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One of the major concerns regarding currently proposed public blockchain systems relates to the feasible trans-
action processing rate. It is common for such systems to limit this rate to maintain the required levels of security
and decentralisation. State channels are an approach to overcome this limitation, as they aim to decrease the
required on-chain transactions for a given application and thus indirectly increase the capacity (in terms of ap-
plications) of public blockchain systems. In the present paper, we propose a state channel design that, through the

use of RSA accumulators, operates on a compact state structure. This scheme is optimal for applications whose
state includes large sets of elements. The novel state channel design is presented by analysing all state channel
operations and how they have to be revised. The security of the design is discussed, while a practical use case
scenario regarding the use of the design for an on-chain asset (e.g., non-fungible tokens) exchange application is

also analysed.

1. Introduction

Blockchain technology has emerged as one of the most significant
advancements in computer science in the past decade [1]. It facilitates
the design and operation of secure distributed systems without the
requirement for trusted central nodes. Even though existing designs come
with several drawbacks, such as inefficiency for high loads of usage or
inherent privacy issues, the vision of shifting from Web 2.0 to Web 3.0
[2] and the elimination of the requirement for central nodes for most of
the existing systems maintain high expectations out of blockchain
technology.

The unbounded popularity and ever-growing usage of blockchain
networks have exposed the scalability problems that are built into most
designs [3]. Various methods have been developed to combat this issue
[4], one of them being the use of state channels [5]. State channels
operate on the notion that transactions (also known as state updates)
should remain off-chain and be implemented upon interaction between
the directly interested nodes unless there is a necessity for blockchain
communication. However, to achieve the security and finality levels of

the blockchain, it must always be possible to resolve conflicts on-chain.
In the vast majority of cases, this requirement is served by occasionally
uploading state transitions to an on-chain smart contract that acts as an
adjudicator. To that end, state channel nodes are frequently required to
maintain a number of previous states. The size of these data often greatly
burdens the local storage of channel participants, while it also induces
significant costs when participants have to go on-chain to resolve dis-
putes. The size of a single state as well as the level of necessity to
maintain previous states in a node is an important parameter for state
channel designs’ efficiency and level of usability.

The present paper aims at providing a state channel scheme that will
enable the secure and efficient operation of state channels for applica-
tions, the state of which can be partially or fully represented as a dynamic
set of elements that tends to grow significantly in size. With the tradi-
tional state channel approach, a very large set of elements would require
a boundless channel state representation, which would cause practical
difficulties, as participants would be required to maintain a large data
structure. According to state channels’ general design, in order to resolve
a potential dispute due to the inactivity or malicious behaviour of a
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participant, the need to bring the state of the state channel to an on-chain
contract arises. This creates significant implications, as it is technically
challenging to bring on-chain a list of elements of dynamic size, and it can
only be achieved through an expensive (in gas fees) approach, e.g.,
sending elements one by one. Moreover, it would be required to recur-
sively parse that list element by element in the on-chain contract to
resolve the dispute. The basic concept of the proposed design is to serve
applications, the state of which can be partially or fully represented as a
dynamic set of elements that tends to grow significantly in size in a much
more efficient way. The proposed scheme expresses the state of such a
state channel with a data structure of manageable, set size that does not
take up huge amounts of node storage space and does not have boundless
costs when uploaded and processed on-chain. This is achieved through
the use of cryptographic accumulators that enable constructions that can
efficiently serve the need for proving the existence/non-existence of an
element in a set, while the size of those constructions is fixed and irrel-
evant to the number of elements they refer to.

1.1. Research objectives

The research objectives of the present paper are as follows:

Development of the first state channel design that can efficiently and
securely handle states that may contain unbounded sets of elements
with states of constant size. The proposed design applies to applica-
tions in which the states fully or partially consist of dynamic sets of
unordered elements.

Revision of existing state channel schemes to adequately handle RSA
accumulators as part of the state during funding, state update,
dispute, and closing phases of a state channel.

Extensive analysis of a use case scenario that demonstrates the
application of the proposed scheme to a specific real-world
application.

Security analysis of the proposed design to ensure that it provides an
equal level of security with existing state channel designs.

2. Related work
2.1. On state channels

2.1.1. ForceMove: an n-party state channel protocol

ForceMove [6] pioneered a design that was subsequently adopted by
the majority of state channel designs in terms of dispute handling. By
focusing on turn-based applications, the authors developed a mechanism
to handle inactivity-related disputes between channel participants. Their
design ensures that an honest party can always retrieve its assets when
confronting an uncooperative party in the channel. The main pattern for
dispute handling established in this work is as follows: a challenger issues
a dispute, and the challenger has a time window in which they can
provide a valid response, or the channel closes according to the last valid
state that usually favours the challenger.

2.1.2. Counterfactual: generalised state channels

The goal of the authors of Counterfactual [7] was to essentially create
a “state channel template” that can be utilised by any application pro-
vided some use case-specific modifications are made. An easy-to-use API
is provided so that it is feasible for any application meeting the re-
quirements to make those modifications. The concept of the design
centres around the term “counterfactual”, which stands for outcomes,
states and contract instantiations that have not happened yet but cannot
be prevented from happening and therefore have relative finality. Met-
achannels are also implemented, which are channels formed between
two users through a common intermediary.
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2.1.3. You sank my battleship! a case study to evaluate state channels as a
scaling solution for cryptocurrencies

Kitsune, the framework presented in this work, is an application-
agnostic, n-party state channel architecture that combines the features
authors found most useful in previous implementations like Sprites and
Perun. It provides a template for application contracts that facilitates the
addition of state channel features into any existing application, and
functions simply by freezing app functionality on-chain and transferring
it to the channel, and resuming it when the channel comes to a close.
During the running of the app on the channel, any party can propose an
update and has to collect signatures from all other parties for it to be
considered valid. The paper does not address how a scenario where up-
dates are proposed simultaneously is handled. The channel can be closed
cooperatively or through dispute. Disputes can be started by any
participant and initiate a timer for parties to submit state information.
Anyone can resolve the dispute, and it seems the only possible outcome is
giving the state to the application contract and resuming on-chain.

The authors conducted an experiment during which they analyse the
process, challenges, costs, and usefulness of implementing a Battleship
game through state channels, concluding that any application that has a
liveness requirement and not all participants are willing to cooperate is
not particularly suited to this technology.

2.1.4. Hydra: fast isomorphic state channels

The Hydra design forfeits the sequential transaction processing that
state channel designs usually function by in favour of concurrent pro-
cessing enabled through the use of the extended unspent transaction
output (UTXO) model. The isomorphic channels the authors describe,
called heads, function by moving a set of UTXOs the participants decide
on off-chain, evolving them there and then making sure the latest state of
the channel at close is reflected on the chain. The process begins with an
initial transaction through which the parameters necessary for the
channel (e.g., participant list) are defined and participation tokens
necessary for the state validation process are forged for each participant.
State propositions are validated through multi-signatures and periodi-
cally collected into snapshots to align the channel view of the head
parties, which often differs due to the concurrent transaction confirma-
tion scheme. Snapshot leaders are responsible for this gathering of states
and for conflict resolution that may be needed. At the channel’s closing, a
contestation takes place during which channel members submit valid
states more recent than any already submitted, and the latest one gets
reflected on-chain after the finalisation of the head. This design results in
isomorphic channels that are faster than any previously implemented
ones and boast performance near physical limits.

2.1.5. Multi-party virtual state channels

The authors of this work offered two significant contributions to state
channels existing so far at the time of publication.

Introduced in this work are multi-party virtual state channels, an
expansion on 2-party virtual channels that had already been imple-
mented. Virtual channels can be opened and closed without ever refer-
ring to the blockchain. Multi-party virtual state channels can execute
contracts that concern over two parties. They stand and are built recur-
sively on 2-party ledger channel networks, through which all participants
must be connected, and no creation of channels of intrinsic greater length
is supported. For every multi-party virtual channel created, participants
must install in every sub-channel contract instance that guarantees that
the intermediary’s funds are safe and that the outcome of the virtual
channel will be updated on said sub-channels.

The second major contribution is the introduction of direct dispute
state channels. Those introduce functionality that redesigns the dispute
process so that participants refer to the ledger as soon as possible after an
honest party identifies possibly malicious behaviour, instead of con-
tacting the intermediary. The dispute board is an on-chain component
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where states are uploaded in case of dispute to be compared and the valid
one is finalised. This approach makes the worst-case time complexity of
the channel independent of its length and allows dispute outcomes to be
seen and used by other contracts. However, it can cause a serious
transaction load on the blockchain depending on the scenario, since all
parties can be required to upload their state view for a dispute. Channels
that implement direct and indirect dispute processes can cooperate
seamlessly in whatever proportions serve each application best.

The authors’ approach to the overall design is based on previous work
and results rather than conducting an implementation from scratch.

2.1.6. Sprites and state channels: payment networks that go faster than
lightning

Even though the main focus of the Sprites proposal is payment
channels and networks, they base their design on a modular approach
leaning on a general state channel construction. State channels are
mainly used in the dispute process, the sequence of which has been
adopted by most following state channel designs: a party raises a dispute
after malicious behaviour occurs, a time period follows during which
evidence is submitted, and finally, depending on the situation, the
resolve is either cleared off-chain or resolved on it.

2.1.7. Two-party state channels with assertions

The work [8] presents a design that is innovative in how it aims to
reduce the cost of the process of bringing a state on-chain, as well as to
unburden the honest party from the costs of raising a dispute. The design
concerns strictly two-party applications of a turn-based nature. The au-
thors proposed that initially only a hash of the state is submitted to the
contract during a dispute in an attempt to make the size of the data going
on-chain constant and independent of the size of the state.

2.2. On cryptographic accumulators

The latest insights into the implementation of accumulators resolve
around Bitcoin and specifically the scalability problems of the UTXO
protocol. To the authors’ best knowledge, there is no prior work affili-
ating accumulators to state channels. Nevertheless, some interesting
approaches are presented for further understanding the utility of
accumulators.

2.2.1. Batching techniques for accumulators with applications to IOPs and
stateless blockchains

In this work, Boneh et al. [9] used new accumulator and vector
commitment constructions to design a stateless blockchain where the
nodes may participate without storing the entire state of the ledger but
alternatively short commitment to it. The benefits of smaller membership
proofs, the constant size proofs and the ability to aggregate those for a
batch of transactions are promising aspects for future research and
practical applications.

2.2.2. Zerocoin: anonymous distributed E-cash from Bitcoin

Zerocoin [10] is a distributed e-cash scheme constructed as an
extension to the Bitcoin system, relying on the cryptographic properties
of RSA accumulators and non-interactive zero-knowledge signatures to
allow anonymous currency transactions.

2.2.3. EPBC: efficient public blockchain client for lightweight users

EPBC [11] aims at providing a mechanism for checking the validity of
a given block and the transactions contained in it to lightweight users of
blockchain-based applications without storing the entire blockchain. The
purpose is to give blockchain transaction history a compact form and
reduce storage requirements using the RSA accumulator.

2.2.4. Utreexo: a dynamic hash-based accumulator optimised for the Bitcoin
UTXO set
Another applied methodology for the efficient management of the
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UTXOs set is described [12] based on a dynamic hash-based accumulator,
designed as a forest of perfect binary hash trees.

2.2.5. The state of statechains: exploring statechain improvements

In alignment with state channels, statechains [13] are a second-layer
solution for off-chain transactions of an on-chain UTXO. The notion of a
state-accumulator is proposed, as they maintain a constant size inde-
pendent of the number of transfers that are made within the lifetime of
the channel and improve the storage requirements for the participants.
However, this scheme requires a trusted setup, and on top of that, is
based upon the existence of a trusted manager entity for the channel that,
besides setting up the accumulator, is also required to preserve all pre-
vious states for the lifetime of the channel. This significantly limits the
applicability of the protocol, as it cannot operate efficiently for an un-
bounded number of state updates.

2.3. Summary

Since there are no previous efforts to solve the problem of unbounded
channel state size with any similar techniques, the works cited concern
the technologies our design is motivated by: state channels and crypto-
graphic accumulators. The single publication that approaches the issue of
the size of the state [8] does so on significantly different terms (initial
attempt to resolve disputes by only submitting a hash of the state) and
with results only in terms of the data submitted on-chain and not the
storage space occupied in participating nodes since they still have to
maintain the information in its entirety.

3. Preliminary concepts
3.1. State channels

Blockchain technology turned out to have a much greater impact than
what could have been predicted when it was initially popularised. That
fact has brought to the surface major scalability issues that present
blockchain designs suffer from. Three properties have been identified as
the ones a blockchain system should prioritise: security, decentralisation,
and scalability. Much effort has gone into keeping all three up to par, but
with limited success, resulting in the necessary sacrifice of at least one of
them in the vast majority of implementations [4]. Between a verification
process that forces the slowest node as the design’s bottleneck and a
consensus mechanism as intensive as PoW is, scalability is the feature
that most often suffers, both in terms of speed and costs.

Approaches to resolving this problem are mainly split into two
categories:

Layer 1 involves changes in the fundamentals of a blockchain system
such as a different consensus mechanism [14,15] or the implementation
of sharding [16,17].

Layer 2 involves constructions on a different layer on top of existing
blockchain designs that can rectify their weaknesses. Dominant ap-
proaches on this aspect include:

Sidechains [18]: the method of having parallel, independent chains
running next to the main blockchain to reduce its transaction load.
Plasma [19]: a separate blockchain that operates beside Ethereum
and makes periodic commits to it for security. Plasma does not sup-
port the execution of generic smart contracts.

Rollups [20]: rollups enable execution to happen off-chain while data
storage happens on-chain. They are further divided into Zero
Knowledge and Optimistic Rollups depending on the transaction
validation methods used.

Payment [21] and State Channels [22]: both kinds of channels
promote full transaction execution off-chain in the optimistic case.
Payment channels can only accommodate transactions that express
payments, while state channels can also enable off-chain execution of
smart contracts.
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Payment and state channels are often grouped since one is heavily
influenced by the other. Payment channels are the predecessors of state
channels and initially introduced the concept of performing transactions
off-chain whenever possible. However, they limit the application of this
concept to payments, and therefore can only benefit cases that involve
strictly withdrawals and deposits. State channels came later to extend
this functionality to include the alteration of state and the execution of
code.

The root of the scalability issues blockchain systems are facing is
mainly the necessity that no matter how small the user pool a transaction
is relevant to, it must be executed by every blockchain node. State
channels allow communication to remain off-chain and between this
limited subset of users until an update on the blockchain becomes
absolutely necessary. They also manage to maintain the security gua-
rantees and transaction finality that on-chain interaction can offer.

To be able to provide these guarantees, a channel must rely on the
liveness of the underlying blockchain system since in the pessimistic case,
a channel transition must be able to be executed on-chain. To that end,
channel participants must lock collateral in the channel contract that can
later be used to punish malicious activity if necessary. In every case, those
assets will be redistributed to users at the closing of the channel ac-
cording to its outcome.

There are four main phases a state channel can be in while it operates:

Opening/Funding Phase: This phase involves the establishment of
the state channel between its participants. This process most often in-
cludes instantiating a state channel contract on-chain, funding it by
providing collateral assets and funds to be used in the application if
applicable, and generating the starting state of the channel.

Update Phase: This phase encapsulates the main intended func-
tionality of a channel. Users communicate with each other off-chain
through cryptographically signed messages to proceed from each state
to the next one. Total consensus between channel participants is neces-
sary for a state to be considered valid and of equal finality to an on-state
update. This phase is only exited in the case of malicious activity or the
need to close the channel.

Dispute Phase: User behaviour that diverges from the protocol
makes the state channel enter this phase. Such behaviour can include
proposing an invalid state or remaining inactive when action is required.
In such cases, obtaining full consensus on a state is infeasible, and the
channel must be able to rely on the blockchain system for a fair resolu-
tion; therefore, this is when on-chain interaction is necessary.

Closing Phase: This phase can occur in one of two ways: (a) opti-
mistically, users decide to consensually close the channel and bring an
end to their interaction, so they provide a valid state for the channel to
finalise on, or (b) pessimistically, after the occurrence of malicious
behaviour and the failure to resolve it on-chain in a way that allows the
channel to continue operating, assets are distributed according to the last
valid state that is brought to the contract. That is necessary to protect the
assets of honest parties being trapped in the contract of a channel that
cannot close optimistically.

A functional state channel must be able to boast the three following
properties:

e Be trustless, in the sense that a participant can be assured of the
relevant safety of their assets regardless of the behaviour of the other
participants. Therefore, no trust is required between users.

e Guarantee the finality of the state at the same level, which can be
guaranteed on the blockchain.

e Be efficient in serving its main purpose, which is to reduce the
transaction load that the blockchain system would suffer.

3.2. Cryptographic accumulators
An accumulator is a cryptographic function that enables the genera-

tion of inclusion proofs for sets of elements without disclosing any
member in the subjacent set. Various accumulator schemes have been
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proposed for diverse applications. All of those share the objective of
determining whether an element is part of a set or not. In general terms,
the set of values accumulated is represented by a compact data structure
in such a way that for every value of the set, a witness proof can be
produced, and thereupon determine whether the value is incorporated in
the accumulator or not [23].

Relying on fundamental cryptographic principles, accumulators have
raised increasing interest due to their space and time efficiency, espe-
cially when an arbitrarily large set of values is examined. Since the first
proposed cryptographic accumulator by Benaloh et al. [24], which used a
one-way RSA function to address document time-stamping and mem-
bership purposes, many studies have expanded the accumulator usage
and have delivered numerous derivations. Merkle trees and bilinear ac-
cumulators present various characteristics that can be useful in a vast
variety of anonymous authentication applications, while RSA accumu-
lators have the advantage of constant-size proofs.

Depending on the cryptographic primitives that they are built upon,
accumulators can be categorised as symmetric or asymmetric. Further-
more, accumulators can present a variety of features regarding the size of
the initial set, the type of membership proof, the existence of a trusted
coordinator, known as an accumulator manager (AM), and the required
update frequency (communication) for the participants [25]. Combining
different features can provide many design choices, subsequently
affecting the implementation complexity and the overall performance of
the accumulator.

3.2.1. Main characteristics of accumulator schemes
The main characteristics of accumulator schemes along with relevant
cryptographic assumptions are presented below.

3.2.1.1. Dynamic accumulator. A dynamic accumulator can be updated
efficiently as elements are added or removed from the set, at a unit cost
independent of the number of accumulated elements [9].

3.2.1.2. Universal accumulator. Universal accumulators extend dynamic
accumulators [26] with the support of non-membership witnesses.

3.2.1.3. Trapdoorless accumulator. Accumulators conventionally use a
trusted accumulator manager allowing efficient deletion of elements
from the accumulator using “trapdoors”. Trapdoors in cryptography
consist of information needed to perform the inverse cryptographic
operation [25]. Since the first RSA accumulator by Benaloh and de Mare
[24] trapdoors were considered a disadvantage, anyone who has access
to such information may forge membership proofs. In recent works [9,
27-29], efficient schemes have been proposed without requiring a trus-
ted setup.

3.2.1.4. Strong RSA assumption. The strong RSA assumption is the basis
upon which a variety of cryptographic procedures have been built stating
that given a random generator of unknown order g € G, it is infeasible to
find any root of it, i.e., an integer [ € Z and an element u € G such that g/ t
= u. The strong RSA assumption generalises and implies the RSA

assumption.

3.2.1.5. Adaptive Root Assumption. This assumption was introduced by
Wesolowski [28], who initially presented it as the “root finding game”.
These two assumptions are incomparable, as the latter states the diffi-
culty of finding a random root of a chosen group element, whereas the
former upholds the difficulty of finding a chosen root of a given random
group element [9].

3.2.2. A basic accumulator scheme

Below, we describe the main functionality of an accumulator
considering the existence of a trusted manager, a user responsible for an
element and the corresponding membership witness acting as the prover,
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and a user given the relevant proofs acting as the verifier at a specific
verification round [30].

e Generation/Set up algorithm is performed by the manager and
generates the initial set of the accumulator Ay.
e Add algorithm adds an element x to the accumulator and produces
the updated accumulator value A1 and the membership witness
proof for element x, labelled w,. Additionally, an update message is
produced upmsg1) that enables the accumulators’ users and proof
holders to keep the witnesses of their elements up to date.
Del algorithm respectively deletes an element x from the accumu-
lator, produces the updated accumulator value A, 1 and the non-
membership witness proof for element x, labelled as u, and pro-
duces an update message upmsg..+1) for the accumulators’ users in
order to update the witnesses of their elements.
Create membership/Non-membership witness algorithm con-
structs respectively the inclusion or exclusion proof for an element.
Update membership/Non-membership witness algorithm up-
dates the membership/non-membership witness for an element x
after the addition or deletion of another element y to the accumulator.
Verification algorithm is executed by any user that preserves the
latest state of the accumulator against which the existence of an
element x in the accumulator can be verified using its membership
witness wy. A non-membership witness can also be verified.

4. Design of state channels with compact states

In the present section, we present a revised state channel design that
supports applications, the state of which can be partially expressed by
one or more dynamic sets of unordered elements. The transition between
different states of the application includes the addition or removal of an
element in the set. The design enables the secure and efficient operation
of such applications through the use of state channels and cryptographic
accumulators. The goal of the proposed scheme is to support the afore-
mentioned applications irrespective of the size of the elements set by
combining on-chain security guarantees and off-chain efficiency.

The presentation of the scheme is divided into two parts. In the first
part, the functionality of cryptographic accumulators is described in the
form and capacity that is used within the scope of this work. In the second
part, the integration of this functionality into the processes of state
channels is analysed.

4.1. Accumulator functionality

The main accumulation procedures adopted for the scope of this work
are based upon the trapdoorless universal accumulator proposed by
Boneh et al. [9]. This design follows the definitions and conventions of
Baldimtsi et al. [30] and was built upon a basic RSA accumulator with the
addition of batching and aggregation techniques. Assuming that the
strong RSA assumption holds in the generated group of unknown order
and that all accumulated values are odd primes, the accumulator consists
of the following basic procedures, according to those presented in Section
3.2. These basic procedures are described in three subsections related to
basic accumulator handling, membership/non-membership proofs man-
agement and proofs verification. It has to be noted that the present
subsection describes all operations available for an RSA accumulator.
Our design adapts to the requirements of each application and may
accordingly make use of the optimal subset of the operations described.

4.1.1. Basic accumulator handling
e Setup: Generation of a group of unknown order and initialisation of

the group with a generator g € G, where the strong RSA assumption
holds. Let g be the generator of every element x € S, S = {x3,x2, ...,
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X(n)}, and Hprime be a hash function that maps any element x; to a
unique odd prime number e;:

€ = Hprime(xi) (@8]

The accumulator of S is produced using the representatives of the
initial elements after being mapped with the hash function Hprime.

A = acc(S) = glhen® 2

e Add: Addition of an element from the odd prime domain to the
current accumulator value A; and calculation of the new value of the
accumulator A, 1, such that

At+l = (Al)e’ (3)

e Del: Removing an element from an accumulator without the use of a
trapdoor requires the reconstruction of the whole set. In this case, the
root factor algorithm (adaptive root assumption) can be used for time
efficiency. In the proposed scheme, the owner of an accumulated
element e; maintains the corresponding membership witness w;,
which equals the value of the accumulator before the aggregation of
the element. Based on this assumption the process of updating the
accumulator is presented in Eq. (4).

At+l = Wiy (4)
4.1.2. Membership/non-membership

e MemWitCreate: The membership witness for an element with
regards to a specific set is equal to the accumulator value for the same
set excluding the specific element. The membership witness w; for an
element ¢; can be computed as

w; = (A;) 7 5)

Nevertheless, exponentiation of the accumulator by e]Tl cannot be
efficiently executed in a hidden-order group. To integrate accumulators
into state representation for state channels, this limitation can be
bypassed given the assumption that the user that adds an element to an
accumulator maintains its previous value A;_;. In that way, an approach
to verify membership witness in constant time with a single exponenti-
ation is feasible (as explained below).

¢ NonMemWitCreate: The non-membership witness ; of an element e;
that is not included in an accumulator A can be calculated as long as
the product of all the accumulated elements is known. The non-
membership witness is equal to the pair (a, gb), where a, b are the
Bezout coefficients between e; and the product of the accumulated
elements, relying on the fact that for any element x ¢ S,gcd(x,[].s5)
=1.

A user of an accumulator that maintains knowledge of the elements in
the accumulated set and can easily compute the pair a, g that provides
the necessary non-membership witness. Because this operation induces
sub-optimal storage requirements, our design provides several alterna-
tive solutions (according to the application requirements) in Section 4.3
that enable the state channel operation without the need to maintain
knowledge of all the elements in the accumulated set.

4.1.3. Witness management and verification
e MemWitUpdateAdd: Updating membership witnesses of an element

¢j upon the addition of an element e; is given simply by adding the
element ¢; to the witness proof w,.
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_ e _ gpe
Wiy = Wit = A7

e MemWitUpdateDel: Updating membership witnesses for e; after the
removal of an element ¢; requires the computation of ejth root of A,
which corresponds to the updated witness. Through using the Shamir
Trick, we can compute the Bezout coefficients a, b such thata x e; + b
x ej = 1 for the pair of coprime integers e; e;. After computing a, b, we
can produce the updated membership witnesses according to
equation

b
Wiy = Wi,Aerl (6)

e VerMem: Verification of a membership proof w; for an element e;
given the current accumulator state A; requires one exponentiation in
G. It is required to add element e; to the set accumulated in w; and
check if the result equals A;.

A= (W[)e, (7)

e VerNonMem: A given non-membership witness u; = (a, gb) for an
element e; is verified if Eq. (8) holds.

A x (g")" =g 8

4.1.4. Accumulator setup requirements

It is important to understand the security implications of the
requirement for a trusted setup. A lot of work has been focused on
eliminating this requirement, as picking an RSA modulus N = pq leads to
knowledge of the order ¢(N) = (p — 1)(g¢ — 1) [9].

One way to resolve this is the use of class groups of imaginary
quadratic order [29,31]. Given the recent rise of interest in groups of
unknown order fueled by recent applications such as delay functions [28]
and zero-knowledge proofs [32], numerous research works have
explored the use of class groups of imaginary quadratic fields such as
Refs. [29,33,34]. As stated in Refs. [34,35], some of these constructions
[28] rely on novel, nonstandard cryptographic assumptions, namely, Low
Order (LO) or Adaptive Root (AR) assumptions in groups of unknown
order, which lead to an emerging need for better understanding these
new, non-standard cryptographic tools and explore their potential.

As already noted, the proposed scheme is built upon the accumulator
design proposed in the work of Boneh et al. [9] and does not attempt to
address the inherent disadvantages of a trusted setup. The scheme
operates on the assumption that the RSA generator has been generated
through a secure function. Based on Wesolowski’s [28] Adaptive Root
Assumption, Boneh et al. [9] showed that Wesolowski’s proof is a suc-
cinct proof of knowledge of a discrete log in a group of unknown orders
and therefore provides a secure basis for our approach.

4.2. State channel functionality

The goal of the proposed design is to minimise the required storage
space along with the financial overhead when operating in a channel, the
state of which can be fully or partially expressed through dynamic sets of
elements. To this end, we have redesigned each phase of a state channel
as described in Section 3.1 and propose an enhanced state channel design
that efficiently integrates cryptographic accumulators into state repre-
sentation. The presented scheme enables participants to maintain a
compact state representation (off-chain) that, through the use of
membership/non-membership proofs, can serve the need for managing
sets of elements with the same level of security that an on-chain imple-
mentation would provide.

The design of the scheme prioritises the maximisation of efficiency
and the reduction of costs that result from on-chain interactions with the
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channel smart contract. Some parts of accumulator functionality have
been identified as quite computationally demanding; therefore, actions
have been taken to avoid bringing them on-chain and wherever possible
eliminate the need for their use. To include accumulators for different
sets in the state of the state channel, a default accumulator setup is
required. When the channel contract for the state channel is deployed,
default values for g and N have to be set. During the operation of the state
channel, each new accumulator must be initiated with the default gand N
values, to maintain the same level of security. As discussed in Section 4.1,
N must either be generated by a trusted node, which will not make use of
p and g values during the operation of the channel, or through a secure
distributed process based on class groups of imaginary quadratic order
[31]. According to the context under which the state channel is deployed,
channel operators have to choose one of the two aforementioned
approaches.

The rest of the present subsection analyses how those suffice to cover
functionality that might be required in a state channel environment. The
notation used in the subsequent figures is analysed in Fig. 1.

4.2.1. Funding

Since this phase of the channel does not involve the creation or
alteration of an accumulator, its functionality does not differ significantly
from most state channel designs. The funding process and establishment
of the channel happen concurrently.

The pattern followed is apparent in Fig. 2. Every participant X that
joins the channel locks into a smart contract asset depy that is used in the
context of the application served by the channel and also serves as
collateral in the case of malicious behaviour. Participants also store any
required data for operating the application, such as their public keys pkx
or any other application-specific data. The contract maps this informa-
tion to every participant’s address for future use.

4.2.2. State updates

This design aims to assimilate accumulator functionality into state
channels. We assume that the state of the state channel includes
(potentially among other data structures) an accumulator to represent an
unbounded element set. In the present paragraph, an analysis of the
operations of the accumulator in the context of updating the state of the
channel is presented. The state in its entirety can include more structures
besides the accumulator, but the details of managing those are out of the
scope of the present paper.

4.2.2.1. Establishment of a set. The process depicted in Fig. 3 is followed
for the creation of a new accumulator that will represent a new set of
elements. The steps of this process are as follows:

e A channel participant wants to create an accumulator that may
include one or more initial elements of the set.

e The participant copies the default accumulator parameters (existing
in the channel contract) to the state of the channel. If it is required (by
the application) to add one or more initial elements to the set, then
the Add process is also followed.

e The generated accumulator is included in the state proposed by the
participant to be signed by all other channel members.

4.2.2.2. Modification of a set.

e A participant can modify the accumulator through the addition or
removal of an element according to the Add or Del processes,
respectively, as described in Section 4.1. The process of adding an
element to the accumulator is depicted in Fig. 4

e The participant must also update accordingly all the relevant wit-
nesses they hold and explicitly declare the proposed action (e.g., add
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Fig. 1. Figure notation.
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Fig. 2. Establishment and funding of the state channel.

element X to the accumulator), which facilitates the update of wit-
nesses of all elements by the corresponding channel members. This
ensures that the load of updating every witness does not fall on a
single node. It is assumed that for every element in a set, there is at
least one member with an interest in maintaining an updated mem-
bership witness for it.

The updated accumulator and witness update info (proposed action)
are included in the state proposed by the participant to be signed by
all other channel members.

After receiving the state but before signing it, channel participants
must update and verify their witness proofs to ensure that the

modification of the accumulator is exactly as stated by the state
transition proposer.

o If the state proposal is valid, members sign it with their secret key.
Once a state proposal receives all signatures, it is established as the
latest valid state.

o The processes of adding or removing an element are identical in terms
of in-channel interactions. The difference is apparent in the witness
update process that is analysed in Section 4.1.

4.2.2.3. Proving that an element belongs to a set. In traditional state rep-
resentation, where the element set is expressed as a readable list, the
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Fig. 3. Establishment of an accumulator with initial elements.
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Fig. 4. Addition of elements to the accumulator process.

validity of the transition is transparent. In contrast, the use of accumu- proposed to support the validation process of the state transitions.

lators means that the actual data have been replaced by data commit- Proving whether an element is included in a set is synonymous with
ments that cannot support the straightforward state transitions’ whether a membership or non-membership proof can be provided for
validation. To that end, proofs of membership and non-membership are that element. The generation of those proofs is done through the process
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described in Section 4.1. Because of the complexity associated with
processes related to non-membership proofs, alternative ways to achieve
the same functionality are analysed in Section 4.3. For the verification of
accumulator alterations, membership and non-membership proofs are
not necessary. There may be cases where such proofs must be included in
the state because of application-specific reasons.

4.2.3. Dispute

State channels’ security guarantees stem from the fact that there is an
on-chain contract that can function as an adjudicator during disputes.
According to general practice, the said contract shall carry functionality
that verifies whether a transition between two states is valid. This can be
achieved by replicating the transition in the contract to check if it pro-
duces an identical result. Therefore, in this case, the state channel con-
tract needs to be able to perform the required operations for the
verification of state transitions and any membership or non-membership
witnesses in relevance to a particular accumulator.

A fundamental principle of state channels is that they maintain the
same level of transaction finality as the underlying blockchain. State
channel designs achieve this by requiring full consensus for every state
update, which translates to a necessity for every participant to sign every
update. Because of this requirement, the most prevalent type of challenge
is the inactivity dispute against a member being inactive while expected
to act. In fact, most kinds of malicious behaviour can be dealt with
through an inactivity dispute on the assumption that the channel treats
an invalid response as a non-existent one. There is a meaningful
distinction between different kinds of disputes in terms of who they were
initiated by:

4.2.3.1. Dispute initiated by the state proposer. This dispute is used by the
member who attempts to submit the next state update when one of the
other channel members does not respond with a signed state update.

However, the proposer might have submitted an invalid update and
been trying to capitalise on other members’ refusal/inability to sign it in
order to “force” the channel to a close. In this case, the dispute progresses
as depicted in Fig. 5 and analysed herein:
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e User A proposes an update from State, 1 to State, that never gets
signed by user B. Therefore, user A initiates an inactivity dispute
(against user B) on the on-chain smart contract. This is done by
submitting to the contract the new state proposal (State,), the previ-
ous state (State, 1), the identity of user B and the information the
contract needs to verify there’s been a valid transition between the
two.

e The smart contract checks the state transition’s validity, and the
process continues according to the result of this check:

— If the transition is invalid, then the dispute is resolved in favour of
user B, and the state transition is rejected.

— Otherwise, the contract emits an event informing members of the
channels for the dispute and waits for a predefined time window for
user B to respond. The dispute can be resolved according to the
following possible outcomes:

* User B can provide the contract with a version of State, they have

signed.

* Any member can submit to the contract a valid state more recent
than State,, therefore showing that user A is proposing a stale
state and user B has no obligation to sign it.

* If the contract does not receive either of those two valid re-
sponses within the time limit, the dispute is resolved in favour of
user A, and the channel terminates in the most recent valid state
provided to the contract, State, 1.

4.2.3.2. A dispute initiated by a channel member that is not the proposer
because the proposer is displaying inactive behaviour or is proposing invalid
state updates. In that case, the dispute is handled by the contract
differently.

e User B initiates through the contact an inactivity dispute against the
current proposer. User B provides State, 1 as the last valid state to
serve as a reference point. Since the application is turn-based and the
order is predefined, the party responsible for providing State, is
known. Let us assume that the party is user A.

e The contract allows a time window for one of two valid responses to
be submitted:

Off chain state channel

y ’E/ventzlnactivirty\\‘
\__ Dispute /

Contract

.P

v

[ staten Accumulator
C.Dispute of =
membership [Inactivity Dispute against User B] | Membership Proof ;
User A User B User C User D
Resolution b o A lat
esolution by ccumulator
valid response € )
User A User B User C User D

Resolution by
more recent state

—
State >n,

Accumulator | (skall|
L )

User A User B User C

User D Contract

I(_J

Fig. 5. Issuing and resolution of a proposer-initiated dispute.
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Fig. 6. Optimistic channel closing.

— User A can provide the contract with a proposal for State, that the
contract will manage to verify as valid.

— Any member can provide the contract with a valid state more recent
than State,,_1, therefore showing that user A is not the one obligated
to provide the next update.

e If the contract does not receive either of those two valid responses
within the time limit, the dispute resolves in favour of user B, and the
channel terminates in the most recent valid state provided to the
contract, State, 1.

4.2.4. Closing
Apart from terminating the channel after failing to resolve a dispute,
there is also the option of optimistic closing, depicted in Fig. 6.

e Any participant can bring a valid state to the contract and request the
initiation of the closing process.

e The contract will then allow a time period for any other participant to
submit a more recent valid state, if such a state exists.

e The channel will close, and the assets will be redistributed according
to the most recent valid state that participants have provided the
contract with during this time window.

This process is preferable over the pessimistic closing of an unre-
solved dispute because it is associated with reduced costs and delays. A
participant could go inactive and force a lengthy dispute process that
would remain unresolved and therefore again result in the closing of the
channel. Through this process, this user is incentivised to opt for coop-
eratively closing instead, to escape the penalty fees of inactivity.

4.3. Handling of proofs

Due to the high complexity and therefore load that the algorithms
associated with non-membership proofs bring both to the participants of
the channel off-chain but also to the on-chain smart contract for neces-
sary validation processes, we have opted to exclude their use from this
design. Alternative ways to achieve the same functionality, when
necessary, have been developed. According to the requirements of the
application implemented in the channel, different approaches are
proposed:
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4.3.1. Non-membership proofs unnecessary

Applications that are by default functional with just the use of
membership proofs are perfectly served by the scheme as described in
Section 4.2.

4.3.2. Non-membership proofs necessary, finite set of elements involved

For applications that require non-membership proof functionality and
are managing (through an accumulator) a finite set of elements that
either belong to or do not belong to a given subset, we propose the
following approach, also apparent in Fig. 7.

e For every accumulator A; created to represent a given subset, another
one is also created to represent the elements that do not belong to said
subset (A/t). Every state must contain both accumulators of this pair.

e When a modification is made to A, the opposite modification must be
made to A;: An addition of element x to A, requires the concurrent
deletion of element x from A.. A deletion of element x from A, requires
the concurrent addition of element x to A,.

¢ Keeping in mind that the representation of the original set is through
A, then a non-membership proof for element x in A; can now be
replaced by a membership proof for element x in A,.

4.3.3. Non-membership proofs necessary, infinite set of elements involved

The applications that are in need of non-membership proof func-
tionality and cannot know beforehand the elements that will be involved
in their set are further divided into two cases:

o If it fits the nature of the application that the membership proof for an
element x is maintained by more than a single channel member, then
if a participant is falsely claiming non-membership of said element,
another participant providing the element’s membership witness is
sufficient to prove the false claim. If a valid membership witness
cannot be produced by any member, then the claim of non-
membership is valid.

e If the application cannot accommodate the aforementioned func-
tionality, then members are obliged to maintain the list of elements of
the state so that they can produce a membership proof for any
element to dispute a non-membership claim when necessary.



L. Negka et al.

Blockchain: Research and Applications 4 (2023) 100114

A.Element Deletion

B.State Proposal

Accumulator At \ el3 }—» Del
ell | el2 | el3 |

Accumulator A't | [ el3 >

| el4 | el5 | el6

Off chain state channel

User A

—— > Accumulator At

lell | el2 |
MemWitCreate
MemWit Update

Add — > Accumulator A't
) [ el3 | eld4 | el5 | el6 |

MemW.itCreate
MemWit Update

v 2

State n Del

A

Accumulator At

Witness Update Info | Witness Update Info

Accumulator A't

J

o

User A

C.Prooving non-
membership of el3
insett

v

User B User C User D
MemWit Update MemWit Update MemWit Update
for At for At for At
VerMem for At VerMem for At VerMem for At
MemWit Update MemWit Update MemWit Update
for A't for A't for A't
VerMem for A't VerMem for A't VerMem for A't

State n | Accumulator At | Accumulator A't

.

MemWit of el3 in A't

v

i

User A

v

User B

VerMem el3 for A't

v

User C

VerMem el3 for A't

v

User D

VerMem el3 for A't

Fig. 7. Proving non-membership in an application with finite elements involved.

4.3.4. Use of non-membership proofs

The reason that this design tries to eliminate the use of non-
membership proofs is because their calculation is a demanding process
that also has as a prerequisite that the calculator of the proof is aware of
all the elements added to the accumulator. This is counterproductive in
most applications, considering the aim of the design is to minimise costs
and storage load. However, if the nature of the application is such that a
member is by default interested in the full set of elements in an accu-
mulator, then the use of non-membership proofs becomes feasible. The
user can easily produce a non-membership proof, and the process of
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verifying it on-chain is rather simple.
5. Security analysis

A state channel bases its security guarantees on the underlying
blockchain network. Even if that means there is a strong dependency of
the channel on the liveness of the network, this fact cannot be mitigated.
However, the state channels also significantly rely on their members’
availability, to the point where almost every major threat to the channel
can be viewed as either a member displaying inactive behaviour on
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purpose or a member exploiting another participant’s situational un-
availability. This is even more accurate when the fact that an invalid
action is treated as a nonexistent one is taken into account.

At its core, securing in-channel interactions relies on ensuring that
every malicious action can be identified by participants and mitigated
through a dispute process. This is feasible, assuming that all parties are
rational and want to protect their assets. An analysis of how this is ach-
ieved for each scenario while taking accumulator functionality into ac-
count is presented in the present section. The essentials are for the
behaviour to be identified by channel members, reported through a
dispute, and then verified by the smart contract.

1 Invalid transition: Invalid initiation. A user may attempt to hide an
element in an accumulator before publishing it in the channel to use
the corresponding membership proof at a later stage. In the proposed
scheme, this is not feasible, as for a state transition that includes the
initiation of an accumulator to be valid, the accumulator should
adhere to the default g and N values specified in the channel contract.
If a user attempts to change this value to include an element without
stating that on the state update, this would initiate a dispute.

2 Invalid transition: Invalid addition. Let us assume that user A at-
tempts to perform an invalid addition of elements to the accumulator
(add element x, while stating the addition of element y). In practice,
this would translate to user A sharing the new state A;.; (which
would correspond to all elements included in A; along with element x)
along with the proposition of the addition of x. Other participants
would then update the membership witnesses for the elements, so
they are responsible for but those would be invalid against the new
accumulator A.. . This indicates that there have been further, unre-
vealed alterations to the set. Any member can identify this by vali-
dating their updated proof and checking if it is valid or not. In such a
case, the channel may progress in one of two ways. Any of the
members that realised this is an invalid transition can initiate a
dispute in the contract, forcing user A to provide an update that the
contract can verify as valid or be penalised. Alternatively, the channel
participants can refuse to sign the state update. User A’s choices now
are either sending out a new, valid update or attempting an inactivity
dispute through the contract against the channel’s other members.
The contract, however, has the necessary data to replicate the addi-
tion as described on the state update and check whether the transition
has been valid. Based on the result of this check, it can then reject the
dispute and penalise user A, thus making it pointless for him to
initiate the process in the first place.

3 Invalid transition: Invalid deletion. The process of identifying and
dealing with a user performing an undeclared deletion of an element
while stating an addition or a deletion of another element is essen-
tially identical to dealing with an invalid addition. However, because
the process of deleting an element from the accumulator is compu-
tationally demanding, an alternate on-chain validation process is
opted for. Assuming the proposal was for State,, the contract performs
an addition to the accumulator of that state and checks if the result
matches the accumulator of State,,_1 to determine if the transition was
valid.
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4 Invalid proof. A membership proof can be easily verified against the
accumulator it concerns as long as it is known which element it is for.
This verification can also be performed by the smart contract and will
be part of validating the transition if a proof is part of the proposed
state.

5 Inactive behaviour. The process associated with dealing with inac-
tivity either from the state proposer or one of the other members is
extensively analysed in Section 4.2.3.

6. Use case analysis: asset trading state channel

In the present section, we extensively discuss the use of the proposed
design to support a specific use case. We consider this use case a practical
implementation of our structure that justifies the need for a compact
representation of an extended collection.

Let us assume a state channel that is built to serve an application
requiring asset exchanging. Every user can commit the list of their pos-
sessions to an accumulator and provide proof of ownership during the
exchange of such assets. In this case, the user is burdened with the
maintenance of their accumulator, which will be updated only when they
participate in an exchange. It has to be noted that in the specific use case,
the user is not required to maintain updated proofs when they are not
involved in a transaction.

Based on the analysis of the state channel functionality in Section 4.2,
in the following subsection, we discuss an indicative state channel
implementation in the context of the asset trading use case.

6.1. Asset trading state channel design

A smart contract, which will be called a channel contract, supports the
operation of the channel.

6.1.1. Funding

During the establishment of the channel, every participant commits to
the channel contract the initial balance that will be used in the channel.
Subsequently, the participants transfer their assets to the channel con-
tract, and for every user, an accumulator A§ that will eventually contain
the assets of the user is initiated according to g and N parameters in the
channel contract, as described in Fig. 8.

6.1.2. State updates

There are three main actions regarding the transitions of the accu-
mulators that need to be declared and validated through the state
channel update:

e Adding an asset (Fig. 9): A participant can expand the collection of
their assets by adding a new asset g; to their accumulator. Primarily,
the user has to transfer the asset to the channel contract. The asset is
then owned by the contract, and the user has no way to transfer it to
another account. In the channel contract, the asset is mapped to the
address of the user. Consequently, the user has to calculate a non-
membership witness proof of the element u,, as discussed in Sec-
tion 4.1, that proves that the element is not already part of their

ﬂunding

{depa[pka | gA | A

Off chain state channel

[depa[PkB | 9B | nB

|depalpkc | ac | nc

\

[depa[Pkp] op | nc

|

User A User B User C

veer?

addry —»M—» depx ]
/ addry —> ¢ n

Fig. 8. Funding of an asset trading channel.
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accumulator. Finally, the user updates the accumulator with the new
element. The state update proposal is defined as the add declaration,
the updated accumulator, and the non-membership proof for the
previous accumulator. This is distributed to the group to be signed by
every participant.

For every such state update proposal, the participants have to do a
number of checks. Specifically, they have to (i) check whether the asset is
locked in the channel contract to the account of the user that proposes the
state update, (i) check that the asset is not already included in the
accumulator of the user that proposes the state update (by validating the
provided non-membership proof), (iii) validate the addition of the
element to the accumulator of the state proposing participant (through
repeating the addition of the element to the accumulator to check the
resulting value), and (iv) check that the asset is not already included in
their accumulator. According to the results of those checks, the state
transition is validated or a dispute process is initiated.
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e Transferring an asset (Fig. 10): A user can transfer an asset to another

user through a state update in the state channel. Let us assume that
user A wants to transfer asset g; (that they own at time t) to another
user B. The accumulator for user A (A%) includes element a;, while the
accumulator for user B (AP) does not. User A (the one that initially
owns the asset) needs to propose a new state that includes the
updated accumulator values for users A and B. A% ; is calculated by
removing a; and A? ; is calculated by adding a;. The state proposal
must also clearly declare which asset is being transferred to which
participant. The definitions in Section 4.1 describe the required cal-
culations that burden participant A. Other users, upon receiving the
state proposal, have to confirm that A? can be calculated by adding ;
to A%, and that A% ; can be calculated by adding a; to AZ. When the
state update is validated by every participant, participants A and B
can update the membership witnesses of their assets.
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e Removing an asset (Fig. 11): Let us assume that user A who holds an
asset g; in the channel wants to transfer it out of the channel to ex-
change it with a user who does not take part in it. The action of
removing an element from the state channel requires a state update
(State, 1) that is proposed by user A to the channel contract (in
contrast to other cases where the state update is broadcast to other
participants). The specific state update consists of the proposed action
to remove a specific element g; and the updated value of accumulator
Ati1,, for user A. Along with this state update, user A has to send the
previous state State,. The channel contract checks that the accumu-
lator value A1, has been produced by removing element g; from the
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accumulator value Ay, - Because deleting an element is a demanding
process, the contract verifies the transition by adding element a; to
Ary1,, and expecting to receive A, . If that is the case, it initiates a
timeout period during which other participants can submit a valid
state more recent than State, if one exists and terminate the process.
In the positive scenario, the element g; is unlocked in the channel
contract, by removing the corresponding record when the asset was
initially imported to the channel. Consequently, the asset is trans-
ferred from the channel contract to the account of the user on-chain.
Regarding the channel, the new valid state is State, 1. This state is
valid because it is successfully recorded in the channel contract, in
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contrast to all other state updates that become valid because they are
signed by all participants.

6.1.3. Dispute

As described in Section 4.2.3 for the general scenario, an inactivity
dispute is enough to deal with any kind of malicious behaviour that can
be displayed in the channel. This claim, as well as the ways to deal with a
dispute in every case, hold true for the specific use case without any
necessary modifications. There is, however, one particularity that must
be addressed.

The asset trading process involves the initial owner of the token
creating a state that trades it to another user. It is not prudent to allow the
channel’s mechanism to force the second party to agree to that state.
Therefore, the dispute process has been slightly modified to allow the
option for the second party to not accept the transfer and at the same time
be protected from the penalty of an inactivity dispute against them.

Assuming user A is attempting to transfer an asset to user B, and user
B does not want to accept that asset or some other part of the transfer
state, their only option is not to sign it. This leaves user B vulnerable to an
inactivity dispute from user A.

Upon the initiation of the dispute process, user A must provide the
contract with the signatures already gathered. If the missing signature is
that of user B, who is clearly stated in the state as the receiver of the asset,
then the contract does not accept the dispute, and it becomes clear to all
channel participants that user A is obligated to provide a different state
update. If user A refuses to do so, then any participant can proceed to an
inactivity dispute against them.

6.1.4. Closing

The channel can transit to the closing phase either because a partic-
ipant has optimistically requested that or because a dispute has remained
unresolved. At the closing phase of a state channel, there exists a final
state that for every participant includes an accumulator holding all assets
belonging to them and an indisputably stated balance. The contract no
longer accepts state updates and only allows for assets and balance
withdrawal according to the final state.

The participants have to make a withdrawal request for each asset at
their disposal to the contract that is accompanied by the corresponding
membership proof. The channel contract checks the validity of the proof,
and if the asset still belongs to the contract, it transfers it to the external
account of the user. The participants can also make a withdrawal request
for their balances to withdraw any funds they possess in the channel.
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Fig. 12 depicts the related functionality.
6.2. Use case threat model

The general principles as described in Section 5 do still apply to the
use case design. However, the list of possible scenarios has expanded. The
additional cases that have emerged need to be addressed, while fine-
tuning is necessary for some of the existing ones in order to better
serve the asset trading channel. Only the diversions from the general
scenario will be addressed in this section.

1 Invalid transition. The obvious difference between the general
scenario and this use case is that there is no longer cause for multiple
members to maintain witnesses for the same element. Therefore, an
invalid modification to the accumulator will not be spotted through
the realisation that the updated witnesses are invalid.

However, additions in the asset trading channel are accompanied by
the on-chain action of adding a token to the contract. Since this is a
prerequisite and the validity of the transition can still be checked by
replicating the addition, it is guaranteed that any misbehaviour will be
spotted.

Deletions require that the state is produced on-chain, and therefore,
the topic of an invalid proposal, in this case, does not need to be raised.

In the case of a transfer, there are two parties involved with con-
flicting motives, and therefore, since assumed rational, they will be
checking each other’s actions.

In all instances, the means to validate any alteration to the accumu-
lators come through providing all channel members with the means to
replicate the process, a function built into the design.

2 Inactive behaviour. Inactive behaviour is sufficiently dealt with
through the extensively analysed dispute process that takes into ac-
count the particularities of the Asset Trading Channel.

3 Access control violations. Some restrictions apply in this use case
regarding which actions can be performed by which participant.
Specifically, each participant can only add an element to their
collection, remove an element from their collection or transfer an
element they own to another participant. Any state update that does
not adhere to those rules (e.g., a participant removes an element from
the collection of another participant) is invalid and leads to a dispute.
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6.3. A practical use case example: NFTs exchange market

A concept especially well suited to the asset trading channel as
described in Section 6 is that of Non-Fungible Tokens (NFTs).

NFTs have become increasingly popular in recent years and have
ignited interest in the spread of crypto-art, the adoption of metaverse-
based systems [36], and the support of novel approaches in the gaming
industry [37].

NFTs are based on smart contracts that define their functionality and
features. These contracts are otherwise referred to as standards, with the
most popular and recognizable one being ERC-721 [38]. NFT standards
provide the basic outline but also allow for a considerable degree of
customisation per implementation.

A typical ERC-721 NFT is comprised of the following parts:

e Token ID: a token identifier unique within the ERC-721 smart
contract.

e Metadata: media mapped to the NFT, usually linked through a URL

e Owner Address: the account address that currently owns the NFT.

Out of those components, the ones relevant to the asset trading
channel would be the Owner Address and the Token ID.

Ensuring that the account transferring the token to the channel also
owns it is essential. The Owner Address is retained even after the contract
becomes the owner of the NFT to regulate in-channel actions. It will also
be updated as the token changes hands within the channel and eventually
used if it is ever transferred out of it.

As for the Token ID, it is expected that one state channel will be
handling several different types of NFTs, coming from several different
contracts. Hence, the pair Token ID-contract address is used within the
channel as a token’s global identifier.

Therefore, an NFT collection can be easily represented by a crypto-
graphic accumulator and an NFT by an element consisting of the two
aforementioned components.

7. Comparison with existing schemes

As mentioned in Section 1, the main goal of the proposed protocol is
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to provide a more efficient approach for state channels that can support
applications, the state of which includes boundless lists of elements. Our
protocol is designed to enable the required off-chain and on-chain in-
teractions with fixed storage and gas fee requirements regardless of the
number of elements that the mentioned lists may hold.

7.1. Storage requirements

Regarding the off-chain management requirements for the partici-
pants of the state channel, let us assume that the state of the state channel
includes a list of n elements e;, i = 1, ..., n. In the traditional state channel
design, the list has to be locally maintained by participants. The required
size depends on the type of the elements e; but in general, it can be
expressed as

9

Our approach expresses the list of elements with an RSA accumulator.
This means that each participant shall locally store an RSA accumulator
acc, along with membership proofs proof for all elements in which they
are interested (let us assume that they have an interest in m elements).
The required storage is:

S = n x size(e;)

S = size(acc) +m x size(proof) (10)

The sizes of the accumulator and the proofs are dependent on the
security parameters upon which the RSA accumulator is built. The main
parameter that determines the storage requirements is the number of
elements in which the participants are interested. In cases where m is
significantly smaller than n, m < n and n is large (the list can potentially
grow in length), then §' < S.

As already explained in Section 3.2.2, constructing an RSA accumu-
lator requires the selection of a modulus N from a group of unknown
order that defines the size of the structure. In Fig. 13, the storage re-
quirements of the proposed scheme (representing the collection through
an RSA accumulator) are compared to the storage requirements of the
baseline approach (holding the actual collection in the state). The com-
parison depicted has been conducted for a collection of n = 1000 ele-
ments, and it calculates the required storage for different accumulator
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sizes and different element sizes. The continuous lines show the storage
requirement of our approach (for different accumulator sizes), which is
proportional to the ratio of the elements of the collection the user is
interested in. The dotted lines show the storage requirement of the
baseline approach (for different element sizes), which is constant and
irrelevant to the ratio of the elements of the collection the user is inter-
ested in.

For a given application, parameters such as (a) the security re-
quirements that define the size of the RSA accumulator, (b) the size of the
elements, and (c) the ratio m/n have to be studied, in order to understand
what is the relation of the storage requirement for the two compared
approaches. For example, if an RSA-2048 accumulator is used and the
size of each element is 128 bytes, then the storage required by our
approach is less than what is required by the baseline approach given that
the user is interested in less than approximately 50% of the elements. It is
expected that this ratio is going to be much lower in real-world scenarios
with multiple users.

7.2. Gas fees

Calculating gas fees for the general case with high precision is
impossible. The cost of gas units fluctuates over time, and the number of
gas units that a transaction costs depends greatly on its form. In this case,
the type of the element, as well as the nature of the application supported
by the channel, have a big influence on the total cost of the process.

In a state channel, the need to upload the state to the blockchain and
therefore be subject to paying gas fees only arises in the case of a dispute.
In such an incident, the contract must be provided with all the necessary
information to verify both the validity of the state and the state transi-
tion, as described in Section 4.2.3.

Let us initially examine the scenario where the sets of elements are
traditionally stored in dynamic lists, arrays, or mappings. To the best of
the authors’ knowledge, there is no way to provide a contract with a full
array, mapping, or any kind of structure if it does not already internally
exist in the contract. Therefore, the only way to provide the contract with
the state is to recreate the structure it contains by individually supplying
every element e;. Also, since disputes are most often a comparison
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between two states, in order to check the validity of the transition, two
structures would have to be created and compared, essentially doubling
the cost of the process. The cost of this process can therefore be expressed
as:

(1)

For every reoccurring dispute, the contract must be presented with
the latest instance of the structure as contained in the freshest state and
cannot depend upon any previously-stored form. That is because there is
no way to securely communicate to the contract the updates between two
states, even if those are valid. Therefore, the structure must be recon-
structed in every dispute by adding each individual element.

To produce a comparable value, the scenario has been defined as
follows:

C = n x gasfees(e;) +n' x gasfees(e;)

e A state is defined as a list of elements, and two consecutive states
(State,) and (State,,,) are identical but for one less or one more
element in (Statep1).

e Elements are compared in pairs, with their position in the list as key.
The result of this comparison must be true in order for the dispute to
be valid and move on to the next pair. This process must be repeated
for every position but the last of (State, 1), therefore, as many times
as there are elements in (State,).

The above scenario was implemented in a Solidity smart contract,
with each element being represented by a bytes32 variable. Executing the
smart contract yields a cost of 43,990 gas units for every pair of identical
elements compared.

It has to be noted that submitting individual elements in this fashion
means they are not verified, as typically channel participants sign the
entirety of the state and that does not apply to its individual contents.
This suggests that the actual cost of the procedure would be even higher
as the validation of the submitted elements would have to be
incorporated.

In the scenario where the proposed scheme is utilised and the ele-
ments are stored in an accumulator, the necessary information to provide
to the contract, as described in Section 4.2.3, would be:
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e The cryptographic accumulator of the previous state A,
e The cryptographic accumulator of the proposed state A;
e The element that expresses the change between the accumulators e

An additional cost would be the process the contract has to execute to
verify the proof against the provided accumulators. Therefore, the total
fees can be expressed as:

C' = gasfees(A,) + gasfees(A,) + gasfees(e) + gasfees(verify) 12)

While the cost accumulates multiple different gas fee values, it has to
be noted that all such values are independent of the size of the set, and
hence, the gas fees remain constant as the number of elements increases.
It is obvious that given the fact that boundless lists have to be supported,
the proposed scheme is more efficient than any traditional approach
where the cost is strongly dependent on the size of the list.

To verify this expectation, a simulation of a dispute was realised for
the proposed design based on the smart contract implementation pro-
vided by Ref. [39]. The cost of verifying the transition from the accu-
mulator representing (Statey,) to the one representing (State, 1) comes up
to 484,998 gas units. This process has to be performed only once per
dispute, and the cost remains static, regardless of the number of elements
contained within the accumulators.

It becomes obvious through Fig. 14 that upon handling sets that
surpass 11 elements, the proposed scheme is less expensive, and the
difference in cost escalates as the size of the set grows.

8. Conclusions

Public blockchain networks are heavily criticized for low transaction
rates, and one of the approaches to indirectly improve their capacity is
state channels. In the present paper, a novel state channel design that can
efficiently accommodate unbounded sets of elements in the state of the
channels has been proposed. The design uses RSA accumulators to store
commitments regarding elements’ membership in specific sets.

We have refined the existing state channel approach to make all
different operations in a state channel compatible with the modified state
structure. We have discussed the security of the proposed design and
elaborated on how this could be applied to a specific use case related to
an asset exchange state channel.

We recognise the limitations of the design in its current form as
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follows:

e Due to the use of the RSA accumulator, some level of trust is required
since a participant will be responsible for picking an RSA modulus N
= pq. However, this can be avoided through the use of class groups of
imaginary quadratic order [31] for the determination of N, and this
does not affect the design’s other functionalities.

e We have identified a type of scenario, described in Section 4.3, where

the use of non-membership proofs cannot be avoided. In such cases, it

falls upon the developers of the application to decide if it is more
beneficial to use our design with non-membership proofs or to store
their data in the traditional manner.

The usefulness of our design applies to state channels where the form

of state includes dynamic sets of unordered elements and is propor-

tional to the size of the set, as described in Section 7.

While the main reason behind the fact that public blockchain plat-
forms are inefficient is their low transaction processing rate, it is also
evident that we tend to use such platforms in a way that is not sufficiently
optimised. The main concept of deploying an application on a public
blockchain system is that the integrity of each interaction of the users
with the application is guaranteed. State channels’ early research pro-
posals have indicated that it is feasible to enjoy the same guarantees with
a substantial decrease in the required on-chain activity by the users. The
application is mainly run upon off-chain interaction between users. At
any point in the lifetime of the application, users are in possession of the
required cryptographic commitments that will enable them to go on-
chain and achieve the same results as they would do if the application
was completely run on-chain.

Through the present paper, we have taken a step forward with regard
to state channels and proposed a scheme that can support states of large
scale through a representation of set membership through RSA accu-
mulators. It has been shown that for applications that adhere to the
specific need (unbounded sets of elements), our approach can provide an
efficient alternative that scales up well with regards to the number of
elements in the set, as all on-chain and off-chain activity of the channel is
irrelevant to that number.

We have provided a security analysis of the proposed protocol, but it
would be beneficial to attempt to define the protocol’s security goals
formally through the use of the Universal Composability Framework [40,
41]. This will enable a thorough analysis of the proposed approach and
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will better highlight its advantages and weaknesses. As part of future
work for the present paper, we aim at providing such an analysis for the
proposed protocol or for any revised version we come up with in a future
paper.
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