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Abstract

This thesis addresses the challenge of fairly allocating mixed divisible and in-
divisible goods by adapting established algorithms from their respective fields,
and creating naive polynomial time algorithms. The objective is to explore
the effectiveness of these algorithms in solving the problem of mixed alloca-
tion in an attempt to bridge the gap to the more well studied field with only
indivisible goods. Empirical experiments were conducted on randomly gener-
ated instances, evaluating metrics such as MaxiMinShare and Maximum Nash
Welfare. The results demonstrate satisfactory outcomes in a majority of cases,
suggesting the potential of adapting indivisible algorithms for mixed allocation
problems. However, the scope of these results is limited to the conditions em-
ployed in this study, so further theoretical proofs are needed to establish the
robustness and applicability of these algorithms across various scenarios. Nev-
ertheless, this research provides valuable insights into the field of fair allocation
of mixed goods.
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Sammendrag

Denne avhandlingen tar for seg utfordringen med å rettferdig fordele blandete
delbare og udelelige varer ved å tilpasse etablerte algoritmer fra deres respektive
fagfelt, samt å utvikle enkle polynomiske algoritmer til å finne gode foredlinger.
Målet er å utforske effektiviteten og praktikaliteten til disse algoritmene samt
koble feltet med blandete varer til det mer velkjente feltet med kun udelelige
varer. Det ble utført empiriske eksperimenter p̊a tilfeldig genererte instanser,
der rettferdighetsm̊al som MaxiMinShare og Maximum Nash Welfare ble eval-
uert. Resultatene viser tilfredsstillende utfall i flertallet av tilfellene, noe som
antyder potensialet for å tilpasse udelelige algoritmer til problemer med blandet
fordeling. Imidlertid er omfanget av disse resultatene begrenset til betingelsene
som ble brukt i denne studien, s̊a ytterligere teoretiske beviser er nødvendig for
å etablere robustheten og anvendeligheten til disse algoritmene i ulike scenarier.
Likevel gir denne forskningen verdifulle innsikter i feltet for rettferdig fordeling
av blandete varer.
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Chapter 1
Introduction

Fairness is a concept that is hard to define, and even harder to quantify using
values and formulas. The root of this is that fairness is often a complex concept
determined by varying subjective opinions from different entities. Because of
this, using a computer to find solutions of optimal fairness is difficult.

According to the Subjective theory of value, there cannot be an
objective measure of the value of each item. Therefore, objective
fairness is not possible. (Yaari & Bar-Hillel, 1984)

1



1.1. FAIR ALLOCATION AND DIVISION

1.1 Fair Allocation and Division

Fair Division and fair allocation is the problem of allocating a set of resources
among a set of participants in a way that is considered fair or beneficial by the
participants. The term ”Allocation” is usually used when the resources to be
distributed are indivisible (e.g., paintings, jewelry), and ”Division” is used when
the resource is divisible (e.g., time, food, land).

For many cases, fairness is a straight forward concept, for instance, when cutting
a pizza its understood that a ”fair division” is one in which all participants get
an equal amount of pizza. The problem gets complex when there is no longer a
shared understanding of what the fair division is. And even more so when the
resources to be distributed are indivisible, and there is no way for everyone to
get an equal share. This is where algorithms for fair allocation come in. They
provide various metrics and methods for determining what the ”fairest possible”
allocation is. Even so, even allocating indivisible goods when the valuations are
equal is NP-hard. Because of this algorithms often have to approximate the
optimal solution. Fair allocation of cases with both indivisible and divisible
resources are a subset of fair allocation problems and is currently a less studied
field than divisible and indivisible separately.

1.2 Motivation

Resource allocation is a fundamental challenge across various domains, ranging
from economics and finance to healthcare and logistics. The efficient and fair
allocation of resources has significant implications for optimizing outcomes and
ensuring equity and equality.

The motivation behind this thesis is to analyze algorithms for fairly allocating
mixed divisible and indivisible resources. The aim is to contribute to the field
of resource allocation by providing novel insights, analysis, practical algorithms,
and a deeper understanding of the associated challenges.

Furthermore, the development of efficient algorithms is essential for real-world
applications. The analysis and evaluation of different algorithms for allocat-
ing mixed resources can help identify the most suitable approaches for specific
scenarios. By comparing their performance, scalability, and fairness properties,

2



1.3. CONTRIBUTION

practical guidelines for decision-makers and resource allocators can be estab-
lished.

1.3 Contribution

The objective of this thesis is to offer a comprehensive overview of the current
progress in the field of fair allocation scenarios where the goods to be distributed
consist of a combination of indivisible items and divisible items.

The main contribituions of the thesis will be to look at proposed ways to adapt
algorithms for indivisible goods to allow them to be used for mixed goods.
Should the work of adapting the algorithms be beneficial this would allow lever-
aging established algorithms designed for indivisible goods to directly improve
algorithms and work in the field of mixed goods allocation. Moreover, the thesis
explores alternative ”naive” approaches to find allocations for mixed goods.

1.4 Structure

The theory chapter starts by introducing necessary preliminaries, such as no-
tation and definitions, to establish a common understanding. The existing re-
search and studies related to the problem are summarized, highlighting what has
been done before. Furthermore, the limitations of previous work are identified,
creating a foundation for the experiments presented in the thesis.

The method chapter describes how the experiments and data are constructed
and run for replication and verification. The following two chapters present the
specific experiments, their approaches, algorithms and goals.

The results chapter presents the outcomes of these experiments. The discussion
chapter interprets the results, shedding light on their meaning and implications,
the limitations of the experiments and on how fair allocation can be used in real-
life scenarios.

Finally the conclusion summarizes the most important results and findings while
acknowledging the limitations in order to provide a foundation for future work
as well as contribute to the field of fair allocation.

3
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Chapter 2
Theory

2.1 Preliminaries

Before delving into the details of algorithms and previous work, it is important
to establish some common terminology, notation, and definitions. The notation
used in this report differs slightly from the more common notations found in
the literature. For instance, in the literature, an agent is typically denoted as i,
and a good is denoted as j. However, this thesis uses notation that aligns more
closely with the terminology rather than mathematical notation. Specifically,
agents are denoted as a, and goods are denoted as g. This notation closely
resembles the one established in the pre-study project (Utne, 2022).

2.1.1 Definitions

Agent
An agent a is a person or entity that is to be allocated goods. The number of
agents n defines the set of all agents A. Formally:

{1, 2, ..., n} ≡ A

5



2.1. PRELIMINARIES

a ∈ A

Good
A good is any resource that is to be allocated amongst the agents. The term
”good” encapsulates both divisible and indivisible resources. Formally:

{1, 2, ...,m} ≡ G

g ∈ G

Item - Indivisible Good
An indivisible good will be referred to as an item, i, where the number of items
|I| defines the set of all items I. Items are goods such as paintings, jewelry,
furniture etc. essentially anything that cannot be arbitrarily cut into pieces.
Formally:

I ⊆ G

{1, 2, ..., |I|} ≡ I

i ∈ I

Cake - Divisible Good
A divisible good will be referred to as cake, C. Cakes can be goods such as
money, land, fuel, time etc. In the general literature there is the possibility of
instances with several cakes, however for the scope of this report only instances
with at most 1 cake is considered.Formally:

C ⊆ G

Furthermore, since a cake is divisible, a piece of the cake will be defined as en
interval of the entire cake, where the entire cake is defined over the interval
[0, 1], such that:

C = C[0,1]

A piece of cake is then defined as the interval of the cake from x to y where
x, y ∈ [0, 1] and x ≤ y. Formally:

cx,y

6



2.1. PRELIMINARIES

Homogenous Cake
A Homogenous cake is a cake where all agents valuations for a piece of cake is
proportional to the size of the piece. Formally, for a piece of cake from x to y
(cx,y) and an agent a ∈ A the value of the piece is proportional to that agents
value of the entire cake:

va(cx,y) = (y − x)va(C)

As this project focuses on homogenous cake, the exact interval of cake pieces is
not important, only its size z = y − x, where cz ≡ cx,y = (y − x)va(c).

Its important to clarify that each agent can assign different values for the cake.
This is important as if all agents have the exact same valuations for the cake,
the problem is reduced to a proportional fair division problem that has already
been studied. Instances where all agents have the same valuations for the cake
are usually instances where the cake is money.

Heterogenous Cake
A Heterogenous Cake is a cake in which each agent has their own density
function da : [0, 1] → R+ ∪ {0} which captures how the agent values different
parts of the cake. The value of agent a over a finite union of intervals S ⊆ [0, 1]
is defined as va(S) =

∫
S
dadx. In other words, some parts of cake ”taste better”

that other parts and are valued higher.

Mixed Goods Instances
An instance with agents and both indivisible and divisible goods is referred to
as a mixed instance, I . Formally:

I = G ∪A

Valuations
A valuation va is a function for each agent a that takes a set of goods {g1, g2, ...}
and finds this agents value for this set of goods. For simplicity va({g}) will be
written as va(g). As all resources are goods, all valuations are positive, formally:

∀a ∈ A,∀g ∈ G, va(g) ≥ 0

Additive valuations
The most studied subclass within fair allocation instances are those with addi-
tive valuations. Valuations are additive when an agent’s value of any subset of

7



2.1. PRELIMINARIES

items is equal to the sum of the values of the individual items in the set. In
other terms, the value an agent has for a set of goods cannot decrease if another
good is added to it. Formally:

∀S ⊆ G,∀a ∈ A, va(S) :=
∑
g∈S

va(g)

By extension it is also assumed that the value of an empty set of goods is zero,
formally:

∀a ∈ A, va(∅) = 0

Bundle
A collection of goods is often referred to as a bundle, B. The bundle can consist
of both items and cake. Formally the bundle agent a ∈ A gets is Ba where:

Ba ⊆ G

Allocation
An allocation A is an n-partition of the set of goods G. The resulting allocation
is complete if the set of bundles A := {B1, B2..., Bn} allocates all goods in the
instance such that no two agents bundles contains the same item, and that the
goods are allocated amongst the agents.

Formally:
∀BxBy ∈ A , Bx ∩By = ∅

∀g ∈ G
∑
a∈A

Ba(g) = 1

Oracle
Some algorithms rely on what they call a oracle. An oracle is simply a function
that can be used to find any required value needed by the algorithm. This
means the algorithm might not have direct access to all valuations for instance,
but it can access it when needed.

2.1.2 Fairness Notions

Proportionality (PROP)
Proportionality is a fairness-notion where each agent receives a bundle valued

8



2.1. PRELIMINARIES

proportionally compared their value of all goods. Formally, an allocation A
satisfies proportionality PROP if:

∀a ∈ A, va(Ba) ≥
va(G)

n

MaxiMinShare (MMS)
MaxiMinShare is a relaxation of the proportionality fairness notion often used
for instances with indivisible goods. MMS looks at what each agent would
expect to receive if they were to divide the instance themselves, and then receive
the smallest valued bundle.

One could imagine two siblings sharing a pizza, where sibling 1 cuts the pizza,
and sibling 2 gets to choose the piece they want. Sibling 1 will then naturally
attempt to cut the pizza such that no matter which piece sibling 2 chooses,
sibling 1 gets as good a piece as possible. Since sibling 2 will choose the best
piece for themselves, MMS must be less than or equal to PROP.

Pareto-Optimality (PO)
A Pareto-Optimal allocation is an allocation where no agent can be made better
off without making another agent worse off.

Nash Social Welfare (NSW)
The Nash Social Welfare is a measure of the social welfare of an allocation A . It
is defined as the product of the value each agent assign their bundle. Formally:

NSW(A) =
∏
a∈A

va(Ba)

A desireable fairness allocation is that which maximizes the nash social welfare,
Maximum-Nash-Welfare (MNW ). A MNW allocation will always be Pareto-
Optimal.

Envy-Freeness
Envy-freeness encompasses several fairness notion that is prominent in the lit-
erature. This project does not directly apply any of these fairness notions, but
they are included for completeness due to their relevance in the literature.

EF
An allocation A is said to be envy-free (EF) if for every pair of agents a1, a2 ∈ A,

9



2.1. PRELIMINARIES

va1
(B1) ≥ va1

(B2). In other words, no agent prefers the bundle of another agent
over their own bundle.

EF1
An allocation A is said to be envy-free up to one item (EF1) if for every pair of
agents a1, a2 ∈ A there exists a good g ∈ Ba1

∪ Ba2
such that va1

(Ba1\{g}) ≥
va1

(Ba2
\{g}). In other words, no agent prefers the bundle of another agent over

their own bundle if the other agent bundle is missing one item.

EFx
An allocation A is said to be envy-free up to any item (EFx) if for every pair of
agents a1, a2 ∈ A and any good g ∈ Ba1

∪ Ba2
, va1

(Ba1\{g}) ≥ va1
(Ba2

\{g}).
EF1, but the good g can be the ”worst” or ”smallest” good in the other agents
bundle.

EFM
An allocation A is said to satisfy Envy-Freeness for Mixed goods (EFM) if for
any agents a1, a2 ∈ A,

• if agent a2’s bundle consists of only indivisible goods, there exists g ∈ Ba2

such that va1
(Ba1

) ≥ va1
(Ba2

\{g});
• otherwise, va1

(Ba1
) ≥ va1

(Ba2
).

Put simply, EFM is achieved if any agent that receives cake is not envied by
any other agent. From the definition it is true that when the goods are all
divisible, EFM reduces to EF; when goods are all indivisible, EFM reduces to
EF1. Therefore EFM is a natural generalization of both EF and EF1 to the
mixed goods setting.

2.1.3 Mixed Integer Programming

Mixed Integer Programming is a mathematical programming technique used to
solve optimization problems that involve both discrete (integer) and continuous
variables. It is a subfield of mathematical optimization. The objective is to
find the optimal solution that maximizes or minimizes an objective function,
subject to a set of constraints. The constraints can involve linear equations or
inequalities.

MIP is useful in a wide range of applications where decisions need to be made

10



2.1. PRELIMINARIES

under constraints. Some common applications include:

• Resource allocation: MIP can be used to optimize the allocation of limited
resources, such as assigning tasks to workers or scheduling production.

• Supply chain management: MIP can optimize the flow of goods and ma-
terials in a supply chain, considering factors like transportation, inventory
management, and production planning. Facility location: MIP can help
determine the optimal locations for facilities, such as warehouses, factories,
or distribution centers, considering factors like transportation costs and
customer demand.

• Network design: MIP can be used to optimize the design and configura-
tion of networks, such as telecommunication networks or transportation
networks.

• Project scheduling: MIP can optimize the scheduling of activities in a
project, considering factors like task dependencies, resource availability,
and time constraints.

Overall, MIP provides a powerful framework for modeling and solving opti-
mization problems that involve both discrete and continuous decision variables,
making it valuable in various industries and domains.

Mixed Integer Programming does not always guarantee finding the optimal so-
lution. The goal is to find the best feasible solution that optimizes a given
objective function. The complexity of MIP problems increases as the prob-
lem size grows, and the time required to find the optimal solution can become
prohibitively large for large-scale instances. In practice, MIP solvers employ
various techniques, such as branch and bound, cutting planes, and heuristics,
to efficiently explore the solution space and search for the optimal solution.

However, due to the complexity of certain problems or time limitations, MIP
solvers may terminate before finding the global optimum. In such cases, they
provide a feasible solution that may or may not be optimal. It is also possible
that a MIP problem is inherently difficult, and finding the optimal solution is
computationally infeasible within a reasonable time. Nevertheless, MIP solvers
often find near-optimal or good-quality solutions for a broad range of practical
optimization problems.

11



2.2. PREVIOUS WORK

2.2 Previous Work

This section provides a concise overview of the pertinent literature and research
conducted in the domain of fair division and allocation, setting the foundation
for the subsequent analysis.

Fair division and allocation have garnered considerable attention in both the-
oretical and practical settings. Scholars and practitioners have extensively ex-
plored various approaches, models, and algorithms to address the challenge of
distributing resources or goods among multiple participants in a fair and equi-
table manner. This literature review aims to highlight key contributions and
advancements made in this field.

2.2.1 Fair Division

In (Aumann, Dombb, & Hassidim, 2012) it was found that a common task faced
by MAS designers is the efficient allocation of resources among multiple agents.
The focus of their study was on a scenario where a single divisible resource,
referred to as a ”cake,” needed to be divided among n agents, each having a po-
tentially different valuation function for different cake portions. They addressed
the problem of finding divisions that maximize social welfare, with a specific em-
phasis on divisions where each agent receives a single contiguous piece of the
cake.

The researchers presented an approximation algorithm for the problem and
demonstrated that it achieves a constant factor approximation. Moreover, they
showed that finding the optimal division is NP-hard. These findings held true
both when the algorithm had complete knowledge of all agents’ valuations and
when it had only oracle access to their valuation functions.

In contrast, the results varied depending on whether agents were allowed to
receive multiple non-contiguous pieces of the cake. If the algorithm had complete
valuation functions of all agents, the problem was found to be easily solvable.
However, if the algorithm needed to query agents for their valuations, it was
shown that no non-trivial approximation (i.e., approximation factor less than
n) could be guaranteed.

12



2.2. PREVIOUS WORK

2.2.2 Fair Allocation

(Woeginger, 1997) considers the problem of assigning a set of n jobs to a system
of m identical parallel machines so as to maximize the earliest machine comple-
tion time to reduce machine idle time. The approach can be adapted to finding
a maximin allocation for instances with indivisible goods when all valuations
are identical between the agents. In other words find a agents maximinshare.
This is explained more closely in Listing 4.1.

(Amanatidis, Markakis, Nikzad, & Saberi, 2017) performed a probabilistic anal-
ysis of MMS-Allocations. They found that in randomly generated instances,
maximin share allocations exist with high probability. This provided a justi-
fication of previously reported experimental evidence. Finally, they provided
further positive results for two special cases arising from previous works. In
the first case of three agents, they provided an improved 7/8-approximation. In
the second case where all item values belong to 0, 1, 2, they obtained an exact
algorithm.

(Garg & Taki., 2021) proposes a new approach for finding a 3/4-MMS allocation.
The paper shows that this approach is also powerful enough to be extended in
two directions: first, to find a strongly polynomial-time algorithm for computing
a 3/4-MMS allocation without approximating the MMS values, and second, to
prove the existence of a (3/4 + 1/12n)-MMS allocation, which improves the
previous best factor for small n. This is an important result in the field of fair
division and contributes to the understanding of how to achieve fair allocations
in various settings.

(Barman, Biswas, Krishnamurthy, & Narahari, 2018) investigate the concept of
maximin shares (MMS). They find however, that MMS has its limitations and
does not necessarily lead to satisfactory outcomes. In this paper, the authors
introduce a stronger notion of fairness called groupwise maximin share guaran-
tee (GMMS), which extends the concept ofMMS to subgroups of agents. Under
GMMS, the maximin share guarantee must be achieved not only for the overall
allocation but also for each subgroup of agents. The authors prove the exis-
tence of GMMS allocations in specific settings and show that GMMS implies
approximate envy-freeness. They also develop a polynomial-time algorithm to
find approximate GMMS allocations under additive valuations and demonstrate
their results empirically on a large set of randomly generated instances. Over-
all, this work provides a more robust and comprehensive notion of fairness for
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resource allocation problems.

(Suksompong, 2018) extend the study of the maximin share fairness notion
to the setting where goods are allocated to groups of agents. They assume
that the agents within each group share the same set of goods, but may have
conflicting preferences over them. The authors consider the case of two groups
and investigate the cardinality of the groups for which a positive approximation
of the maximin share is possible regardless of the number of goods. They show
that when each group has at least three agents, a positive approximation of the
maximin share is always possible, regardless of the number of goods. When one
group has two agents and the other has at least four, a positive approximation
of the maximin share is also possible. However, when both groups have only
two agents, it is not always possible to achieve a positive approximation of the
maximin share. The authors also consider settings with more than two groups
and show that in some cases, a positive approximation of the maximin share is
possible, while in other cases it is not. They provide specific examples of such
settings. Overall, the paper provides insights into the maximin share fairness
notion in the group allocation setting and highlights some of its limitations and
challenges.

(Caragiannis et al., 2019) found that their paper’s assumptions about goods
being indivisible can be extended to cases where goods are both divisible and
indivisible. In such cases, the MNW solution can be seen as the limit of the
MNW solution on an instance where each divisible good is partitioned into k
indivisible goods, as k goes to infinity. According to Theorem 3.2, this implies
that the MNW solution is envy-free up to one indivisible good, meaning that
a player would not envy another player who has both divisible and indivisible
goods if one indivisible good is removed from the bundle of the other player.
This provides an alternative proof for envy-freeness of the MNW/CEEI solution
when all goods are divisible. The results of Section 4 also hold in this case, and
the proof of the MMS approximation result (Theorem 4.1) already uses the
liquidation of some goods as a technical tool. In the full version, they outline a
modified and scalable version of the implementation described in Section 5 that
can allocate a mix of divisible and indivisible goods, which they deployed on
spliddit.org (see Section 2.2.4).

They also observed that when all goods are divisible, the MNW solution, the
CEEI solution, and proportional fairness (PF) coincide, whereas this is not the
case for indivisible goods. However, their investigation showed that the PF
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solution and the MNW solution are closely related via a spectrum of solutions,
which offers two advantages. Firstly, it allows them to view the MNW solution
as the optimal solution among those that lie on this spectrum and are guaranteed
to exist. Secondly, it gives a way to break ties among all MNW allocations, and
possibly even choose a unique allocation. The full version provides a detailed
analysis of this connection between MNW and PF, and raises an interesting
question about whether it is possible to relate the MNW solution to the CEEI
solution when the goods are indivisible.

In previous studies, it was demonstrated that the existence of anMMS(Minimax
Share) allocation might be impossible, with a counterexample requiring an
exponential number of goods relative to the number of players. However,
(Kurokawa, Procaccia, & Wang, 2016) presents a novel approach that achieves
anMMSallocation using only a linear number of goods. They also provide a
formalization of the notion that these counterexamples are highly intricate.
They accomplish this by developing an algorithm that can reliably identify
anMMSallocation with a high probability, particularly when valuations are ran-
domly generated.

2.2.3 Mixed Goods

(Bei, Li, Liu, Liu, & Lu, 2021) established that traditional notions of fairness,
such as envy-freeness (EF) and envy-freeness up to one good (EF1), are not
directly applicable to the mixed goods setting. To address this, they proposed
a new fairness concept called envy-freeness for mixed goods (EFM), which is
a direct extension of both EF and EF1 to the mixed goods scenario. They
proved that an EFM allocation always exists for any number of agents with ad-
ditive valuations. Additionally, they proposed efficient algorithms to compute
an EFM allocation for two agents with general additive valuations and for n
agents with piecewise linear valuations over divisible goods. Finally, they re-
laxed the envy-freeness requirement and presented an efficient algorithm to find
a δ-EFM allocation.

They also given a polynomial-time algorithm for finding a EFM allocation for
instances with 2 agents, along with an approach to achieve a more strict version
of EFM where each agents has EFx to any agent with only indivisible goods,
and EF to any agent with cake. In order to accomplish this a EFx algorithm
for the indivisible goods is required which may not always exist. They also find
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that for any number of agents with piecewise linear density functions over the
cake, an EFM allocation can be computed in polynomial time.(Amanatidis et
al., 2022)

(Bei, Liu, Lu, & Wang, 2021) Describe an algorithm that guarantees to find a
1/2-MMS Allocation for instances with mixed goods, my specialization project
(Utne, 2022) showed that for such low guarantees, cutting the divisible resource
into n indivisible pieces was enough to guarantee the same 1/2-MMS Alloca-
tions for all instances. They do however describe how their approach allows
for an approximation ratio of maxα, β - ϵ, which can be arbitrarily close to
the currently best-known ratio of 3/4 + 1/12n for indivisible goods (Garg &
Taki., 2021). Suppose there exists a polynomial-time algorithm that guarantees
to output a β-MMS allocation with indivisible goods for some β. Then given a
mixed good problem instance, first compute α’ via Theorem 3 and compare it
with β : if α’ ≥ β , directly apply Theorem 3; otherwise, cut the cake C into
small intervals, each valued at most ϵ · ui(C)/2n for each agent i, and use the
β-MMS algorithm to obtain the allocation of this instance with only indivisible
goods.

(Bhaskar, Sricharan, & Vaish, 2022) found that their results are applicable to
a mixed resources model, which includes indivisible items and a divisible, un-
desirable heterogeneous resource, commonly referred to as a ”bad cake.” They
demonstrated that there is always an allocation that meets the envy-freeness
for mixed resources (EFM) requirement in this setting.

(Nishimura & Sumita, 2023) found that an MNW allocation for mixed goods is
always envy-free up to one indivisible good (EF1M) and Pareto-optimal (PO).
They also noted the existence of an EF1M and PO allocation and provided
insights into the computation of an EF1M allocation. They demonstrate that
although an EF1M allocation can be found in finite steps, an EF1M allocation
is less fair than an MNW allocation. With the example of 2 agents with 1 cake
and 1 item, the EF1M algorithm they propose gives half the cake to each and
the item to one agent, which achieves EF1M, however the MNW, and arguably
most fair allocation is that one agent gets the item, and the other agent gets
the cake. Work still needs to be done in constructing an algorithm to find an
MNW allocation for mixed goods.

In the prestudy conducted for this thesis (Utne, 2022), the approach of uti-
lizing established algorithms for indivisible goods was explored and found to
be applicable to instances involving mixed goods with only minor adjustments.
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Specifically, an algorithm for determining the 1/2-maximin-share (1/2-MMS-
share) for mixed goods, as introduced in (Bei, Liu, et al., 2021), was compared
against a naive approach of dividing the cake into n equal pieces.

Surprisingly, the naive approach successfully maintained the minimum envy-
free allocation (MMS-guarantee) for all instances, implying that adopting this
approach and employing an algorithm with a higher MMS-guarantee could di-
rectly translate into a higher MMS-guarantee for mixed goods. This observation
suggests the potential for leveraging existing algorithms for indivisible goods in
the domain of mixed goods, as demonstrated in the prestudy (Utne, 2022).

2.2.4 Spliddit.org

Spliddit.org was a notable website that provided users with the ability to create
real-life instances and obtain fair division solutions. Regrettably, as of the time
of writing, the website has been unavailable for several months without any up-
dates communicated through their public channels. Spliddit.org was developed
by a group of researchers from Carnegie Mellon University (Spice, 2014).

According to available sources, Spliddit offered provably fair solutions for var-
ious everyday fair division problems, ranging from rent splitting and goods
division to credit sharing (Ariel Procaccia and Nisarg Shah, 2023). The website
gained significant popularity, indicating the practical applicability and demand
for these algorithms and approaches in real-world scenarios.

Spliddit received nearly 40,000 unique visitors, who combined to
use the three launch application (Sharing Rent, Dividing Goods,
and Assigning Credit) over 9,000 times. Feedback has been over-
whelmingly positive, with many users commending the interfaces,
ease-of-use, and overall mission of Spliddit. (Goldman & Procaccia,
2015)

The absence of the website is unfortunate, especially in the context of this
thesis, as one of the intentions was to compare the results of the algorithms im-
plemented here with those generated by the website’s algorithms. Furthermore,
the unavailability of a platform that allows users to easily create and solve their
own fair division problems is a notable loss.
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2.3 Unsolved Problems

The existing literature indicates that the research on mixed goods is not as
extensive as that on indivisible goods. Within this context, there are two main
unsolved problems and interesting areas that this thesis aims to address.

2.3.1 Finding MaxiMinShare Allocations

It is frustrating to observe that even for instances with equal valuations, finding
a Maximin allocation is NP-Hard, and in some cases, it may not even exist.
However, for mixed goods, one would intuitively assume that a Maximin alloca-
tion always exists, given a certain size of the cake. This assumption arises from
the fact that a proportional (PROP) allocation always exists for any cake. This
will be explored in Chapter 4.

2.3.2 Finding Maximum Nash Welfare

An allocation that achieves the maximum Nash Welfare (MNW) possesses de-
sirable properties in terms of fairness. Therefore, it is crucial to advance the
understanding of finding MNW allocations for mixed goods. This topic was
explored in-depth in (Nishimura & Sumita, 2023) where making progress to-
wards finding such an algorithm was out of their scope but will be explored in
Chapter 5.
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Chapter 3
Method

This chapter presents the overall methodology and decisions made for conduct-
ing the experiments. The specific methods and approaches, tailored to each
fairness notion, have been outlined in separate chapters to address the unique
requirements of each notion. By organizing the content in this manner the
methodology aligns with the specific objectives and considerations associated
with each fairness notion.

3.1 Choosing Technologies

3.1.1 Language

Julia was selected as the language in large part due to the Allocations.jl pack-
age Section 3.1.2. Furthermore Julia provides a powerful and expressive pro-
gramming language specifically designed for scientific computing and numerical
analysis.

Furthermore, Julia offers exceptional performance. It leverages a just-in-time
compilation approach that dynamically optimizes code execution, often achiev-
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ing performance comparable to statically compiled languages like C or For-
tran. This makes Julia well-suited for computationally intensive tasks, such
as simulations, data analysis, and mathematical modeling. It has a built-in
read-eval-print loop (REPL) that allows for quick prototyping and interactive
experimentation. This interactive workflow is particularly valuable for scientific
research, as it facilitates iterative development, rapid experimentation, and data
exploration.

3.1.2 Allocations.jl

The Julia package, Allocations (Hetland & Hummel, 2022), provided ready-
made implementation of various allocation algorithms for fair allocation prob-
lems, both with and without constraints. Leveraging this package greatly fa-
cilitated the experimentation process, saving significant time that would have
otherwise been spent on implementing algorithms from scratch. It is impor-
tant to note that Allocations.jl is specifically designed for scenarios involving
indivisible goods, aligning with the scope of the experiments where the cake
was divided into indivisible pieces. To adapt the package for mixed instances,
a straightforward translation was performed to transform the mixed instances
into indivisible ones, and vice versa for the allocation results. This seamless
integration allows exploration of different algorithms and comparison of their
performance efficiently.

3.1.3 HiGHS

HiGHS (high performance software for linear optimization) is an open-source
solver that specializes in solving linear programming (LP) and mixed integer
programming (MIP) problems. It features high-performance algorithms, in-
cluding an interior point method for LP and a branch-and-bound algorithm for
MIP. It is written in C++ and is available as a library for C, C#, FORTRAN,
Julia and Python(Hall, Galabova, Feldmeier, & Zanetti, 2023).
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3.1.4 Hardware

Efficiency and performance are crucial factors in conducting experiments. All
analysis and experiments in this master’s thesis were performed on a single
machine equipped with the following hardware configuration:

• CPU: 2,2 GHz 6-Core Intel Core i7

• RAM: 16 GB 2400 MHz DDR4

• GPU: Radeon Pro 555X 4 GB, Intel UHD Graphics 630 1536 MB

• OS: MacOS Ventura

3.2 Creating Instances

When creating instances that aim to represent real-world scenarios, an approach
was adopted to generate them using random valuations while imposing certain
constraints. Firstly, the valuations assigned by each agent to an item are con-
fined to the interval [0, 1]. This decision is based on the understanding that,
for most algorithms, the relative values of items for each agent are more signif-
icant than the specific numerical values. Thus, in all generated instances, the
following condition holds:

∀a ∈ A,∀i ∈ I, 0 ≤ va(i) ≤ 1

For the experiments creating the instances in this way ensures that although
the instances are randomly generated, they are guaranteed to be different types
of likely real world instances.

3.2.1 Number of Agents

When choosing how many agents to include in the instances, it is important to
consider the computational complexity of the algorithms. The number of agents
was then kept relatively small with a maximum number of agents of 11.

Instances with 2 agents will not be examined as there is already established
algorithms for finding this already. To find a 1-MMS allocation with 2 agents
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simply let 1 agent create 2 bundles of the goods such that the smallest bundle
is as large as possible. Then simply let the other agent choose whichever bundle
they consider most valuable, since they chose the best bundle, they receive at
least theirMMSas the other bundle can contain at most PROP. Instances with
less than 2 agents are of course also excluded as they are trivial cases.

3.2.2 Number of Goods

The number of goods also impact the relevancy and complexity of the algo-
rithms. For this reason a number of goods wsa chosen to always be more than
the number of agents, to prevent trivial cases of assigning a single good to each
agent, or agents not being able to receive anything at all. Furthermore than
number of goods was chosen to be both odd and even to ensure a wider range
of different possibilities.

The number of goods for each instance was the decided to start at n + 1 and
increment upwards to ensure that both odd and even numbers of goods were
used for each number of agents. Additionally some experiment increment by 3
each time to cover a wider range in a shorter amount of time.

3.2.3 The Cake

The cake is a vital part of the mixed goods instance. In that its perceived size
has a significant impact on what a fair allocation looks like. For instance if the
cake has value ≈ 0, then the instance can be seen as a indivisible goods as the
cake is so small its not worth splitting. On the other hand if the cake has value
far greater than the other goods, fair division of the cake becomes a lot more
important than fairly allocating the items.

To account for this the generated instances are categorized into three distinct
types.

• Small cake: All agents valuations for the cake is in the same order of
magnitude as their valuations for the other items. Formally:

va(C) ≤ max va(I)

• Large cake: All agents assign a value for the cake that is significantly larger
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than their valuations for the other items. Formally:

max va(I) ≤ va(C) ≤ max va(I) ·
(
1 +

∑
va(I)

)
• Random cake: For each agent, their value for the cake is randomly chosen
to be Large or small.

Combined these three cases should ensure that the generated instances cover a
wide range of different scenarios.

3.2.4 Normalizing an Instance

Normalization of agents’ valuations is a valuable technique that enhances the
efficiency and effectiveness of fairness algorithms. This process can be likened
to an analogy from Season 4, Episode 10 of the television series ”Succession.”
In this episode, the characters are given the same amount of sticker that they
can place on items they desire, with the number of stickers indicating their level
of preference in a action.

By normalizing agents’ valuations, each agent has an equal sum of valuations
(equivalent to the total number of stickers). An additional advantage of nor-
malization is its flexibility, as the specific normalization scheme can be adjusted
depending on the algorithm’s requirements. For example, the platform Splid-
dit.org (refer to Section 2.2.4) enabled users to distribute a total of 1000 points
among the items. This distribution can be achieved simply by normalizing the
agents’ valuations, ensuring that the sum of their normalized valuations equals
1000.

In addition to its algorithmic benefits, it is important to note that normalization
of valuations can have implications for certain fairness notions. For example,
scaling the valuations can alter the Nash Social Welfare (NSW) value. On the
other hand, fairness notions such as MaxiMinShare (MMS) are scale invariant,
meaning that the normalization process does not affect the MMS value.

To address this, one approach is to maintain the original instance data while
using the normalized instance solely for the algorithmic calculations. By sep-
arating the normalized instance from the original one, any modifications or
transformations made to the normalized instance do not impact the original
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instance. This allows for a clear distinction between the normalization pro-
cess used for algorithmic efficiency and the underlying fairness properties of the
original valuations and the resulting allocation.

To normalize an instance, the following formula is used to achieve a valuations
sum of δ:

∀g ∈ G, a ∈ A, va(g) = δ ·
va(g)∑

g∗∈G va(g∗)

3.3 Experiment Pipeline

In order to streamline the extensive analysis of algorithms and reduce the time
required for experimentation, a well-defined experimentation pipeline was es-
tablished. This pipeline is divided into three distinct parts, with each part gen-
erating specific outputs that are saved to files. To ensure proper management
and tracking of these files, a version control system using Git was implemented.
This system enables safe and efficient tracking of any changes, overrides, or
accidental deletions that may occur during the experimentation process.

3.3.1 Generating Instances and Finding Allocations

The first and crucial part of the pipeline involves generating instances and find-
ing suitable allocations for these instances. This step forms the foundation for
the subsequent analysis and evaluation. Special attention was given to ensure
that the algorithms being compared utilized the exact same instances during
the experimentation process. The allocations, along with their instances, are
serialized and saved to files before they are analyzed.

3.3.2 Analyzing the Allocations

Depending on the specific experiment being conducted, various analyses are
performed on the generated allocations. These analyses involve extracting and
processing the data obtained from the previous step, calculating relevant metrics
and fairness measures such as the achieved α −MMS value and/or the NSW
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of the allocation. The results of these analyses are then saved to a CSV file
for plotting, again ensuring that relevant data organized such that it enables
comparison parity.

3.3.3 Plotting the Results

Once the allocations have been analyzed and the relevant data has been saved
to a CSV file, the final step involves adjusting and plotting the results. This
is accomplished by reading the saved file and extracting the necessary data
points. This approach allows for quick and straightforward adjustments to the
plots without the risk of accidentally modifying the underlying data.

Visualization of Instances and Allocations

To facilitate a better understanding of the instances and allocations, visualiza-
tion of the instances and allocations is necessary. This visualization needed to
be as intuitive and human-readable as possible without loosing to much infor-
mation.

For instances, the tool displays each agent’s valuations for all goods, along with
the agent’s mixed MaxiMinShare (MMS) value, which is calculated using a
HiGHS solver. On the other hand, for allocations, the tool provides information
about the amount of each good allocated to each agent, the value assigned
by each agent to their bundle, and the achieved α−MMS value, as well as the
smallest achieved MMS and Nash Social Welfare (NSW) values of the allocation.

An example of the visualization output is shown below:
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Instance with RANDOM cake:

Goods: Item Item Item Cake

Agent 1: [0.46, 0.94, 0.75, 0.85] - Mixed MMS: 1.00

Agent 2: [0.55, 0.03, 0.98, 1.34] - Mixed MMS: 0.96

Agent 3: [0.77, 0.75, 0.09, 1.04] - Mixed MMS: 0.88

Allocation with Maximum Nash Welfare Algorithm:

- cake is cut into 5 indivisible pieces.

2600.0 ms: MMS=1.11, NSW=1.26

Agent 1: [ , 1.00, , 0.20] - Bundle Value: 1.11

Agent 2: [ , , 1.00, 0.40] - Bundle Value: 1.51

Agent 3: [1.00, , , 0.40] - Bundle Value: 1.19
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Chapter 4
Adapting Indivisible Algorithms
for Mixed Goods

4.1 Equal Valuations

From the definition of MMS, it is easy to see why an MMS-allocation always
exists for instances with identical valuations. It is hence desirable to establish
a new algorithm that finds such an allocation for mixed instances. The idea for
this is simple; find a 1-MMS algorithm for the indivisible items, and then give
cake incrementally to the agent(s) with the lowest valued bundles. However,
finding a maximin allocation for indivisible items is NP-Hard. The idea is then
to use the cake to establish instances where a 1-MMS allocation can be found
in polynomial time.

To establish an algorithm that accomplishes this, the algorithms bases itself on
LPT. An algorithm designed to maximize the minimum completion time of a
set of jobs on a set of identical machines. In other words, maximize the smallest
bundle in an instance with identical valuations. The algorithm is described as
follows:
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Longest Processing Time Heuristic, LPT. The LPT heuristic sorts
all jobs into a nonincreasing sequence and then sequentially assigns
each job to the next machine available. LPT will always remain
within a factor of (3m− 1)/(4m− 2) of the optimum solution where
m is the number of jobs, and this bound is tight (Woeginger, 1997).

Algorithm 1 is an attempt to find an efficient 1-MMS allocation algorithm for
mixed instances. Distinguishing each agents valuations is not necessary as they
are equal and v∀a∈A(g) is then simplified to V (g).

Algorithm 1 LPT Algorithm for Mixed Instances with Identical Valuations

Require: Agents A, indivisible goods I and a homogenous cake C and Valua-
tion Function V .

1: B1, B2, ..., Bn ← ∅
2: while I ̸= ∅ do ▷ Phase 1: Allocate all items with LPT
3: a∗ ← argmina∈A V (Ba)
4: i∗ ← argmaxi∈I V (i)
5: Ba∗ ← Ba∗ ∪ i∗

6: I ← I\{i∗}
7: end while
8: while There is any unallocated cake: C do ▷ Phase 2: Allocate cake
9: B1 ← mina∈A V (Ba)

10: A∗ ← ∀a ∈ A, V (Ba) = V (B1)
11: B2 ← mina∈A\A∗ V (Ba)
12: c← (V (B2)− V (B1)) /V (C) ▷ Cake needed for B1 = B2
13: if c < (|A∗| · c) then
14: c← C/|A∗|
15: end if
16: for a ∈ A∗ do
17: Ba ← Ba ∪ {c}
18: C ← C\{c}
19: end for
20: end while
21: return {B1, B2, ..., Bn}

The algorithms follows a naive approach in 2 phases. Phase 1 (Line 2, use
the LPT algorithm for the items (see Section 4.1)) where the agent with the
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currently lowest valued bundle is given the currently highest valued item, the
item is then removed from the pool of available items. In Phase 2 (Line 8) the
agent(s) with the lowest valued bundles are found, then how much cake they
need for their bundles to equal the next lowest bundle are calculated. This is
then repeated until there is not enough cake left to satisfy the next lowest bundle,
at which point the remaining cake is divided equally amongst the agents with
the lowest valued bundles. If all agents have the exact same bundle value, then
the second best bundle has infinite value, and the remaining cake is allocated
to all the agents.

The algorithm then strictly increase the guarantee from LPT, Since we need a
miniumum of i.e. it has a MMS-guarantee of:

3|I| − 1

4|I| − 2
+ V (C)/n

From this, it follows that the algorithm is able to find a 1-MMS allocation for
all instances with identical valuations as long as:

V (C) ≥
(
1− 3|I| − 1

4|I| − 2

)
·
∑
i∈I

V (i)

This stands in contrast to finding a 1 − MMS allocation for only indivisible
items, which is NP-Hard.

The equation above can be generalized to the following, where an algorithm
with a better bound than LPT can be used to find a 1-MMS allocation when
the cake is even smaller.

For an algorithm that guarantees to find a α −MMS allocation for
indivisible items with equal valuations. That algorithm can be used
to find a 1−MMS allocation for mixed goods, as long as:

V (C) ≥ (1− α) ·
∑
i∈I

V (i)

Simply use the algorithm on the indivisible items, achieving at least α−MMS
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and then continually give cake to the agent(s) with the lowest valued bundles
until the cake is gone.

In order to verify this experimentilly, instances will be generated as follows:

1. Instances are generated as described in Chapter 3.

2. All agents valuations are made equal to the first agents valuations.

3. The valuation of the cake is adjusted to the exact lower bound the algo-
rithm requires based on the valuation of the items.

These modifications make sure that the experiments will maintain the desired
randomness and coverage. Adjusting the cake size to the minimum required by
the algorithm ensures that, if for any instance the algorithm does not actually
find a 1-MMS allocation, then the algorithm has failed. On the contrary if all
instances are solved, this indicates that the guarantee is correct. Any instance
that has a cake of a larger size than the minimum requirement will simply split
the ”additional” cake amongst all the agents in the instance.

For completness the constraints of a mixed instance for a MIP model is shown
in Listing 4.1, and the additional constraints and objective for the MIP model
to achieve maximin is shown in Listing 4.2.
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Listing 4.1 MIP model for instances with mixed goods

function init_mip_mixed(instance)

model = JuMP.Model(HiGHS.Optimizer)

# variable is n * m matrix

JuMP.@variable(

model,

A[Agents(instance), Goods(instance)],

lower_bound = 0.0,

upper_bound = 1.0

)

# all goods must be assigned amongst the agents

for good in Goods(instance)

JuMP.@constraint(

model,

sum(A[agent, good] for agent in Agents(instance)) == 1

)

end

# items can only be assigned to a single agent

for item in Items(instance), agent in Agents(instance)

JuMP.set_binary(A[agent, item])

end

return context

end
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Listing 4.2 MIP constraints and objective for finding maximin allocation. This
is done after creating the model and adding mixed constraints as shown in
Listing 4.1.

JuMP.@variable(model, min_bundle_value)

for agent in Agents(instance)

JuMP.@constraint(

model,

min_bundle_value <= sum(

A[agent, good] * instance.valuations[agent, good]

for good in Goods(instance)

)

)

end

JuMP.@objective(model, Max, v_min)
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4.2 Individual Valuations

4.2.1 Cutting Cake into n pieces

The results from the pre-study revealed that simply cutting cake into n pieces
always allowed a 1/2-MMS indivisible algorithm to achieve its guarantee for
the mixed instance. AS the algorithm used to test this had such a low MMS-
guarantee this result should be verified by using an algorithm with a higher
MMS-guarantee.

For this a 2/3-MMS algorithm will be utilized in exactly the same way. The
cake will be cut into n pieces, and the algorithm will be run on this ”indivisible”
instance.

4.2.2 Allocating Items First

Algorithm 1 cannot be directly applied for the more general instance where each
agent has their own individual valuations for each good.

To see how viable the thought process is for the more general case, a slightly
altered version of Algorithm 1 is proposed.
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Algorithm 2 LPT Algorithm for Mixed Instance with Identical Valuations

Require: Agents A, indivisible goods I and a homogenous cake C and Valua-
tion Functions V .

1: B1, B2, ..., Bn ← 2/3−MMS(AI) ▷ Phase 1: Allocate Items
2: while There is any unallocated cake: C do ▷ Phase 2: Allocate cake
3: B1 ← mina∈A va(Ba)
4: A∗ ← ∀a ∈ A, va(Ba) = va(B1)
5: B2 ← mina∈A\A∗ va(Ba)
6: c← (va(B2)− va(B1)) /va(C) ▷ Cake needed for B1 = B2
7: if c < (|A∗| · c) then
8: c← C/|A∗|
9: end if

10: for a ∈ A∗ do
11: Ba ← Ba ∪ {c}
12: C ← C\{c}
13: end for
14: end while
15: return {B1, B2, ..., Bn}

The functionality is very similar. However Phase 1 (Algorithm 1) now consist
of using a 2/3-MMS algorithm for indivisible goods to allocate the items first.
Then in Phase 2 (Algorithm 2) the cake is given out to the agents in exactly
the same way as in Algorithm 1, however, now the agents individual valuations
are of course used as they are not guaranteed to be equal.

Furthermore the instance is normalized before the allocation starts in an attempt
to make the valuations between the agents more comparable with each other.
Otherwise it might be the case that one agent assigned all goods a value of 1,
and another all goods a value of 0, in which case the agent that gives everything
value zero would get the entire cake no matter what, as their bundle is always
the smallest, and the cake doesn’t increase it. After normalizing both these
agents will have assigned 0.5 to all the goods.

Another potential issue is that a 1-MMS allocation is not guaranteed to exist.
In rare, and highly contrived cases, finding a 1-MMS allocation is not possible
with indivisible goods. The same goes for indivisible goods. If the value of the
cake is very small ≈ 0, and it impossible to allocate the items on their own to
1-MMS, then finding 1-MMS for the mixed instance is also impossible. However
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based on how rare, and how delicate instances like these are, it is not expected to
be a problem in practice, in fact it was found to not occur randomly(Kurokawa
et al., 2016).

4.3 Improving Efficiency

An alternative to using the cake to improve the fairness of an allocation, an
idea is to leverage the cake’s size to relax the requirements for solvers when
searching for a maximin allocation for the items. The allocation process can
still be performed as before, ensuring the algorithm’s guarantee while potentially
reducing the time needed to find such an allocation.
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Chapter 5
Maximum Nash-Welfare for Mixed
Goods

As described in (Nishimura & Sumita, 2023), Maximum Nash welfare is a very
desirable allocation for mixed goods as it achieves several other fairness notions
such as EF1 and Pareto-optimality ”passively”.

5.1 The Problem

No Maximum Nash Welfare algorithms has been established for mixed goods.
One of the reasons for this is that the current solution for finding a approximate-
MNW allocation for indivisible goods is using a linear solver using logarithmic
expressions for integer valuations. In order to find a solver that finds an exact
MNW for mixed goods this would require a solver that can handle polynomial
expressions for non-integer values, because the cake needs to be able to be cut
into arbitrary pieces in order to be truly ’divisible’.

A proposed solution for adapting the indivisible MNW algorithm to the mixed
goods instance is to see the MNW of the mixed goods instance as the limit
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as the the cake is cut into infinitely many indivisible pieces(Caragiannis et al.,
2019). However, even for indivisible instances with only 5 agents they them-
selves experienced that finding an allocation took over their set time limit of 60
seconds. Increasing the size and number of variables in the instances to infinity
does then not seem like a viable option.

5.2 The Solution

In order to shed some light on this and prove this experimentally, the described
experiment will be performed. A randomly created instance will be taken, and
the cake will be incrementally cut into more and more pieces. This way, the
NSW is likely to change as the number of pieces increases, and measurements
can be taken to determine how the increasing number of pieces impacts the time
taken to find the allocations.

There is, however, one hiccup. The MNW algorithm with the MIP only works
for integer valuations. The reason for this is that calculating the NSW of an al-
location requires multiplication, which is not possible in linear programs (hence
the term ”linear”). To be able to cut the cake into an arbitrary number of
pieces, it is necessary to establish how the integer valuations can be maintained.

The goal is for the values to remain integers after cutting the cake into x pieces.
One simple solution to this is to multiply all valuations by the number of pieces
the cake will be cut into. As long as the original instance is tracked, as described
in Section 3.2.4, the NSW will not be affected once the allocation is found.
Furthermore, since instances are generated with float valuations between 0 and
1, these valuations need to be adjusted to integers. To maintain consistency,
the instance can be normalized to 1000, as described in Section 2.2.4.

For completeness, the constraints on the MIP solver to find MNW are shown in
Listing 5.1. It should be noted that these constraints differ from those used in
the mixed instance, and instead use constraints where all goods are indivisible
(similar to how items are made indivisible in Listing 4.1).
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Listing 5.1 MIP constraints and objective for finding maximum nash welfare
allocation. The requirement for this solver to work is that all valuations in the
instance are integers. Furthermore, all goods are treated as indivisible

@assert all(typeof.(instance.valuations) .== Int))

# add variable with utility for each agent

JuMP.@variable(model, W[Agents(instance)])

# find largest total sum of valuations for an agent

agent_valuation_sums = [

sum(instance.valuations[agent, :])

for agent in Agents(instance)

]

largest_valuation_sum = Float64(maximum(agent_valuation_sums))

for agent in Agents(instance), k = 1:2:largest_valuation_sum

JuMP.@constraint(model,

W[agent] <=

log(k)

+ (log(k + 1) - log(k))

* (sum(A[agent, :] .* instance.valuations[agent, :]) - k)

)

end

JuMP.@objective(model, Max, sum(W))
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Chapter 6
Results

In this chapter, the results from the empirical experiments are presented. Uteliz-
ing the methodology in Chapter 3 and the algorithms and approaches in Chap-
ter 4 and Chapter 5.

6.1 Using Indivisible Algorithms

6.1.1 Equal Valuations

The following are the results of the experiments on Algorithm 1.
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6.1. USING INDIVISIBLE ALGORITHMS

m

n
3 4 5 6 7 10 11

4 250 - - - - - -

5 100 250 - - - - -

6 100 100 100 - - - -

7 250 100 100 250 - - -

8 100 250 100 100 150 - -

9 - 100 100 100 - - -

10 150 - 100 250 - - -

11 - 150 - 100 150 100 -

12 - - - - - - 150

13 100 - - 150 - - -

14 - 100 - - 150 100 -

15 - - - - - - 150

16 100 - - 100 - - -

17 - 100 - - 100 100 -

18 - - - - - - 150

19 - - - 100 - - -

20 - - - - 100 100 -

21 - - - - - - 100

23 - - - - - 100 -

24 - - - - - - 100

Total 1150 1150 500 1150 650 500 650

Table 6.1: Number of instances analyzed for each size (number of agents and
goods). Number of goods includes the cake. The same instances are used for
both Algorithm 1 and HiGHS.
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n Algorithm MIP

3 0.9999999999996926 0.9999999999988765

4 0.9999999422369689 0.9999999422369682

5 0.999999799910786 0.9999997999107858

6 0.9999997901858854 0.9999997901858838

7 0.9999999999967798 0.9999999999965957

10 0.999999999999841 0.9999951314717833

11 0.999999999999747 0.9999904061530148

Table 6.2: Lowest achieved MMS value for any instance of the given number of
agents.

Because of the large difference in time for the algorithm and the MIP to find
their allocations the time each algorithms uses had to be placed in two separate
figures. The figures show the time the algorithms used per allocation as the
problem size increased.
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Figure 6.1: Median time to find allocation (s) for Algorithm 1 for each number
of variables.

44



6.1. USING INDIVISIBLE ALGORITHMS

Figure 6.2: Median time to find allocation (s) for HiGHS for each number of
variables.

6.1.2 Individual Valuations

Cutting cake into n pieces

Results of the experiment outlined in Section 4.2.1.
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Figure 6.3: Histogram of achieved MMS values when cutting the cake into n
pieces and then using a 2/3−MMS algorithms to find an allocation.

n Lowest Achieved MMS

3 0.6382675744858515

4 0.6423135282885898

5 0.6669351864641233

6 0.6672756126937586

7 0.6466091974982744

Table 6.3: Lowest achieved MMS value for any instance of the given number of
agents.
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Allocating Items First with Algorithm 2

Results of the experiment outlined in Section 4.2.2.

Figure 6.4: Histogram of achieved MMS values for Algorithm 2.

Improving Efficiency

As suggested in Section 4.3, a preliminary time analysis was conducted to eval-
uate the approach of using a MIP solver with a relaxed constraint for the items
based on the size of the cake, followed by the cake assignment. However, the
results of this analysis were not promising.

It was observed that the MIP solver was able to find an allocation faster with the
cake than when separating the allocation process into two steps. Additionally,
the achieved MMS values of the approach were often lower compared to those
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obtained using the MIP solver alone. Due to these observations, the approach
was not investigated further.

6.2 Maximum Nash Welfare

Results of experiment outlined in Section 5.2.

Figure 6.5: Progression of NSW as cake is cut into increasing amount of pieces.
Each line is a unique instance. Plot is cropped to increase visibility, see Ap-
pendix A for full plot up to number of pieces = 100.

In addition to seeing how the NSW changed, its also interesting to see if the
underlying allocation changes. That is does the items in the bundle of each
agents change as the cake is cut into more pieces, and is it the same agents that
receive any amount of cake. This is show in Figure 6.6
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Figure 6.6: Which instances changed compared to when cake was cut into 1 less
piece. Each color represents a unique instance.
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Figure 6.7: Time to find MNW as number of variables increase. Number of
variables is determined by number of agents and number of goods (and pieces).
An instance with 3 agents, 2 items and a cake cut into 10 pieces will have
3 ∗ (2 + 10) = 36 variables. Each color represents a unique instance.

The data in Figure 6.5, Figure 6.6 and Figure 6.7 all only include instances
where the cake needed to be cut, remaining instances (where the cake is never
cut) were excluded as their results are not interesting. The number of instances
where the cake needed to be cut is shown in Figure 6.2.
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n Generated Instances Number with cut cake %

3 50 10 20.0%

4 7 4 57.1%

6 2 2 100%

Table 6.4: Number of generated instances and number of instances where the
cake needed to be cut to achieve MNW.
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Chapter 7
Discussion

7.1 Method

In this chapter, the specific results obtained from the empirical experimentation
conducted in this thesis are explored. However, before proceeding with the
details, it is essential to thoroughly examine the reliability of these results.
Since the study relies primarily on empirical analysis, it becomes imperative
to address various factors that may impact the reliability and validity of the
findings. By critically assessing these factors, a more accurate interpretation
of the results can be ensured, allowing for meaningful conclusions to be drawn
from the experimentation. The following are the main factors considered to
have the most significant influence on the reliability of the results in this thesis.

7.1.1 Instance Size

Perhaps the largest limitation of the experiments in this thesis comes down to
the selection of number of agents and goods. The main focus of the instances
in this thesis are where the number of goods is proportional to the number of
agents. Say for instance you want help allocation all possesions of a deceased
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person to their children. There is likely to be a large number of goods compared
to number of agents.

The experiments are also meant to find how goods the algorithms and ap-
proaches work in practice, which should mean that the experiments should cover
as wide range of cases as possible to catch edge cases and rare occurrences. This
had to be limited however due to the immense time it takes to run some of the
experiments and analysis, which reduced the number of instances that could be
run.

7.1.2 Valuations

The problem of fair allocation in itself encompasses a large variety of different
instances and settings. As such, it is impossible to cover all possible scenarios.
The results presented in this thesis are based on a selection of instances that
are deemed to be representative of the problem. However, it is important to
note that the results presented in this thesis are not necessarily representative
of all possible instances. Some of these instances were deliberately chosen to be
excluded, such as finding allocations with only 2 agents, or where the cake is
massive compared to the items.

By only using valuations between 0 and 1 for the items, this might seem very
restricting, but as mentioned in Chapter 2, for most algorithms the values them-
selves are not as important as the relative difference between them.

7.1.3 The Cake

As mentioned in Chapter 3, the cake size is limited in terms of its value when
generating random instances. This limitation is intentional and serves the pur-
pose of exploring the behavior of algorithms under challenging conditions. The
random instances are generated using three different cake size models, which
are designed to cover the most probable cases.

By imposing a limit on the cake size, certain scenarios where the cake size
is significantly larger than the items are eliminated. In such cases, the items
become somewhat redundant as there will always be enough cake to allocate to
all agents while ensuring their fair share. These scenarios are not particularly
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informative in terms of evaluating the performance of algorithms under more
difficult conditions.

The choice to set a limit on the cake size allows for a focus on instances where
the cake size is more comparable to the items, posing a greater challenge for the
allocation algorithms. This provides valuable insights into the effectiveness and
efficiency of the algorithms in scenarios where resources are relatively scarce.

7.1.4 Choice of MIP Solver

It is worth noting that the MIP solver HiGHS, which was used in the exper-
iments, is not considered the best or fastest solver available. There are other
solvers, such as Gurobi, that are generally much faster than HiGHS. However,
it is important to mention that Gurobi is a commercial solver and requires a
license to use. This can make solutions that utilize Gurobi less accessible to
those who want to implement or use them.

Additionally, it is important to recognize that Gurobi, like HiGHS, is also sub-
ject to the same limitations in terms of scalability. While it may perform well
for a larger number of agents and goods, it will eventually encounter the same
challenge of requiring an excessive amount of time as the problem size increases.

The choice to use HiGHS in the experiments was driven by its open-source na-
ture, which allows for easier access and implementation. Despite its limitations,
it provided a reasonable starting point for exploring and analyzing different
algorithms for fair allocation.
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7.2 Adapting Indivisible Algorithms for Mixed
Goods

7.2.1 Equal Valuations

From Table 6.2, it is observed that Algorithm 1 finds a 1-MMS allocation for
all instances. The values are slightly lower than 1, but this is highly likely due
to precision errors from floating-point values. However, there are two cases that
appear to be a little too low to be a precision error. These instances were then
directly compared to the MIP solver. The instances and the allocations can be
found in Appendix B. Here, it is visualized that the MIP solver finds either the
exact same allocation (remember that all agents are equal, so only the order of
the agents can be different) or an allocation with the exact same MMS value.
This indicates that there is a different reason for these two instances having a
slightly lower MMS value than there being something wrong with the algorithm.

In Figure 6.1 and Figure 6.2, it can be observed that the time taken by the
algorithm to find these allocations is thousands of times faster than that of
the MIP. The task of checking whether an instance meets this requirement is a
simple one that can be performed as a preprocessing step. This check can then
be used instead of other potentially slower algorithms, such as the MIP solver.

The limitations of this algorithm is of course the requirement it sets for the size
of the cake. This reduces the generality of the algorithm significantly. Finding
an algorithm that finds 1-MMS with equal valuations is still significant however
because MMS algorithms for mixed goods, often rely on knowing the MMS-value
for all agents beforehand (for instance the algorithms described in (Bei, Liu, et
al., 2021)), which this algorithm now can find in polynomial time. A counter
argument can be made that for the instances where the algorithm is guaranteed
to find the 1-MMS allocation, the MMS values could simply be replaced by
PROP. ie. the cake is large enough that all the agents can receive

∑
v(G)/n.

which is an approximation that is often used for approximate MMS-algorithms
1.

The exact usecases of this algorithm is then not obvious, however one argue that
all instances can be converted to an instance with equal valuations by looking

1This is commonly implemented by normalizing each agents valuations to be n, such that
PROP for each agent is n/n = 1
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at all items monetary value, instead of sentimental value, where the cake is now
considered a pool of money. In other words this algorithm can find allocations
that guarantee all agents get bundles of the same monetary value as long as the
pool of money is large enough.

Additionally, as the required size of cake is dependant on the guarantee of
the indivisible algorithm, swapping the LPT algorithm with an algorithm that
achieves a higher guarantee, will directly reduce the required size of the cake.

7.2.2 Cutting Cake into n Pieces

Expanding on the results from the pre-study, it was found that the relaxed
constraint approach achieved the 1/2-MMS guarantee for all instances (Utne,
2022). And it was hypothesized that simply using an algorithm with a higher
guarantee for indivisible goods would directly translate to a higher guarantee
for mixed goods.

However, the analysis in this thesis revealed that the approach did not con-
sistently achieve this using a 2/3 −MMS algorithm. In Figure 6.3, it can be
observed that there are instances where the approach failed to meet the desired
guarantee. Initially, this discrepancy was attributed to floating-point errors.
But as shown in Table 6.3, the discrepancies were too substantial to be solely
attributed to floating-point errors.

The underlying reason for this discrepancy lies in the fact that the indivisible
algorithm uses the expected MaxiMinShare of the indivisible instance (instance
with items and indivisible pieces of the cake) to determine whether an agent has
achieved the guarantee or not. In other words, there is a possibility that an agent
receives a bundle that is valued more than their indivisible MaxiMinShare, but
less than their mixed MaxiMinShare. This is problematic because the indivisible
algorithm assumes that the agent has already achieved their 2/3-MMS and will
not assign them any additional goods, even if there are more goods available to
distribute2.

Due to the very small probability of this occuring (7/3912 = 0, 18% of the
analyzed instances), using this approach is still a very viable option. The oc-

2It is a common practice for MMS algorithms to assign any ”overflowing” goods that remain
after all agents have achieved the guarantee to a single agent to demonstrate the robustness
of the guarantee.
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currence of instances that don’t quite match the guarantee is likely to increase
along with the guarantee of the indivisible algorithm. There is also the rare
possibility that one agent might require a very small pieces of cake to reach
their MaxiMinShare. This probability will likely also increase along with the
number of agents, similar to how the cake is more likely to be split the more
agents there are, as seen in Figure 6.2.

7.2.3 Allocate Items First

Unfortunately simply using the same approach as in Listing 4.1 does not yield
very promisising results, shown in Figure 6.4. The reason for this actually fairly
straight forward. When the valuations are individual, that means one agent
might value the cake ≈ 0, which means if that agent ever has one of the worst
bundles in phase 2 of the algorithm, this agent will receive the entire cake. This
obviously ruins the other agents chances to achieve their expected MMS as they
valued the cake as large enough to be split between all of them.

Allocating items first also has another major drawback. For any real instance
there is a chance that the optimal solution has one agent receive all the items,
and another agent receives all the cake, however by forcing the items to be split
first any such optimal allocation cannot be found by this algorithm. Although
the majority of the allocation are above the expected 2/3−MMS the distribution
is clearly not impacted much by the guarantee of the indivisible algorithm.

If all agents agreed on a value for the cake, but has individual valuations for the
items, then this approach would be viable, as the cake would then be able to fill
up the worst bundles in a ”predictable” way by all agents. Wether it maintains
the guarantee for the indivisible algorithm is not certain however.

7.2.4 Improving Efficiency

Due to the limited experiments conducted with the relaxed constraint approach,
there are not many results to discuss in detail. The decision to discontinue
further analysis of this approach was based on several factors.

Firstly, it was realized that the approach would face similar limitations as dis-
cussed in Section 7.2.3. This raised concerns about the effectiveness and fairness
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of the resulting allocations.

Secondly, the approach itself introduced additional complexity compared to sim-
ply using the MIP solver for mixed instances. The separation of items and the
subsequent allocation of the cake added overhead and required more time than
the solver needed to find the optimal division of the cake alone.

Considering these factors, it was determined that pursuing further analysis of
the relaxed constraint approach would not yield substantial benefits and would
not address the underlying limitations identified.

7.2.5 Generalizing for Heterogenous Cake

In order to generalize for heterogenous cake, and by extension multiple cakes,
the following is required:

In order to generalize these findings for heterogenous cake, one could possibly
utilize what is Weighted Proportional Cake Cutting as explained in (Bei, Liu,
et al., 2021). This concept generalizes proportionality to the weighted case in
cake cutting using a weight profile. This would however require some more pre-
processing in order to convert to and from homogenous and heterogenous cakes,
which reduces one of the main benefits of simply using a indivisible algorithm
directly. (Utne, 2022)

7.3 Maximum Nash-Welfare for Mixed Goods

As can be observed in Figure 6.7, the time required to find allocations increases
exponentially as the number of variables (agents and/or goods) increases. The
worst cases depicted in the figure take a remarkable 2250 seconds to find a
single allocation (equivalent to 37.5 minutes). Given that the experiment is
only conducted with instances involving a maximum of 6 agents, cutting the
cake into a large number of pieces is not a feasible option.

It can also be observed that some instances run substantially faster than others.
This could be caused by two main factors.

1. Other work being done on the computer which could have an impact on the
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time it takes to find the allocation due to computer resources being busy. 2.
Some instances are better suited for MIP solvers in that the valuations allow
the solver to converge faster to the optimal solution.

This problem of increased time also comes in addition to the risk that the MIP
solver might struggle to actually find the optimal solution as the number of
variables increase. AS described in (Caragiannis et al., 2019) the algorithm is
also sensitive to the number of bits used to prevent errors due to rounding. The
more variables are present, the more places values can be rounded in a non
beneficial way causing the solver to miss the optimal solution.

Fortunately, in Figure 6.5, it is observed that the achieved NSW converges
rapidly towards the optimum. It should be noted that there is no guarantee
that the allocation maximizing the NSW has been found in the experiment,
as such an allocation may require a finer granularity than the 100 pieces used
in the analysis. However, it is reasonable to assume that the NSW would not
differ significantly. Even when the cake is divided into n pieces, over 99% of the
estimated optimum is reached by all the analyzed instances.

Additionally, it is noticed that what is more important than simply cutting
the cake into many pieces is that the number of pieces should be divisible by
the number of agents that need to receive a piece of the cake. It should be
acknowledged that there is no way to know exactly how many agents require
cake without finding the allocation first, but it is worth knowing that increasing
the number of pieces might reduce the achieved NSW.

Additionally it very interesting to see that in Figure 6.6, the number of instances
that change who receives items and cake as the number of pieces remain largely
the same. This is very interesting as this means that you could theoretically
use a small number of pieces to find the ”main allocation”, and then adjust
how much each agent gets of the cake afterwards to find the ”sweetspot” for the
MNW. Its important to observe that for 2 of the instances with 3 agents, 1 of
them keep changing up until 100 pieces, and the other changes once at 85 pieces
and again at 97 pieces. Looking at the allocations, this is due to the fact two
items of almost identical value was jumping back and forth between two agents.
This is not unexpected as there could theoretically be more than one possible
allocation that achieves the MNW.
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7.4 When does the cake not need ot be cut

In terms of the instances where the cake was not cut, there were a few com-
monalities. The first was that if one agent valued the cake a lot more than all
other agents, this agent was likely to receive the entire cake, which intuitively
makes sense. Another commonality was that one or more agents valued the
cake at almost 0, reducing the number of agents that ”could” receive the cake,
increasing the chance that one agent would receive the entire cake.

Other than those two cases, there was no clear pattern in the instances where
the cake did not need to be cut. Both cakes of small, large, and random sizes
were represented in both the cut and uncut cakes. Reducing the problem from
finding a MNW allocation to only determining which agents receive cake is not
possible either, as determining the recipients of the cake requires the MNW
calculation.

Regarding the exclusion of uncut cakes from the results figures, this was done
to reduce clutter since, when the cake is never cut, the NSW never changes.

7.5 Practical vs Optimal Allocation

Among the various algorithms and approaches discussed in this thesis, a sig-
nificant focus has been placed on the time required to find an allocation. This
emphasis stems from the understanding that a perfectly optimal algorithm is of
little use if it never completes. The acceptable timeframe for finding an alloca-
tion may vary depending on its importance, but the pursuit of faster allocation
methods is always a priority.

Another limitation that has not been previously addressed in this thesis is the
issue of information constraints. Achieving a perfect allocation necessitates
having complete knowledge of the problem at hand. While this may not be a
significant challenge when allocating resources to machines, it becomes prob-
lematic when human input is involved. For instance, if there are 100 items
to allocate, it would be unreasonable to expect each agent to provide precise
valuations for all items that accurately reflect their preferences relative to one
another. Some algorithms rely on ”perfect-allocation oracles,” which essentially
involve continuously querying agents about all possible combinations of items
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or cake pieces—an impractical and burdensome task.

Furthermore, for many real-world applications, having a resource that is in-
finitely divisible is either unrealistic or unnecessary. Consider the example of
splitting a cake with a friend. Counting grams to achieve an exact equal split
would be incredibly cumbersome, with minimal impact on how you and your
friend feel about the division. Additionally, most divisible resources, such as
money or land, have a minimum size (e.g., coins or square meters). This means
that even if a resource is divisible, it is not infinitely divisible. Consequently, a
degree of approximation, rounding, and algorithmic errors is generally accept-
able in real-world applications.

When it comes to selecting an algorithm for a given problem or instance, the
attributes of the instance largely dictate which approach will yield the most
”fair” allocation. For example, if all agents have equal valuations, using MMS
algorithms is highly applicable. On the other hand, if there is a lack of consensus
among agents, a simple round-robin allocation method may suffice. (Note: The
round-robin algorithm is a greedy approach in which each agent in turn selects
the item they value the most from the remaining items.)
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Chapter 8
Conclusion

The findings of this study suggest that adapting indivisible algorithms for the
allocation of mixed divisible and indivisible goods can be satisfactory for real-
life applications, although it may not always achieve strictly optimal alloca-
tions. Specifically, when using established MaxiMinShare (MMS) algorithms,
distributing one piece of the cake to each agent allows the MMS algorithms to
maintain their guarantee with high likelihood.

In cases where agents’ valuations are equal, a simple polynomial time algorithm,
such as the Longest Processing Time Heuristic, can be employed to find MMS
allocations with high guarantees quickly. The experiments conducted revealed
that the cake is sufficiently large, the algorithm can find 1-MMS allocations
within polynomial time.

Regarding the Maximum Nash Welfare (MNW) for mixed goods, the results
clearly demonstrate the impracticality of cutting the cake into numerous indi-
visible pieces. However, the findings also indicate that the Nash social welfare
stabilizes rapidly once the number of cake pieces exceeds the number of agents.
Furthermore, the allocation of items tends to remain relatively unchanged be-
yond this point. This implies that by initially dividing the cake into a few pieces,
it can serve as a foundation for further adjustments.
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It is important to note that the experiments conducted in this study were lim-
ited in terms of the problem size explored due to the extensive time required
to run the experiments. This limitation may have influenced the results by
potentially overlooking edge cases or other intriguing findings. Therefore, the
outcomes should be regarded as a baseline expectation for randomly generated
instances, but not necessarily indicative of how the algorithms and approaches
would perform in real-life applications.

8.1 Future Work

Further theoretical proofs and studies are required to verify tha validity of the
results proposed in this thesis.

An algorithm for finding an approximate MNW allocation for mixed goods
without cutting the cake into indivisible pieces.

Another crucial task is to generalize the algorithms to effectively handle hetero-
geneous cake divisions and/or multiple cakes. By developing algorithms capable
of accommodating heterogeneous cake divisions, a more comprehensive solution
can be provided that caters to real-world scenarios with diverse preferences and
requirements. Additionally, extending the algorithms to handle multiple cakes
facilitates resource allocation across different domains, expanding the range of
applications.
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Appendix A
Plots

Below are the full plots from Chapter 6 where the full plots were adjusted to
improve visibility/enhance the important parts of the plots. The full plots are
included here for completeness.
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Figure A.1: Progression of NSW as cake is cut into increasing amount of pieces.
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Appendix B
Allocations

Equal Valuations

The following are the two instances of which the algorithm for finding 1-MMS
allocation with equal valuations achieved a MMS that is lower than what was
deemed ”acceptable” due to floating point errors. The allocation found by using
the MIP solver is also shown for comparison. There were more instances where
the MIP solver has a lower than acceptable MMS, refer to Appendix C which
contains all logged instances to see these as well.
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Instance: 4223.txt

Instance with SMALL cake:

Goods: Item, Item, Item, Item, Item, Item, Cake

Agent 1: [0.51, 0.96, 0.07, 1.00, 0.78, 0.51, 0.87] - Mixed MMS: 0.65

Agent 2: [0.51, 0.96, 0.07, 1.00, 0.78, 0.51, 0.87] - Mixed MMS: 0.65

Agent 3: [0.51, 0.96, 0.07, 1.00, 0.78, 0.51, 0.87] - Mixed MMS: 0.65

Agent 4: [0.51, 0.96, 0.07, 1.00, 0.78, 0.51, 0.87] - Mixed MMS: 0.65

Agent 5: [0.51, 0.96, 0.07, 1.00, 0.78, 0.51, 0.87] - Mixed MMS: 0.65

Agent 6: [0.51, 0.96, 0.07, 1.00, 0.78, 0.51, 0.87] - Mixed MMS: 0.65

MIP

110.0 ms: MMS=0.9999997901858838, NSW=0.77

Agent 1: [ , , , , 1.00, , ] - Bundle: 0.78

Agent 2: [1.00, , , , , , 0.16] - Bundle: 0.65

Agent 3: [ , , , , , , 0.75] - Bundle: 0.65

Agent 4: [ , , , 1.00, , , ] - Bundle: 1.00

Agent 5: [ , 1.00, , , , , ] - Bundle: 0.96

Agent 6: [ , , 1.00, , , 1.00, 0.09] - Bundle: 0.65

ALGORITHM

0.021 ms: MMS=0.9999997901858854, NSW=0.77

Agent 1: [ , , , 1.00, , , ] - Bundle: 1.00

Agent 2: [ , 1.00, , , , , ] - Bundle: 0.96

Agent 3: [ , , , , 1.00, , ] - Bundle: 0.78

Agent 4: [1.00, , , , , , 0.16] - Bundle: 0.65

Agent 5: [ , , , , , 1.00, 0.17] - Bundle: 0.65

Agent 6: [ , , 1.00, , , , 0.67] - Bundle: 0.65
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Instance: 4737.txt

Instance with SMALL cake:

Goods: Item, Item, Item, Item, Item, Cake

Agent 1: [0.45, 0.53, 0.89, 0.38, 0.42, 0.59] - Mixed MMS: 0.59

Agent 2: [0.45, 0.53, 0.89, 0.38, 0.42, 0.59] - Mixed MMS: 0.59

Agent 3: [0.45, 0.53, 0.89, 0.38, 0.42, 0.59] - Mixed MMS: 0.59

Agent 4: [0.45, 0.53, 0.89, 0.38, 0.42, 0.59] - Mixed MMS: 0.59

Agent 5: [0.45, 0.53, 0.89, 0.38, 0.42, 0.59] - Mixed MMS: 0.59

MIP Allocation

11.0 ms: MMS=0.9999997999107858, NSW=0.64

Agent 1: [1.00, , , , , 0.25] - Bundle: 0.59

Agent 2: [ , 1.00, , , , 0.10] - Bundle: 0.59

Agent 3: [ , , , , 1.00, 0.29] - Bundle: 0.59

Agent 4: [ , , , 1.00, , 0.36] - Bundle: 0.59

Agent 5: [ , , 1.00, , , ] - Bundle: 0.89

ALGORITHM Allocation

0.014 ms: MMS=0.999999799910786, NSW=0.64

Agent 1: [ , , 1.00, , , ] - Bundle 0.89

Agent 2: [ , 1.00, , , , 0.10] - Bundle 0.59

Agent 3: [1.00, , , , , 0.25] - Bundle 0.59

Agent 4: [ , , , , 1.00, 0.29] - Bundle 0.59

Agent 5: [ , , , 1.00, , 0.36] - Bundle 0.59
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Appendix C
Source Code

All source code used for this thesis is added as a separate appendix in a ”.zip”
file. See the README file in the root of the archive for instructions on how to run
the code in order to reproduce/validate the results presented in this thesis.
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