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Abstract

Emotions have a large impact on our daily lives. Understanding and being able to control

our emotions can lead to improved self-awareness, empathy, and quality of life. Con-

ventional approaches to emotion recognition involve asking individuals to describe their

emotional experience or use observer ratings, making them subjective and prone to biases.

To overcome some of these issues, researchers have turned to more objective approaches,

including electroencephalography (EEG) and machine learning algorithms.

This thesis explores how different emotional states are reflected in EEG signals and the

possibilities for automatic decoding and classification of human emotions in terms of

valence and arousal. The experiment involves EEG data collected from 20 subjects with

two 8-channel Unicorn systems. Each subject watched 52 non-audio movie clips of ap-

proximately 40 seconds each and rated the elicited emotions according to the 9-point self-

assessment manikin (SAM) scale. The data was then filtered and preprocessed before nu-

merical features from the time domain, i.e. Hjorth parameters, and the frequency domain,

i.e. power spectral density (PSD) and differential entropy (DE), were extracted from the

signals. This work also explores features with nonlinear characteristics, including fractal

dimension. The mentioned features and combinations of them were extracted from epochs

of four different sizes, i.e. 5, 10, 20, and 40 seconds. Some were also extracted from five

frequency bands of δ, θ, α, β and γ. The extracted features were fed into the classifiers

support vector machine (SVM), K-nearest neighbour (KNN) and multilayer perceptron

(MLP), and evaluated on the newly-created dataset.

Further analysis is needed to make a finite conclusion on which classification method and

feature combination had the best performance. Based on the experimental results, no final

conclusive observations were made. Subject variability, unbalanced classes in the dataset,

and in between valence and arousal discrimination are factors that might have prevented

this. However, most of the results were above 50%, i.e. better than random guessing.

In addition, most of the best-performing models had a performance somewhere between

59%-73%, depending on whether the used metric is average accuracy or average F1-score.

High/low arousal classification outperformed high/low valence classification on average.

The performance for all models is subject-independent, i.e. the models are trained and

predicted across subjects.

The work is also compared with the previously written specialization project on emotion

decoding on SEED dataset, other publicly available datasets and state-of-the-art meth-

ods. The accuracies and F1-scores from the specialization project and the state-of-the-art

methods outperformed models evaluated on the newly-created dataset. The models used

in this work have been selected based on the specialization project, which might lead to

some overfitting. Further, most of the state-of-the-art methods are complex, involving deep

learning methods and complicated architecture. However, the performance, compared to

other EEG-based emotion datasets (i.e. DEAP, DREAMER, AMIGOS, IDEA), is con-

sistent with the average accuracy obtained by the others. Some of the proposed models

outperform those datasets that reported F1-score with more than 13 percentage points.
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Sammendrag

Følelser er en viktig del av livet og har en stor innvirkning i vårt daglige liv. Det å forstå og

kunne kontrollere følelser kan for noen føre til bedre selvbevissthet, empati og livskvalitet.

Tradisjonelle metoder for identifisering av følelser innebærer blant annet å be enkeltper-

soner beskrive sine egne følelser eller bruke observeringsmetoder. Dette er metoder som

er subjektive og utsatt for bias. For å løse noen av disse problemene har forskere begynt

å utforske alternative tilnærminger, som blant annet involverer elektroencefalografi (EEG)

og maskinlæring.

Denne masteroppgaven ser på hvordan emosjonelle tilstander reflekteres i EEG-signaler,

samt mulighetene for automatisk gjenkjenning og klassifisering av følelser. I eksperi-

mentet ble EEG-data fra 20 deltagere samlet inn ved hjelp av to Unicorn systemer med

åtte elektroder hver. Hver deltager fikk se 52 filmklipp uten lyd på 40 sekunder hver, før

de vurderte de fremkalte følelsene i henhold til 9-punkt SAM-skalaen. SAM er en metode

for å måle graden av glede, opphisselse og dominans. EEG-dataen ble deretter filtrert og

preprosessert før signalets features fra tidsdomenet og frekvensdomenet ble hentet ut. Op-

pgaven utforsker også features med ikke-lineære egenskaper. Features som brukes i denne

oppgaven er differential entropy (DE), effektspektral tetthet (PSD), Hjorth parametre og

fraktale dimensjoner hentet ut fra epoker av fire ulike størrelser på 5, 10, 20 og 40 sekun-

der. Noen features er også hentet ut fra de fem velkjente frekvensområdene δ, θ, α, β and

γ. Features ble deretter matet inn i klassifiseringsmetodene støttevektormaskin (SVM),

k-nærmeste naboer (KNN) og flerlags perceptron (MLP) for å evaluere dem på det nye

datasettet.

Mer forskning er nødvendig for å komme til en endelig konklusjon om hvilke modeller

som yter best basert på resultatene. Variasjon mellom deltagere, ubalansert datasett og

vanskeligheter med å skille mellom glede og opphisselse er faktorer som kan ha forhindret

dette. Imidlertid var de fleste resultatene over 50%, altså bedre enn tilfeldig gjetting.

Litt avhengig av om den rapporterte ytelsesmetrikken er gjennomsnittlig nøyaktighet eller

gjennomsnittlig F1-poengsum, haddde de beste modellene en ytelse mellom 59%-73%.

Modellene er bedre til å predikere høy/lav opphisselse enn høy/lav glede. Ytelsen for alle

modellene er uavhengig av deltagerne, altså er modellene er trent og predikert på tvers av

forsøkspersoner.

Arbeidet blir også sammenlignet med prosjektoppgaven, andre tilgjengelige EEG-datasett

(dvs. DEAP, DREAMER, AMIGOS, IDEA) og metoder fra eksisterende litteratur. Pros-

jektoppgaven og metoder fra den eksisterende litteraturen presterte bedre enn modellene

som ble evaluert på det nye datasettet. Modellene som er brukt i dette arbeidet, er valgt

basert på arbeidet gjort i prosjektoppgaven, og kan dermed lide av overtilpasning. Des-

suten involverer de fleste metodene fra eksisterende litteratur dyp læring og komplisert

arkitektur. Ytelsen, sammenlignet med andre EEG-baserte datasett, er i tråd med gjen-

nomsnittlig nøyaktighet oppnådd av de andre. Noen av F1-poengsummene til de beste

modellene presterer mer enn 13 prosentpoeng bedre enn F1-poengsummen til enkelte data-

settene.
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1
Introduction

Emotions have a vital impact on our daily lives as they affect how we handle different

situations in different ways, our communication abilities, physical health, mental state,

etc. In other words, it is essential in non-verbal communication due to its relation to hu-

man behaviour and cognition. It is common to split emotions into two main categories:

non-physiological and physiological signals. Physiological signals are mainly based on a

person’s background and are considered subjective. Examples of non-physiological sig-

nals are heart rate, neuro signals, skin impedance, and brain signals. Many people find it

challenging to grasp and express their emotions accurately with facial expressions, body

language or speech (Suhaimi et al., 2020). This can be a challenge for the fields where

correct emotion recognition is essential, including psychology, artificial intelligence and

medical treatment. The physiological signals tend to be disguised more easily. To get more

reliable results, non-physiological signals can be used. They allow for direct assessment

of the “inner” states and tend to be more objective to a certain extent (Zheng et al., 2019).

1.1 Background and Motivation

Emotion research is an interdisciplinary field that encloses research within psychology,

computer science, control theory, neuroscience, etc. The scientific knowledge of human

emotions has been greatly exceedingly investigated in psychology. What is less known is

electroencephalography-based emotion recognition (Suhaimi et al., 2020). With the new

research branch known as affective science, a more objective way of getting to know emo-

tions is developed. It has shown huge potential within both the medical and commercial

fields. According to the Gartner Hype Cycle report of 20221, emotional artificial intelli-

gence (AI) technology, including affective computing, is one of the emerging technologies

1https://www.gartner.com/document/4016927
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that is expected to make a transformative impact within the next decade. The literature re-

view conducted by Al-Nafjan et al. (2017) also shows an explosive interest in EEG-based

emotion detection and recognition.

Further, EEG-based emotion recognition is helpful in the diagnosis of depression, PTSD,

and other mental disorders (Liu et al., 2021). A person’s emotional responses when ex-

posed to different environments and stimuli, can be non-invasively extracted from small

electrodes on the scalp. In addition, it can bring a more satisfactory user interface and us-

ability regarding brain-computer interfaces (BCI) and human-machine interaction (HMI)

(Pathirana et al., 2018). This can promote effective communication among individuals and

human-to-machine information exchange. Another interesting aspect is the understanding

of how human emotions work. There is no simple mapping between emotions and spe-

cific brain structures. Different emotions can activate similar locations in the human brain.

However, a single emotion can also activate several brain structures.

1.2 Problem Description

This work aims at creating an emotion-induced dataset to contribute to the further develop-

ment of models to decode human emotions through EEG signal analysis. An investigation

of both the traditional machine learning techniques and the simpler deep learning tech-

niques of emotion recognition evaluated on SEED will also be evaluated on the newly

created EEG-based dataset.

Most current state-of-the-art methods are based on complex and computationally-heavy

deep learning architectures. Although they can output high-performance accuracy, their

computational configuration will not be practical and beneficial for the limited number of

classes. Simpler machine learning techniques would be preferable as they are more intu-

itive to implement and understand. According to Asadur Rahman et al. (2020), using too

complicated architectures to obtain high accuracy is like ”using cannon to kill a mosquito”.

The generalization of the less complex machine-learning techniques and the combinations

of feature extraction in the specialization project will be further investigated in this thesis.

The results obtained in this work will be compared to the results from the specialization

project on SEED (2015) and the already publicly available EEG-based emotion datasets:

AMIGOS (2021), DEAP (2012), DREAMER (2018), and IDEA (2022).

Figure 1.1 shows the framework for emotion classification. Yang et al. (2020) suggests a

workflow is split into four phases, which will be followed in this work. Phase one focuses

on emotion elicitation and data collection, the second phase includes preprocessing and

filtering the obtained raw EEG signals, the third phase is feature extraction, and the final

phase is classification. The main goal is for the models to decode and recognize emotions

in EEG signals.
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Figure 1.1: The framework for emotion classification

1.2.1 Main Objectives

The following main objectives have been formulated and will be investigated throughout

this thesis:

1. Experiment design and data collection for an EEG-based emotion dataset with non-

audio movie clips as stimuli

2. Study of existing feature extractors and different combinations of them:

• Hjorth parameters: Mobility (HM) and complexity (HC)

• Fractal dimensions: Higuchi (HFD) and Katz (KFD)

• Power spectral density (PSD)

• Differential entropy (DE)

3. Classify human emotions with traditional machine learning and simple deep learn-

ing techniques:

• Support vector machine (SVM)

• K-nearest neighbour (KNN)

• Multilayer perceptron (MLP)

1.3 Related Works

In literature, the interest in EEG for automatic emotion decoding and recognition has in-

creased. However, it is a challenging field. One of the challenging parts of emotion recog-

nition is the bottleneck issue with the lack of enough available training data (Yang et al.,

2020). Other challenges include different responses towards the same stimuli as the par-

ticipants might elicit incorrect emotions. Other factors like the participant’s background,

workload, personal preferences, or sociability might affect the elicited emotions as well

(Zheng and Lu, 2015).
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1.3.1 Relevant Datasets

In recent years several publicly available datasets with stimuli media and emotional states

through different modalities have been explored, e.g. magnetoencephalogram (MEG),

electrocardiogram (ECG), heart rate (HR), and galvanic skin response (GSR). These let

the researchers gain more insight into emotions and EEG, in addition, to allowing them to

compare methods. A more strcutured summary can be found in Appendix B.

In 2012, Koelstra et al. presented the DEAP dataset. It consists of EEG data from 32

participants watching 40 one-minute excerpts of music videos eliciting different emotions.

For each video, the participants rated the videos regarding the levels of valence, arousal,

and dominance, inspired by Russell’s circumplex emotion model. In addition, their famili-

arity with the videos and their liking of them were also reported. The EEG signals were

recorded with 32 electrodes, placed according to the international 10-20 system, with a

sampling rate of 512 Hz. Further, the data were downsampled to 128Hz and a bandpass

frequency filter from 4− 45 Hz was applied before being segmented into 60-second trials.

From their results, valence showed a stronger correlation with EEG signals, while for the

EEG-based features, arousal achieved higher accuracy. Further details are presented by

Koelstra et al. (2012).

A similar dataset is DECAF (Abadi et al., 2015). However, it uses the MEG sensor to

acquire data from 30 participants. MEG is a non-invasive technology that captures the

magnetic activity of the brain, thus requiring little physical contact between the user and

the sensing coil. The stimuli used here are the same 40 one-minute music videos used in

DEAP, in addition to 36 extra movie clips. The MEG signals were downsampled to 300

Hz. The preprocessing also involved channel correction and filtering with lowpass and

highpass filters. Further details are presented by Abadi et al. (2015).

SEED dataset (Zheng and Lu, 2015) uses 15 four-minute movie clips as stimuli to elicit

discrete emotions, i.e. positive, negative, and neutral emotions. Fifteen healthy students

performed three different sessions each with an interval of about one week, which makes

45 trials in total. The EEG signals were collected with the 62-channel ESI NeuroScan

system with a sampling rate of 1000 Hz according to the international 10-20 system. These

signals were further downsampled to 200 Hz and preprocessed with a bandpass frequency

filter from 0− 50 Hz. Their investigation of critical frequency bands indicates that higher

frequency bands of EEG data are more related to emotion recognition. Further details are

presented by Zheng and Lu (2015).

Moving forward, AMIGOS dataset (Miranda-Correa et al., 2021) consists of data from

three modalities, namely EEG, ECG, and GSR. The EEG data from 40 participants watch-

ing videos were processed and collected with a sampling frequency of 128 Hz according

to the international 10-20 system. A bandpass frequency filter from 4− 45 Hz is also ap-

plied. They discovered that social context has an impact on valence and arousal expressed

by participants. Further details are presented by Miranda-Correa et al. (2021)

Katsigiannis and Ramzan (2018) created DREAMER containing recorded EEG and ECG

signals of 23 participants during affect elicitation with 18 different movie clips as stimuli.
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Emotions in terms of valence, arousal and dominance are evaluated after each stimulus.

The data were recorded at a sampling rate of 128 Hz with 14-channel EEG recordings

according to the international 10-20 system. For the filtering process, three separate band-

pass Hamming sinc linear phase FIR filters are applied and shifted by the filter’s group

delay. Further, they were preprocessed with Artefact Subspace Reconstruction (ASR) and

Common Average Reference (CAR). Further details are presented by Katsigiannis and

Ramzan (2018).

One of the newest contributions to the emotion datasets is IDEA (Joshi and Ghongade,

2022). The dataset is generated for positive and negative emotions with audio-video clips

and mental mathematical problems as stimuli. The emotions are further divided into four

subclasses. Positive emotions correspond to cheerfulness, pleased, relaxation and zest.

While anger, distress, restlessness, and sadness are the subclasses known for negative

emotions. EEG data is collected from 14 participants using 24 electrodes for EEG record-

ing at a sampling rate of 256 Hz. These data were further notch filtered to remove power

line interference and preprocessed with a sixth-order Butterworth pass-band filter in the

range of 4 − 44 Hz. Based on their work, selecting fewer channels might achieve higher

accuracy as reduces excessive information and computational costs. Further details are

presented by Joshi and Ghongade (2022).

Not all datasets use auditory content as stimuli, and EMDB (Carvalho et al., 2012) is

one example. They used 52 non-auditory movie clips to evoke emotions from different

quadrants of affective space. The resulting categories are horror, erotic, social positive

interactions, social negative interactions, scenery, and object manipulation. The recorded

data are the heart rate (HR) and the skin conductance level (SCL) of 32 participants. Scores

for valence, arousal and dominance are assessed using the self-assessment manikin (SAM)

scale. Movie clips have been proven to be more effective in eliciting emotions for a longer

time than images. Further details are presented by Carvalho et al. (2012).

1.3.2 Relevant Feature Extraction and Classification Methods

Various methodologies within feature extraction and classification methods for EEG sig-

nals have been explored widely lately. Some related works associated with feature extrac-

tion and emotion classification based on the EEG are presented here.

Different approaches for feature extractions have been proposed by researchers. These

features are mainly in the time domain, and frequency domain, or have nonlinear charac-

teristics. They are often extracted from EEG signals decomposed into frequency bands.

The number of sub-bands varies between four (θ theta, α alpha, β beta, γ gamma) and five

(δ delta, θ theta, α alpha, β beta, γ gamma). Commonly used features in the literature from

the frequency domain are PSD and DE. It is proved that the PSD of EEG signals is correl-

ated with human emotions (Koelstra et al., 2012; Miranda-Correa et al., 2021). In contrast

to PSD, DE is known for its ability to differentiate between low and high-frequency energy

(Duan et al., 2013; Zheng et al., 2019). In addition, other features, such as the Hjorth para-

meters (Joshi and Ghongade, 2022; Topic and Russo, 2021; Yuvaraj et al., 2023) from the
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time domain and nonlinear features like fractal dimensions (Asadur Rahman et al., 2020;

Topic and Russo, 2021; Yuvaraj et al., 2023), are also used in emotion recognitions.

For recognizing human emotions, various classification methods have been used. Deep

learning-based methods have recently been developed into one of the most popular meth-

ods in the research field. Zheng and Lu (2015) introduced a method based on a deep belief

network (DBN) to investigate the critical frequency bands of EEG signals. The convolu-

tional neural network (CNN) has shown its potential in the generalization of classifying

unseen subjects (Keelawat et al., 2021). In the work of Liu et al. (2020), a network com-

bining the CNN, the sparse autoencoder (SAE), and the deep neural network (DNN) is

proposed. The network is tested on the DEAP and SEED datasets and is shown as an

efficient method with a faster convergence than the conventional CNN. Xiao et al. (2022)

proposed a 4D-aNN architecture which captures discriminative patterns in EEG signals

while fusing information on different domains. Another 4D-structured architecture, 4D-

CRNN, is proposed by Shen et al. (2020). This method is capable of capturing frequency,

spatial and temporal information from EEG signals.

However, in most of the proposed networks, the results are not compared to traditional

machine learning techniques such as SVM and KNN. When working with deep learning

methods a large amount of data is needed, which is not realistic when collecting EEG data

(Moctezuma et al., 2022). Collecting EEG data is time-consuming, and doing so for many

hours is demanding and unrealistic for participants. Kumar and Molinas (2022) explored

simpler architectures with a focus on models based on CNN and MLP. Their research

showed that simpler architecture can achieve performance comparable to the more com-

plex deep learning architectures. In addition, Zheng and Lu (2015) and Asadur Rahman

et al. (2020) have shown that common machine learning techniques such as SVM and

KNN can get quite good performance with the correct feature combination.

1.3.3 Specialization Project

The specialization project2 serves as a pre-project for the master’s thesis. In the specializ-

ation project, different feature extraction techniques and classification methods were eval-

uated on the publicly available SEED dataset3. The dataset consists of recordings of 15

participants watching movie clips labelled as negative, positive and neutral emotions. The

labels correspond to the horizontal axis (valence) of the valence-arousal emotion model.

The work explores three main types of classifiers, SVM, KNN and MLPs, with features,

like HM, HC, PSD, KFD, HFD, and combinations of them, as input. The mean accuracies

are the average performance accuracies across all 45 trials on 15 participants. In addition,

the data samples were split into different subsets. For SVM and KNN, the data samples

were split into a training set and a testing set of 80% and 20%. Data samples used in

MLPs were split into a validation set besides the ones mentioned earlier. The ratio is 60%,

20% and 20% for the training, validation, and testing sets, respectively. In addition, a

2http://dx.doi.org/10.13140/RG.2.2.33244.67205
3https://bcmi.sjtu.edu.cn/home/seed/seed.html
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5-fold CV and a 10-fold CV are used to verify the models. From the obtained results,

it can be observed that HM and HC, extracted channel-wise from the epochs, achieve a

good performance compared to other existing models on the same dataset. In addition, the

performances of SVM and MLP-v2 are superior to KNN, with accuracies of 83.865% and

86.892%, respectively. In this work, the features and classifiers will be further evaluated

and analyzed on a new dataset. The best-performing MLP, i.e. MLP-v2, will hereafter be

referred to as MLP.

1.4 Outline Structure

This thesis is arranged as follows: An introduction of EEG-based emotion recognition and

an overview of related works are presented in Chapter 1. Chapter 2 deals with relevant

theory related to EEG. The experiment protocol and data collection methods are described

detailed in Chapter 3, followed by descriptions of the different methodologies used to

obtain the experimental results in Chapter 4. The results are presented in Chapter 5. And

a discussion of the results is done in Chapter 6. The thesis is concluded in Chapter 7

followed by appendices.
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2
Theoretical Background

This chapter1 provides the reader with some relevant background knowledge considered
usefully related to emotion recognition based on EEG. This includes information about
emotions, EEG signals and their features and concepts, and common classification meth-
ods.

2.1 The Human Brain

The human brain is a part of the central nervous system and is responsible for controlling

and coordinating various body functions, as well as cognition activities, e.g. memories,

thoughts, perceptions, and emotions (Chen and Mehmood, 2020). The brain is split into

three structures: the brain nucleus, the brain margin, and the cerebral cortex. Furthermore,

the cerebral cortex, which is the outermost layer of the brain, can further be divided into

four regions: the frontal lobe, parietal lobe, occipital lobe, and temporal lobe (Figure 2.1).

The frontal lobe controls voluntary movements and is involved in various cognitive func-

tions, including emotional expression and thinking. The parietal lobe is primarily respons-

ible for processing sensory information, e.g. temperature, pain and touch pressure. The

occipital lobe is located in the back of the skull and is responsible for receiving and pro-

cessing visual information from the eyes. The temporal lobe is dedicated to auditory and

memory-related functions (Liu et al., 2021). The lobes work together, along with other

brain structures, to control people’s daily behaviour and facilitate emotional experiences.

Emotion-related activity in the brain can also be detected through specific brainwave pat-

terns. These patterns can be linked to different emotional states (Knyazev, 2013). In

addition, emotions are known to be associated with the activation of brain regions.

1This chapter is an updated version of the theoretical background chapter presented in the author’s specializ-

ation project
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Figure 2.1: The regions of the cerebral cortex, including the frontal lobe, parietal lobe, temporal

lobe, and occipital lobe (Liu et al., 2021)

2.1.1 Brain Frequency Bands

Brain activity is a response to stimuli in the central nervous system, which can be repres-

ented in different ways, where the oldest and most popular is its characteristic in frequency

bands. The bands describe the repetitive waveforms of similar shape and duration (Sanei

and Chambers, 2007). In general, five main sub-bands can be detected from low to high

frequencies as follows: δ delta, θ theta, α alpha, β beta and γ gamma. Table 2.1 presents

the associated mental state with the corresponding frequency bands and ranges. The de-

gree of awareness increases with the increase of frequency range.

Table 2.1: An overview of the brain rhythms and their respective frequency range (Sanei and Cham-

bers, 2007)

Brain rhythm Frequency range [Hz] Meaning
Delta δ 0.5− 4 Deep sleep

Theta θ 4− 7.5 Drowsiness

Alpha α 8− 13 Relaxed awareness

Beta β 14− 26 Active thinking

Gamma γ > 30 Deep focus
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2.2 Electroencephalogram

Electroencephalogram (EEG) was discovered by Hans Berger (1873 - 1941) almost a cen-

tury ago and expresses indirectly the electrical activity of the brain (Schomer and Lopes da

Silva, 2017). The activity is recordable by electrodes if the active neurons inside the

brain can generate enough potential. Raw EEG signals are considered nonlinear and non-

stationary by nature due to the different properties of the head layers.

To acquire EEG signals, a non-invasive, lightweight device is being used. Some of the

advantages of using an EEG device are the relatively low cost and it can easily be used

without complex lab setups. Compared to other more space-consuming and complex meth-

ods, such as magnetic resonance imaging (MRI) and computed tomography (CT), EEG

devices are portable, relatively cheap and less space- and time-consuming (Stancin et al.,

2021). However, a limitation of EEG measurement is the low spatial resolution which

makes it hard to extract meaningful information just by observation. Furthermore, it is

easily exposed to noise and artefacts. They are often caused by the power source, muscle

movements, eye blinks, heart rate, and the surrounding environment (Sanei and Chambers,

2007).

2.2.1 Electrode Placement

To record the EEG signals, electrodes placed on the head are used. Each electrode repres-

ents a channel. These can be placed in numerous ways, depending on the area of interest.

However, the most common approach is placing them according to the international 10-20

system proposed by the International Federation of Clinical Neurophysiology (Klem et al.,

1999). The numbers refer to the percentage of distances between neighbouring electrodes

of the total front-back or right-left distance of the brain. An extension of the 10-20 system,

known as the international 10-10 system, also exists (Chatrian et al., 1985; Oostenveld and

Praamstra, 2001). This system has a higher density of electrodes which makes it easier

to measure the brain signal in a specific region. The electrode placement used in this

experiment is illustrated in Figure 2.2.
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Figure 2.2: Electrode placement and labels in the international 10-20 and 10-10 systems. Black dots

indicate the original 10-20 system, grey dots indicate additional positions introduced in the 10-10

system (Oostenveld and Praamstra, 2001)

2.3 Emotion Model

In the field of psychology, human emotions have been vastly researched. Emotions are

typically pretty subjective and are often associated with the personality, mood, and desire

of a person (Liu et al., 2021). With an emotion model, the different emotions are somehow

categorized, and a more objective insight is given into emotions. The emotion models

include discrete models and dimensional models.

The discrete model suggests that emotions are composed of basic emotions and that all

emotions can be formed through a combination of one or more of these. The most known

of these models is the Six Basic Emotions presented by Ekman (1992) consisting of the

emotions: anger, disgust, fear, joy, sadness, and surprise, There is no agreement about the

precise number of basic emotions. Plutchik (2001), for example, proposed eight bipolar

emotions as the basics, and they are as follows: joy, sorrow, anger, fear, acceptance, dis-

gust, surprise, and expectancy. He also proposed a dimensional description of the basic

emotions with the emotion wheel. The dimensional model views emotions as a set of di-

mensions varying independently. Russell (1980) proposed that emotions can be represen-

ted as a two-dimensional coordinate system with axes representing the degree of valence

and arousal (Figure 2.3). The horizontal axis (valence) represents positive and negative

12



2 Theoretical Background 2.4 Feature Extraction

stimuli, i.e. misery and pleasure. While the vertical axis (arousal) describes the level of in-

tensity a stimulus gives with a range from uninterested and sleepy to alarmed and excited.

A three-dimensional emotion model with a dominance dimension, in addition to valence

and arousal, also exists (Koelstra et al., 2012). The dominance dimension ranges from sub-

missive to empowered. In the dimensional emotion models, emotions can be represented

by different coordinate positions.

Figure 2.3: Two-dimensional emotion model of valence and arousal (Russell, 1980)

2.4 Feature Extraction

The main goal of feature extraction is to separate and transform relevant parts of a signal

from irrelevant components and express them in a compact or meaningful form (Liu et al.,

2021). This process can result in improvements in accuracy and reduce overfitting. It

might also increase the understanding of a model due to the decrease in the complexity of

the signals. Features can be extracted from different domains. Typical features extracted

from EEG signals are from the time domain and the frequency domain, i.e. mean, standard

deviation, Hjorth parameters, and PSD (Stancin et al., 2021). In addition, there are features

with nonlinear characteristics such as fractal dimension.
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2.5 Machine Learning

Machine learning (ML) is a method that can extract patterns from raw data and increase

its knowledge (Goodfellow et al., 2016). It uses training data and the theory of statistics to

build mathematical models and algorithms to enable us to handle complex tasks. Typical

tasks for ML models are classification and regression. In classification, the model is asked

to categorize where some input belongs to. In regression, however, a numerical value is

asked to be predicted based on the input data. These two tasks are quite similar except for

the output.

It is common to divide ML into three subcategories: supervised learning, unsupervised

learning, and reinforcement learning (Goodfellow et al., 2016). Supervised learning allows

the models to train and learn from labelled datasets, while for unsupervised learning the

objective is to find patterns or trends in unlabelled data. Reinforcement learning learns

through the trial and error method where the so-called best action gets some reward.

2.5.1 Deep Learning

Deep learning is a subset of ML. It consists of neural networks with more than two hidden

layers which abstract different features (Sreeshakthy et al., 2016). The networks imitate

the learning process and the intelligent behaviour of the human brain. Moreover, the num-

ber of layers and the ability to do complex things are correlated. This allows the computer

to build complex models out of simpler ones. One downside of deep learning is that it

requires large amounts of data and is quite computationally expensive to run, depending

on the model size.
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3
Experiment Design and Data

Collection

In this chapter, the experimental setup and methods used are described. Some information
about the experimental protocol, including the selection of the recording system, stimuli
and channels, is mentioned here. A thorough description of the SAM scale and software
used are also provided.

3.1 Materials and Methods

Before the experiment, each participant signed a consent form (Appendix C) and got in-

formation about the upcoming procedure. They were also warned about the potentially

shocking scenes from some movie clips and were reminded that they were free to discon-

tinue participation at any time. The experiments were performed in a quiet environment

with controlled illumination during the daytime. At least one experimenter was present

during the experiments in case of questions.

There are four main steps in each experiment, with a total of 52 trials:

1. Introduction to the experiment

2. General instructions on how to rate the questionnaire

3. SAM instructions (Figure 3.3)

4. Fifty-two trials (Figure 3.7)
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The movie clips were presented on a Dell UltraSharp 38 Curved Monitor (3840 x 1600).

Participants were instructed to sit comfortably and limit their movements while watching

movie clips to avoid the production of unrelated artefacts. EEG signals were recorded con-

tinuously with a sampling rate of 250 Hz. Figure 3.1 showcase the experiment scene. To

protect the privacy and confidentiality of participants, one of the experimenters is present

in the photo.

Figure 3.1: A photo of the experiment scene during recordings

3.1.1 EEG Recording System Selection

Deciding whether to use dry or wet electrodes for data acquisition can be challenging.

A recent study concluded that wet electrodes had a slightly improved signal quality (Kam

et al., 2019). Hence, the plan was to use the Explore+ device from Mentalab1. It has 32 flat

electrodes placed according to the international 10-20 system. Conductivity gel is applied

on the electrodes to increase conductivity between the electrodes and the skin. However,

due to delayed delivery and connectivity issues, two devices from Unicorn2 were used to

collect the EEG data instead. Each Unicorn device captures EEG signals with eight dry

electrodes of conductive rubber. The electrodes were put on the g.tec’s g.GAMMAcap3

which is based on the 10-10 system (Figure 3.2). An overview of the used EEG channel

names and which device they belong to is given in Table 3.1.

1https://mentalab.com/
2https://www.unicorn-bi.com/
3https://www.gtec.at/
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Figure 3.2: The Unicorn EEG headset (left) and the g.tec’s g.GAMMAcap

Table 3.1: Overview of EEG channel names according to the international 10-10 system

Device number Channel number Channel name

68

1 FP1

2 FPz

3 F5

5 FC1

5 CP1

6 P1

7 PO3

8 PO5

69

1 FP2

2 F8

3 F4

5 FC6

5 FC4

6 CP6

7 P8

8 Cz

3.1.2 Self-Assessment Manikin

Self-assessment manikin (SAM) is used for rating the elicited emotions after each clip.

It is an inexpensive, pictorial assessment technique to facilitate measurements of valence,

arousal and dominance (Bradley and Lang, 1994). The SAM scale description is depicted

in Figure 3.3. The valence dimension is represented by five figures ranging from a frown-

ing, unhappy figure to a smiling, happy figure. For the arousal dimension, the scale ranges

from a relaxed, unaffected figure to a passionate, wide-eyed figure. For the dominance

dimension, the figure ranges from submissiveness and feelings of control to dominance

and power. All dimensions are accompanied by a score between 1 to 9, which allows the
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participant to rate the elicited emotions more finely.

Figure 3.3: Self-assessment manikin (SAM) used to rate dimensions of valence, arousal, and dom-

inance (Bradley and Lang, 1994)

Emotions are examined in terms of two dimensions in this thesis: valence and arousal.

The two-dimensional valence-arousal emotion model can be split into four classes, i.e.

low valence (LV), high valence (HV), low arousal (LA), and high arousal (HA). On the

9-point SAM scale, the threshold is placed in the middle, as reported by Koelstra et al.

(2012). Following Betella and Verschure (2016), if a participant’s rating on valence or

arousal is greater than or equal to the value of 4.8 the rating is considered as HV or HA.

However, if the rating is less than 4.8, the rating is considered LV or LA. This may lead to

unbalanced classes, which are taken into account by reporting the average F1-score, along

with the average accuracy. The distribution of HV/LV ratings and HA/LA ratings from the

subjects are shown in Figure 3.4.
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Figure 3.4: Distribution of high/low valence/arousal rated by 19 participants

3.2 Emotion Elicitation

The non-auditory stimuli selection is designed at Tsukuba University Human Sleep Lab4

by PhD candidate Felix Ipanaque and its supervision team. Fifty-two movie clips of around

40 seconds each are selected to elicit emotions. Figure 3.5 shows examples of movie clips

used in the experiment. To target the emotions of all four endpoints of the valence-arousal

space, clips from six categories were present: horror, erotic, positive social content, neg-

ative social content, scenery and object manipulation (Carvalho et al., 2012). In the horror

category, movie clips of life-threatening and gruesome situations are shown. The erotic

category includes clips with couples engaged in sexual intercourse. The social positive

and social negative categories show clips of happy social interactions and sad or angry

interactions without horrifying situations, respectively. The scenery category shows clips

of landscapes, e.g. waterfalls, mountains, the aurora borealis, etc. And the object ma-

nipulation category includes two clips showing a hand moving white objects around on a

table.

4https://www.u.tsukuba.ac.jp/ abe.takashi.gp/laboratory.html
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(a) Horror (b) Erotic

(c) Social positive (d) Social negative

(e) Scenery (f) Object manipulation

Figure 3.5: Screenshot of movie clip samples from all six categories: (a) horror, (b) erotic, (c)

positive social content, (d) negative social content, (e) scenery, and (f) object manipulation

3.3 Channel Selection

The EEG electrodes were placed according to the international 10-10 system with refer-

ence electrodes on both ear lobes (Figure 3.6). The positions of the electrodes on the scalp

are FP1, FPz, FP2, F5, F4, F8, FC1, FC4, FC6, CP1, CPz, CP6, P1, P8, PO5, and PO3

inspired by Pane et al. (2018)’s channel selection for 15 electrodes. Pane et al. (2018) used

stepwise discriminant analysis (SDA) with Wilks lambda as the selection criteria to find

the optimal channels. Furthermore, their research confirms that higher frequency bands
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such as α, β, and γ are more related to emotion recognition, which fits well with the

results from Zheng and Lu (2015). EEG signals are obtained from 16 electrodes (eight

electrodes in each system).

Figure 3.6: The selected electrodes placed according to the international 10-10 system

3.4 Participants

Twenty university students with general good health participated in the experiments. Ac-

cording to Suhaimi et al. (2020) such studies should have at least ten participants to have

reliable and meaningful results statistically. Both biological genders (ten males and ten

females) were represented with an age of 23.80± 0.87 years. All participants are students

or recent graduates from the Norwegian University of Science and Technology (NTNU).

Participants with known neurological diseases and heavy use of medicine or drugs are

excluded from the experiment, to make the results generalizable to the larger population.

All participants also had to give their informed written consent and be above 18 years

before being included in the experiments. In the consent form, the participants were in-

formed about the procedure and got an introduction to SAM. They received a gift card as

a small compensation for their time. Only data from 19 participants (ten males and nine

females) are used for emotion recognition due to some missing recordings from one of the

participants.
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3.5 Experiment Protocol

One session lasts about 75 minutes, where approximately 35 of these minutes are for the

collection of emotion-elicited EEG signals using the Unicorn system. A detailed protocol

is shown in Figure 3.7. There are a total of 52 trials in one experiment. The subject

participated only in one experiment each. Before each movie clip, there is an 11-second

hint in the form of a fixation cross. The period with fixation cross can work as a baseline for

future studies. After each movie clip, participants are asked to perform a self-assessment

to rate their elicited emotions according to the SAM scale description. To weaken any

carry-over effects between movie clips, a rest of 15 seconds are followed before a new

trial. Synchronization markers are sent from the stimuli presenter to the EEG recorder to

mark the beginning and end of each fixation cross, in addition to the beginning and end of

each movie clip.

Figure 3.7: Protocol of the EEG experiment
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Methods

This chapter1 provides the reader with relevant methods considered usefully related to
EEG signals and emotions. The methods for preprocessing the raw EEG signals will be
introduced first, followed by details of feature extraction and classification methods.

4.1 Preprocessing Techniques

The human brain is a complex system. The signal’s characteristics change with time and

the influence of external stimuli. To improve the classification performances of emo-

tions and get closer to the true signals, the acquired EEG signals should be denoised and

filtered, since the EEG signals are known for being non-stationary, nonlinear and noisy

(Klonowski, 2009). Preprocessing aims to maximize the signal-to-noise ratio (SNR) to

get cleaner data.

4.1.1 Epoched Data

The raw EEG data are recorded continuously with synchronization markers to identify

timestamps for the start and end of each movie clip. Data that do not contain an emotional

state, e.g. breaks, fixation cross, SAM, etc., are cropped out. The data is then split into the

same-length epochs for each channel with the dimensions of (epoch x channel x segment

size). Different segment sizes of each epoch without overlapping are explored: 5 seconds,

10 seconds, 20 seconds, and 40 seconds with a sampling rate of 250 Hz.

1This chapter is an updated version of the materials and methods chapter presented in the author’s specializ-

ation project
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4.1.2 Filtering Raw EEG Signals

Typical noises found in EEG signals are background noises generated from the power lines

at 50 Hz (in Norway). This type of noise can be detected by the measurement system. The

power line noises in the EEG signals are suppressed with a notch filter at 50 Hz and 100

Hz. Following Zheng and Lu (2015), a bandpass filter between 0.3 Hz to 50 Hz is further

applied to reduce more noises and artefacts. Figure 4.1 shows the PSD of the obtained

EEG signal from participant 11 in different stages: the original signal, only the emotion-

elicited signal, and the filtered signal. The filtered signal is used for feature extraction and

classification.

Figure 4.1: The PSD of participant 11’s original signal (top), the PSD of only emotion-elicited EEG

data, and the PSD of the EEG signal after applying a notch filter and a bandpass filter
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4.1.3 Ocular Artefact Removal with ICA

Physiological noises and motion artefacts, such as ocular (eye) artefacts and muscle con-

tractions, can also be captured by the brain and thus contaminate the obtained EEG signals.

Based on a literature review on artefact removal from EEG signals conducted by Jiang et al.

(2019), blind source separation algorithms, especially Independent Components Analysis

(ICA), are shown to be the most popular techniques among researchers. One advantage of

ICA is the ability to decompose the EEG signal into different individual components.

The separation process makes it convenient for artefact identification and removal (Mennes

et al., 2010). It is quite simple to identify the ocular artefacts by visualizing each ICA

component with a topography map. They are most visible around the front of the head,

among the front electrodes above the eyes. In addition, the phase spectral density of the

components has a peak at the low-frequency end of the spectrum (Newman et al., 2021).

Figure 4.2 is an example showing common properties of an ocular artefact. In this thesis,

ICA is used to remove the ocular artefacts and preserve the brain activity of interest. The

correction is done separately for each subject to overcome individual differences between

them. The used method is Picada (Ablin et al., 2018) due to its fast convergence.

Figure 4.2: Properties of ocular artefacts in an ICA component. Clockwise from top left: topo-

graphy map, raster plot, epoch variance and phase density spectrum
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4.2 Feature Extraction Techniques

The feature extraction process can simplify the model and reduce overfitting (Liu et al.,

2021). Feature computation is calculated in two different ways: directly on each of the

epochs (channel-wise) and from signals decomposed with a five-order Butterworth band-

pass filter into the five frequency bands: δ, θ, α, β, and γ. Six different main methods for

feature extraction are proposed in this thesis, both from five sub-bands and channel-wise

(Table 4.1).

Table 4.1: Details of feature extraction methods

Feature extraction method Segment size Feature dimension
Channel-wise (CW) 40 seconds (52,16)

[DE, HM, HC, KFD, HFD] 20 seconds (104, 16)

10 seconds (208, 16)

5 seconds (416, 16)

Five sub-bands (SB) 40 seconds (52, 80)

[DE, HM, HC, KFD, HFD, PSD] 20 seconds (104, 80)

10 seconds (208, 80)

5 seconds (416, 80)

4.2.1 Differential Entropy

Differential entropy (DE) is an extension idea of Shannon entropy and is used to measure

the complexity of a continuous random variable. It has been recognized to be suitable for

emotional recognition (Duan et al., 2013; Shen et al., 2020). The calculation formula is

defined as

DE = h(X) = −
∫
X

f(x)log(f(x))dx
Gauss distribution

= y
1

2
log(2πeσ2), (4.1)

when X is the random variable and f(x) is the probability density function of X .

4.2.2 Fractal Dimension

Fractal dimension (FD) is estimated based on an underlying high degree of the geometric

structure of the signal (Stancin et al., 2021). Since EEG signals are nonlinear by nature,

FD can measure the signals’ complexity and irregularity. Two well-known approaches are

the Katz fractal dimension (KFD) and the Higuchi fractal dimension (HFD) (Yuvaraj et al.,

2023; Topic and Russo, 2021).
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Katz Fractal Dimension

KFD is based on the ratio of the total length of a curve and is used to estimate the FD of

a time series. It is calculated as the sum of the distances between two successive points,

normalized by the mean distance of successive points (Katz, 1988):

KFD =
log(L)

log(d)
=

log(N)

log(N) + log( d
L )

, (4.2)

where L denotes the curve length, d represents the distance between the two successive

points, and N is the number of time samples in the EEG epoch.

Higuchi Fractal Dimension

Higuchi’s method depends on the length of the irregular curve from a time series consisting

of a set of points. The curve’s length is calculated and averaged across samples. This

process is repeated for different scales and plotted in a graph. The best-fitted slope of

the graph is the HFD of the time series (Higuchi, 1988). For a finite set of N time series

samples X(N) = X(1), X(2), X(3), ..., X(N), a newly constructed time-series signal is

defined as

Xj
i = X(i), X(i+ j), ..., X

(
i+

[
N − i

j

]
· j
)
, (4.3)

where m = 1, 2, ..., j indicates the initial time and j is the interval time. HFD is then

defined as

HFD =
< L(j) >

log(j)
, Li(j) =

∑[N−i
j ]

k=1 |X(i+ kj)−X(i+ k − 1)| · (N − 1)

k · [N−i
j ]

(4.4)

where L(j) is the length of the curve.

4.2.3 Hjorth Parameters

Hjorth parameters are used for time-domain analysis and give an insight into statistical

properties of the EEG signal (Hjorth, 1970). These parameters are activity (HA), mobility

(HM) and complexity (HC), and are defined as follows:

activity = δ20 ; mobility =

√
δ21
δ20

; and complexity =

√
δ22/δ

2
1

δ21/δ
2
0

, (4.5)
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where δ20 is the variance of EEG signal (Xt), δ
2
1 is the first derivative of Xt and δ22 is the

second derivative of Xt. Activity corresponds to the variance of the signal, while mobility

and complexity are based on the variance of the derivatives of the signal (Stancin et al.,

2021). Only HM and HC will be used in this thesis as they are more commonly used (Joshi

and Ghongade, 2022; Topic and Russo, 2021).

4.2.4 Power Spectral Density

Power spectral density (PSD) shows the average energy distribution per unit of time over

different frequency bands. To estimate the PSD of signals, the original signal is turned into

a power spectrum that changes with frequency (Liu et al., 2021). The function is defined

as

P (ω) =
∑
k

= −∞∞r(k)e−jωk, (4.6)

where r(k) is autocorrelation function. In this thesis, the default frequency band values

from the Python library MNE-features2:

[δ, θ, α, β, γ] = [0.5, 4, 8, 13, 30, 50]

are used in the computation. In addition, the Welch method is used for estimation.

4.2.5 Combinatorial features

Combining different signal properties gives a new set of features, which can further im-

prove the model performance by feeding the classifiers more information. Qin et al. (2019)

attempts to combine correntropy spectral density (CSD) and PSD with promising results.

The results demonstrate that the combination outperforms CSD and PSD separately. Jacob

et al. (2021) showed that combining different features can reduce the weaknesses of indi-

vidual features while integrating the strength.

Features from the time domain, frequency domain, and also nonlinear features have been

combined and explored in this work. The feature combinations explored are as follows:

• HC and HM (channel-wise, only time-domain features)

• DE and PSD (sub-bands, only frequency-domain features)

• HFD and KFD (channel-wise, only nonlinear features)

• DE (sub-bands) and HM (channel-wise)

• All features: HC, HM, HFD, KFD (channel-wise) and DE, PSD (sub-bands)
2https://mne.tools/mne-features/index.html
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4.3 Classification Methods

The selected features are sent to classifiers to evaluate the classification performance. Pop-

ular machine learning classifiers are support vector machine (SVM) and K-nearest neigh-

bour (KNN). A relatively simple multilayer perceptron (MLP), proposed in the specializa-

tion project, is also used for emotion classification. The classifiers SVM, KNN, and MLP

from the project are used to test their generalization to new, unseen data. Table 4.2 sum-

marises the parameter details used in classifiers. All the models are subject-independent,

which means they are trained and tested across subjects.

Table 4.2: Details of parameters used in the different classifiers

Classfiers Parameter details
K = 5

KNN

Train: 80% — test: 20% OR 5-fold CV and 10-fold CV

Kernel: Radial basis function (RBF)

Decision function: One-vs-One (ovo)

SVM

Train: 80% — test: 20% OR 5-fold CV and 10-fold CV

Structure with two hidden layers (300 and 500 nodes)

Dropout rate: 0.2

Activation functions: ReLU and softmax

MLP

Train: 60% — test: 20% — validation: 20% OR 5-fold CV and 10-fold CV

4.3.1 K-Nearest Neighbour

K-nearest neighbour (KNN) is a supervised classifier (Figure 4.3). The prediction is made

by using a majority vote and some distance measurements between the given test sample

and k training samples (Sreeshakthy et al., 2016). The most frequently represented label

around the point is used to label a given data point. Following Zheng and Lu (2015) and

Asadur Rahman et al. (2020), K = 5 will be used in this thesis.

4.3.2 Support Vector Machine

The goal of a support vector machine (SVM) is to find an optimal hyperplane that maxim-

izes the separation between classes (Figure 4.4). The distance from the hyperplane to the

nearest data point on both sides should be maximized (Liu et al., 2021). It is a powerful

algorithm and is commonly used as a classifier for extracted features. Recent studies have
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shown that the radial basis function (RBF) is the best performer, especially when com-

pared to the other available kernel functions of SVM, e.g. linear, sigmoid, and polynomial

(Yao et al., 2021; Topic and Russo, 2021; Yuvaraj et al., 2023). Thus, the RBF kernel will

be used in this thesis.

Figure 4.3: An illustration of the K-nearest neighbour method (specialization project)

Figure 4.4: An illustration of the support vector machine method (specialization project)

4.3.3 Multilayer Perceptron

Multilayer perceptron (MLP) is the simplest version of DNN consisting of only a few

numbers layers (Figure 4.5). Generally, it has only an input layer, an output layer, and

one hidden layer in between. However, MLP may have more than one hidden layer (Yang

et al., 2018). It is widely used as a tool in various classification problems, including

emotion classification.
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For MLP, the best model of the MLP architectures from the author’s specialization project

is tested. MLP consists of two hidden layers with 500 and 300 nodes. A dropout regu-

larization of 0.2 is also applied. The activation function is rectified linear unit (ReLU),

and the output is fed into a softmax classifier for emotion recognition. The loss function

and the optimizer are set to the categorical cross-entropy loss and the Adam optimizer,

respectively. Inspired by Kumar and Molinas (2022), the number of layers and nodes are

selected based on the trial and experimentation method.

Figure 4.5: A demonstration of a basic multilayer perceptron (Sreeshakthy et al., 2016)

4.4 Evaluation Methods

To examine the robustness and stability of a model, it is important to evaluate how well it

recognizes emotions in terms of LV/HV and LA/HA. All classification methods are evalu-

ated by the same metrics, namely accuracy and F1-score, in addition to standard deviation

and K-fold cross-validation (CV). For a binary classification problem, these metrics eval-

uate the models based on true positives (TP), true negatives (TN), false positives (FP), and

false negatives (FN), which are visually represented using a confusion matrix (Table 4.3).

A confusion matrix summarizes how many predictions are correct and incorrect for each

class in a matrix form (Sokolova et al., 2006). It can help in understanding the model’s

behaviour and trade-offs between evaluated metrics. In this work, negative classes corres-

pond to LV and LA, whereas positive classes correspond to HV and HA.

Table 4.3: Confusion matrix for binary classification. Green and pink depicts instances predicted as

negative (TN+FN) and positive (TP+FP), respectively

Predicted negative Predicted positive
Actual negative True negative (TN) False positive (FP)

Actual positive False negative (FN) True positive (TP)
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4.4.1 Accuracy

Accuracy is one of the most used empirical measures and evaluates the overall correctness

of a machine learning model. It provides a general overview of how well the model is

performing. However, it does not provide information about the distribution of correct

labels across classes (Sokolova et al., 2006). Mathematically, accuracy is calculated as

Accuracy =
Number of correct predictions

Total number of predictions
=

TP + TN

TP + TN + FP + FN
(4.7)

4.4.2 F1-Score

The F1-score shows the harmonic mean of precision and sensitivity (Equation 4.8). It

ranges between 0 and 1, where a higher score indicates better performance. F1-score is

useful for unbalanced classes when there is a significant difference between the number of

instances in each class (Sokolova et al., 2006).

F1-score = 2 · Precision · Recall

Precision + Recall
(4.8)

where Precision = TP
TP+FP reflects the model’s ability to identify positive instances

without many false positives, and Recall = TP
TP+FN is the ratio of correctly predicted

positive instances to the total number of positive instances,

4.4.3 Standard Deviation

Standard deviation (σ) measures the variation in a dataset and how spread out the val-

ues are from the average value. A high standard deviation indicates large differences in

performance among individuals. The mathematical formula is given as

σ =

√∑
i(xi − x̄)2

N − 1
(4.9)

where xi is each individual sample, x̄ is the average of the samples, and N is the total

number of samples.

4.4.4 K-Fold Cross-Validation

K-folds cross-validation (CV) is an effective method to evaluate the classification methods,

especially when the data samples are limited. In this thesis the choice of K = {5, 10} is

applied due to its popularity among researchers (Tao et al., 2023; Xiao et al., 2022; Topic

and Russo, 2021; Shen et al., 2020; Yang et al., 2018). The value of K corresponds to the

number of iterations and the amount of equally-sized folds of the dataset, and must not be
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confused with the K used in KNN. During each iteration, one fold is used for testing, and

the remaining folds are considered for training. Only some of the best-performing models

are verified with K-fold CV. The average performance of accuracy and average F1-score

over K iterations are reported.

4.5 Software Used

Most of the code produced for this thesis is implemented with Python. One advantage of

using Python as a programming language is the availability of extensive libraries useful

for signal analysis and machine learning.

The following Python libraries and modules have been used:

• PsychoPy software3: Present the stimuli to the participants

• MNE library4: Preprocessing of raw EEG signals, including filtering (notch and

bandpass) and artefact removal (ICA)

• MNE-Features module5: Calculate feature extraction

• Scikit-Learn6: Implementation of traditional machine learning methods (SVM and

KNN)

• Keras7 and Tensorflow8 libraries: Implementation of deep learning method (MLP)

The Unicorn Hybrid Black headset and its software environment are used for EEG signal

acquisition. For recording purposes and synchronization of the EEG systems with the

stimuli presentation, the Lab streaming layer9 (LSL) is used. In Appendix A, a link to the

code used in this thesis is available.

3https://www.psychopy.org/
4https://mne.tools/stable/index.html
5https://mne.tools/mne-features/api.html
6https://scikit-learn.org/stable/
7https://keras.io/
8https://www.tensorflow.org/
9https://labstreaminglayer.org/
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5
Experimental Results

The chapter presents the classification performances from the experiment design and setup
presented in Chapter 3 by using the methods from Chapter 4. The average accuracy
and the average F1-score across all participants are reported. The best-performing fea-
ture combinations and classifiers are evaluated using 5-fold and 10-fold CV. Confusion
matrices and topography maps from participants are also presented.

5.1 Classification Performance

Best-performing classification results for each individual feature classified with SVM,

KNN and MLP are presented here. So the poorest reported scores here are among the

model performances. All models are subject-independent and are trained on data from

multiple subjects. The classification is binary assigned with the labels high/low arousal

or high/low valence. The average accuracy of a model is the average of the performance

accuracies of all 19 participants. The average value of all the participants’ F1-scores is

also reported to take unbalanced classes into account.

5.1.1 Individual Features

The individual features consist of DE, HM, HC, KFD, HFD, and PSD extracted channel-

wise and from sub-bands. Table 5.1 and Table 5.2 show only the average accuracies and

average F1-scores for the best-performing subject-independent models for each feature,

respectively. A more detailed overview of the classification results can be found in Ap-

pendix D and Appendix E.
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Table 5.1: Details, average accuracies and average F1-scores of individual features for the overall

best-performing models for each feature for high/low arousal

Arousal (calm-excited)

Feature Method Classifier Epoch size Average
accuracy [%]

Average
F1-score [%]

DE Channel-wise SVM 5sec 67.607 ± 11.207 72.410 ± 19.229

HM Channel-wise SVM 5sec 66.792 ± 10.961 72.817 ± 17.836

HC Channel-wise SVM 10sec 66.507 ± 15.467 70.355 ± 22.493

KFD Channel-wise SVM 5sec 66.040 ± 11.255 72.531 ± 17.180

HFD Channel-wise SVM 5sec 67.607 ± 11.284 73.167 ± 18.716

PSD Five sub-bands KNN 5sec 65.727 ± 11.655 71.159 ± 15.914

The highest average accuracy of 67.607% (± DE: 11.207%; ± HFD: 11.284%) for high/low

arousal is observed for DE and HFD extracted channel-wise from 5-second long epochs

using the SVM classifier. The average F1-scores for the mentioned models are 72.410%

± 19.229% and 73.167% ± 18.716%, respectively. The lowest average accuracy of 65%

± 11.665% is observed for PSD on 5-second long epochs. The lowest average F1-score

of 70.335 ± 22.493% are observed for the channel-wise extracted HC on 10-second long

epochs.

For high/low valence, the average accuracies and F1-scores are, in general, lower than for

arousal. The highest average accuracy of 61.779% ± 10.483% applies to KFD, whereas

the poorest average accuracy of 59.649% ± 10.483% applies to HC. Both features are

extracted channel-wise and are classified with SVM, although the epoch size of KFD is

five seconds. while HC’s epoch size is ten seconds. DE has the highest average F1-score

for the valence of 71.361 ± 20.360. However, the feature is calculated on five sub-bands,

not channel-wise directly from the epochs. The lowest average F1-score of 61.887% ±
31.425% is observed for PSD on five sub-bands using SVM and epoch size of ten seconds.

Table 5.2: Details, average accuracies and average F1-scores of individual features for the overall

best-performing models for each feature for high/low valence

Valence (negative-positive)

Feature Method Classifier Epoch size Average
accuracy [%]

Average
F1-score [%]

DE Five sub-bands SVM 5sec 61.596 ± 11.207 71.361 ± 20.360

HM Channel-wise SVM 5sec 61.216 ± 6.403 67.838 ± 15.717

HC Channel-wise SVM 10sec 59.649 ± 10.483 67.076 ± 17.658

KFD Channel-wise SVM 10sec 61.779 ± 9.031 67.901 ± 15.358

HFD Channel-wise SVM 5sec 60.714 ± 6.070 66.104 ± 17.379

PSD Five sub-bands SVM 10sec 60.902 ± 9.763 61.887 ± 31.425
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5.1.2 Combinatorial Features

Table 5.3 and Table 5.4 present the best-performing subject-independent models for high/low

arousal and high/low valence, respectively. Based on feature extraction combinations and

classification performances from the specialization project, some features are extracted

channel-wise while some are extracted from sub-bands. A complete overview of how

the different classifiers performed for all feature combinations can be found in Appendix

F. The combination of all individual features has shown the lowest average accuracy of

64.662% ± 15.819% and the lowest average F1-score (< 70%) for the classification of

high and low arousal. With 66.729% ± 11.192% as average accuracy, the feature combin-

ation of DE and PSD classified with KNN achieved the highest average accuracy. The best

average F1-score of 72.793% ± 17.490% is achieved by the feature combination of HFD

and KFD classified with SVM.

Table 5.3: Details, average accuracies and average F1-scores of combinatorial features for the over-

all best-performing model for high/low arousal

Arousal (calm-excited)

Method Classifier Epoch size Average
accuracy [%]

Average
F1-score [%]

HM [CW], HC [CW] SVM 10sec 65.664 ± 14.769 71.771 ± 22.301

DE [SB], PSD [SB] KNN 5sec 66.729 ± 11.192 71.841 ± 14.346

HFD [CW], KFD [CW] SVM 5sec 65.977 ± 11.933 72.793 ± 17.490

HM [SB], DE [SB] KNN 5sec 66.541 ± 11.216 71.666 ± 14.533

HM [CW], HC [CW],

HFD [CW], KFD [CW],

DE [SB], PSD [SB]

SVM 20sec 64.662 ± 15.819 69.391 ± 26.704

Abbrev: SB = sub-bands, and CW = channel-wise

The feature combination for high/low valence with the lowest average F1-score is the

combination of HFD and KFD, both extracted channel-wise and classified with SVM.

The average F1-score is 66.634% ± 7.307%. The lowest average accuracy of 59.524%

± 7.241% is obtained by the combination of all individual features combined with epoch

sizes of five seconds. The highest average accuracy of 62.281% ± 7.787% belongs to the

feature combination of HFD and KFD. And the lowest average F1-score among the best-

performing models can be observed for the combination of HM and DE with a score of

66.634% ± 7.307%.
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Table 5.4: Details, average accuracies and average F1-scores of combinatorial features for the over-

all best-performing model for high/low valence

Valence (negative-positive)

Method Classifier Epoch size Average
accuracy [%]

Average
F1-score [%]

HM [CW], HC [CW] SVM 10sec 60.401 ± 10.232 71.771 ± 22.301

DE [SB], PSD [SB] KNN 5sec 60.652 ± 4.819 66.634 ± 7.307

HFD [CW], KFD [CW] SVM 10sec 62.281 ± 7.787 67.441 ± 17.356

HM [SB], DE [SB] KNN 5sec 60.902 ± 4.961 66.875 ± 7.295

HM [CW], HC [CW],

HFD [CW], KFD [CW],

DE [SB], PSD [SB]

SVM 5sec 59.524 ± 7.241 67.313 ± 30.932

Abbrev: SB = sub-bands, and CW = channel-wise

5.1.3 K-Fold Cross-Validation

Some of the best-performing models in terms of average accuracy and average F1-score for

valence and arousal are verified with 5-fold CV and 10-fold CV. The results in Table 5.5

present the average accuracies of all participants average over 5-folds and 10-folds. In

Table 5.6, the average F1-scores are presented.

Table 5.5: 5-fold CV and 10-fold CV on the best-performing models with best-reported feature

combinations and epoch sizes. Reports accuracies average over 5-folds and 10-folds

K Classifier Features Epoch size [s] Arousal
(accuracy [%])

Valence
(accuracy [%])

5

SVM DE [SB] 5 66.082 ± 11.597 61.028 ± 4.310

SVM HFD [CW] 5 66.400 ± 12.841 60.816 ± 6.220

SVM KFD [CW] 5 66.078 ± 12.918 60.007 ± 6.160

SVM HFD & KFD [CW] 10 65.131 ± 13.571 59.741 ± 6.255

KNN DE & PSD [SB] 5 65.033 ± 13.478 59.490 ± 6.099

10

SVM DE [SB] 5 65.946 ± 11.820 61.007 ± 4.111

SVM HFD [CW] 5 66.152 ± 12.987 60.918 ± 5.791

SVM KFD [CW] 5 66.559 ± 12.543 60.495 ± 6.030

SVM HFD & KFD [CW] 10 66.281 ± 12.733 60.968 ± 5.306

KNN DE & PSD [SB] 5 65.033 ± 13.478 59.490 ± 6.099
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Table 5.6: 5-fold CV and 10-fold CV on the best-performing models with best-reported feature

combinations and epoch sizes. Reports F1-scores average over 5-folds and 10-folds

K Classifier Features Epoch size [s] Arousal
(accuracy [%])

Valence
(accuracy [%])

5

SVM DE [SB] 5 71.787 ± 13.949 66.532 ± 8.584

SVM HFD [CW] 5 72.635 ± 18.540 66.317 ± 17.435

SVM KFD [CW] 5 72.327 ± 17.805 66.398 ± 14.681

SVM HFD & KFD [CW] 10 70.724 ± 20.665 66.126 ± 15.494

KNN DE & PSD [SB] 5 67.041 ± 29.325 62.035 ± 28.774

10

SVM DE [SB] 5 71.927 ± 13.601 66.175 ± 9.329

SVM HFD [CW] 5 71.921 ± 19.312 66.237 ± 17.587

SVM KFD [CW] 5 72.874 ± 16.794 66.484 ± 14.827

SVM HFD & KFD [CW] 10 72.708 ± 17.709 66.528 ± 16.627

KNN DE & PSD [SB] 5 66.990 ± 29.151 61.862 ± 28.730

5.2 Subject-Specific Performance

Due to individual differences between subjects, it can be challenging to get an overview of

how good the models’ general performances are just by looking at the average accuracies

and average F1-scores. Therefore, an overview of the performances of the classifiers for

all individual subjects is presented here. Only some features and epoch lengths with the

best average performances in accuracy and F1-score are included.

Figure 5.1 shows the accuracy of SVM, KNN and MLP with the individual feature DE

and the combinatorial feature with DE and PSD, respectively, as input for all subjects.

Participants 11, 13 and 21 are the only participants with a performance lower than 60% for

all models when DE is extracted channel-wise. Whereas when DE and PSD are extracted

from five sub-bands, all the models of participants 20 and 25 have an accuracy below 60%

in addition to the already-mentioned ones. The best model performances (all above 75%),

regardless of feature extraction, are obtained by participants 12, 16 and 22.

Figure 5.2 shows the F1-score for all subjects when the feature HFD and the feature com-

bination HFD and KFD are extracted. Participant 13’s models on the feature combination

HFD and KFD show F1-scores lower than 50%, i.e. random guessing. The same applies

to Participant 21’s SVM and KNN classifiers. The participants with at least two models

above 80% for both individual and combinatorial features are participants 12, 16, and 22.

In Figure 5.3 and Figure 5.4, the high/low valence classification performances in terms of

accuracy and F1-score, respectively, for all 19 subjects are presented. The best accuracy

is obtained by participants 22 and 24 using SVM for both the individual feature and the

combinatorial feature. When the individual feature KFD is extracted channel-wise with

five seconds long epochs, participants 13, 14 and 20 have one model each with an accuracy

lower than random guessing, namely KNN, MLP and KNN, respectively. Participants 14

and 20 also had the poorest accuracy performance (below 50%) for the feature combination

HFD and KFD when MLP is used as the classifier.
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The three top F1-scores (≥ 80%) for DE, extracted from five sub-bands decomposed into

five seconds long epochs, are obtained by participants 15, 22 and 27 using SVM as the

classifier. The lowest F1-score is observed for participant 26 with SVM as the classifier.

For the feature combination of HFD and KFD, the highest F1-scores (above 80%) are

observed for participants 15, 17, 22, 23 and 27 using SVM. Participants 14, 20 and 26

have one model with an F1-score poorer than 50%, i.e. random guessing.

Figure 5.1: Accuracy for all 19 participants using the best-performing individual features (top) and

the best-performing combinatorial feature (bottom) classifying high and low arousal
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Figure 5.2: F1-score for all 19 participants using the best-performing individual feature (top) and

the best-performing combinatorial feature (bottom) classifying high and low arousal
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Figure 5.3: Accuracy for all 19 participants using the best-performing individual features (top) and

the best-performing combinatorial feature (bottom) classifying high and low valence
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Figure 5.4: F1-score for all 19 participants using the best-performing individual features (top) and

the best-performing combinatorial feature (bottom) combinations classifying high and low valence
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5.3 Topographic Maps

Topographic maps show the activity in the subjects’ brains visually. In Figure 5.5, the

weight distribution of different brain regions in five frequency bands is shown for HV/LV

and HA/LA. The distribution is activated by the DE feature with sub-bands on participant

12. Figure 5.6, Figure 5.7 and Figure 5.8 show the brain activity of HV/LV and HA/LA

without taking frequency bands into account. They show the brain activities of participants

12 and 13. The activation patterns are created by the HFD feature and DE feature with five

frequency bands, respectively. No unique pattern is distinguishable in the topographic

maps, making it challenging to discriminate between different emotion dimensions. The

patterns seem to be more dependent on the participant and frequency bands than whether

the rated emotions are high valence/arousal or low valence/arousal.

(a) Delta LA (b) Theta LA (c) Alpha LA (d) Beta LA (e) Gamma LA

(f) Delta HA (g) Theta HA (h) Alpha HA (i) Beta HA (j) Gamma HA

(k) Delta LV (l) Theta LV (m) Alpha LV (n) Beta LV (o) Gamma LV

(p) Delta HV (q) Theta HV (r) Alpha HV (s) Beta HV (t) Gamma HV

Figure 5.5: Topographic maps of the DE feature with five frequency sub-bands on participant 12
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(a) Low valence (b) High valence (c) Low arousal (d) High arousal

Figure 5.6: Topograpgic maps of the HFD feature on participant 13 for high/low valence and arosual

(a) Low valence (b) High valence (c) Low arousal (d) High arousal

Figure 5.7: Topograpgic maps of the HFD feature on participant 12 for high/low valence and arousal

(a) Low valence (b) High valence (c) Low arousal (d) High arousal

Figure 5.8: Topograpgic maps of the DE feature with five sub-bands on participant 12 for high/low

valence and arousal
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5.4 Confusion Matrices

The confusion matrices evaluate the models SVM, KNN and MLP for one of the best-

performing features, namely DE from five sub-bands, on participants 22 for arousal (Fig-

ure 5.9) and 12 for valence (Figure 5.10). Confusion matrices for some of the poorest-

performing subjects are also included and are observed in Figure 5.11 for participant 13

and Figure 5.12 for participant 26 for arousal and valence, respectively. Label 0 corres-

ponds to either low valence or low arousal, whereas label 1 corresponds to high valence

or high arousal, depending on the binary classification. The confusion matrices are a sum-

mation of computed confusion matrices obtained over 5-fold for the respective subjects. It

is clear from the confusion matrices of the best-performing subjects and worst-performing

subjects that they classify differently.

(a) SVM (b) KNN (c) MLP

Figure 5.9: Confusion matrices for participant 12 (one of the best) for arousal showing the classific-

ation performances when DE from five sub-bands are used as input. Label 0 = LA and label 1 = HA

(a) SVM (b) KNN (c) MLP

Figure 5.10: Confusion matrices for participant 22 (one of the best) for valence showing the classi-

fication performances when DE from five sub-bands are used as input. Label 0 = LV and label 1 =

HV
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(a) SVM (b) KNN (c) MLP

Figure 5.11: Confusion matrices for participant 13 (one of the poorest) for arousal showing the

classification performances when DE from five sub-bands are used as input. Label 0 = LA and label

1 = HA

(a) SVM (b) KNN (c) MLP

Figure 5.12: Confusion matrices for participant 26 (one of the poorest) for valence showing the

classification performances when DE from five sub-bands are used as input. Label 0 = LV and label

1 = HV
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6
Discussion

The objective of this chapter is to summarise some of the key findings and make an in-
depth exploration of the results presented in Chapter 5. The process of data acquisition
and preprocessing method will also be discussed here.

6.1 Data Acquistition

Two Unicorn systems with eight dry electrodes on each were used for EEG data acquisi-

tion. No impedance measurement was available for the dry system. Thus to ensure a good

enough connection, the participants were told to blink their eyes several times and scrunch

their faces with the cap on. The recording could start when the signals were significant in

the real-time visualization. Some electrode paste was applied on both ear lobes to ensure

good contact with the reference electrodes. There was only one cap size available for the

participants, so there might be some inconsistency in the electrode position.

LSL was used to time-synchronize the streams from the recording devices, the presenter

of movie clips and SAM. From Figure 6.1, it is possible to observe from the first three

timestamps of synchronization markers that there are some delays between the two re-

cording systems. The streams are sent through the wireless network, so small delays are

expected. During one of the female participant’s recording sessions, some unforeseen

problems with one of the recording devices arouse, even though the experimenters fol-

lowed the experimental protocol and setup carefully. As a result, one of the participants

has incomplete data and is excluded from this work. The protocol for one experiment

lasted about 75 minutes, including small breaks. Some participants have reported that

watching movie clips without sound for a long time is demanding and tiring. This might

have affected the emotion-elicited EEG data or the SAM rating.
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Figure 6.1: Event markers represent timestamps for the first three events on the Unicorn systems

with Event ID 49 = ’movie start’ and Event ID 50 = ’movie end’. From the left: timestamps from

device 68 and timestamps from device 69

During the recordings, the participants were informed to limit their motions while watch-

ing the movie clips. However, some tiny movement artefacts are expected as it is difficult

to sit completely still for a long time. As the recordings happened during office hours some

external noises, e.g. conversations in the hallway, construction noise outside, and sounds

from doors being opened and closed, are also likely. This could also have some impact on

the emotion-elicited data.

6.2 Preprocessing Methods

Before preprocessing the raw EEG data, the emotion-unrelated signals from both devices

were removed, and the rest of the signals were joined to a common mne.io.Raw object1.

The signals were then filtered by a notch filter and a bandpass filter. The commonly-

used frequency range for the bandpass filter varies among researchers, and there is no

standardized cut-off range. According to Zheng and Lu (2015), the bandpass filter should

be in the frequency range of 0.3 − 50 Hz to reduce noise and artefacts, whereas Koelstra

et al. (2012) and Miranda-Correa et al. (2021) suggest between 4 − 45 Hz. Katsigiannis

and Ramzan (2018) propose a frequency range of 4− 30 Hz to remove most of the ocular

artefacts and muscle movements, which are most dominant below 4 Hz and above 30 Hz,

respectively. Based on the theory of brain frequency bands, the main sub-bands are located

between 0.5 HZ and 30 Hz or more (Sanei and Chambers, 2007). Since this work is based

on previous work evaluated on the SEED dataset, the frequency range of the bandpass

filter ended up being between 0.3− 50 Hz. The ICA method is used to further process the

raw EEG signals. The exclusion of ICA components is done manually by looking at each

component’s properties for each subject. Manual inspection of the ICA components may

lead to imprecise artefact removal due to human mistakes.

6.3 Feature Selection

The selection of features is based on the work done in the specialization project. The

selection of features plays an important role in EEG-based emotion recognition. The per-

formances of the classifiers can be affected by the choice of features. It is known that

1https://mne.tools/stable/generated/mne.io.Raw.html
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different features respond differently based on whether they are extracted directly from

epochs (channel-wise) or with sub-bands. Both individual features and a combination of

different features are investigated. The individual features include DE, HM, HC, KFD,

HFD, and PSD. They were all extracted channel-wise and from five frequency bands, ex-

cept for PSD which are only extracted from sub-bands. Combinations of features within

the same domain, i.e. time domain, frequency domain, and domains with nonlinear char-

acteristics. Feature combinations across domains are also investigated.

The obtained results indicate that the individual features HFD and KFD, and the combina-

tion of them, extracted channel-wise from the EEG signal are observed to be quite suitable

for emotion recognition. Both have a good average performance in terms of accuracy and

F1 score for valence and arousal. In addition, the performance of the feature DE with and

without sub-bands is also quite good. which corresponds well with the findings by Zheng

and Lu (2015) and Katsigiannis and Ramzan (2018). It seems like channel-wise feature

extraction tends to be superior compared to features from sub-bands. The reason could

be that the channel-wise extracted features might be able to capture more relevant inform-

ation about emotional states. However, the decomposition into frequency bands with a

five-order Butterworth filter might cause information loss and the introduction of signal

distortion. The filter might not sufficiently preserve all frequency content and the details

of the original signal. The sizes of the epochs may also have an impact on the feature

extraction. Certain features may need longer epochs to capture meaningful patterns or

properties of the EEG signal. By observing the results, epoch sizes of five seconds seem

to give the highest performance. Another potential reason could be the lack of baseline

correction. A baseline is an EEG signal without stimuli present and typically expresses

the underlying brain activity patterns (Yang et al., 2018). With such correction, unwanted

temporal drifts and noise in EEG signals can be reduced, and improve classification per-

formance. A combination of features with low performance might affect the accuracy and

F1-score poorly as well.

6.4 Classification Performance

The models used for classification are general models using data from all participants

and are evaluated in previous work on the SEED dataset. In SEED, the emotions are

labelled according to three classes: negative, neutral and positive, whereas in this work,

the classification is binary: HV/LV or HA/LA. From the results, SVM seems to be superior

compared to KNN and MLP. And the models are more likely to classify HA/LA correctly

than HV/LV. However, all methods perform on average in terms of accuracy and F1-score

better than random guessing, i.e. accuracy and F1-score above 50%.

The standard deviations on metrics for all models are notably high on both individual and

combinatorial features for valence and arousal. They vary from ±6.070% to ±15.467%
for average accuracy and from ±11.027% to ±26.704% for average F1-score. This could

indicate inconsistency and lack of reliability in the results. High variability in the results

can be caused by numerous factors, including noise and unbalanced classes. Dry elec-
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trodes usually provide lower signal quality compared to wet electrodes due to high contact

impedance, thus being more noisy. Unbalanced classes occur when there is an uneven

distribution of classes within a dataset. This seems to be the case since the average F1-

scores are better than the average accuracies for all cases. For the 9-point SAM scale, the

threshold was placed in the middle, at 4.8 inspired by Betella and Verschure (2016). This

could likewise have led to unbalanced classes, considering that individuals have different

responses to the same stimuli and hence give different ratings on the SAM scale (Suhaimi

et al., 2020). Figure 6.2 shows the number of instances in each class. To cope with the

unbalanced dataset problem, F1-score is reported along with accuracy. In addition, 5-fold

and 10-fold CVs are used to verify the best-performing features and classifiers. The 5-

fold CV and 10-fold CV obtained slightly better average accuracies and average F1-scores

compared to a single test-train split, thus suggesting that the models are more reliable and

have better generalization potentials, despite high standard deviations.

Figure 6.2: Number of instances for each class rated by all 19 participants

6.4.1 Significant Difference in Performance

T-test can be used to determine if there is a significant difference between the performance

of two classifier models. It is a convenient way to conclude whether the difference in

performance between two classifier models is just a coincidence, i.e. p > 0.05. The t-test

was performed on the accuracies and F1-scores obtained with SVM, KNN and MLP for the

best-reported features, which have also been verified with 5-fold CV and 10-fold CV. For

arousal, none of the compared models is significantly different in performance. However,
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depending on the feature extraction, there are significant differences in performance (p <
0.05) between some of the compared classifiers for valence. Significant differences in

F1-scores can be found between SVM and MLP for the feature combination of DE, HFD,

KFD, DE & PSD, and the feature combination of HFD & KFD, in addition to between

MLP and KNN for the feature combination of DE, HFD, DE & PSD, and the feature

combination of HFD & KFD.

6.4.2 Analysis of Confusion Matrices

Participants 12 and 22 have one of the best performances overall for arousal (Figure 5.9)

and valence (Figure 5.10), respectively. The confusion matrices reveal that the classifiers

SVM and KNN are better at identifying HV and HA correctly. However, the percentages

of LV/LA classified as HV/HA suggest a significant amount of misclassification existing.

SVM and KNN also fail to correctly classify LV and LA. None or almost none of the

instances that belong to HV were misclassified as low valence. The rates for arousal have

the same tendencies and are fairly low. However, none or almost none of the instances that

belong to LV/LA were correctly classified as such either. It seems like SVM and KNN

are not predicting any instances of low valence or low arousal, and only classify most

of them into HV and HA classes. For MLP on LA/HA and LV/HV, the predictions are

balanced for HV/LV and HA/LA. The background of this behaviour could be that MLPs

struggle to learn the subtle differences and patterns in data, resulting in similar predictions

for both classes. As mentioned earlier, the newly-created dataset might be unbalanced and

the models fail to address this.

Participants 13 and 26 are the participants that had one of the poorest classification per-

formances for valence and arousal, respectively. The confusion matrices for arousal (Fig-

ure 5.11) and valence (Figure 5.12) differ somewhat from the ones from the better-performing

subjects. The SVM model is better at identifying LV/LA than HV/HA, although the model

tends to incorrectly predict the HV/HA class as the LV/LA class quite often. For KNN and

MLP, the predictions are more balanced between HV/LV and HA/LA. However, the FP

and FN values are close to the TP and TN values. Ideally, it should be high values for

TP and TN, and low values for FP and FN. Based on the confusion matrices, the models

are not ideal and might suffer from overfitting instead of generalizing well on new, unseen

data.

6.4.3 Analysis of Topographic Maps

The topographic maps of participants 12 and 13 during the influence of different di-

mensions of emotions, show rather small differences in-between emotions. There is no

unique pattern that could be used to discriminate between different emotion dimensions.

Although, it is possible to observe that high/low valence and high/low arousal activate

slightly different parts of the brain. Figure 5.5 indicates that the patterns of brain activa-

tions are slightly more distinct between the five frequency bands than between emotions.
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This addresses the difficulties in classifying emotions correctly and could explain some

of the challenges with predicting properly in the confusion matrices (Zhang et al., 2021).

There might be some explanation for this issue, including unbalanced instances of each

class, or the subject might have struggles to express the elicited properly. However, it is

important to have in mind that the brain patterns will most likely not be equivalent for all

cases for all subjects within the same emotional dimension. The patterns from two indi-

viduals with feature extraction of HFD shown in Figure 5.6 and Figure 5.7 is an example

of that. The fact that one emotion dimension does not truly correspond to one region

of the brain is familiar in the literature. Emotions rather evoke complex arrays of net-

works in the brain, than a single region. The decoding analysis conducted by Horikawa

et al. (2020) showed that emotions are represented through more complex configurations

involving multiple networks instead of simple one-to-one mappings between specific emo-

tions and brain regions. This is consistent with findings from Hamann (2012).

6.5 Subject Variability

The collected EEG data are from multiple participants, and they are all used to train and

test different models to find the best-performing subject-independent model. However,

based on the results, there are huge variabilities in the model performances depending on

the classifier and the chosen feature extraction. The quality of EEG signals varies among

individuals and also within individuals. According to Zheng and Lu (2015), factors such

as educational and social background can affect the experience with emotions. Some

people might even have difficulties reaching the outer edge of the emotion dimension us-

ing only movie clips with no sounds, i.e. cannot elicit the expected emotional responses

to each movie clip. This creates outliers that behave differently than the majority of the

participants. The method of labelling emotion-elicited EEG data rely on the participants’

subjective self-assessment. Different participants may interpret and rate emotions differ-

ently and create inconsistencies in the labelled data. Some may also report their emotional

experiences wrong.

Emotions are subjective, thus it is difficult to make a generalized model to decode them.

Based on the accuracy and F1-score for all 19 subjects for valence and arousal in Fig-

ure 5.1, Figure 5.2, Figure 5.3 and Figure 5.4, the variance in the metrics are distinct.

Some participants even have models performing worse than random guessing, i.e. less

than 50% for binary classification, which can have a bad impact on the average perform-

ance. The general models assume the same distribution for training and testing subsets.

However, with outliers present in the dataset, they might introduce noise and distort per-

formance. One participant worth taking a closer look at is participant 22, especially for

arousal classification. The accuracy and F1-score for all models are 100%, which deviates

from the majority. With a closer examination, it turns out that the labels for this particu-

lar participant are unbalanced with only ratings for high arousal. Hence, participant 22 is

never exposed to other classes than high arousal during training. This could explain why

the HA/LA classification performed better than the HV/LV classification, as the metrics

are based on the average of all 19 subjects’ performances.
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6.6 Comparison with Other Works

The performance of the proposed SVM, KNN and MLP models evaluated on the newly-

created dataset are also compared with the results obtained in the specialization project,

other publicly available datasets, and state-of-the-art methods. It may be difficult to com-

pare the obtained results with previous works since the methodologies and experimental

protocols vary a lot (Avetisyan et al., 2016). The criteria for the subject selection and the

used EEG devices might differ. In addition, some researchers even use the same termino-

logy to assess different evaluation metrics, e.g. accuracy, average accuracy, F1-score, the

accuracy of individuals, etc.

6.6.1 Comparison with Specialization Project

In the specialization project, the conclusion was that the HM feature gave the best ac-

curacies overall and is a good choice relating to emotion recognition. Furthermore, the

features of HFD and KFD were concluded to not be the most suitable features, especially

on the SEED dataset using the proposed models. However, in this work, the features of

HFD and KFD are quite suitable for emotion recognition. For the classifiers, MLP did not

perform as well as it did for the SEED dataset. This might be because MLP is not gener-

alized enough and suffer from overfitting. The models may also have acquired knowledge

unique to the SEED dataset, which may not transfer well to the newly-created dataset.

There are several differences between the work done in the specialization project and this

work, that could explain the classification performance gap. First of all, the experimental

protocols are different. SEED uses 15 movie clips of around four minutes to evoke posit-

ive, negative and neutral emotions, while in this work, 52 movie clips of 40 seconds have

been used to evoke emotions in the continuous valence-arousal dimension. Even though

both protocols use movie clips as their main source of stimuli, SEED uses movie clips

with sound. In this work, the clips are non-auditory. The EEG device and the number of

channels used also differ with the 62-channel ESI NeuroScan system vs. two 8-channel

Unicorn systems. The change in the epoch size could explain the performance. Four

different sizes of epochs, namely 5, 10, 20 and 40 seconds were investigated, while in

the previous work on SEED, only one-second epochs were used. In addition, there are

differences in sampling frequency and duration of the whole experiment.

6.6.2 Comparison with Other Datasets

Table 6.1 shows the results reported by related emotion datasets using EEG for feature

extraction. From this work, two of the best models, SVM with HFD and SVM with

DE, are compared with the best-performing methods from the datasets: AMIGOS, DEAP,

DREAMER, IDEA, and SEED. There are many individual differences between the men-

tioned datasets, for instance, if they report with average accuracy or average F1-score.

However, evaluating the proposed dataset against the others might give some insights into
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its characteristics, strengths, and maybe limitations.

Results for the newly-created dataset are consistent with results reported for other datasets.

The performance on average F1-scores for valence and arousal are significantly better

for the proposed work than the others. For arousal, especially, the difference in the F1-

scores is in general more than 13 percentage points better. Using average accuracy as the

performance metric, SEED and IDEA are shown to be superior in classifying valence. The

reason could be that they don’t classify high and low valence continuously like the other

databases but classify discrete emotions, i.e. negative and positive emotions. In addition,

the classification models BiLSTM and DBN are more complex and efficient than SVM

and Gaussian Naı̈ve Bayes (GNB).

Table 6.1: Performance comparison with other datasets

Average accuracy [%] Average F1-score [%]Dataset Method Valence Arousal Valence Arousal
DEAP (2012) GNB on PSD 57.60 62.00 56.30 58.30

SEED (2015) DBN on DE 86.08 - - -

DREAMER (2018) SVM on PSD 62.49 62.17 51.84 57.67

IDEA (2022) BiLSTM on MD-DE 88.57 - - -

AMIGOS (2021) GNB on PSD - - 56.40 57.70

Proposed work
SVM on HFD 60.82 66.40 66.32 72.64

SVM with DE 61.03 66.08 66.53 71.79

The choice of stimuli varies between movie clips with or without sounds, music videos,

and for IDEA also mathematical problems and songs. The time of how long the subjects

are exposed to stimuli differs as well. In the proposed work, each movie clip lasts for

about 40 seconds before self-assessment, while for SEED, the movie clips last for about

four minutes each. DEAP uses 40-second-long music videos, and AMIGOS uses a mix of

short and long videos. Depending on the subject’s background they might react differently

to the stimuli as some may need more or less time to elicit the expected emotions.

Preprocessing raw EEG signal before feature extraction and classification is crucial to

avoid noise-contaminated signals and remove unwanted artefacts and undesired data from

a continuous stream. Most of the datasets filter raw EEG signals to get the frequencies of

interest often somewhere between 0−50 Hz. Furthermore, there are different practices on

how to decompose into different frequency bands, most of them use the Butterworth filter

but the order varies between three and six. EEG data from DEAP, IDEA and AMIGOS

are decomposed into four sub-bands, θ, α, β, γ. Whereas SEED and the newly-created

database are decomposed into five in total. The same four sub-bands as DEAP, including

δ, are used. DREAMER only provide three frequency bands: θ, α and β. Nevertheless,

it is difficult to conclude which dataset is the so-called best performing. Many publicly

available datasets have already been preprocessed to obtain favourable results, and the

exact details of how the data is touched are often unknown.
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6.6.3 Comparison with Other Models

Nowadays, most models used for EEG-based emotion recognition evaluated on well-

known datasets have exceptional performance. DE and PSD with sub-bands are common

features extracted from the signal, and lately also the Hjorth parameters and fractal dimen-

sions. Most of the state-of-the-art models consist of complex architectures, often including

deep learning with several layers and with four or three dimensions, e.g. 4D-aNN (Xiao

et al., 2022), 4D-CRNN (Shen et al., 2020), and 3D-CNN (Yang et al., 2018). These

types of models are often capable to capture more complex patterns and subtle differences

within EEG data, and thus achieve higher performance. Simpler models like MLP and

SVM have also been examined and evaluated on SEED and DEAP. Kumar and Molinas

(2022) achieved accuracies closer to the state-of-the-art methods, same with Asadur Rah-

man et al. (2020). The models used in this work are based on previous work done by the

author. The performance of the models was evaluated on SEED and got reasonable per-

formances. KNN and MLP were similar or better than some of the state-of-the-art studies,

while the SVM performed just a few percentage points below. The reason why these mod-

els perform poorly now compared to previous work could include noisy data since dry

electrodes are used, unbalanced classes, number and position of electrodes, and choice of

stimuli. The split of data samples varies between single split train and test (Liu et al., 2020;

Zheng et al., 2019), K-fold CV (Tao et al., 2023; Xiao et al., 2022; Asadur Rahman et al.,

2020) and LOVO (Yao et al., 2021), which might also have an impact on the performance.
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7
Conclusion

A dataset for emotions elicited by non-audio movie clips is presented in this thesis with ex-

perimental design and data collection process. The dataset includes EEG recordings from

20 participants watching 52 movie clips. Two Unicorn devices with 16 electrodes in total

are used with a sampling rate set to 250 Hz. Each participant rated the elicited emotions

from the movie clips according to the SAM scales for valence, arousal and dominance at

the end of each trial.

The collected EEG signals were further preprocessed with a notch filter at 50 Hz and 100

Hz to suppress the power line noise. A bandpass filter between 0.3 − 50 Hz was also

applied to remove artefacts and other noises. ICA was also used to remove ocular artefacts

individually from all participants before splitting data into epochs. Four different epoch

sizes were tested: 5, 10, 20, and 40 seconds. Some data were further decomposed into five

frequency bands of δ, θ, α, β and γ with a five-order Butterworth bandpass filter. From the

epochs with and without sub-bands features from different domains were examined. The

feature extraction consisted of HM, HC, KFD, HFD, PSD, DE, and different combinations

of them.

In the specialization project, the HM feature with MLP was recognized as the best suit-

able feature for emotion recognition after being evaluated on SEED and compared with

state-of-art methods. HFD and KFD features classified positive, negative, and neutral

emotions poorly. The feature extraction methods and models used in the specialization

project were evaluated on the newly-created dataset to test for generalization. The eval-

uation concludes that HFD and KFD are suitable for emotion recognition, and not as

poor as predicted in the previous work. Moreover, MLP might be overfitted to SEED

and struggle to differentiate the subtle differences in emotions. SVM and KNN fail to

predict low valence/arousal for the best-performing models correctly, and the error rates

of high valence/arousal predictions are too high. For the poor-performing participants,

their confusion matrices seem balanced but with a low prediction performance. The prob-
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lem arouses most likely due to unbalanced classes, as there are more instances of high

valence/arousal than low valence/arousal available for training.

There are also no unique patterns that are distinct in the topographic maps as emotions are

most likely not only evoking single regions of the brain. The models are also general and

include data from all participants, including outliers that may affect the general perform-

ance. However, the average performance in terms of accuracy and F1-score compared to

other publicly available datasets seems consistent despite individual differences in emo-

tion labels, choice of stimuli and classifier, feature extraction, and the number of channels

used for EEG recording. There is no conclusion made for which model is best performing.

The standard deviation of the average accuracies and the average F1-scores for all models

is high, and there is a lot of subject variability between models and in-between valence and

arousal discrimination. Emotion classification is challenging, and getting high accuracy is

generally more difficult on data from own experiment than publicly available datasets.

7.1 Future Work

In the future, the dataset will hopefully allow researchers to gain a deeper insight into

EEG-based emotion recognition by testing different feature extraction and models on the

dataset. The dataset is imperfect, so more research scenarios need to be tested and evalu-

ated. If time, more data from new participants should be collected to overcome the problem

of unbalanced classes and the limitation of available training data for certain classes. Data

collection is time-consuming, so there might be an idea to look into oversampling tech-

niques to create a more balanced dataset by generating samples from the minority class.

Transfer learning might also be the key to solving the situation, and should be further

explored.

Some other topics that should be further explored are channel reduction, baseline correc-

tion and more preprocessing of the raw EEG signals. Channel reduction can make EEG

experiments more practical since there will be fewer electrodes to maintain, and less com-

puting power is needed to preprocess and analyse the EEG data. Moctezuma et al. (2022)

and Zheng and Lu (2015) suggest that as few as 6-12 channels still get desired data and

achieve high performance. Irrelevant channels might introduce artefacts and noise in the

system, thus lowering performance (Zheng et al., 2019). Less preprocessing will also be

needed if there are fewer channels. Baseline correction is also a topic worth diving into as

research has shown that it can improve recognition accuracy (Yang et al., 2018).
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Appendix

A GitHub Repository With Source Codes

The code excerpts can be found as a part of the GitHub repository WavesResearch. The

link to the codes used in Chapter 4 is available at https://github.com/wavesresearch/
emotion_unicorn_Rose/. A request for permission might be needed.

B Overview of Some Relevant Datasets

Dataset Stimuli Modality No. of
subjects

No. of
channels

Feature
extraction Classifiers Emotions

AMIGOS

2021
Movie clips

ECG,EEG

GSR
40 14

HR, PSD,

SR++
GNB

Arousal, valence,

control, familiarity,

liking, basic

emotions

DEAP

2012
Music videos

BVP, EEG,

EMG, EOG,

GSR
32 32

Derivation,

HR, mean,

PSD, SR,

STD ++

GNB

Arousal, valence,

liking, dominance,

familiarity

DECAF

2015
Movie clips

ECG, tEMG,

hEOG, MEG,

NIR++
23 16

DCT, PSD,

motions
SVM

Arousal, valence,

dominance

DREAMER

2018
Movie clips ECG, EEG 23 16 PSD SVM

Arousal, valence,

dominance

EMDB

2012
Movie clips HR, SCL 32 - - -

Arousal, valence,

dominance

IDEA

2022

Movie clips,

math problems,

songs

ECG, EEG,

EMG
14

24

(32 in total)

HA, HM

HC, PSD,

MD-DE,

RASM,

DASM

BiLSTM,

MLP
Positive, negative

SEED

2015
Movie clips EEG 15 62 DE

DBN,

KNN,

SVM

Positive, negative,

neutral

C Information Letter And Consent Form
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Are you interested in taking part in the research project  
 “David and Goliath: single-channel EEG unravels its power 

through adaptive signal analysis:  
EEG-based emotion recognition study”? 

_______________________________________ ________________ 
 
We would like to invite you to take part in a research project where the main purpose is to develop 
models that can decode human emotions through the analysis of EEG signals by learning from 
experiments designed for emotion elicitation. In this letter we will give you information about the 
purpose of the project and what your participation will involve. 
 
Purpose of the project 
 
We are interested in understanding how human emotions function and promote effective communication 
among individuals and human-to-machine information exchange. Different emotions can activate the 
same brain location, or conversely, a single emotion can activate several brain structures. Therefore, 
there is no simple mapping between affective states and specific brain structures. We will investigate 
this using electroencephalography (EEG) signals, which is a safe and non-invasive technique to record 
brain signals. This project aims at creating an emotion-inducing database to help developing models that 
can decode human emotions through EEG signal analysis. The outcome of the study could be a helpful 
tool in the diagnosis of depression, PTSD, and other mental disorders. 
 
Who is responsible for the research project?  
Norwegian University of Science and Technology (NTNU) is the institution responsible for the project.  
 
Why are you being asked to participate?  
You have been invited to take part in this research because you are healthy and over 18 years of age. 
Please avoid participating if you have neurological diseases or use strong medicine or drugs.  
 
What does participation involve for you? 
If you chose to take part in the project, this involves participating in one session with data collection. 
One session lasts about 75 minutes. 35 of these minutes are for collection of EEG signals from your 
brain using the Mentalab system (https://mentalab.com/). During the session, you will watch 52 non-
auditory movie clips from 6 different categories: horror, erotic, social positive content, social negative 
content, scenery and object manipulation. After each movie clip, you will be asked to rate your elicited 
emotions following the SAM (Self-Assessment Manikin) scale description. SAM is a pictorial 
assessment technique that measures emotional reactions on three dimensions: valence, arousal and 
dominance. The valence dimension ranges from pleasure to displeasure, the arousal dimension ranges 
from excited to relaxed, and the dominance dimension ranges from submissiveness to dominance. You 
will get a thorough explanation before the recordings.  
 
Participation in this study will take approximately 2 hours of your time. You will not be given 
information about which movie clips you will be watching, as this may affect the results. We do not 
anticipate you to experience negative feelings when responding to items in this study, however, some 
of the movie clips might portray potentially shocking scenes. Your participation in this study is 
completely voluntary. Should you decide to discontinue participation or decline to answer any specific 
part of the study, you may do so without penalty. 
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It is important to mention that we are using a device developed for recording brain signals in wet 
conditions. This means that we will apply electrode cap gel to your hair to increase conductivity 
between electrode and skin. But the gel is easily washed out with water and shampoo. We will also 
clean the areas of the scalp where the electrodes are placed with isopropyl alcohol. After the 
experiment we will ask you some question about how you feel (e.g., are you relaxed, tired or bored) 
and some feedback questions about the experiment (e.g., duration, procedure, and equipment). 
 
 
Participation is voluntary 
Participation in the project is voluntary. If you chose to participate, you can withdraw your consent at 
any time without giving a reason. All information about you will then be made anonymous. There will 
be no negative consequences for you if you chose not to participate or later decide to withdraw. 
Additionally, there are no risks associated with an EEG test. The test is non-invasive, painless, and safe. 
 
Your personal privacy – how we will store and use your personal data  
We will only use your personal data for the purpose(s) specified in this information letter. We will 
process your personal data confidentially and in accordance with data protection legislation (the 
General Data Protection Regulation and Personal Data Act).  

 To protect your privacy and confidentiality, PI Professor Marta Molinas and co-PI Dr Andres 
Soler and are going to have access to the personal data. 

 In addition, we will replace your name and contact details with a code. The list of names, contact 
details and respective codes will be stored separately from the rest of the collected data, we will 
store the collected data on a computer protected by the Norwegian University of Science and 
Technology security systems 

 Other group members of the research project will have access just to collected data that has been 
de-identified 

 No personal information will appear in any publication of the research project. The data will be 
reported in a way that will not identify you.  

 
What will happen to your personal data at the end of the research project?  
The project is scheduled to end on December 31, 2024. The personal data will be deleted and destroyed, 
including any digital recordings at the end of the project. However, we would like to make the recorded 
electroencephalographic data collected in this study available to other researchers after the study is 
completed. For this, the researcher will remove any identifying information. Researchers of future 
studies will not ask your permission for each new study. The other researcher will not have access to 
your name and other information that could potentially identify you nor will they attempt to identify 
you. 
 
Your rights  
So long as you can be identified in the collected data, you have the right to: 

- access the personal data that is being processed about you  
- request that your personal data is deleted 
- request that incorrect personal data about you is corrected/rectified 
- receive a copy of your personal data (data portability), and 
- send a complaint to the Data Protection Officer or The Norwegian Data Protection Authority 

regarding the processing of your personal data 
 

What gives us the right to process your personal data?  
We will process your personal data based on your consent.  
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Based on an agreement with Norwegian University of Science and Technology, NSD – The Norwegian 
Centre for Research Data AS has assessed that the processing of personal data in this project is in 
accordance with data protection legislation.  
 
Where can I find out more? 
If you have questions about the project, or want to exercise your rights, contact:  

 Norwegian University of Science and Technology via Marta Molinas, by mail: 
(marta.molinas@ntnu.no) or phone: +47 94287670 

 Our Data Protection Officer: Thomas Helgesen at Norwegian University of Science and 
Technology, by mail: (thomas.helgesen@ntnu.no) 

 NSD – The Norwegian Centre for Research Data AS, by email: (personverntjenester@nsd.no) 
or by telephone: +47 55 58 21 17. 

 
 
Yours sincerely, 
 
 
Marta Molinas /Andres Soler    
(Researcher/supervisor)     
 
 
------------------------------------------------------------------------------------------------------------------------- 
Consent form  
 
I have received and understood information about the project: “David and Goliath: single-channel EEG 
unravels its power through adaptive signal analysis” and the study “Reconstruction of brain activity 
during motor imaginary and motor execution tasks” and have been given the opportunity to ask 
questions. I give consent:  
 

 to participate in the questionnaire of the study. 
 to participate in the recording of electroencephalographic data. 
 to my recorded data as well as its processed outcomes can be published and shared for scientific 

purposes in anonymized form. 
 
I give consent for my personal data to be processed until the end date of the project, approx. December 
31, 2024 
 
 
 Signature: ________________________________   Date: _______________________ 
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D Detailed Average Accuracies And Average F1-Score of Arousal Clas-
sification For Individual Features

Arousal Classification Performance - 5 Seconds Long Epochs - Individual

Average accuracies and average F1-scores on individual features for arousal using train-test subsets

and five seconds long epochs

Arousal (calm-excited) - 5 seconds epochs - individual features
Feature Method Classifier Average accuracy [%] Average F1-score [%]

DE

Channel-wise SVM 67.607 ± 11.207 72.410 ± 19.229

Channel-wise KNN 64.787 ± 11.801 70.801 ± 10.239

Channel-wise MLP 65.476 ± 11.651 65.476 ± 11.651

Five sub-bands SVM 66.979 ± 10.580 71.361 ± 20.360

Five sub-bands KNN 66.729 ± 11.192 71.841 ± 14.347

Five sub-bands MLP 64.975 ± 12.380 64.975 ± 12.380

HM

Channel-wise SVM 66.792 ± 10.961 72.817 ± 17.836

Channel-wise KNN 65.351 ± 11.046 71.313 ± 12.250

Channel-wise MLP 64.787 ± 12.645 64.787 ± 12.645

Five sub-bands SVM 64.724 ± 12.625 67.101 ± 30.845

Five sub-bands KNN 63.409 ± 11.237 68.918 ± 15.382

Five sub-bands MLP 64.850 ± 12.494 64.850 ± 12.494

HC

Channel-wise SVM 65.727 ± 11.709 72.778 ± 15.685

Channel-wise KNN 60.276 ± 13.228 66.522 ± 15.219

Channel-wise MLP 64.474 ± 12.897 64.474 ± 12.897

Five sub-bands SVM 64.724 ± 12.817 70.465 ± 23.489

Five sub-bands KNN 62.155 ± 13.302 68.524 ± 16.414

Five sub-bands MLP 63.910 ± 13.580 63.910 ± 13.580

KFD

Channel-wise SVM 66.040 ± 11.255 72.531 ± 17.180

Channel-wise KNN 62.155 ± 12.007 68.513 ± 13.838

Channel-wise MLP 64.223 ± 12.072 64.223 ± 12.072

Five sub-bands SVM 64.787 ± 13.073 70.008 ± 24.075

Five sub-bands KNN 63.847 ± 11.605 70.038 ± 13.970

Five sub-bands MLP 62.531 ± 13.459 62.531 ± 13.459

HFD

Channel-wise SVM 67.607 ± 11.284 73.167 ± 18.716

Channel-wise KNN 64.850 ± 11.428 71.144 ± 13.513

Channel-wise MLP 64.724 ± 12.411 64.724 ± 12.411

Five sub-bands SVM 64.724 ± 12.453 67.101 ± 30.425

Five sub-bands KNN 62.469 ± 11.574 68.390 ± 15.273

Five sub-bands MLP 65.132 ± 11.988 65.132 ± 11.988

PSD

Five sub-bands SVM 65.789 ± 11.877 66.650 ± 30.923

Five sub-bands KNN 65.727 ± 11.655 71.159 ± 15.914

Five sub-bands MLP 64.724 ± 12.625 64.724 ± 12.625
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Arousal Classification Performance - 10 Seconds Long Epochs - Individual

Average accuracies and average F1-scores on individual features for arousal using train-test subsets

and ten seconds long epochs

Arousal (calm-excited) - 10 seconds epochs - individual features
Feature Method Classifier Average accuracy [%] Average F1-score [%]

DE

Channel-wise SVM 66.667 ± 14.197 70.589 ± 24.018

Channel-wise KNN 61.654 ± 16.532 67.758 ± 19.085

Channel-wise MLP 63.283 ± 16.710 63.283 ± 16.710

Five sub-bands SVM 64.662 ± 15.436 67.936 ± 25.901

Five sub-bands KNN 61.028 ± 15.209 66.674 ± 19.519

Five sub-bands MLP 62.657 ± 17.243 62.657 ± 17.243

HM

Channel-wise SVM 65.915 ± 14.614 71.928 ± 20.864

Channel-wise KNN 64.286 ± 12.549 71.634 ± 13.674

Channel-wise MLP 64.662 ± 13.889 64.662 ± 13.889

Five sub-bands SVM 64.16 ± 15.922 63.867 ± 34.842

Five sub-bands KNN 63.283 ± 14.446 68.063 ± 19.471

Five sub-bands MLP 64.035 ± 16.029 64.035 ± 16.029

HC

Channel-wise SVM 64.286 ± 15.873 70.355 ± 22.493

Channel-wise KNN 62.030 ± 14.141 69.032 ± 16.828

Channel-wise MLP 62.030 ± 14.666 62.030 ± 14.666

Five sub-bands SVM 64.035 ± 16.166 63.867 ± 34.842

Five sub-bands KNN 60.902 ± 15.086 66.050 ± 21.082

Five sub-bands MLP 66.667 ± 13.113 66.667 ± 13.113

KFD

Channel-wise SVM 65.664 ± 14.468 71.445 ± 20.999

Channel-wise KNN 61.404 ± 16.430 68.813 ± 17.741

Channel-wise MLP 64.536 ± 15.119 64.536 ± 15.119

Five sub-bands SVM 64.411 ± 16.06 68.565 ± 25.647

Five sub-bands KNN 60.150 ± 15.509 66.086 ± 18.639

Five sub-bands MLP 63.784 ± 16.64 63.784 ± 16.640

HFD

Channel-wise SVM 64.912 ± 16.339 70.525 ± 23.532

Channel-wise KNN 62.406 ± 15.112 68.881 ± 17.066

Channel-wise MLP 65.038 ± 14.785 65.038 ± 14.785

Five sub-bands SVM 64.160 ± 15.705 63.867 ± 34.368

Five sub-bands KNN 63.784 ± 13.741 69.751 ± 16.607

Five sub-bands MLP 64.912 ± 14.974 64.912 ± 14.974

PSD

Five sub-bands SVM 64.662 ± 15.147 65.354 ± 31.746

Five sub-bands KNN 65.163 ± 14.937 70.715 ± 19.040

Five sub-bands MLP 64.160 ± 15.922 64.160 ± 15.922
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Arousal Classification Performance - 20 Seconds Long Epochs - Individual

Average accuracies and average F1-scores on individual features for arousal using train-test subsets

and 20 seconds long epochs

Arousal (calm-excited) - 20 seconds epochs - individual features
Feature Method Classifier Average accuracy [%] Average F1-score [%]

DE

Channel-wise SVM 62.657 ± 17.189 70.134 ± 18.337

Channel-wise KNN 60.902 ± 18.953 66.625 ± 20.607

Channel-wise MLP 60.652 ± 17.521 60.652 ± 17.521

Five sub-bands SVM 62.907 ± 16.232 68.929 ± 19.244

Five sub-bands KNN 56.892 ± 18.813 62.959 ± 22.872

Five sub-bands MLP 62.657 ± 16.208 62.657 ± 16.208

HM

Channel-wise SVM 63.409 ± 16.652 70.182 ± 18.535

Channel-wise KNN 61.153 ± 16.439 66.446 ± 18.734

Channel-wise MLP 58.647 ± 19.637 58.647 ± 19.637

Five sub-bands SVM 64.912 ± 15.730 69.588 ± 26.744

Five sub-bands KNN 57.143 ± 17.022 63.570 ± 21.016

Five sub-bands MLP 62.155 ± 16.759 62.155 ± 16.759

HC

Channel-wise SVM 62.657 ± 17.041 68.864 ± 19.515

Channel-wise KNN 57.644 ± 17.453 65.864 ± 17.529

Channel-wise MLP 58.396 ± 17.084 58.396 ± 17.084

Five sub-bands SVM 64.662 ± 15.085 70.911 ± 22.207

Five sub-bands KNN 58.396 ± 14.792 61.169 ± 23.119

Five sub-bands MLP 65.915 ± 14.912 65.915 ± 14.912

KFD

Channel-wise SVM 62.155 ± 16.302 69.022 ± 18.168

Channel-wise KNN 61.905 ± 17.388 66.664 ± 18.966

Channel-wise MLP 57.644 ± 19.173 57.644 ± 19.173

Five sub-bands SVM 60.902 ± 17.999 64.224 ± 27.418

Five sub-bands KNN 59.148 ± 17.045 65.903 ± 18.872

Five sub-bands MLP 57.143 ± 20.015 57.143 ± 20.015

HFD

Channel-wise SVM 63.158 ± 15.458 69.958 ± 19.768

Channel-wise KNN 60.401 ± 17.173 65.600 ± 17.709

Channel-wise MLP 61.404 ± 16.334 61.404 ± 16.334

Five sub-bands SVM 64.912 ± 15.516 69.588 ± 26.380

Five sub-bands KNN 59.900 ± 15.682 65.898 ± 19.507

Five sub-bands MLP 65.288 ± 15.417 65.288 ± 15.417

PSD

Five sub-bands SVM 63.910 ± 16.212 66.472 ± 27.860

Five sub-bands KNN 60.150 ± 16.047 64.877 ± 20.399

Five sub-bands MLP 65.163 ± 15.475 65.163 ± 15.475
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Arousal Classification Performance - 40 Seconds Long Epochs - Individual

Average accuracies and average F1-scores on individual features for arousal using train-test subsets

and 40 seconds long epochs

Arousal (calm-excited) - 40 seconds epochs - individual features
Feature Method Classifier Average accuracy [%] Average F1-score [%]

DE

Channel-wise SVM 66.029 ± 16.554 71.393 ± 23.265

Channel-wise KNN 64.593 ± 14.500 70.737 ± 16.121

Channel-wise MLP 62.201 ± 15.530 62.201 ± 15.530

Five sub-bands SVM 66.507 ± 14.549 73.459 ± 15.791

Five sub-bands KNN 64.593 ± 16.289 69.817 ± 19.606

Five sub-bands MLP 63.636 ± 14.533 63.636 ± 14.533

HM

Channel-wise SVM 64.593 ± 15.715 69.007 ± 23.862

Channel-wise KNN 61.722 ± 15.023 69.925 ± 14.970

Channel-wise MLP 57.895 ± 18.235 57.895 ± 18.235

Five sub-bands SVM 65.072 ± 15.530 67.620 ± 31.445

Five sub-bands KNN 61.244 ± 18.641 69.664 ± 18.166

Five sub-bands MLP 66.029 ± 13.498 66.029 ± 13.498

HC

Channel-wise SVM 66.507 ± 15.467 69.264 ± 28.488

Channel-wise KNN 58.373 ± 15.545 64.679 ± 21.574

Channel-wise MLP 56.938 ± 17.628 56.938 ± 17.628

Five sub-bands SVM 65.072 ± 15.530 67.620 ± 31.445

Five sub-bands KNN 60.766 ± 23.089 65.958 ± 27.506

Five sub-bands MLP 63.636 ± 17.142 63.636 ± 17.142

KFD

Channel-wise SVM 61.722 ± 18.822 65.743 ± 27.348

Channel-wise KNN 61.722 ± 17.029 67.908 ± 19.804

Channel-wise MLP 58.852 ± 16.699 58.852 ± 16.699

Five sub-bands SVM 63.636 ± 15.152 66.166 ± 25.815

Five sub-bands KNN 59.330 ± 16.140 64.336 ± 24.069

Five sub-bands MLP 57.895 ± 15.807 57.895 ± 15.807

HFD

Channel-wise SVM 64.115 ± 18.048 65.66 ± 29.858

Channel-wise KNN 62.679 ± 15.715 69.953 ± 14.797

Channel-wise MLP 63.636 ± 14.213 63.636 ± 14.213

Five sub-bands SVM 65.072 ± 15.318 67.620 ± 31.018

Five sub-bands KNN 62.919 ± 17.220 69.269 ± 20.794

Five sub-bands MLP 65.311 ± 16.077 65.311 ± 16.077

PSD

Five sub-bands SVM 66.029 ± 15.700 68.836 ± 29.188

Five sub-bands KNN 64.115 ± 17.000 69.543 ± 23.073

Five sub-bands MLP 65.550 ± 15.023 65.550 ± 15.023
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E Detailed Average Accuracies And Average F1-Score of Valence Clas-
sification For Individual Features

Valence Classification Performance - 5 Seconds Long Epochs - Individual

Average accuracies and average F1-scores on individual features for valence using train-test subsets

and five seconds long epochs

Valence (negative-positive) - 5 seconds epochs - individual features
Feature Method Classifier Average accuracy [%] Average F1-score [%]

DE

Channel-wise SVM 61.596 ± 11.207 66.914 ± 15.263

Channel-wise KNN 59.837 ± 5.624 65.488 ± 8.747

Channel-wise MLP 60.714 ± 6.687 60.714 ± 6.687

Five sub-bands SVM 60.088 ± 10.580 71.361 ± 20.360

Five sub-bands KNN 60.652 ± 4.819 66.634 ± 7.307

Five sub-bands MLP 57.519 ± 9.188 57.519 ± 9.188

HM

Channel-wise SVM 61.216 ± 6.403 67.838 ± 15.717

Channel-wise KNN 57.707 ± 6.585 63.900 ± 9.754

Channel-wise MLP 59.461 ± 5.242 59.461 ± 5.242

Five sub-bands SVM 59.336 ± 7.584 60.137 ± 32.193

Five sub-bands KNN 56.579 ± 5.575 62.717 ± 9.907

Five sub-bands MLP 59.962 ± 6.690 59.962 ± 6.690

HC

Channel-wise SVM 60.276 ± 5.444 66.58 ± 15.823

Channel-wise KNN 58.584 ± 6.430 64.174 ± 10.757

Channel-wise MLP 60.840 ± 5.352 60.840 ± 5.352

Five sub-bands SVM 59.085 ± 7.594 64.902 ± 21.880

Five sub-bands KNN 53.947 ± 6.521 60.646 ± 9.815

Five sub-bands MLP 59.336 ± 7.584 59.336 ± 7.584

KFD

Channel-wise SVM 60.777 ± 6.128 67.467 ± 14.49

Channel-wise KNN 56.015 ± 6.429 62.04 ± 9.737

Channel-wise MLP 59.023 ± 6.922 59.023 ± 6.922

Five sub-bands SVM 59.837 ± 7.714 64.589 ± 22.675

Five sub-bands KNN 56.516 ± 5.824 62.038 ± 9.772

Five sub-bands MLP 58.459 ± 7.327 58.459 ± 7.327

HFD

Channel-wise SVM 60.714 ± 6.070 66.104 ± 17.379

Channel-wise KNN 57.206 ± 5.477 62.644 ± 10.140

Channel-wise MLP 60.526 ± 6.463 60.526 ± 6.463

Five sub-bands SVM 59.336 ± 7.481 60.137 ± 31.755

Five sub-bands KNN 56.861 ± 6.104 63.119 ± 10.450

Five sub-bands MLP 58.709 ± 8.220 58.709 ± 8.220

PSD

Five sub-bands SVM 59.962 ± 6.523 62.957 ± 26.875

Five sub-bands KNN 58.584 ± 6.993 64.427 ± 11.027

Five sub-bands MLP 59.962 ± 6.690 59.962 ± 6.690

75



Valence Classification Performance - 10 Seconds Long Epochs - Individual

Average accuracies and average F1-scores on individual features for valence using train-test subsets

and ten seconds long epochs

Valence (negative-positive) - 10 seconds epochs - individual features
Feature Method Classifier Average accuracy [%] Average F1-score [%]

DE

Channel-wise SVM 58.772 ± 11.309 62.668 ± 20.927

Channel-wise KNN 55.764 ± 12.303 60.643 ± 15.936

Channel-wise MLP 59.273 ± 11.333 59.273 ± 11.333

Five sub-bands SVM 58.145 ± 10.775 62.728 ± 21.172

Five sub-bands KNN 57.268 ± 7.549 63.457 ± 11.972

Five sub-bands MLP 58.145 ± 10.775 62.728 ± 21.172

HM

Channel-wise SVM 60.526 ± 10.478 67.181 ± 17.151

Channel-wise KNN 57.018 ± 10.423 62.771 ± 14.316

Channel-wise MLP 61.404 ± 8.823 61.404 ± 8.823

Five sub-bands SVM 60.276 ± 10.258 60.952 ± 32.878

Five sub-bands KNN 56.767 ± 7.827 63.261 ± 12.200

Five sub-bands MLP 57.895 ± 12.168 57.895 ± 12.168

HC

Channel-wise SVM 59.649 ± 10.483 67.076 ± 17.658

Channel-wise KNN 53.885 ± 10.232 59.813 ± 14.861

Channel-wise MLP 59.900 ± 9.565 59.900 ± 9.565

Five sub-bands SVM 58.271 ± 11.456 62.575 ± 28.239

Five sub-bands KNN 55.890 ± 8.561 61.568 ± 12.615

Five sub-bands MLP 60.150 ± 10.494 60.15 ± 10.494

KFD

Channel-wise SVM 61.779 ± 9.031 67.901 ± 15.358

Channel-wise KNN 56.767 ± 8.220 63.469 ± 12.706

Channel-wise MLP 62.030 ± 8.565 62.030 ± 8.565

Five sub-bands SVM 58.396 ± 10.659 61.675 ± 25.772

Five sub-bands KNN 52.757 ± 10.477 59.147 ± 14.271

Five sub-bands MLP 51.629 ± 11.141 51.629 ± 11.141

HFD

Channel-wise SVM 60.276 ± 10.679 65.991 ± 19.761

Channel-wise KNN 55.890 ± 9.503 62.880 ± 14.320

Channel-wise MLP 60.025 ± 10.274 60.025 ± 10.274

Five sub-bands SVM 60.276 ± 10.118 60.952 ± 32.43

Five sub-bands KNN 57.957 ± 7.432 64.202 ± 11.78

Five sub-bands MLP 60.276 ± 10.118 60.276 ± 10.118

PSD

Five sub-bands SVM 60.902 ± 9.763 61.887 ± 31.425

Five sub-bands KNN 57.018 ± 7.795 63.827 ± 11.714

Five sub-bands MLP 61.028 ± 9.398 61.028 ± 9.398
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Valence Classification Performance - 20 Seconds Long Epochs - Individual

Average accuracies and average F1-scores on individual features for valence using train-test subsets

and 20 seconds long epochs

Valence (negative-positive) - 20 seconds epochs - individual features
Feature Method Classifier Average accuracy [%] Average F1-score [%]

DE

Channel-wise SVM 54.637 ± 12.023 60.813 ± 20.333

Channel-wise KNN 52.632 ± 8.905 57.901 ± 14.402

Channel-wise MLP 58.647 ± 9.531 58.647 ± 9.531

Five sub-bands SVM 52.632 ± 12.546 59.729 ± 20.137

Five sub-bands KNN 52.632 ± 12.646 55.508 ± 19.203

Five sub-bands MLP 58.145 ± 11.727 58.145 ± 11.727

HM

Channel-wise SVM 55.138 ± 11.033 63.189 ± 16.497

Channel-wise KNN 53.634 ± 10.390 60.368 ± 13.988

Channel-wise MLP 52.381 ± 11.224 52.381 ± 11.224

Five sub-bands SVM 58.396 ± 9.503 61.895 ± 28.413

Five sub-bands KNN 51.378 ± 8.777 59.073 ± 11.796

Five sub-bands MLP 54.887 ± 13.125 54.887 ± 13.125

HC

Channel-wise SVM 54.887 ± 13.596 60.597 ± 22.067

Channel-wise KNN 53.133 ± 14.997 57.282 ± 18.902

Channel-wise MLP 50.627 ± 12.62 50.627 ± 12.620

Five sub-bands SVM 58.396 ± 8.815 61.613 ± 28.219

Five sub-bands KNN 53.885 ± 10.17 60.556 ± 13.692

Five sub-bands MLP 55.89 ± 11.318 55.890 ± 11.318

KFD

Channel-wise SVM 58.396 ± 10.019 63.085 ± 17.520

Channel-wise KNN 54.637 ± 12.833 60.285 ± 13.422

Channel-wise MLP 51.128 ± 14.183 51.128 ± 14.183

Five sub-bands SVM 52.882 ± 13.552 58.209 ± 26.724

Five sub-bands KNN 55.388 ± 15.73 60.328 ± 18.549

Five sub-bands MLP 54.135 ± 13.857 54.135 ± 13.857

HFD

Channel-wise SVM 52.381 ± 14.019 58.008 ± 24.742

Channel-wise KNN 51.378 ± 8.920 55.489 ± 16.193

Channel-wise MLP 56.391 ± 9.291 56.391 ± 9.291

Five sub-bands SVM 58.396 ± 9.374 61.895 ± 28.026

Five sub-bands KNN 51.880 ± 9.182 58.808 ± 12.040

Five sub-bands MLP 55.514 ± 11.887 55.514 ± 11.887

PSD

Five sub-bands SVM 57.393 ± 9.184 61.044 ± 28.005

Five sub-bands KNN 51.880 ± 13.365 57.965 ± 16.657

Five sub-bands MLP 56.140 ± 11.177 56.140 ± 11.177
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Valence Classification Performance - 40 Seconds Long Epochs - Individual

Average accuracies and average F1-scores on individual features for arousal using train-test subsets

and 40 seconds long epochs

Valence (negative-positive) - 40 seconds epochs - individual features
Feature Method Classifier Average accuracy [%] Average F1-score [%]

DE

Channel-wise SVM 55.024 ± 11.529 60.661 ± 23.246

Channel-wise KNN 54.545 ± 13.209 59.739 ± 18.281

Channel-wise MLP 55.981 ± 13.300 55.981 ± 13.300

Five sub-bands SVM 53.11 ± 12.950 58.465 ± 23.553

Five sub-bands KNN 47.368 ± 17.819 54.293 ± 20.857

Five sub-bands MLP 55.981 ± 10.170 55.981 ± 10.170

HM

Channel-wise SVM 54.545 ± 12.121 64.058 ± 16.601

Channel-wise KNN 55.502 ± 13.852 62.738 ± 14.128

Channel-wise MLP 50.239 ± 13.676 50.239 ± 13.676

Five sub-bands SVM 54.545 ± 11.338 61.066 ± 28.004

Five sub-bands KNN 57.416 ± 10.074 64.505 ± 11.958

Five sub-bands MLP 52.632 ± 11.961 52.632 ± 11.961

HC

Channel-wise SVM 54.545 ± 12.121 64.058 ± 16.601

Channel-wise KNN 55.502 ± 13.852 62.738 ± 14.128

Channel-wise MLP 50.239 ± 13.676 50.239 ± 13.676

Five sub-bands SVM 54.545 ± 11.338 61.066 ± 28.004

Five sub-bands KNN 57.416 ± 10.074 64.505 ± 11.958

Five sub-bands MLP 52.632 ± 11.961 52.632 ± 11.961

KFD

Channel-wise SVM 55.502 ± 10.451 63.554 ± 15.173

Channel-wise KNN 46.890 ± 12.950 54.748 ± 15.559

Channel-wise MLP 56.459 ± 13.409 56.459 ± 13.409

Five sub-bands SVM 53.110 ± 11.444 59.440 ± 23.617

Five sub-bands KNN 54.545 ± 12.494 63.343 ± 13.224

Five sub-bands MLP 56.459 ± 12.339 56.459 ± 12.339

HFD

Channel-wise SVM 49.761 ± 15.263 56.338 ± 25.100

Channel-wise KNN 48.325 ± 10.074 55.245 ± 14.073

Channel-wise MLP 53.589 ± 12.456 53.589 ± 12.456

Five sub-bands SVM 54.545 ± 11.184 61.066 ± 27.623

Five sub-bands KNN 55.263 ± 11.840 62.316 ± 14.853

Five sub-bands MLP 53.110 ± 11.867 53.110 ± 11.867

PSD

Five sub-bands SVM 50.718 ± 11.466 54.441 ± 29.801

Five sub-bands KNN 54.067 ± 13.372 58.229 ± 16.827

Five sub-bands MLP 53.110 ± 11.839 53.110 ± 11.839
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F Detailed Average Accuracies And Average F1-Score of Valence And
Arousal Classification For Features Combinations

The best-performing epoch sizes for each feature combination and classification methods for valence

Valence (negative-positive) - combinatorial features
Features Classifier Epoch size Average accuracy Average F1-score

HM [CW],

HC [CW]

SVM 10sec 60.401 ± 10.232 71.771 ± 22.301

KNN 10sec 58.396 ± 6.392 64.030 ± 10.900

MLP 10sec 59.649 ± 9.864 59.649 ± 9.864

DE [SB],

PSD[CW]

SVM 5sec 59.461 ± 7.333 67.043 ± 30.851

KNN 5sec 60.652 ± 4.819 66.634 ± 7.307

MLP 10sec 59.900 ± 8.409 59.900 ± 8.409

HFD [CW],

KFD[CW]

SVM 10sec 62.281 ± 7.787 67.441 ± 17.356

KNN 10sec 57.707 ± 6.366 63.738 ± 8.894

MLP 10sec 59.398 ± 10.896 59.398 ± 10.896

DE [SB],

HM [CW]

SVM 5sec 60.276 ± 6.06 65.237 ± 32.056

KNN 5sec 60.902 ± 4.961 66.875 ± 7.295

MLP 10sec 60.15 ± 10.343 60.15 ± 10.343

HM [CW], HC [CW],

HFD [CW],KFD[CW],

DE [SB],PSD [SB]

SVM 5sec 59.524 ± 7.241 67.313 ± 30.932

KNN 5sec 58.772 ± 5.968 64.655 ± 8.521

MLP 5sec 57.456 ± 7.548 57.456 ± 7.548

Abbrev: SB = sub-bands, and CW = channel-wise

The best-performing epoch sizes for each feature combination and classification methods for arousal

Arousal (calm-excited) - combinatorial features
Features Classifier Epoch size Average accuracy Average F1-score

HM [CW],

HC [CW]

SVM 10sec 65.664 ± 14.769 71.771 ± 22.301

KNN 10sec 62.406 ± 13.737 69.458 ± 16.160

MLP 5sec 64.348 ± 11.855 64.348 ± 11.855

DE [SB],

PSD [SB]

SVM 5sec 65.977 ± 11.933 67.043 ± 30.851

KNN 5sec 66.729 ± 11.192 71.841 ± 14.346

MLP 5sec 64.098 ± 12.842 64.098 ± 12.842

HFD [CW],

KFD[CW]

SVM 5sec 65.977 ± 11.933 72.793 ± 17.490

KNN 10sec 62.782 ± 14.937 70.067 ± 16.199

MLP 5sec 64.599 ± 12.629 64.599 ± 12.629

DE [SB],

HM [CW]

SVM 40sec 65.072 ± 15.530 67.620 ± 31.445

KNN 5sec 66.541 ± 11.216 71.666 ± 14.533

MLP 40sec 66.029 ± 14.796 66.029 ± 14.796

HM [CW], HC [CW],

HFD [CW], KFD[CW],

DE [SB], PSD [SB]

SVM 20sec 64.662 ± 15.819 69.391 ± 26.704

KNN 10sec 62.531 ± 14.348 68.874 ± 17.248

MLP 5sec 65.100 ± 12.056 65.100 ± 12.056

Abbrev: SB = sub-bands, and CW = channel-wise
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