
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f C
om

pu
te

r S
ci

en
ce

M
as

te
r’s

 th
es

is

Andreas Aaberge Eide

Exploring Matroids in Fair Allocation

Building the Matroids.jl Library

Master’s thesis in Computer Science
Supervisor: Magnus Lie Hetland
Co-supervisor: Halvard Hummel
June 2023

Andreas Aaberge Eide

Exploring Matroids in Fair Allocation

Building the Matroids.jl Library

Master’s thesis in Computer Science
Supervisor: Magnus Lie Hetland
Co-supervisor: Halvard Hummel
June 2023

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Computer Science

Abstract

This thesis explores the role of matroids in the context of fair allocation, for the
purpose of building Matroids.jl, a proof-of-concept Julia library enabling the
empirical study of matroidal fair allocation algorithms. To this end, functional-
ity is given for the representation and random generation of graphic matroids.
In addition, Knuth’s algorithm for the erection of arbitrary matroids is imple-
mented. Three recent fair allocation algorithms are studied and implemented.
Also implemented is the functionality for evaluating an allocation against a va-
riety of common fairness notions. The library is finally used to construct an
experimental setup and the results of running the implemented algorithms on
diverse matroids are described.

Sammendrag

Denne oppgaven utforsker rollen matroider spiller innen rettferdig fordeling,
med mål for øyet å utvikle Matroids.jl, et Julia-bibliotek som muliggjør em-
pirisk analyse av algoritmer for rettferdig fordeling som bruker matroider. Ma-
troids.jl implementerer funksjonalitet for å representere og tilfeldig generere
grafiske matroider. I tillegg implementeres Knuths algoritme for å tilfeldig sette
opp vilkårlige matroider. Tre nylige algoritmer for rettferdig fordeling med
matroierang-verdifunksjoner beskrives og deres behov til Matroids.jl analyseres.
Matroids.jl implementerer også funksjonalitet for å evaluere en fordeling mot de
fleste vanlige rettferdighetsmål. Til slutt benyttes biblioteket til å sette opp en
serie eksperimenter som kjøres på de tre utvalgte algoritmene, og resultatene
presenteres.

Acknowledgements

A big thanks is due to my stellar advisors, Magnus Hetland and Halvard Hum-
mel, whose insightful feedback, patience, and passion for the subject has been
truly above and beyond, and has made this past year enjoyable as well as highly
educational. Kristina, Petter, and Vemund deserve special thanks for their
invaluable moral support, and for listening to my incoherent ranting about ma-
troids for the past few months. I would also like to applaud my flatmates Synne
and Even for their general cleanliness in the kitchen area. Finally, a heart-
felt thanks goes out to my good colleagues at Radio Revolt, without whom I
would have completed this degree years earlier, with far better grades and in
significantly better health.

Contents

1 Introduction 6

2 Preliminaries 10
2.1 Fair allocation . 11

2.1.1 Envy-freeness . 12
2.1.2 Proportionality . 13
2.1.3 Efficiency . 14

2.2 Matroid theory . 15
2.2.1 The uniform matroid . 16
2.2.2 The graphic matroid . 17
2.2.3 Other characterizations of a matroid 17
2.2.4 Matroid union . 19
2.2.5 Matroid erection . 22

2.3 Matroids in fair allocation . 24
2.3.1 Matroid-rank valuations 24
2.3.2 Matroid constraints . 24

3 The Matroids.jl API 26
3.1 Fairness under matroid-rank valuations 27
3.2 Three selected algorithms . 32
3.3 Exchange graphs and transfer paths 38

4 Generating matroids 43
4.1 Uniform matroids . 44

4

4.2 Graphic matroids . 45
4.2.1 Random graphs . 45
4.2.2 Generating random graphic matroids 46
4.2.3 Properties of random graphic matroids 48

4.3 Knuth’s matroid construction . 50
4.3.1 Randomized KMC . 53
4.3.2 Improving performance 54
4.3.3 Finding the properties of erected matroids 64

5 Using the library 67
5.1 Implementing Envy-induced transfers 68
5.2 Implementing AlgMMS . 70
5.3 Implementing Yankee Swap . 72
5.4 Running some experiments . 73

6 Discussion 78
6.1 Limitations and future work . 79
6.2 Concluding remarks . 81

Appendices 88

Appendix A Sets as numbers – some useful tricks 89

Appendix B Matroid partitioning 92

Appendix C Enumerating circuits and independent sets during
erection 95

Appendix D The development of random_kmc 99

5

Chapter 1
Introduction

Imagine you are a dean at a large university, responsible for allocating seats in
courses to students for the coming semester. Each student has applied for some
subset of the courses available, and each course has a limit on the number of stu-
dents it can accept. In addition, there are scheduling conflicts between courses,
and the students have hard limits on the number of courses they can take in a
semester1. As a good dean, you wish to allocate fairly, ensuring that the stu-
dents are happy with their courses and do not feel disfavored compared to the
other students. At the same time, you strive for efficiency, so that every student
gets enough courses to make the expected progress on their grade. How would
you go about solving this problem? Over lunch, you discuss your quandary with
a colleague from the computer science department who immediately assuages
your fears by informing you that your situation is in fact an instance of indi-
visible fair allocation with matroid-rank valuations, a well-studied problem for
which several algorithms exist! Eager to learn more, you ask your colleague to
explain her cryptic remark.

What is fair allocation?
Fair allocation is the problem of fairly partitioning a set of resources (in this case,
the courses) among agents (the students) with different preferences or valuations

1This example is due to Benabbou et al [1].

6

over these resources. This has been a hot topic of interest since antiquity (a
2000-year old allocation strategy can be found in the Talmud [2]), and remains
so today. The mathematical study of fair allocation started with a seminal
work by Steinhaus in 1948 [3], and for decades the focus was largely on the
divisible case, in which the resources can be divided into arbitrary small pieces.
In the divisible case, fair allocations always exist, and they can be computed
efficiently [4]. In the dean’s scenario, however, the course seats are indivisible
goods. A fair allocation of indivisible goods is, depending on the measure of
fairness, not always achievable; consider for example allocating a course with
one seat between two students who both applied for it – there is no way of
allocating the seat without one agent being unhappy.

Generally speaking, an allocation is measured against two justice criteria:
fairness and efficiency. Fairness relates to the degree to which agents preceive
the allocation as favoring other agents over themselves. One common way to
describe the fairness of an allocation is with the concept of envy-freeness. Envy
is defined as the degree to which an agent values another agent’s received bundle
of resources higher than their own. An allocation is envy-free if no agent envies
another agent. In the trivial example above, the only envy-free allocation is
the one in which no student receives the seat; while this is technically speaking
fair, it is highly inefficient. Efficiency deals with maximizing some notion of re-
source utilization, or, equivalently, reducing waste. The perfectly fair allocation
in which no one receives anything is rarely desirable for reasons of efficiency.
Conversely, while the allocation in which one agent receives everything might
be highly efficient in terms of the total sum of bundle values, it is obviously
unfair. The task of the fair allocation algorithm, then, is to find some balance
between these criteria.

How do matroids enter into this?
What the colleague from the computer science department noticed about the
dean’s problem, was that it was well-structured, in fact it is a textbook example
of matroid-rank valuations in practice. Matroid rank functions (MRFs) are are a
class of functions with properties that make them both easy to reason about and
practically applicable in a setting such as fair allocation, and can equivalently
be referred to as binary submodular functions. A submodular function is a set
function that obeys the law of diminishing returns – as the size of the input
set increases, the marginal value of a single additional good decreases. MRFs
are the class of submodular functions with binary marginals, meaning that the

7

value of any single good is either 0 or 1.
In practice, these properties make MRFs a compelling framework for mod-

elling user preferences in a setting such as the dean’s allocation scenario. The
binary marginals reflect a student’s willingness (value of 1) or unwillingness
(value of 0) to enroll in a course. The diminishing returns property allow us
to implement what are known in economics terms as supplementary goods and
fixed demand. A student might be interested in two similar courses, but not
wish to enroll in both, so given one, the marginal value of the other drops to
0 (the courses are supplementary goods). In addition, a student needs only
at most one seat per course, so the many available seats for the same course
are also supplementary goods. A student has limited time and energy, and so
for each course seat received, the marginal value of the other courses can only
decrease – after some threshold is reached in the number of enrolled courses, all
remaining courses have value 0 (there is a fixed demand for courses).

Matroids are extensively studied mathematical structures that generalize
concepts from a variety of different fields. A number of interesting algorithms
have been developed for fair allocation with matroid-rank valuations [1, 5–8]
that make use of deep results from matroid theory in their analysis, and deliver
well on a range of justice criteria which might be computationally intractable
to achieve under general valuations.

What does this thesis contribute?
Perhaps because matroids are so well-understood and pleasant to work with
theoretically, there is a dearth of tooling available for generating and working
with them programmatically. In an effort to complement the abundant theo-
retical toolkit provided by matroid theory, this thesis proposes Matroids.jl, a
library for the Julia programming language [9], which extends the existing Al-
locations.jl library [10] with the functionality required to enable the empirical
study of matroidal fair allocation algorithms.

In this work, my primary contribution is the design and implementation
of Matroids.jl as a practical tool that introduces new capabilities for handling
matroids in the context of fair allocation. This thesis details the practical consid-
erations that went into the development of the library, with code excerpts scat-
tered throughout2. In addition, I present some experimental results obtained by
implementing three select algorithms. While these results might present some-
what novel insights, I feel the need to underscore that they are given mainly as

2The full source code can be found at https://github.com/aaaeide/Matroids.jl

8

illustrative examples of Matroids.jl’s utility and are not the central focus of this
thesis.

This thesis describes the work that has been done to design and build a
working, proof-of-concept version of Matroids.jl. It is structured as follows. In
the next chapter, I establish the concepts from matroid theory and fair alloca-
tion necessary to understand the rest of the thesis. In Chapter 3, I describe
the design and implementation of the Matroids.jl API, which includes various
classic matroid algorithms that have found use in fair allocation algorithms. In
Chapter 5, I show how this API can be used to implement Viswanathan and
Zick’s Yankee Swap algorithm [8] and some other algorithms for matroid-rank-
valued fair allocation. In Chapter 4, I show how Matroids.jl implements the
random generation of a range of matroid types. Of particular interest here is
Knuth’s classic method for generating arbitrary matroids [11], the successful im-
plementation of which was a significant sub-goal of the project. In Chapter 5.4,
I provide some experimental results for the algorithms over different matroid
types. Finally, in Chapter 6, I give a summary discussion on the limitations of
Matroids.jl and suggests a few possible avenues of future work.

9

Chapter 2
Preliminaries

For simplicity, we also assume that every
point in a geometry is a closed set.
Without this additional assumption, the
resulting structure is often described by
the ineffably cacaphonic term "matroid",
which we prefer to avoid in favor of the
term "pregeometry".

Gian-Carlo Rota [12]

Matroids were first introduced by Hassler Whitney in 1935 [13], in a sem-
inal paper where he described two axioms for independence in the columns
of a matrix, and defined any system obeying these axioms to be a “matroid”
(which unfortunately for Rota is the term that has stuck). Whitney’s key in-
sight was that this abstraction of “independence” is applicable to both matrices
and graphs. Matroids have also received attention from researchers in fair al-
location, as their properties make them useful for modeling user preferences.
We have already seen this with the course allocation problem described in the
previous chapter; other use cases include the assignment of kindergarten slots
or public housing estates among people of different ethnicities [7].

10

2.1 Fair allocation
To ease readability, I abuse notation a bit and use S + g and S − g to refer to
S ∪ {g} and S \ {g}, respectively.

An instance of a fair allocation problem consists of a set of agents N =
{1, 2, . . . , n} and a set of m goods E = {g1, g2, . . . , gm}. Each agent has a
valuation function vi : 2E → R+; vi(S) is the value agent i ascribes to the
bundle of goods S. The marginal value of agent i for the good g, given that she
already owns the bundle S, is given by ∆i(S, g) := vi(S+g)−vi(S). Throughout
most of this thesis, we assume that vi is a matroid rank function, or, equivalently,
a binary submodular function. To formalize the description given in Chapter 1,
this means that

(a) vi(∅) = 0,

(b) vi has binary marginals: ∆i(A, g) ∈ {0, 1} for every A ⊂ E and g ∈ E,

(c) vi is submodular: for every A ⊆ B ⊆ E and g ∈ E \ B, we have that
∆i(A, g) ≥ ∆i(B, g).

Any function vi adhering to these properties is a valid characterization of exactly
one matroid in terms of its rank function [14]. There are many other ways to
characterize matroids, some of which are given in Section 2.2.

Throughout this thesis, I will use the terms allocation and partition some-
what interchangeably. In set theory, an n-partition of a set is a grouping of
its elements into n subsets, such that each element occurs in exactly one sub-
set. It is often required that the subsets be non-gmpty—when working with
matroids this requirement is usually omitted since the empty set is independent
(see Section 2.2). In a fair allocation instance with n agents, an allocation is an
n-partition of E.

The output of an algorithm for fair allocation is an allocation of the goods to
the agents. An allocation A is an n-partition of E, A = (A1, A2, . . . , An), where
each Ai is the bundle of goods allocated to agent i. Sharing is not allowed, so
we require that Ai ∩ Aj = ∅ for all i ̸= j. We say that an allocation is clean
(also known as non-redundant in the literature) if no agent has received any
good they value at 0. An allocation is complete if all goods are allocated, if
not it is partially. It might not be possible to guarantee both cleanness and
completeness; for instance in a case where a good is 0-valued by all agents.

11

2.1.1 Envy-freeness
We are interested in producing fair allocations. One of the most popular notions
of fairness in the literature is envy-freeness (EF), which states that no agent
should prefer another agent’s bundle over her own (in fair allocation, an agent
is envious of another agent if she prefers that agent’s bundle). An allocation A
is EF if for all agents i, j ∈ N ,

vi(Ai) ≥ vi(Aj). (EF)

Because, as mentioned in the introduction, EF is not always achievable when
the goods are indivisible, the literature has focused on relaxations thereof. The
most prominent such relaxation, which can be guaranteed, is envy-freeness up to
one good (EF1) [15], which allows for the envy of up to the value of one (highest-
valued) good. This is equivalent to saying that any envy can be eliminated by
dropping one good from the envied bundle. A is an EF1 allocation if for all
agents i, j ∈ N where |Aj | > 0, there exists a g ∈ Aj such that

vi(Ai) ≥ vi(Aj − g). (EF1)

Envy-freeness up to any good (EFX) is an even stronger version of EF. While
EF1 allows that agent i envies agent j up to their highest valued good, EFX
requires that the envy can be removed by dropping agent j’s least valued good.
There are two slightly different definitions of EFX in use in the literature. I
follow the naming scheme used by Benabbou et al. [7] and refer to these as
EFX+ and EFX0. Caragiannis et al. [16] requires that this least valued good
be positively valued. We call this fairness objective EFX+. A is an EFX+

allocation if for all agents i, j ∈ N ,

vi(Ai) ≥ vi(Aj − g), ∀g ∈ Aj st. vi(Aj − g) < vi(Aj). (EFX+)

Plaut and Roughgarden [17], on the other hand, allow for 0-valued goods in the
envy check – we call this version EFX0. It is stronger requirement than EFX+.
A is an EFX0 allocation if for all agents i, j ∈ N ,

vi(Ai) ≥ vi(Aj − g), ∀g ∈ Aj . (EFX0)

In the general, additive case, the existence of EFX0 allocations is an open ques-
tion for instances with n ≥ 4 [4].

12

2.1.2 Proportionality
Proportionality is a fairness objective that is fundamentally different from envy-
freeness, in that it checks each bundle value against some threshold, instead of
comparing bundle values against each other. An allocation A is proportional
(PROP) if each agent i ∈ N receives at least her proportional share PROPi,
which is the 1

n fraction of the value she puts on the whole set of goods, i.e.,

vi(Ai) ≥ PROPi :=
vi(E)

n
. (PROP)

Proportionality might not be achievable in the indivisible case (again, con-
sider two agents and one positively valued good), and so relaxations in the
same vein as EF1 and EFX have been introduced – these are called PROP1
and PROPX [4]. An allocation is PROP1 if there for each agent i ∈ N exists
some good g ∈ E \Ai that, if given to i, would ensure that agent i received her
proportional share; that is,

∃g ∈ E \Ai st. vi(Ai + g) ≥ PROPi (PROP1)

PROPX is a stronger fairness objective than PROP1, and has, as in the case
of EFX, two slightly different definitions in the literature. I follow the naming
scheme established for EFX above, and refer to these as PROPX+ and PROPX0.
The logic is similar to that of EFX. An allocation is PROPX0 if each agent can
achieve her proportional share by receiving one additional, least-valued good
from the goods not allocated to her. This good might be zero-valued.

min
g∈E\Ai

vi(Ai + g) ≥ PROPi (PROPX0)

If we disallow zero-valued items, we arrive at the slightly weaker criteria PROPX+,
given by:

min
g∈E\Ai,∆i(Ai,g)>0

vi(Ai + g) ≥ PROPi (PROPX+)

Maximin share fairness

Budish introduces a relaxation of proportionality known as maximin share fair-
ness [18], in which the threshold for each agent i is her maximin share (MMS).
The MMS of agent i, denoted by µi, is defined as the maximum value she could
receive if she partitioned E among all agents and then picked the worst bundle.

13

Let Πn(E) be the family of all possible allocations of the goods in E to the
agents in N . Then,

µi := max
A∈Πn(E)

min
Aj∈A

vi(Aj).

An allocation is MMS-fair if all agents receive at least as much as their maximin
share:

vi(Ai) ≥ µi, ∀i ∈ N. (MMS)

In the general, additive case, MMS-fair allocations do not always exist, and even
computing the MMS of an agent is an NP-hard problem [4]. In a setting with
matroid-rank valuations, however, Barman and Verma showed that MMS-fair
allocations always exist, and can be computed in polynomial time [6].

2.1.3 Efficiency
Fairness is usually coupled with some efficiency criterion, to prevent the perfectly
fair solution in which the whole set of goods is thrown away. The efficiency of
an allocation can be measured with some welfare function on the values of the
agents. There are three welfare functions commonly used in the literature:

1. Egalitarian social welfare (ESW): The ESW of an allocation A is
given by the minimum value of an agent. ESW(A) = mini∈N vi(Ai).

2. Utilitarian social welfare (USW): The USW of an allocation is the
total value received by all agents. USW(A) =

∑
i∈N vi(Ai).

3. Nash welfare (NW): The Nash welfare of an allocation is a compromise
between the utilitarian and egalitarian approaches, given by the product
of agent utilities. NW(A) =

∏
i∈N vi(Ai).

Allocations that maximize one of these welfare functions are referred to as MAX-
ESW, MAX-USW and MNW, respectively.

Leximin

An obvious drawback of the egalitarian approach is that, in the situation where
there are multiple possible allocations that maximize the minimum bundle value,
it is indifferent to which of these bundles it prefers. Consider for instance two
possible allocations of goods to three agents, where their bundle values are given
as (A,B,C):

• Allocation 1: (5, 7, 10)

14

• Allocation 2: (5, 8, 9)

Both of these allocations are MAX-ESW. A stricter version of the egalitarian
rule is leximin: an allocation is leximin if it maximizes the smallest value; subject
to that, it maximizes the second-smallest value; subject to that, it maximizes
the next-smallest value, and so on. The leximin rule prefers Allocation 2 over
Allocation 1.

Pareto Optimality

Another widespread notion of allocation efficiency is that of Pareto optimality.
An allocation A is said to Pareto dominate another allocation B if (1) ∀i ∈
N, vi(Ai) ≥ vi(Bi) (every agent is at least as happy with A as with B), and
(2) ∃j ∈ N, vi(Aj) > vj(Bj) (some agent j is strictly happier with A than with
B). An allocation is Pareto optimal (PO) if it is not Pareto dominated by any
other allocation.

Pareto optimality is a weaker efficiency criterion than MAX-USW. To see
why, assume A is a MAX-USW allocation that is not PO. Since it is not
PO, there exists another allocation A′ with vi(A

′
i) ≥ v(Ai) for all agents i,

and vj(A
′
j) > vj(Aj) for some agent j. Then, USW(A′) =

∑
i∈N vi(A

′
i) >∑

i∈N vi(Ai) = USW(A), which contradicts that A is MAX-USW. In Sec-
tion 2.2.4, I show how the matroid union operation allows us to efficiently find
MAX-USW, and therefore PO, allocations when the valuations are matroid rank
functions.

2.2 Matroid theory
If a mathematical structure can be defined or axiomatized in multiple different,
but not obviously equivalent, ways, the different definitions or axiomatizations
of that structure make up a cryptomorphism. The many obtusely equivalent
definitions of a matroid are a classic example of cryptomorphism, and belie
the fact that the matroid is a generalization of concepts in many, seemingly
disparate areas of mathematics. As a result, the terms used in matroid theory
are borrowed from analogous concepts in both graph theory and linear algebra.

The most common way to characterize a matroid is as an independence
system. An independence system is a pair (E, I), where E is the ground set of
elements, E ̸= ∅, and I is the set of independent sets, I ⊆ 2E . The dependent
sets of a matroid are 2E \ I. A matroid is an independence system with the
following properties [13]:

15

(1) If S ⊆ T and T ∈ I, then S ∈ I.
(2) If S, T ∈ I and |S| > |T |, then there exists g ∈ S \ T such that S + g ∈ I.
(2’) If S ⊆ E, then the maximal independent subsets of S are equal in size.

Property (1) is called the hereditary property and (2) the exchange property.
Properties (2) and (2’) are equivalent. To see that (2) =⇒ (2’), consider two
maximal subsets of S. If they differ in size, (2) tells us that there are elements
we can add from one to the other until they have equal cardinality. We get
(2’) =⇒ (2) by considering S = A ∪ B. Since |A| > |B|, they cannot both be
maximal, and some e ∈ A\B can be added to B to obtain another independent
set.

When S = E (i.e., the entire ground set), (2’) gives us that the maximal
independent sets of a matroid are all of the same size. A maximal independent
subset of E is known as a basis. The size of the bases is the rank of the matroid
as a whole. A matroid can be exactly determined by B, its collection of bases,
since a set is independent if and only if it is contained in a basis (this follows
from (1)). A theorem by Whitney [13] gives the axiom system characterizing a
collection of bases of a matroid:

1. No proper subset of a basis is a basis.

2. If B,B′ ∈ B and g ∈ B, then for some g′ ∈ B′, B − g + g′ ∈ B.

The rank function of a matroid is a function v : 2E → Z+ which, given a
subset B ⊆ E, returns the size of the largest independent set contained in B.
That is,

v(B) = max
A⊆B,A∈I

|A|.

The properties of the matroid rank function are given in Section 2.1. Any
function adhering to these properties specify exactly one matroid.

2.2.1 The uniform matroid
The uniform matroid Ur

n is the matroid over n elements where the independent
sets are exactly the sets of cardinality at most r. The free matroid Un

n = (E, 2E)
is a special case of the uniform matroid and is the simplest, biggest and least
interesting type of matroid, being the trivial case in which every subset of E
is an independent set. While not very exciting matroids in and of themselves,
they are the easiest matroid to reason about and will show up from time to time
in the examples throughout this thesis.

16

2.2.2 The graphic matroid
Different types of matroids exist, arising from different sources of “indepen-
dence”; one well-known subclass of matroids, arising from notions of indepen-
dence in graphs, is the class of graphic matroids.

A tree is a connected acyclic graph, and a forest is a disconnected graph
consisting of some number of trees. A spanning tree of G is a subgraph with
a unique simple path between all pairs of vertices of G. A spanning forest of
G is a collection of spanning trees, one for each component. A graph will have
some number of different spanning trees. Figure 2.1 shows two spanning trees
of the same graphs (or alternatively, a spanning forest over one graph with two
components).

Given a graph G = (V,E), let I ⊆ 2E be the family of subsets of the edges E
such that, for each I ∈ I, (V, I) is a forest. It is a classic result of matroid theory
that M = (E, I) (the ground set of the matroid being the edges of the graph) is
a matroid [14, p. 657]. To understand how, we will show that it adhers to axioms
(1) and (2’), as given in above. By investigating the highlighted spanning trees
in Figure 2.1, it is easy to convince oneself that all subsets of a spanning tree
are trees, since no subset of an acyclic set of edges will contain a cycle. Thus
axiom (1) – the hereditary property – holds.

To see that (2’) holds, consider the set of bases of the matroid, B ⊆ I.
Figure 2.1 shows two bases of the matroid described by the graph. By definition,
each basis B ∈ B is a maximal forest over G. Since a spanning tree of a graph
with n nodes must needs have n − 1 edges (I recommend drawing trees and
counting their edges until one is convinced that this must be the case), we have
|B| = |V | − k, where k is the number of components of G. This is the same
for every B ∈ B, which proves property (2’). Any matroid given by a graph G,
denoted by M(G), is called a graphic matroid.

2.2.3 Other characterizations of a matroid
We have already seen how to characterize a matroid using its rank function,
its independent sets, or implicitly in terms of a graph, but the other properties
of a matroid have their own axiom systems that can equivalently be used to
characterize a matroid.

Characterization via circuits. A circuit is a minimal dependent set of a
matroid – it is an independent set plus one redundant element. Equivalently,

17

Figure 2.1: Two spanning trees of a graph with 8 edges.

Figure 2.2: Two overlapping circuits on a graph.

the collection of circuits of a matroid is given by

C =
{
C : |C| = v(C) + 1, C ⊆ E

}
.

A set is independent if and only if it contains no circuit [14], and so a matroid
is uniquely determined by the collection of its circuits. The following conditions
characterize C [13]:

(1) No proper subset of a circuit is a circuit.

(2) If C,C ′ ∈ C, x ∈ C ∩ C ′ and y ∈ C \ C ′, then C ∪ C ′ contains a circuit
containing y but not x.

These properties are easily grasped by studying an example. In Figure 2.2,
we see two circuits of a graph, highlighted in yellow and blue, overlapping at the
edge highlighted in green. Obviously, no circuit in this figure contains a circuit.

18

We can also verify that the union of the yellow edge set and the blue edge set,
minus the green edge, is in fact a third, bigger circuit, as promised by property
(2).

Characterization via closed sets. We also need to establish the concept of
the closed sets (sometimes referred to as flats [14]) of a matroid. A closed set
is a set whose cardinality is maximal for its rank. Equivalently to the definition
given above, we can define a matroid as M = (E,F), where F is the set of
closed sets of M, satisfying the following properties [11]:

1. The set of all elements is closed: E ∈ F

2. The intersection of two closed sets is a closed set: If A,B ∈ F , then
A ∩B ∈ F

3. If A ∈ F and a, b ∈ E \ A, then b is a member of all sets in F containing
A ∪ {a} if and only if a is a member of all sets in F containing A ∪ {b}

The closure function is the function cl : 2E → 2E , such that

cl(S) =
{
x ∈ E : v(S) = v(S ∪ {x})

}
.

That is to say, the closure function, when given a set S ⊆ E, returns the set of
elements in x ∈ E such that x can be added to S with no increase in rank. It
returns the closed set of the same rank as S, that contains S. The nullity of a
subset S is the difference |S| − v(S), i.e., the number of elements that must be
removed from S to obtain an independent set.

Figure 2.3 shows an independent (acyclic) set S of edges in highlighted yel-
low, along with its closure cl(S) in blue. The closure is the set of edges e such
that v(S + g) = v(S), or, equivalently, such that the spanning tree of S + g has
the same size as that of S.

2.2.4 Matroid union
The matroid union is an operation that allows us to produce a new matroid
by combining the independent sets of a collection of existing matroids. This is
a powerful tool, as it allows us to reason about independence across multiple
matroids, and has found several practical applications within fair allocation [6–
8].

19

Figure 2.3: An independent subset of edges in yellow, with its closure in blue.

Given n matroids Mi = (E, Ii), their union is given, somewhat obtusely, by

M̂ = (E, Î) = (E, {I1 ∪ . . . ∪ In : Ii ∈ Ii, ∀i ∈ N}).

M̂ is in fact a matroid [14, Ch. 42], whose independent sets are the the subsets
S ⊆ E that allow an n-partition S1, . . . , Sn such that Si ∈ Ii, for all i ∈ N . The
following statements are equivalent for all n-partitions of the elements of E:

1. Each Si ∈ S is independent in Mi

2. S = (S1, . . . , Sn) ∈ Ii × · · · × In

3.
⋃n

i=1 Si ∈ Î is independent in M̂

In fair allocation jargon, if each Mi is the matroid described by agent i’s
valuation function vi, a set of goods S is independent in M̂ if and only if we can
allocate it among the agents and produce utilitarian social welfare (i.e., total
value) equal to |S|. This follows from the fact that if S is an n-partition of S such
that S = (S1, . . . , Sn) ∈ I1 × · · · × In, then Si ∈ Ii for each i. When this is the
case, we have vi(Si) = |Si|, and so SW(S) =

∑
i∈N vi(Si) =

∑
i∈N |Si| = |S|.

Hence, each basis in M̂ corresponds to a clean (but not necessarily complete),
MAX-USW allocation of the goods in E [6]. It is a classic result of Edmonds [19]
that a basis in M̂ can be computed in polynomial time, using the matroid
union algorithm. This is achieved by making use of two additional concepts,
the exchange graph and transfer paths.

The exchange graph

Given n matroids M1 = (E, I1), . . . ,Mn = (E, In), let A be a collection of n
sets A1, . . . , An such that (a) Ai∩Aj = ∅ when i ̸= j, and (b) for each i, Ai ⊆ E

20

and Ai ∈ Ii. In the context of a matroid-rank-valued fair allocation problem,
A is a clean allocation of the goods in E to the agents in N .

We follow the example of Schrijver [14] and define the exchange graph of
A as the directed graph D(A) = (E, x(A)), where each node corresponds to a
good in E, and the edges are given by

x(A) = {(p, q) : p ∈ Ai, q ∈ E \Ai, vi(Ai − p+ q) = vi(Ai)},

where vi is the rank function of the matroid Mi. In other words, an edge
exists between goods p ∈ Ai and q ∈ E \ Ai if we can replace p with q for no
decrease in the rank of the set containing p. Intuitively, we can understand D
as representing for each good p, which other good q the current owner of p can
replace p with and be just as happy. This intuitive explanation lets us begin
to see why the matroid union algorithm and the concept of the exchange graph
has found widespread use in fair allocation with matroid-rank valuations; they
allow us to model equitable transfers of goods between agents.

Transfer paths and path augmentation

Let P = (g1, . . . , gt) be a path in the exchange graph D(A). The transfer of
goods along P is the operation in which gt is given to the agent who owns
gt−1, gt−1 is given to the agent who owns gt−2, and so on until g1 is discarded.
This transfer is called path augmentation; we use the notation established by
Viswanathan and Zick [8] and denote the bundle Ai after augmentation with
the path P by AiΛP .

For some i ∈ N , we define Fi = {e ∈ E \ Ai : Ai + e ∈ Ii} as the set of
elements whose addition to Ai yields another, larger independent set (remember
that A is clean, so Ai ∈ Ii for each i). In a paper on the matroid union algorithm,
Knuth [20] shows that, by augmenting along a shortest path P = (g1, . . . , gt)
from Fi to Aj for some j ∈ N − i, we get

(a) vi(AiΛP + g1) = vi(Ai) + 1,

(b) vk(AkΛP) = vk(Ak), ∀k ∈ N − i− j, and

(c) vj(AjΛP) = vj(Aj)− 1.

By greedily growing clean bundles in this manner, we can find a maximal in-
dependent set over M̂ in polynomial time [14]. Chapter 3 discusses Matroids.jl
implementation of Knuth’s matroid union algorithm. Viswanathan and Zick’s
Yankee Swap algorithm [8], discussed in Chapter 5, uses these concepts as well.

21

1111

1101 10111110 0111

0110 1001 010110101100 0011

0100 00101000 0001

0000

Rank 2

Rank 1

Rank 0

Figure 2.4: The uniform matroid U2
4 .

2.2.5 Matroid erection
Knuth’s general matroid construction, the implementation of which is discussed
in Section 4.3, requires us to establish a few more matroid concepts. The rank-
k truncation of a rank-r matroid M = (E, I), is the rank-k matroid M(k) =
(E, I(k)), where

I(k) = {I ∈ I : |I| ≤ k}.
The truncation of M is given as T (M) = M(r−1). As a simple example, we
have that the uniform matroid Un−1

n = T (Fn), where Fn is the free matroid
with n elements. The erection (I defer to Crapo for the somewhat esoteric
choice of term [21]) of the matroid M is the matroid N of rank ≤ r + 1 such
that M = T (N). In other words, when taking the truncation of a matroid, we
produce a new matroid by disregarding all independent sets of cardinality higher
than some k. When taking the erection of a rank-k matroid, we produce a new
matroid by declaring some number of subsets S ⊆ E such that |S| = r+1 to be
independent, or equivalently, declaring some number of them to be closed sets
of rank r. By declaring all of them to be dependent, we get the trivial erection
N = M. By declaring none of them dependent (i.e., they are all independent
sets r(S) = |S| = r + 1), N is the free erection of M [22].

A matroid can have many erections. Figure 2.4 shows the Hasse diagram
for the matroid of 4 elements, where every subset of two or fewer elements is
independent (denoted in yellow). Each subset is encoded as a binary string,

22

1111

1101 10111110 0111

0110 1001 010110101100 0011

0100 00101000 0001

0000

Rank 3

Rank 2

Rank 1

Rank 0

Figure 2.5: An erection of U2
4 .

where a 1 designates membership in the set (a syntax we will become very
familiar with in Chapter 4). This matroid is known as the uniform matroid U2

4—
it is the matroid over a ground set of 4 elements, where every subset of size 2 or
less is independent. The uniform matroid U3

4 is the free erection of U2
4 , where

we have simply designated all sets of rank 3 as independent. Figure 2.5 shows
another erection of U2

4 , one in which only three of the subsets with three elements
are designated as independent. The final set, 0111, remains a dependent set,
and has therefore in fact been designated as a closed set of rank 2. By starting
from the rank-0 matroid M(0), one can iteratively erect any matroid M, at
each iteration i designating the sets to be closed sets of rank i (all the while
ensuring that the axioms for the closed sets of a matroid are obeyed). This is the
approach taken by Knuth in his matroid erection algorithm, which is discussed
in Chapter 4.3.

The essential closed sets (often referred to as essential flats) of a matroid are
the closed sets whose existence cannot be inferred from the closed sets of lower
rank. The rank-2 set 0111 in the example above is an essential closed set. The
essential closed sets of a matroid, together with their ranks, fully determine the
matroid [23]. A rank-r matroid can also be described inductively as a sequence
of erections (X0, X1, . . . , Xr−1), where Xk is a set of (k + 1)-subsets of E that
roughly encode the closed sets of rank k [24]. This insight is the basis for Knuth’s
matroid construction algorithm.

23

2.3 Matroids in fair allocation
It should be clear at this point that matroids are compelling structures to work
with in the context of fair allocations. There are two main use cases for matroids
in fair allocation: matroid-rank valuation functions (as in the example scenario
from the introduction) and matroid constraints. Matroids.jl will be developed
with the empirical study of algorithms for these two scenarios in mind.

2.3.1 Matroid-rank valuations
In a fair allocation instance with matroid-rank valuations, each agent i has a
corresponding matroid Mi = (E, Ii), where E (the set of goods) is the ground
set of elements common to all agents’ matroids. The example I give in Chap-
ter 1 illustrates the fact that using matroids in this manner is a natural way of
modeling many real-world behaviors of user preferences; matroid rank functions
model diminishing returns, supplementary goods and fixed demand. This is one
reason for the interest in matroid-rank valuations in fair allocation.

Another good reason for the interest in matroid-rank valuations is that the
rich field of matroid theory offers many deep results that are useful for reason-
ing about what fairness guarantees can be made when agents have matroid-
rank valuations. For instance, Babaioff gives an allocation mechanism called
the randomized prioritized egalitarian (RPE) mechanism, that produces allo-
cations that are clean, MAX-USW, EFX, leximin and 1

2 -MMS in polynomial
time [25]. This is an appealing set of fairness guarantees, most of which are
computationally intractable in the general, additive case

Note that submodular valuations are not fully representative of all combi-
natorial preferences. One example of a situation that can not be modeled with
matroid rank functions is complementary goods. Consider, as an example, a
fair allocation instance where two goods are the left and right shoe in a pair
of shoes. An agent considers each individual shoe to be worthless on its own,
but together they have value for the agent. This is a case of supermodularity
(the opposite of submodularity; i.e., “increasing returns”)—the second shoe has
marginal value of 1 for an agent if and only if the first shoe is present in the
agent’s bundle—and is not representable using submodular valuations.

2.3.2 Matroid constraints
Another usage found for matroids in fair allocation is that of matroid constraints.
The majority of work on fair division assumes that any allocation is feasible,

24

and the sole concern is finding an allocation that aligns well with the agents’
valuation profiles. In many practical applications, however, there will be allo-
cations that are not legal or desirable. Biswas and Barman [5] give an example
of a museum with multiple branches distributing exhibits of different categories
(sculpture, paintings, et cetera) among the branches. For each category, it wants
to create a balanced distribution among the branches, so that the difference in
the number of exhibits of a given category differ by at most one between any
branch. This is an example of a cardinality constraint, which is a subset of the
broader class of matroid constraints.

When matroid constraints are enforced on a fair allocation instance, we
require that all bundles be independent sets on some supplied matroid, common
to all agents.

25

Chapter 3
The Matroids.jl API

Matroids.jl exists to enable the empirical study of matroidal fair allocation. In
this chapter, I consider what fair allocation-specific methods the Matroids.jl
API should expose to achieve this goal, and how they might be implemented.
While doing so, I keep track of which properties are required from the matroids
being used. Chapter 4 describes how Matroids.jl generates a number of different
matroid types, and how the getter functions for the properties we need are
implemented.

The implementation will draw inspiration from, and be designed to integrate
with, Hummel and Hetland’s well-organized Allocations.jl library [10], which
provides a range of algorithms for fair allocation of indivisible items. Alloca-
tions.jl currently supports additive and submodular valuations and a number of
constraint types, including conflict constraints and cardinality constraints. Ma-
troids.jl should extend Allocations.jl with support for matroid-rank valuations
and matroidal constraints. As such, Matroids.jl should be structured in such a
manner as to be familiar to those acquainted with Allocations.jl.

In this chapter, I describe how the Matroids.jl API is designed to enable ex-
perimentation with fair allocation algorithms for matroid-rank valuations. First,
I describe how Matroids.jl extends the fairness and efficiency measures of Allo-
cations.jl to handle matroid-rank valuations. With that in hand, I enumerate a
few recent, interesting algorithms for this use case, and discuss which require-
ments their implementation would pose to Matroids.jl. Finally, I show how
Matroids.jl supports the matroid union operation, using a classic matroid pro-

26

cedure attributable to Knuth [20] and Edmonds [19] that have found widespread
use in fair allocation with matroid-rank valuations.

Implementing support for matroidal constraints is out of scope for this thesis.
A discussion on how one might go about doing this in the future is included in
Chapter 6.

3.1 Fairness under matroid-rank valuations
If Matroids.jl is to be of use in the empirical study of matroidal fair allocation
algorithms, we need to be able to evaluate the fairness of an allocation. In
this chapter, I show how Matroids.jl implements the fairness criteria given in
Chapter 2. The valuation profile of matroid-rank-valued allocation problem
instance gives the valuation function of each agent. This is represented as a
struct containing the matroid Mi for each agent i. Agent i’s value for the set
of goods S, vi(S), is the rank of S in Mi.

� �
"""

struct MatroidRank <: Profile

A matroid rank valuation profile, representing how each agent values all
possible bundles. The profile is constructed from `n` matroids, one for
each agents, each matroid over the set of goods {1, ..., m}.

"""
struct MatroidRank <: Profile

Ms::Vector{Matroid}
m::Int

end

value(V::MatroidRank, i, S) = rank(V.Ms[i], S)
value(V::MatroidRank, i, g::Int) = value(V, i, Set(g))� �

Figure 3.1: MatroidRank represents a fair allocation instance with matroid-rank
valuations.

Envy-freeness
Checking if an allocation is EF is the same for matroid-rank valuations as for
additive valuations – simply compare each agent’s own bundle value with that

27

agent’s subjective valuation of each other agent’s bundle. This is already imple-
mented in Allocations.jl. In this section, I give the functions value_1, value_x
and value_x0, which are used for computing EF1, EFX+ and EFX0, respec-
tively. These functions take in a valuation profile V , an agent i and a bundle S,
and return the agent i’s value for S, up to some item. If each agent i’s received
value exceeds the result of calling value_1(V, i, S) on every other agent’s
bundle S, then the allocation is EF1; equivalently so for EFX+ and EFX0.

If S is independent in Mi, then the removal of any good in S will reduce
agent i’s valuation of that bundle by 1. Then, agent i’s value for S up to a
highest-valued good is the same as that up to a least-valued (positively or no)
good. In other words, value_1(V, i, S) = value_x(V, i, S) = value_x0

(V, i, S) = vi(S)− 1 when S is independent in Mi.

5

2

3

1

4

Figure 3.2: A graph, with a rank-3, size-4 bundle of edges highlighted in yellow

If that is not the case, however, the functions behave differently. It might
be tempting to think that if S is not independent (dependent) in Mi, then no
matter which good is removed from S, agent i would value the bundle the same.
This is certainly the case sometimes; let Mi = Uk

n , and let S be some set of
goods such that |S| = k + 1. By the definition of the uniform matroid, we
have that vi(S) = k. Yet remove any good g from S, and the resulting set is
of size |S − g| = k, and the value remains unchanged. We might however also
contrive a scenario in which the removal of some goods from a set S reduces i’s
valuation of that set, while some other goods while not affect it. This is the case
when Mi is the graphic matroid obtained from the graph in Figure 3.2, and S
is the bundle highlighted in yellow. In this situation, we have vi(S) = 3, and
vi(S− 1) = 2 ̸= vi(S− 3) = 3. Thus, agent i’s value of S up to a highest-valued
item is in this case vi(S) − 1 = 2. Similarly, since the least positively-valued
good also has value 1, EFX+ is the same as EF1 (this is always the case with
matroid-rank valuations). Finally, the least-valued good overall can be removed
without a reduction in value when S is dependent. This line of reasoning gives
us the implementation of value_1, value_x and value_x0 given in Figure 3.3.

28

� �
function value_1(V::MatroidRank, i, S)
if is_indep(V.Ms[i], S)

return max(length(S)-1, 0)
end

return minimum(value(V, i, setdiff(S, g)) for g in items(V))
end

value_x(V::MatroidRank, i, A) = value_1(V, i, A)

value_x0(V::MatroidRank, i, S) =
is_indep(V.Ms[i], S) ? max(length(S)-1, 0) : value(V, i, S)� �

Figure 3.3: Methods for computing EF1 and EFX+ and EFX0.

Proportionality
To check whether an allocation A is PROP or some relaxation thereof, we com-
pare vi(Ai) against some threshold for every agent i. In this section, we give
the functions for computing the threshold for PROP and its relaxations.

� �
prop(V::MatroidRank, i, _) = rank(V.Ms[i])/na(V)
prop_1(V::MatroidRank, i, A) = prop(V, i, A) - 1
prop_x(V::MatroidRank, i, A) = prop_1(V, i, A)
prop_x0(V::MatroidRank, i, A) =

is_closed(V.Ms[i], A) ? prop_1(V, i, A) : prop(V, i, A)� �
Figure 3.4: Methods for computing PROP, PROP1, PROPX+ and PROPX0.

PROPi is simply the rank of Mi, vi(M), as this is the maximum value
achievable for agent i, divided by the number of agents in the problem instance.

To check for PROP1, we need to figure out if there exists some g ∈M such
that vi(Ai + g) ≥ 1

nvi(M). We know, due to the hereditary property (as given
in Section 2.2.3) that unless vi(Ai) = vi(M) already (in which case we have
trivial PROP1), there exists g ∈ M \ Ai such that ∆i(Ai, g) = 1. To figure
out if A is PROP1, then, we need to check whether vi(Ai) + 1 ≥ 1

nvi(M), or
equivalently, whether vi(Ai) ≥ 1

nvi(M)− 1 = PROPi − 1. This is our PROP1
threshold. Since the least positively-valued element will also have a marginal
value of 1, PROPX+ is the same as PROP1.

29

When checking for PROPX0, we want the g ∈ E \Ai whose addition would
increase the value of Ai the least. The question, then, is whether there exists an
element g ∈ E \ Ai such that ∆i(Ai, g) = 0. If Ai is a closed set (i.e., maximal
for its rank), then any additional good will increase the rank by 1, otherwise
there exists some such g.

Maximin share

Matroids.jl implements Barman and Verma’s [6, Appendix A] method for com-
puting agent i’s maximin share in polynomial time. Recall that the maximin
share for agent i, µi, is the best bundle value she can achieve by allocating the
goods to the n agents and choosing the worst bundle for herself. Barman and
Verma show that even if we require each bundle considered to be clean (i.e.,
independent in Mi), we still find µi. The task, therefore, is to find the partition
of E into n sets independent in Mi maximizing the minimum bundle value.

This is equivalent to finding a maximum-size independent set in the n-fold
union of Mi with itself, i.e.,

M̂i×n = (E, Îi×n) = (E, {I1 ∪ · · · ∪ In : It ∈ Ii, ∀t ∈ N}),

which can be produced in polynomial time using the matroid union algorithm [14,
Ch. 42]. Let Â ∈ Îi×n be such a set. As shown in Section 2.2.4, Â allows an
n-partition A = (A1, . . . , An) such that, in this case, At ∈ Ii for all t ∈ N .

Matroids.jl implements Knuth’s 1973 matroid union algorithm [20]. The
implementation is given in Appendix B, for now let it suffice to say that we have
a function called matroid_partition_knuth73, which, when given k matroids
(M1, . . . ,Mk) over the same ground set E, returns a partition of E into k sets
S = (S1, . . . , Sk) such that each set St is independent in Mt. By passing n
copies of Mi, we get the n-partition A as above.

With A in hand, Barman and Verma’s procedure iteratively update the sets
of A as long as there exist j, k ∈ N such that vi(Aj) − vi(Ak) ≥ 2. This is
equivalent to |Aj | − |Ak| ≥ 2, since the sets are all independent in Mi. When
this is the case, there exists (due to the exchange property) a good g′ ∈ Aj such
that Ak + g′ ∈ Ii. The sets are updated Aj ← Aj − g′ and Ak ← Ak + g′ until
no two sets differ in cardinality by more than one. Now, we have a partition of
E into n evenly sized subsets that are independent in Mi. The value of worst of
these is agent i’s maximin share. Matroids.jl’s implementation of this procedure
is given in Figure 3.5.

30

� �
"""
function mms_i(V, i)

Finds the maximin share of agent i in the instance V.
"""
function mms_i(V::MatroidRank, i)
M_i = V.Ms[i]; n = na(V)

An initial partition into independent subsets (subjectively so for i).
(A, _) = matroid_partition_knuth73([M_i for _ in 1:n])

Setup matrix D st D[j,k] v_i(A_j) - v_i(A_k) ∀ j,k ∈ [n].
D = zeros(Int8, n, n)
for j in 1:n, k in 1:n

v_i(A_p) = |A_p| since all sets in A are independent wrt M_i.
D[j,k] = length(A[j]) - length(A[k])

end

jk = argmax(D)
while D[jk] > 1

j,k = Tuple(jk)

By the augmentation property, ∃g ∈ A_j st A_k + g ∈ I_i.
g = nothing
for h ∈ setdiff(A[j], A[k])

if is_indep(M_i, A[k] ∪ h)
g = h; break

end
end

Update A.
setdiff!(A[j], g); union!(A[k], g)

Update D.
for l in 1:n

D[j, l] -= 1; D[l, j] += 1 # A_j is one smaller.
D[k, l] += 1; D[l, k] -= 1 # A_k is one larger.

end

jk = argmax(D)
end

return minimum(length, A)
end� �

Figure 3.5: Maximin share computation.

31

3.2 Three selected algorithms
The purpose of Matroids.jl being to enable the empirical study of matroidal fair
allocation, we should investigate what requirements algorithms in this space
pose of a library that aims to enable their implementation. In order to maintain
a manageable scope, I restrict my attention to three recent algorithms for fair
allocation with matroid-rank valuations, that, while relatively short and sweet,
make use of some deep results from matroid theory to deliver well on a range
of fairness criteria.

The Envy-Induced Transfers algorithm. This algorithm is due to Ben-
abbou, Chakraborty, Igarashi and Zick [7]. Named Algorithm 1 in the paper, it
relies on a subroutine the authors name Envy-Induced Transfers (EIT)—hence
the name. Benabbou et al. show that, for matroid-rank valuations, a Pareto
Optimal, MAX-USW and EF1 allocation always exist and can be computed
efficiently, using the simple greedy algorithm given in Algorithm 1.

The algorithm should look familiar; it is very similar to Barman and Verma’s
procedure for computing an agent’s maximin share detailed in the previous
section. The crux of both approaches is the concept of the matroid union: a
maximum-size independent set in the union of the matroids in play is a clean
MAX-USW allocation. We find such a clean allocation using the Matroid-
Partition subroutine, which accepts the matroids and the set of elements.

With that in hand, we can use the exchange property of independent sets to
greedily choose goods to transfer until the allocation has the desired properties.
In this case, the algorithm continues transfering as long some agent envies an-
other agent for more than one good; when it terminates, the allocation is thus
EF1.

32

Algorithm 1 Envy-Induced-Transfers [7]

Input: A matroid-rank-valued fair allocation instance (N,E, {Mi}i∈N).
Output: A clean, MAX-USW, EF1 allocation A = (A1, . . . , An).

1 Let A = Matroid-Partition({Mi}i∈N , E) (clean and MAX-USW)
2 while there are two agents i, j ∈ N st. i envies j more than 1 good, do
3 Find good g ∈ Aj with ∆i(Ai, g) = 1
4 Update Aj ← Aj − g
5 Update Ai ← Ai + g
6 end
7 return A

AlgMMS. This algorithm is given in Algorithm 2, and is due to Barman
and Verma [6]. It is similar to Envy-Induced-Transfers in that it first
generates an initial clean, MAX-USW allocation using Martoid-Partition,
before massaging this allocation until the desired properties are met. In this
case, the desired property is that of MMS-fairness; each agent should receive at
least their share µi, computed using the MMS subroutine, an implementation
of which is described in the previous section.

AlgMMS achieves this by keeping track of which agents have received more
than their MMS (these make up the set S>), and which have received less (S<).
While there are agents i such that vi(Ai) < µi, the algorithm constructs an
exchange graph D with the Build-Exchange-Graph subroutine. It then finds
a shortest path P in D from a good for which i has positive marginal value (the
set of goods Fi), to a good currently located in Aj , for some j ∈ S>. Finally
it augments, with Transfer subroutine, the allocation along a transfer path
Barman and Verma show that MMS-fair MAX-USW allocations always exist
for instances with matroid-rank valuations, and that AlgMMS finds them in
polynomial time. To build an intuitive understanding of how the algorithm
works, let us take a look at an instructive example.

33

Algorithm 2 AlgMMS [6]

Input: A matroid-rank-valued fair allocation instance (N,E, {Mi}i∈N),
and µi = MMS(N,E,Mi) for every i ∈ N .

Output: A clean, MAX-USW, MMS-fair allocation A = (A1, . . . , An).

1 Let A = Matroid-Partition({Mi}i∈N , E) (clean and MAX-USW)
2 Initialize S< = {i ∈ N : vi(Ai) < µi}
3 Initialize S> = {i ∈ N : vi(Ai) > µi}
4 while S< ̸= ∅, do
5 Select any agent i ∈ S<

6 Let Fi = {g ∈ E : ∆i(Ai, g) = 1}
7 Let D = Build-Exchange-Graph(A)
8 Let P = Shortest-Path(D,Fi,

⋃
j∈S>

Aj)

9 Update A← Transfer(A,P)
10 Reset S< = {i ∈ N : vi(Ai) < µi}
11 Reset S> = {i ∈ N : vi(Ai) > µi}
12 end
13 Let junk = E \⋃n

i=1 Ai be the set of unallocated goods
14 return (A1 ∪ junk,A2, . . . , An)

Figure 3.6 illustrates a situation in which we have three agents a1, a2 and
a3, whose valuation functions are the rank functions over three different graphic
matroids, and six goods E = {1, . . . , 6}. The allocation A is highlighted in
yellow: Aa1

= {1}, Aa2
= {2, 3} and Aa3

= {4, 5, 6}. This might be the initial
allocation output from Matroid-Partition, as it is MAX-USW (SW(A) =
6 = |E|). It should be clear that the maximin share of each agent is 2; in the
situation depicted, a3 has received a bundle of value 3, at the expense of a1,
who only received a bundle of value 1. Yet, a1 is not envious of a3’s bundle,
since the goods in Aa3

are all worthless to a1. So A is EF1, but not MMS-fair.
We begin to see that Envy-Induced-Transfers has it easy; it can elim-

inate the envy one good at a time by moving a good directly from the envied
to the envious agent, stopping when no agent directly envies another. This is
equivalent to augmenting along a length-1 transfer path on the exchange graph.
AlgMMS, on the other hand, might encounter a situation such as this one, in
which some agent has more than their MMS, whilst another has less, yet no
good in the fortunate agent’s bundle will improve the situation of the unfortu-
nate one—in that case, there must be a transfer path of length > 1 between the
two agents.

34

3

21

4 6

5

(a) Agent a1

2

1

4

3 5

6

(b) Agent a2

6 5

4

3

2

1

(c) Agent a3

Figure 3.6: Three agents represented by their valuation matroids, the allocation
A highlighted in yellow.

1 2

3

45

6

Figure 3.7: The exchange graph of the allocation during an intermediate step
of AlgMMS, with Fa1

highlighted in yellow, goods belonging to agents in S>

in blue and the transfer paths in green.

3

21

4 6

5

(a) Agent a1

2

1

4

3 5

6

(b) Agent a2

6 5

4

3

2

1

(c) Agent a3

Figure 3.8: The resulting MMS-fair allocation after augmenting along (2, 4).

35

Figure 3.7 shows the exchange graph D(A) (i.e., the directed graph with a
node per good, and an edge (u, v) iff good u can be exchanged with good v for no
loss in value for the current holder of u). Highlighted in yellow are the goods in
Fa1 , the set of goods g such that ∆a1(Aa1 , g) = 1. The blue nodes are the goods
belonging to an agent in S>, the set of agents who have received more than their
MMS. The green edges show the paths between these two sets of goods. As we
can see, the available transfer paths are (2, 4) and (3, 4), representing a transfer
of good 4 from Aa3

to Aa2
, and good 2 or 3 from Aa2

to Aa1
, respectively.

We augment along the transfer path (2, 4) and end up with the allocation
shown in Figure 3.8, in which every agent has their maximin share of value.
Success! After all agents have received their MMS, any remaining unallocated
goods (none in the example case) are simply allocated to agent 1. This ensures
that the allocation is complete, though not necessarily clean. These goods,
denoted junk in Algorithm 2, are the goods for which no agent has any addi-
tional value, either because they were always 0-valued or because every agent
has achieved a basis in their matroid.

AlgMMS highlights how simple algorithms can deliver strong fairness guar-
antees when working with matroid-rank valuations, compared to the general, ad-
ditive case, where even computing the MMS of a single agent is NP-hard. With
this short, highly grokkable algorithm, we can produce MMS-fair allocations in
polynomial time.

Yankee Swap. The most recent of the three algorithms discussed in this
chapter is due to Viswanathan and Zick [8], and is named Yankee Swap1. This
algorithm delivers very well on a range of fairness and efficiency notions; it finds,
in polynomial time, a clean allocation that is MNW, MAX-USW, EFX, leximin
and 1

2 -MMS-fair (every agent receiving at least half of their maximin share). In
addition to this, the authors argue that a major selling point of the algorithm is
that it is easy to reason about, as it does not use complex matroid optimization
operations (i.e., Matroid-Partition) as subroutines.

In the paper, the algorithm requires that a priority order π of the agents is
passed along with the fair allocation instance, where π represents some permu-
tation of the agents in N , denoting the prioritization of the agents. By choosing
π uniformly at random, the algorithm produces allocations that are also, in
expectation, EF and PROP (known as ex ante envy-freeness and ex ante pro-

1Named after the gift exchange game also known as White Elephant and Dirty Santa, in
which participants, upon receiving a gift, can choose to keep it or steal another player’s gift.
See https://en.wikipedia.org/wiki/White_elephant_gift_exchange for details.

36

portionality). When discussing Yankee Swap in this thesis, I will without loss
of generality assume that the ordering of the agents in N is selected in such a
manner elsewhere beforehand; that is, it has been randomly chosen which agent
is to be agent 1 before the algorithm is run.

The pseudocode is given in Algorithm 3. Similarly to Envy-Induced-
Transfers and AlgMMS, it starts out with an initial allocation; in this case,
however, this initial allocation is the one in which every good is allocated to
the new agent 0, whose bundle A0 represents the unallocated goods. After this,
the procedure is reminiscent of the other algorithms described in this section.
At each iteration, i is the highest priority (i.e., first) agent with the least value
whose bundle can still improve. We find Fi as above, and build the exchange
graph D for the allocation A. If there exists a transfer path P from Fi to the set
of unallocated good A0, we augment A along P . The transfer operation can be
understood as a sequence of thefts, wherein agent i improves her lot by stealing
a good from another agent’s bundle, whereupon the robbed agent compensate
for this by stealing from another agent, and so on. The last agent in the path
will lose a good, and so we are only interested in transfer paths ending at A0, as
these are the paths representing the allocation of one additional good, thereby
increasing the social welfare of the allocation by one. If no such path exists, we
know that Ai cannot improve and we disregard i in future iterations. The algo-
rithm terminates when no bundles can be further improved, and the resulting
allocation has the properties above.

Having understood the three algorithms we will try to implement, we can
now enumerate the functional requirements they pose to Matroids.jl. Common
logic has been extracted into separate subroutines, viz. Matroid-Partition,
Build-Exchange-Graph, Shortest-Path and Transfer. The marginal
value function ∆i is also required—depending on the circumstance, this can
be implemented using either a rank function Rank or an independence oracle
Indep. AlgMMS also requires the ability to compute an agent’s maximin
share with the MMS subroutine. With all of this in place, we should be able to
implement these algorithms. The requirements are listed in Table 3.1.

The implementation of Rank and Indep will depend on the specific type
of matroid in question, and is discussed in the next chapter. We have already
seen how Matroids.jl implements MMS. To finish off this chapter, then, let
us examine how Matroids.jl supports the matroid partitioning procedure, and
related operations on the exchange graph.

37

Algorithm 3 Yankee-Swap [8]

Input: A matroid-rank-valued fair allocation instance (N,E, {Mi}i∈N).
Output: A clean, MAX-USW, EFX, leximin 1

2 -MMS-fair allocation
A = (A1, . . . , An).

1 A = (A0, A1, . . . , An) = (E, ∅, . . . , ∅)
2 flagj = false for all j ∈ N
3 while flagj = false for some j ∈ N , do
4 Let T be the agents j ∈ N with flagj = false
5 Let T ′ be the agents in T with least value in A
6 Let i be the first agent in T ′ (The highest priority agent in T ′)
7 Let Fi = {g ∈ E : ∆i(Ai, g) = 1}
8 Let D = Build-Exchange-Graph(A)
9 if there exists a shortest path P = Shortest-Path(D,Fi, A0), do

10 Update A← Transfer(A,P)
11 else
12 flag i ← true
13 end
14 end
15 return A

3.3 Exchange graphs and transfer paths
As shown in Section 3.2, exchange graphs and transfer paths on these are useful
tools for fair allocation with matroid-rank valuations. Therefore, Matroids.jl
exposes functions for computing the exchange graph D(A) of an allocation A,
finding a shortest (transfer) path P between two sets of nodes in D(A), and
producing a new allocation AΛP by augmenting A along P .

Building the exchange graph. The implementation of Build-Exchange-
Graph is given in Figure 3.9. Matroids.jl uses the Graphs.jl library [26] to
handle graphs, and the Allocations.jl library [10] provide several handy types
and functions for representing and working with allocations. Armed with tools
from these libraries, building the exchange graph is a breeze. After initializing
the empty directed graph D = (E, ∅) with a node per good and no edges,
exchange_graph iterates over all pairs of goods gi, gj , and adds an edge (gi, gj)

38

Algorithm Requirements

Envy-Induced Transfers
• Matroid-Partition

• Rank

AlgMMS

• Matroid-Partition

• MMS

• Rank

• Indep

• Build-Exchange-Graph

• Shortest-Path

• Transfer

Yankee-Swap

• Build-Exchange-Graph

• Shortest-Path

• Transfer

• Rank

• Indep

Table 3.1: Functional requirements for Matroids.jl posed by three recent fair
allocation algorithms

39

� �
function exchange_graph(Ms, A; all_indep=true) where T <: Matroid
m = ni(A)
D = SimpleDiGraph(m)

Checking for each i,j whether element ei can be replaced with ej.
for gi in 1:m, gj in setdiff(1:m, gi)

if !owned(A, gi) continue end
i = owner(A, gi)

if all_indep
Check if A_i - ei + ej is independent in Mi.
if is_indep(Ms[i], setdiff(bundle(A, i), gi) ∪ gj)

add_edge!(D, gi, gj)
end

else
if rank(Ms[i], bundle(A, i)) == rank(Ms[i], setdiff(bundle(A,i), gi) ∪ gj)

add_edge!(D, gi, gj)
end

end
end

return D
end� �

Figure 3.9: exchange_graph(Ms, A) finds the exchange graph of the allocation
A, given the array of matroids Ms

if the owner of gi would be just as happy with the bundle where gi is replaced
with gj .

If we know that all bundles Ai are independent in Mi, then we do not
need to actually compute the rank of the bundle before and after some gi, gj
replacement—instead, we can simply check if the new bundle Ai−gi+gj is also
independent, replacing a couple of calls to Rank with one call to the cheaper
Indep. For the use cases outlined in Section 3.2, this is always the case, and so
this behavior is default.

With this implementation, Matroids.jl constructs the exchange graph for an
allocation in O(m2) calls to the independence oracle (or rank function).

Finding a transfer path. The purpose of the exchange graph D(A) is to
find a transfer path P on it, and produce the augmented allocation AΛP . A
transfer path is by definition a shortest path from some set of nodes (in the case
of Yankee-Swap, Fi) to some other set of nodes (A0) in D(A). Matroids.jl

40

� �
function find_shortest_path(D, from, to)
X = intersect(from, to)
if length(X) > 0

return [X[1]]
end

ds = dijkstra_shortest_paths(D, from)
paths = []

for g in to
path = [ds.parents[g], g]

while path[1] /∈ from
if path[1] == 0 @goto skip end
pushfirst!(path, ds.parents[path[1]])

end

push!(paths, path)
@label skip

end

if length(paths) == 0 return nothing end
return argmin(length, paths)

end� �
Figure 3.10: find_shortest_path finds a shortest path between from and to

using Dijkstra’s algorithm

achieves this using Dijkstra’s algorithm [27] for finding the shortest paths be-
tween a set of nodes and all other nodes.

Transfer path augmentation. With a transfer path in hand, all that is left
is to implement a function to create a new allocation by passing the goods along
the path. Figure 3.11 shows the source code for transfer!. For each good g
in the path, there is a winning agent x (initialized to i) who receives g, and a
losing agent y, who loses g. At the end of each iteration, y ← x, so that only the
owner of the last good in the path actually experiences a reduction in bundle
value. After each transfer, the set of edges out of g in the exchange graph is
updated.

41

� �
function transfer!(Ms, D, A, i, path; all_indep=true)
At every iteration, x receives the next good in the path.
x = i
for g in path

y is the current owner, who loses g.
y = owner(A, g)
deny!(A, y, g)
give!(A, x, g)

Recalculate neighbors of g in D.
for g_ in vertices(D)
Check if A_x - g + g_ is independent in Mi.
if all_indep

if is_indep(Ms[x], setdiff(bundle(A, x), g) ∪ g_)
add_edge!(D, g, g_)

else
rem_edge!(D, g, g_)

end

else
if rank(Ms[x], bundle(A, x)) == rank(Ms[x], setdiff(bundle(A, x), g) ∪

g_)
add_edge!(D, g, g_)

else
rem_edge!(D, g, g_)

end
end

end

x = y
end

end� �
Figure 3.11: transfer! augments A along path, updating D as it goes along

42

Chapter 4
Generating matroids

The overarching goal for this project is to make Matroids.jl, a proof-of-concept
library for working programmatically with matroids, specifically in the context
of fair allocation. This chapter covers how Matroids.jl enables the creation of
specific matroids and the generation of random ones, as well as how to access
important properties such as independent sets, closed sets, circuits, bases, the
rank function and the closure function. The first part of the chapter focuses on
implementing these features for uniform and graphic matroids. The latter part
of this chapter describes the implementation of Knuth’s algorithm [11] for the
erection of arbitrary rank-r matroids. Getting this algorithm to work represents
a significant portion of the project as a whole, and its successful implementation
is one of the main achievements of this thesis.

This chapter consists of one section per matroid type this version of Ma-
troids.jl supports. For each type, I describe how the matroid is represented,
how to acquire the properties of the matroid, and how it might be randomly
generated. Which matroid properties Matroids.jl will have dedicated functions
for getting is based on the discussion in the previous chapter, wherein I de-
scribed how the more high-level functions exposed in the Matroids.jl API are
implemented. Naturally, access to a matroid’s rank function and independence
oracle is of paramount importance—one of these are required by all higher-level
functionality. The threshold function for PROPX0 gave a use case for the clo-
sure function. Hence, the properties for which Matroids.jl implements getter
functions for every matroid:

43

1. rank(M, S) returns the rank of the set S in the matroid M.

2. is_indep(M, S) returns whether the set S is independent in the matroid
M.

3. closure(M, S) returns the closure of the set S in the matroid M, i.e., the
closed set of least rank that contains S

While the independence of a set S could trivially be determined by checking
whether v(S) = |S|, there is often a faster way of determining purely the inde-
pendence without actually calculating the rank. With these functions in hand,
one can procure the other basic properties of a matroid with relative ease—
for instance, a circuit oracle checking whether a given set is a circuit could be
implemented like this:� �
is_circuit(M, S) = rank(M, S) == length(S) - 1� �
4.1 Uniform matroids
We start off lightly with the most basic type of matroid—the uniform matroid.
Recall that the uniform matroid Ur

n is the matroid over n elements where the
independent sets are exactly the sets of cardinality at most r. Two useful special
cases of the uniform matroid on n elements are the rank-n free matroid, in which
every subset of E is independent, and the rank-0 zero matroid, in which only
the empty set is independent.� �
struct UniformMatroid
n::Integer
r::Integer

end

FreeMatroid(n) = UniformMatroid(n, n)
ZeroMatroid(n) = UniformMatroid(n, 0)� �

Extracting the properties of Ur
n is a simple matter. The rank of a subset

S ⊆ E is given by max{|S|, r}. S is independent iff |S| ≤ r. The closure of S is
S if |S| ≤ r (since every larger set has higher rank), elsewise it is E.

44

� �
rank(M::UniformMatroid, S) = min(length(S), M.r)
is_indep(M::UniformMatroid, S) = length(S) <= M.r
closure(M::UniformMatroid, S) = length(S) < M.r ? S : ground_set(M)� �
4.2 Graphic matroids
Graphic matroids were introduced back in Chapter 2, but in this chapter, I
describe how Matroids.jl represents and randomly generates them.

First, some definitions for the graph theory terms used in this section. An
undirected graph G = (V,E) is said to be connected if there exists at least one
path between each pair of nodes in the graph; otherwise it is disconnected. A
disconnected graph consists of at least two connected subsets of nodes. These
connected subgraphs are called components.The degree of a node v is the number
of edges for which v is an endpoint. A regular graph is a graph in which all nodes
have the same degree. An induced subgraph G[S], where S is either a subset of
the nodes of G (in which case G[S] is a node-induced subgraph) or of the edges
of G (edge-induced).

4.2.1 Random graphs
In order to generate random graphic matroid, we will need to generate random
graphs. Let us take a look at some of the options available to us for this. Luckily
for us, random graphs has been an area of extensive study for more than sixty
years, and several models with different properties exist.

The Erdős-Rényi (ER) model (also known as Erdős-Rényi-Gilbert [28]) picks
uniformly at random a graph from among the

((n2)
M

)
possible graphs with n nodes

and M edges, or, alternatively, constructs a graph with n nodes where each
edge is present with some probability p [29, 30]. This model produces mostly
disconnected graphs, and the size distribution of its components with respect
to the number of edges has been studied extensively. With n nodes and fewer
than n

2 edges, the resulting graph will almost always consist of components that
are small trees or contain at most one cycle. As the number of edges exceeds
n
2 , however, a so-called “giant” component of size O(n) emerges, and starts to
absorb the smaller components [31]. The ER model is the oldest and most basic
random graph model, and is often referred to simply as the random graph,
denoted by G(n, p).

45

Variations of the ER model have been developed by physicists and network
scientists to produce phenomena commonly seen in real-world networks [28].
These variations include the Barabási-Albert model, which grows an initial con-
nected graph using preferential attachment (a mechanism colloquially known
as “the rich get richer”), in which more connected nodes are more likely to re-
ceive new connections. This results in graphs in which a small number of nodes
(“hubs”) have a significantly higher degree than the rest, creating a power-law
distribution of node degrees. This property is known as scale-freeness and is
thought to be a characteristic of the Internet [32].

Another approach is the Watts-Strogatz model [33], which starts with a ring
lattice, a regular graph with n nodes, each with degree k, and then rewires each
edge with some probability p. By changing p, one is able to ‘tune’ the graph
between regularity (p=0) and disorder (p=1). For intermediate values of p,
Watts-Strogatz produces so-called “small-world” graphs, which exhibit both a
high degree of clustering (how likely two nodes with a common neighbor are to
be adjacent), and short average distance between nodes. This phenomenon is
found in many real-world networks, such as social systems or power grids [28].

4.2.2 Generating random graphic matroids
We will use the Graphs.jl library [26] for handling graphs in Matroids.jl. This
library has built-in functions for the random graph models described in the
previous chapter1.

� �
function random_ba_graph(m)
k = rand([x for x in 1:ceil(Integer, sqrt(m)) if m\%x == 0])
n = m ÷ k + k

return barabasi_albert(n, k)
end� �

Figure 4.1: Compute a Barabási-Albert model random graph with m edges from
random parameters

When generating random matroids, we want to be able to specify the size
of the ground set, and perhaps also have some say in the rank of the matroid.

1https://docs.juliahub.com/Graphs/VJ6vx/1.4.1/generators/

46

Let us see how we can achieve this with the random graph models we have
discussed. The function barabasi_albert(n,k) generates a Barabási-Albert
model random graph with n nodes. It starts with an initial graph of k nodes,
and adds the remaining n − k nodes one at a time, each new node receiving
k edges via preferential attachment. Thus, the final graph has |E| = (n − k)k
edges. To specify a matroid with m edges, we pick some k that divides m and
solve for n. Figure 4.1 shows a snippet of Julia code that generates a Barabási-
Albert model random graph with random parameters such that the number of
edges is m.

� �
function random_ws_graph(m)
n = rand([x for x in 2:ceil(Integer, sqrt(2m)) if 2m\%x == 0 && iseven(x)])
k = 2m ÷ n
(k, n) = sort([n,k])

return watts_strogatz(n, k, rand())
end� �

Figure 4.2: Compute a Watts-Strogatz model random graph with m edges from
random parameters

Remember that the rank of a graphic matroid is the size of a spanning tree
over the graph, which is n − 1 when the graph is connected. If we select a
smaller k from among the factors of |E|, we get a larger final rank, and vice
versa. We can generate a Watts-Strogatz model random graph with the function
watts_strogatz(n, k, β), where n is the number of nodes, k the node degree
and β the probability of rewiring. The number of edges of a regular graph with
n nodes and degree k (and thus the size of the ground set of the induced graphic
matroid) is given by nk

2 , so nk must be even. Figure 4.2 shows a snippet of Julia
code that randomly generates a Watts-Strogatz model random graph with m
edges.

Figure 4.3 shows a snippet of Julia code that generates a random Erdős-
Rényi model random graph with m edges. ER is the simplest model for our
purposes, as the function erdos_renyi(nv, ne) simply takes in the desired
number of nodes and edges. The resulting graph consists of mostly small trees
and single-cycle components for m < n

2 [31]. The code in Figure 4.3 somewhat
arbitrarily picks the number of vertices randomly in the range from m

2 to 3m.

47

� �
function random_er_graph(m)
n = rand(trunc(Integer, m/2):3m)
return erdos_renyi(n, m)

end� �
Figure 4.3: Compute a Erdős-Rényi model random graph with m edges and a
randomly chosen number of edges

� �
using Graphs

struct GraphicMatroid
g::Graph
n::Integer
r::Integer
GraphicMatroid(g::Graph) = new(g, ne(g), length(kruskal_mst(g)))

end� �
Figure 4.4: Matroids.jl representation of a graphic matroid

4.2.3 Properties of random graphic matroids
In Matroids.jl, we “generate” a graphic matroid by simply accepting some graph,
and figure out the rank of the matroid using Kruskal’s algorithm for maximal
spanning forests, which runs in O(|E| lg |E|) time [34]. This is shown in Fig-
ure 4.4. Implementing the methods for finding the properties of our graphic
matroids is simple, as they reduce to well-known algorithms (implemented by
Graphs.jl) for finding the properties of the graphs they are derived from.

The rank function. The rank of a set S ⊆ E is the size of a spanning forest
of the subgraph induced by S, and can be found in O(|S| lg |S|) time using
Kruskal’s algorithm. Figure 4.5 gives the source code for the rank function on
a graphic matroid.

The indepence oracle. A set S is independent if the subgraph induced by
S is acyclic. The is_cyclic check provided by Graphs.jl uses a DFS behind

48

� �
function rank(m::GraphicMatroid, S)
edgelist = [e for (i, e) in enumerate(edges(g)) if i in S]
subgraph, _vmap = induced_subgraph(m.g, edgelist)
return length(kruskal_mst(subgraph))
end� �

Figure 4.5: rank(m::GraphicMatroid, S)

the scenes2, which runs in linear time [34]. Figure 4.6 gives the source code for
the independence oracle on a graphic matroid.

� �
function is_indep(m::GraphicMatroid, S)
edgelist = [e for (i, e) in enumerate(edges(g)) if i in S]
subgraph, _vmap = induced_subgraph(m.g, edgelist)
return !is_cyclic(subgraph)

end� �
Figure 4.6: is_indep(m::GraphicMatroid, S)

The closure function. This operation accepts a set of elements S, and re-
turns the largest set of elements cl(S) such that S ⊆ cl(S) ⊆ E, r(S) = r(cl(S)).
In a graph context, given a graph G = (V,E) and an edge-induced subgraph
G[S] = (V ′, S), S ⊆ E, this is the same as finding the largest edge-induced sub-
graph G[T], S ⊆ T ⊆ E, in which a spanning tree has the same number of edges
as one in G[S]. Since the size of a spanning tree in G[S] is given by |V ′| − 1,
G[T] cannot contain any edges to nodes not in V ′, as this would increase the
rank of G[T]. Therefore, we get that the closure of S is the largest set T of edges
between nodes that are present in the edge-induced subgraph G[S]. Figure 4.7
gives the source code for the closure function on a graphic matroid.

2https://docs.juliahub.com/Graphs/VJ6vx/1.4.1/pathing/#Graphs.is_cyclic

49

� �
function closure(m::GraphicMatroid, S)
edgelist = [e for (i, e) in enumerate(edges(m.g)) if i in S]
_sg, vmap = induced_subgraph(m.g, edgelist)
return [e for e in edges(m.g) if [e.src, e.dst] ⊆ vmap]

end� �
Figure 4.7: closure(m::GraphicMatroid, S)

4.3 Knuth’s matroid construction
In the preparatory project to this thesis, delivered to my advisor in the fall
of 2022, I implemented Knuth’s 1974 algorithm for the random generation of
arbitrary matroids via the erection of closed sets [11]. With this, I was able
to randomly generate matroids of universe sizes n ≤ 12, but for larger values
of n my implementation was unbearably slow. In this section, Knuth’s method
for random matroid construction will be described, along with the steps I have
taken to speed up my initial, naïve implementation.

Knuth-Matroid (given in Algorithm 4) accepts the ground set E and a
list X such that X[i] ⊆ 2E , and produces the rank-r matroid M such that
rank(X) = k for each X ∈ X[k]. This is done in a bottom-up manner through r
sequential erections starting from the empty rank-0 matroid, M(0), each itera-
tion i producing the erection M(i+1) from M(i) and X[i]. The algorithm outputs
the tuple (E,F), where F = [F0, . . . , Fr], r being the final rank of M and Fi the
family of closed sets of rank i. In the paper, Knuth shows that

⋃r
i=0 F[r] = F ,

where F is the set of closed sets of a matroid, and so the algorithm produces a
valid matroid represented by its closed sets.

To understand the procedure, let us investigate what Algorithm 4 does at
iteration 1 < i < r, where r is the final rank M, the matroid under construction.
At iteration i, we produce a rank-(i + 1) erection M(i+1) of M(i), which is
represented by its closed sets F = [F0, F1, ..., Fi], where Fi is the set of closed
sets of rank i. We want to produce the set Fi+1 of rank-r closed sets of an
erection of M(i) such that each X ∈ X[i] is contained in some rank-r closed set.
First we find the “covers” of each closed set in Fi. The covers of a closed set A
of rank r are the sets obtained by adding one more element from E to A. The
covers are generated with Generate-Covers(F, r, E).

50

Algorithm 4 Knuth-Matroid(E,X)

Input: The ground set of elements E, and a list of enlargements X.
Output: The list of closed sets of the resulting matroid grouped by rank,

F = [F0, . . . , Fr], where Fi is the set of closed sets of rank i.

1 r = 0,F = [{∅}]
2 while true
3 Push!(F,Generate-Covers(F, r, E))

4 F[r + 1] = F[r + 1] ∪X[r + 1]

5 Superpose!(F[r + 1],F[r])

6 if E ̸∈ F [r + 1]

7 r ← r + 1

8 else
9 return (E,F)

Generate-Covers(F, r, E)

1 return {A ∪ {a} : A ∈ F[r], a ∈ E \A}

Superpose!(Fr+1, Fr)

1 for A ∈ Fr+1

2 for B ∈ Fr+1

3 flag ← true
4 for C ∈ Fr

5 if A ∩B ⊆ C
6 flag ← false
7
8 if flag = true
9 Fr+1 ← Fr+1 \ {A,B}

10 Fr+1 ← Fr+1 ∪ {A ∪B}

51

Given no enlargements (X[i] = ∅), the resulting matroid M(i+1) is the free
erection of M(i), and there are no essential closed sets in Fi+1. Arbitrary ma-
troids can be generated by supplying different lists X. When enlarging, the sets
in X[r+1] are simply added to F[r+1], before Superpose! is run to ensure that
the newly enlarged family of closed sets of rank r+1 is valid (i.e., in accordance
with the closed set axioms given in Section 2.2). If Fr+1 contains two sets A,B
whose intersection A∩B ̸⊆ C for any C ∈ Fr (in other words, their intersection
is not a closed set), replace A,B with A ∪B. Repeat until no two sets exist in
Fr+1 whose intersection is not contained within some set C ∈ Fr.

1111

1101 10111110 0111

0110 1001 010110101100 0011

0100 00101000 0001

0000

Rank 3

Rank 2

Rank 1

Rank 0

Figure 4.8: A matroid-under-construction. The set 0111 has just been assigned
as a closed set of rank 2.

To cement our intuitive understanding of Knuth’s matroid erection algo-
rithm, we revisit the example from Chapter 2. Figure 4.8 shows the Hasse
diagram of a matroid, the sets represented as binary strings where a 1-digit at
position i signifies that element i is present in the set. A blue set is indepen-
dent and a yellow set is dependent; a green set is both (i.e. both maximal and
minimal for its rank). The edges marked in yellow signify the closure of a set.
A set with no yellow edges going up and out of it is maximal for its rank (i.e.,
closed). The situation illustrated is in the second iteration of KMC. The set
0111 has just been designated as a closed set of rank 2.

Let the next element in X[2] be the set 1011—this is the next set we are
designating as a rank-2 closed set. Figure 4.9 shows the situation after adding
this. This situation is problematic, and we can think about why in several ways.

52

1111

1101 10111110 0111

0110 1001 010110101100 0011

0100 00101000 0001

0000

Rank 3

Rank 2

Rank 1

Rank 0

Figure 4.9: The set 1011 has been added as a rank-2 closed set in the matroid-
under-construction from Figure 4.8. This is not a valid matroid.

Firstly, the intersection of these two closed sets, 1011 ∩ 0111 = 0011 (marked
in grey) is not itself a closed set, breaking an axiom for the closed sets of a
matroid. Secondly, the rank-2 independent set 0011 has two outgoing yellow
edges—which represents the closure of 0011? Finally, consider the exchange
property of independent sets: if S and T are independent sets with |S| > |T |,
then there exists an element g ∈ S \ T such that T + g is independent (and of
increased rank). The independent set 1101 is bigger than 0011, yet no element
from the first can be added to the second to produce a bigger independent set.
In the situation as it stands at this point, the independent set 0011 is a “blind
alley” that cannot grow in rank, even though other independent sets of larger
rank exist.

It is this situation that the Superpose! operation detects, and the two
errant closed sets 1011 and 0111 are merged, replaced with 1011 ∪ 0111 = 1111
as a closed set of rank 2. When this happens, the algorithm terminates, as we
have found the rank of the ground set, and all sets of size larger than 2 are
dependent. The final matroid is given in Figure 4.10.

4.3.1 Randomized KMC
In the randomized version of Knuth-Matroid, we generate matroids by ap-
plying a supplied number of random coarsening steps, instead of enlarging with

53

1111

1101 10111110 0111

0110 1001 010110101100 0011

0100 00101000 0001

0000

Rank 2

Rank 1

Rank 0

Figure 4.10: The uniform matroid U2
4 .

supplied sets. This is done by applying Superpose! immediately after adding
the covers, then choosing a random member A of F[r + 1] and a random ele-
ment a ∈ E \ A, replacing A with A ∪ {a} and finally reapplying Superpose!.
The parameter p = (p1, p2, . . .) gives the number of such coarsening steps to be
applied at each iteration of the algorithm.

The pseudocode descriptions of Knuth’s matroid construction hews closely to
the initial Julia implementation. It should already be clear that this brute force
approach leads to poor performance—for instance, the Superpose! method
uses a triply nested for loop, which seems like a candidate for significant im-
provement. Section 4.3.2 describes the engineering work done to create a more
performant implementation.

4.3.2 Improving performance
In the preparatory project to this thesis, I was able to recreate Knuth’s table of
observed mean values for the randomly generated matroids, but I was dismayed
to find that my implementation was unable to handle matroids whose ground
sets were even just a few elements larger. Considering that Knuth was able
to run his experiments on the hardware available to him in the 1970s, I con-
cluded that my implementation had room for improvement. Table 4.1 shows the
performance of my first implementation. Even for rank-5 matroids of only 12
elements, this implementation is intolerably slow. For readability’s sake, I have

54

Algorithm 5 Randomized-Knuth-Matroid(E, p)

Input: The ground set of elements E, and a list p = [p1, p2, ...], where
pr is the number of coarsening steps to apply at rank r in the
construction.

Output: The list of closed sets of the resulting matroid grouped by rank,
F = [F0, . . . , Fr], where Fi is the set of closed sets of rank i.

1 r = 0,F = [{∅}]
2 while true
3 Push!(F,Generate-Covers(F, r, E))

4 Superpose!(F[r + 1],F[r])

5 if E ∈ F[r + 1] return (E,F)

6 while p[r] > 0

7 A← a random set in F[r + 1]

8 a← a random element in E \A
9 replace A with A ∪ {a} in F[r + 1]

10 Superpose!(F[r + 1],F[r])

11 if E ∈ F[r + 1] return (E,F)

12 p[r] = p[r]− 1

13 r = r + 1

moved all lengty code snippets to Appendix D; the initial Julia implementation
can be found in Figures D.1 and D.2. In this section, I describe some of the
implementation decisions that were made to improve this performance.

The performance was measured using Julia’s @timed3 macro, which returns
the time it takes to execute a function call, how much of that time was spent
in garbage collection and the number of bytes allocated. The experiments was
run on a 2021 MacBook Pro with the Apple M1 chip and 16GB RAM. As is
evident from the data, larger matroids are computationally quite demanding
to compute with this current approach, and the time and space requirements
scales exponentially with n.

The tables in this section give the median time and memory performance,
as well as average resulting matroid rank, of subsequent versions of my imple-

3https://docs.julialang.org/en/v1/base/base/#Base.@timed

55

n (p1, p2, . . .) Trials r Time Bytes allocated

10 (0, 6) 380 4.0 158.1ms 149.713 MiB
10 (0, 0, 6) 22 4.4 2.8s 2.481 GiB
12 (0, 7) 21 5.1 3.4s 2.773 GiB
12 (0, 0, 7) 2 5.0 43.9s 36.753 GiB

Table 4.1: Performance of random_kmc_v1.

mentation of Random-Knuth-Matroid. The experiments are set up with
increasing values for n and p, in a manner to produce matroids of larger rank
over larger ground sets. Each experiment is repeated for as many trials as can
fit within one minute. The runtime of the random matroid generation functions
varies quite a bit depending on which sets are chosen for coarsening, and so
for situations where an experiment is run only a few times, the average time
might be a bit misleading. The data is presented in order to show that the
improvements described in this section are in fact meaningful optimizations.

Representing sets as binary numbers

The first improvement we will attempt is to represent our closed sets using one
of Julia’s Integer types of bit width at least n, instead of as a Set4 of elements
of E. The idea is to define a family of closed sets of the same rank as Set{

UInt16}. Using UInt16 we can support ground sets of size up to 16. Each
16-bit number represents a set in the family. For example, the set {2, 5, 7} is
represented by

164 = 0x00a4 = 0b0000000010100100 = 27 + 25 + 22.

At either end we have ∅ ≡ 0x0000 and E ≡ 0xffff (if n = 16). The elementary set
operations we will need have simple implementations using bitwise operations:

We can now describe the bitwise versions of the required methods. The
bitwise implementation of Generate-Covers finds all elements in E \ A by
finding each value 0 ≤ i < n for which A & 1 << i === 0, meaning that the
set represented by 1 << i is not a subset of A. The bitwise implementation of
Superpose! is unchanged apart from using the bitwise set operations described
above. The source code for these is given in Figure D.3.

4https://docs.julialang.org/en/v1/base/collections/#Base.Set

56

Set operation Bitwise operation
A ∩B A AND B

A ∪B A OR B

A \B A AND NOT B

A ⊆ B A AND B = A

Table 4.2: Set operations and their corresponding bitwise operations

n (p1, p2, . . .) Trials r Time Bytes allocated

10 (0, 6) 39975 3.85 1.5ms 1.646 MiB
10 (0, 0, 6) 6277 4.56 9.6ms 7.510 MiB
12 (0, 7) 7337 3.98 8.2ms 5.406 MiB
12 (0, 0, 7) 765 4.52 78.5ms 38.274 MiB
16 (0, 8) 89 5.31 674.3ms 103.595 MiB

Table 4.3: Performance of random_kmc_v2.

The performance of random_kmc_v2 is shown in Table 4.3. It is clear
that representing closed sets using binary numbers represents a substantial
improvement—we are looking at performance increases on the order of 100x
across the board.

Sorted superpose

Can we improve the running time of our implementation further? It is clear
that Superpose! takes up a large portion of the compute time. In the worst
case, when no enlargements have been made, Fr+1 is the set of all r + 1-sized
subsets of E, |Fr+1| =

(
n

r+1

)
. Comparing each A,B ∈ Fr+1 with each C ∈ Fr

in a triply nested for loop requires O(
(

n
r+1

)2(n
r

)
) operations. In the worst case,

no enlargements are made at all, and we build the free matroid in O(23n) time
(considering only the superpose step).

After larger closed sets have been added to F[r+1], Superpose! will cause
sets to merge, so that only maximal dependent sets remain. Some sets will
even simply disappear. In the case where X = {1, 2} was added by Generate-
Covers, and the Y = {1, 2, 3} was added manually as an enlargement, the

57

n (p1, p2, . . .) Trials r Time Bytes allocated

10 (0, 6) 19183 3.85 3.1ms 3.881 MiB
10 (0, 0, 6) 4009 4.53 15.0ms 14.562 MiB
12 (0, 7) 4722 3.97 12.7ms 10.781 MiB
12 (0, 0, 7) 613 4.52 97.9ms 60.336 MiB
16 (0, 8) 189 5.41 364.8ms 119.229 MiB
16 (0, 0, 8) 18 5.44 3.4s 717.923 MiB
20 (0, 9) 2 9.0 35.0 4.597 GiB

Table 4.4: Performance of random_kmc_v3.

smaller set will be fully subsumed in the bigger set, as {1, 2} ∩ {1, 2, 3} = {1, 2}
(which is not a subset of any set in F[r]) and {1, 2} ∪ {1, 2, 3} = {1, 2, 3}. In
this situation, Y would “eat” the covers {1, 3} and {2, 3} as well. This fact is
reflected in the performance data – compare the memory allocation differences
between the 10-element matroid with p = [0, 0, 6] and the one with p = [0, 6, 0]
in any of the performance tables in this section. Making enlargements at earlier
ranks result in smaller matroids as more sets get absorbed.

Since the larger sets will absorb so many of the smaller sets (around
(

p
r+1

)
,

where p is the size of the larger set and r + 1 is the size of the smallest sets
allowed to be added in a given iteration), might it be an idea to perform the
superpose operation in descending order based on the size of the sets? This
should result in fewer calls to Superpose!, as the bigger sets will remove the
smaller sets that fully overlap with them in the early iterations, however, the
repeated sorting of the sets might negate this performance gain. This is the idea
behind random_kmc_v3. The source code for the sorted superpose function is
given in Figure D.4.

Unfortunately, as Table 4.4 shows, this implementation is not an especially
significant improvement, though it performs somewhat better than the previous
version on the later tests. What if we rethink the superpose operation more
fundamentally?

Iterative superpose

The worst-case O(
(

n
r+1

)2(n
r

)
) runtime of Superpose! at step r is due to the fact

that it takes in F after all covers and enlargements have been indiscriminately

58

� �
Superpose (random_kmc_v4)
push!(F, Set()) # Add F[r+1].
while length(to_insert) > 0

A = pop!(to_insert)
push!(F[r+1], A)

for B in setdiff(F[r+1], A)
if should_merge(A, B, F[r])

push!(to_insert, A | B)
setdiff!(F[r+1], [A, B])
push!(F[r+1], A | B)

end
end

end� �
Figure 4.11: random_kmc_v4: On-the-fly superposition.

added to F[r + 1] and then loops through to perform the superposition. Might
there be something to gain by inserting new closed sets into the current family
one at a time, and superposing on the fly?

In random_kmc_v4, the full code of which can be found in Figure D.5, the
covers and enlargements are not added directly to F[r+ 1], but to a temporary
array to_insert. Each set A is then popped from to_insert one at a time,
added to F[r + 1] and compared with the other sets B ∈ F[r + 1] \ {A} and
C ∈ F[r] in the usual Superpose! manner. This results in fewer comparisons,
as each set is only compared with the sets added before it; the first set is
compared with no other sets, the second set with one other and the sets in
F[r], and so on. The number of such comparisons is therefore given by the
triangular number T(n

r+1)
, and so we should have roughly halved the runtime

at step r. It is worth noting that this implementation of Superpose! uses a
subroutine should_merge that returns early when it finds one set C ∈ F[r] such
that C ⊇ A ∩ B, so in practice it usually does not require

(
n
r

)
comparisons in

the innermost loop.
Table 4.5 shows that the iterative superpose was a meaningful improvement.

For most input configurations, it is a few times faster and a few times less space
demanding than random_kmc_v2.

59

n (p1, p2, . . .) Trials r Time Bytes allocated

10 (0, 6) 95004 4.54 631.6µs 438.354 KiB
10 (0, 0, 6) 26947 4.94 2.2ms 1.103 MiB
12 (0, 7) 18780 4.99 3.2ms 1.553 MiB
12 (0, 0, 7) 3438 5.14 17.5ms 5.210 MiB
16 (0, 8) 450 6.71 134.0ms 30.372 MiB
16 (0, 0, 8) 75 6.12 814.9ms 101.836 MiB
20 (0, 9) 9 8.78 10.0s 847.919 MiB
20 (0, 0, 9) 2 8.5 389.6s 9.446 GiB
24 (0, 10) 1 11.0 189.6s 9.709 GiB

Table 4.5: Performance of random_kmc_v4.

Rank table and non-redundant cover generation

Up to this point, our cover generation routine has not taken into account that
any two sets of rank r will have at least one cover in common. To see this,
consider a matroid-under-construction with n = 10 where A = {1, 2} and B =
{1, 3} are closed sets of rank 2. Currently, Generate-Covers will happily
generate the cover C = {1, 2, 3} twice, once as the cover of A and subsequently
as the cover of B. Throughout this analysis, we will assume the worst case
scenario of no enlargements, as any enlargements will strictly lower the number
of sets in play at a given rank. In this case, |F[r]| =

(
n
r

)
, and for each closed

set A of rank r we are generating |E \ A| = (n− r) covers, giving us a total of(
n
r

)
(n − r) covers generated at each rank r, including the duplicates. With no

enlargements, we know that there are
(

n
r+1

)
covers, and

(n− r)

(
n

r

)
=

n!(n− r)

r!(n− r)!

=
n!

r!(n− r − 1)!

= (r + 1)
n!

(r + 1)!(n− r − 1)!

= (r + 1)

(
n

r + 1

)
.

60

� �
function generate_covers!(F, r, E, insert_fn)
for y in F[r]

t = E - y
Find all sets in F[r+1] that already contain y and remove excess elements

from t.
for x in F[r+1]
if (x & y == y) t &= ~x end
if t == 0 break end

end
Insert y ∪ a for all a ∈ t.
while t > 0
x = y|(t&-t)
insert_fn(x)
t &= ~x

end
end

end� �
Figure 4.12: Non-redundant cover generation.

For each step r, we are generating r + 1 times as many covers as we need to.
Over the course of all steps 0 ≤ r ≤ n, we are generating

n∑

r=0

(r + 1) =
n+1∑

r=1

r = Tn+1

times the actual number of covers, where Tn+1 = (n+1)(n+2)
2 is the triangular

number. In other words, if we find a way to generate each cover only once,
we will have shaved off an n2 factor from the asymptotic complexity of our
implementation.

When generating covers, random_kmc_v6 improves upon the brute force
cover generation described above by only adding the covers

{
A ∪ {a} : A ∈ F[r], a ∈ E \A, a /∈

⋃{
B : B ∈ F[r + 1], A ⊆ B

}}
.

In other words, we find the covers of A, that is, the sets obtained by adding one
more element a from E to A, but we do not include any a that is to be found
in another, already added, cover B that contains A. This solves the problem
described above; the cover {1, 2, 3} = B ∪ {2} will not be generated, as 2 ∈ C
and B ⊆ C. Figure 4.12 shows an implementation of this.

We have extracted the iterative superpose logic described above into its own
function add_set! to allow it to be performed on a cover-per-cover basis. This

61

function is given in Figure 4.13. This code is very different from the previous
version, primarily in its use of a rank table. The rank table is a dictionary
mapping a closed set in F to its assigned rank. This solves the problem that,
while Superpose! was getting more and more efficient, it was still performing
the same comparisons over and over again.

In the previous versions, after adding the closed sets for a rank, Super-
pose! was run to maintain the closed set properties of the matroid (given in
Section 2.2). These were maintained by ensuring that, for any two newly added
sets A,B ∈ F[r + 1], there exists C ∈ F[r] such that A ∩ B ⊆ C. This was en-
sured by checking if the intersection of each such A,B is contained in a set C of
rank r. We remember that one of the properties of the closed sets of a matroid
is that the intersection of two closed sets is itself a closed set. Therefore, we do
not need to find a closed set C of rank r that contains A ∩ B, since if A and
B are indeed closed sets, their intersection will be equal to some closed set C
of any rank ≤ r. This insight leads us to the idea of the rank table: if we keep
track of all added closed sets in a rank table, then we can memoize Superpose!
and replace the innermost loop with a constant time dictionary lookup.

add_set! accepts a closed set X we are interested in assigning to rank
r. It then loops through all existing rank-r closed sets Y , ensuring that X is
either added as a closed set or merged with some existing closed set. When
comparing a tentatively-closed set X with an existing closed set Y , the function
will encounter one of three possible situations:

1. X ∩ Y is a closed set (it has an entry in the rank table) of rank less than
r. Move on to the next closed set Y .

2. X ∩ Y is a closed set (it has an entry in the rank table) of rank equal to
r. This will for instance happen when Y ⊆ X. Remove Y as a closed set
and call add_set! on X ∪ Y .

3. X ∩ Y has not been observed until this point. This happens when closed
sets have been added of lower rank but similar cardinality, thus obscuring
the rank of their subsets. Some additional checks are required:

(a) If |X ∩ Y | < r, we know that the rank of X ∩ Y is less than r. Move
on to the next closed set Y .

(b) Otherwise, we need to see if X ∩ Y ⊆ Z for some Z of lower rank, so
we do the manual subset equality check with the lower-ranked closed
set, as familiar from earlier implementations of Superpose!.

62

� �
function add_set!(x, F, r, rank, callback)
for y in F[r+1]

if haskey(rank, x&y) && rank[x&y]<r
continue

end

if !haskey(rank, x&y)
if Base.count_ones(x&y) < r

continue
else

r_ = check_rank(x&y, r, F)

if r_ !== false
rank[x&y] = r_
continue

end
end

end

x ∩ y has rank > r, replace with x ∪ y.
setdiff!(F[r+1], y)
add_set!(x|y, F, r, rank, callback)
return

end

push!(F[r+1], x)
callback(x) # Sets rank[x] = r.

end

function check_rank(v, r, F)
for (i, Fi) in enumerate(F[1:r]), z ∈ Fi

if v&z == v
return i-1

end
end

return false
end� �
Figure 4.13: add_set! adds a new closed set and runs the superpose logic.

63

n (p1, p2, . . .) Trials r Time Bytes allocated

10 (0, 6) 230040 4.03 260.9µs 27.092 KiB
10 (0, 0, 6) 59597 4.23 1.0ms 38.474 KiB
12 (0, 7) 39753 5.03 1.5ms 68.219 KiB
12 (0, 0, 7) 7390 5.15 8.1ms 139.560 KiB
16 (0, 8) 511 8.01 117.5ms 741.442 KiB
16 (0, 0, 8) 61 8.03 998.8ms 1.981 MiB
20 (0, 9) 5 11.0 15.0s 14.217 MiB
20 (0, 0, 9) 1 11.0 108.8s 17.949 MiB
24 (0, 10) 1 14.0 690.4s 75.663 MiB

Table 4.6: Performance of random_knuth_matroid (version 5).

Table 4.6 shows the performance of random_knuth_matroid, which is the
fifth and final version discussed in this chapter. Comparing this with the initial
performance depicted in Table 4.1, we can see that we are now able to generate
somewhat larger matroids, on the order of a thousand times faster.

4.3.3 Finding the properties of erected matroids
The fact that Knuth-Matroid fully enumerates all closed sets of the matroid
as it erects it rank by rank begs the question: can we build the other families
of sets for the matroids alongside the closed sets? In Appendix C, I describe an
extension of Knuth-Matroid that also fully enumerates I and C for M when
n is small enough. Sadly, this approach does not scale well for larger values of
n, as the size of these sets undergoes a combinatorial explosion as n increases.

Determining matroid properties post-erection

In a 1989 paper, Greene introduces the concept of descriptive sufficiency [22].
A subcollection of closed sets of a matroid is descriptively sufficient if it can
be used to identify the fundamental properties of the matroid using certain
easily applied conditions. The collection of all closed sets of a matroid is one
descriptively sufficient such collection.

64

Rank function. With every closed set of a matroid in hand, finding the rank
of a set S is simply a matter of finding the closed set F of least rank such that
S ⊆ F .

� �
function rank(M::ClosedSetsMatroid, S::Integer)
for (r, Fr) in enumerate(M.F), B ∈ Fr

if S&B == S return r-1 end
end

end� �
Indepence oracle. To check if a set S is independent, we compare it with the
closed sets of rank |S| − 1. If S is indeed independent, it cannot be a subset of
a closed set of lower rank, so if we find one such set we return false. Otherwise,
S is independent.

� �
function is_indep(M::ClosedSetsMatroid, S::Integer)
t = Base.count_ones(S)

if t > length(M.F) return false end

for F in M.F[t]
if S&F==S return false end

end

return true
end� �

Closure function. Determining the closure of a set S in this case is the exact
same procedure as finding the rank: the closed set F of least rank such that
S ⊆ F is the closure of S.

65

� �
function closure(M::ClosedSetsMatroid, S::Integer)
for Fr in M.F, B ∈ Fr

if S&B == S return B end
end

end� �

66

Chapter 5
Using the library

At this point in the report, I have described how Matroids.jl implements the
functionality required for the empirical study of matroidal fair allocation algo-
rithms. The previous chapters detailed three such algorithms—Envy-Induced-
Transfers, AlgMMS and Yankee-Swap—and described how Matroids.jl
exposes the functions needed to implement these. Subsequently, I showed how
Matroids.jl represents and randomly generates matroids. With random ma-
troids and the functional requirements listed in Table 3.1 in hand, it is time
to put the library to the test, and investigate whether it in fact des enable the
implementation and empirical study of matroidal fair allocation algorithms.

This chapter serves a proof of concept for Matroids.jl, demonstrating the
library’s ability to facilitate the implementation and evaluation of matroidal
fair allocation algorithms. As such, I will, in addition to describing the imple-
mentation of the algorithms, provide some experimental results regarding the
fairness of the allocations produced. These algorithms are well-understood, so
while the experimental results in this chapter may not represent novel findings,
they serve as verification of the library’s intended functionality, from random
matroid generation, through fair allocation, to fairness evaluation. They should
be considered proof that Matroids.jl is a tool that enables a new workflow for
working programmatically with matroids in fair allocation, successfully extend-
ing Allocations.jl with capabilities to run previously inaccessible algorithms.
The successful development of this tool is the main contribution of this thesis.

67

5.1 Implementing Envy-induced transfers
The pseudocode and high-level description of Envy-Induced Transfers can
be found in Section 3.2. In this section, I will give a step-by-step explanation
of my implementation of the algorithm.

The function accepts an instance of a fair allocation problem with matroid-
rank valuations, represented with the MatroidRank struct defined in Section 3.1.
Initially, a clean, MAX-USW allocation A is found using the matroid parti-
tioning algorithm whose implementation, matroid_partition_knuth73, is de-
scribed in Section B. This function returns a tuple (A, junk), where junk is
the set of goods that did not fit into any independent bundle and is disre-
garded (Envy-Induced-Transfers preferring cleanness over completeness).
The partition is converted into an instance of Allocation, which is provided
by Allocations.jl. Envy-Induced-Transfers continues until no agent envies
another for more than one good; the envy between each pair of agents i, j is
represented with an i × j-matrix envy such that envy[i, j] = vi(Aj) − vi(Ai)
holds agent i’s envy towards agent j. During each iteration a pair of agents
i, j is found such that envy[i, j] > 1. Then, a good g ∈ Aj with ∆i(Ai, g) is
transferred from Aj to Ai. This is the envy-induced transfer from which the
algorithm derives its name. After the transfer, the envy table is updated to
reflect the new allocation.

The full implementation of Envy-Induced-Transfers is given in Fig-
ure 5.1. This implementation highlights an important optimization when work-
ing programmatically with matroids, which is to not use the rank function on
a set that is known to be independent. As seen in the implementations given
in Chapter 4, the rank function is expensive; rank(m::GraphicMatroid, S),
for instance, runs Kruskal’s algorithm as a subroutine, giving a time complexity
of O(|S| lg |S|) for finding the rank of S. When S is independent, the rank is
|S|—the size of a set can be found in constant time using length(S)1.

The concept of a loop invariant is useful for reasoning about the correctness
of an algorithm, and can in this case be used to rigorously show that each
bundle Ai is independent in Mi throughout the procedure. A loop invariant
is a property that is true before the loop starts (initialization), remains true
at the start of each iteration (maintenance) and is true upon termination [34].
Envy-Induced-Transfers has a loop invariant stating that the allocation A
is clean, or, equivalently, that each Ai is independent in Mi. This is true on

1From the Julia source code (base/set.jl): length(s::Set) = length(s.dict) [9]. A set,
though itself unindexable, is represented behind the scenes in Julia as a dictionary, which is
indexable and hence has a lastindex field, thus allowing the constant time length computation.

68

� �
function alloc_eit_bciz21(V::MatroidRank; partition=nothing)
n = na(V); m = ni(V)

if partition === nothing
Compute a clean, MAX-USW allocation.
(partition, _junk) = matroid_partition_knuth73(V.Ms)

end

A = Allocation(n, m)
for (i, bundle) in enumerate(partition)

give!(A, i, bundle)
end

Envy table envy[i,j] holds i's envy towards j, v_i(A_j) - v_i(A_i).
envy = zeros(Int, n, n)
for i in 1:n, j in 1:n

We use length when we know the bundles are independent.
envy[i,j] = value(V, i, bundle(A, j)) - length(bundle(A, i))

end

While there are agents i, j st i envies j more than 1...
i,j = argmax(envy) |> Tuple
while envy[i,j] > 1

Find item in A_j with marginal gain for i.
for g in bundle(A,j)
if ∆(V, A, i, g) == 1

Envy-induced transfer:
deny!(A, j, g)
give!(A, i, g)

Update D.
for k in 1:n

envy[i, k] = value(V, i, bundle(A, k)) - length(bundle(A, i))
envy[k, i] = value(V, k, bundle(A, i)) - length(bundle(A, k))
envy[j, k] = value(V, j, bundle(A, k)) - length(bundle(A, j))
envy[k, j] = value(V, k, bundle(A, j)) - length(bundle(A, k))

end

break
end

end

i,j = argmax(envy) |> Tuple
end

return A
end� �
Figure 5.1: The Matroids.jl implementation of Envy-Induced-Transfers

69

initialization: Matroid-Partition produces a clean, MAX-USW allocation.
Each iteration, the algorithm a good g such that ∆i(Ai, g) is transferred from
Aj to Ai for some agents i, j. Since Aj is independent, Aj−g is independent due
to the hereditary property. Similarly, due to the exchange property, Ai+g is also
independent, and the loop invariant is maintained. The algorithm terminates
when it has reached EF1, and A is returned as-is, a clean allocation. This proves
that it is a valid optimization to use length instead of rank when finding vi(Ai)
in the implementation of this algorithm. Notice that value (which in turn uses
rank—refer to Section 3.1 for details) is still used when checking vi(Aj) for
i ̸= j.

A bundle will not necessarily be independent in another agent’s matroid,
hence rank calls are still required when checking vi(Aj). To understand the
effect of replacing half the rank calls (the ones on sets known to be independent)
with calls to length, I ran the following simple experiment:

1. Generate six random graphic matroids with 256 goods:
m1 = GraphicMatroid(erdos_renyi(rand(128:512), 256))

2. Precompute the initial partition:
(p, _) = matroid_partition_knuth73([m1,m2,m3,m4,m5,m6])

3. Run @btime alloc_eit_bciz21(V; partition=p) with calls to length
where applicable

4. Run @btime alloc_eit_bciz21(V; partition=p) with only calls to
value

On average, the version that always called value took 181.5ms to compute,
whereas the optimized version needed only 97.625ms. It is clear that the calls to
value takes up a significant portion of the runtime of the function, and replacing
half of them with a constant-time call to length is therefore a substantial
improvement, shaving off roughly half the runtime.

5.2 Implementing AlgMMS
The next algorithm I implement in order to demonstrate the capabilities of
Matroids.jl is AlgMMS. Refer to Section 3.2 for the pseudocode and high-level
description of the algorithm. The full source code of my implementation is given
in Figure 5.2.

70

� �
function alloc_algmms_bv21(V::MatroidRank)
n = na(V); m = ni(V)

Compute a clean, (partial) MAX-USW allocation.
(partition, junk) = matroid_partition_knuth73(V.Ms)
A = Allocation(n, m)
for (i, bundle) in enumerate(partition)

give!(A, i, bundle)
end

Compute MMS of each agent.
mmss = [mms_i(V, i) for i in 1:n]

S_less = Set([i for i in 1:n if value(V, i, A) < mmss[i]])
S_more = Set([i for i in 1:n if value(V, i, A) > mmss[i]])

D = exchange_graph(V.Ms, A)

while length(S_less) > 0
i is an agent with less than their maximin share.
i = popfirst!(collect(S_less))

The goods for which i has positive marginal value.
F_i = [g for g in 1:m if is_indep(V.Ms[i], bundle(A, i) ∪ g)]
A_more = reduce(∪, [bundle(A, j) for j in S_more])

transfer_path = find_shortest_path(D, F_i, A_more)
@assert transfer_path !== nothing

j = owner(A, transfer_path[end]) # The losing agent.

transfer!(V.Ms, D, A, i, transfer_path)

Only i and j have received a new value.
for k in [i,j]
if value(V,k,A) < mmss[k] push!(S_less, k) else setdiff!(S_less, k) end
if value(V,k,A) > mmss[k] push!(S_more, k) else setdiff!(S_more, k) end

end
end

Give agent 1 any unallocated items (these are 0-valued by everyone).
give!(A, 1, junk)
return A

end� �
Figure 5.2: The Matroids.jl implementation of AlgMMS

The function accepts an instance of a fair allocation problem with matroid-
rank valuations, and outputs a clean, MAX-USW, MMS-fair allocation. If not
passed in the optional parameter partition, an initial clean and MAX-USW

71

allocation A is computed with matroid_partition_knuth73, identically to
how alloc_eit_bciz21 starts off. The maximin share µi is computed for each
agent i, using the function mms_i, whose implementation is given in Figure 3.5.
Next, the setup phase, the algorithm finds S_less, the set of agents whose
bundle value in A is less than their maximin share, and S_more, the set of agents
whose bundle value is higher. Finishing off the setup phase, the exchange graph
of the allocation is produced with the function exchange_graph from Figure 3.9.

Each iteration, an agent i such that Ai < µi is popped from S_less. The set
of goods g such that ∆i(Ai, g) = 1 is computed, this is the set F_i. A shortest
path is found from the goods in F_i to the goods belonging to agents in S_more

using find_shortest_path, which either returns a transfer path or nothing

if none could be found. In the paper describing AlgMMS, Barman and Verma
show that such a path always exist as long as someone has less than their
maximin share. A new allocation is acquired by calling transfer!, passing
it the list of matroids, the exchange graph, the allocation, the agent whose
bundle value is about to improve and the transfer path. transfer! updates the
exchange graph and allocation in place (hence the exclamation mark—a Julia
convention). S_less and S_more are updated for the agents whose bundle value
has changed. When S_less is empty, the while loop terminates, the first agent
is granted the goods that were not allocated by matroid_partition_knuth73

and the resulting allocation is returned.
alloc_algmms_bv21 is another example showing that it is often unnecessary

to compute the actual value (entailing an expensive call to rank) of a bundle.
Notice that, when finding the list of positively marginal-valued good Fi for agent
i, the ∆i function is not chosen for the task. The algorithm has the same loop
invariant as Envy-Induced-Transfers regarding the cleanness of A at every
step of the algorithm; thus, Fi is simply the list of goods such that Ai + g is
independent.

5.3 Implementing Yankee Swap
Yankee-Swap is the third and final algorithm whose implementation will serve
as a proof of the capabilities of Matroids.jl. Yankee-Swap differs from the
previous two algorithms in that it does not start out with a clean, MAX-USW
allocation procured with Matroid-Partition, instead adding a new “agent
zero”, whose bundle is the pot of unallocated items. Agent zero is represented
with a ZeroMatroid, the special case of the uniform matroid in which only the
empty set is independent. This ensures that the goods allocated to agent zero

72

are sinks on the graph, with no out-edges.
The source code for my implementation of Yankee-Swap is given in Fig-

ure 5.3. The function proceeds similarly to AlgMMS. Each iteration, a least-
fortunate, highest-priority agent i is chosen from among the agents whose bundle
value can still improve (denoted with the flag array). The set Fi of goods for
which i has positive marginal value is found, and a transfer path is produced
between Fi and the set of goods currently belonging to agent zero (the unallo-
cated goods). The next allocation is produced by augmenting along the transfer
path and the next iteration starts if some agent can still improve their bundle;
otherwise it terminates.

5.4 Running some experiments
At this point, it seems like Matroids.jl has achieved its goal of making it easy
to implement matroidal fair allocation algorithms. The arcane matroid logic
is safely hidden away behind semantically named functions in the library’s, al-
lowing the developer to focus on the business logic of the algorithm at hand.
Of course, the real purpose of Matroids.jl is to enable the empirical study of
matroidal fair allocation algorithms. Let us now turn our attention to how an
experimental setup might be implemented. In this section, we will use the func-
tionality available to us in the current, proof-of-concept version of Matroids.jl to
investigate how the three algorithms we have implemented perform on a range
of fairness criteria. These results, though probably not terribly interesting in
and of themselves, should serve to illustrate that Matroids.jl does in fact live
up to its purpose in life; namely, to be a practical, empirical tool to be used
alongside the abundant kit of theoretical tools afforded by matroid theory.

The experimental plan is as follows:

1. Generate a matroid-rank-valued fair allocation instance (according to some
matroid generation scheme) with n matroids over m elements.

2. Find an allocation using some allocation algorithm.

3. Check the resulting allocations against some set of approximate fairness
notions.

4. Repeat steps 1-3 k times and present the average results.

73

� �
function alloc_yankee_swap_vz22(V::MatroidRank)
n = na(V); m = ni(V)

Randomly prioritize the agents.
agents = shuffle(1:n)

Agent "0" (n+1) has a corresponding zero matroid.
Ms_ = [V.Ms..., ZeroMatroid(m)]

A = Allocation(n+1, m)
give!(A, n+1, 1:m) # The bundle of unallocated items.
flag = falses(n)

D = exchange_graph(Ms_, A)

while false in flag
The agents whose bundle can still improve.
T = [i for i in agents if flag[i] == false]

Find the agents in T with minimim value.
T_vals = [(i, length(bundle(A, i))) for i in T]
min_val = minimum(last, T_vals)
T_ = [i for (i, v) in T_vals if v == min_val]

The highest priority agent with minimum value.
i = T_[1]

The goods for which i has positive marginal value.
F_i = [g for g in 1:m if is_indep(V.Ms[i], bundle(A, i) ∪ g)]

a shortest path from F_i to an unallocated good.
A_0 = [g for g in 1:m if owner(A, g) == n+1]
transfer_path = find_shortest_path(D, F_i, A_0)

Transfer if path exists.
if transfer_path !== nothing
transfer!(Ms_, D, A, i, transfer_path)

else
flag[i] = true

end
end

return A
end� �

Figure 5.3: The Matroids.jl implementation of Yankee-Swap

74

� �
function gen_matroidrank_profile(n, gen_matroid, T)
function gen()

ms = Array{T}(undef, n)

Threads.@threads for i in 1:n
ms[i] = gen_matroid()

end

return MatroidRank(ms, ms[1].n)
end

return gen
end� �

Figure 5.4: Function to initialize a random matroid-rank valuation profile, given
a random matroid generator

Figure 5.4 shows a Julia function that accepts a function that generates a
matroid, and returns a function that constructs a matroid-rank valuation profile
with n thusly generated matroids. Due to the time-consuming nature of matroid
generation, the matroids are generated in parallel2. By plugging in a function
for generating random graphs with m edges, as given in Figures 4.1, 4.2 and 4.3,
we can generate a valuation profile consisting of graphic matroids. Alternatively,
we can pass in random_knuth_matroid to generate a profile of matroids given
via their closed sets representations.

ID n m Matroid type Avg. rank Time Bytes allocated

1 4 24 Graphic (ER) 21.5 63.0µs 33.467 KiB
2 4 24 Graphic (WS) 13.4 64.7µs 20.869 KiB
3 4 24 Graphic (BA) 14.3 57.2µs 24.183 KiB
4 4 24 Knuth ((3, 8, 5, 3)) 5.5 16.8s 15.428 MiB
5 4 24 Knuth ((0, 15, 6)) 4.2 4.2s 5.019 MiB
6 4 24 Knuth ((0, 12, 6)) 6.3 38.2s 21.501 MiB

Table 5.1: Six instance generation schemes with 4 agents and 24 goods.

2Depending on how many threads are available. Julia starts single-threaded by default,
but supports multi-threading [9].

75

Table 5.1 shows six schemes for initializing a matroid-rank valued fair al-
location instance. Each scheme generates 4 matroids, one per agent, over 24
goods. The first three set up graphic matroids, using Erdős-Rényi, Barabási-
Albert and Watts-Strogatz model random graphs, respectively. The latter three
use Random-Knuth-Matroid, with three different coarsening configurations.
Each scheme was followed to generate 100 fair allocation problem instances.
Then, each of the three algorithms we are studying were used to find an alloca-
tion for each instance. Finally, the fairness measures implemented in Chapter 3
were used to evaluate the fairness of each allocation. The output is Tables 5.2-
5.4, giving the average approximate (α−) fairness of the allocations output by
the algorithms per scheme.

This setup illustrates how one might use Matroids.jl to investigate the fair-
ness guarantees of an allocation algorithm. Of course, one would probably want
to put a bit more thought behind exactly what schemes to use for initializing
instances. The instances used in this example do not seem to pose significant
challenges for the algorithms, as indicated by the fact that all allocations meet,
on average, almost all the fairness criteria they are evaluated against (α ≥ 1).

One somewhat interesting observation from these experimental results is that
Yankee Swap consistently delivers MMS-fair allocations on all tested schemes,
despite its theoretical worst-case guarantee of only 1

2 -MMS fairness. This raises
the question: to what extent does Yankee Swap typically exceed this worst-case
guarantee in practical applications? This needs to be more rigorously tested
than has been done in this thesis, but a positive answer of this kind would be
useful for reasoning about the real-world applicability of Yankee Swap.

ID α-EF1 α-EFX0 α-PROP α-PROP1 α-PROPX0 α-MMS

1 1.188 1.178 1.004 1.206 1.004 0.99
2 1.1 1.033 1.236 1.661 1.236 0.916
3 1.116 1.049 1.311 1.743 1.311 0.93
4 1.093 1.064 3.945 12.0 3.945 1.013
5 1.021 1.008 3.903 Inf 3.903 1.01
6 1.114 1.02 3.357 8.999 3.357 1.072

Table 5.2: Fairness results; alloc_eit_bciz21 on 100 random problem in-
stances according to the schemes given in Table 5.1.

76

ID α-EF1 α-EFX0 α-PROP α-PROP1 α-PROPX0 α-MMS

1 1.2 1.2 1.003 1.205 1.003 1.0
2 1.2 1.2 1.3 1.794 1.3 1.0
3 1.2 1.2 1.32 1.778 1.32 1.0
4 1.078 1.036 3.907 11.786 3.907 1.035
5 1.03 1.006 3.921 Inf 3.921 1.029
6 1.117 1.042 3.358 8.831 3.358 1.074

Table 5.3: Fairness results; alloc_algmms_bv21 on 100 random problem in-
stances according to the schemes given in Table 5.1.

ID α-EF1 α-EFX0 α-PROP α-PROP1 α-PROPX0 α-MMS

1 1.2 1.2 1.004 1.206 1.004 1.0
2 1.2 1.2 1.273 1.699 1.273 1.0
3 1.2 1.2 1.32 1.778 1.32 1.0
4 1.197 1.116 3.977 12.68 3.977 1.137
5 1.263 1.2 4.338 Inf 4.338 1.248
6 1.199 1.161 3.407 8.342 3.407 1.091

Table 5.4: Fairness results; alloc_yankee_swap_vz22 on 100 random problem
instances according to the schemes given in Table 5.1.

77

Chapter 6
Discussion

This thesis has sought to answer the research question: how might one design
and implement a Julia library to support programmatic experimentation with
matroidal fair allocation algorithms? In an effort to answer this, I pursued
several lines of inquiry. I implemented classic matroid operations, such as the
matroid union and the exchange graph, and found practical ways to measure
the fairness of a matroid-rank-valued allocation. I discussed the requirements
of three recent algorithms in this space, later implementing these as a proof-of-
concept. Lastly, I described how to represent and randomly generate matroids.
With all this in hand, I gave an example of an experimental setup and provided
some cursory results.

The primary goal of this thesis was to build Matroids.jl as an answer to that
question—a practical tool to complement the theoretical toolkit provided by ma-
troid theory. An important sub-goal was to figure out how to make Matroids.jl
performant; as we have seen, matroids permit many powerful polynomial-time
operations, such as the matroid union, that papers on matroidal fair allocation
use in their analyses to show that allocations can be found efficiently. This
obscures many implementation-level optimization decisions that can drastically
improve the practical runtime of the implemented algorithms. One example of
such an optimization is to use the rank function as sparingly as possible, in favor
of cheaper independence or cardinality checks, as I discuss when giving some
algorithm implementations in Chapter 5.

78

6.1 Limitations and future work
The algorithms that were chosen for study (Envy-Induced-Transfers, Al-
gMMS and Yankee-Swap), were chosen due their being relatively short and
sweet, simple to reason about, and presenting a manageable amount of require-
ments to Matroids.jl. As we have seen, they are similar in spirit; all three
produce clean, MAX-USW allocations, the first two starting with a matroid
union call, the latter two using exchange graphs and transfer paths to modify
the allocation. Consequently, Matroids.jl extracts this common logic into sep-
arate functions, to be optimized and reasoned about independently. A current
limitation of Matroids.jl is that it is geared heavily towards supporting algo-
rithms that follow this general structure—other hypothetical algorithms that
take a completely different approach would likely require the implementation of
other matroid operations.

Back in Chapter 2, I briefly mentioned matroidal constraints as the sec-
ond major use case for matroids in the context of fair allocation. In order to
maintain a manageable scope for this thesis, I elected to focus on matroid-rank
valuations instead. For completeness’ sake, a next step in the development of
Matroids.jl should be to hook matroids into the constraint framework provided
by Allocations.jl.

This thesis describes two ways of generating matroids: as graphic matroids,
using different random graph models, or via the erection of arbitrary matroids.
Table 5.1 shows the difference in performance when generating graphic matroids
versus arbitrarily erected matroids of a similar size (m = 24). Using graphic ma-
troids, we could generate matroids of rank 13,14, and 21, hundreds of thousands
of times faster than we were able to erect matroids of only rank 4,5, and 6. This
might lead one to assume that graphic matroids are always preferable. To some
extent this might be so, but a limitation of graphic matroids is that of repre-
sentability. While every simple graph describes a matroid in terms of its acyclic
subsets of edges, not every matroid can be expressed as a simple graph. Supple-
mentary goods, for instance, would require a multigraph with two parallel edges.
Little support exists in Julia for working with multigraphs at the moment. Fur-
ther, matroids might be hypergraphs (graphs in which edges can connect more
than two nodes) or might not lend themselves to a graphic representation at
all. These are matroid qualities that are readily representable with our arbitrary
erected matroids. Thus, we can see that there is a use for other matroid types as
well, in addition to graphic matroids. In addition, different matroid types might
have different properties that allow one to make different guarantees regarding
fairness in a matroidal setting. As such, an important piece of future work on

79

Matroids.jl is to add support for more types of matroids. This thesis describes
two ways of generating matroids: as graphic matroids, using different random
graph models, or via the erection of arbitrary matroids. Table 5.1 shows the
difference in performance when generating graphic matroids versus arbitrarily
erected matroids of a similar size (m = 24). Using graphic matroids, we could
generate matroids of rank 13,14, and 21, hundreds of thousands of times faster
than we were able to erect matroids of only rank 4,5, and 6. This might lead
one to assume that graphic matroids are always preferable. To some extent this
might be so, but a limitation of graphic matroids is that of representability.
While every simple graph describes a matroid in terms of its acyclic subsets of
edges, not every matroid can be expressed as a simple graph. Supplementary
goods, for instance, would require a multigraph with two parallel edges. Little
support exists in Julia for working with multigraphs at the moment. Further,
matroids might be hypergraphs (graphs in which edges can connect more than
two nodes) or might not lend themselves to a graphic representation at all.
These are matroid qualities that are readily representable with our arbitrary
erected matroids. Thus, we can see that there is a use for other matroid types
as well, in addition to graphic matroids. Further, different matroid types might
have different properties that allow one to make different guarantees regarding
fairness in a matroidal setting. As such, an important piece of future work on
Matroids.jl is to add support for more types of matroids.

There are numerous avenues available for improving the performance of Ma-
troids.jl. One example is the exchange graph and related functionality. During
a Yankee Swap run, the exchange graph is rebuilt, and the shortest paths re-
calculated from scratch, each iteration. This is likely a big performance drain,
as most of the graph will not change between iterations, only the edges out of
nodes corresponding to goods on the transfer path. One suggested performance
improvement is to store the shortest path from every node to every other node
on the exchange graph, though this might be a speed-memory usage tradeoff
and should be considered carefully. Another interesting consideration is that of
parallelization. I use multithreading in the matroid-rank-valued instance gener-
ator, given in Figure 5.4, but it stands to reason that there might be room for
parallelization within the matroid erection code, for instance. This could be a
substantial source of performance improvement.

The matroid erection functionality, though significantly faster after the im-
provements outlined in Section 4.3.2, should preferably be made even faster.
The latest implementation, whose performance is shown in Table 4.6, is a lot
more memory efficient than earlier versions, but we can see that the runtime
still explodes as n grows. While it should be an interesting project to further

80

optimize this implementation of Knuth’s matroid construction, we might also
consider whether this approach really scales any further with n. At the end of
the day, the procedure considers in the worst case all subsets of E—as n = |E|
grows, the number of subsets of E undergoes a combinatorial explosion, and
quickly becomes intractably large. Any further improvements should begin to
restrict which subsets the function looks at. We know, due to Greene [22], that
there exist families of closed sets, smaller than the full family of all closed sets
of a matroid, that are descriptively sufficient (meaning they can be used to de-
termine the properties of a matroid with simple and efficient algorithms). One
such is the family of essential closed sets, i.e., the closed sets whose “closedness”
do not follow from the closed sets of lower rank. These are roughly encoded by
the enlargements passed to Knuth-Matroid. Might it be possible to imple-
ment Knuth’s matroid construction algorithm in such a manner as to only keep
track of these essential closed sets? Would such an implementation be able to
generate larger matroids, and faster, than the current implementation? These
are interesting lines of questioning for future work into the matroid generation
capabilities of Matroids.jl.

Another direction that one might take this work going forward, is to inves-
tigate the applicability of this product to real-world problems. Matroids are
compelling structures to work with in the context of fair allocation, as they are
pleasant to reason about and permit strong theoretical fairness guarantees. Un-
fortunately, people rarely think of their preferences in terms of matroids. The
example given in Chapter 1 highlights that matroids do have real-world applica-
bility in modelling user preferences, but design and engineering ingenuity would
be needed to build a robust system that can reliably map between the two.

6.2 Concluding remarks
Initially, all I knew about this thesis was that it was going to have something
to do with fair allocation. Looking around for recent allocation algorithms, the
study of which might form part of a thesis, Viswanathan and Zick’s Yankee
Swap algorithm caught my attention. By restricting the valuations to the class
of matroid rank functions, a seemingly simple algorithm could deliver extraor-
dinarily well on a range of fairness objectives intractable in the general, additive
case. My interest piqued, I wanted to understand how it worked, and set about
implementing the algorithm using Hummel and Hetland’s Allocations.jl library.
Almost immediately I was flummoxed by how to represent the matroid rank val-
uations. I had assumed that there would exist some library to facilitate working

81

programmatically with matroids, similar to how Graphs.jl enables working with
graphs without needing to reinvent the wheel graph. At the time I was unable
to find any such library, and so the research question for this thesis came to be:
how might one design and implement a Julia library to support the implemen-
tation of and experimentation with matroidal fair allocation algorithms?

Late in the project, I realized that there does in fact exist matroid libraries in
Julia, in all likelihood vastly more performant and feature-rich than Matroids.jl
would ever be1. The primary target demographic for Matroids.jl had always
been fair allocation researchers, but upon witnessing the capabilities of my more
advanced competitors, a secondary target demographic came to the fore, namely
students, computer programmers and non-mathematicians such as myself. All
along, I realized, I had been building the library for myself, the library that I
had needed when I wanted to figure out how Yankee Swap worked, which was
a simple-to-use matroid library that only concerned itself with the most basic
aspects of matroids as they related to fair allocation.

While matroid theory might seem an extremely abstract and niche subfield
of mathematics, it has found applicability in the field of fair allocation, which
in the end deals with problems of a highly practical and everyday nature. The
aim of fair allocation, to deliver provably fair mechanisms for the distribution of
resources, is a noble goal, and if a problem permits a matroidal representation, it
can utilize algorithms that deliver very well indeed. If Matroids.jl is able to serve
as a soft introduction to matroid theory for a computer programmer interested
in understanding fair allocation algorithms, and if that computer programmer
goes on to build a real-world solution for fair allocation, then Matroids.jl has
achieved its goals as far as I am concerned.

1See for instance https://docs.oscar-system.org/stable/Combinatorics/matroids/.

82

Bibliography

[1] N. Benabbou, M. Chakraborty, A. Igarashi, and Y. Zick, “Finding fair
and efficient allocations when valuations don’t add up,” in Algorithmic
Game Theory, Springer International Publishing, 2020, pp. 32–46. doi:
10.1007/978- 3- 030- 57980- 7_3. [Online]. Available: https:
//doi.org/10.1007%2F978-3-030-57980-7_3.

[2] R. J. Aumann and M. Maschler, “Game theoretic analysis of a bankruptcy
problem from the Talmud,” Journal of Economic Theory, vol. 36, no. 2,
pp. 195–213, 1985, issn: 0022-0531. doi: https://doi.org/10.
1016/0022-0531(85)90102-4. [Online]. Available: https://www.
sciencedirect.com/science/article/pii/0022053185901024.

[3] H. Steinhaus, “The problem of fair division,” Econometrica, no. 16, pp. 101–
104, 1948.

[4] G. Amanatidis et al., Fair division of indivisible goods: A survey, 2022.
arXiv: 2208.08782 [cs.GT].

[5] A. Biswas and S. Barman, “Fair division under cardinality constraints,”
in Proceedings of the 27th International Joint Conference on Artificial
Intelligence, ser. IJCAI’18, Stockholm, Sweden: AAAI Press, 2018, pp. 91–
97, isbn: 9780999241127.

[6] S. Barman and P. Verma, “Existence and computation of maximin fair
allocations under matroid-rank valuations,” in Proceedings of the 20th In-
ternational Conference on Autonomous Agents and MultiAgent Systems,
ser. AAMAS ’21, Virtual Event, United Kingdom: International Founda-

83

tion for Autonomous Agents and Multiagent Systems, 2021, pp. 169–177,
isbn: 9781450383073.

[7] N. Benabbou, M. Chakraborty, A. Igarashi, and Y. Zick, “Finding fair and
efficient allocations for matroid rank valuations,” ACM Trans. Econ. Com-
put., vol. 9, no. 4, Oct. 2021, issn: 2167-8375. doi: 10.1145/3485006.
[Online]. Available: https://doi.org/10.1145/3485006.

[8] V. Viswanathan and Y. Zick, Yankee swap: A fast and simple fair alloca-
tion mechanism for matroid rank valuations, 2023. arXiv: 2206.08495
[cs.DS].

[9] J. Bezanson, A. Edelman, S. Karpinski, and V. B. Shah, “Julia: A fresh
approach to numerical computing,” SIAM review, vol. 59, no. 1, pp. 65–98,
2017. [Online]. Available: https://doi.org/10.1137/141000671.

[10] M. L. Hetland and H. Hummel, Allocations.jl, version 0.1, Nov. 2022. [On-
line]. Available: https://github.com/mlhetland/Allocations.
jl.

[11] D. E. Knuth, “Random matroids,” Discrete Mathematics, vol. 12, pp. 341–
358, 4 1975.

[12] H. H. Crapo and G.-C. Rota, On the foundations of combinatorial theory:
Combinatorial geometries. M.I.T. Press, 1970.

[13] H. Whitney, “On the abstract properties of linear dependence,” American
Journal of Mathematics, vol. 57, pp. 509–533, 3 Jul. 1935.

[14] A. Schrijver, Combinatorial Optimization: Polyhedra and Efficiency. Springer,
2003.

[15] R. J. Lipton, E. Markakis, E. Mossel, and A. Saberi, “On approximately
fair allocations of indivisible goods,” in Proceedings of the 5th ACM Con-
ference on Electronic Commerce, ser. EC ’04, New York, NY, USA: Asso-
ciation for Computing Machinery, 2004, pp. 125–131, isbn: 1581137710.
doi: 10.1145/988772.988792. [Online]. Available: https://doi.
org/10.1145/988772.988792.

[16] I. Caragiannis, D. Kurokawa, H. Moulin, A. D. Procaccia, N. Shah, and
J. Wang, “The unreasonable fairness of maximum nash welfare,” ACM
Trans. Econ. Comput., vol. 7, no. 3, Sep. 2019, issn: 2167-8375. doi: 10.
1145/3355902. [Online]. Available: https://doi.org/10.1145/
3355902.

84

[17] B. Plaut and T. Roughgarden, “Almost envy-freeness with general valua-
tions,” SIAM Journal on Discrete Mathematics, vol. 34, no. 2, pp. 1039–
1068, 2020. doi: 10.1137/19M124397X. eprint: https://doi.org/
10.1137/19M124397X. [Online]. Available: https://doi.org/10.
1137/19M124397X.

[18] E. Budish, “The combinatorial assignment problem: Approximate com-
petitive equilibrium from equal incomes,” Journal of Political Economy,
vol. 119, no. 6, pp. 1061–1103, Dec. 2011. doi: 10.1086/664613. [On-
line]. Available: https://doi.org/10.1086/664613.

[19] J. Edmonds, “Matroid partition,” in 50 Years of Integer Programming
1958-2008, Springer Berlin Heidelberg, Nov. 2009, pp. 199–217. doi: 10.
1007/978-3-540-68279-0_7. [Online]. Available: https://doi.
org/10.1007/978-3-540-68279-0_7.

[20] D. Knuth, Matroid partitioning (Report (Stanford University. Computer
Science Department)). Computer Science Department, Stanford Univer-
sity, 1973.

[21] H. H. Crapo, “Erecting geometries,” Annals of the New York Academy of
Sciences, vol. 175, no. 1, pp. 89–92, Jul. 1970. doi: 10.1111/j.1749-
6632.1970.tb56458.x. [Online]. Available: https://doi.org/10.
1111/j.1749-6632.1970.tb56458.x.

[22] T. Greene, “Descriptively sufficient subcollections of flats in matroids,”
Discrete Mathematics, vol. 87, no. 2, pp. 149–161, 1991, issn: 0012-365X.
doi: https://doi.org/10.1016/0012- 365X(91)90044- 3.
[Online]. Available: https://www.sciencedirect.com/science/
article/pii/0012365X91900443.

[23] D. G. Kelly and D. Kennedy, “The higgs factorization of a geometric
strong map,” Discrete Mathematics, vol. 22, no. 2, pp. 139–146, 1978,
issn: 0012-365X. doi: https://doi.org/10.1016/0012-365X(78)
90121-8. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/0012365X78901218.

[24] R. Pendavingh and J. van der Pol, Enumerating matroids of fixed rank,
2016. arXiv: 1512.06655 [math.CO].

[25] M. Babaioff, T. Ezra, and U. Feige, “Fair and truthful mechanisms for
dichotomous valuations,” in AAAI Conference on Artificial Intelligence,
2020.

85

[26] J. Fairbanks, M. Besançon, S. Simon, J. Hoffiman, N. Eubank, and S.
Karpinski, JuliaGraphs/Graphs.jl: An optimized graphs package for the ju-
lia programming language, 2021. [Online]. Available: https://github.
com/JuliaGraphs/Graphs.jl/.

[27] E. W. Dijkstra, “A note on two problems in connexion with graphs,” Nu-
merische Mathematik, vol. 1, no. 1, pp. 269–271, Dec. 1959. doi: 10.
1007/bf01386390. [Online]. Available: https://doi.org/10.
1007/bf01386390.

[28] S. E. Fienberg, “A brief history of statistical models for network analy-
sis and open challenges,” Journal of Computational and Graphical Statis-
tics, vol. 21, no. 4, pp. 825–839, 2012. doi: 10 . 1080 / 10618600 .
2012.738106. eprint: https://doi.org/10.1080/10618600.
2012.738106. [Online]. Available: https://doi.org/10.1080/
10618600.2012.738106.

[29] P. Erdős and A. Rényi, “On random graphs I.,” Publicationes Mathemati-
cae Debrecen, vol. 6, no. 3-4, pp. 290–297, Jul. 1959. doi: 10.5486/pmd.
1959.6.3-4.12. [Online]. Available: https://doi.org/10.5486/
pmd.1959.6.3-4.12.

[30] E. N. Gilbert, “Random Graphs,” The Annals of Mathematical Statistics,
vol. 30, no. 4, pp. 1141–1144, 1959. doi: 10.1214/aoms/1177706098.
[Online]. Available: https://doi.org/10.1214/aoms/1177706098.

[31] S. Janson, D. E. Knuth, T. Luczak, and B. G. Pittel, “The birth of the
giant component,” Random Struct. Algorithms, vol. 4, pp. 233–359, 1993.

[32] R. Albert and A.-L. Barabási, “Statistical mechanics of complex net-
works,” Rev. Mod. Phys., vol. 74, pp. 47–97, 1 Jan. 2002. doi: 10.1103/
RevModPhys.74.47. [Online]. Available: https://link.aps.org/
doi/10.1103/RevModPhys.74.47.

[33] D. J. Watts and S. H. Strogatz, “Collective dynamics of ‘small-world’
networks,” Nature, vol. 393, no. 6684, pp. 440–442, Jun. 1998. doi: 10.
1038/30918. [Online]. Available: https://doi.org/10.1038/
30918.

[34] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to
Algorithms (The MIT Press), 3rd ed. London, England: MIT Press, Jul.
2009.

[35] R. Fourquet, BitIntegers.jl, https://github.com/rfourquet/BitIntegers.jl,
Accessed: 2023-05-20.

86

[36] N. Wirth and C. A. R. Hoare, “A contribution to the development of AL-
GOL,” Commun. ACM, vol. 9, no. 6, pp. 413–432, Jun. 1966, issn: 0001-
0782. doi: 10.1145/365696.365702. [Online]. Available: https:
//doi.org/10.1145/365696.365702.

87

Appendices

88

Appendix A
Sets as numbers – some useful
tricks

Section 4.3.2 details a number of steps taken in order to build a performant Julia
implementation of Knuth-Matroid. Perhaps chief among these steps in terms
of sheer performance gain compared to the initial, naïve implementation, was
the transition from representing subsets of E as a Set of integers (or whatever
type the elements of E might have), to representing them as a single integer,
whose 1-bits denote which elements are in the set. This is possible as long as
n is less than the widest available integer type (in off-the-shelf Julia, 128 bits,
though one can go wider with the help of libraries [35]). We reiterate the bitwise
equivalents of the basic set operations in Table A.1. These bitwise equivalents

Table A.1: Set operations and their equivalent bitwise operations

Set operation Bitwise equivalent
A ∩B A ∧B

A ∪B A ∨B

A \B A ∧ ¬B
A ⊆ B A ∧B = A

allow us to perform the set operations in constant time, resulting in significant

89

performance increases. In the code snippets included throughout Section 4.3.2
and Appendix D, a number of “tricks” are performed with bitwise operations
whose workings and purpose might be a bit obtuse. This appendix came to be
as I got to grips with working with sets in this manner.

How do I...

...create a singleton set?
The left-shift operator (<<) can be used to set the ith bit to 1 and the others
to 0. In general, {a} = 1 << a. This is used in an early version of Generate-
Covers:� �
function generate_covers_v2(F_r, n)
Set([A | 1 << i for A ∈ F_r for i in 0:n-1 if A & 1 << i === 0])

end� �
...find the smallest element of a set?
Using the two’s complement of a set T , denoted by −T = ¬T + 1, we can find
the smallest element with the operation T ∧−T . This is used in the next trick.

...enumerate all elements of a set one by one?
Using the previous trick, we can repeatedly pop the smallest element in the
following manner:� �

t = 0b11111111
while t > 0

x = t&-t # x is the singleton set consisting of the smallest element of t
output(x)
t &= ~x # t = t setminus x

end� �
This outputs all numbers from 1 to 0xff with a Hamming weight of 1.

90

...get a random element from a set?
We find all the positions at which the reversed bitstring of the set has a ’1’
character, and choose a random one.� �
function rand_el(S::Integer)
x = rand([2ˆ(i-1) for (i,c) in enumerate(reverse(bitstring(S))) if c == '1'])
return convert(typeof(S), x)

end� �
...convert a set to its bitwise representation?
Assuming that the sets start counting at 1 (useful for interacting with Graphs.jl,
for instance), this can be achieved with the following function:� �
function set_to_bits(set, T=UInt64)
if length(set) == 0 return T(0) end
T(reduce(+, (2ˆ(x-1) for x in set), init=0))

end� �
...convert back?

� �
function bits_to_set(bits)
Set(i for (i, c) in enumerate(reverse(bitstring(bits))) if c == '1')

end� �

91

Appendix B
Matroid partitioning

A common pattern for matroid-rank-valued fair allocation algorithms is, as we
have seen, to initialize an allocation that corresponds to a maximum-sized inde-
pendent set in the union of the matroids in play. This allocation must needs be
MAX-USW and clean, but any other fairness notions are not guaranteed. The
algorithms then exploit the exchange property of independent sets to massage
the allocation into one that has the desired properties, in polynomial time. This
being such a widespread approach, Matroids.jl should include the functionality
for initializing such an allocation.

This procedure is referred to as both the matroid union algorithm and the
matroid partitioning algorithm in the literature, since the task of finding a
maximum-size independent set in a union of n matroids over E is equivalent
to finding an n-partition of E, such that each part i is independent in the ith
matroid Mi. In this thesis, I refer to the procedure as Matroid-Partition,
following the example of Knuth, who in a 1973 paper describe the algorithm
that will be implemented in this section. In the paper, Knuth expresses the
problem in the following manner:

If M1, . . . ,Mk are matroids defined on a finite set E, [find] whether
or not the elements-of-E can be colored with k colors such that (i)
all elements of color j are independent in Mj , and (ii) the number
of elements of color j lies between given limits, nj ≤ |Ej | ≤ n′

j . [20]

If such a coloring exists, the algorithm produces it, otherwise it finds a proof
to the contrary. While the terminology differs, we can see that this is in fact a

92

� �
function matroid_partition_knuth73(Ms, floors=nothing)
n = Ms[1].n; k = length(Ms)
S0 = Set(1:n) # The unallocated items.
S = [Set() for _ in 1:k] # The partition-to-be.
color = Dict(x=>0 for x in 1:n) # color[x] = j iff x ∈ S[j].
for y in 1:k color[-y] = y end # -y is the 'standard' element of color y.
succ = [0 for _ in 1:n]

floors = floors === nothing ? [0 for _ in 1:k] : floors

Ensure every part gets at least its lower limit.
for j in 1:k, i in 1:floors[j]

augment!(j, n, k, Ms, S, S0, succ, color)
end

Allocate the rest.
while S0 != Set()

X = augment!(0, n, k, Ms, S, S0, succ, color)

if length(X) != 0
return (S, X)

end
end

return (S, Set())
end� �

Figure B.1: matroid_partition_knuth73

colorful way of asking a question about a fair allocation instance with matroid-
rank valuations. The ground set of goods E we are already familiar with. There
are k agents, each of whom has her own color. A good is “colored” j if it is
allocated to agent j—we can picture each agent equipped with a can of spray
paint they use to denote their goods. The question we are asking then, is
whether we can find a clean allocation of the goods, such that each bundle is
between certain size limits. Knuth shows that we can find the answer to this
question in O(n3 + n2k) calls to the independence oracle.

The Matroids.jl implementation of Matroid-Partition is given in Fig-
ure B.1. The main action happens in the augment! subroutine, whose imple-
mentation is given in Figure B.2.

93

� �
function augment!(r, n, k, Ms, S, S0, succ, color)
for x in 1:n succ[x] = 0 end

A = Set(1:n)
B = r > 0 ? Set(-r) : Set(-j for j in 1:k)

while B != Set()
C = Set()
for y ∈ B, x ∈ A
j = color[y]

if x /∈ S[j] && is_indep(Ms[j], x ∪ setdiff(S[j], y))
succ[x] = y
A = setdiff(A, x)
C = C ∪ x
if color[x] == 0

x is uncolored - transfer:
while x ∈ 1:n
y = succ[x]
j = color[x]

if j == 0 setdiff!(S0, x) else setdiff!(S[j], x) end

j = color[y]
S[j] = S[j] ∪ x
color[x] = j
x = y

end

return Set()
end

end
end
B = C

end

We did not find a transfer path to 0.
return setdiff(A, reduce(∪, S))

end� �
Figure B.2: The augment! subroutine in matroid_partition_knuth73

94

Appendix C
Enumerating circuits and
independent sets during erection

In his 1974 paper [11], Knuth includes an ALGOL W [36] implementation that
also enumerates all circuits and independent sets for the generated matroid1.

Matroids.jl includes an implementation of this, called random_erect—an
extension of random_kmc_v6 that finds I and C by pre-populating the rank
table with all subsets of E. The full source code for random_erect is given
in Figure C.2. Covers are generated and sets inserted in the same manner as
in random_kmc_v6. After all covers and enlargements have been inserted and
superposed (so F[r + 1] contains the closed sets of rank r + 1), a new function,
mark! is called on each closed set. This function recursively assigns the cardinal-
ity (i.e., the Hamming weight, the number of 1s in the binary digit representing
that set) to the entry for each subset of the closed set in the rank table. When a
subset whose cardinality equals the current rank is found, we have encountered
an independent set, and it is added to the family of independent sets. A final
loop through all subsets of E finds each circuit, using the new unmark! function
to ensure only the necessary functions are checked. The function returns the
FullMatroid struct, which is a ClosedSetsMatroid that also holds I and C.

Fully enumerating matroids in this manner allows really efficient implemen-
tations of is_indep and is_circuit, as we know all the independent sets and

1A later implementation in C called ERECTION.W can be found at his home page:
https://www-cs-faculty.stanford.edu/k̃nuth/programs/erection.w

95

� �
function mark!(m, I, r, rank)
if haskey(rank, m) && rank[m] <= r

return
end
if rank[m] == 100+r push!(I[r+1], m) end
rank[m] = r
t = m
while t != 0

v = t&(t-1)
mark!(m-t+v, I, r, rank)
t = v

end
end

function unmark!(m, card, rank, mask)
if rank[m] < 100

rank[m] = card
t = mask-m
while t != 0
v = t&(t-1)
unmark!(m+t-v, card+1, rank, mask)
t=v

end
end

end� �
Figure C.1: mark! and unmark!

circuits ahead of time. However, this approach sadly scales poorly for larger val-
ues of n, as it has to allocate bytes for every subset of E. The number of subsets
it has to find the Hamming weight of undergoes a combinatorial explosion and
quickly becomes intractably large, even on modern hardware.

96

� �
function random_erect(n, p, T=UInt16)
Initialize.
r = 1
pr = 0
F::Vector{Set{T}} = [Set(T(0))]
E::T = big"2"ˆn-1
rank = Dict{T, UInt8}()

Populate rank table with 100+cardinality for all subsets of E.
k=1; rank[0]=100;
while (k<=E)

for i in 0:k-1 rank[k+i] = rank[i]+1 end
k=k+k;

end

F = [Set(0)] # F[r] is the family of closed sets of rank r-1.
I = [Set(0)] # I[r] is the family of independent sets of rank r-1.
rank[0] = 0

while E /∈ F[r]
push!(F, Set())
push!(I, Set())

Generate minimal closed sets for rank r+1.
for y in F[r] # y is a closed set of rank r.
t = E - y # The set of elements not in y.
Find all sets in F[r+1] that already contain y and remove excess

elements from t.
for x in F[r+1]

if (x & y == y) t &= ~x end
end
Insert y ∪ a for all a ∈ t.
while t > 0

x = y|(t&-t)
insert_set!(x, F, r, rank)
t &= ~x

end
end� �

Figure C.2: random_erect fully enumerates the independent sets and circuits
for a random matroid during erection (continued on the next page).

97

� �
if r <= length(p)
Apply coarsening.
pr = p[r]
while pr > 0 && E /∈ F[r+1]

A = rand(F[r+1])
t = E-A
one_element_added::Vector{T} = []
while t > 0

x = A|(t&-t)
push!(one_element_added, x)
t &= ~x

end
Acupa = rand(one_element_added)
setdiff!(F[r+1], A)
insert_set!(Acupa, F, r, rank)
pr -= 1

end
end

Assign rank to sets and add independent ones to I.
for m in F[r+1]
mark!(m, I, r, rank)

end

Next rank.
r += 1

end

C = Set()
k = 1
while k <= E

for i in 0:k-1 if rank[k+i] == rank[i]
push!(C, T(k+i))
unmark!(k+i, rank[i], rank, E)

end end
k += k

end

return FullMatroid{T}(n, r-1, F, I, C, rank, T)
end� �

Figure C.2 continued.

98

Appendix D
The development of random_kmc

This final appendix is where I have stowed away the lengthier bits of code
referred to in Section 4.3.2, detailing the development of a somewhat performant
implementation of Random-Knuth-Matroid (Algorithm 5).

99

� �
function generate_covers_v1(Fr, E)
Set([A ∪ a for A ∈ Fr for a ∈ setdiff(E, A)])

end

function superpose_v1!(F, F_old)
for A ∈ F, B ∈ F

should_merge = true
for C ∈ F_old if A ∩ B ⊆ C
should_merge = false

end end

if should_merge
setdiff!(F, [A, B])
push!(F, A ∪ B)

end
end

return F
end� �

Figure D.1: Initial implementation generate_covers and superpose.

100

� �
function random_kmc_v1(n, p, T)
E = Set([i for i in range(0,n-1)])

Step 1: Initialize.
r = 1
F = [family([])]
pr = 0

while true
Step 2: Generate covers.
push!(F, generate_covers_v1(F[r], E))

Step 4: Superpose.
superpose_v1!(F[r+1], F[r])

Step 5: Test for completion.
if E ∈ F[r+1]
return KnuthMatroid{Set{Integer}}(n, F, [], Set(), Dict())

end

if r <= length(p)
pr = p[r]

end

while pr > 0
Random closed set in F_{r+1} and element in E \ A.
A = rand(F[r+1])
a = rand(setdiff(E, A))

Replace A with A ∪ {a}.
F[r+1] = setdiff(F[r+1], A) ∪ Set([A ∪ a])

Superpose again to account for coarsening step.
superpose_v1!(F[r+1], F[r])

Step 5: Test for completion.
if E ∈ F[r+1]

return (E, F)
end

pr -= 1
end

r += 1
end

end� �
Figure D.2: random_kmc_v1

101

� �
function bitwise_superpose!(F, F_prev)
i = 0
As = copy(F)
while length(As) !== 0

A = pop!(As)

for B in setdiff(F, A)
i += 1
if should_merge(A, B, F_prev)

push!(As, A | B)
setdiff!(F, [A, B])
push!(F, A | B)
break

end
end

end

return F
end

function generate_covers_v2(F_r, n)
Set([A | 1 << i for A ∈ F_r for i in 0:n-1 if A & 1 << i === 0])

end� �
Figure D.3: The bitset-implementations of Generate-Covers and Super-
pose!, first used in random_kmc_v2.

� �
function sorted_bitwise_superpose!(F, F_prev)
As = sort!(collect(F), by = s -> length(bits_to_set(s)))
while length(As) !== 0

A = popfirst!(As)

for B in setdiff(F, A)
if should_merge(A, B, F_prev)

insert!(As, 1, A | B)
setdiff!(F, [A, B])
push!(F, A | B)
break

end
end

end

return F
end� �
Figure D.4: This implementation of Superpose! sorts the sets by length.

102

� �
function random_kmc_v4(n, p, T=UInt16)::ClosedSetsMatroid{T}
r = 1
pr = 0
F = [Set(0)]
E = 2ˆn - 1 # The set of all elements in E.

while true
to_insert = generate_covers_v2(F[r], n)

Apply coarsening to covers.
if r <= length(p) && E /∈ to_insert # No need to coarsen if E is added.
pr = p[r]
while pr > 0

A = rand(to_insert)
a = random_element(E - A)
to_insert = setdiff(to_insert, A) ∪ [A | a]
pr -= 1

end
end

Superpose.
push!(F, Set()) # Add F[r+1].
while length(to_insert) > 0
A = pop!(to_insert)
push!(F[r+1], A)

for B in setdiff(F[r+1], A)
if should_merge(A, B, F[r])

push!(to_insert, A | B)
setdiff!(F[r+1], [A, B])
push!(F[r+1], A | B)

end
end

end

if E ∈ F[r+1]
return ClosedSetsMatroid{T}(n, r, F, Dict(), T)

end

r += 1
end

end� �
Figure D.5: random_kmc_v4 inserts the sets one at a time, superposing on the
fly.

103

� �
function random_knuth_matroid(n, p, T=UInt16)::ClosedSetsMatroid{T}
r = 1
F::Vector{Set{T}} = [Set(T(0))]
E::T = BigInt(2)ˆn-1
rank = Dict{T, Integer}(0=>0)

while E /∈ F[r]
Initialize F[r+1].
push!(F, Set())

Setup add_set.
add_callback = x -> rank[x] = r
add_function = x -> add_set!(x, F, r, rank, add_callback)

generate_covers!(F, r, E, add_function)

Perform coarsening.
if r <= length(p) coarsen!(F, r, E, p[r], add_function) end

r += 1
end

return ClosedSetsMatroid{T}(n, r-1, F, rank, T)
end� �

Figure D.6: The final implementation of Random-Knuth-Matroid.

104

