) aims

to determine the optimal number of cross-trained nurses to account for supply variability

and how these should be scheduled.

4.3.2 Uncertainty in Nurse Scheduling

Most completed research on the nurse scheduling problem focus on the problem in a

deterministic setting, while fewer studies include the variability and uncertainty aspects

that occur (Burke et al., 2004; Hassani & Behnamian, 2021; Lim & Mobasher, 2011; Van

den Bergh et al., 2013). In reality, the nurse scheduling problem faces several uncertain

factors that impact the problem. Van den Bergh et al. (2013) define uncertainty of demand

and uncertainty of capacity as two categories of uncertainty in personnel scheduling. The

demand uncertainty for the nurse scheduling problem includes variability related to the

number of patients and the patient load (Bard & Purnomo, 2005a; Lim &Mobasher, 2011).

Uncertainty of capacity results from nurse absenteeism, sick leave, and other factors that

affect nurse availability.
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Uncertainty of demand may cause the expected demand determined in the nurse schedul-

ing problem to differ from the actual demand for nurses realized in the nurse rescheduling

problem. This deviation from expected demand may result from fluctuations in patient

arrivals and departures, resulting in unstable numbers of patients. In addition, the work-

load related to each patient is subject to uncertainty (Bard & Purnomo, 2005a). This

unpredictable fluctuation in patient workload results in nurse demand variability.

As for the uncertainty of demand, most literature on the nurse scheduling problem ignores

uncertainty of supply (Van den Bergh et al., 2013). The supply of nurses is assumed to be

deterministic and is only treated as an input parameter for creating the schedules. This

approach overlooks the real-world uncertainties that affect the supply of nurses and may

result in suboptimal schedules that require frequent modifications in the online operational

phase.

4.3.3 Handling Uncertainty

Studies that focus on the nurse scheduling problem in a deterministic setting make as-

sumptions concerning the demand and availability of nurses. During the execution of

the schedule, these assumptions may prove to be insufficient representations of reality.

To handle the uncertainty, it is crucial to generate schedules better equipped to handle

disruptions caused by unexpected events (Hazır et al., 2010). A schedule should be able

to deal with or absorb uncertainties by having predefined solutions for addressing those

uncertainties (Ingels & Maenhout, 2015; Lim & Mobasher, 2011).

Mismatches between supply and demand can prove to be very costly. Therefore, it has

become increasingly popular to identify ways to react to short-term supply and demand

variations (Bard & Purnomo, 2005a; Schoenfelder et al., 2020). Labor costs represent

a large portion of hospitals operating costs and can significantly increase with reactive

schedule changes due to deviations between supply and demand (Ingels & Maenhout,

2015). In addition to increased costs, schedules with low robustness may lead to lower

satisfaction among the nurses as it results in less predictability concerning their schedule

(Ingels & Maenhout, 2015).

To deal with uncertainty, most studies propose various reactive measures (Ingels & Maen-

hout, 2015). Reactive scheduling means that the schedule is adjusted in response to

changes in patient demand or nurse availability (Bard & Purnomo, 2005a; Ingels & Maen-

hout, 2015). This includes using overtime work, reallocating resources, making schedule

changes, or accepting that demand cannot be fully met.

Ingels and Maenhout (2015) introduce the concept of proactive strategies. Proactive

strategies are used at the tactical and offline operational levels to build robustness and flex-

ibility into the schedules so that unexpected events will have less impact during schedule

execution. Reserve duties, or buffers, are a common proactive strategy for incorporating

robustness into nurse schedules. Ingels and Maenhout (2015) introduce several variations

for utilizing reserve duties to construct stable shift schedules and evaluate the performance

of each strategy. Hazır et al. (2010) evaluate if buffers are able to handle the uncertainty

and conclude that schedules with larger buffers are preferred regarding robustness but

30



CHAPTER 4. LITERATURE REVIEW

may also deteriorate the cost. Their study addresses the important issue of determining

the best trade-off between cost and robustness.

Several studies account for uncertainty using robust optimization defined by Soyster

(1973). Even though Hassani and Behnamian (2021) argues that robust optimization

in scheduling leads to a realistic presentation due to the importance of the problem and

the need for sustainable schedules against uncertainty, this form of robust optimization

should not be confused with robust strategies in nurse scheduling. Robust strategies are

looser in definition than robust optimization.

4.3.4 Key Aspects in The Nurse Rescheduling Problem

The nurse rescheduling problem handles realized uncertainty by using reactive strategies

to address the schedule disruptions. As with the scheduling problem, there are many

important aspects to consider in the rescheduling problem. This section discusses the

key aspects of rescheduling, including the similarities and differences from the scheduling

problem.

Demand

The rescheduling problem occurs as a result of unmet demand. Once the original schedule

is modified, the new schedule should guarantee that the minimum demand threshold is

met (Bäumelt et al., 2016). Minimum demand is often classified in terms of the number of

nurses needed. Some studies also include minimum demand for specific skills (Beckmann

& Klyve, 2016; Lim & Mobasher, 2011). Similar to the nurse scheduling problem, demand

constraints are often modeled as hard constraints to ensure no understaffed shifts (Bäumelt

et al., 2016; Clark & Walker, 2011; Kitada & Morizawa, 2013; Lilleby et al., 2012; Moz &

Pato, 2003, 2004, 2007; Pato & Moz, 2008). However, some studies use soft constraints

for demand with penalization for understaffing in the objective (Bard & Purnomo, 2006;

Ingels & Maenhout, 2017, 2018; Maenhout & Vanhoucke, 2011). Other approaches include

minimizing the deviations from desired demand in the rescheduling, thereby minimizing

both under- and overstaffing (Maenhout & Vanhoucke, 2011).

There are several variations in the relevant literature regarding how uncertainty in demand

is treated. Ingels and Maenhout (2018) run a discrete-event simulation of the demand

for each period during the day, meaning demand between periods is independent. Still,

upper and lower bounds for staffing requirements are imposed. Long et al. (2022) handle

uncertain demand with a distributionally robust model by minimizing the expected costs

for the scheduling period using distributions to model the uncertainty.

Supply

In contrast to the nurse scheduling problem, most relevant literature regarding the res-

cheduling problem assumes the nurse supply is uncertain. Uncertainty in supply is treated

in several ways within nurse rescheduling. Bard and Purnomo (2005c, 2006), Lilleby et al.
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(2012), Long et al. (2022) and Maenhout and Vanhoucke (2011) allow the pool of nurses

to include external nurses, which consists of nurses employed externally to the section

studied. On the other hand, Bäumelt et al. (2016), Clark and Walker (2011), Ingels and

Maenhout (2017, 2018), Kitada and Morizawa (2013), Maenhout and Vanhoucke (2011),

Moz and Pato (2003, 2004, 2007), Pato and Moz (2008) and Wolbeck et al. (2020) keep

the pool of nurses fixed with only internal nurses.

Workload

There are rules and regulations for how the schedule should be set up. Most of the

literature on the rescheduling problem applies similar rules and regulations in the original

and updated schedules. However, in contrast to the scheduling problem, the constraints for

the rescheduling problem can be modeled less strict. Bäumelt et al. (2016) and Wolbeck

et al. (2020) argue that many of the important aspects of the workload restrictions in

scheduling are less critical in rescheduling and that these violations are less severe than

inadequate care. How these aspects are modeled depends on the problem focus, the labor

rules, and the institutional constraints for the given problem.

Ingels and Maenhout (2015) list extra shifts and overtime work as examples of reactive

strategies. Assignment of overtime is less used in the scheduling but serves as a strategy to

avoid understaffing in the rescheduling problem. Ingels and Maenhout (2018) investigate

reactively assigning extra shifts leading to overtime to improve flexibility.

An extension of regular extra shifts is to assign double shifts. Daily and weekly minimum

rest requirements are often still modeled as hard constraints (Bäumelt et al., 2016; Clark

& Walker, 2011; Ingels & Maenhout, 2017; Kitada & Morizawa, 2013; Maenhout & Van-

houcke, 2011; Moz & Pato, 2003, 2004, 2007; Pato & Moz, 2008; Wolbeck et al., 2020).

This is, in part, to ensure that the available staff can provide high-quality care. If these

constraints are not explicitly included in the model, the use of prohibited patterns ensures

that employees get sufficient rest.

Planning Period

The planning period for the rescheduling problem refers to the time interval during which

the nurses must be rescheduled to address schedule disruptions. The related literature

has many variations for approaching the planning period. As described by Kitada and

Morizawa (2013), many studies focus on the nurse rescheduling problem with a one-day

absence of one nurse, even though absences sometimes continue for several consecutive

days and can occur for several nurses simultaneously.

The nurse rescheduling problem can be explored by rescheduling the entire scheduling

period or only a limited period (Wickert et al., 2019). Maenhout and Vanhoucke (2011)

find it unnecessary to consider the entire scheduling period to obtain reasonable solutions.

They determine that it is sufficient to consider a period before and after an absence,

including the absence itself. Wolbeck et al. (2020) consider previous periods to get a

feasible schedule and distribute the shift changes fairly among nurses over time.
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Fairness and Preferences

As in the scheduling problem, fairness and preferences are often included as important

aspects in the nurse rescheduling problem. Including fairness measures in the rescheduling

problem has become increasingly popular and is often considered an important criterion for

ensuring acceptance of the new schedule (Wolbeck et al., 2020). However, there are many

variations on how to approach the aspect of fairness. Within rescheduling, it is common

to consider fairness as an even distribution of shifts among nurses (Clark & Walker, 2011;

Maenhout & Vanhoucke, 2011; Wolbeck et al., 2020). Bard and Purnomo (2005c) describe

fairness as ensuring that each nurse has a reasonable number of satisfied requests.

In rescheduling, ensuring nurse preferences and infeasibilities due to schedule disruptions

consist primarily of retaining the individual nurse’s current shift assignments as much as

possible (Maenhout & Vanhoucke, 2011). Thus, minimizing schedule changes is part of

the objective in nearly all the related literature on personnel and nurse rescheduling to

ensure that the preferences are maintained after rescheduling. This entails keeping the

new schedule similar to the original one for all the nurses to avoid unnecessarily disturbing

the nurses’ private life. Many works focusing on minimizing changes also include nurse

preferences in the objective function (Bäumelt et al., 2016; Ingels & Maenhout, 2017,

2018; Kitada & Morizawa, 2013; Maenhout & Vanhoucke, 2011; Moz & Pato, 2003, 2004,

2007; Pato & Moz, 2008; Wolbeck et al., 2020). These works try to ensure the quality of

the schedules as perceived by the nurses themselves. Some also use this to ensure a fair

or even workload among the nurses.

Costs

Few studies in the related literature consider monetary costs related to rescheduling. How-

ever, personnel costs significantly contribute to organizations’ operating costs (Ernst et al.,

2004; Van den Bergh et al., 2013). In addition, reactive changes in response to schedule

disruptions may be costly and at the expense of the personnel (Ingels & Maenhout, 2017).

Ingels and Maenhout (2018) emphasize how an appropriate personnel planning process is

indispensable to managing these costs related to the personnel.

Ingels and Maenhout (2017, 2018) are some of the few works on rescheduling where the

general objective is to minimize costs. This includes the personnel assignment costs and

the costs related to understaffing. Lilleby et al. (2012) focus on balancing the extra long-

term costs corresponding to a higher competence profile with reduced operational costs.

The objective is to minimize the total costs related to different competence requirements.

Long et al. (2022) aim to minimize the total operating cost over several periods under

uncertain demand.

Cross-Section Rescheduling

While cross-section utilization can be viewed as a proactive strategy, as explained in

Section 4.3.1, several studies also utilize it as a reactive strategy. Schoenfelder et al.

(2020) introduce several quick response decisions that allow for day-to-day adjustments to
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supply and demand, where one of these includes cross-section rescheduling. Similarly, Bard

and Purnomo (2005a) demonstrate that cross-section rescheduling could be an effective

reactive strategy to limit over- and understaffing, with nurses being assigned to other

hospital units than their home unit as a corrective measure in the online phase.

In addition to these studies, other researchers have explored the benefits of cross-section

rescheduling in the online phase. Studies by Brusco (2008), Campbell (1999) and Inman

et al. (2005) found that even a small amount of cross-section utilization can substantially

aid in real-time staff adjustments, with under-utilized staff being rescheduled to areas with

shortages. As a result, Inman et al. (2005) and Easton (2011) suggest that increased cross-

section utilization may alleviate the need for absence anticipation strategies. Overall, these

studies highlight the potential benefits of cross-section utilization as a reactive strategy in

nurse scheduling to improve staff utilization and respond to daily fluctuations in supply

and demand.

4.4 Estimation of Demand

Uncertainty in demand is a significant challenge in providing efficient schedules in nurse

scheduling and rescheduling problems. Some studies in the operations research literature

have tried to tackle this challenge through statistical methods. One approach that has

emerged in the literature to address this challenge focuses on estimating demand based on

historical data. For instance, Schoenfelder et al. (2020) model patient demand parameters

after historically observed demand. The study illustrates that using a limited number of

well-chosen demand scenarios as the basis of the nurse scheduling and rescheduling model

results in high-performing schedules.

Similarly, Long et al. (2022) use demand estimations based on historical data. However,

the study finds that the corresponding ambiguity set may be inaccurate when the data

variance is significant. Therefore, they use a scenario-based approach, where uncertainty

can be represented as part of a scenario, and each scenario represents a possible realization

of the demand. Even though Fügener et al. (2018) assume deterministic demand, they use

a discrete uniform distribution for each unit and day to adjust the deterministic expected

demand to simulate the effect of stochastic demand per period.

Other studies utilize forecasting methods to obtain more accurate values for demand. For

instance, Ordu et al. (2021) develop a decision support system to identify better forecasting

methods. These forecasting methods include an ARIMA model, linear regression, and

exponential smoothing.

It is not always accurate to only predict the number of patients for whom care must be

provided but also the level of care that each will require. The nurse-to-patient ratio is

a common metric for determining the number of required nurses to cover demand and

is used to improve the determination of nurse demand. To address the issue of demand

forecasting, Kortbeek et al. (2015) uses a model to predict the hourly workload at a care

facility that consists of several care units. The predicted workload is then used to ensure

the nurse-to-patient ratio is satisfied. They conclude that their model predictions closely

follow historical data, resulting in an improved consistency in the delivered quality of
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nursing care.

4.4.1 Machine Learning for Improving Demand Prediction

An alternative method to address uncertain demand in scheduling and rescheduling is

to utilize machine learning. As mentioned in Section 3.3, Bengio et al. (2021) propose

combining machine learning as a tool to affect the uncertain input parameters of an op-

timization method. For the nurse scheduling problem, bed demand is uncertain because

the number of beds occupied differs over time, and the severity of patients, and thus the

demand, varies greatly. Tello et al. (2022) state that there is a relatively small number

of previous research developed in the context of demand forecasting, particularly using

machine learning models. In their work, they develop a prediction model using K-means

clustering and Support Vector Regression (SVR) to predict weekly forecasts of the inpa-

tient demand to assist in nurse scheduling.

One of the most common methodologies for estimating hospital demand is based on the

valuation of the patient’s length of stay (LOS) at the hospital (Tello et al., 2022). The

patient’s LOS often says something about the severity or complexity of the patient and is,

therefore, a number worth valuing when predicting bed demand. Gül and Güneri (2015)

train an artificial neural network to predict the patients’ LOS at an emergency department.

4.5 Our Contribution

This thesis introduces a problem that builds upon existing literature while presenting new

ideas to solve our particular problem. A significant difference from the existing literature

is that the problem addressed in this report is based on Norwegian laws and regulations

about nurse scheduling and rescheduling. As a result, the problem is tailored to the context

of a Norwegian hospital, which may have distinct requirements, organizational structures,

and approaches to scheduling and rescheduling.

In this thesis, the scheduling problem is modeled to reflect the scheduling process at CC

realistically. As a result, our problem is formulated as a multi-objective model. Although

many studies formulate multi-objective scheduling models, our specific objectives deviate

from the literature. Our rescheduling model is formulated with a single objective focused

on minimizing costs. As highlighted in the literature review, minimizing rescheduling costs

has been studied in the rescheduling literature. However, to our knowledge, the objective

in our work is significantly more detailed and captures a broader range of rescheduling

costs than similar works in the literature.

While there is a significant body of relevant literature on nurse scheduling and reschedul-

ing problems, few have examined the relationship between the two, despite their tight

connection. Additionally, while some studies have addressed the uncertainty aspects of

these problems, they have typically only used reactive or proactive strategies. However,

given the impact of uncertainty handling on both problems, exploring the relationship

between nurse scheduling and rescheduling can provide valuable insights for developing

effective solutions for handling uncertainty. To our knowledge, our work is among the
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first to study the two problems together to evaluate uncertainty handling. This approach

enables proactive scheduling to facilitate better utilization of reactive strategies, which

can result in more efficient rescheduling.

We utilize a buffer strategy for handling uncertainty. Buffer strategies have been in-

vestigated in the literature. However, we extend this strategy by applying it to both

the scheduling and rescheduling problems in combination with cross-section utilization.

Cross-section buffers make it possible to schedule buffer shifts without utilizing reserve

duties in the form of overstaffing. In contrast to similar studies in the literature, we are

able to exploit the robustness provided by buffers without deteriorating the costs. Ad-

ditionally, we contribute a novel flexible strategy that has, to our knowledge, not been

explored in previous studies. Our use of these strategies, in combination with scheduling

and rescheduling, is a unique aspect of our work.

The uncertainty of demand is an important aspect of rescheduling. Several studies have

used methods for estimating demand based on real data. However, to our knowledge,

no studies have utilized machine learning to gain better demand predictions. Our work

contributes to the literature by combining the optimization approaches to solve the nurse

scheduling and rescheduling problem with machine learning predictions based on historical

data from the related clinic. This novel approach can potentially reduce the rescheduling

frequency and enhance the overall cost results.

Some related works are selected to compare the main aspects of the scheduling and res-

cheduling problems with our approach. Table 4.1 displays the chosen studies, while Table

4.3 compares critical aspects of these articles with this thesis. The works have been selec-

ted to illustrate a broad specter of the presented aspects as best as possible. These have

been selected based on their focus, model, and solutions.

Table 4.1: Relevant literature

Article number Article

(1) Ingels and Maenhout (2015)

(2) Ingels and Maenhout (2018)

(3) Løyning and Melby (2018)

(4) Bard and Purnomo (2005a)

(5) Kitada and Morizawa (2013)

(6) Long et al. (2022)

(7) Lim and Mobasher (2011)

(8) Fügener et al. (2018)

(9) Schoenfelder et al. (2020)

(10) Kortbeek et al. (2015)

X This thesis
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The first column in Table 4.3 lists the most important aspects mentioned in this chapter.

A cell is marked green when there is a similarity between an article and this report. The

reader should be aware that this table only represents how we best interpreted the contents

of each article. Table 4.2 displays the abbreviations used to describe the decisions for the

articles in Table 4.3.

Table 4.2: Abbriviations

P Personnel

N Nurse

HC Hard constraint

SC Soft constraint

R Rescheduling article

S Scheduling article

B Both scheduling and rescheduling in article
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Chapter 5

Problem description

This thesis focuses on handling uncertainty in nurse schedules across three sections in the

Clinic of Cardiology at St. Olavs Hospital. The problem is considered twofold, consisting

of both the nurse scheduling problem and the nurse rescheduling problem. The nurse

scheduling problem is the task of creating nurse schedules, where all nurses are assigned

to working shifts. This complex optimization problem requires nurses to work in shifts

to ensure around-the-clock patient care. The nurse rescheduling problem handles the

consequences of the uncertainty in the nurse scheduling problem by modifying the schedule

to ensure that demand is met. This thesis aims to produce schedules that can easily adapt

to several uncertain factors, thus minimizing rescheduling costs.

Section 5.1 elaborates on the nurse scheduling problem. Section 5.2 describes the uncer-

tainty aspects related to the problem. The uncertainty factors are tightly connected with

the nurse rescheduling problem. Section 5.3 elaborates on the nurse rescheduling problem.

The content of Section 5.3 is based on the related specialization report’s content.

5.1 The Nurse Scheduling Problem

The nurse scheduling problem consists of creating feasible nurse schedules, which are

created prior to the schedules’ execution. A nurse schedule is a plan that assigns nurses

to work specific shifts over a given scheduling period.

Shifts are categorized into work shifts and off shifts. Every section has three types of work

shifts; day, evening, and night, each with a set duration. A nurse can only work full shifts.

The night shift relates to the day when the shift starts; e.g., a night shift that begins at

23:00 on a Monday is considered a Monday shift. All shifts have a minimum staffing level

that specifies the number of nurses that must be scheduled to ensure enough nurses are

available to meet patient needs. However, the schedule should aim to fulfill the historical

average demand for all shifts.

Each section has a set of employed nurses. The nurses are only scheduled to the section

they belong to. The employees in each section consist of assistant nurses, nurses, and

specialized nurses. These competence levels are hierarchical, meaning that a nurse can
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do the tasks of an assistant nurse, and a specialized nurse can do the tasks performed

by a nurse. However, a nurse cannot do all tasks a specialized nurse is qualified for.

The nurses are also categorized by their experience level, meaning the number of years of

employment. All shifts have a desired demand related to experience. In addition, there is a

desired demand for specialized nurses for each shift, while for nurse assistants, a maximum

demand threshold is defined.

Nurse preferences are taken into account when generating the schedule. The preferences

specify which shifts a nurse wishes to avoid during the week. Preferences for specific

shifts during an arbitrary week are collected prior to the schedule generation. Each nurse

has a set of contracted hours over the scheduling period corresponding to the nurse’s

employment percentage. A deviation from the total contracted hours over the scheduling

period is allowed to ensure a feasible schedule generation.

Laws and regulations play a critical role in the nurse scheduling problem. Each nurse can

be scheduled to work a maximum of one shift per day and cannot be scheduled to work

more than a maximum number of hours per week. Nurses can be scheduled to work more

or less than the exact number of contracted hours one week if the total number of hours

over the scheduling period does not exceed the acceptable deviation from the total number

of contracted hours. Nurses should be scheduled to work at most a specified maximum

number of consecutive days. Due to the inconvenience of night shifts, a maximum number

of consecutive night shifts is also included.

Regulations specify weekly and daily rest requirements. The rest requirements are that

each nurse should have a minimum number of hours of consecutive rest within each 24-

hour period and within a week. The daily and weekly requirements entail that some shift

combinations are deemed illegal.

Weekend assignments are structured to ensure that a nurse scheduled for a weekend will

work both a Saturday and Sunday shift. A nurse can only be scheduled for a weekend

assignment with a specified interval. Moreover, predefined patterns must be followed for

a nurse’s weekend assignment. These patterns involve working a day shift and an evening

shift or working two consecutive night shifts.

The nurse scheduling problem aims to minimize the deficit from the historical average

demand for nurses while also achieving an even distribution of weekly workload. This

objective should also ensure that the number of overstaffed shifts is evenly distributed.

Finally, the objective aims to minimize the number of preference violations while achieving

a balanced distribution of competence and experience for each shift.

5.2 Proactive Strategies for Handling Uncertainty

The nurse schedule is created before its execution and is based on expectations about

demand and supply. Assumptions regarding patient load and nurse absences made during

the creation of the schedule may be inaccurate at the time of the execution of the schedule.

This results in an imbalance between supply and demand, causing the need for schedule

adjustments. These reactive adjustments are known as the nurse rescheduling problem.
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Changes to the schedule often lead to higher costs and dissatisfaction among the nurses.

Proactive strategies are employed during schedule generation to minimize the need for

reactive rescheduling. These strategies aim to create more robust and flexible schedules

that can withstand uncertainty. Robustness refers to a schedule’s ability to absorb disrup-

tions, while flexibility pertains to how easily the schedule can adapt to unexpected events

causing imbalances in demand and supply.

To reduce the need for rescheduling, uncertainty is taken into account through proactive

strategies when creating the nurse’s schedule. These strategies are illustrated in Table 5.1.

Table 5.1: Proactive strategies.

Strategy Description

Cross-section buffers

Resources exceeding the minimum demand can be sched-

uled to buffer shifts, which are not scheduled to a spe-

cific section. The sum of buffer assignments and section-

specific assignments should cover the sum of the historical

average demand across all sections for a given shift.

Flexible Assignments

Full-time nurses have a working ratio of X/ 100-X, where

X represents a percentage of flexibility in their schedule.

Only 100-X% are scheduled in the scheduling model.

5.3 The Nurse Rescheduling Problem

In the nurse rescheduling problem, reactive strategies are employed to adjust the nurse

schedules due to schedule disruptions. In contrast to the nurse scheduling problem, the

rescheduling problem covers a shorter period. The time window handled in the reschedul-

ing problem consists of a defined planning period, which spans a specific number of days

from the current day. In addition, days before and after the planning period are con-

sidered to ensure compliance with laws and regulations and allow greater flexibility in

decision-making. The problem assesses new information regarding absence and demands

daily and must handle future understaffed shifts each morning before the start of the day

shift. Absences are notified before the day shift begins each day, and if an absence occurs,

the duration of the absence is treated deterministically.

The rescheduling problem considers the historical average demand for nurses within the

planning period, which must be fulfilled for all shifts within that period. However, the

actual demand for nurses is revealed each morning before the day shift. This actual demand

must be covered for all shifts on the current day while ensuring that the average demand

for the remaining days in the planning period and post-period is still met. This requires a

dynamic adjustment of the nurse schedule to accommodate the fluctuating actual demand

while maintaining coverage for the average demand.

The laws and regulations that apply to the scheduling problem can be violated to avoid

understaffing and to ensure adequate patient care. These violations entail that the re-
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quirements for skill composition on each shift are disregarded. In addition, the nurses are

allowed to work overtime, a nurse can work more than one shift per day, and the weekly

consecutive rest requirement can be overruled. This entails that the nurses can work extra

shifts in addition to the ones they are scheduled to work. There are three types of reactive

actions in rescheduling. These are displayed in Table 5.2.

Table 5.2: Reactive actions for the rescheduling model.

Actions Description

Swap An employee can be asked to work a different shift than planned in the

schedule. This action can only happen when there is an understaffed

shift, and an alternative shift has excess coverage in the following period.

Extra shift Nurses can take extra shifts in addition to the assigned shifts in the

nurse schedule. This action is allowed if the nurse does not breach the

maximum weekly work hours.

Double shift Nurses can take an extra shift on a day they are already scheduled to

work. This is possible as long as the minimum hours of rest during 24

hours are maintained.

A nurse with a part-time position can work extra shifts to acquire additional hours. Ad-

ditional hours are defined as work beyond agreed working hours but within the statutory

limit for a full-time equivalent position. The wage for additional hours is equal to the

nurse’s regular wage. On the other hand, full-time nurses are required to work an average

of the statutory limit, although the weekly total may vary. If a full-time nurse exceeds the

workload they were originally scheduled to, overtime payment is triggered. Table 5.3 out-

lines the specific payments associated with different scenarios and actions. It is important

to note that a nurse can only receive one type of extra payment at a time.

The focus of the rescheduling problem in this thesis is to minimize overall costs. The

presented proactive strategies for handling uncertainty facilitate more effective reactive

measures in the nurse rescheduling problem, thus contributing to limiting the rescheduling

costs. Each day, in the rescheduling phase, the buffer shifts scheduled as a result of the

cross-section buffer strategy are activated to a specific section based on the actual demand

levels. Similarly, the flexible shifts corresponding to the flexible assignment strategy are

activated in the rescheduling model to compensate for schedule disruptions. The flexible

shifts can be activated to any of the sections, making flexible assignments a cross-section

reactive strategy.
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Table 5.3: Costs of overruling laws and agreements.

Triggers for extra payment Type of extra payment

All extra hours for full-time nurses beyond their

originally scheduled shifts
Overtime payment

Weekly hours of a part-time nurse exceed the

statutory average hours of a full-time equivalent

position

Overtime payment

More hours of work in a 24-hour time period than

the statutory limit in the local agreements
Overtime payment

Work outside of regular working hours such as

evening, night, and weekend

Evening/ night/ weekend bo-

nus payment

Evening- or night shifts on the weekend
Evening or night bonus +

weekend bonus

If one shift triggers both bonus payment and

overtime payment, the bonus payment is re-

moved, and only overtime payment is considered

Overtime payment

If a nurse swapped from a scheduled shift to an

understaffed shift and is notified before the day

of the original shift

Compensation payment for

swaps

If a nurse swapped from a scheduled shift to an

understaffed shift and is notified on the day of

the original shift

Overtime payment
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Chapter 6

Optimization Models

This chapter presents the mixed integer mathematical formulations of the two related prob-

lems that are used in this thesis: the nurse scheduling problem and the nurse rescheduling

problem. The solution to the scheduling model provides a schedule, which serves as input

to the rescheduling model. Various model extensions for the scheduling and rescheduling

models are presented. These extensions include the strategies presented in Chapter 5,

which aim at creating schedules that are better equipped to handle disruptions.

First, the nurse scheduling model for generating nurse schedules is presented in Section 6.1.

Next, a rescheduling model for minimizing the overall rescheduling costs is presented in

Section 6.2. All model extensions are presented in Section 6.3. Finally, Section 6.4 explains

the models using illustrations and examples. Compressed versions of the scheduling model,

the rescheduling model, and the model extensions are provided in Appendix A.

6.1 Nurse Scheduling Model

This section presents the optimization model for the nurse scheduling model. The mixed

integer scheduling model in this section uses a lexicographic approach. This entails that the

problem consists of several objectives that are solved iteratively as a set of single-objective

optimization problems. Table 6.1 illustrates the order of the five objective functions. The

inputs to the model are based on data provided by CC.

First, the indices, sets, parameters, and variables are defined. Next, the first step in the

model, including the first objective function and corresponding constraints, is presented.

The next steps of the model with additional parameters and constraints are then presented.

Finally, the variables are declared.
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Table 6.1: Overview of the lexicographic order of objectives in the scheduling model.

Objective one Minimize the number of understaffed shifts

Objective two
Minimize total weekly deviation from the contracted hours for all

nurses

Objective three Maximize the distribution of overstaffed shifts

Objective four Minimize the number of preference violations

Objective five
Minimize deviations from desired demand for experience levels and

desired number specialized nurses per shift

6.1.1 Definitions

This section defines indices, sets, parameters, and variables. Sets are described with

calligraphic letters. Parameters are written in capital letters, while variables are written

using lower-case letters. Within the sets, parameters, and variables, subscripts indicate

indices. Capital letter superscripts specify the meaning of the set, parameter, or variable.

Overlines and underlines represent upper and lower bounds, respectively.

Indices

n nurse

c competence

e experience

b section

s shift

t day

k week
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Sets

B set of sections, B = {1, 2, 3}
C set of competence levels, C = {AN,N, SN}
E set of experience levels

N set of nurses

Nc set of nurses with competence level c, Nc ⊂ N , c ∈ C
Ne set of nurses with experience level e, Ne ⊂ N , e ∈ E
Nb set of nurses in section b, Nb ⊂ N , b ∈ B
K set of weeks included in scheduling period

T set of days in the scheduling period

Tk set of days in week k

T SUN set of Sundays in scheduling period

S set of shifts, S =
{
D,E,N, F, F1

}
SW set of work-shifts, SW =

{
D,E,N

}
, SW ⊂ S

SF set of off-shifts, SF =
{
F, F1

}
. SF ⊂ S

Scheduling Parameters

Dbst minimum demand in section b for shift s on day t

Debst desired demand for experience e in section b for shift s on day t

D
AN
bst maximum demand for assistant nurses in section b for shift s on day t

DSN
bst desired demand for specialized nurses in section b for shift s on day t

Dbst historical average demand in section b for shift s on day t

M
D

maximum number of consecutive work days

M
N

maximum number of consecutive work nights

L maximum work hours in a week

H hours in a full time work week

Hs duration of shift s in hours

W working weekend recurrence

Cn contracted employment percentage for nurse n

F upper bound for allowed deviation from contracted hours

F lower bound for allowed deviation from contracted hours

K number of weeks in scheduling period

Decision Variables

xnbst =

{
1, if nurse n in section b is scheduled for shift s on day t

0, otherwise
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Auxiliary Variables

δH
−

nk weekly deficit of work hours from contract for nurse n in week k

δH
+

nk weekly surplus of work hours from contract for nurse n in week k

δSN
−

bst unsatisfied demand of specialized nurses in section b for shift s on day t

δEebst unsatisfied demand for nurses with a defined experience level

δD
−

bst deficit from average demand in section b on shift s on day t

δD
+

bst surplus from average demand in section b on shift s on day t

6.1.2 Multi-objective Model

min z1 =
∑
b∈B

∑
s∈SW

∑
t∈T

δD
−

bst (6.1.1)

Objective (6.1.1) minimizes the number of understaffed shifts in the schedule. After solving

this first objective, the model will return a value for the minimum number of shifts that

were understaffed in the schedule. This value will be used as a constraint in the second

step of the model.

Demand Coverage ∑
n∈N

xnbst ≥ Dbst b ∈ B, s ∈ SW , t ∈ T (6.1.2)

∑
n∈N

xnbst ≥ Dbst − δD
−

bst b ∈ B, s ∈ SW , t ∈ T (6.1.3)

∑
n∈NAN

xnbst ≤ D
AN
cbst b ∈ B, s ∈ SW , t ∈ T (6.1.4)

Constraints (6.1.2) ensure minimum demand is covered for every shift. Constraints (6.1.3)

measures the deficits from average demand. Constraints (6.1.4) limit the number of as-

sistant nurses assigned to each shift.

Section Specific Assignments

xn1st = 0 n ∈ N/{Nb=1}, s ∈ S, t ∈ T (6.1.5)

xn2st = 0 n ∈ N/{Nb=2}, s ∈ S, t ∈ T (6.1.6)

xn3st = 0 n ∈ N/{Nb=3}, s ∈ S, t ∈ T (6.1.7)

Constraints (6.1.5), (6.1.6), and (6.1.7) ensure that no nurses can be scheduled to another

section than their own. This encompasses the nurses for all three sections.
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Legislative Constraints ∑
b∈B

∑
s∈S

xnbst = 1 n ∈ N , t ∈ T (6.1.8)

∑
b∈B

∑
s∈SW

∑
t∈Tk

Hsxnbst ≤ L n ∈ N , k ∈ K (6.1.9)

F
∑
k∈K

CnH ≤
∑
b∈B

∑
s∈SW

∑
t∈T

Hsxnbst ≤ F
∑
k∈K

CnH n ∈ N (6.1.10)

T=t+M
D∑

t′=t

∑
b∈B

∑
s∈SW

xnbst′ ≤M
D

n ∈ N , t ∈ {1, 2, ..., T −M
D} (6.1.11)

T=t+M
N∑

t′=t

∑
b∈B

xnbNt′ ≤M
N

n ∈ N , t ∈ {1, 2, ..., T −M
N} (6.1.12)

Constraints (6.1.8) control that a nurse is only scheduled to one shift per day. Constraints

(6.1.9) limit the total working hours for each nurse during one week. Constraints (6.1.10)

sets an interval for how many hours each nurse should be assigned to work in the scheduling

period. Constraints (6.1.11) sets an upper bound for consecutive days scheduled for each

nurse. Constraints (6.1.12) sets an upper bound for consecutive nights scheduled for each

nurse.

Weekend Assignments

T=W−1∑
t′=0

∑
b∈B

∑
s∈SW

xnbs(t+t′) = 1 t ∈ T SUN , n ∈ N (6.1.13)

∑
b∈B

(
xnbDt − xnbE(t−1)

)
= 0 n ∈ N , t ∈ T SUN (6.1.14)

∑
b∈B

(
xnbEt − xnbD(t−1)

)
= 0 n ∈ N , t ∈ T SUN (6.1.15)

∑
b∈B

(
xnbNt − xnbN(t−1)

)
= 0 n ∈ N , t ∈ T SUN (6.1.16)

Constraints (6.1.13) specify that each nurse should work exactly one weekend every W

weekends. Constraints (6.1.14), (6.1.15), and (6.1.16) ensure that legal weekend patterns

are assigned.
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Rest Regulations ∑
b∈B

(
xnbNt + xnbD(t+1)

)
≤ 1 n ∈ N , t ∈ T (6.1.17)

∑
b∈B

(
xnbNt + xnbE(t+1)

)
≤ 1 n ∈ N , t ∈ T (6.1.18)

∑
b∈B

(
xnbN(t−1) + xnbF1t + xnbD(t+1)

)
≤ 2 n ∈ N , t ∈ T (6.1.19)

∑
b∈B

(
xnbN(t−1) + xnbF1t + xnbE(t+1)

)
≤ 2 n ∈ N , t ∈ T (6.1.20)

∑
b∈B

(
xnbE(t−1) + xnbF1t + xnbD(t+1)

)
≤ 2 n ∈ N , t ∈ T (6.1.21)

∑
n∈N

∑
b∈B

∑
t∈Tk

xnbF1t = 1 k ∈ K (6.1.22)

Constraints (6.1.17) and (6.1.18) specify shift patterns that should not be assigned. Con-

straints (6.1.19), (6.1.20) and (6.1.21) specify the illegal patterns with regards to the

required weekly rest day F1. Constraints (6.1.22) ensure that the required rest day is

scheduled once a week.

Minimize hours deviations

min z2 =
∑
n∈N

∑
k∈K

(
δH

−
nk + δH

+

nk

)
(6.1.23)

Objective (6.1.23) is the second objective function in the lexicographic order. It minimizes

the total weekly deviation from the contracted number of hours for all nurses. This is to

ensure an even distribution of workload per week during the whole scheduling period.

∑
b∈B

∑
s∈S

∑
t∈Tk

Hsxnbst = CnH + δH
−

nk − δH
+

nk n ∈ N , k ∈ K (6.1.24)

Constraints (6.1.24) measure the weekly deviations from contracted hours.

∑
b∈B

∑
s∈SW

∑
t∈T

δD
−

bst ≤ z1 (6.1.25)

Constraint (6.1.25) ensures that the optimal solution from the first objective function is

upheld when solving the second step of the lexicographic order.
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Distribute overstaffing

Additional Parameter

δ largest value of either the deficit or surplus of nurses working hours

Additional Variable

αbst =

{
1, if there is overstaffing in section b on shift s on day t

0, otherwise

max z3 =
∑
b∈B

∑
s∈SW

∑
t∈T

αbst (6.1.26)

Objective (6.1.26) is the third objective function in the lexicographic order. It maximizes

the number of overstaffed shifts. This is to ensure the overstaffing is evenly distributed

over shifts, preventing that overstaffing occurs in large quantities on only a select few

shifts.

∑
n∈N

xnbst = Dbst − δD
−

bst + δD
+

bst b ∈ B, s ∈ SW , t ∈ T (6.1.27)

Constraints (6.1.27) measure the deviations from average demand. These replace Con-

straints (6.1.3).

αbst ≤ δD
+

bst b ∈ B, s ∈ SW , t ∈ T (6.1.28)

Constraints (6.1.28) ensure that α can only take a value when there is overstaffing.

δH
+

nk + δH
−

nk ≤ δ n ∈ N , k ∈ K (6.1.29)

Constraints (6.1.29) ensure that a nurse cannot have a deviation from working hours that

is larger than the largest value from step two in the lexicographic order.

∑
n∈N

∑
k∈K

δH
+

nk + δH
−

nk ≤ z2 (6.1.30)

Constraint (6.1.30) ensures that the optimal solution from the second objective function is

upheld within an allowed deviation when solving the third step of the lexicographic order.
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Preference Violation

Additional Parameter

Inst nurse n wants to avoid working shift s on day t

min z4 =
∑
n∈N

∑
b∈B

∑
s∈SW

∑
t∈T

Instxnbst (6.1.31)

Objective (6.1.31) is the fourth objective function in the lexicographic order. It minimizes

the number of preference violations in the schedule.

∑
b∈B

∑
s∈SW

∑
t∈T

αbst ≥ z3 (6.1.32)

Constraint (6.1.32) ensures that the optimal solution from the third objective function is

upheld when solving the fourth step of the lexicographic order.

Distribution of Competence and Experience

min z5 =
∑
e∈E

∑
b∈B

∑
s∈SW

∑
t∈T

δEebst +
∑
b∈B

∑
s∈SW

∑
t∈T

δSN
−

bst (6.1.33)

Objective (6.1.33) is the fifth objective function in the lexicographic order. It minimizes the

deviations from desired demand for experience levels and the desired number of specialized

nurses per shift. This is to ensure an even distribution of competence and experience levels

per shift.

∑
n∈Ne

xnbst ≥ Debst − δEebst e ∈ E , b ∈ B, s ∈ SW , t ∈ T (6.1.34)

Constraints (6.1.34) measure the deficit from desired demand for experience.

∑
n∈NSN

xnbst ≥ DSN
bst − δSN

−

bst b ∈ B, s ∈ SW , t ∈ T (6.1.35)

Constraints (6.1.35) measure the deficit from desired demand for competence.

∑
n∈N

∑
b∈B

∑
s∈SW

∑
t∈T

Instxnbst ≤ z4 (6.1.36)

Constraint (6.1.36) ensures that the optimal solution from the fourth objective function

is upheld when solving the fifth step of the lexicographic order.
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Variable Declarations

xnbst ∈ {0, 1} n ∈ N , b ∈ B, s ∈ S, t ∈ T (6.1.37)

αbst ∈ {0, 1} b ∈ B, s ∈ SW , t ∈ T (6.1.38)

δH
−

nk ≥ 0 n ∈ N , k ∈ K (6.1.39)

δH
+

nk ≥ 0 n ∈ N , k ∈ K (6.1.40)

δSN
−

bst ≥ 0 b ∈ B, s ∈ SW , t ∈ T (6.1.41)

δEbst ≥ 0 b ∈ B, s ∈ SW , t ∈ T (6.1.42)

δD
−

bst ≥ 0 b ∈ B, s ∈ SW , t ∈ T (6.1.43)

δD
+

bst ≥ 0 b ∈ B, s ∈ SW , t ∈ T (6.1.44)

6.2 Nurse Rescheduling Model

This section presents the optimization model for the nurse rescheduling model. The res-

cheduling model is based on the rescheduling model from our Specialization Report (Jo-

hansen et al., 2022). The model takes a schedule with reported absences as input. The

inputs are based on the schedule generated by the scheduling model. The day of reschedul-

ing is always denoted as t0. In this model, actual demand is revealed daily on day t0. For

all upcoming days after t0, average demand is used.

This section is structured similarly to Section 6.1. First, indices, sets, parameters, and

variables are defined. Next, the objective function and corresponding constraints are

presented. Finally, the variables are declared.

6.2.1 Definitions

This section defines indices, sets, parameters, and variables. Sets are described with

calligraphic letters. Parameters are written in capital letters, while variables are written

using lower-case letters. Within the sets, parameters, and variables, subscripts indicate

indices. Capital letter superscripts specify the meaning of the set, parameter, or variable.

Overlines and underlines represent a maximum or minimum, respectively.
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Indices

n nurse

b section

s shift

t day

c competence

k week

Sets

B set of sections, B = {1, 2, 3}
C set of competence levels, C = {AN,N, SN}
N set of nurses

N 100 set of full time nurses, N 100 ⊂ N
Nc set of nurses with competence level c, Nc ⊂ N , c ∈ C
T R set of days in planning period

T PRE set of days before planning period

T POST set of days after planning period

T set of all days, T =
{
T PRE ∪ T R ∪ T POST

}
T A set of days in planning period or post period, T A =

{
T R ∪ T POST

}
K set of weeks included in planning period

Tk set of days in week k

T R
k set of days in week k included in planning period, T R

k =
{
T R ∩ Tk

}
T W set of weekend days in planning period

T WA set of weekend days in planning period and post period

SW set of shifts, SW =
{
D,E,N

}
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Rescheduling Parameters

Dbst historical average demand in section b for shift s on day t

DA
bst0

actual demand in section b for shift s on the day of rescheduling

Wn hourly wage for nurse n

L maximum work hours in a week

PO penalty percentage for overtime hours

POS penalty for overtime hours of swap

PW penalty payment for weekend hours

PN penalty payment for night hours

PE penalty payment for evening hours

H hours in a full-time work week

H
D

maximum hours during a day before overtime is triggered

Hs duration of shift s in hours

HM duration of double shift, HM = HD +HE

HPRE
nk scheduled hours for nurse n during a week k in the original schedule

Xnbst scheduled value for nurse n in section b working shift s on day t

Ant nurse n is available to work on day t

∆nt nurse n has been scheduled to work or has already worked a double shift on day t

Ωnk total overtime hours planned for nurse n during week k

Λnst overtime hours caused by nurse n working shift s on day t

Xnbst, Ant, ∆nt, Ωnt and Λnst are time-dependent dynamic parameters. Their values

depend on when the model is solved. All the other parameters have set values.

Decision Variables

x+nbst =

{
1, if nurse n in section b is rescheduled to work shift s on day t

0, otherwise

x−nbst =

{
1, if nurse n in section b is removed from shift s on day t

0, otherwise

x′nbst =

{
1, if nurse n in section b works shift s on day t

0, otherwise

uns1t1t2 =

{
1, if nurse n swapped a shift from day t2 to work shift s1 on day t1

0, otherwise

ϵnst =

{
1, if nurse n is assigned to work an extra shift s on day t

0, otherwise

dnt =

{
1, if nurse n is assigned to work double shifts on day t

0, otherwise
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Auxillary variables

ωnk overtime hours for nurse n in week k

λnst overtime hours for nurse n caused by working shift s on day t

6.2.2 Minimum Cost Objective

The objective function in this model concerns minimizing the total costs of rescheduling.

z1 =
∑
n∈N

∑
b∈B

∑
s∈SW

∑
t∈T R

HsWnx
+
nbst (6.2.1)

The first term of the minimum cost objective, term (6.2.1), covers the base pay of all

rescheduled shifts.

z2 =
∑
n∈N

∑
k∈K

POWnωnk −
∑
n∈N

∑
s∈SW

POWn

(
1−Ant0

)
Λnst0 (6.2.2)

Term (6.2.2) sums the weekly overtime payments triggered by the rescheduling and sub-

tracts the costs for shifts scheduled with overtime where the nurse subsequently has called

in absent. t0 represents the current day.

z3 =
∑
n∈N

∑
t∈T R

POWn

(
HM −H

D)
dnt (6.2.3)

Term (6.2.3) sums the daily overtime payments caused by working a double shift.

z4 =
∑
n∈N

∑
s1∈SW

∑
t1∈T R

∑
t2∈T A

POSHs1Wnuns1t1t2 (6.2.4)

z5 =
∑
n∈N

∑
s1∈SW

∑
t1∈T R

POHs1Wnuns1t1t0 (6.2.5)

Term (6.2.4) accounts for the penalty payments associated with a swapped shift, where

the swap was done before the day of the original shift. Term (6.2.5) computes the overtime

cost for swapped shifts where the original shift was on the same day as the rescheduling.

z6 =
∑
n∈N

∑
t∈T R

PEHEWnϵnEt −
∑
n∈N

∑
t∈T R

PEWnλnEt (6.2.6)

z7 =
∑
n∈N

∑
t∈T R

PNHNWnϵnNt −
∑
n∈N

∑
t∈T R

PNWnλnNt (6.2.7)

z8 =
∑
n∈N

∑
s∈SW

∑
t∈T W

PWHsWnϵnst −
∑
n∈N

∑
s∈SW

∑
t∈T W

PWWnλnst (6.2.8)
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Terms (6.2.6), (6.2.7) and (6.2.8) sum all the extra payments connected to working an

evening shift, a night shift, or a weekend shift, respectively. During weekends these pay-

ments are stacked. If a shift triggers overtime, it should not count both overtime hours

and extra payments. Therefore, the amount of overtime hours connected to the specific

shifts, λnst, is subtracted for each equation.

z9 =
∑
n∈N

∑
b∈B

∑
s∈SW

∑
t∈T A

AntHsWnx
−
nbst (6.2.9)

Term (6.2.9) removes the base payment from a shift that an available nurse is no longer

scheduled to work.

z10 =
∑
n∈N

∑
b∈B

∑
t∈T A

AntP
EHEWnx

−
nbEt (6.2.10)

z11 =
∑
n∈N

∑
b∈B

∑
t∈T A

AntP
NHNWnx

−
nbNt (6.2.11)

z12 =
∑
n∈N

∑
b∈B

∑
s∈SW

∑
t∈T WA

AntP
WHsWnx

−
nbst (6.2.12)

Terms (6.2.10), (6.2.11), and (6.2.12) remove the bonus payments from a shift that an

available nurse is no longer scheduled to work.

min zT =

8∑
i=1

zi −
12∑
j=9

zj (6.2.13)

The total minimum cost objective function (6.2.13) summarizes all the different terms

represented in Equations (6.2.1)-(6.2.12).

Dependency in Variables

For better readability, we have defined variables x′nbst and ϵnst. x′nbst represents the final

output schedule, while ϵnst is defined to keep track of which shift assignments are extra

shifts.

x′nbst = Xnbst + x+nbst − x−nbst n ∈ N , b ∈ B, s ∈ SW , t ∈ T R (6.2.14)

x′nbst = Xnbst − x−nbst n ∈ N , b ∈ B, s ∈ SW , t ∈ T POST (6.2.15)

∑
b∈B

x+nbst1 = ϵnst1 +
∑

t2∈T A

unst1t2 n ∈ N , s ∈ SW , t1 ∈ T R (6.2.16)
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∑
s∈SW

∑
t∈T R

k

λnst +
∑
s∈SW

∑
t∈Tk

Λnst = ωnk +Ωnk n ∈ N , k ∈ K (6.2.17)

λnst ≤
∑
b∈B

Hsx
+
nbst n ∈ N , s ∈ SW , t ∈ T R (6.2.18)

x−nbst ≤ Xnbst n ∈ N , b ∈ B, s ∈ SW , t ∈ T A (6.2.19)

Constraints (6.2.14) and (6.2.15) ensure that variable x′nbst sums the input schedule with

the rescheduled shift changes found by the model. Constraints (6.2.16) track if a newly

assigned shift is an extra shift. Constraints (6.2.17) ensure the balance between the vari-

ables counting overtime hours per shift and total overtime hours. Constraints (6.2.18)

secure that new overtime hours can only occur for a newly assigned shift. Constraints

(6.2.19) guarantee that only scheduled shifts can be removed.

Demand Coverage∑
n∈N

x′nbst ≥ Dbst b ∈ B, s ∈ SW , t ∈ T A/{t0} (6.2.20)

∑
n∈N

x′nbst0 ≥ DA
bst0 b ∈ B, s ∈ SW (6.2.21)

Constraints (6.2.20) ensure average demand is covered for every shift. Constraints (6.2.21)

ensure actual demand is covered for every shift on the day of rescheduling.

Legislative Constraints∑
b∈B

∑
s∈SW

∑
t∈Tk

Hsx
′
nbst ≤ L n ∈ N , k ∈ K (6.2.22)

∑
b∈B

∑
s∈SW

∑
t∈Tk

Hsx
′
nbst −

(
ωnk +Ωnk

)
≤max(H,HPRE

nk )

+
∑
t∈T R

k

(
HM −H

D)
dnt

+
∑
t∈Tk

(
HM −H

D)
∆nt

n ∈ N/{N 100}, k ∈ K (6.2.23)
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∑
b∈B

∑
s∈SW

∑
t∈Tk

Hsx
′
nbst −

(
ωnk +Ωnk

)
≤ HPRE

nk +
∑
t∈T R

k

(
HM −H

D)
dnt

+
∑
t∈Tk

(
HM −H

D)
∆nt

n ∈ N 100, k ∈ K (6.2.24)

Constraints (6.2.22) limit the total working hours for each nurse during one week. Con-

straints (6.2.23) register overtime hours for all part-time nurses that work more hours than

a full-time work week during a given week. Constraints (6.2.24) register overtime hours

for all full-time nurses that work more hours than originally scheduled.

Technical Constraints for the Output Schedule

x′nbst ≤ Ant n ∈ N , b ∈ B, s ∈ SW , t ∈ T R (6.2.25)

∑
b∈B

x′nbst ≤ 1 n ∈ N , s ∈ SW , t ∈ T (6.2.26)

∑
b∈B

∑
s∈SW

x′nbst ≤ 1 +
(
dnt +∆nt

)
n ∈ N , t ∈ T R (6.2.27)

∑
b∈B

∑
s∈SW

∑
t∈T A

AntHsXnbst ≤
∑
b∈B

∑
s∈SW

∑
t∈T A

Hsx
′
nbst n ∈ N (6.2.28)

Constraints (6.2.25) secure that only available nurses can work shifts in the planning

period. Constraints (6.2.26) check that no one is scheduled to work more than one shift

at the same time. Constraints (6.2.27) control that a nurse can only work two shifts if the

nurse works one of the specified double shifts. Constraints (6.2.28) secure that no nurse

works fewer hours in the new plan compared to the input schedule, except in the cases

where nurses have been absent from the original schedule.

Technical Constraints for Actions∑
b∈B

∑
s∈SW

Ant2x
−
nbst2

=
∑

s1∈SW

∑
t1∈T R

uns1t1t2 n ∈ N , t2 ∈ T A (6.2.29)

∑
b∈B

x+ns1bt1 ≥
∑

t2∈T A

uns1t1t2 n ∈ N , s1 ∈ SW , t1 ∈ T R (6.2.30)

∑
b∈B

(
x′nbDt + x′nbNt

)
≤ 1 n ∈ N , t ∈ T (6.2.31)
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∑
b∈B

(
x′nbNt + x′nbD(t+1)

)
≤ 1 n ∈ N , t ∈ T (6.2.32)

∑
b∈B

(
x′nbEt + x′nbNt

)
≤ 1 n ∈ N , t ∈ T (6.2.33)

∑
b∈B

(
x′nbNt + x′nbE(t+1)

)
≤ 1 n ∈ N , t ∈ T (6.2.34)

Constraints (6.2.29) and (6.2.30) secure that if an available nurse is moved from one shift

to another, it is a valid swap and is registered in the variable unt1t2 . Constraints (6.2.31),

(6.2.32), (6.2.33), and (6.2.34) specify illegal shift patterns, where illegal combinations of

double shifts are handled.

Variable Declarations

x+nbst ∈ {0, 1} n ∈ N , b ∈ B, s ∈ SW , t ∈ T R (6.2.35)

x−nbst ∈ {0, 1} n ∈ N , b ∈ B, s ∈ SW , t ∈ T A (6.2.36)

x′nbst = Xnbst n ∈ N , b ∈ B, s ∈ SW , t ∈ T PRE (6.2.37)

x′nbst ∈ {0, 1} n ∈ N , b ∈ B, s ∈ SW , t ∈ T A (6.2.38)

uns1t1t2 ∈ {0, 1} n ∈ N , s1 ∈ SW , t1 ∈ T R, t2 ∈ T A (6.2.39)

dnt ∈ {0, 1} n ∈ N , t ∈ T R (6.2.40)

ωnk ≥ 0 n ∈ N , k ∈ K (6.2.41)

λnst ≥ 0 n ∈ N , s ∈ SW , t ∈ T R (6.2.42)

6.3 Model Extensions

To improve the effectiveness of the nurse scheduling and rescheduling models in handling

uncertainty, this section presents two model extensions. These extensions affect both

models, as the proactive strategies apply to the scheduling model and the corresponding
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reactive strategies apply to the rescheduling model. The extensions build upon the models

presented in Sections 6.1 and 6.2. Rather than providing a complete model description, this

section focuses on presenting the deviations from the original models. For each extension,

only the additional sets, parameters, variables, and constraints are presented. Section 6.3.1

first introduces an extension based on the cross-section buffer strategy. Next, Section 6.3.2

presents the strategy that utilizes flexible assignments to handle unforeseen absences in

the rescheduling model.

6.3.1 Buffer Strategy

The buffer strategy is applied to ensure optimal utilization of surplus nurses across the

three sections. The proactive strategy is applied to the scheduling model to generate

schedules with additional robustness for handling unexpected events. In the rescheduling

model, the buffer shifts are activated for the sections with an increase in demand or de-

crease in available nurses. This section presents the details of the buffer strategy, including

how it is implemented in both models.

Scheduling Extensions

In the nurse scheduling model, the proactive buffer strategy schedules nurses to buffer

shifts. These shifts are not defined for a specific section, allowing nurses to work in any

of the three sections as needed. The buffer shifts are activated for each nurse on the day

of rescheduling, t0. Until then, nurses are unaware of which section they will be working

in, only knowing what shift they will work.

Sets

B set of sections, B =
{
1, 2, 3, 0

}
BW set of working sections, BW =

{
1, 2, 3

}
, BW ⊂ B

Buffer shifts do not apply to a specific section. Instead, a fourth section is defined. This

fourth section represents all nurses who are scheduled for a buffer shift and have not yet

been assigned to any particular section.

Parameters

βst upper bound for how many buffer nurses can be scheduled each shift

Auxiliary Variables

δD
−

st deficit from total average demand on shift s on day t

δD
+

st surplus from total average demand on shift s on day t
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While the nurses scheduled to buffer shifts contribute to cover the total average demand

across all sections, they cannot be counted towards fulfilling the minimum demand of any

specific section. Furthermore, since these nurses are not assigned to a particular section

until the day of rescheduling, they cannot contribute to meeting the average demand of

any specific section. Consequently, the deviations from the average demand can no longer

be calculated for each specific section, but instead, consider the total demand. As a result,

the auxiliary variables change from δD
−

bst and δD
+

bst to δD
−

st and δD
+

st .

Maximize buffer

max z6 =
∑
n∈N

∑
s∈SW

∑
t∈T

xn0st (6.3.1)

Objective (6.3.1) is the sixth step in the lexicographic order. This objective aims to

maximize the number of nurses scheduled for a buffer shift.

Constraints ∑
n∈N

xnbst ≥ Dbst b ∈ BW , s ∈ SW , t ∈ T (6.3.2)

Constraints (6.3.2) replace Constraints (6.1.2) and ensure that only the non-buffer shifts

can cover the minimum demand.

∑
n∈N

∑
b∈B

xnbst =
( ∑
b∈BW

Dbst

)
−δD−

st + δD
+

st s ∈ SW , t ∈ T (6.3.3)

Constraints (6.3.3) replace Constraints (6.1.27) and measure the deviations from average

total demand.

∑
n∈N

∑
t∈T

xn0st = 0 s ∈ SF (6.3.4)

Constraints (6.3.4) ensure that no nurses can have their off-shifts scheduled as buffer shifts.

∑
n∈N

xn0st ≤ βst s ∈ SW , t ∈ T (6.3.5)

Constraints (6.3.5) limit the number of nurses that can be scheduled to the buffer section

per shift.

∑
e∈E

∑
b∈B

∑
s∈SW

∑
t∈T

δEebst +
∑
b∈B

∑
s∈SW

∑
t∈T

δSN
−

bst ≤ z5 (6.3.6)

Constraint (6.3.6) ensures that the optimal solution from the fifth objective function is

upheld when solving the sixth step of the lexicographic order.
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Rescheduling Extensions

In the nurse rescheduling model, the buffer shifts are activated for specific sections when

there is an increase in demand or a decrease in available nurses. This reactive strategy

ensures that the available nurses are optimally utilized to cover unexpected events.

Sets

B set of sections, B =
{
1, 2, 3, 0

}
BW set of working sections, B =

{
1, 2, 3

}
, BW ⊂ B

Similarly, as for the nurse scheduling problem in the buffer strategy, a fourth section is

defined for all nurses that are scheduled for a buffer shift. All original constraints in

Equations (6.2.1)-(6.2.42) use the set BW .

Variables

anbst =

{
1, if buffer shift for nurse n in section b is activated on shift s on day t

0, otherwise

Constraints ∑
n∈N

∑
b∈B

x′nbst ≥
∑

b∈BW

Dbst s ∈ SW , t ∈ T R/{t0} (6.3.7)

Constraints (6.3.7) replace Constraints (6.2.20) and ensure that nurses scheduled to buffer

shifts are included when ensuring that demand is covered for the whole planning period.

x′n0st0 = 0 n ∈ N , s ∈ SW (6.3.8)

Constraints (6.3.8) ensure that, after rescheduling, no nurses can remain scheduled to a

buffer shift on the current day.

x′n0st = Xn0st −
∑
b∈BW

anbst − x−n0st n ∈ N , s ∈ SW , t ∈ T R (6.3.9)

Constraints (6.3.9) ensure that activated nurses are removed from the buffer and moved

to a section.

x′nbst = Xnbst + x+nbst + anbst − x−nbst n ∈ N , b ∈ BW , s ∈ SW , t ∈ T R (6.3.10)
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Constraints (6.3.10) replace Constraints (6.2.14) and ensure that the schedule is updated

for all nurses.

Variable Declaration

anbst ∈ {0, 1} n ∈ N , b ∈ BW , s ∈ SW , t ∈ T R (6.3.11)

6.3.2 Flexible Assignments

The flexible assignments strategy is a proactive approach that enhances the scheduling

model’s flexibility to handle unforeseen absences. This approach allows for the scheduling

of flexible nurses who can be assigned to cover unexpected events. The flexible assignments

strategy aims to optimize the utilization of nurses while providing additional flexibility to

the rescheduling model in handling unexpected events.

Scheduling Extensions

All full-time nurses are scheduled with an employment percentage of 100-X%. Therefore,

there are no changes to the nurse scheduling model except for adjustments to the scheduled

hours for full-time nurses.

Rescheduling Extensions

The nurse rescheduling model activates the flexible shifts for all full-time nurses in the

flexible assignment strategy. However, there are some restrictions on how these shifts can

be activated. For instance, they cannot be activated on shifts that a nurse prefers to avoid

working. Moreover, the flexible shifts adhere to many of the same laws and regulations as

the regular shifts scheduled by the nurse scheduling model.

Sets

NF set of flexible nurses NF ⊂ N

Parameters

Inst nurse n wants to avoid working shift s on day t

Rn remaining number of flexible shifts for nurse n

Rn is a time-dependent parameter and is updated for each iteration if the model utilizes

a flexible shift.
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Variables

fnbst =

{
1, if flexible shift for nurse n in section b is scheduled to shift s on day t

0, otherwise

Constraints

Some of the scheduling constraints apply to flexible shifts, fnbst, in the rescheduling model.

A flexible nurse can not be scheduled to double shifts with their flexible shifts. Thus,

Constraints (6.1.8) applies to fnbst. In addition, the constraints concerning the number

of consecutive shifts and consecutive nights apply. This refers to Constraints (6.1.11) and

(6.1.12), respectively.

Instfnbst = 0 n ∈ NF , b ∈ B, s ∈ SW , t ∈ T R (6.3.12)

Constraints (6.3.12) ensure that flexible shifts can not be scheduled for undesired shifts.

∑
b∈B

∑
s∈SW

∑
t∈T R

fnbst ≤ Rn n ∈ NF (6.3.13)

Constraints (6.3.13) ensure that the number of scheduled flexible shifts for a nurse never

exceeds the remaining number of flexible shifts.

x′nbst = Xnbst + x+nbst + fnbst − x−nbst n ∈ NF , s ∈ SW , b ∈ BW , t ∈ T R (6.3.14)

x′nbst = Xnbst + x+nbst − x−nbst n ∈ N/{NF }, s ∈ SW , b ∈ BW , t ∈ T R (6.3.15)

Constraints (6.3.14) ensure that the schedule is updated for flexible nurses. Constraints

(6.3.15) ensure that the schedule is updated for all nurses except flexible nurses. These

constraints replace Constraints (6.2.14).

Variable Declaration

fnbst ∈ {0, 1} n ∈ N , b ∈ B, s ∈ SW , t ∈ T R (6.3.16)

6.4 Illustrations

This section displays several illustrations that are created as supplements for further un-

derstanding the presented optimization model. Section 6.4.1 illustrates the connection
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between the various models, while Section 6.4.2 presents illegal patterns. Section 6.4.3

illustrates how the rescheduling process works.

6.4.1 Connection between the Models

The nurse scheduling model and the nurse rescheduling model share many commonalities

in terms of indices, sets, and parameters. Most shared elements are described identically

in both models to ensure seamless integration. The set of nurses used in both models

remains the same, maintaining consistency throughout the scheduling and rescheduling

processes. Although nurse competence is not explicitly utilized in the nurse rescheduling

model, it is relevant for determining nurse wages in the rescheduling costs.

In the rescheduling model, the parameter Xnbst represents the scheduled values for all

nurses in all sections on each day within the planning period. In both models, the set

of all days denoted T corresponds to all days the model considers. In the scheduling

model, this value is dependent on the number of weeks to schedule. However, in the

rescheduling model, the set of all days is dependent only on sets T PRE , T R, and T POST .

On the first day of the rescheduling model, Xnbst reflects the output schedule from the

scheduling model, where each value corresponds to the decision variable xnbst from the

scheduling model. As the rescheduling process progresses through iterations, the values of

Xnbst are updated to incorporate the completed rescheduling actions. This ensures that

the rescheduled values accurately reflect the modifications made to the original schedule.

Figure 6.1 illustrates the connectivity of all models, offering a preview of the fully integ-

rated system. To further improve uncertainty handling, a machine learning model can

be included. The machine learning model aims to enhance the observed demand inform-

ation using predictions. When the machine learning model provides predictions on the

nurse demand to the rescheduling model, these predictions replace the historical average

demand parameter with a predicted demand parameter. The machine learning method is

described in detail in Section 8.2.

As illustrated in Figure 6.1, the rescheduling model and the machine learning model are

embedded in a rolling horizon simulation framework which solves each day with updated

predictions from the machine learning model. The simulation framework will be explained

more in-depth in Chapter 7.
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Figure 6.1: Connection between the Nurse Scheduling Problem and the Nurse

Rescheduling Problem.

6.4.2 Illegal Patterns

Minimum Rest in a Week

Constraints (6.1.22) specify that all nurses must be scheduled to an F1 shift every week,

which entails a weekly minimum consecutive rest. Constraints (6.1.19)-(6.1.21) in the

presented optimization model represent illegal shift patterns for this minimum consecutive

rest during a week. As presented in Chapter 2, the duration of an F1 shift amounts to 35

hours. Figure 6.2 illustrates the illegal shift patterns in the schedule. The red sections in

the figure indicate free periods for the scheduled nurse, while the blue sections represent

scheduled shifts. The combinations are illegal because the duration of the F1 shift is less

than 35 hours.
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Figure 6.2: Illegal shift patterns for ensuring F1 day.

Minimum Rest in a 24-hour period

Constraints (6.2.31)-(6.2.34) in the presented optimization model represent illegal shift

patterns for rescheduling. These patterns are based on the regulations presented in

Chapter 2, which specify that a nurse must have a minimum of 10 hours of rest within a

24-hour timeframe. Figure 6.3 illustrates all illegal shift pattern combinations. The red

sections in the figure indicate free periods for the scheduled nurse, while the blue sections

represent scheduled shifts. The combinations are illegal because they violate the minimum

rest requirement.

Chapter 2 specifies the shift durations. Consecutive shifts overlap for 15 minutes, resulting

in the total shift durations summarizing to 24.5 hours.

Figure 6.3: Illegal shift patterns for ensuring enough rest in a 24-hour period.
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6.4.3 Rescheduling Example

Table 6.2 illustrates an example of a 7-day schedule for six different nurses, where day

6 and 7 represent the weekend. The nurses belong to three different sections within the

same department. The abbreviations D, E, N, and F denote a day, an evening, a night,

and an off shift, respectively.

The schedules in Table 6.2 are subject to uncertainty. During the execution of the sched-

ules, several absences occur. Available nurses then fill these absences across all three

sections. The output is a modified schedule where the supply in all understaffed shifts

has been adjusted to meet the demand. The modified schedule is illustrated in Table

6.3, where the absences are marked in red, and the rescheduled shifts as a result of these

absences are marked in green.

Table 6.2: Input schedule before rescheduling occurs.

Days

1 2 3 4 5 6 7

Section 1
Nurse 1 D D F D N F F

Nurse 2 E E D F F E D

Section 2
Nurse 3 N N F F D F F

Nurse 4 F D E F E D E

Section 3
Nurse 5 D D N N F F F

Nurse 6 F E F F D N N

Table 6.3: Modified schedule after rescheduling.

Days

1 2 3 4 5 6 7

Section 1
Nurse 1 D D D D N F F

Nurse 2 - - - F F E D

Section 2
Nurse 3 N N F F D N N

Nurse 4 F D+E F E E - E

Section 3
Nurse 5 D D N N F D F

Nurse 6 E E F F D - -
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Simulation Framework

A simulation framework is developed to implement the rescheduling model as a rolling

horizon. We use this framework to review how the rescheduling model performs over

time and evaluate the quality of the generated schedules. Section 7.1 presents a general

overview of the simulation framework. Next, Section 7.2 describes how the framework

generates instances. Finally, Section 7.3 discusses the limitations of the results.

7.1 General Overview

The simulation framework generates nurse absences and demand requirements for the

nurse rescheduling model. Absence and future demand are assumed to be stochastic. New

absences with their corresponding durations are notified each morning, and the actual

daily demand is revealed. Demand requirements for upcoming days are based on average

values from historical data as a simple estimate for the upcoming demand. With the

inclusion of the machine learning model, the demands for the upcoming days are based

on the model’s predictions. As described in Chapter 5, the rescheduling model runs each

morning, updating the schedule provided by the nurse scheduling model.

The rolling horizon simulation begins with generated absences and actual demand for

the first iteration and then solves the rescheduling problem. The output from the model

updates the input schedule for the following day. The dynamic parameters, described in

Section 6.2.1, are corrected using the updated input schedule. Next, new absences and

actual demand for the following day are provided. This step represents the move from day

t to day t + 1. Figure 7.1 illustrates how the system develops throughout the simulation

period.
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Figure 7.1: Overview of the simulation framework.

Figure 7.2 displays the time development in the rolling horizon and which parts of the total

timespan the rescheduling model considers in each iteration. The displayed scheduling

period corresponds to the period covered in the scheduling model. The schedule represents

a defined scheduling period over a given number of weeks.

Figure 7.2: Time development in the framework
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7.2 Random Number Generation

Each simulation iteration generates new values for the stochastic variables. The absence

generation is based on numerical absence data provided by CC, while the actual demand

values are based on actual staffing levels at CC.

7.2.1 Generation of Absences

A Markov model has been developed based on the possible states each nurse can be in and

the transitions between these states. Using this Markov model entails that the transition

probabilities apply to all nurses in the system and that probabilities are constant for the

duration of the simulation. Figure 7.3 shows the possible states and how the nurses can

move between states.

Figure 7.3: Transitions between the states Available (A) and Unavailable (U) with

corresponding transition probabilities.

As explained in Chapter 5, the absence duration is assumed deterministic at the point of

rescheduling. Consequently, the absences for the whole scheduling period are generated in

advance using the Markov model. These values are used to update the Ant matrix during

one simulation. The simulation framework ensures that today’s absences are revealed to

the rescheduling model for each iteration in the rolling horizon. The rescheduling model

also holds information about previously registered absences.

Table 7.1 illustrates what absence information is available to the rescheduling model at

the time of the rescheduling. The green and red cells represent known information about

the nurses’ availability for the model today, t0. If a cell takes the value 1, it means a nurse

is available, while 0 represents an absence. The grey cells represent unknown values and

are all assumed to have the value 1. The Ant matrix is updated with only the available

information.
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Table 7.1: Illustration of the model’s absence information.

Days

t−1 t0 t1 t2

Nurse 1 1 0 0 1

Nurse 2 0 0 0 1

Nurse 3 1 1 1 0

Nurse 4 1 1 1 1

Nurse 5 1 1 0 0

7.2.2 Demand Sampling

Demand values are sampled in periods corresponding to the duration of the schedule. Each

morning the actual demand for that day is revealed to the model to act as the minimum

required staffing per shift this day. The demand for the remainder of the period is set by

the historical average of the demand levels.

The actual demand serves as today’s demand requirement, while the average demand is

the required demand for the remaining days included in the planning period and post

period. Table 7.2 shows the model knowledge for each step in the simulation.

Table 7.2: Illustration of the model’s demand information.

Planning period

Days t−1 t0 t1 t2 t3 t4

Average 9 9 8 4 4 8

Actual 11 12 9 3 3 10

Knowledge 11 12 8 4 4 8

7.3 Limitations

The absence generation does not consider the scheduled workload. There could be a

significant correlation between workload and absence, but this is not handled in the absence

generation process.

The Markov model generates the absences using estimated parameters. The actual trans-

ition probabilities are unknown, and different transition probabilities yield different results.

The Markov model does not handle potential seasonal variations.

The historical values for average demand are not necessarily an accurate measure of up-

coming demand. As an example, the COVID-19 pandemic could skew the numbers in one

direction or the other and create an imbalance in the average values. However, the average

values would provide a pointer for the expected supply.
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Data Analysis and Machine

Learning Method

This chapter presents the data that has been retrieved for this thesis and the implemen-

ted machine learning methods. Section 8.1 introduces and analyzes each dataset. Next,

Section 8.2 describes the implementation of the machine learning methods and illustrates

the implementation of machine learning with optimization.

8.1 Data Analysis and Prepossessing

In this section, three datasets are analyzed. First, the preference data is presented and

discussed. Next, the nurse and activity data are presented and analyzed to provide a

better understanding of the datasets.

8.1.1 Preference Data

The preference data consists of expressed disinterest in specific shifts from the current

employees at CC. We created an employee survey for the nurses at the three bed wards

and gathered preference data from their answers. A total of 39 answers were collected

from the survey. The data presented in this section is used in the preference generation

process, which is explained in Appendix D.

Figure 8.1 presents the expressed disinterest in the shifts during the weekdays. The general

trend is that night shifts are unpopular, and day shifts are preferred. Not surprisingly,

Friday evening is not popular as it is the evening shift leading up to the weekend. Other

fluctuations can result from which days the clinic schedules surgeries or other procedures.
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Figure 8.1: The fraction of nurses who have expressed disinterest for specific weekday

shifts.

As described in Chapter 5, nurses work in specific weekend rotations. A nurse works one

day and one evening shift or two night shifts during a work weekend. Figure 8.2 illustrates

the expressed disinterest in weekend shifts. Since the shifts are assigned dependent on

each other, the values displayed in the figure represent the average values for day, evening,

and night shifts on Saturday and Sunday.

Figure 8.2: The fraction of nurses who have expressed disinterest for specific shifts on

the weekend.

8.1.2 Nurse Data

The planned nurse schedule can differ significantly from the actual nurse coverage due

to unforeseen events such as absences. The retrieved nurse data includes the planned
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and actual nurse coverage for all shifts from the three bed wards from January 2018 to

November 2022.

As described in Chapter 2, the standard shifts are day shift, D, evening shift, E, and

night shift, N. In the schedule, these shifts have various shift codes connected to each.

To generalize the data, all shift codes have been aggregated based on their corresponding

shift types to provide an overview of all the shifts associated with either day, evening, or

night shifts. Figure 8.3 shows the average number of nurses working in Bed Ward 1 for

each shift type, D, E, and N, respectively. The blue bars represent the planned number of

nurses, while the green bars indicate the actual number of nurses who worked. It is worth

noting that the values on the y-axis are different for the three plots. The variations in the

day shifts are more significant than in the evening and night shifts. The analysis reveals

consistent trends across all three bed wards. On average, the planned number of nurses

consistently exceeds the actual number of nurses for all shift types. Moreover, the figures

demonstrate that nurse demand tends to be higher on weekdays than on weekends.

(a) Day shift (b) Evening shift

(c) Night shift

Figure 8.3: Average planned and actual staffing of nurses in Bed Ward 1 for different

shift types. The blue bar is the planned staffing for nurses, and the green bar is the

actual nurse staffing.

The box plots in Figure 8.3 provide insights into the variability of the data. The boxes

represent the interquartile range (IQR), capturing the middle 50% of the data for each

shift. In a box plot, the whiskers are lines set to extend at most two times the IQR size

from the box’s edges. Data points lying outside the whiskers are considered outliers within

the dataset. However, these outliers are not visually represented in these plots. The red

horizontal line within the box represents the median value for each bar. The values in the

dataset are all integers. As a result, the edges of the box, the median, and the ends of the

whiskers coincide with integer values in the box plots.
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For some of the night shifts in Figure 8.3c, the box plot does not display any boxes or

whiskers. This is because the IQR for these days only contains the number 3. Con-

sequently, since the whiskers’ length depends on the IQR’s size, they are not visible in this

case since they will start and end in 3. The box plots show a considerable variation in the

nurse demand for Saturday and Sunday day and evening shifts. As presented in Chapter

2, the three bed wards borrow nurses from other sections on weekend shifts. Therefore,

weekend staffing varies depending on how many nurses the bed wards utilize from other

sections.

Figure 8.4 illustrates the distribution of the number of nurses working the day shifts on

Mondays in Bed Ward 1 in the dataset. Most Mondays have between 6 and 9 nurses

working, although there is some variation. The same dataset is the basis for determin-

ing the average nurse scheduling and rescheduling demand, specifically for day shifts on

Mondays. Similarly, the average weekly demand for all other shifts is determined based

on the corresponding shift data for the other shift types and bed wards.

Figure 8.4: Number of nurses for day shift in Bed Ward 1 on Mondays in the dataset.

Figure 8.5 displays the monthly average of the planned and actual number of nurses. The

figure shows no clear indication of any significant seasonal variations. This could imply

that seasonality does not have a large impact when determining nurse demand.
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Figure 8.5: Average number of working nurses for all shifts in Bed Ward 1 for each

month in the dataset.

8.1.3 Activity Data

The activity data primarily focuses on the patient-related activities within each section.

The provided data for the three bed wards spans from January 2018 to November 2022

and includes information about the number of patient arrivals and departures and patient

demographics such as age and diagnoses.

Patient load is a significant factor contributing to the variation in the need for nurses. It is,

therefore, interesting to analyze potential factors that can influence patient workload and,

consequently, the demand for nurses. Various factors can contribute to an increase in the

patient load. Examples are the number of patients in need of nursing care, the presence of

patients with severe and complex diseases, patients with multiple comorbidities, and age.

To better understand the dataset, we got input from the section managers and the clinic

manager at CC regarding patient load. Their expert knowledge helped us identify some

factors that consistently influence the nurse demand at different levels of patient load.

The clinic manager explained that the patient load often increases with the patient’s age

and that the total length of stay (LOS) for the patients could indicate the patient’s need

for nursing care. Figure 8.6 presents the distribution of the patients’ ages. The figure

shows that most patients in the bed wards are between 60 and 80 years. Diagnosis for

older patients is often more severe compared to younger patients with the same diagnosis.

An older patient group can therefore be an indication of higher nurse demand. Figure

8.7 displays the average LOS for patients in each age group. The figure demonstrates

a positive correlation between age and LOS. In addition, the box plot shows that the

variation in the LOS for patients increases with age. As described earlier, in Section 8.1.2,

the box plots are set to not show the outliers, but the LOS data contains many outliers.
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Ages groups from 15 to 40 place the top edge of the box lower than the average LOS. This

indicates that these age groups include large outliers that greatly influence the average

value.

Figure 8.6: Number of patients in each age group.

Figure 8.7: Average length of stay (LOS) for patients in each age group.

The clinic manager also informed us that cardiac failure is among the most challenging

medical conditions encountered in the bed wards. The patients arriving with cardiac failure

78



CHAPTER 8. DATA ANALYSIS AND MACHINE LEARNING METHOD

are always acute and critical. Cardiac failure typically requires a significant amount of

nursing care regardless of the patient’s age. Figure 8.8 shows the fraction of patients with

cardiac failure within each age group. It shows that the occurrences of cardiac failure

generally increase with age. Figure 8.9 shows the average LOS for patients with and

without cardiac failure. As with age, cardiac failure shows a clear positive correlation

with the total LOS.

Figure 8.8: The fraction of patients in each age group with cardiac failure.

Figure 8.9: Average length of stay (LOS) for the patients with and without cardiac

failure.
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8.2 Machine Learning Methods

This section provides an overview of the machine learning methods employed in this thesis.

These methods aim to evaluate whether they can yield more accurate predictions of nurse

demand compared to the historical average demand and, as a result, reduce rescheduling

costs in the nurse rescheduling model. The machine learning models should be capable of

predicting the nurse demand based on the input features, considering a specific number

of future days from the time the predictions are generated.

Figure 8.10 illustrates how the input data has been created. The dataset used to create

machine learning models is a combination of the nurse data and activity data presented

in Section 8.1. The dataset is combined on the date and only includes numerical data.

The input data comprises sparse information, primarily due to incorporating features like

age groups and weekdays. The prediction models’ target feature is the actual demand for

nurses for future days. This feature represents the integer count of nurses required for

each shift on a specific day, making it suitable as both a target value for classification and

regression problems.

Figure 8.10: The merge of activity and nurse data into input data for the machine

learning models.

Given the substantial number of features in the input data, it becomes critical to employ

a method capable of figuring out which features contribute to patterns within the data-

set. The models chosen and described in this section are a neural network model and a

decision tree model. By implementing both models, we can evaluate their performance

and determine the one that achieves the best results for further analysis. This comparison

enables us to decide on the most effective machine learning model.

The following sections explain the architecture, hyperparameters, features, and the train-

ing procedure for the machine learning models. In addition, the implementation of the

machine learning models and the optimization models is described and visualized.
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8.2.1 Artificial Neural Network

The implemented neural network architecture comprises one input layer and one output

layer. The neural network can be initialized with a number of hidden layers, enabling

the model to find non-linear patterns in the data. It is essential to keep the number of

hidden layers small enough not to make the model too complex. For classification cases,

the output layer consists of a number of neurons equal to the unique number of historic

numbers of actual demand. For regression problems, the output layer contains one single

neuron.

Table 8.1 describes the hyperparameters of the artificial neural network, which are para-

meters that are set before the learning process begins and determine the architecture and

behavior of the network. These parameters are not learned from the data but are manu-

ally chosen to ensure that the neural network performs well. The process of finding the

optimal hyperparameters is often done through experimentation and testing to find the

values with the best performance for the demand predictions.

Table 8.1: Hyperparameters for the neural network.

Parameter Description

Neurons in hidden layer

Choosing the number of neurons in hidden layers in-

volves balancing model complexity for capturing pat-

terns without overfitting or underfitting.

Activation function

The activation function determines the non-linearity

and learning capacity of the model. Activation func-

tions are utilized in the hidden layers, and for classi-

fication models, an activation function is also utilized

in the output layer.

Loss Function

The loss function quantifies the difference between

predicted and true values. Regression and classifica-

tion models generally use different loss functions.

Optimizer The optimizer impacts training speed and quality.

Epochs
The number of epochs should be large enough for the

loss to converge.

Learning Rate

The learning rate is based on finding a value where

the loss converges rather than diverges during the

training process.

8.2.2 Decision Tree

A decision tree was implemented as an alternative machine-learning method to assess its

performance compared to the neural network. The decision tree is also implemented as

both a regression problem and a classification problem. Table 8.2 describes the hyperpara-

meters used for the decision tree. Same as for the neural network, these hyperparameters
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are set before the training of the model.

Table 8.2: Hyperparameters for decision tree.

Parameter Description

Splitting criteria

The selection of the splitting criteria for the decision tree

is important as it directly impacts the quality of the splits

made at the decision nodes. The choice of splitting cri-

teria is based on the numerous features and sparse data.

Maximum depth

The maximum depth is determined by trying different

values and analyzing what performs best. A larger max-

imum depth could result in an overly complex decision

tree, especially when dealing with many features. This

can make it more difficult to retrieve patterns and poten-

tially lead to overfitting, where the tree memorizes the

training data instead of learning general patterns.

8.2.3 Feature Selection, Training, and Comparison

Feature Selection

The actual demand for nurses in each of the sections for each shift type is based on the

input data. The actual demand is revealed on day t0, corresponding to today. The planned

staffing and the actual demand are used as inputs for the models. The models predict the

nurse demand for future days in the planning period, aiming to predict future demand

accurately. The planned staffing for the day to predict is also included as a feature.

The selection of the features in the input data for the machine learning models was based

on an analysis of the dataset, aiming to identify existing patterns within the data. Ad-

ditionally, input from the clinic manager played a significant role in determining which

features should be included in the models. According to the clinic manager, certain factors

are known to contribute to an increased nurse demand, and these factors were considered

during the feature selection process.

The clinic manager specifically highlighted two key features that were believed to be

critical factors influencing nurse demand: the occurrence of cardiac failure and the age

of the patients. The input data also includes other features, such as the current day, the

number of patients in one section on a specific day, the number of comorbidities, and if

the patients are acutely or planned hospitalized.

The features in the input dataset are date-specific and connected to specific shifts (D, E,

N) and to the bed wards. To utilize the activity data linked to specific patients, it was

necessary to merge the data based on the dates in a reasonable way. One prediction model

for each shift type (D, E, and N) has been created for each bed ward. The input features

in Table 8.3 are for a specific date for a specific bed ward.
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Table 8.3: The format of the input data for the models.

Feature Values

Number of patients Sum

Cardiac failure Sum

Degree of urgency Sum

Number of diseases Mean

Planned number of nurses day 0 Sum for specific shift

Planned number of nurses day 1 Sum for specific shift

Planned number of nurses day 2 Sum for specific shift

Actual number of nurses day 0 Sum for specific shift

Age groups Sum for each age group

Weekdays Mon, Tue, Wed, Thu, Fri, Sat, Sun

Training

The input data was divided into two subsets: a training set and a test set to facilitate

effective training and evaluation of the neural network. The training set was comprised

of 80% of the original dataset, while the remaining 20% was reserved for the test set,

ensuring an unbiased assessment of the model’s performance.

For the neural network, to further enhance the training process and prevent overfitting,

a validation set was extracted from the training set to evaluate the model’s performance

during training. This validation set accounted for 20% of the training data and was

randomly chosen.

The models have been trained on data spanning the years 2018 to 2021. However, the

models were not trained on the data from 2022. The 2022 data is the data simulated in

the rescheduling model.

Comparison

The mean absolute error (MAE) is used as a metric to compare two regression models.

Further, for comparison between a classification and a regression model, accuracy is the

comparison metric used. The accuracy is a percentage of how often the prediction is

correct, and the MAE is the average deviation from the actual demand. These metrics

indicate how well the models perform.

8.2.4 Implementation of Machine Learning in the Optimization Model

Figure 8.11 is an extension of Figure 6.1. It shows the connectivity of the optimization

models and the machine learning model, with a particular focus on the machine learn-
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ing model. The machine learning models have been structured into two distinct stages.

The decision to employ a two-stage process is motivated by the recognition that the pre-

dicted value of nurse demand from the initial step can potentially influence subsequent

predictions. The prediction for day 1 serves as an additional input variable to the next

prediction model, which predicts the value for day 2. These predicted values are sent to

the rescheduling model and used as input parameters.

In Figure 8.11, the features known on day 0 are highlighted in blue. The planned demand

for the specific day of prediction is highlighted in yellow. In stage 2, the predicted value

is displayed with a green color.

Figure 8.11: Implementation of all the models, both optimization and machine learning

models.

New Parameter

DP
bst Predicted demand in section b for shift s on day t

New Demand Constraints∑
n∈N

x′nbst ≥ DP
bst b ∈ B, s ∈ SW , t ∈ T R/{t0} (8.2.1)

∑
n∈N

∑
b∈B

x′nbst ≥
∑

b∈BW

DP
bst s ∈ SW , t ∈ T R/{t0} (8.2.2)

Constraints (8.2.1) and (8.2.2) show the updated demand constraint in the rescheduling

model. These constraints incorporate machine learning-based predicted demand, DP
bst,

replacing the historical average demand Dbst in the original demand Constraints (6.2.20)

and (6.3.7) for the days included in the planning period.

Table 8.4 shows the rescheduling model’s knowledge when incorporating the machine learn-

ing model’s predictions. As the table displays, the demand in the planning period is

decided by predictions and not average demand as in Table 7.2.
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Table 8.4: Illustration of the model’s demand information with machine learning

predictions.

Planning period

Days t−1 t0 t1 t2 t3 t4

Average 9 9 8 4 4 8

Predicted 12 10 10 3 - -

Actual 11 12 9 3 3 10

Knowledge 11 12 10 3 4 8

85



Chapter 9

Computational Study

This chapter introduces a series of test cases designed to evaluate the effectiveness of the

models proposed in this thesis. The objectives are to assess whether proactive schedul-

ing improves efficiency and reduces the costs of rescheduling and to analyze if machine

learning-driven demand predictions improve the rescheduling process.

In Section 8.2, we presented machine learning models to improve the results of the nurse

rescheduling model. First, these methods must be evaluated and analyzed in order to

determine which methods should be utilized in combination with the rescheduling models.

Furthermore, several test cases are developed to enable us to comprehensively assess the

performance of the formulated optimization models in addressing the nurse scheduling and

rescheduling problems outlined in Chapter 5. The baseline models formulated in Chapter

6 are created to solve the nurse scheduling and nurse rescheduling problems. To further

enhance these baseline models and better handle uncertainties, we have introduced model

extensions that incorporate proactive measures in the scheduling model and corresponding

reactive measures in the rescheduling model.

The computational outcomes of the scheduling models are analyzed by comparing them

to predefined criteria, ensuring that schedules employing proactive strategies yield at least

comparable results to the baseline schedule. Subsequently, the corresponding rescheduling

models are evaluated by their ability to address uncertainties and reduce total costs, with

a comparative analysis between the baseline rescheduling model and the models utilizing

the strategies.

The final step in this chapter aims to combine the results from the analysis of the machine

learning methods with the optimization models and evaluate whether incorporating the

demand predictions yield better results than using demand based solely on historical av-

erages. Improved results should limit the need for rescheduling, thus decreasing the total

costs.
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Outline

Firstly, Section 9.1 presents the hardware and software specifications for running the

models. To ensure the comparability of results, all models are executed in the same test

environment. Section 9.2 describes the parameter values for all static parameters in the

optimization models, which remain the same for all test cases. To ensure the models

provide as realistic results as possible, all parameter values are based on real-world data

from CC. Section 9.3 provides the experimental plan for all test cases related to the

optimization models. This includes test cases for evaluating the baseline models and the

model extensions, along with various test cases featuring different absence and demand

information levels.

In Section 9.4, the results from the machine learning models implemented are examined,

and results in the decision of which model to utilize for the rescheduling model. Continuing,

all the test cases from Section 9.3 are comprehensively analyzed and compared. Finally,

Section 9.5 concludes the computational study by discussing the limitations of the results.

9.1 Test Environment

The optimization models and machine learning methods are implemented in Python. The

optimization models are solved using the commercial optimization software Gurobi Op-

timizer. All tests are completed using a Dell Inc. OptiPlex 9020 computer. Table 9.1

includes further descriptions of the software- and hardware-specific information used to

implement and solve the models.

Table 9.1: Details of software and hardware specifications.

Processor Intel(R) Core(TM) i7-4770

Cores / Frequency 4 / 3.4GHz

Operating System Windows 10 Education

RAM 16GB

Python version 3.10.9

Gurobi version 10.0.1

Tensorflow version 2.10.0

9.2 Initialization of Parameters

The schedule generated by the nurse scheduling model should replicate the situation at

the three bed wards as realistically as possible. Table 9.2 gives an overview of the current

staffing in each section and some demand-related parameter values used in the scheduling

model. Table 9.3 presents the desired demand values for experience for the various shifts,

which is the same across all sections and days. More detailed information about the nurse

information is illustrated in Appendix C.
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Table 9.2: The number of nurses and demand-related values for the competence.

BW1 BW2 BW3

Total number of nurses 32 33 39

Number of specialized nurses 10 6 7

Desired demand for specialized nurses, DSN
bst 1 1 1

Maximum demand for assistant nurses, DAN
bst 1 1 1

Table 9.3: Desired demand values for the number of years of experience for all three

sections, Debst.

Day Evening Night

Under 1 year 0 0 0

1 - 5 years 1 1 0

Over 5 years 2 2 1

Table 9.4 presents the minimum and average demand for each shift for all three sections.

The staffing numbers in Table 9.2 and Table 9.3 combined with the daily average demand

values in Table 9.4 lay the foundation for the output schedule. As explained in Chapter

2, the values for the minimum demand are based on staffing plans supplied by CC, while

the values for historical average demand are the results of the data analysis presented in

Chapter 8.

Table 9.4: Minimum and historical average demand for each bed ward (BW) for the

nurse scheduling model in the format (Dbst, Dbst).

Mon Tue Wed Thu Fri Sat Sun

Day (6, 8) (6, 9) (6, 9) (6, 9) (6, 8) (3, 4) (3, 4)

BW1 Eve (5, 5) (5, 5) (5, 5) (5, 5) (5, 5) (3, 4) (3, 4)

Night (3, 3) (3, 3) (3, 3) (3, 3) (3, 3) (2, 2) (2, 2)

Day (6, 8) (6, 10) (6, 10) (6, 9) (6, 9) (3, 4) (3, 4)

BW2 Eve (5, 5) (5, 5) (5, 5) (5, 5) (5, 5) (3, 4) (3, 4)

Night (3, 3) (3, 3) (3, 3) (3, 3) (3, 3) (2, 3) (2, 3)

Day (7, 11) (7, 12) (7, 12) (7, 12) (7, 10) (3, 5) (3, 5)

BW3 Eve (5, 5) (5, 5) (5, 5) (5, 5) (5, 5) (3, 4) (3, 4)

Night (3, 3) (3, 3) (3, 3) (3, 3) (3, 3) (2, 2) (2, 2)

Table 9.5 displays the values of the scheduling parameters presented in Section 6.1. The

shift durations are based on a generalization of the shift durations at CC. The maximum
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number of work hours in seven days and required rest during a week is determined by

the Norwegian Working Environments Act (Arbeidsmiljøloven, 2022). As described in

Chapter 2, the main tariff agreement determines the number of hours in a full-time work

week. This number is specified to be 35.5 hours.

As outlined in Chapter 2, the nurses follow a shift rotation system where they work every

third weekend. To accommodate this weekend rotation within the scheduling period, the

number of weeks in the scheduling period should be in increments of three. Moreover,

the scheduling period should be sufficiently long to thoroughly evaluate the rescheduling

model. Consequently, the scheduling period is established for a 6 week period.

Table 9.5: Initialization value of scheduling parameters.

Parameter Description Value

M
D

maximum number of consecutive work days 5

M
N

maximum number of consecutive work nights 3

L maximum work hours in a week 48

H hours in a full time work week 35.5

HD duration of day shift in hours 7.5

HE duration of evening shift in hours 7

HN duration of night shift in hours 10

W working weekend recurrence 3

F upper bound for allowed deviation from contracted hours 105%

F lower bound for allowed deviation from contracted hours 95%

K number of weeks in scheduling period 6

In our Specialization Report, we evaluated the impact of the planning period duration

on the rescheduling model (Johansen et al., 2022). Our findings indicate that while the

planning period duration does influence the results, the observed differences are relatively

minor and do not significantly affect the outcomes. Based on discussions with the section

managers at CC, it was concluded that a three-day planning period is realistic in real-world

scenarios, and extending beyond three days introduces additional uncertainties related to

nurse availability and patient load. In addition, it is most urgent to find replacements

for the shifts in the near future, and the urgency decreases each day from the day of the

reported absence. Consequently, all rescheduling tests will employ T R = {t0, t1, t2}.

Table 9.6 displays the values of the rescheduling parameters presented in Section 6.2. In

addition, values for parameter Cn are listed in Appendix C. The nurse wages and extra

payments for the weekend, evening, and night shifts are based on information from Norsk

Sykepleierforbund (2022b) on the minimum yearly wages for nurses with and without spe-

cialization in Norwegian hospitals. The wage calculator provided by The Norwegian Nurses

Organisation finds the corresponding hourly wage (Norsk Sykepleierforbund, 2022a).
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Table 9.6: Initialization value of rescheduling parameters.

Parameter Description Value

|T R| number of days in the planning period 3

Wn hourly wage in NOK for assistant nurse n where n ∈ Nc=AN 210

Wn hourly wage in NOK for regular nurse n where n ∈ Nc=N 250

Wn hourly wage in NOK for specialized nurse n where n ∈ Nc=SN 280

PO penalty percentage for overtime hours 100%

POS penalty for hours in a swapped shift 85%

PW penalty payment for weekend hours 23%

PN penalty payment for night hours 28%

PE penalty payment for evening hours 28%

H
D

maximum hours during a day before overtime is triggered 10

HM duration of double shift, HM = HD +HE 14.5

The parameters H, L, and Hs are present in both models and have the same value for

rescheduling as presented in Table 9.5. HPRE
nk is calculated based on the schedule provided

by the scheduling model. The values of the dynamic parameters handling overtime and

double shifts, namely Ωnk, Λnst, and ∆nt, are initialized with values of 0. These dynamic

parameters are updated between each step in the rolling horizon, while the parameters

explained in Table 9.6 remain constant through each step. Ant is initialized and updated

as explained in Chapter 7. Inst is generated as explained in Appendix D.

9.3 Case Definitions

Multiple test cases have been developed to sufficiently evaluate and analyze the optimiza-

tion models presented in Chapter 6 and the machine learning models presented in Section

8.2. The evaluation process includes examining both the baseline nurse scheduling and

rescheduling models, as well as the model extensions.

Section 9.3.1 presents the test cases designed explicitly for the baseline models. These test

cases include evaluating the nurse scheduling and rescheduling models to determine their

effectiveness in generating appropriate and realistic schedules. Section 9.3.2 focuses on the

evaluation of the model extensions presented in Section 6.3. These extensions incorporate

proactive strategies for the scheduling model and corresponding reactive strategies for the

rescheduling model. The test cases aim to assess whether implementing these strategies

improves results compared to the baseline models. To further assess the performance and

capabilities of the various models under different scenarios, Section 9.3.3 presents several

uncertainty levels in terms of absence and demand levels. These uncertainty levels provide

valuable insights for evaluating and comparing all model variations.
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9.3.1 Baseline Models

This section presents the test cases for the baseline models. The baseline models encompass

both the scheduling and rescheduling models, which were introduced in Sections 6.1 and

6.2, respectively. These test cases are designed to assess the performance of the models.

The test cases provide a baseline for comparing the results of the extended models.

In order to evaluate the impact of the lexicographic objective constraints in the baseline

scheduling model, the test cases presented in Table 9.7 are formulated. The test cases have

variations of the slack when solving the lexicographic objectives. The test cases enable

us to evaluate the difference in the generated schedules and determine what provides the

best baseline schedule.

Table 9.7: Test cases for objective function setup.

Test Case Description

Base 1 Objective function as defined in Chapter 6.1 with slack for ob-

jective constraints.

Base 2 Objective function as defined in Chapter 6.1 with no slack for

objective constraints.

9.3.2 Model Extensions

This section provides test cases for the model extension, which aims to gain insights

into the performance of the proactive strategies and their ability to handle uncertainties.

The results of these test cases will contribute to a more thorough understanding of the

effectiveness and practicality of the model extensions in addressing the challenges of nurse

scheduling and rescheduling.

The model extensions encompass both proactive and reactive strategies. The proactive

strategies influence the schedule generation process, while the reactive strategies involve

strategy activation during the rescheduling phase. However, it is important to note that

the test cases are specifically formulated for the scheduling model, as the characteristics

of each test instance influence the corresponding rescheduling models.

Buffer

For the buffer strategy, evaluating the impact of the parameter βst is interesting. As

described in Section 6.3, it sets an upper limit on the number of buffer nurses scheduled

for each shift. Evaluating different values of this parameter provides insights into its effect

on the generated schedule and, consequently, on the corresponding rescheduling model. In

these cases, all nurses can be scheduled to buffer shifts. Table 9.8 presents the test cases

that explore varying buffer levels.
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Table 9.8: Test cases for the buffer strategy.

Test Case Description Values

Buffer 1 No limit on buffer

levels

βst equals an arbitrarily large number,

thus not limiting the number of buffer

nurses scheduled to a shift.

Buffer 2 βst = 3 The buffer is limited to 3 nurses per shift.

Buffer 3 βDt = 6

βEt = 3

βNt = 3

The buffer is limited to 6 nurses per day

shift, 3 nurses per evening shift, and 3

nurses per night shift.

Flexible Assignments

The flexible assignments strategy involves the utilization of flexible nurses, as described in

further detail in Table 5.1. In this strategy, it is interesting to evaluate how varying values

for the flexible percentage X impact the results. Table 9.9 presents three separate test

cases with different X levels to explore these variations. Flexible shifts are only assigned to

full-time nurses, which remains equal to a total of 32 nurses in all cases. These test cases

enable an evaluation of the flexible assignment strategy and its impact on the scheduling

and rescheduling models.

Table 9.9: Test cases for the flexible assignments strategy.

Test Case Description Values

Flex 10 X = 10% Gives a distribution of 90% scheduled work

and 10% flexible work.

Flex 20 X = 20% Gives a distribution of 80% scheduled work

and 20% flexible work.

Flex 30 X = 30% Gives a distribution of 70% scheduled work

and 30% flexible work.

9.3.3 Uncertainty Levels

This section provides several uncertainty levels to further assess and compare the per-

formance of the baseline models and model extensions. These levels focus on absence and

demand. Since absence and demand levels can vary significantly in real-world scenarios, it

is interesting to assess how the models perform under different levels of uncertainty. The

uncertainty levels are used in the evaluation of the different schedules. This allows us to

identify which model variations are better suited to address the challenges of uncertainty

in nurse rescheduling.
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Cross-Section Rescheduling

To assess the impact of cross-section rescheduling, it is necessary to compare it with in-

section rescheduling. With in-section rescheduling, there are no shared resources between

the sections. To evaluate the effect of cross-section rescheduling, a comparison is made

between the total costs of cross-section and in-section rescheduling by gradually increasing

the absence levels for one section. By computing the total costs at each 5% increment,

we can compare the cost development for increasing absence levels within one section.

Furthermore, the difference in total costs can be analyzed when rescheduling is performed

using only in-section rescheduling versus incorporating cross-section rescheduling.

Varying Absence Levels

Nurse availability is an uncertain factor that can significantly impact the rescheduling

results. High levels of nurse absences often increase the need for reactive actions, while

lower levels of absences reduce the need for rescheduling. Table 9.10 presents the absence

levels that have been developed to properly evaluate and analyze the rescheduling model’s

performance.

Table 9.10: Absence levels for rescheduling.

Absence

level

Description Values

Level 0 No absence 0% absence in all sections.

Level 1 Low absence level in all sec-

tions

5% absence in all sections.

Level 2 Representative absence

levels in all sections

10% absence in all sections. based on

data in Appendix B.

Level 3 High absence in one section 30% absence in one section and 10% ab-

sence in other sections.

Level 4 High absence level in all

sections

30% absence in all sections.

The simulation framework presented in Section 7.2.1 generates the absences used in the

model. Table B.1 in Appendix B displays the absence data provided by CC, where the

monthly percentages of absences are given from 2020 to 2022. These percentages show that

absences vary over time and between sections. Section B.0.1 provides a detailed overview

of how the absences are generated using the data from CC and the simulation framework

in Section 7.2.1.
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Demand Information

Patient load is another source of uncertainty that affects the need for rescheduling. Varying

demand levels can lead to increased total rescheduling costs. While the actual demand for

nurses is known before the morning shift each day, the demand for the rest of the planning

period remains unknown. This was illustrated in Table 8.4.

Table 9.11 presents different levels of demand information. A comparison between using

simple average estimations, machine learning predictions, and revealing perfect inform-

ation can provide insight into the value of accurate demand information. The actual

demand is known every morning at all levels. However, with perfect information, the

actual demand for the remainder of the planning period is also revealed.

Table 9.11: Test case for evaluating the value of perfect information of demand.

Information

of demand

Description Values

Average Historical average

demand

Demand for the upcoming two days in the

planning period are based on historical aver-

ages, while today is using actual demand.

Perfect Perfect informa-

tion

The demand in the planning period is based on

perfect information, where the values are given

in a similar manner as actual demand.

Predicted Machine Learning

predictions

Demand for the upcoming two days in the

planning period are based on machine learn-

ing predictions, while today is using actual de-

mand.

The information level with demand predictions is included in the rescheduling model using

the demand constraints presented in Section 8.2.4. Utilizing the different levels of demand

information will provide insights into whether utilizing machine learning predictions can

add value to the rescheduling and perform with a total cost closer to the cost when having

perfect information.

9.4 Results

This section presents the results of the different test cases. The analysis aims to evaluate

the performance of the different test cases and compare the effectiveness of the various

strategies in both the scheduling and the rescheduling models. First, the machine learning

results are presented and evaluated in Section 9.4.1. Section 9.4.2 presents the key metrics

used to discuss and compare the scheduling results. Building on this, the scheduling results

for the baseline model and the model extensions are presented in Section 9.4.3. Next, the

key metrics for the rescheduling model are presented in Section 9.4.4. Section 9.4.5 present

the rescheduling results for the baseline model and the corresponding model extensions.
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Finally, Section 9.4.6 analyze the results for combining the best machine learning method

with the various rescheduling strategies.

9.4.1 Machine Learning Results

This section presents the implemented machine learning models and compares them to

each other. The initialization of the hyperparameters is presented and discussed before

the results from the models are presented.

The analysis includes two regression models, one neural network, and one decision tree

model. The regression models output a float, but since we can only have integer nurse

demand, the output number will be rounded to the nearest integer for both models. As

described in Section 8.2.4, the models are first set up in a two-stage process and trained

on data spanning from 2018 to 2021. After the regression analyses, the decision tree will

also be evaluated with classification.

Table 9.12 presents the initialization of hyperparameters for the neural network regres-

sion problem, while Table 9.13 presents the initialization of the hyperparameters for the

decision tree models for both the regression problem and classification problem.

Table 9.12: Initialization of hyperparameters for the Neural Network regression.

Parameter Description

Neurons in hidden

layer

The neural network comprises a single hidden layer with

64 neurons.

Activation function

The ReLU is chosen as the activation function for the

hidden layer chosen due to its capability to encourage

sparse representations. By only activating for positive in-

put values and outputting zero for negative inputs, ReLU

promotes sparsity in the network, allowing it to focus on

the important features for discovering patterns.

Loss Function

The MAE is used as the loss function, measuring the

average absolute difference between predicted and actual

values.

Optimizer
The Adam optimizer is employed due to its adaptive

learning rate mechanism.

Epochs The model is trained for 500 epochs.

Learning Rate The model uses a learning rate of 0.00003.
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Table 9.13: Initialization of hyperparameters values for Decision Tree regression.

Parameter Description

Splitting criteria

For the regression problem, the MAE is chosen as the

splitting criteria for evaluating splits in the decision tree

because it is not that sensitive to outliers in the dataset.

The Gini Impurity is selected as the splitting criteria for

the classification problem as it is suitable for datasets

with multiple features.

Maximum depth

Considering the significant number of features, the tree

is initialized with a maximum depth. After analysis, a

maximum depth of 3 was determined to be best.

Figure 9.1 displays the error loss observed during the training of the neural networks

on days 1 and 2, where day 0 is the day the rescheduling is done. This figure presents

the MAE during training of the neural network on the day shift in Bed Ward 1 for the

predictions. As the epochs progress, the model learns, and the loss steadily decreases.

(a) Loss graph for day 1 prediction (b) Loss graph for day 2 predictions

Figure 9.1: Loss graphs for days 1 and 2 of training with the neural network for Bed

Ward 1 on day shift.

Surprisingly, we found that the accuracy and MAE for predictions for both the machine

learning models on day 1 compared to day 2 did not exhibit significant differences. This

suggests that the activity data may not strongly influence the discovered pattern within

the neural network. Instead, it is likely that the primary factors shaping the pattern stem

from other features like the planned staffing.

Table 9.14 presents the MAE values for the predictions on the 2022 data. It is observed

that the decision tree model generally achieves smaller MAE values compared to the

neural network model. In cases where the neural network outperforms the decision tree

in terms of MAE, the difference between the errors is not significant. Given the objective

to minimize the deviation of predictions from the historical actual demand, the decision

tree model is prioritized.
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Table 9.14: Comparison of MAE for neural network regression (NN) and decision tree

regression (DT) for each section and shift type.

D E N

Day number 1 2 1 2 1 2

BW1
NN 1.04 0.97 0.65 0.69 0.28 0.33

DT 0.91 0.92 0.67 0.67 0.31 0.30

BW2
NN 0.95 0.95 0.66 0.61 0.41 0.48

DT 0.97 0.95 0.61 0.56 0.38 0.39

BW3
NN 1.05 1.02 0.69 0.74 0.54 0.53

DT 0.98 0.97 0.72 0.75 0.53 0.53

The reason why the decision tree provides predictions with a smaller error from the target

value than the neural network could be attributed to the significant number of features

provided. Both prediction models demonstrate the ability to detect patterns within the

collected features from the nurse data. However, the decision tree’s maximum depth

restricts the number of features it considers, allowing it to focus on the most influential

ones. On the other hand, the neural network might discover patterns in features not

considered by the decision tree and lead to overfitting for the neural network. To enhance

the value of the activity data and uncover clearer patterns, it could be beneficial if the

nurses could record the perceived patient load for each shift by utilizing a scale from less

to more patient demand than usual. Analyzing this additional data might reveal more

distinct patterns in the patient data.

The actual demand is an integer. However, the solution space is limited and can be

divided into classes. Therefore, both classification and regression methods can be suitable

for addressing this problem. The comparison metrics reveal that decision tree regression

outperforms neural network regression. Next, a comparison between the decision tree

regression and decision tree classification is presented.

Since we compare two models with different ways to provide the output, the comparison

metric used is accuracy. Table 9.15 shows the accuracy of the two decision tree models

compared to each other. This table shows that the regression problem is more accurate in

most of the predictions than the classification problem. Notably, the decision tree regres-

sion utilizes MAE as its splitting criteria, while the classifier disregards the magnitude of

incorrect predictions. This, coupled with the higher accuracy achieved by the regression

approach, suggests that it is sensible to continue analyzing the nurse rescheduling problem

using predictions generated by the decision tree regression model.
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Table 9.15: Comparison of prediction accuracy between decision tree regression and

classification for each section and shift type.

D E N

Day number 1 2 1 2 1 2

BW1
Regression 0.36 0.34 0.43 0.42 0.71 0.71

Classification 0.34 0.34 0.40 0.43 0.71 0.72

BW2
Regression 0.33 0.35 0.49 0.51 0.64 0.63

Classification 0.33 0.35 0.48 0.49 0.64 0.63

BW3
Regression 0.37 0.37 0.41 0.40 0.52 0.52

Classification 0.36 0.36 0.41 0.41 0.52 0.51

9.4.2 Key Metrics Scheduling

Several metrics are defined to evaluate the effectiveness of the scheduling model. These

are used to assess and compare the performance of the different scenarios and test cases.

Table 9.16 presents the metrics used to measure the results of the scheduling model. The

table also displays how an ideal schedule should evaluate all the metrics. It is worth

noting that the overstaffing metric refers to the distribution of overstaffed shifts. The aim

is to distribute the overstaffing over as many shifts as possible, limiting the amount of

overstaffing per shift.

Table 9.16: Key metrics for the scheduling model.

Metric Values Aim

Understaffing Number of shifts Minimize

Hours deviation Total hours deviated Minimize

Max deviation Highest hour deviation for a nurse Minimize

Overstaffing Number of shifts Maximize

Preference Percentage of preference compliance Maximize

Experience Number of shifts violating requirements Minimize

Competence Number of shifts violating requirements Minimize

Buffer shifts Number of buffer shifts assigned Neutral

Flexible shifts Number of flexible shifts assigned Neutral

Shifts scheduled Number of shifts Neutral

Runtime (s) Seconds Minimize
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9.4.3 Scheduling Results

This section analyzes the results obtained from the nurse scheduling model. Both the

results from the baseline scheduling model and the proactive strategies in the model ex-

tensions are presented, enabling for comparison of the performance of the model variations.

Baseline Nurse Scheduling Model

Table 9.17 presents the results for the test cases presented in Table 9.7. These test cases

aim to determine how slack in the objective function constraints impacts the various

metrics, thus determining a tradeoff between runtime and slack in the lexicographic con-

straints.

Table 9.17: Results for solving the cases with and without slack in the objective function

in the scheduling model.

Metric
Test case

Base 1 Base 2

Understaffing 0 0

Hours deviation 351.9 337.9

Max deviation 3.25 3.25

Overstaffing 213 205

Preference 93.0% 91.3%

Experience 2 4

Competence 12 8

Shifts scheduled 2287 2289

Runtime (s) 17 350 109 154

The schedule with slack in the constraint of previously solved objectives, Base 1, ran with

a time limit of 7 200 seconds per objective, while the schedule with no slack, Base 2, ran

with a time limit of 36 000 seconds per objective. Both schedules found solutions within

1.5% of the optimality gap for understaffing, hours deviation, overstaffing, and preferences.

The objective related to an even distribution of competence and experience ran until the

time limit with a lower bound equal to 0 in both cases.

Base 1 and Base 2 show similar results in the measures. For hours deviation, Base 1 utilizes

the available slack and performs slightly worse. However, Base 1 is able to better allocate

the overstaffing across more shifts, which leads to increased robustness in the schedule.

Base 1 also achieves a higher percentage of shifts without violating the preferences of the

nurses. The distribution of experience and competence is similar, but Base 2 performs

slightly better than Base 1.

The model in the Base 1 case permits a 5% increase in the objective concerning deviations

from contracted hours, a 10% decrease in the number of overstaffed shifts, and a 10%

increase in the number of preference violations. Despite this, the model still produces
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comparative results for all measures while significantly outperforming Base 2 for runtime.

Therefore, the remaining scheduling test cases allow slack in the constraints.

Strategies for the Nurse Scheduling Model

Table 9.18 presents all results for the test instances presented in Tables 9.8 and 9.9, which

are related to the scheduling model in both the buffer strategy and the flexible assignment

strategy.

Table 9.18: Results for solving each test instance on proactive strategies. This includes

buffer scheduling and scheduling using the flexible assignment strategy.

Metric
Test case

Buffer 1 Buffer 2 Buffer 3 Flex 10 Flex 20 Flex 30

Understaffing 0 0 0 0 0 0

Hours deviation 351.3 351.1 352.35 300.7 371.2 500.9

Max deviation 3.25 3.25 3.25 3.75 3.25 4.65

Overstaffing 101 103 103 162 108 110

Preference 91.6% 90.9% 91.3% 92.5% 92.8% 93.6%

Experience 8 4 4 12 0 14

Competence 14 8 12 4 4 20

Buffer shifts 720 357 462 - - -

Flexible shifts - - - 96 192 288

Shifts scheduled 2291 2288 2288 2192 2157 2074

Runtime (s) 47 725 48 227 49 643 26 590 22 570 28 610

In contrast to Base 1 and the cases with flexible assignments in scheduling, the buffer

test cases have a higher time limit of 10 800 seconds. This extension is implemented due

to the inclusion of an additional section in the model that tracks scheduled buffer shifts.

The incorporation of this extra section adds complexity to the solving process, resulting in

longer runtimes for these particular test cases. All test cases related to the strategies have

a notably longer runtime than Base 1. Though, the runtime still represents a significant

improvement over the actual time spent by section managers in practice.

Both strategies are able to avoid understaffing. Across all cases, preferences yield good

results with only small differences. There are some variations in the results connected

to the deviations from the number of contracted hours for all nurses. The buffer test

cases provide similar results to Base 1, while the flexible assignment test cases exhibit

some noticeable differences. Flex 10 shows improved results compared to all other test

cases. This could be attributed to shift combinations in the model, where some align

better with a 90% nurse employment percentage than full-time employment. In contrast,

Flex 30 performs significantly worse than all other test cases in terms of deviations from

contracted hours.
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Overstaffing provides similar results in all test cases, with only Flex 10 standing out with

better results. However, all test cases perform significantly worse on the overstaffing

distribution than Base 1. This is somewhat expected in comparison with the flexible

assignments, as Base 1 has more available hours to distribute for covering shifts. For the

buffer schedules, however, it is not relevant to directly compare the results from overstaffing

with other test cases. The values for overstaffing in the buffer instances reflect the total

number of nurses scheduled for a specific shift across all three sections. The other cases

look at overstaffing for a specific shift in a given section. This means the buffer schedules

have fewer possible shifts to overstaff in total.

For the experience and competence values, it is noteworthy that Flex 20 stands out pos-

itively, indicating a lower number of deviations, while Flex 30 stands out negatively.

9.4.4 Key Metrics Rescheduling

Similarly to the scheduling model, several metrics are defined to evaluate the effectiveness

of the rescheduling model. These are used to assess and compare the performance of

the different scenarios and test cases. Table 9.19 presents these metrics and how they

are measured. The model’s performance is measured by evaluating the total costs, which

should be minimized as much as possible. This implies that the number of nurses ordered

to take swap, double or extra shifts should be as low as possible. When comparing the

results, the aim is to explore if the model extensions provide a cost reduction compared

to the Base 1 schedule, where a positive percentage for cost reduction corresponds to cost

improvement.

Table 9.19: Key metrics for the rescheduling model.

Metric Values

Swaps Number of shifts

Extra shifts Number of shifts

Double shifts Number of shifts

Overtime Number of hours

Total cost Amount in NOK during the whole

scheduling period

Flex usage Number of flexible shifts utilized

Cost reduction Percentage cost reduction compared

to Base 1 instances

9.4.5 Rescheduling Results

This section analyzes the results obtained from the nurse rescheduling model without the

use of machine learning predictions. The results are derived from running the rescheduling

model on the output for some of the scheduling test cases presented in Section 9.3. To

ensure comparable results, all tests are run with the same random seeds. The results
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specify which scheduling case is used as input to generate the presented rescheduling

results.

To ensure accurate and reliable test results, we first analyze the number of simulations

required for the subsequent analysis. We present the test results from the baseline res-

cheduling model considering varying absence levels and average demand. These results

provide insights into the model’s performance under different circumstances. Next, the

results of cross-section or in-section rescheduling are examined. Further, we analyze the

results obtained from the model extensions of the rescheduling model. The extensions

incorporate the reactive part of the strategies, which involve activating the proactive

measures from the schedules. This enables a comparison of results between the baseline

model and the model extensions. Finally, the rescheduling results with perfect information

on demand levels are presented.

Number of Simulations

The simulations in the test cases are run several times to cover the variations that occur

and provide more representative results. To improve the credibility of the rescheduling

analyses, two test cases are run with 200 simulations with the goal of finding a reasonable

threshold for the number of simulations further in the study. Figures 9.2a and 9.2b illus-

trate the results from running the simulations of nurse rescheduling on the Base 1 schedule

with absence level 2 and level 3, respectively, as presented in Table 9.10.
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(a) Average cost with absence level 2 and average demand.

(b) Average cost with absence level 3 and average demand.

Figure 9.2: Average cost from the objective function for different numbers of simulations.

Figure 9.2 shows how the average cost stabilizes with the increasing amount of simulations

for both simulation test cases. In both cases, the average cost has stabilized at 100

simulations, as indicated by the vertical dotted line. Hence, the rest of the rescheduling

cases will use 100 simulations to find the estimation for the key metrics. The horizontal

dotted line in both figures shows the average total cost after 200 simulations.

Cross-Section vs In-Section Rescheduling

Figure 9.3 compares total costs between cross-section and in-section rescheduling. The

simulations are run with increasing absence percentage in Bed Ward 1, while the absence

percentages in the other two sections remain constant with 10% absence. The total cost

is computed for every five percent increase in absence levels in Bed Ward 1 in the interval
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from 5% to 30%.

Figure 9.3: Cost development for cross-section vs. in-section rescheduling with increasing

absence in Bed Ward 1 for 100 simulations on each absence level.

The cost increase is notably higher with in-section rescheduling. The utilization of cross-

section rescheduling demonstrates a significant improvement to in-section rescheduling

when the absence variations between sections are higher, while also performing better

when the percentages are equal across all sections. This aligns with the findings of our

specialization report, which highlighted the positive effects of cross-section rescheduling

(Johansen et al., 2022). All subsequent test cases will exclusively focus on cross-section

rescheduling based on these conclusive positive effects.

Absence Variations

Table 9.20 outlines the average results for the test cases considering varying absence levels,

as presented in Table 9.10. The results illustrate how the baseline rescheduling model

performs on varying absence levels. The Base 1 schedule is utilized as input for the

baseline rescheduling model.
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Table 9.20: Average results for solving each test instance on varying absence levels for

100 simulations.

Test instance Metrics

Swap

shifts

Extra

shifts

Double

shifts

Over-

time

Total cost

Strategy: Base 1

Absence: Level 0 61.6 5.9 0.1 3.0 53 504

Demand: Average

Strategy: Base 1

Absence: Level 1 97.7 16.5 0.6 6.2 95 451

Demand: Average

Strategy: Base 1

Absence: Level 2 142.2 30.8 1.4 10.6 148 754

Demand: Average

Strategy: Base 1

Absence: Level 3 207.8 53.3 2.8 24.6 243 801

Demand: Average

Strategy: Base 1

Absence: Level 4 301.8 163.0 14.3 89.0 584 762

Demand: Average

Table 9.20 illustrates that higher absence levels lead to higher total cost as more reactive

measures must be performed. In all instances, the number of swaps is notably high com-

pared to the number of extra and double shifts. This difference is not entirely unexpected,

given that swap-related costs are lower than those associated with additional hours or

overtime hours for extra and double shifts. Swaps enable the reassignment of nurses from

shifts with excess capacity to those with higher demand, effectively reducing total wage

costs by optimizing resource allocation and minimizing unnecessary overstaffing. The

utilization of double shifts is expected to be limited, given that assigning a double shift

always induce overtime payments. Generally, as absence levels increase, there is a notable

increase in the total number of swaps, extra shifts, and double shifts.

Figure 9.4 compares the total costs for absence levels 0, 1, 2, and 4. The figure illustrates

that there is close to a linear relationship in costs between level 0, level 1, and level 2. This

indicates that for lower absence levels, the actual demand provokes rescheduling actions

and which leads to higher rescheduling costs. In contrast, it is clear that the increased

absence in level 4 has a considerable effect on the total cost. Using absence level 4,

rescheduling actions will likely have to occur regardless of the actual demand on the given

day. Therefore, the rescheduling outcome with absence level 4 is less dependent on the

actual demand. It will also lead to more expensive actions. As shown in Table 9.20, both

overtime and double shifts are more frequently used in this test instance.
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Figure 9.4: Cost comparison for test instances from Table 9.20 with the specified absence

levels.

Subsequent test cases will exclusively utilize absence level 2 and level 3. Absence level

2 is particularly valuable as it closely mirrors the real-world context at CC, making it

interesting to study with various strategies. On the other hand, absence level 3 exhibits

differences in absence levels across the sections, with a high absence percentage in one

section. This variation highlights the notable contrast between cross-section and in-section

rescheduling approaches. Given the importance of cross-section utilization in this thesis,

analyzing absence level 3 offers valuable insights into how the different strategies utilize

cross-section rescheduling.

Buffer Activation

Table 9.21 provides an overview of the results of running the rescheduling model with

the buffer strategy. In this model, all scheduled buffer shifts are activated in response to

the actual demand. The results are derived from running the rescheduling model on the

three output schedules generated from the test cases outlined in Table 9.8. To assess the

model’s performance under varying absence levels, each buffer schedule is tested with two

different absence levels.

The buffer strategy shows an overall improvement over the baseline models. Comparing

the results with those of the baseline model, as presented in Table 9.20, Buffer 1 and

Buffer 3 reduce comparable total costs by over 20%. The cost improvement shows the

value of the model’s ability to distribute the buffer nurses among the sections based on

the observed actual demand. For both absence levels, lower costs are observed due to a

decrease in swaps and extra shifts. For all instances, the number of overtime hours and

double shifts show minimal variations compared to the baseline.

Buffer 1 and Buffer 3 demonstrate higher performances compared to Buffer 2. Even though

106



CHAPTER 9. COMPUTATIONAL STUDY

Table 9.21: Average results for solving each test instance on varying buffer levels for 100

simulations.

Test instance Metrics

Swap

shifts

Extra

shifts

Double

shifts

Over-

time

Total cost CR

Strategy: Buffer 1

Absence: Level 2 109.1 26.3 1.1 11.1 114 919 23%

Demand: Average

Strategy: Buffer 1

Absence: Level 3 161.0 47.7 3.3 24.5 192 858 21%

Demand: Average

Strategy: Buffer 2

Absence: Level 2 112.3 24.7 1.1 7.6 127 959 14%

Demand: Average

Strategy: Buffer 2

Absence: Level 3 183.4 52.3 3.6 21.8 216 829 11%

Demand: Average

Strategy: Buffer 3

Absence: Level 2 100.1 23.2 1.3 6.4 112 843 24%

Demand: Average

Strategy: Buffer 3

Absence: Level 3 166.5 47.7 3.0 17.8 194 569 20%

Demand: Average

the Buffer 1 schedule facilitates more buffer shifts than the Buffer 3 schedule, as illustrated

in Table 9.18, Buffer 1 and Buffer 3 deliver very similar results with minimal variations

across all metrics. This suggests that the additional robustness provided by Buffer 1 is

unnecessary, as the extra buffer shifts it introduces are likely distributed evenly across the

sections to meet the real demand, which typically exceeds the minimum demand. The

nearly identical outcomes suggest that the limitations imposed in Buffer 3 on the number

of buffer shifts are reasonable. However, Buffer 3 performs slightly worse than Buffer

1 when absence levels increase, indicating that the extra robustness of Buffer 1 may be

better suited for handling high absence levels.

Figure 8.3 highlights that variations in actual demand are highest during day shifts and

lowest during night shifts. This suggests that having no limits on the number of buffer

shifts during evening and night shifts may not be advantageous, which could explain why

Buffer 1 did not exhibit improvement over Buffer 3. As the only distinction between Buffer

2 and Buffer 3 is the limit for buffer shifts on the day shifts, it implies that the number of

buffer shifts allocated to day shifts significantly impacts the total costs.
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Flexible Assignment Activation

Table 9.22 presents the results for running the rescheduling model using the flexible as-

signment strategy. The results are obtained from running the rescheduling model on the

output schedules from the test cases presented in Table 9.9. In addition, varying absence

levels are tested for all test cases.

Table 9.22: Average results for solving each test instance with flexible assignments for

100 simulations.

Test instance Metrics

Swap

shifts

Extra

shifts

Double

shifts

Over-

time

Flex

usage

Total cost CR

Strategy: Flex 10

Absence: Level 2 122.8 30.3 23.4 38.2 53.0 141 072 5%

Demand: Average

Strategy: Flex 10

Absence: Level 3 172.6 51.8 67.8 36.7 72.6 225 683 7%

Demand: Average

Strategy: Flex 20

Absence: Level 2 103.3 8.8 20.9 23.4 91.0 106 233 29%

Demand: Average

Strategy: Flex 20

Absence: Level 3 165.9 18.4 35.1 39.1 123.3 187 918 23%

Demand: Average

Strategy: Flex 30

Absence: Level 2 66.0 7.2 7.2 10.6 135.4 59 149 60%

Demand: Average

Strategy: Flex 30

Absence: Level 3 124.3 16.4 22.3 33.2 178.6 141 936 42%

Demand: Average

Similarly to the buffer strategy, all test cases utilizing flexible nurses yield improved results

compared to the baseline model. The improvements become more pronounced as the level

of flexibility increases. As expected, the test case with the least flexibility, Flex 10, exhibits

the lowest cost reduction of under 10% for both absence levels.

In addition to reduced total costs, the number of swaps and extra shifts also decreases as

the level of flexibility increases. However, double shifts remain significantly higher in all

test instances compared to the results from the buffer strategy and the baseline models.

This difference is due to the stricter scheduling constraints imposed on flexible shifts,

which limit the available shift patterns. Consequently, many flexible shifts are scheduled

as double shifts. Although the number of double shifts is notably high, it decreases as the

level of flexibility increases. With higher flexibility, the nurses are scheduled for a lower

percentage of the total shifts. This makes it easier to utilize flexible shifts sensibly during

rescheduling without resorting to double shifts.
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The number of overtime hours in rescheduling results of the flexible strategy is higher

compared to the results from the buffer strategy and the baseline model. The difference is

most pronounced in Flex 10, which is natural considering that it yielded the best results

in terms of deviations from an even distribution of working hours, as shown in Table 9.18.

With an even distribution and the flexible nurses scheduled with 90% employment, most

flexible shifts will trigger overtime payments.

The comparison between the results in Table 9.21 and Table 9.22 reveals that Flex 20

and Flex 30 consistently outperform the buffer strategy on total costs. This indicates

that the flexibility provided in Flex 20 and Flex 30 is more cost-efficient compared to the

robustness provided by the buffer strategy. The most important factor contributing to

this improvement is that the flexible shifts are not bound to a specific shift and can be

utilized on days with high demand. Another factor that may account for this difference

in results is that the buffer shifts must be activated. In contrast, flexible shifts are only

activated if it reduces the total costs.

The flex usage column in Table 9.22 indicates the average number of activated flex shifts

across 100 simulations. Unsurprisingly, higher absence levels correspond to higher flex

usage in all three test cases. However, as the flexible percentage increases, the number of

available flexible shifts to utilize also increases. Consequently, while the usage of flexible

shifts increases with greater flexibility, the percentage utilization decreases due to the

scheduling constraints that limit the activation of all available flexible shifts. This entails

that Flex 10 with high absence levels has the highest utilization with an average of 76%,

while Flex 30 with low absence levels has the lowest utilization with an average of 47%.

Figure 9.5 compares the total cost results for instances using strategies Base 1, Buffer 1,

Flex 10, and Flex 30 for absence levels 2 and 3, where all use average demand. These test

cases are selected for further comparisons of the performance of the baseline model, the

buffer strategy, and the flexible strategy. The selection is based on the findings discussed

earlier in the analysis of the respective cases, where these cases provided interesting results.

As a result, these test cases will be used in subsequent test instances. The figure shows

the performance in comparison and displays the cost gap between the different strategies.

(a) Total costs comparison for selected

instances with absence level 2.

(b) Total costs comparison for selected

instances with absence level 3.

Figure 9.5: Comparison of total cost results from selected instances.
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Perfect Information of Demand

Table 9.23 presents the results obtained using perfect information for demand, as described

in Table 9.11. To analyze the effect of perfect information and compare the results across

different model variations, the test is conducted on the baseline rescheduling model, the

rescheduling model utilizing the buffer strategy, and the rescheduling model utilizing the

flexible assignments strategy.

Table 9.23: Average results for solving each test instance with perfect information of

demand for 100 simulations.

Test instance Metrics

Swap

shifts

Extra

shifts

Double

shifts

Over-

time

Flex

usage

Total cost CR

Strategy: Base 1

Absence: Level 2 128.9 28.0 0.8 9.5 - 128 144 14%

Demand: Perfect

Strategy: Base 1

Absence: Level 3 195.0 47.9 1.9 21.6 - 217 873 11%

Demand: Perfect

Strategy: Buffer 1

Absence: Level 2 92.3 20.6 0.7 8.7 - 96 210 35%

Demand: Perfect

Strategy: Buffer 1

Absence: Level 3 144.0 37.1 2.6 19.8 - 167 809 31%

Demand: Perfect

Strategy: Flex 10

Absence: Level 2 109.4 29.3 15.7 34.5 44.5 115 148 23%

Demand: Perfect

Strategy: Flex 10

Absence: Level 3 164.1 47.6 26.6 64.0 64.8 190 953 22%

Demand: Perfect

Strategy: Flex 30

Absence: Level 2 43.4 6.3 4.0 8.4 125.9 40 007 73%

Demand: Perfect

Strategy: Flex 30

Absence: Level 3 93.5 14.6 14.9 22.6 167.6 102 713 58%

Demand: Perfect

Perfect demand information in the planning period yields the expected result of improving

the total rescheduling costs. Once the demand with perfect information is revealed, the

need for further rescheduling actions due to demand variations is eliminated. The only

remaining factor necessitating rescheduling in the planning period is nurse absenteeism.

This reduced requirement for rescheduling is also evident in other metrics, where the

number of swaps, extra shifts, double shifts, and overtime hours are reduced compared to

results based on historical average demand.
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The flexible assignment strategy with perfect information on demand demonstrates a

decrease in the utilization of flexible shifts compared to the results with historical average

demand, as shown in Table 9.22. This decrease can be attributed to the reduced necessity

for rescheduling actions due to limited demand uncertainty. Consequently, less than half

of the available flexible shifts are utilized.

Among the presented results in the computational study, the Flex 30 strategy stands

out with the lowest total costs. By utilizing perfect information on demand, this strategy

achieves a remarkable decrease of 73% in total costs compared to the baseline rescheduling

model that relies on historical average demand. This highlights the benefits of employ-

ing proactive strategies and having accurate demand information. Moreover, even when

comparing only the baseline models without proactive strategies, the advantage of having

precise demand information becomes evident as it eliminates the uncertainty associated

with demand fluctuations, enabling more effective adjustments to patient demand.

9.4.6 Results from Combining Machine Learning and Rescheduling

Table 9.23 highlights the advantage of incorporating precise demand information in the res-

cheduling models. As discussed in Section 9.4.1, machine learning techniques can generate

demand predictions based on historical data, offering more reliable demand information

than historical average demand. Integrating demand predictions from the decision tree

regression with the rescheduling models aims to minimize the need for excess reschedul-

ing and improve the overall model performance. The same test cases presented in Table

9.23, now using demand predictions, are used to evaluate the outcomes of combining the

machine learning model with the rescheduling model.

Machine Learning without Upper Bound

Table 9.24 illustrates the results from using the machine learning-based demand predictions

in combination with the various rescheduling models. The demand predictions are based

on the results presented in Section 9.4.1.
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Table 9.24: Average results for solving each test instance with demand predictions for

100 simulations.

Test instance Metrics

Swap

shifts

Extra

shifts

Double

shifts

Over-

time

Flex

usage

Total cost CR

Strategy: Base 1

Absence: Level 2 158.3 38.0 1.1 13.4 - 167 456 -13%

Demand: Prediction

Strategy: Base 1

Absence: Level 3 227.0 57.1 2.7 31.0 - 266 152 -9%

Demand: Prediction

Strategy: Buffer 1

Absence: Level 2 118.1 28.3 0.8 10.7 - 125 746 15%

Demand: Prediction

Strategy: Buffer 1

Absence: Level 3 170.4 46.6 3.1 24.2 - 203 225 17%

Demand: Prediction

Strategy: Flex 10

Absence: Level 2 136.1 39.8 19.7 48.2 31.6 154 527 -4%

Demand: Prediction

Strategy: Flex 10

Absence: Level 3 188.1 57.6 34.4 74.2 72.2 239 603 2%

Demand: Prediction

Strategy: Flex 30

Absence: Level 2 69.6 9.9 7.4 20.2 143.3 67 225 55%

Demand: Prediction

Strategy: Flex 30

Absence: Level 3 127.0 20.7 21.5 42.8 181.4 147 694 39%

Demand: Prediction

Even though several of the test instances provide positive cost reductions compared to the

baseline results, the results illustrate a significant increase in the average total costs for all

cases compared to the corresponding test cases without demand predictions. This increase

is mainly due to an increase in the average number of swaps. For Flex 30 instances, there

is also a significant increase in overtime hours. This could be a result of the simulations

where the predictions overestimate demand compared to the actual demand, leading to

unnecessary actions. The monetary punishment of overestimating future demand raises

the average total costs across all 100 simulations.

Machine Learning with Upper Bound

As discussed, using machine learning predictions in the rescheduling model poses chal-

lenges when the predictions overestimate the demand, resulting in unnecessary actions

and increased total cost. To address this issue, a variation is introduced to mitigate the
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drawbacks of overestimation while leveraging the benefits of predictions when both pre-

dicted and actual demand is lower than the historical average demand. This updated

demand constraint is incorporated into the rescheduling models to improve effectiveness.

∑
n∈N

x′nbst ≥ min(Dbst, D
P
bst) b ∈ B, s ∈ SW , t ∈ T R/{t0} (9.4.1)

∑
n∈N

∑
b∈B

x′nbst ≥ min
(( ∑

b∈BW

Dbst

)
,
( ∑
b∈BW

DP
bst

))
s ∈ SW , t ∈ T R/{t0} (9.4.2)

Constraints (9.4.1) and (9.4.2) show the updated demand constraint in the model variation,

replacing constraints (8.2.1) and (8.2.2).

Table 9.25 provides an overview of the results obtained by incorporating the model vari-

ation with an upper bound equal to the average demand when solving the same test

instances as shown in Table 9.24.

Table 9.25: Average results for solving each test instance with demand predictions for

100 simulations.

Test instance Metrics

Swap

shifts

Extra

shifts

Double

shifts

Over-

time

Flex

usage

Total cost CR

Strategy: Base 1

Absence: Level 2 136.9 23.7 1.3 8.3 - 136 955 8%

Demand: Prediction

Strategy: Base 1

Absence: Level 3 208.0 43.7 2.9 19.2 - 231 123 5%

Demand: Prediction

Strategy: Buffer 1

Absence: Level 2 105.0 21.0 1.2 9.3 - 105 671 29%

Demand: Prediction

Strategy: Buffer 1

Absence: Level 3 157.3 38.8 3.1 19.8 - 179 542 26%

Demand: Prediction

Strategy: Flex 10

Absence: Level 2 120.9 25.1 23.0 27.1 50.0 130 171 13%

Demand: Prediction

Strategy: Flex 10

Absence: Level 3 171.2 42.0 36.6 51.3 71.1 210 129 14%

Demand: Prediction

Strategy: Flex 30

Absence: Level 2 56.6 5.8 5.9 7.7 125.8 50 492 66%

Demand: Prediction

Strategy: Flex 30

Absence: Level 3 118.9 13.4 19.2 20.7 168.3 126 614 48%

Demand: Prediction
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The results demonstrate that the model variation leads to a reduction in total cost for all

cases compared to their corresponding cases without predictions. Moreover, it significantly

decreases the costs when compared to the original machine learning-guided rescheduling

model. These findings suggest that while the machine learning model may occasionally

overestimate the demand, its predictions for lower demand compared to the historical

average yield superior outcomes compared to the cases without predictions.

Figure 9.6 shows that rescheduling with predictions from the machine learning model

provides solutions that are closer to the results with perfect information compared to

instances using the historical average demand. While there is a slight decrease observed in

all metrics, the improvement from the test instances without machine learning primarily

stems from a reduction in the number of extra shifts and overtime hours. In the Flex 10

test case, the improvement in total costs is also a result of a large decrease in the number

of double shifts.

Figure 9.6: The total cost for all 100 simulations for average demand, predicted demand,

and demand with perfect information.

Although the machine learning-guided test cases exhibit only a marginal reduction in the

number of swaps compared to the cases without machine learning, the model appears to

allocate the available swaps more efficiently. With more accurate demand information,

there is a lower probability of allocating excessive resources to a shift, resulting in a

decreased need for swapping away from shifts. This efficient use of swaps also reduces the

reliance on more expensive actions like extra shifts and assigning overtime hours, as the

shifts are adequately staffed early in the planning phase through effective swapping.

9.5 Limitations

In this chapter, we have used the rescheduling model within the simulation framework

outlined in Chapter 7 to evaluate the scheduling strategies with various absence and de-
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mand combinations. Our results show that the use of proactive strategies in the scheduling

model facilitates more cost-efficient reactive measures in the rescheduling model. How-

ever, there are several limitations related to the results and the strategies that are worth

considering.

The results for the buffer strategy, the flexible assignments strategy, and the use of de-

mand predictions show promise in comparison to the baseline model. However, the lack of

information regarding actual rescheduling costs at CC poses a challenge in directly com-

paring our results to the current practice. Consequently, it becomes difficult to precisely

evaluate the performance of our models in relation to the actual rescheduling process.

Nevertheless, our models utilize real-life data and incorporate multiple components that

closely reflect the circumstances at CC. While further research and comparisons with ac-

tual rescheduling costs are necessary for a comprehensive assessment, our findings provide

valuable insights into the potential benefits of improving the rescheduling process at CC.

Despite the promising results obtained from the strategies, a key challenge lies in gaining

acceptance and willingness from nurses to be scheduled for buffer shifts or assigned flexible

shifts. The flexible strategy, which yields the best total cost outcomes, introduces less

predictability for the nurses. Convincing nurses to embrace a flexibility range of 10%

to 30% may prove challenging. On the other hand, the buffer strategy offers a more

predictable schedule for nurses but provides a lower cost improvement. However, it should

be acknowledged that implementing buffer shifts involves scheduling all nurses, including

those who are not full-time. This may pose difficulties in obtaining approval from a larger

number of nurses. To incentivize nurses, the cost savings achieved through the utilization

of these strategies open up the possibility of offering bonus payments to those working

buffer shifts or flexible shifts. Among the strategies, the flexible assignments strategy

holds the greatest potential for such incentives, given its higher cost savings and the lower

number of flexible nurses required.

The feasibility of implementing the buffer shifts or flexible shifts strategies goes beyond

the nurses’ willingness to accept them, requiring consideration of their practicality within

the existing operational framework at CC. The cross-sectional nature of these strategies

necessitates coordination and communication among section managers during both the

scheduling and rescheduling process. Moreover, section managers are accustomed to their

individualized schedule generation and rescheduling processes, which can exhibit signific-

ant variations across sections.

The general trend in all rescheduling cases is that swaps are performed more frequently

than extra shifts. The high utilization of swaps differs from current practice at CC, where

extra shifts are often used for schedule disruptions. With higher absence levels, more

frequent extra shifts are necessary to cover the demand. Swaps can be problematic as it

reduces the protection from future schedule disruptions. If the model had no limitations,

a scenario could emerge where all nurses were swapped from a shift, and multiple res-

cheduling actions would have to be performed to cover the demand. Our model employs

hard constraints on future demand levels to mitigate this effect.

The models developed in this thesis are based on real-world data obtained from CC.

There are, however, several aspects where real and sufficient data is unavailable, which
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makes it challenging to make accurate assumptions. For instance, the simulations of nurse

preferences rely solely on a survey conducted among nurses working in the bed wards at

CC. The responses from the survey are generalized to represent weekly preferences, but in

reality, individual nurses’ preferences can vary significantly depending on various factors,

such as the individual nurses’ personal life, workload, and seasonal variations.

In addition to data regarding nurse preferences, the results obtained in this study rely on

general absence data from CC. Obtaining more comprehensive absence data that includes

nurse-specific absence information for each shift would enhance the accuracy of simula-

tions regarding nurse availability. Incorporating such data into the prediction models can

improve the nurse rescheduling results and handle unexpected absences more effectively.

The utilization of actual demand data from CC in our simulations has revealed certain

days with unusual staffing levels, making it challenging to accurately predict demand for

these atypical days based on the available data. While these anomalies are likely attributed

to specific events, the underlying causes remain unexplained. In addition, our scheduling

models do not currently account for holidays, which have staffing levels equal to weekends

in the actual demand data. As a result, the omission of holiday considerations in the

models leads to lower rescheduling costs when the actual demand is lower than expected.

The target feature that machine learning models aim to predict is the actual demand.

However, it has been observed that there is a correlation between the actual demand and

the planned demand. It is important to note that the planned demand label is determined

well in advance before the schedule is executed. Due to this correlation, relying only

on the actual demand as the label may not generate highly accurate predictions. Still,

considering the available data, the actual demand remains the preferred label to utilize in

the predictions.
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Future Research

The flexible assignment strategy has shown promising results in terms of total costs, but it

has limitations in terms of high utilization of double shifts and overtime hours, as well as

low percentage utilization of flexible shifts. These limitations suggest potential areas for

improvement in proactive strategies related to flexible nurses. Future research should ex-

plore alternative approaches to address these limitations. One possible approach is to give

lower flexibility per nurse while including other nurses beyond those working full-time, giv-

ing a better distribution of flexibility. Optimizing the distribution of hours among flexible

nurses would enable easier activation and utilization of flexible shifts, reducing reliance on

double shifts and overtime hours. Flexible nurses receive full pay regardless of their flex

usage. An improved distribution may give a higher flexible shift usage, resulting in better

utilization of the contracted hours. Future research should also focus on developing a

variant of the strategy that limits the number of flexible shifts utilized per day, promoting

an even distribution of flexible shift usage. Efficiently arranging shifts for flexible nurses in

the schedule would facilitate better utilization of available hours and improve rescheduling

outcomes.

An interesting direction for future research would involve investigating the potential bene-

fits of combining the buffer strategy and the flexible strategy, leveraging the strengths of

both. By integrating the robustness of the buffer strategy with the flexibility of the flex-

ible assignment strategy, it is possible that even more favorable outcomes can be achieved,

surpassing the obtained results from using each strategy individually. This could be fur-

ther extended by looking at the higher strategical levels, like the tactical level or strategic

level, in combination with the proactive strategies to facilitate an improved utilization of

the available nurses.

Future extensions of our work should look at utilizing better practices for workload re-

gistrations. Although the predicted demand utilized in this thesis is based on almost five

years of patient data, it is important to note that predicting future workload based on

this data relies on assumptions and discussions with managers at CC. The lack of specific

information regarding the connections between patients and workload levels hinders our

ability to more accurately capture patterns in the data. Obtaining better information on

the relationship between patients and workload levels would be valuable and could po-

tentially provide the machine learning models with even more insightful observations and
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patterns. This could yield more precise predictions, resulting in improved efficiency and

cost savings.

The successful application of machine learning-based demand predictions in the reschedul-

ing model highlights the potential for enhancing nurse scheduling processes using similar

predictions. The computational study revealed that even in instances with zero nurse ab-

sences, costs of rescheduling occurred due to incorrect assumptions about demand in the

scheduling model. To address this issue, future research should explore the integration of

machine learning-driven demand predictions into the nurse scheduling model itself. This

integration would enhance the accuracy of demand estimation from the nurse schedul-

ing process, leading to improved robustness and effectiveness of the schedules, reducing

disruptions, and further minimizing the need for rescheduling.

The rescheduling model and machine learning model operate on sequential data. Intro-

ducing a recurrent neural network that incorporates the demand from the previous days

could be done in future work. It has the potential to enhance the accuracy of demand

predictions compared to the feed-forward neural network and decision tree employed in

this thesis. By considering the demand patterns from recent days, an RNN can better

capture temporal dynamics and potentially provide more precise demand predictions.
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Concluding Remarks

The purpose of this Master’s thesis was to assess the effectiveness of proactive and react-

ive cross-section strategies when solving the nurse scheduling and rescheduling problem.

In addition, the aim was to evaluate the value of incorporating machine learning-driven

demand predictions based on real-life data. To achieve these goals, we developed a MIP

scheduling model and a MIP rescheduling model guided by demand predictions. The

rescheduling model was run within a simulation framework where new absences, demand

information, and the updated schedule were provided for each iteration.

The findings of this thesis demonstrate the importance of considering cross-section res-

cheduling as a valuable approach to optimizing resource allocation. The implementation of

cross-section rescheduling exhibited substantial improvements in total rescheduling costs

across various absence levels. By sharing resources and covering imbalances in supply

across bed wards, cross-section utilization proves beneficial for departments with overlap-

ping competence between sections, enhancing the efficiency of the reactive rescheduling

process.

Our results show that proactive scheduling facilitating cross-section rescheduling can fur-

ther improve the benefits of shared resources. The introduced strategies, namely buffers

and flexible assignments, were introduced with the intention of mitigating the need for res-

cheduling. Both strategies significantly reduced the total costs of the rescheduling process

while producing similar metrics in the scheduling objectives. The cross-section utiliza-

tion of the buffer strategy allows for the scheduling of buffer shifts without resorting to

overstaffing, ensuring robustness without increasing costs, distinguishing our study from

existing literature, and distinguishing our study from existing literature. The flexible as-

signments strategy is a novel approach to tackling schedule flexibility. These strategies

offer promising solutions to effectively manage workforce allocation and mitigate the chal-

lenges posed by unpredictable absences and demand variations. However, determining

the best strategy requires a trade-off between minimizing total costs and increasing the

number of double shifts and overtime hours. The flexible assignments strategy provided

very promising results in terms of total costs, while the buffer strategy provided better

utilization of rescheduling actions and offered increased predictability for nurses.

One key aspect that sets this thesis apart from previous research is the integration of
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machine learning-driven demand predictions. The integration of machine learning pre-

dictions in the rescheduling phase has proven instrumental in bridging the gap between

perfect demand information and simple average estimates of upcoming demand. It is

clear from the rescheduling results that there is great cost-saving potential in accurate

demand predictions, with the demand prediction significantly closing the gap between

results using historical average demand and perfect demand information. Having demand

predictions for multiple days in the planning period facilitates appropriately staffing shifts

early on, resulting in more efficient execution of reactive actions. Moreover, our analysis

has highlighted the potential for improved predictions through improved data quality and

by refining machine learning models. In addition to the visible advantages reflected by

the key rescheduling metrics, the demand predictions enhance predictability for section

managers and nurses. More reliable demand information facilitates rescheduling actions

conducted in advance rather than on the morning of each shift.

In summary, this thesis contributes to the existing body of knowledge by providing novel

insights into nurse scheduling and rescheduling. The combination of proactive and react-

ive cross-section strategies, along with the integration of machine learning-driven demand

predictions, offers a comprehensive approach to optimize resource allocation in healthcare

settings. The findings emphasize the practicality and effectiveness of these strategies in re-

ducing costs, enhancing predictability, and improving decision-making in nurse scheduling

and rescheduling processes.
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Fügener, A., Pahr, A., & Brunner, J. O. (2018). Mid-term nurse rostering considering

cross-training effects. International Journal of Production Economics, 196, 176–

187.

Gnanlet, A., & Gilland, W. G. (2014). Impact of productivity on cross-training configura-

tions and optimal staffing decisions in hospitals. European Journal of Operational

Research, 238 (1), 254–269.
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Helse Midt-Norge. (2021). Årsregnskap. https://ekstranett.helse-midt.no/1001/Foretaksmter/

Styrets%5C%20beretning%5C%20og%5C%20%C3%A5rsregnskap%5C%202021.pdf

Helsedirektoratet. (2022). En aldrende befolkning. https : / / www . helsedirektoratet . no /

rapporter/folkehelse-i-et-livslopsperspektiv-helsedirektoratets-innspill-til-ny-folkehelsemelding/

folkehelse-gjennom-livslopet-eldre/en-aldrende-befolkning

122

https://www.gurobi.com/resources/mixed-integer-programming-mip-a-primer-on-the-basics/
https://www.gurobi.com/resources/mixed-integer-programming-mip-a-primer-on-the-basics/
https://ekstranett.helse-midt.no/1001/Foretaksmter/Styrets%5C%20beretning%5C%20og%5C%20%C3%A5rsregnskap%5C%202021.pdf
https://ekstranett.helse-midt.no/1001/Foretaksmter/Styrets%5C%20beretning%5C%20og%5C%20%C3%A5rsregnskap%5C%202021.pdf
https://www.helsedirektoratet.no/rapporter/folkehelse-i-et-livslopsperspektiv-helsedirektoratets-innspill-til-ny-folkehelsemelding/folkehelse-gjennom-livslopet-eldre/en-aldrende-befolkning
https://www.helsedirektoratet.no/rapporter/folkehelse-i-et-livslopsperspektiv-helsedirektoratets-innspill-til-ny-folkehelsemelding/folkehelse-gjennom-livslopet-eldre/en-aldrende-befolkning
https://www.helsedirektoratet.no/rapporter/folkehelse-i-et-livslopsperspektiv-helsedirektoratets-innspill-til-ny-folkehelsemelding/folkehelse-gjennom-livslopet-eldre/en-aldrende-befolkning


BIBLIOGRAPHY

Helsepersonellkommisjonen. (2023). Tid for handling — personellet i en bærekraftig helse-

og omsorgstjeneste. Norges offentlige utredninger. https://www.regjeringen.no/no/

dokumenter/nou-2023-4/id2961552/

Helsepersonelloven. (2022). Lov om helsepersonell m.v.(LOV-2023-04-28-8). https://lovdata.

no/lov/1999-07-02-64

Hillier, F., & Lieberman, G. (2015). Introduction to operations research (internatio).

Hulshof, P. J., Kortbeek, N., Boucherie, R. J., Hans, E. W., & Bakker, P. J. (2012).

Taxonomic classification of planning decisions in health care: A structured review

of the state of the art in OR/MS. Health systems, 1 (2), 129–175.

Ingels, J., & Maenhout, B. (2015). The impact of reserve duties on the robustness of a per-

sonnel shift roster: An empirical investigation. Computers & Operations Research,

61, 153–169.

Ingels, J., & Maenhout, B. (2017). Employee substitutability as a tool to improve the

robustness in personnel scheduling. OR Spectrum, 39.

Ingels, J., & Maenhout, B. (2018). The impact of overtime as a time-based proactive

scheduling and reactive allocation strategy on the robustness of a personnel shift

roster. Journal of Scheduling, 21.

Inman, R. R., Blumenfeld, D. E., & Ko, A. (2005). Cross-training hospital nurses to reduce

staffing costs. Health Care Management Review, 30 (2), 116–125.

Jaimes, A. L., Martınez, S. Z., Coello, C. A. C., et al. (2009). An introduction to multiob-

jective optimization techniques. Optimization in Polymer Processing, 29–57.

Johansen, A.-S., Nag, B., & Tveit, H. H. (2022). Nurse rescheduling with cross-section op-

timization. Specialization report, Norwegian University of Science and Technology.

Juan, A. A., Keenan, P., Mart́ı, R., McGarraghy, S., Panadero, J., Carroll, P., & Oliva, D.

(2023). A review of the role of heuristics in stochastic optimisation: From meta-

heuristics to learnheuristics. Annals of Operations Research, 320 (2), 831–861.

Kall, P., Wallace, S. W., & Kall, P. (1994). Stochastic programming (Vol. 6). Springer.

King, A. J., & Wallace, S. W. (2012). Modeling with stochastic programming. Springer

Science & Business Media.

Kitada, M., & Morizawa, K. (2013). A heuristic method for nurse rerostering problem with

a sudden absence for several consecutive days. International Journal of Emerging

Technology and Advanced Engineering, 3 (11), 353–361.

Kortbeek, N., Braaksma, A., Burger, C. A., Bakker, P. J., & Boucherie, R. J. (2015). Flex-

ible nurse staffing based on hourly bed census predictions. International journal of

production economics, 161, 167–180.

Lilleby, H. E. S., Schittekat, P., Nordlander, T. E., Hvattum, L. M., & Andersson, H.

(2012). Competence building with the use of nurse re-rostering. 4th International

Conference on Applied Operational Research, Proceedings, Tadbir Operational Re-

search Group Ltd, 70–77.

123

https://www.regjeringen.no/no/dokumenter/nou-2023-4/id2961552/
https://www.regjeringen.no/no/dokumenter/nou-2023-4/id2961552/
https://lovdata.no/lov/1999-07-02-64
https://lovdata.no/lov/1999-07-02-64


BIBLIOGRAPHY

Lim, G., & Mobasher, A. (2011). Robust nurse scheduling problem. IIE Annual Confer-

ence. Proceedings, 1.

Long, Z., Wen, X., Lan, M., & Yang, Y. (2022). Nursing rescheduling problem with multiple

rescheduling methods under uncertainty. Complex & Intelligent Systems, 8 (6),

4557–4569.

Løyning, I. N., & Melby, L. M. H. (2018). Improving the robustness of nurse schedules in

a real-life instance - a quantitative analysis based on simulation and rescheduling

under uncertainty. Master’s thesis, Norwegian University of Science and Techno-

logy.
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Appendix A

Compressed Models

A.1 The Nurse Scheduling Model

A.1.1 Definitions

Indices

n nurse

c competence

e experience

b section

s shift

t day

k week

Sets

B set of sections, B = {1, 2, 3}
C set of competence levels, C = {AN,N, SN}
E set of experience levels

N set of nurses

Nc set of nurses with competence level c, Nc ⊂ N , c ∈ C
Ne set of nurses with experience level e, Ne ⊂ N , e ∈ E
Nb set of nurses in section b, Nb ⊂ N , b ∈ B
K set of weeks included in scheduling period

T set of days in the scheduling period

Tk set of days in week k

T SUN set of Sundays in scheduling period

S set of shifts, S =
{
D,E,N, F, F1

}
SW set of work-shifts, SW =

{
D,E,N

}
, SW ⊂ S

SF set of off-shifts, SF =
{
F, F1

}
. SF ⊂ S
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General Parameters

Dbst minimum demand in section b for shift s on day t

Debst desired demand for experience e in section b for shift s on day t

D
AN
bst maximum demand for assistant nurses in section b for shift s on day t

DSN
bst desired demand for specialized nurses in section b for shift s on day t

Dbst historical average demand in section b for shift s on day t

M
D

maximum number of consecutive work days

M
N

maximum number of consecutive work nights

L maximum work hours in a week

H hours in a full time work week

Hs duration of shift s in hours

W working weekend recurrence

Cn contracted employment percentage for nurse n

F upper bound for allowed deviation from contracted hours

F lower bound for allowed deviation from contracted hours

K number of weeks in scheduling period

Decision Variables

xnbst =

{
1, if nurse n in section b is scheduled for shift s on day t

0, otherwise

Auxiliary Variables

δH
−

nk weekly deficit of work hours from contract for nurse n in week k

δH
+

nk weekly surplus of work hours from contract for nurse n in week k

δSN
−

bst unsatisfied demand of specialized nurses in section b for shift s on day t

δEebst unsatisfied demand for nurses with a defined experience level

δD
−

bst deficit from average demand in section b on shift s on day t

δD
+

bst surplus from average demand in section b on shift s on day t

A.1.2 Multi-objective Model

min z1 =
∑
b∈B

∑
s∈SW

∑
t∈T

δD
−

bst (A.1.1)

Demand Coverage ∑
n∈N

xnbst ≥ Dbst b ∈ B, s ∈ SW , t ∈ T (A.1.2)

∑
n∈N

xnbst ≥ Dbst − δD
−

bst b ∈ B, s ∈ SW , t ∈ T (A.1.3)
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∑
n∈NAN

xnbst ≤ D
AN
cbst b ∈ B, s ∈ SW , t ∈ T (A.1.4)

Section Specific Assignments

xn1st = 0 n ∈ N/{Nb=1}, s ∈ S, t ∈ T (A.1.5)

xn2st = 0 n ∈ N/{Nb=2}, s ∈ S, t ∈ T (A.1.6)

xn3st = 0 n ∈ N/{Nb=3}, s ∈ S, t ∈ T (A.1.7)

Legislative Constraints ∑
b∈B

∑
s∈S

xnbst = 1 n ∈ N , t ∈ T (A.1.8)

∑
b∈B

∑
s∈SW

∑
t∈Tk

Hsxnbst ≤ L n ∈ N , k ∈ K (A.1.9)

F
∑
k∈K

CnH ≤
∑
b∈B

∑
s∈SW

∑
t∈T

Hsxnbst ≤ F
∑
k∈K

CnH n ∈ N (A.1.10)

T=t+M
D∑

t′=t

∑
b∈B

∑
s∈SW

xnbst′ ≤M
D

n ∈ N , t ∈ {1, 2, ..., T −M
D} (A.1.11)

T=t+M
N∑

t′=t

∑
b∈B

xnbNt′ ≤M
N

n ∈ N , t ∈ {1, 2, ..., T −M
N} (A.1.12)

Weekend Assignments

T=W−1∑
t′=0

∑
b∈B

∑
s∈SW

xnbs(t+t′) = 1 t ∈ T SUN , n ∈ N (A.1.13)

∑
b∈B

(
xnbDt − xnbE(t−1)

)
= 0 n ∈ N , t ∈ T SUN (A.1.14)

∑
b∈B

(
xnbEt − xnbD(t−1)

)
= 0 n ∈ N , t ∈ T SUN (A.1.15)

∑
b∈B

(
xnbNt − xnbN(t−1)

)
= 0 n ∈ N , t ∈ T SUN (A.1.16)
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Rest Regulations ∑
b∈B

(
xnbNt + xnbD(t+1)

)
≤ 1 n ∈ N , t ∈ T (A.1.17)

∑
b∈B

(
xnbNt + xnbE(t+1)

)
≤ 1 n ∈ N , t ∈ T (A.1.18)

∑
b∈B

(
xnbN(t−1) + xnbF1t + xnbD(t+1)

)
≤ 2 n ∈ N , t ∈ T (A.1.19)

∑
b∈B

(
xnbN(t−1) + xnbF1t + xnbE(t+1)

)
≤ 2 n ∈ N , t ∈ T (A.1.20)

∑
b∈B

(
xnbE(t−1) + xnbF1t + xnbD(t+1)

)
≤ 2 n ∈ N , t ∈ T (A.1.21)

∑
n∈N

∑
b∈B

∑
t∈Tk

xnbF1t = 1 k ∈ K (A.1.22)

Minimize hours deviations

min z2 =
∑
n∈N

∑
k∈K

(
δH

−
nk + δH

+

nk

)
(A.1.23)

∑
b∈B

∑
s∈S

∑
t∈Tk

Hsxnbst = CnH + δH
−

nk − δH
+

nk n ∈ N , k ∈ K (A.1.24)

∑
b∈B

∑
s∈SW

∑
t∈T

δD
−

bst ≤ z1 (A.1.25)

Distribute overstaffing

Additional Parameter

δ largest value of either the deficit or surplus of nurses working hours

Additional Variable

αbst =

{
1, if there is overstaffing in section b on shift s on day t

0, otherwise
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max z3 =
∑
b∈B

∑
s∈SW

∑
t∈T

αbst (A.1.26)

∑
n∈N

xnbst = Dbst − δD
−

bst + δD
+

bst b ∈ B, s ∈ SW , t ∈ T (A.1.27)

αbst ≤ δD
+

bst b ∈ B, s ∈ SW , t ∈ T (A.1.28)

δH
+

nk + δH
−

nk ≤ δ n ∈ N , k ∈ K (A.1.29)

∑
n∈N

∑
k∈K

δH
+

nk + δH
−

nk ≤ z2 (A.1.30)

Preference Violation

Additional Parameter

Inst nurse n wants to avoid working shift s on day t

min z4 =
∑
n∈N

∑
b∈B

∑
s∈SW

∑
t∈T

Instxnbst (A.1.31)

∑
b∈B

∑
s∈SW

∑
t∈T

αbst ≥ z3 (A.1.32)

Distribution of Competence and Experience

min z5 =
∑
e∈E

∑
b∈B

∑
s∈SW

∑
t∈T

δEebst +
∑
b∈B

∑
s∈SW

∑
t∈T

δSN
−

bst (A.1.33)

∑
n∈Ne

xnbst ≥ Debst − δEebst e ∈ E , b ∈ B, s ∈ SW , t ∈ T (A.1.34)

∑
n∈NSN

xnbst ≥ DSN
bst − δSN

−

bst b ∈ B, s ∈ SW , t ∈ T (A.1.35)

∑
n∈N

∑
b∈B

∑
s∈SW

∑
t∈T

Instxnbst ≤ z4 (A.1.36)
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Variable Declarations

xnbst ∈ {0, 1} n ∈ N , b ∈ B, s ∈ S, t ∈ T (A.1.37)

αbst ∈ {0, 1} b ∈ B, s ∈ SW , t ∈ T (A.1.38)

δH
−

nk ≥ 0 n ∈ N , k ∈ K (A.1.39)

δH
+

nk ≥ 0 n ∈ N , k ∈ K (A.1.40)

δSN
−

bst ≥ 0 b ∈ B, s ∈ SW , t ∈ T (A.1.41)

δEbst ≥ 0 b ∈ B, s ∈ SW , t ∈ T (A.1.42)

δD
−

bst ≥ 0 b ∈ B, s ∈ SW , t ∈ T (A.1.43)

δD
+

bst ≥ 0 b ∈ B, s ∈ SW , t ∈ T (A.1.44)

A.2 The Nurse Rescheduling Model

A.2.1 Definitions

Indices

n nurse

b section

s shift

t day

c competence

k week
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Sets

B set of sections, B = {1, 2, 3}
C set of competence levels, C = {AN,N, SN}
N set of nurses

N 100 set of full time nurses, N 100 ⊂ N
Nc set of nurses with competence level c, Nc ⊂ N , c ∈ C
T R set of days in planning period

T PRE set of days before planning period

T POST set of days after planning period

T set of all days, T =
{
T PRE ∪ T R ∪ T POST

}
T A set of days in planning period or post period, T A =

{
T R ∪ T POST

}
K set of weeks included in planning period

Tk set of days in week k

T R
k set of days in week k included in planning period, T R

k =
{
T R ∩ Tk

}
T W set of weekend days in planning period

T WA set of weekend days in planning period and post period

SW set of shifts, SW =
{
D,E,N

}
Parameters

Dbst historical average demand in section b for shift s on day t

DA
bst0

actual demand in section b for shift s on the day of rescheduling

Wn hourly wage for nurse n

L maximum work hours in a week

PO penalty percentage for overtime hours

POS penalty for overtime hours of swap

PW penalty payment for weekend hours

PN penalty payment for night hours

PE penalty payment for evening hours

H hours in a full-time work week

H
D

maximum hours during a day before overtime is triggered

Hs duration of shift s in hours

HM duration of double shift, HM = HD +HE

HPRE
nk scheduled hours for nurse n during a week k in the original schedule

Xnbst scheduled value for nurse n in section b working shift s on day t

Ant nurse n is available to work on day t

∆nt nurse n has been scheduled to work or has already worked a double shift on day t

Ωnk total overtime hours planned for nurse n during week k

Λnst overtime hours caused by nurse n working shift s on day t
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Decision Variables

x+nbst =

{
1, if nurse n in section b is rescheduled to work shift s on day t

0, otherwise

x−nbst =

{
1, if nurse n in section b is removed from shift s on day t

0, otherwise

x′nbst =

{
1, if nurse n in section b works shift s on day t

0, otherwise

uns1t1t2 =

{
1, if nurse n swapped a shift from day t2 to work shift s1 on day t1

0, otherwise

ϵnst =

{
1, if nurse n is assigned to work an extra shift s on day t

0, otherwise

dnt =

{
1, if nurse n is assigned to work double shifts on day t

0, otherwise

Auxillary variables

ωnk overtime hours for nurse n in week k

λnst overtime hours for nurse n caused by working shift s on day t

A.2.2 Minimum Cost Objective

z1 =
∑
n∈N

∑
b∈B

∑
s∈SW

∑
t∈T R

HsWnx
+
nbst (A.2.1)

z2 =
∑
n∈N

∑
k∈K

POWnωnk −
∑
n∈N

∑
s∈SW

POWn

(
1−Ant0

)
Λnst0 (A.2.2)

z3 =
∑
n∈N

∑
t∈T R

POWn

(
HM −H

D)
dnt (A.2.3)

z4 =
∑
n∈N

∑
s1∈SW

∑
t1∈T R

∑
t2∈T A

POSHs1Wnuns1t1t2 (A.2.4)

z5 =
∑
n∈N

∑
s1∈SW

∑
t1∈T R

POHs1Wnuns1t1t0 (A.2.5)

z6 =
∑
n∈N

∑
t∈T R

PEHEWnϵnEt −
∑
n∈N

∑
t∈T R

PEWnλnEt (A.2.6)
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z7 =
∑
n∈N

∑
t∈T R

PNHNWnϵnNt −
∑
n∈N

∑
t∈T R

PNWnλnNt (A.2.7)

z8 =
∑
n∈N

∑
s∈SW

∑
t∈T W

PWHsWnϵnst −
∑
n∈N

∑
s∈SW

∑
t∈T W

PWWnλnst (A.2.8)

z9 =
∑
n∈N

∑
b∈B

∑
s∈SW

∑
t∈T A

AntHsWnx
−
nbst (A.2.9)

z10 =
∑
n∈N

∑
b∈B

∑
t∈T A

AntP
EHEWnx

−
nbEt (A.2.10)

z11 =
∑
n∈N

∑
b∈B

∑
t∈T A

AntP
NHNWnx

−
nbNt (A.2.11)

z12 =
∑
n∈N

∑
b∈B

∑
s∈SW

∑
t∈T WA

AntP
WHsWnx

−
nbst (A.2.12)

min zT =
8∑

i=1

zi −
12∑
j=9

zj (A.2.13)

Dependency in Variables

x′nbst = Xnbst + x+nbst − x−nbst n ∈ N , b ∈ B, s ∈ SW , t ∈ T R (A.2.14)

x′nbst = Xnbst − x−nbst n ∈ N , b ∈ B, s ∈ SW , t ∈ T POST (A.2.15)

∑
b∈B

x+nbst1 = ϵnst1 +
∑

t2∈T A

unst1t2 n ∈ N , s ∈ SW , t1 ∈ T R (A.2.16)

∑
s∈SW

∑
t∈T R

k

λnst +
∑
s∈SW

∑
t∈Tk

Λnst = ωnk +Ωnk n ∈ N , k ∈ K (A.2.17)

λnst ≤
∑
b∈B

Hsx
+
nbst n ∈ N , s ∈ SW , t ∈ T R (A.2.18)

x−nbst ≤ Xnbst n ∈ N , b ∈ B, s ∈ SW , t ∈ T A (A.2.19)
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Demand Coverage∑
n∈N

x′nbst ≥ Dbst b ∈ B, s ∈ SW , t ∈ T A/{t0} (A.2.20)

∑
n∈N

x′nbst0 ≥ DA
bst0 b ∈ B, s ∈ SW (A.2.21)

Legislative Constraints∑
b∈B

∑
s∈SW

∑
t∈Tk

Hsx
′
nbst ≤ L n ∈ N , k ∈ K (A.2.22)

∑
b∈B

∑
s∈SW

∑
t∈Tk

Hsx
′
nbst −

(
ωnk +Ωnk

)
≤max(H,HPRE

nk )

+
∑
t∈T R

k

(
HM −H

D)
dnt

+
∑
t∈Tk

(
HM −H

D)
∆nt

n ∈ N/{N 100}, k ∈ K (A.2.23)

∑
b∈B

∑
s∈SW

∑
t∈Tk

Hsx
′
nbst −

(
ωnk +Ωnk

)
≤ HPRE

nk +
∑
t∈T R

k

(
HM −H

D)
dnt

+
∑
t∈Tk

(
HM −H

D)
∆nt

n ∈ N 100, k ∈ K (A.2.24)

Technical Constraints for the Output Schedule

x′nbst ≤ Ant n ∈ N , b ∈ B, s ∈ SW , t ∈ T R (A.2.25)

∑
b∈B

x′nbst ≤ 1 n ∈ N , s ∈ SW , t ∈ T (A.2.26)

∑
b∈B

∑
s∈SW

x′nbst ≤ 1 +
(
dnt +∆nt

)
n ∈ N , t ∈ T R (A.2.27)

∑
b∈B

∑
s∈SW

∑
t∈T A

AntHsXnbst ≤
∑
b∈B

∑
s∈SW

∑
t∈T A

Hsx
′
nbst n ∈ N (A.2.28)
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Technical Constraints for Actions∑
b∈B

∑
s∈SW

Ant2x
−
nbst2

=
∑

s1∈SW

∑
t1∈T R

uns1t1t2 n ∈ N , t2 ∈ T A (A.2.29)

∑
b∈B

x+ns1bt1 ≥
∑

t2∈T A

uns1t1t2 n ∈ N , s1 ∈ SW , t1 ∈ T R (A.2.30)

∑
b∈B

(
x′nbDt + x′nbNt

)
≤ 1 n ∈ N , t ∈ T (A.2.31)

∑
b∈B

(
x′nbNt + x′nbD(t+1)

)
≤ 1 n ∈ N , t ∈ T (A.2.32)

∑
b∈B

(
x′nbEt + x′nbNt

)
≤ 1 n ∈ N , t ∈ T (A.2.33)

∑
b∈B

(
x′nbNt + x′nbE(t+1)

)
≤ 1 n ∈ N , t ∈ T (A.2.34)

Variable Declarations

x+nbst ∈ {0, 1} n ∈ N , b ∈ B, s ∈ SW , t ∈ T R (A.2.35)

x−nbst ∈ {0, 1} n ∈ N , b ∈ B, s ∈ SW , t ∈ T A (A.2.36)

x′nbst = Xnbst n ∈ N , b ∈ B, s ∈ SW , t ∈ T PRE (A.2.37)

x′nbst ∈ {0, 1} n ∈ N , b ∈ B, s ∈ SW , t ∈ T A (A.2.38)

uns1t1t2 ∈ {0, 1} n ∈ N , s1 ∈ SW , t1 ∈ T R, t2 ∈ T A (A.2.39)

dnt ∈ {0, 1} n ∈ N , t ∈ T R (A.2.40)

ωnk ≥ 0 n ∈ N , k ∈ K (A.2.41)

λnst ≥ 0 n ∈ N , s ∈ SW , t ∈ T R (A.2.42)
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A.3 Mathematical Model Extensions

A.3.1 Buffer

Scheduling Extensions

Sets

B set of sections, B =
{
1, 2, 3, 0

}
BW set of working sections, BW =

{
1, 2, 3

}
, BW ⊂ B

Parameters

βst upper bound for how many buffer nurses can be scheduled each shift

Auxiliary Variables

δD
−

st deficit from desired demand on shift s on day t

δD
+

st surplus from desired demand on shift s on day t

Maximize buffer

max z6 =
∑
n∈N

∑
s∈SW

∑
t∈T

xn0st (A.3.1)

Constraints ∑
n∈N

xnbst ≥ Dbst b ∈ BW , s ∈ SW , t ∈ T (A.3.2)

∑
n∈N

∑
b∈B

xnbst =
( ∑
b∈BW

Dbst

)
−δD−

st + δD
+

st s ∈ SW , t ∈ T (A.3.3)

∑
n∈N

∑
t∈T

xn0st = 0 s ∈ SF (A.3.4)

∑
n∈N

xn0st ≤ βst s ∈ SW , t ∈ T (A.3.5)

∑
e∈E

∑
b∈B

∑
s∈SW

∑
t∈T

δEebst +
∑
b∈B

∑
s∈SW

∑
t∈T

δSN
−

bst ≤ z5 (A.3.6)
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Rescheduling Extensions

Sets

B set of sections, B =
{
1, 2, 3, 0

}
BW set of working sections, B =

{
1, 2, 3

}
, BW ⊂ B

Parameters

DP
bst predicted demand for section b on shift s on day t

Variables

anbst =

{
1, if buffer shift for nurse n in section b is activated on shift s on day t

0, otherwise

Constraints ∑
n∈N

∑
b∈B

x′nbst ≥
∑

b∈BW

Dbst s ∈ SW , t ∈ T R/{t0} (A.3.7)

x′n0st0 = 0 n ∈ N , s ∈ SW (A.3.8)

x′n0st = Xn0st −
∑
b∈BW

anbst − x−n0st n ∈ N , s ∈ SW , t ∈ T R (A.3.9)

x′nbst = Xnbst + x+nbst + anbst − x−nbst n ∈ N , b ∈ BW , s ∈ SW , t ∈ T R (A.3.10)

Variable Declaration

anbst ∈ {0, 1} n ∈ N , b ∈ B, s ∈ SW , t ∈ T R (A.3.11)

A.3.2 Flexible Assignments

Rescheduling Extensions

Sets

NF set of flexible nurses NF ⊂ N
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Parameters

Inst nurse n wants to avoid working shift s on day t

Rn remaining number of flexible shifts for nurse n

Variables

fnbst =

{
1, if flexible shift for nurse n in section b is scheduled to shift s on day t

0, otherwise

Constraints

Instfnbst = 0 n ∈ NF , b ∈ B, s ∈ SW , t ∈ T R (A.3.12)

∑
b∈B

∑
s∈SW

∑
t∈T R

fnbst ≤ Rn n ∈ NF (A.3.13)

x′nbst = Xnbst + x+nbst + fnbst − x−nbst n ∈ NF , s ∈ SW , b ∈ BW , t ∈ T R (A.3.14)

x′nbst = Xnbst + x+nbst − x−nbst n ∈ N/{NF }, s ∈ SW , b ∈ BW , t ∈ T R (A.3.15)

Variable Declaration

fnbst ∈ {0, 1} n ∈ N , b ∈ B, s ∈ SW , t ∈ T R (A.3.16)
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Absence Data

Table B.1 displays the absence data provided by CC. The absences are given as a monthly

percentage from January 2020 to September 2022. From our understanding, the percent-

ages only display absences registered on scheduled nurses.

The data is given per bed ward (BW), and the corresponding percentages are related to

the number of nurses for the given section. To find a total absence percentage across

the sections, each section’s individual percentages must first be linked to their respective

number of nurses.

B.0.1 Generation of Absences

The generation of absences is based on section-specific data on aggregated absence per-

centages across CC from January 2020 through September 2022, as shown in Table B.1.

The data is used to estimate the expected absence percentage, which is approximately

10%. The provided data reflects the absence of nurses with scheduled shifts, not the

nurses’ availability. To generate the probability of absences across sections, we assume

that 10% of all nurses, both scheduled and unscheduled, are unavailable on average.

Table B.2 presents the values used in the Markov model from Chapter 7 to generate

absences.

Table B.2: Parameter values for Markov model

P(A, A) 0.945

P(A, U) 0.055

P(U, U) 0.500

P(U, A) 0.500

lim
n→∞

[
A U

] [0.945 0.055

0.5 0.5

]n

≈
[
0.9 0.1

]
, (B.0.1)

A+ U = 1, A, U ≥ 0 (B.0.2)
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Equations (B.0.1) and (B.0.2) show how the parameters in Table B.2 fit the estimated

availability percentage. The equations show that the specified transition probabilities

converge towards a 90% possibility of being available and a 10% possibility of being un-

available. When the system is initialized with a 10% random sample of unavailable nurses,

the system should preserve a similar percentage throughout the whole simulation period.

Since we do not have any information on the average duration of a short-term absence, it

is assumed to be two days. The transition probabilities from the unavailable state entail

an expected stay of two days in that state. The assumption that absence, on average,

lasts two days is also used to avoid long-time absences in the simulation, as CC handles

long-time absences using other methods than only rescheduling.

In other cases than 10% absence, the expected absence length of two days is still kept.

This means that only the P(A, A) and P(A, U) values are altered to ensure convergence

towards the wanted absence percentage.

Although the absence percentages are reported, this only covers the availability of nurses

scheduled to work specific shifts. The exact availability percentages would improve the

realism of the simulations. Additionally, there are likely seasonal variations in the provided

data. Access to personal absence percentages would enhance the precision of our simula-

tion.
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Table B.1: Overview of absence data from the Clinic of Cardiology

Month Year BW 1 BW 2 BW 3

January

2020 16.0% 9.5% 15.8%

2021 10.5% 7.8% 7.9%

2022 15.2% 8.6% 7.2%

February

2020 16.5% 7.7% 8.1%

2021 8.5% 9.1% 8.9%

2022 23.0% 12.1% 10.5%

March

2020 14.1% 10.8% 12.0%

2021 7.9% 12.5% 10.6%

2022 24.7% 14.8% 9.6%

April

2020 11.4% 6.4% 4.8%

2021 7.8% 11.8% 12.7%

2022 16.7% 6.0% 5.7%

May

2020 7.4% 8.9% 4.0%

2021 11.1% 15.0% 11.5%

2022 18.3% 5.6% 12.1%

June

2020 11.4% 5.0% 5.6%

2021 14.5% 12.9% 6.4%

2022 13.8% 7.2% 10.7%

July

2020 5.2% 8.5% 8.9%

2021 8.7% 5.3% 11.0%

2022 11.5% 4.9% 7.0%

August

2020 7.0% 9.4% 7.2%

2021 12.7% 4.6% 10.6%

2022 12.9% 4.2% 7.2%

September

2020 15.1% 6.0% 6.7%

2021 12.2% 7.9% 7.6%

2022 12.8% 5.1% 6.7%

October

2020 12.6% 7.3% 6.7%

2021 14.5% 4.3% 6.7%

November

2020 10.2% 3.7% 6.9%

2021 18.4% 7.1% 8.9%

December

2020 10.6% 4.2% 8.8%

2021 16.0% 7.2% 6.3%
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Nurse Data

Table C.1 presents an overview of the information about the nurses employed at Bed Ward

1, Bed Ward 2, and Bed Ward 3. It includes details on the number of nurses categorized

by their competence level, experience level, and their employment percentage Cn at each

bed ward.

Table C.1: Overview of nurse information from the Clinic of Cardiology.

Assistant Nurse Nurse Specialized Nurse

Cn E=1 E=2 E=3 E=1 E=2 E=3 E=1 E=2 E=3

BW1

50% 0 0 1 0 0 0 0 0 0

60% 0 0 1 3 0 3 0 0 1

75% 0 0 2 2 1 3 0 0 0

90% 0 0 4 0 3 1 0 0 0

100% 0 0 2 0 3 2 0 0 0

BW2

50% 0 0 0 0 1 1 0 0 0

60% 0 0 2 0 1 1 0 0 1

75% 0 0 1 2 1 2 0 0 1

90% 0 0 0 0 7 3 0 0 0

100% 0 0 3 0 1 4 0 0 1

BW3

50% 0 0 0 0 1 3 0 0 0

60% 0 0 0 0 1 5 0 0 1

75% 0 0 1 0 1 4 0 0 1

90% 0 0 1 0 2 0 0 0 2

100% 0 1 4 1 7 3 0 0 0
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Preference Generation

Uniform random numbers are used to generate the Inst matrix (Hillier & Lieberman, 2015).

For each nurse n, shift s, and day t, a random number between 0 and 1 is generated. If

the generated number is below the value threshold presented in Figure 8.1 and Figure 8.2

for the corresponding shift and day, Inst sets the value to 1, representing disinterest in

working that specific shift s on day t. If the random number is above the threshold, the

matrix value is set to 0.
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