
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f E
le

ct
ro

ni
c

Sy
st

em
s

M
as

te
r’s

 th
es

is

Anders Berg Sæther

Investigation of sliding window DFT
(sDFT) application for radio

Master’s thesis in Electronics Systems Design and Innovation
Supervisor: Lars Magne Lundheim
Co-supervisor: Svein Rypdal Henninen & Morten Paulsen
June 2023

Anders Berg Sæther

Investigation of sliding window DFT
(sDFT) application for radio

Master’s thesis in Electronics Systems Design and Innovation
Supervisor: Lars Magne Lundheim
Co-supervisor: Svein Rypdal Henninen & Morten Paulsen
June 2023

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Electronic Systems

Abstract
This thesis documents a SystemVerilog implementation of a Bluetooth Low Energy (BLE)
demodulator and preamble detector, which are based on the sliding window discrete Fourier
transform (sDFT). Both systems use matched filters, where the filtering is performed using
multiplications in frequency domain. Furthermore, these systems are compared to traditional
equivalents of the same demodulator and preamble detector, which use linear convolution to
perform the filtering in time domain. The comparison is done both in terms of performance
and implementation cost.

It was found that the main advantage of using the sDFT for filtering is that the frequency
bins can be computed independently. This means that we do not have to use the entire
spectrum to perform filtering, and can therefore save hardware resources by only using the
most important frequency bins, with only a small loss in performance. More specifically, the
implemented sDFT demodulator can use three out of 16 frequency bins to perform filtering,
which reduces the amount of NAND2 equivalents required to synthesize the system by 45%
compared to the time domain demodulator. This also increases the bit error rate (BER) by
20% at the most affected value of Eb

N0
, which corresponds to a 0.29 dB loss in Eb

N0
. Similarly,

the implemented sDFT preamble detector can use seven out of 128 frequency bins, which
reduces the amount of NAND2 equivalents by 67% compared to the time domain preamble
detector. The sDFT implementation also increases number of undetected preambles by 7.8%
at the most affected value of Eb

N0
, which corresponds to a 0.15 dB loss in Eb

N0
.

In short, the sDFT seems to be very efficient when using long filters which’s information is
mostly contained in a few frequency bins. This way, we only need to use these few bins when
filtering in frequency domain, resulting in a large reduction in implementation cost and only
a small reduction in performance.

Contents
1 Introduction 1

2 Background 1
2.1 Gaussian frequency shift keying . 2

2.1.1 GFSK transmitter . 2
2.1.2 GFSK receiver . 5
2.1.3 Intersymbol interference . 6

2.2 DTFT and DFT . 8
2.3 Sliding window discrete Fourier transform . 9
2.4 Inverse sDFT . 10
2.5 Filtering with the sDFT . 11
2.6 Minimum-distance criterion and matched filter 12
2.7 Magnitude estimation . 14
2.8 Fixed-point number representation . 15

2.8.1 Fixed-point arithmetic . 15

3 Implementation 16
3.1 Bluetooth low energy packets . 16
3.2 GFSK modulation . 17
3.3 Fixed-point numbers in SystemVerilog . 18
3.4 Complex arithmetic . 18

3.4.1 Complex adder . 19
3.4.2 Complex multiplier . 19

3.5 sDFT demodulator . 20
3.5.1 sDFT . 21
3.5.2 Matched filterbank . 22
3.5.3 Inverse sDFT . 25
3.5.4 Demodulation decision . 26
3.5.5 Magnitude estimation . 27

3.6 Partial spectrum computation . 28
3.7 Preamble detector . 29
3.8 Time domain implementations . 34

3.8.1 Time domain demodulator . 34
3.8.2 Time domain preamble detector . 34

4 Verification 35
4.1 Magnitude estimation . 35
4.2 Demodulator . 36
4.3 Preamble detector . 36
4.4 Channel noise . 37
4.5 Tools for verification . 38

5 Results and discussion 38
5.1 Magnitude estimation . 38
5.2 Demodulator . 41

5.2.1 BER with known timing . 41
5.2.2 BER with suboptimal timing . 44
5.2.3 Synthesis results . 45

5.3 Preamble detector . 47
5.3.1 Performance . 47
5.3.2 Synthesis results . 49

6 Future Research 49

7 Conclusion 50

References 52

1 Introduction
Wireless communication is an important part of the modern society, and is something most
people encounter many times during their day. For example when talking on the phone,
browsing the internet or listening to music with a wireless headset. A simplified block diagram
of such a communication system is shown in fig. 1, where a transmitter sends a signal to a
receiver through a channel.

Figure 1: A simplified overview of a general communication system. The transmitter sends a signal
through a channel, before the signal is picked up by a receiver.

An important part of the receiver in fig. 1 is the demodulator, which extracts information
from the received signal. A demodulator often utilizes matched filters to extract informa-
tion, and these filters are traditionally implemented in time domain using linear convolution.
The same filters can also be implemented in frequency domain using the discrete Fourier
transform (DFT), where the filtering is performed using multiplication instead of linear con-
volution.

This thesis will investigate the use of the sliding window discrete Fourier transform (sDFT)
in a radio application, which is an efficient way of computing the DFT by using its recursive
nature. More specifically, an sDFT based demodulator will be implemented and compared
to a traditional demodulator using their performance and implementation cost. Additionally,
the thesis also documents the implementation of an sDFT based preamble detector, which is
used to synchronize the demodulator to the received symbols. The preamble detector is also
compared to its time domain counterpart.

Apart from this introduction, this thesis is structured into six sections. Section 2 is the first of
these, and presents the relevant background and theory needed to understand the implemented
demodulator and preamble detector. Furthermore, section 3 and section 4 describes the
implementation and verification of the these systems, while section 5 presents and discusses
the results found during the verification. Lastly, section 6 describes aspects that can be
interesting for further research, while section 7 makes a conclusion based on the results in
section 5.

2 Background
This section presents the relevant background and theory needed to understand the imple-
mented demodulator, preamble detector and the communication system they are involved
in. Firstly, section 2.1 describes Gaussian frequency shift keying (GFSK) and how a general
GFSK transmitter and receiver are built up. Section 2.2 then presents the discrete Fourier
transform (DFT), before section 2.3, section 2.4 and section 2.5 present the sliding window

1 of 52

DFT (sDFT), the inverse sDFT and how these can be applied to perform filtering. Further-
more, section 2.6 derives and explains how a matched filter can be used for demodulation.
Lastly, section 2.7 presents a way to efficiently estimate the magnitude of a complex num-
ber, before section 2.8 describes fixed-point numbers and how they can be used to represent
rational numbers in a binary number system.

Note that section 2.2, section 2.3, section 2.4, section 2.5 and section 2.8 have some overlap
with the background section in my project thesis, because the topics in these sections are
relevant for both theses [1].

2.1 Gaussian frequency shift keying

Gaussian frequency shift keying (GFSK) is a continuous phase modulation technique that
builds on regular FSK, where symbols are represented by sinusoidals with different frequencies
[2, p. 218]. The difference between FSK and GFSK is that the pulse shaping function in GFSK
uses the Gaussian function to reduce transmission bandwidth [3].

2.1.1 GFSK transmitter

A block diagram of a GFSK transmitter is shown in fig. 2. Here, the input signal x(t) is a
square wave containing the symbols we want to transmit. The transmitter modulates x(t)
and transmits it as stx(t).

Figure 2: A block diagram of a GFSK transmitter. The input signal x(t) is modulated and trans-
mitted as stx(t).

The input signal x(t) is given by

x(t) =
∞∑

n=−∞
x[n]Π((t − nT)/T)

T
, (1)

where x[n] is a sequence of symbols drawn from the symbol alphabet. In this thesis, we will
for simplicity assume a binary symbol alphabet, meaning x[n] ∈ {−1, 1}. Additionally, T is
the symbol period, and Π(t) is the rectangular function, which is defined as

2 of 52

Π(t) =

0 |t| > 1

2
1/2 |t| = 1

2
1 |t| < 1

2

. (2)

Furthermore, the Gaussian filter in fig. 2 smooths the input signal as shown in fig. 3. Here we
can see that the transitions between 1 and −1, or the other way around, are instantaneous
for the unfiltered signal, while they happen gradually over time for the filtered signal.

Figure 3: The input signal x(t) before and after the Gaussian filter.

More specifically, the Gaussian filter is defined by its impulse response

h(t) = 1√
2πσT

e− 1
2 (t

σT)2
, (3)

where σT is the standard deviation [3, p. 517]. Note that this definition implies that the filter
has an infinite length impulse response, which needs to be limited in a practical application.
Additionally, one can express σ using the filter’s 3 dB bandwidth B [3, p. 517]. This gives
us

σ =
√

ln 2
2πBT

. (4)

As mentioned, GFSK modulates symbols using sinusoidal of different frequencies. This is done
using a phase ϕ(t) that changes over time, which is computed by integrating the Gaussian
filter output, as shown in fig. 2. More specifically, the phase is defined as

3 of 52

ϕ(t) = hπ

ˆ t

−∞

∞∑
n=−∞

x[n]g(τ − nT)dτ, (5)

where h is the modulation index and g(t) is the pulse shaping function, which is defined
as

g(t) = h(t) ∗ Π(t/T)
T

=
ˆ ∞

−∞
h(τ)Π((t − τ)/T)

T
dτ

= 1
T

ˆ t+T/2

t−T/2

1√
2πσT

e− 1
2 (τ

σT)2
dτ.

(6)

We then use the substitution u = τ
σT , which means du

dτ = 1
σT ⇒ dτ = σTdu. Inserting this

into (6) gives

g(t) = 1√
2πT

ˆ u2

u1

e− u2
2 du, (7)

where u1 = t−T/2
σT and u2 = t+T/2

σT . Finally, we can use the Q-function

Q(x) = 1√
2π

ˆ ∞

x
e− u2

2 du (8)

to express (7) as

g(t) = 1
T

(Q(u1) − Q(u2))

= 1
T

(
Q

(
t − T

2
σT

)
− Q

(
t + T

2
σT

))
.

(9)

Lastly, as shown in fig. 2, the transmitted signal stx(t) is created by upmixing the baseband
signal

sb(t) = sb1(t) + sb2(t)
= cos(ϕ(t)) + sin(ϕ(t))

(10)

to a radio frequency (RF) and then amplifying it. In other words, stx(t) can be expressed
as

4 of 52

stx(t) = A [sb1(t) cos(2πfRFt) − sb2(t) sin(2πfRFt)]
= A [cos(ϕ(t)) cos(2πfRFt) − sin(ϕ(t)) sin(2πfRFt)]

= A

2 [cos(2πfRFt + ϕ(t)) + cos(2πfRFt − ϕ(t))]

− A

2 [cos(2πfRFt − ϕ(t)) − cos(2πfRFt + ϕ(t))]

= A cos(2πfRFt + ϕ(t)),

(11)

where A is the amplitude and fRF is the radio frequency. Note that the RF is generally is
the low GHz range.

2.1.2 GFSK receiver

This thesis focuses on a demodulator and preamble detector which are a part of a GFSK re-
ceiver. This receiver has a block diagram as shown in fig. 4, and downmixes the received signal
to an intermediate frequency (IF). Note that the IF is generally in the low MHz range.

Figure 4: A block diagram of a GFSK receiver. The received signal is downmixed and transformed
into an IQ signal which is sent to the demodulator and preamble detector.

The receiver in fig. 4 downmixes using both a sine and a cosine, which creates and IQ signal.
We treat the IQ signal as a complex valued signal, and before the lowpass filter, this is given
by

5 of 52

sIF(t) = I + jQ

= stx(t) · cos(2π(fRF − fIF)t)
+ jstx(t) · sin(2π(fRF − fIF)t)
= A cos(2πfRFt + ϕ(t)) · cos(2π(fRF − fIF)t)
+ jA cos(2πfRFt + ϕ(t)) · sin(2π(fRF − fIF)t)

= A

2 [cos(2π(2fRF − fIF)t + ϕ(t)) + cos(2πfIFt + ϕ(t))]

+ j
A

2 [sin(2π(2fRF − fIF)t + ϕ(t)) + sin(2πfIFt + ϕ(t))] .

(12)

The lowpass filter in fig. 4 then removes the high frequency components from the sIF(t),
meaning cos(2π(2fRF − fIF)t + ϕ(t)) and sin(2π(2fRF − fIF)t + ϕ(t)). Lastly, the resulting
signal is multiplied by 2 in order to preserve the amplitude. This signal is given by

s(t) = A [cos(2πfIFt + ϕ(t)) + j sin(2πfIFt + ϕ(t))]
= Aej(2πfIFt+ϕ(t)),

(13)

and is sent to the demodulator and preamble detector.

2.1.3 Intersymbol interference

One downside with the Gaussian filter used for GFSK is that it introduces intersymbol inter-
ference (ISI). One way to visualize this is by comparing the phase trees for FSK and GFSK,
which show how ϕ(t) from (5) changes depending on the transmitted symbols. For the case
of FSK, the pulse shaping function is rectangular, meaning that (5) can be written as

ϕ(t) = hπ

ˆ t

−∞

∞∑
n=−∞

x[n]Π(τ − nT)dτ, (14)

where Π(t) is a rectangular function given by (2).

From (14), we can see that the phase contribution for each symbol is ±hπ, depending on the
sign of x[n]. This is shown in the FSK phase tree in fig. 5, where the phase changes by ±hπ
between each symbol.

6 of 52

Figure 5: A phase tree for an FSK signal, where the initial phase is set to 0. Following a path
upwards represents sending a 1 and downwards a −1. Note that the time axis is normalized by the
symbol period.

For GFSK, the pulse shaping function g(t) in (5) is a Gaussian given by (9), which results
in the phase change from each symbol to be ≤ hπ in absolute value due to ISI. A phase
tree of a GFSK signal is shown in fig. 6, where the length of Gaussian filter h(t) from (3) is
limited to span two symbols. In this phase tree, we can clearly see the ISI by the way ϕ(t)
curves. More specifically, ϕ(t) curves when the transmitted symbols alternate, causing the
phase shift between two symbols to be < hπ. Otherwise, when two or more identical symbols
are transmitted after each other, the phase shift is ±hπ and this creates a straight line in the
phase tree. Also note that the symbols in fig. 6 are preceded by several ones, which is why
the phase initially increases.

7 of 52

Figure 6: A phase tree for a GFSK signal, where the sequence is preceded by several 1s. Following a
path upwards represents sending a 1 and downwards a −1. Note that the time axis is normalized by
the symbol period.

2.2 DTFT and DFT

The Discrete Time Fourier Transform (DTFT) is a transform that computes a frequency
domain representation of a discrete time signal. Since the frequency axis of the DTFT is
continuous, the DTFT can’t be implemented in a system and is just an analytical tool.

The Discrete Fourier Transform (DFT) computes a sampled DTFT of a finite length signal,
meaning that the frequency axis is discrete. The DFT is given by

X[k] =
N−1∑
n=0

x[n]e−j2πkn/N , (15)

where N denotes the number of samples on the frequency axis, which is greater or equal to the
length of x[n] [4, p. 468]. Since the frequency axis spans [−fs

2 , fs

2], this gives us a frequency
resolution of

∆f = fs

N
. (16)

Furthermore, the factor ej2π/N is often referred to as twiddle factor and is denoted as

WN = ej2π/N .

The DFT also has an inverse, which is given by

x[n] = 1
N

N−1∑
k=0

X[k]ej2πkn/N . (17)

8 of 52

2.3 Sliding window discrete Fourier transform

The sliding window discrete Fourier transform (sDFT) is an algorithm that uses the recursive
nature of the DFT to compute it efficiently [5, p. 1]. This algorithm is found by inspecting
a sequence of length M

x = {x[n], x[n − 1], . . . , x[n − M + 1]},

and applying the DFT to it. According to (15), this gives us

Xn[k] =
M−1∑
m=0

x[n − M + 1 + m]e−j2πkm/M

=
M−1∑
m=0

x[n̂ + m]W −mk
M ,

(18)

where n̂ = n − M + 1 and W −mk
M = e−j2πkm/M .

We then do the same again, but with a new sequence that is shifted one sample from the
previous. More specifically, n has been replaced with n + 1, and the DFT of this sequence
is denoted Xn+1[k]. By writing all the terms in the sum in Xn[k] and Xn+1[k], we get
respectively (19) and (20).

Xn[k] = x[n̂] + x[n̂ + 1]W −k
M + · · · + x[n̂ + M − 1]W −(M−1)k

M (19)

Xn+1[k] = x[n̂ + 1] + x[n̂ + 2]W −k
M + · · · + x[n̂ + M]W −(M−1)k

M (20)

We can see that (19) and (20) are very similar, and the sDFT uses these similarities to
efficiently compute the DFT. More specifically, it expresses Xn+1 as

Xn+1[k] = x[n̂ + 1] + x[n̂ + 2]W −k
M + · · · + x[n̂ + M]W −(M−1)k

M

= Xn[k]W k
M − x[n̂]W k

M + x[n̂ + M]W −(M−1)k
M

= W k
M (Xn[k] − x[n̂] + x[n̂ + M]W −Mk

M)
= W k

M (Xn[k] − x[n̂] + x[n̂ + M]e−j2πk)
= W k

M (Xn[k] − x[n̂] + x[n̂ + M]),

(21)

where the final simplification comes from Euler’s formula, stating that e−j2πk = 1 when k is
an integer. Lastly, the substitution n̂ = n − M + 1 is undone and we use Xn[k] and Xn−1[k]
instead of Xn+1[k] and Xn[k]. The sDFT is then given by

Xn[k] = W k
M (Xn−1[k] + x[n] − x[n − M]). (22)

9 of 52

Note that the length M does not have any restrictions, e.g. it does not have to be on the
form 2k like for some algorithms of the Fast Fourier Transform (FFT) [4, p. 531].

As shown in (22), a successive sDFT only requires two complex additions and a complex
multiplication per frequency component, regardless of the window size M [5, p. 3]. This
means that the entire spectrum requires 2N complex additions and N complex multiplications,
where N is the number of frequency components. Furthermore, note that a sequence of N
samples requires the sDFT to be computed N times, because the window has to be shifted
by one sample N times. This is illustrated in fig. 7, where the figure shows how the window
is shifted for the first N samples of a sequence. Note that the same concept applies when
starting from any sample and computing the sDFT for the next N samples.

Figure 7: An illustration showing that the sDFT needs to be computed N times to cover N samples.
Note that the signal is assumed to be 0 before the N samples.

2.4 Inverse sDFT

The inverse sDFT algorithm used in this thesis is derived from the inverse DFT in (17). We
start by adding a time index m to Xm[k], which denotes the DFT computed at time m. This
gives us

x[n] = 1
N

N−1∑
k=0

Xm[k]ej2πkn/N , (23)

where N is the size of the window used to compute Xm[k]. Furthermore, we note that n = 0
results in ej2πkn/N = 1, which means that the first sample in the window can be computed
using only N additions and no multiplications. More specifically, we can reconstruct x[0]
using

10 of 52

x[0] = 1
N

N−1∑
k=0

X0[k]ej2πk(0/N)

= 1
N

N−1∑
k=0

X0[k].
(24)

Since the sDFT uses windows that are just one sample apart, we just need to reconstruct one
sample per window in order to reconstruct the entire signal, with the exception of N − 1 at
the end of the signal. This means that (24) can be generalized to

x[n] = 1
N

N−1∑
k=0

Xn[k], (25)

where x[n] is the first sample in the window used to compute Xn[k].

2.5 Filtering with the sDFT

A filter can be used to attenuate unwanted components from a signal, for instance noise.
In this thesis, we will consider linear time-invariant (LTI) filters, which can be described
by

y[n] =
M−1∑
k=0

bkx[n − k] −
N∑

k=1
aky[n − k], (26)

where y[n] is the filter output, x[n] is the input signal and bk and ak are the filter coefficients
[4, p. 674]. Filtering in time domain is performed using linear convolution, which is given
by

y[n] = x[n] ∗ h[n] =
∞∑

m=−∞
x[m]h[n − m], (27)

where h[n] is the sampled impulse response of the filter.

Furthermore, a filter can be described in frequency domain using its frequency response H(ω),
where ω = 2πf is the angular frequency [4, p. 675]. The DTFT of the filter output is given
by

Y (ω) = H(ω)X(ω), (28)

where H(ω) is given by

H(ω) =
∑M−1

k=0 bke−jωk

1 +
∑N

k=1 ake−jωk
. (29)

As shown in (28), filtering in frequency domain can be performed using the multiplication of
two DTFTs. Since the DTFT can’t be implemented in a system, we need to use the DFT
instead. However, the multiplication of two DFTs is equivalent to circular convolution in time
domain, and not linear convolution like we want [4, p. 488].

11 of 52

If we assume that x[n] and h[n] are both of length N , the expected length of y[n] = x[n]∗h[n]
is 2N − 1 [4, p. 493]. However, when performed in frequency domain using an N -point
DFT,

ŷ[n] = IDFT{H[k]X[k]} (30)

has a length of N . This is a result of circular convolution essentially being an aliased version
of linear convolution. More specifically, the aliasing is given by

ŷ[0] = y[0] + y[N]
ŷ[1] = y[1] + y[N + 1]

...
ŷ[N − 1] = y[N − 1] + y[2N − 1].

(31)

However, note that since y[n] is of length 2N − 1, y[2N − 1] is not a part of this sequence
since this is the 2Nth sample [4, p. 497]. Therefore, ŷ[N − 1] is given by

ŷ[N − 1] = y[N − 1] + 0 = y[N − 1], (32)

and does not contain aliasing.

When using the sDFT, we note that the inverse sDFT only needs to construct one sample
per window, as explained in section 2.4. Therefore, we can utilize this to only reconstruct the
samples that doesn’t contain aliasing. The inverse sDFT shown in eq. (25) thus needs to be
altered to reconstruct the Nth sample in the window, meaning

y[N − 1] = 1
N

N−1∑
k=0

Ŷ [k]ej2πk(N−1)/N , (33)

where Ŷ [k] = H[k]X[k] is the filtered spectrum.

2.6 Minimum-distance criterion and matched filter

Assume a transmitter sends a single symbol, such that the receiver observes

r(t) = as(t) + n(t), (34)

where a ∈ A is the transmitted symbol, s(t) is the noiseless received signal and n(t) is the
noise. For a symbol alphabet A = {−1, 1}, a receiver following the minimum-distance strategy
will compare the received signal r(t) to the two possible transmitted signals, s(t) and −s(t)
[2, p. 154]. This comparison is done by computing the energies

ˆ ∞

−∞
|r(t) − s(t)|2dt and

ˆ ∞

−∞
|r(t) + s(t)|2dt, (35)

12 of 52

where the correct symbol will have a smaller energy. This comparison can be generalized to
any symbol alphabet

â = arg min
a∈A

ˆ ∞

−∞
|r(t) − as(t)|2dt, (36)

where â is the symbol outputted by the receiver. The minimized expression in (36) is called
a cost function, and can be rewritten as

J =
ˆ ∞

−∞
|r(t) − as(t)|2dt

=
ˆ ∞

−∞
|r(t)|2dt − 2Re

{
a∗
ˆ ∞

−∞
r(t)s∗(t)dt

}
+ |a|2

ˆ ∞

−∞
|s(t)|2dt

=Er − 2Re{a∗y} + |a|2Eh,

(37)

where

Er =
ˆ ∞

−∞
|r(t)|2dt and Eh =

ˆ ∞

−∞
|s(t)|2dt (38)

are respectively the energies of r(t) and s(t). Furthermore,

y =
ˆ ∞

−∞
|r(t)s∗(t)|2dt (39)

can be interpreted as the correlation between the noiseless signal and received signal with
noise [2, p. 156].

We notice that in (37), the first term Er is independent on the transmitted symbol a, meaning
that the receiver can ignore it. Additionally, of the two remaining terms only the first one
depends on r(t), and it does so through the correlation y in (39). Therefore, y is a sufficient
statistic for making the minimum distance decision [2, p. 156].

This decision can be implemented in two different ways. Either directly as shown in (39) or
by using a filter with impulse response s∗(−t) and sample it at t = 0, as shown in fig. 8. Such
a filter is said to be matched to s(t), and the structure in fig. 8 is called a sampled matched
filter.

Figure 8: A sampled matched filter implementation of a minimum-distance receiver. Adapted from
[2, p. 156].

13 of 52

A demodulator can therefore be made using a filterbank of matched filters that each corre-
sponds to a different symbol. The decision is then made by selecting the symbol corresponding
to the filter output with the highest magnitude at the intervals nT , where T is the symbol
period.

2.7 Magnitude estimation

The magnitude of a complex number z = x + jy is given by

|z| =
√

x2 + y2, (40)

and involves computing one addition, two squares and one square root. Especially the latter
is expensive to do in hardware, which motivates the need for a cheaper approximation of the
magnitude.

One way of doing this is the alpha max plus beta min algorithm, which is given by

|z| ≈ α max(|x|, |y|) + β min(|x|, |y|). (41)

The optimal values for α and β are

α0 =
2 cos(π

8)
1 + cos(π

8) ≈ 0.960433870103

β0 =
2 sin(π

8)
1 + cos(π

8) ≈ 0.397824734759,

(42)

but one can also use other values that are cheaper to implement in hardware at a cost of a
larger error [6]. The performance of a few different values are shown in fig. 9. Note that the
figure only shows the results for one quadrant of the complex plane, but since the estimator
uses the absolute values of x and y, their sign doesn’t matter. In other words, the performance
is the same in all four quadrants.

Figure 9: The performance of a few different values of α and β. Figure taken from [6], used under
the CC BY-SA 3.0 license [7].

14 of 52

2.8 Fixed-point number representation

Fixed-point numbers can be used to represent rational numbers in a binary number system
[4, p. 615]. A number is split into an integer and a fraction part with fixed lengths, as shown
in fig. 10.

Figure 10: The structure of a fixed-point number, which consists of an integer and a fraction part.
Both parts have a fixed number of bits, and these numbers are denoted as respectively i and f .

Two’s complement fixed-point numbers are denoted as Q(i, f), where i and f are respectively
the number of integer and fraction bits. A Q(i, f) number has a resolution of 2−f and can
represent numbers in the range [−2i−1, 2i−1 − 2−f].

Note that in a register a Q(i, f) number is just a group of bits, so in order to extract the
decimal value of these bits, we can use the formula

value10 = vi · 2−f . (43)

In (43), vi is the integer value of the full number (not just the integer bits), and f is the number
of fraction bits. This means that fixed-point numbers are just regular integers, except that
they are scaled by 2−f . This scaling factor adds a decimal point f digits from the right.

(43) is often best illustrated with an example, so we will use it to find the value of the
Q(3, 5) number 101011002. Since this number starts with a 1, we need to first find the two’s
complement. Inverting the bits and adding 1 gives us 01010011 + 1 = 01010100. According
to (43), the value of this number is then −(22 + 24 + 26) · 2−5 = −2.62510.

2.8.1 Fixed-point arithmetic

A fixed-point number is essentially just an integer number that is scaled by 2−f , as shown
in (43). When doing arithmetic, we can therefore treat fixed-point numbers as integers,
as long as we remember that these integers have been upscaled by 2f from the value they
represent.

For addition, the sum is not affected by this upscaling. This can be shown by adding two
upscaled numbers

A · 2f + B · 2f = (A + B) · 2f ,

where the result is also upscaled by 2f . This is as it should be, because when we extract the
value using (43), we get A + B.

For multiplication, the product is affected by this upscaling and needs to be corrected. If we
multiply two upscaled numbers we get

15 of 52

A · 2f · B · 2f = A · B · 22f ,

where the result is scaled by 22f . Therefore, we need to divide by 2f before extracting the
value using (43) in order to get the correct result.

3 Implementation
This section describes the implementation of a Bluetooth Low Energy (BLE) demodulator.
The demodulator utilizes a matched filterbank, which uses the sDFT to perform filtering.
Furthermore, the demodulator uses a preamble detector to find the optimal time to sample
the matched filter outputs.

Firstly, section 3.1 and section 3.2 describes the structure of the packets and signals used by
the demodulator and preamble detector. Additionally, section 3.3 and section 3.4 describes
how fixed-point numbers and complex adders and multipliers are implemented in SystemVer-
ilog. Furthermore, the implementation of the sDFT based demodulator is described in detail
in section 3.5, while section 3.6 describes a way to use the sDFT to save hardware resources
with a slight reduction in performance. Section 3.7 then describes the implementation of the
preamble detector and how it is connected to the demodulator. Lastly, section 3.8 describes
alternative time domain implementations of the demodulator and preamble detector, which
are later compared to the sDFT implementations.

Note that section 3.3, section 3.4 and section 3.5.1 builds on the work done in my project
thesis, so these sections have some overlap with the implementation section in [1].

3.1 Bluetooth low energy packets

As mentioned, the demodulator and preamble detector implemented in this thesis uses Blue-
tooth Low Energy (BLE) packets. These packets consist of a preamble, an address, a payload
and error correction using cyclic redundancy check (CRC), as shown in fig. 11 [8, p. 3]. In
this case, we are using a preamble with a length of 8 symbols, consisting of alternating −1s
and 1s. Due to time constraints, and the need to limit the scope of the thesis, the remaining
parts of the packets will just be treated as data that needs to be demodulated. In other words,
we do not perform error correction nor do we check if the demodulated address matches an
actual address. Therefore, the length and shape of the address, payload and CRC fields are
not important.

Figure 11: A BLE packet consisting of an 8 bit preamble, an address, a payload and CRC.

16 of 52

3.2 GFSK modulation

When implementing the demodulator, we assume that there already exists a receiver which
downmixes the received signal to an intermediate frequency. As described in section 2.1, the
downmixed signal is then given by (13), which is repeated here for convenience:

s(t) = Aej(2πfIFt+ϕ(t)). (44)

In eq. (44), ϕ(t) is given by (5), which is also repeated here:

ϕ(t) = hπ

ˆ t

−∞

∞∑
n=−∞

x[n]g(τ − nT)dτ. (45)

In order for the demodulator to work with the signal in (44), the signal is sampled at intervals
Ts, giving the sampled signal

s[n] = s(nTs) = Aej(2πfIFnTs+ϕ(nTs)). (46)

Furthermore, we choose the intermediate frequency to be fIF = 1 MHz. This could technically
be chosen as any frequency in the low MHz range, so 1 MHz is an arbitrary choice. We also
choose our data rate to be the same as fIF, meaning fd = 1

T = 1 MHz. Additionally, we
choose to send each symbol over several samples, because this makes it easier to correctly
demodulate the symbols in the presence of noise. However, more samples per symbol also
requires a higher sampling frequency in order to maintain the same data rate. Therefore,
we choose to use 16 samples per symbol, because this makes the system quite robust to
noise, while still having a reasonably low sampling frequency. More specifically, the sampling
frequency is given by fs = 1

Ts
= 16fd = 16 MHz. Lastly, the modulation index h in (45) is

chosen to be 0.5, because for BLE h should be between 0.45 and 0.55 [9, p. 978].

In (45), g(t) is the pulse shaping function, which involves a Gaussian filter. This filter is
described by its impulse response h(t) from (3). As mentioned in section 2.1.1, h(t) has an
infinite length, meaning that it needs to be limited in order for it to be implemented. In this
case, we choose to limit it to two symbol periods, meaning 32 samples. The sampled h(t) is
then given by

h[n] = h(nTs) = 1√
2πσT

e− 1
2 (nTs

σT)2
, (47)

for n = {−16, −15, −14, . . . , 13, 14, 15}. Additionally, σ is given by (4), which is repeated
here:

σ =
√

ln 2
2πBT

. (48)

In (48), BT is set to 0.5 and this results in the sampled impulse response shown in fig. 12.

17 of 52

Figure 12: The sampled impulse response of a Gaussian filter. The length of the filter is 32 samples,
which corresponds to two symbols.

As mentioned in section 2.1.3, the phase shift per symbol for GFSK is ≤ hπ in absolute value.
For h = 0.5 and a data rate fd = 1 MHz, this means that the maximum shift in frequency
is

fshift = hπ

2π
· fd

= 0.5π

2π
· 1 MHz

= 0.25 MHz.

(49)

3.3 Fixed-point numbers in SystemVerilog

The systems implemented in this thesis uses fixed-point numbers. As mentioned in section 2.8,
this is a way to represent rational numbers in a binary number system by scaling an integer
with 2−f , where f is the number of fraction bits. However, in SystemVerilog, a number is
still a register with a set amount of bits, which makes it more convenient to treat them as
regular integers. This means that the numbers are upscaled by 2f , and we need to keep this
scaling factor in mind when we perform arithmetic, as described in section 2.8.1.

During my project thesis it was found that for a 16 bin sDFT, the accuracy barely improves
for more accurate formats than Q(4, 12) [1, p. 28]. Therefore, we choose to use Q(4, 12)
numbers.

3.4 Complex arithmetic

Parts of the systems implemented in this thesis performs arithmetic using complex num-
bers. For this purpose, complex addition and multiplication are implemented as shown in
respectively section 3.4.1 and section 3.4.2.

18 of 52

3.4.1 Complex adder

Complex addition is computed as

z = x + y = (x1 + jx2) + (y1 + jy2)
= x1 + y1 + j(x2 + y2),

meaning that

Re(z) = Re(x) + Re(y)
Im(z) = Im(x) + Im(y).

In SystemVerilog, this is implemented as shown in fig. 13, which requires two real addi-
tions.

Figure 13: A complex adder computing z = x + y.

3.4.2 Complex multiplier

Complex multiplication is computed as

z = x · y = (x1 + jx2) · (y1 + jy2)
= x1y1 − x2y2 + j(x1y2 + x2y1),

meaning that that

Re(z) = Re(x)Re(y) − Im(x)Im(y)
Im(z) = Re(x)Im(y) + Im(x)Re(y).

19 of 52

In SystemVerilog, this is implemented as shown in fig. 14, which requires four real multipli-
cations and two real additions/subtractions.

Figure 14: A complex multiplier computing z = x · y.

3.5 sDFT demodulator

A block diagram of the implemented sDFT demodulator is shown in fig. 15. It is based around
a matched filterbank, where the filtering is performed in frequency domain using the sDFT.
The filterbank contains one filter for each symbol in the symbol alphabet, resulting in two
filters. The filter outputs are then transformed back into time domain using the inverse sDFT,
before they are compared to decide which symbol was received. The sequence of demodulated
symbols is denoted x̂[n].

Furthermore, it is assumed that the noise added to the transmitted signal is additive white
Gaussian noise. This is why a matched filterbank structure was chosen, because such filters
maximizes the SNR in these conditions [2, p. 158].

20 of 52

Figure 15: A block diagram of the demodulator. It uses a matched filterbank with one filter for
each symbol, where the filtering is performed in frequency domain using the sDFT. The inverse sDFT
is then computed, and the outputted samples are compared in order to decide which symbol was
received.

3.5.1 sDFT

Figure 16 shows a block diagram of the SystemVerilog implementation of the sDFT, which is
an IIR implementation of (22) and builds on the block diagram presented in [5, p. 3]. Note
that this block diagram shows the computation of a single frequency bin, and each bin is
computed independently of the other bins. In order to compute the entire sDFT, the system
in fig. 16 is repeated N times, resulting in N frequency bins. Furthermore, since the sDFT
operates on complex numbers, the adders and multipliers in fig. 16 are complex. These are
implemented as shown in section 3.4.1 and section 3.4.2.

Figure 16: An IIR implementation of a system computing a single bin of the sDFT.

The system in fig. 16 initialises by setting s[n] and Sn[k] to 0, and then needs N samples
before the output is ready, where N is the window size. Note that in this implementation
the number of frequency bins and the window size are the same. We choose N = 16, because
this is the number of samples per symbol, and this way, one window can capture exactly one
symbol. As shown in (16), this gives a frequency resolution of ∆f = fs

N = 16
16 = 1 MHz.

Furthermore, note that the system multiplies by 2−f after multiplying by ej2πk/N . As ex-
plained in section 2.8.1, this is done because we’re using fixed-point numbers that are treated
as integers. For multiplication, this means that the scaling factor of the resulting product
will be 22f , which needs to be downscaled by 2−f in order to be correct. This downscaling
is done by removing f of the least significant bits, which is a cheap way to perform division
and will be referred to as bit slicing.

21 of 52

Lastly, the twiddle factors ej2πk/N are not computed in the SystemVerilog module. Instead,
they are computed in Python and imported as a set of parameters, because they are constants
and do not require extra logic to be computed. When computed, the twiddle factors are always
rounded down (in absolute value), because their magnitude needs to be less or equal to 1 in
order to ensure stability [10].

3.5.2 Matched filterbank

As explained in section 2.6, a matched filterbank consists of filters matched to the different
symbols in the symbol alphabet. Furthermore, as mentioned in section 2.1.3, the Gaussian
filter in GFSK introduces ISI, meaning that a transmitted symbol is dependent on the symbols
before it. Therefore, if we were to create matched filters based on a GFSK signal, we would
have to create multiple filters per symbol.

In order to save hardware resources, we will instead create the matched filters based on FSK
signals. As shown in section 2.1.3, FSK signals do not contain ISI, meaning that one filter
per symbol is enough. Note that matching to FSK signals gives a slightly worse performance
than matching to GFSK, but the difference in performance is small.

For the 1 symbol, we are matching to

s1(t) = Aej(2πfIFt+ϕ1(t)), (50)

where

ϕ1(t) = hπ

ˆ t

−∞

∞∑
n=−∞

Π(τ − T)dτ, (51)

and t spans one symbol period, meaning 0 ≤ t ≤ T , and Π(t) is the rectangular function.
Similarly, for the −1 symbol, we are matching to

s0(t) = Aej(2πfIFt+ϕ0(t)), (52)

where

ϕ0(t) = hπ

ˆ t

−∞

∞∑
n=−∞

−Π(τ − T)dτ. (53)

The impulse responses for the matched filters are then given by

h1(t) = s∗
1(−t)

h0(t) = s∗
0(−t),

(54)

where the length of s1(t) and s0(t) are limited to one symbol period T .

22 of 52

Furthermore, the impulse responses in (54) are sampled with the sampling frequency fs =
1

Ts
= 16 MHz, giving

h1[n] = h1(nTs) = s∗
1(−nTs)

h0[n] = h0(nTs) = s∗
0(−nTs).

(55)

The impulse responses h1[n] and h0[n] have a length of 1 symbol or 16 samples, and they are
shown in fig. 17 and fig. 18. These figures show both the real and imaginary part of h1[n] and
h0[n], and we can see that the only difference between these parts is a 90◦ phase shift.

Figure 17: The real part and imaginary part of h1[n], which is the sampled impulse response of the
filter matched to a 1. The length of h1[n] is 1 symbol or 16 samples.

23 of 52

Figure 18: The real part and imaginary part of h0[n], which is the sampled impulse response of the
filter matched to a −1. The length of h0[n] is 1 symbol or 16 samples.

Furthermore, the magnitude of the frequency responses of h1[n] and h0[n] are shown in re-
spectively fig. 19 and fig. 20, and are denoted |H1(f)| = |DTFT{h1[n]}| and |H0(f)| =
|DTFT{h0[n]}|. These figures also show how H1(f) and H0(f) are sampled when computed
using the sDFT. The sampled frequency responses are denoted H1[k] and H0[k], and have a
length of 16 samples.

Figure 19: The magnitude of H1(f), which is the frequency response of the filter matched to a 1.
The figure also shows the magnitude of the sampled frequency response H1[k], which has 16 samples.

Figure 20: The magnitude of H0(f), which is the frequency response of the filter matched to a −1.
The figure also shows the magnitude of the sampled frequency response H0[k], which has 16 samples.

24 of 52

The filtering is performed in frequency domain, and as mentioned in section 2.5, this is done
by multiplication. This means that the filtered spectrum is given by

Ŷi[k] = Hi[k]Sn[k], (56)

where Hi[k] is the sampled frequency response of the matched filter for symbol i and Sn[k] is
the sDFT of s[n]. Note that we write Ŷi[k] instead of Yi[k] to indicate that yi[n] ̸= IDFT(Ŷi[k])
due to aliasing from circular convolution.

More specifically, each of the filters in the filterbank are implemented as shown in fig. 21,
which is mainly just an implementation of (56). However, fig. 21 also includes a division
by 2f in order to ensure proper scaling of the resulting fixed-point numbers, as explained in
section 2.8.1.

Figure 21: The implementation of the sDFT filter, where the filtering is performed using a multi-
plication. The product of this multiplication is divided by 2f in order to ensure proper scaling of the
fixed-point numbers.

Note that the filter coefficients Hi[k] are computed in Python and given to the SystemVerilog
module as a set of parameters. This is done because the coefficients are constant, so they do
not require extra logic to be computed in the SystemVerilog module.

3.5.3 Inverse sDFT

After filtering, the filtered spectra from the two matched filters are sent to the next submodule
in fig. 15, which computes the inverse sDFT. As mentioned in section 2.5, the last sample
in the filtered sequence does not contain aliasing, so this is the one we want to reconstruct.
Therefore, the inverse sDFT is adapted to reconstruct the Nth sample, where N is the window
size of the sDFT. This sample is given by

yi[N − 1] = 1
N

N−1∑
k=0

Ŷi[k]ej2πk(N−1)/N . (57)

In order to save hardware resources, the multiplication by ej2πk(N−1)/N is performed in the fil-
ter instead of in the inverse sDFT. The filters are then given the coefficients Hi[k]ej2πk(N−1)/N

instead of just Hi[k]. Since the filter coefficients are computed in Python, this reduces the

25 of 52

number of multiplications in the SystemVerilog module by one per frequency bin per filter.
The resulting filter output is then given by

Ŷi[k] = Sn[k]Hi[k]ej2πk(N−1)/N , (58)

which means the inverse sDFT is given by

yi[N − 1] = 1
N

N−1∑
k=0

Ŷi[k]. (59)

As a reminder from section 2.4, the sDFT only needs to reconstruct one sample per sDFT
computation. This is because the sDFT uses windows with maximum overlap, meaning that
each window is only one sample apart. There, yi[n] can be reconstructed using (59), and this
is implemented as shown in fig. 22. Note that this computation introduces a delay of N − 1
samples.

Figure 22: The implementation of the inverse sDFT. The bins of the filtered spectrum given by (58)
are summed, before the sum is divided by the number of frequency bins N .

3.5.4 Demodulation decision

As explained in section 2.6, the demodulator can decide which symbol was received by choos-
ing the symbol corresponding to the filter output with the highest magnitude. In this case
we only have two symbols, meaning that we can use the difference

∆y[n] = |y1[n]| − |y0[n]|, (60)

where y0[n] and y1[n], as shown in fig. 15, are the output of the matched filters corresponding
to respectively to the symbols −1 and 1. This means that if ∆y[n] < 0, |y0[n]| > |y1[n]| and
the demodulated symbol will be −1. Similarly, ∆y[n] > 0 means the demodulated symbol
will be 1.

Furthermore, ∆y[n] is averaged over 16 samples in order to improve SNR, where 16 was
chosen because this is the number of samples per symbol. Specifically, this means that the
averaged ∆y[n] is given by

26 of 52

∆y[n] = 1
16

n∑
m=n−15

∆y[m]. (61)

Without noise present, ∆y[n] will look something like in fig. 23. Note the averaging and the
way the inverse sDFT is computed introduces a delay, and this delay is compensated for in
the figure. Furthermore, the amplitude of ∆y[n] is also scaled in order to give a more readable
plot.

Figure 23: ∆y[n] plotted alongside the transmitted data. Note that ∆y[n] is aligned with the
transmitted data and its amplitude is scaled for a more readable plot.

As we can see from fig. 23, the optimal time to make a decision is at the peaks of ∆y[n], because
this is where the SNR will be the highest. In a practical application this timing isn’t known,
but it can be found by using a preamble detector, which is described in section 3.7.

3.5.5 Magnitude estimation

As mentioned in section 2.7, computing the magnitude of a complex number is an expensive
operation in hardware. In order to save hardware resources when computing the magnitude
of the filter outputs, the demodulator uses the alpha max plus beta min algorithm. This
algorithm computes an estimate of the magnitude of a complex number in a way that is much
cheaper than computing the true magnitude. More details about this algorithm are described
section 2.7.

Based on the results of the tests described in section 4.1, it was found that it is worth testing
two different values for α and β for the demodulator. Firstly, the optimal values α0 and β0
given by (42) are tested because these generally give the lowest error. For convenience, (42)
is repeated here:

α0 =
2 cos(π

8)
1 + cos(π

8) ≈ 0.960433870103

β0 =
2 sin(π

8)
1 + cos(π

8) ≈ 0.397824734759.

(62)

Secondly, α = 1 and β = 1
2 are also used since these can be implemented using only additions

and bit slicing for division, and therefore require fewer hardware resources than the optimal
values.

27 of 52

3.6 Partial spectrum computation

As shown in fig. 16, the bins in the sDFT are computed independently, which means we
can save hardware resources by only computing the most important of them. By inspecting
the sampled frequency responses of the matched filter in fig. 19 and fig. 20, we see that the
magnitude of some of the bins are significantly higher than the rest. More specifically, we see
that the five bins highlighted in fig. 24 and fig. 25 contains most of the information for the
matched filters. Therefore, one can save hardware resources by only computing these bins,
with only a small reduction in performance.

Figure 24: The magnitude of H1(f), which is the frequency response of the filter matched to a 1.
The figure also shows the magnitude of the sampled frequency response H1[k], and highlights the five
bins with highest magnitude.

Figure 25: The magnitude of H0(f), which is the frequency response of the filter matched to a −1.
The figure also shows the magnitude of the sampled frequency response H0[k], and highlights the five
bins with highest magnitude.

One can also compute even fewer bins to save even more hardware resources, but at the cost
of more performance. One way of doing this is to only use the three bins highlighted in fig. 26
and fig. 27.

28 of 52

Figure 26: The magnitude of H1(f), which is the frequency response of the filter matched to a 1.
The figure also shows the magnitude of the sampled frequency response H1[k], and highlights the three
bins with highest magnitude.

Figure 27: The magnitude of H0(f), which is the frequency response of the filter matched to a −1.
The figure also shows the magnitude of the sampled frequency response H0[k], and highlights the three
bins with highest magnitude.

3.7 Preamble detector

As mentioned in section 3.5.4, the optimal time for the demodulator to make the demodulation
decision is at the peaks of ∆y[n]. We denote this time as τ , and a preamble detector is imple-
mented to estimate this time as τ̂ . The preamble detector is connected to the demodulator
as shown in fig. 28.

Figure 28: A block diagram of how the implemented preamble detector and demodulator are con-
nected. The preamble detector is used to synchronize the demodulator, which extracts the symbols
from s[n].

29 of 52

Furthermore, fig. 29 shows a block diagram of the preamble detector, which computes the
estimate τ̂ using a matched filter, averaging and peak detection.

Figure 29: A block diagram of the preamble detector, which computes τ̂ as an estimate for the
optimal decision time τ .

The preamble detector builds on a matched filter which is matched to the preamble, where the
filtering is done in frequency domain, similar to the matched filters described in section 3.5.2.
In other words, the filter is matched to an FSK signal modulating the sequence xPA[n] =
[−1, 1, −1, 1, −1, 1, −1, 1]. This FSK signal can then be expressed as

sPA(t) = Aej(2πfIFt+ϕPA(t)), (63)

where ϕPA(t) is given by

ϕPA(t) = hπ

ˆ t

−∞

∞∑
n=−∞

xPA[n]Π(τ − T)dτ. (64)

The matched filter will then have an impulse response given by

hPA(t) = s∗
PA(−t), (65)

which is sampled with the sampling frequency fs = 1
Ts

= 16 MHz, resulting in

hPA[n] = hPA(nTs) = s∗
PA(−nTs). (66)

The sampled impulse response hPA[n] has a length of 8 symbols or 128 samples, and is shown
in fig. 30. Note that this figure shows both the real and imaginary part of hPA[n], and the
only difference between these parts is a 90◦ phase shift.

30 of 52

Figure 30: The real and imaginary part of hPA[n], which is the sampled impulse response of the filter
matched to the preamble. The length of hPA[n] is 8 symbols or 128 samples.

Furthermore, the magnitude of the frequency response of hPA[n] is shown in fig. 31, and is
denoted |HPA(f)| = |DTFT{hPA[n]}|. This figure also shows how HPA(f) is sampled for it to
be used in a practical application. The sampled frequency response is denoted HPA[k], which
is computed by the sDFT and has a length of 128 samples.

Figure 31: The magnitude of HPA(f), which is the frequency response of the filter matched to the
preamble. The figure also shows the magnitude of the sampled frequency response HPA[k], which has
128 samples.

As we can see from the frequency response in fig. 31, a few of the frequency bins have a
much higher magnitude than the rest. In order to save hardware resources, we only compute

31 of 52

the seven bins highlighted in fig. 32, and thus reducing the number of bins from 128 to
seven.

Figure 32: The magnitude of HPA(f), which is the frequency response of the filter matched to
the preamble. The figure also shows the magnitude of the sampled frequency response HPA[k], and
highlights the seven bins with highest magnitude.

After filtering in frequency domain, the inverse sDFT is used to compute the filtered signal
in time domain. This signal is denoted yPA[n], and the magnitude |yPA[n]| is used to detect
the preamble. However, in order to improve the SNR, |yPA[n]| is averaged over 16 samples.
This gives the signal

yPA[n] = 1
16

n∑
m=n−15

|yPA[n]|, (67)

where the magnitude is computed using the alpha max plus beta min algorithm described in
section 2.7. When no noise is present, yPA[n] looks something like shown in fig. 33.

32 of 52

Figure 33: The magnitude of the averaged matched filter output yPA[n].

In fig. 33, the largest peak, which is at around n = 215, corresponds to the preamble being
detected. However, we also notice that there is another significant peak at around n = 185,
which is caused by the matched filter detecting a partial preamble. Therefore, it can be quite
difficult to separate these two peaks when we do not know when they occur.

Based on this, it is likely easier to detect the slightly smaller peak at around n = 185, since
there is a steep slope right before it. One way of detecting this peak is by using a threshold
that is based on the magnitude of the received signal s(t). Once the yPA[n] gets a value over
the threshold, the next peak in yPA[n] will correspond to the preamble.

Through experimenting, it was found that a threshold of 101A gives the best result, where A
is the magnitude of s(t). This places the threshold in the middle of the slope that precedes
the peak at n = 185. Since noise can both increase and decrease yPA[n], having the threshold
in the middle of the slope gives the most leeway for noise.

Also note that since the value of the threshold depends on the magnitude of the s(t), one
would need a module to estimate this magnitude. However, in this thesis we assume that the
received signal magnitude is known for the sake of simplicity.

Furthermore, it was found that yPA[n] has quite smooth peaks due to the averaging, even
when noise is present. Therefore, it was decided to use a simple peak detection algorithm in
order to save hardware resources. This algorithm simply checks when yPA[n] stops increasing
after exceeding the threshold, and this point corresponds to the peak.

As a final remark, the preamble detector algorithm presented here might be lacking some
details, like for example formulas for the probability of false detections and missed preambles.
Since the scope of this thesis focuses on the sDFT, such details falls outside of the scope and
are therefore not included. However, should the reader be interested, [11] presents a similar
preamble detector where these details are included.

33 of 52

3.8 Time domain implementations

As will be described in more detail in section 4, the sDFT implementations of the demodulator
and preamble detector will be compared to time domain equivalents of the same systems.
The implementations of the time domain demodulator and preamble detector are described
in respectively section 3.8.1 and section 3.8.2.

3.8.1 Time domain demodulator

An overview of the time domain demodulator is shown in fig. 34, which is based around a
matched filterbank, just like the sDFT demodulator. The sampled received signal s[n] is
filtered using linear convolution, before the filter outputs yi[n] are compared to decide which
symbol was received. Note that x̂[n] denotes the sequence of demodulated symbols.

Figure 34: A block diagram of the time domain demodulator. It uses a matched filterbank with one
filter for each symbol, where the filtering is performed using linear convolution. The filter outputs are
then compared in order to decide which symbol was received.

Figure 34 shows that the only difference from the sDFT demodulator is how the filtering is
performed, which is done using linear convolution for the time domain implementation. As
shown in (27), this means that the filter output is given by

yi[n] = s[n] ∗ hi[n] =
∞∑

m=−∞
s[m]hi[n − m], (68)

where hi[n] is the impulse response of the matched filter corresponding to symbol i. The
impulse responses for the filters in the matched filterbank in fig. 34 are shown in fig. 17 and
fig. 18.

3.8.2 Time domain preamble detector

An overview of the time domain preamble detector is shown in fig. 35. This implementation
is also very similar to its sDFT counterpart, and the only difference is how the filtering is
performed. Just like for the time domain demodulator, the filtering is done using linear
convolution, as shown in eq. (68). The impulse response of the filter used here is shown in
fig. 30.

34 of 52

Figure 35: A block diagram of the time domain preamble detector. It is based around a matched filter
which is matched to the preamble, and computes the estimate τ̂ using averaging and peak detection.

4 Verification
This section describes the verification of the system implemented in section 3. Firstly, sec-
tion 4.1 describes how the performance of the alpha max plus beta min algorithm is evaluated.
Furthermore, section 4.2 and section 4.3 describes how the demodulator and preamble de-
tector are verified. Lastly, section 4.4 describes how the noise was generated for the test
signals, before section 4.5 presents which tools were used for the verification along with their
respective versions.

4.1 Magnitude estimation

As described in section 2.7, the magnitude of a complex number can be estimated using the
alpha max plus beta min algorithm. This algorithm can use different values for α and β
for a trade-off between accuracy and implementation cost. In order to evaluate which values
perform better, the values shown in table 1 are tested using a Python implementation of the
sDFT demodulator, which uses the entire spectrum to perform filtering. The performance is
measured using the BER of the demodulator, and is presented in section 5.1.

Table 1: The evaluated values of α and β. Note that α0 = 2 cos(π
8)

1+cos(π
8) and β0 = 2 sin(π

8)
1+cos(π

8) are the
optimal values for α and β, as shown in (42).

α β

α0 β0
1 1/2
1 1/4
1 3/8

15/16 15/32

Furthermore, the BER of the different values for α and β are compared to the BER for
the true magnitude |z| =

√
x2 + y2, because this is the value the alpha max plus beta min

algorithm approximates. The BERs are also compared to the BER of the squared magnitude
|z|2 = x2+y2, because this is another way of implementing a magnitude estimator in hardware
without computing the square root.

In order to include as few sources of error as possible, these tests assume that the optimal
decision timing is known. Furthermore, the magnitude estimation is tested using 10000
different GFSK signals, which each consist of 40000 random symbols.

35 of 52

4.2 Demodulator

The performance of the sDFT demodulator described in section 3.5 is evaluated using its
BER in two different scenarios, and the results of this are presented in section 5.2. In the first
scenario we assume the optimal decision timing is known, meaning that we know the location
of the peaks of ∆y[n] from fig. 23. By using this assumption, we get to measure the perfor-
mance of just the demodulator decision, without any errors from the preamble detector. In
this scenario, the demodulator is evaluated when the filter is using the entire sDFT spectrum,
and with just five and three bins, as described in section 3.6. Furthermore, the demodulator
uses alpha max plus beta min magnitude estimation as described in section 3.5.5, and it is
tested for two different values of α and β, namely (α = α0, β = β0) and (α = 1, β = 1

2).

For the second scenario, the demodulator is evaluated using sub-optimal decision timings.
This way we get a measurement of how sensitive the demodulator is to errors from the
preamble detector. More specifically, the demodulator is tested for

∆τ ∈ [−4, −3, −2, −1, 0, 1, 2, 3, 4].
where ∆τ = τ̂ − τ is the difference between used decision time and the optimal one. In this
scenario, the filter uses five frequency bins and (α = 1, β = 1

2) for magnitude estimation.

In both scenarios, the demodulator is evaluated using 10000 different GFSK signals, each
consisting of 40000 random symbols. The purpose of this is to check how many of the
demodulated symbols that are identical to the transmitted ones. Therefore, using random
data is sufficient, and we don’t need a structure with preamble, address and payload as shown
in fig. 11.

Furthermore, the sDFT demodulator is also compared to a time domain implementation of
the same demodulator. As described in section 3.8.1, these implementations are identical
except for how the filtering is performed, which is done using linear convolution in the time
domain implementation and multiplication of two DFTs in the sDFT implementation. The
two implementations are compared using both performance in terms of BER, and imple-
mentation cost in terms of hardware area. More specifically, the hardware area is measured
in the number of flip-flops and NAND2 equivalents required to synthesize the two systems.
Note that a specific type of NAND2 gate is used, but which type is not disclosed due to
confidentiality.

Lastly, the performance of the sDFT demodulator will also be compared to a Python imple-
mentation of a phase-shift discriminator demodulator. The purpose of this is to compare the
various sDFT implementations to the performance of a demodulator that is not based around
a matched filterbank. In short, the discriminator computes the angle of the received signal
s(t) and checks if this angle is increasing or decreasing. Whether it is increasing or decreasing
depends on ϕ(t) from (5), and this way we can determine if the received symbol was a −1 or
1. Since this thesis focuses on an sDFT matched filterbank demodulator, further details will
not be described, but [12, p. 4] offers further details for those interested.

4.3 Preamble detector

The performance of the preamble detector described in section 3.7 is evaluated using two
metrics, where the first one is detection error rate, meaning how often a preamble is not

36 of 52

detected. We define a preamble to be undetected when the error |∆τ | = |τ̂ − τ | > 8, where
τ̂ is when the preamble is detected and τ is when it is supposed to be. This definition was
chosen because there are 16 samples per symbol, so if the preamble detector misses by more
than half a symbol, the preamble is considered undetected.

The second metric describes how well the detector estimates the optimal decision time τ in
the cases where a preamble is detected. For this we use the mean squared error (MSE) of the
estimated decision time and the true one. More specifically, this is given by

MSE = 1
N

N∑
i=1

(τ̂i − τi)2, (69)

where τ̂i and τi are respectively the estimated and optimal decision time for packet i, and N
is the number of detected preambles. The results of both of these metrics are presented in
section 5.3.

During the test, the preamble detector is tested by applying packets with a preamble on
its input and checking when it detects the preamble on its output. More specifically, the
preamble detector is evaluated using GFSK packets consisting of four leading ones, a preamble
consisting of eight symbols and a payload of 20 random symbols, as shown in fig. 36. The
tests are performed using 10000 versions of this packet, where the noise and payload are
randomized differently in each version.

Figure 36: A figure of a single packet used to evaluate the preamble detector. It consists of four
leading ones, an eight symbol preamble and a payload with 20 random symbols.

Furthermore, the preamble detector is also compared to a time domain implementation of the
same system. As described in section 3.8.2, the only difference between the two implementa-
tions is how the filtering is performed, just like for the demodulator. The comparison is also
done in the same way as for the demodulator, meaning that both performance and imple-
mentation cost is compared. The performance is measured using the metrics described earlier
in this section, while the implementation cost is measured using the number of flip-flops and
NAND2 equivalents required to synthesize the system.

4.4 Channel noise

To simulate the channel in the communication system, complex white Gaussian noise is added
to the signal. The variance of the noise is adjusted to create a signal with a specific Eb

N0
, and

this is done for

37 of 52

Eb

N0
∈ [7, 8, 9, 10, 11, 12, 13, 14] dB.

Furthermore, the noise in the GFSK signals are seeded, meaning that the noise has the same
shape but a different magnitude depending on the value of Eb

N0
. Note that this applies to each

of the 10000 signals used in the tests, meaning that there are 10000 unique noise patterns
with a different magnitude depending on Eb

N0
. The seeding is done in order to ensure fair and

equal test conditions for the different values of Eb
N0

.

4.5 Tools for verification

During the verification, various tools are used to perform simulations and tests. More specifi-
cally, Python is used to perform the simulations when testing various configurations of alpha
max plus beta min magnitude estimation and for the discriminator demodulator. Further-
more, QuestaSim is used to simulate the SystemVerilog implementation of the demodulator
and preamble detector, and Synopsys’ Design Compiler is used to synthesize and measure the
hardware area of these systems. Table 2 shows the version of these tools that were used at
the time of verification.

Table 2: The tools used for verification and their respective versions.

Tool Version
Python 3.6.9
QuestaSim 2022.2_1
Synopsys’ Design Compiler 1912-sp5-2

5 Results and discussion
This section presents and discusses the results that are used to evaluate the performance of
the demodulator and preamble detector described in section 3. Firstly, section 5.1 shows the
results related to the performance of the various configurations of the alpha max plus beta
min magnitude estimation used in the demodulator. Furthermore, section 5.2 presents the
results related to the demodulator, while section 5.3 presents those related to the preamble
detector.

5.1 Magnitude estimation

This section presents the results related to how the performance of the magnitude estimation
depends on the various values of α and β. As mentioned in section 4.1, this performance is
measured using the BER of a Python implementation of the sDFT demodulator which uses
the entire spectrum to perform filtering. The BER of this demodulator for various values of α
and β is shown in fig. 37. As we can see, the optimal values (α = α0, β = β0) gives the lowest
error for all values of Eb

N0
. Furthermore, the difference in BER between (α = α0, β = β0) and

the other values shrinks as Eb
N0

increases.

38 of 52

Figure 37: The performance of a Python implementation of the sDFT demodulator using the full
spectrum for different values of α and β.

Out of the different values for α and β, (α = α0, β = β0) gives the best performance and are
therefore a good choice. Alternatively, if one values hardware resources more, (α = 1, β = 1

2)
and (α = 1, β = 1

4) are also good candidates, because dividing by 2 and 4 is cheap in hardware
as it can be done using bit slicing. In order to better compare these, fig. 38 shows the BER
of these values for α and β, but the y-axis is replaced with

∆BER = BERαβ − BER|z|,

where BERαβ is the BER using alpha max plus beta min magnitude estimation and BER|z|
is the BER using the true magnitude |z| =

√
x2 + y2. Additionally, fig. 38 also shows the

BER of the squared magnitude |z|2 = x2 + y2, since this is also a cheap way of computing
a magnitude measurement in hardware, and an alternative to the alpha max plus beta min
algorithm.

39 of 52

Figure 38: The performance of a Python implementation of the sDFT demodulator using the full
spectrum for two values of α and β and the squared magnitude. Note that the y-axis shows the BER
relative to the BER using the true magnitude.

As shown in fig. 38, (α = α0, β = β0) gives approximately the same BER as the true magni-
tude. Furthermore, we see that (α = 1, β = 1

2) and (α = 1, β = 1
4) performs worse than the

squared magnitude for low values of Eb
N0

while they perform better for Eb
N0

> 9 dB. We also see
that the BER of (α = 1, β = 1

2) and (α = 1, β = 1
4) approaches the BER of (α = α0, β = β0)

as Eb
N0

increases.

As shown in fig. 9 in section 2.7, the error of (α = 1, β = 1
2) and (α = 1, β = 1

4) is very
low when the angle of the complex number we are estimating the magnitude of is close to
90◦. Since the system is demodulating an IQ signal, the expected angle is 90◦ plus some
contribution from the noise. As Eb

N0
increases, the contribution from the noise decreases and

the angle will be close to 90◦ more often, which is likely why the BER for all three values of
α and β in fig. 38 are roughly the same at high values of Eb

N0
.

Based on fig. 38, we can see that (α = α0, β = β0) is the optimal choice when we value perfor-
mance over hardware resources. This method requires two comparisons, two multiplications
and one addition, since the magnitude estimation

|z| ≈ α max(|x|, |y|) + β min(|x|, |y|)

has to be fully computed. Furthermore, out of (α = 1, β = 1
2) and (α = 1, β = 1

4),
(α = 1, β = 1

2) seems to perform slightly better. As mentioned, both of these choices for
α and β can perform the multiplication using bit slicing, and therefore only require two com-
parisons and one addition (in addition to the slicing). Lastly, the squared magnitude |z|2
also has good performance, especially for low values of Eb

N0
. However, this method requires

two multiplications (squares) and one addition. Therefore, it is just slightly cheaper than
(α = α0, β = β0), but has a significantly worse performance.

40 of 52

5.2 Demodulator

This section presents the results related to the SystemVerilog implementation of the de-
modulator. Section 5.2.1 shows the BER when the optimal decision timing for the sDFT
demodulator is known, and compares this to the BER of the time domain implementation.
Furthermore, section 5.2.2 presents how the BER is affected by suboptimal decision timings.
Lastly, section 5.2.3 shows and compares the synthesis results for both the sDFT and time
domain implementations.

5.2.1 BER with known timing

The BER of the SystemVerilog implementation of the sDFT demodulator when the optimal
decision timing is known is shown in fig. 39. Note that this figure contains the BER curves
for both (α = α0, β = β0) and (α = 1, β = 1

2). For better visibility, fig. 40 and fig. 41 shows
the BER for these values of α and β separately.

Figure 39: The BER for SystemVerilog implementation of the demodulator when the optimal decision
timing is known. The figure shows the BER when the demodulator filters using the full spectrum, five
bins and three bins with magnitude estimation using both (α = α0, β = β0) and (α = 1, β = 1

2).

41 of 52

Figure 40: The BER for SystemVerilog implementation of the demodulator when the optimal decision
timing is known. The figure shows the BER when the demodulator filters using the full spectrum, five
bins and three bins with magnitude estimation using (α = α0, β = β0).

Figure 41: The BER for SystemVerilog implementation of the demodulator when the optimal decision
timing is known. The figure shows the BER when the demodulator filters using the full spectrum, five
bins and three bins with magnitude estimation using (α = 1, β = 1

2).

From fig. 39, fig. 40 and fig. 41, we see that the BER increases when using five and three bins
for filtering compared to using the entire spectrum. This is expected, because using less bins
means that we are estimating the ideal matched filter with a slightly suboptimal one. More
specifically, using five bins gives an 11% increase in BER for the most affected value of Eb

N0
.

Alternatively, one can say that the five bin implementation requires 0.19 dB higher Eb
N0

to
achieve the same BER as the full spectrum implementation. Similarly, using three bins gives

42 of 52

a 20% increase in BER at the most affected value of Eb
N0

, which is equivalent to a 0.29 dB loss
in Eb

N0
.

Additionally, we can see from fig. 39 that (α = α0, β = β0) and (α = 1, β = 1
2) gives roughly

the same performance. In the computation of the sDFT, divisions are implemented using bit
slicing, which always rounds down and introduces a rounding error. These rounding errors
are likely larger than the inaccuracy introduced by the magnitude estimation, and therefore
the choice of α and β does not seem to affect the BER. In the Python implementation of the
sDFT demodulator used in section 5.1, there are practically no rounding errors, which is why
(α = α0, β = β0) gives a better performance in that case.

Furthermore, fig. 42 also includes the BER of a time domain implementation of the demodu-
lator, in addition to the BER for the sDFT demodulator. All implementations in fig. 42 use
(α = 1, β = 1

2) for magnitude estimation.

Figure 42: The BER of a time domain implementation of the demodulator plotted alongside the
BER of the sDFT demodulator, which filters using the entire spectrum, five bins and three bins. All
of the plotted implementations use (α = 1, β = 1

2) for magnitude estimation.

We can see from fig. 42 that the time domain and full spectrum sDFT implementations
have approximately the same BER. As explained in section 2.5, performing filtering in time
domain using linear convolution is equivalent to performing it in frequency domain using
multiplication, as long as one accounts for the aliasing introduced by the multiplication.
Therefore, we expect the time domain and full spectrum implementations to have the same
BER. The small differnce in BER shown in fig. 42 is therefore likely caused by different
amounts of divisions in the two implementations and thus different amounts of rounding
errors, since the divisions are done using bit slicing.

Lastly, fig. 43 includes the BER of a Python implementation of a discriminator demodulator.
As mentioned in section 4.2, this is an alternative to a matched filter demodulator, and
the purpose of including it is to compare the sDFT implementation to a different type of

43 of 52

demodulator. From fig. 43, we can see that the sDFT demodulator performs well compared
to the discriminator demodulator. Even when only using three bins, the sDFT demodulator
has only a slightly higher BER than the discriminator for Eb

N0
< 10 dB, while outperforming it

for Eb
N0

> 10 dB. Also keep in mind that the discriminator is implemented in Python, meaning
that it practically has no rounding errors compared to the SystemVerilog implementation of
the sDFT demodulator.

Figure 43: The BER of the sDFT demodulator plotted alongside the BER of a Python implemen-
tation of a phase-shift discriminator demodulator. The sDFT demodulator uses (α = 1, β = 1

2) for
magnitude estimation.

5.2.2 BER with suboptimal timing

The BER of the SystemVerilog implementation of the demodulator for suboptimal decision
timings are shown in fig. 44. The figure shows the BER curves for various values of ∆τ =
τ̂ − τ , which is the difference between the used and optimal decision time. In this case, the
demodulator uses five frequency bins to perform filtering and (α = 1, β = 1

2) for magnitude
estimation.

44 of 52

Figure 44: The BER of the SystemVerilog implementation of the demodulator for various suboptimal
timings. The demodulator uses five frequency bins to perform filtering and (α = 1, β = 1

2) for
magnitude estimation.

As shown in fig. 44, the performance of the demodulator only drops slightly for ∆τ = ±1.
However, for offsets that are greater than this, the performance reduces significantly. There-
fore, the demodulator is very dependent on the performance of the preamble detector, and
can get significant errors if the decision timing estimate from the preamble detector is inac-
curate.

Furthermore, we can also see that a suboptimal timing gives a higher increase in BER for
higher values of Eb

N0
compared to lower values. This is likely because for high values of Eb

N0
,

the suboptimal decision timing is the main source of error. In other words, for higher values
of Eb

N0
, the suboptimal decision timing introduces a higher error relative to the error that is

already present.

5.2.3 Synthesis results

This section presents the synthesis results of the sDFT demodulator, where it is synthesized
using both the full spectrum and five and three bins for filtering. For comparison, the syn-
thesis results for a time domain version of the same demodulator is also included, where the
filtering is performed using linear convolution. The synthesis results are shown in fig. 45 and
fig. 46, which respectively show the number of flip-flops and NAND2 equivalents required to
synthesize the different implementations. Note that a specific type of NAND2 gate is used,
but due to confidentiality, which type is not disclosed.

45 of 52

Figure 45: The number of flip-flops required to synthesize the different implementations of the
demodulator.

Figure 46: The number of NAND2 equivalents required to synthesize the different implementations
of the demodulator.

From fig. 45 we can see that the number of flips-flops depends on the number of bins used for
the filtering, since the computed sDFT is stored in a flip-flops, and fewer bins to store means
fewer flip-flops. However, the difference in flip-flops between the different implementations
is quite small. This is because all implementations use a shift register of the same size to
compute the sDFT or perform convolution, and this register is responsible for a significant
amount of the required flip-flops. In other words, all four systems have the same baseline cost
in terms of flip-flops, caused by this shift register.

46 of 52

We can also see that the value of α and β used in the magnitude estimation does not affect the
number of flip-flops. This is because the bit width of the computed magnitude is independent
of the values of α of β. Therefore, the values of α and β only affects the combinational logic
used to compute the magnitude, and not the registers used to store it.

Furthermore, we can see from fig. 46 that using (α = α0, β = β0) over (α = 1, β = 1
2) for

magnitude estimation requires a significantly larger amount of NAND2 equivalents, except for
the time domain implementation. Additionally, as discussed in section 5.2.1, the performance
gain for using (α = α0, β = β0) is minimal. Based on this, (α = 1, β = 1

2) seems to be the
optimal values for magnitude estimation, as they save hardware resources without a notable
loss of performance.

Additionally, fig. 46 shows that the sDFT implementations generally require fewer NAND2
equivalents than the time domain implementation. We can also see that there is a small
amount of hardware resources saved by using five bins over the full spectrum, and a significant
amount saved by using only three bins. In other words, there seems to be a non-linear
relationship between the number of frequency bins and the NAND2 equivalents required.
This is likely because some of the optimizations the synthesis tool can do require the circuit
to be small enough. Therefore we get a significant drop in NAND2 equivalents between five
and three bins, as such an optimization is likely possible for three bins, but not for five.
However, it is difficult to tell exactly what this optimization is, because this would require
inside knowledge of Synopsys’ Design Compiler.

5.3 Preamble detector

This section presents the results related to the SystemVerilog implementation of the preamble
detector. Section 5.3.1 shows the results related to the performance of both the sDFT and
time domain implementations of the preamble detector. Furthermore, section 5.3.2 presents
the synthesis results of the same implementations.

5.3.1 Performance

As explained in section 4.3, a preamble is defined as detected when |∆τ | = |τ̂ − τ | > 8, where
τ̂ and τ are respectively the estimated and true detection times. The mean squared error for
the detected preambles are shown in fig. 47, while the percentage of undetected preambles
are shown in fig. 48. Note that fig. 47 and fig. 48 includes both the sDFT and time domain
implementations of the preamble detector, where both implementations use (α = 1, β = 1

2)
for magnitude estimation. Additionally, the sDFT implementation performs filtering using
seven frequency bins.

47 of 52

Figure 47: The mean squared error for the detected preambles for the sDFT and time domain
implementations of the preamble detector.

Figure 48: The percentage of undetected preambles for the sDFT and time domain implementations
of the preamble detector.

Based on fig. 47 and fig. 48, we can see that the performance of both the sDFT and time
domain implementations are almost equivalent. The only notable difference is at the lower
values of Eb

N0
in fig. 48, where the number of undetected preambles for the sDFT implementa-

tion is increased by 7.8%, relative to the time domain implementation, at most affected value
of Eb

N0
. This corresponds to a 0.15 dB loss in Eb

N0
.

Furthermore, from fig. 47 we can see that the MSE is fairly low for the preambles that are
detected, especially for higher values of Eb

N0
. This is important, because, as mentioned in

48 of 52

section 5.2.2, the demodulator is very sensitive to suboptimal decision timings, which means
the preamble detector needs to be accurate. Also note that the maximum possible MSE is
64, because a preamble is considered undetected, and not included in the MSE calculation, if
|∆τ | > 8.

However, from fig. 48, we can see that for lower values of Eb
N0

, the preamble is undetected for
a significant amount of the packets used in the test for both implementations. This is likely
a result of the simplicity of the algorithm used to detect the preamble. This algorithm finds
the first peak after the filter output exceeds a threshold, and the peak detection used for this
is very simple. Therefore, if the noise is strong enough to make the filter output exceed the
threshold too early or too late, the peak detection algorithm will still look for the first peak it
finds after this happens. To improve this, one might use a more robust type of threshold that
is more adaptive than just a fixed value. Alternatively, one might use a more robust peak
detection that requires a certain amount of steepness before and after a peak. However, both
of these solutions require more hardware resources, so one might also just use the preamble
detector as it is, and then accept than one might have to send a packet several times if the
noise level is high.

5.3.2 Synthesis results

The synthesis results for the preamble detector are shown in table 3. From this table, we
notice that there is only a small difference in the number of flip-flops between the two im-
plementations. Similarly to the demodulator, both implementations use a shift register of
the same size to compute the sDFT and perform convolution. This shift register contains
128 Q(4, 12) numbers, which makes it significantly larger than the other parts of the system.
Therefore, the majority of the flip-flops that are used in both implementations are used for
this shift register, which is why the difference in flip-flops between the implementations is so
small.

Table 3: The synthesis results of the preamble detector, showing the number of flip-flops and NAND2
equivalents required to synthesize the module.

Implementation # flip-flops # NAND2 equivalents
sDFT 4810 86310
Time domain 4551 258795

We also notice that the sDFT implementation requires about 67% less NAND2 equivalents
than the time domain one. As described in section 3.7, the sDFT implementation only uses
seven of the 128 frequency bins to perform filtering. The filter used in the time domain
implementation has a length of 128 samples, which is why it requires significantly more
NAND2 equivalents to synthesize.

6 Future Research
During the thesis, a few interesting aspects had to be skipped due to time constraints. One
of these aspects is using a matched filter that is matched to several symbols, for example a
filter can be matched to the symbol sequence x[n] = [−1, 1, 1]. If the matched filter has a

49 of 52

length of N symbols and the filter outputs are checked each symbol period, each symbol will
be filtered N times, meaning there is some overlap. This overlap can be used to perform
demodulation more accurately, since the demodulator has N ”opportunities” to demodulate
each symbol.

However, the downside of this method is that it is more expensive in terms of hardware
resources, and some of these extra resources come from the longer filters. Therefore, it would
be interesting to test such a system with the sDFT, since a long filter can be implemented
using only a few frequency bins, similarly to what is done for the preamble detector described
in section 3.7.

Additionally, it would also be interesting to test how the sDFT demodulator performs when
there is an offset in the carrier frequency. In a practical application, oscillators are never
perfect, so the carrier frequency in the received signal will not be exactly what is expected.
In this thesis, it was never tested how the demodulator performs when there is an offset in
the carrier frequency, and it would be interesting to quantize how much such an offset affects
the BER.

Furthermore, in this thesis it was intentionally chosen to work with signals at the IF to
investigate the performance of this. However, most demodulators work with baseband signals,
meaning that the receiver contains another mixer than downmixes the received signal from
the IF to 0 Hz. It would be interesting to see the difference in performance between operating
at the IF and baseband.

Lastly, whether operating at the IF or at the baseband, the mixer contains a lowpass filter to
remove an unwanted frequency component generated during the mixing, as shown in fig. 4.
Since filtering with the sDFT is performed using multiplications, this lowpass filter can be
combined with the matched filters in the demodulator by computing the product of their
DFTs. More specifically, the lowpass filter would be removed, and the DFTs of the filters
in the matched filterbank of the demodulator in fig. 15 would be multiplied by the DFT of
the lowpass filter. This could potentially save hardware resources, since we are removing
one filter, and it would be interesting to investigate this further. Note that in this thesis,
we assume that the receiver was already implemented. More specifically, the demodulator
was given signals from a Python implementation of the receiver, so the lowpass filter in the
receiver is not included in the synthesis results.

7 Conclusion
This thesis describes a SystemVerilog implementation of an sDFT based BLE demodulator
and preamble detector, and compares these to traditional implementations of the same sys-
tems. Both the demodulator and the preamble detector builds on matched filters. For the
sDFT implementations, the filtering is done using multiplication in frequency domain, while
it is done using linear convolution in time domain for the traditional implementations.

When the sDFT demodulator uses the entire spectrum to perform filtering, it has approxi-
mately the same performance as its traditional counterpart. Furthermore, the sDFT demodu-
lator can choose to use only a few bins of the spectrum to perform filtering, in order to reduce
the implementation cost with a slight reduction in performance. More specifically, using five
out of 16 bins gives approximately a 12% reduction in NAND2 equivalents compared to the

50 of 52

time domain implementation when using (α = 1, β = 1
2) for magnitude estimation. This also

increases the BER at the most affected value of Eb
N0

by 11%, which is equivalent to a 0.19 dB
loss in Eb

N0
. Similarly, using only three out of 16 bins gives approximately a 45% reduction in

NAND2 gates, and increases the BER by 20%. This is equivalent to a 0.29 dB loss in Eb
N0

.
Also note that even when only using 3 bins, the demodulator still has better or approximately
equivalent BER to that of a phase-shift discriminator demodulator, which is an alternative
to a matched filterbank demodulator, depending on the value of Eb

N0
.

The sDFT preamble detector uses a long filter with a length of 128 samples. In frequency
domain, this gives 128 frequency bins and only seven of these are used to perform the filter-
ing. This gives a small reduction in performance, but a huge reduction in implementation
cost. More specifically, the sDFT preamble detector uses approximately 67% less NAND2
equivalents than the traditional implementation. Additionally, this also increases the number
of undetected preambles by 7.8% at most affected value of Eb

N0
, which is equivalent to a 0.15

dB loss in Eb
N0

.

In short, filtering using the sDFT seems to be more beneficial than filtering using linear
convolution, due to the flexibility this offers. More specifically, one can choose to use less
frequency bins and potentially save a lot of hardware resources with only a slight loss of
performance. This is especially beneficial for longer filters which’s information is mainly
contained in a few bins in frequency domain, like the filter used for the preamble detector.
For filters like this, one can save a lot of hardware resources with only a very small performance
loss.

51 of 52

References
[1] A. B. Sæther, “Investigation of sliding window dft (sdft) and comparison with fft,” 2022.
[2] J. R. Barry, E. A. Lee, and D. G. Messerschmitt, Digital Communication, Third Edition.

USA: Kluwer Academic Publishers, 2003. doi: 10.1007/978-1-4615-0227-2.
[3] D.-C. Chang, “Least squares/maximum likelihood methods for the decision-aided gfsk

receiver,” IEEE Signal Processing Letters, vol. 16, no. 6, pp. 517–520, 2009. doi: 10.
1109/LSP.2009.2016832.

[4] J. G. Proakis and D. K. Manolakis, Digital Signal Processing, 4th Editon. Harlow:
Pearson Education Limited, 2014.

[5] University of Toronto, The sliding dft, https://www.comm.utoronto.ca/~dimitris/
ece431/slidingdft.pdf, 2005.

[6] Wikipedia, Alpha max plus beta min algorithm — Wikipedia, the free encyclopedia,
http://en.wikipedia.org/w/index.php?title=Alpha%20max%20plus%20beta%
20min%20algorithm&oldid=1135074387, accessed 21.02.2023.

[7] Creative commons attribution-sharealike 3.0 unported, https : / / creativecommons .
org/licenses/by-sa/3.0/deed.en, accessed 17.04.2023.

[8] J. Lindh, Bluetooth low energy beacons, https://www.ti.com/lit/an/swra475a/
swra475a.pdf, 2015.

[9] K. T. Nimisha and P. Biswagar, “Viterbi algorithm based bluetooth low energy receiver
for iot,” in 2017 2nd IEEE International Conference on Recent Trends in Electronics,
Information & Communication Technology (RTEICT), 2017, pp. 978–981. doi: 10.
1109/RTEICT.2017.8256744.

[10] E. Jacobsen, “Understanding and implementing the sliding dft,” Anchor Hill Commu-
nications, 2015. [Online]. Available: https://www.dsprelated.com/showarticle/
776.php.

[11] S. Nagaraj, S. Khan, C. Schlegel, and M. V. Burnashev, “Differential preamble detection
in packet-based wireless networks,” IEEE Transactions on Wireless Communications,
vol. 8, no. 2, pp. 599–607, 2009. doi: 10.1109/TWC.2009.071169.

[12] R. Schiphorst, F. Hoeksema, and K. Slump, “Bluetooth demodulation algorithms and
their performance,” IEEE Transactions on Circuits and Systems Ii: Analog and Digital
Signal Processing, 2002.

52 of 52

https://doi.org/10.1007/978-1-4615-0227-2
https://doi.org/10.1109/LSP.2009.2016832
https://doi.org/10.1109/LSP.2009.2016832
https://www.comm.utoronto.ca/~dimitris/ece431/slidingdft.pdf
https://www.comm.utoronto.ca/~dimitris/ece431/slidingdft.pdf
http://en.wikipedia.org/w/index.php?title=Alpha%20max%20plus%20beta%20min%20algorithm&oldid=1135074387
http://en.wikipedia.org/w/index.php?title=Alpha%20max%20plus%20beta%20min%20algorithm&oldid=1135074387
https://creativecommons.org/licenses/by-sa/3.0/deed.en
https://creativecommons.org/licenses/by-sa/3.0/deed.en
https://www.ti.com/lit/an/swra475a/swra475a.pdf
https://www.ti.com/lit/an/swra475a/swra475a.pdf
https://doi.org/10.1109/RTEICT.2017.8256744
https://doi.org/10.1109/RTEICT.2017.8256744
https://www.dsprelated.com/showarticle/776.php
https://www.dsprelated.com/showarticle/776.php
https://doi.org/10.1109/TWC.2009.071169

	Introduction
	Background
	Gaussian frequency shift keying
	GFSK transmitter
	GFSK receiver
	Intersymbol interference

	DTFT and DFT
	Sliding window discrete Fourier transform
	Inverse sDFT
	Filtering with the sDFT
	Minimum-distance criterion and matched filter
	Magnitude estimation
	Fixed-point number representation
	Fixed-point arithmetic

	Implementation
	Bluetooth low energy packets
	GFSK modulation
	Fixed-point numbers in SystemVerilog
	Complex arithmetic
	Complex adder
	Complex multiplier

	sDFT demodulator
	sDFT
	Matched filterbank
	Inverse sDFT
	Demodulation decision
	Magnitude estimation

	Partial spectrum computation
	Preamble detector
	Time domain implementations
	Time domain demodulator
	Time domain preamble detector

	Verification
	Magnitude estimation
	Demodulator
	Preamble detector
	Channel noise
	Tools for verification

	Results and discussion
	Magnitude estimation
	Demodulator
	BER with known timing
	BER with suboptimal timing
	Synthesis results

	Preamble detector
	Performance
	Synthesis results

	Future Research
	Conclusion
	References

