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i

Abstract

MySQL’s new hypergraph optimizer employs more cost-based decision-making
compared to the original optimizer, and should therefore more prominently utilize
database statistics. The initial experiment highlights the effect of accurate statis-
tics, where injected correct selectivities for the Join Order Benchmark queries leads
to improved performance. This emphasizes the importance of accurate and up-to-
date statistics, leading to the idea of exploiting existing data streams in MySQL
to create, update and manage such statistics.

This thesis presents a novel implementation of count-min and count-min mean
sketch for estimating data distribution in MySQL and compares the performance
with histograms on the Join Order Benchmark. Results indicate an overall im-
provement in performance and selectivity estimation accuracy, albeit with some
exceptions where performance is negatively affected. Later implementations of
the hypergraph optimizer with a more refined cost model are assumed to reduce
the degree of such occurrences. The experimental results show promise regarding
the exploitation of existing data streams to generate statistics in MySQL, serv-
ing as a foundation for subsequential implementations of semi-automatic statistic
management.
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Sammendrag

MySQLs nye hypergraf optimizer benytter flere kostnadsbaserte valg sammenlignet
med den orginale optimizeren, og bør derfor kunne utnytte database-statistikk i
større grad. Innledende eksperimenter synliggjør effekten av nøyaktig statistikk
hvor korrekte selektiviter for Join Order Benchmark-spørringer fører til økt ytelse.
Dette understreker viktigheten av nøyaktig og oppdatert statistikk i databaser,
som leder inn p̊a ideen om å utnytte eksisterende datastrømmer i MySQL for å
lage, oppdatere og vedlikeholde slik statistikk.

Denne avhandlingen presenterer en ny implementasjon av count-min og count-
min mean skisser for estimering av datadistribusjon i MySQL, og sammenligner
ytelsen med histogrammer for Join Order Benchmark. Resultatene indikerer en
helhetlig forbedring i ytelse samt bedre treffsikkerhet p̊a selektivitetsestimering,
riktignok med enkelte unntak der ytelsen blir p̊avirket negativt. Senere imple-
mentasjoner av hypergraf-optimizeren med en mer robust kostnadsmodell er an-
tatt å redusere graden av slike hendelser. Eksperimentene viser lovende resul-
tater i retning mot å utnytte eksisterende datastrømmer for å generere statis-
tikk i MySQL. Dette legger grunnlaget for p̊afølgende implementasjoner av semi-
automatisk h̊andtering av statistikk.
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Chapter 1

Introduction

The internet sees an influx of new people connecting every day. During a five-year
span - from 2018 to 2023 - the number of internet users is estimated to increase
with 1.4 billion, leading to a total of around 5.3 billion users in 2023 according to
Cisco [2]. An increasingly connected population paired with increasing individual
consumption of internet services leads to a larger total data volume and more
data traffic every year. These demands require fast and reliable systems, and
database management systems continue to be the basis of most mission-critical
applications [3]. This pressures the database system developers to continuously
work on achieving the best possible performance and efficiency. Improvements
in hardware components will necessarily play a part in the performance of the
systems, but the inner components of a database system will have an impact, such
as the query optimizer, query processing, and storage methods.

An important component in the database management system is the query
optimizer, which is a large contributing factor to the speed of query execution. The
optimizer determines how the query should be executed by selecting an optimal or
suitable query plan. A query can be executed in an endless number of ways, based
on different join orders, join methods, or access methods. Database statistics may
provide valuable insight to the optimizer regarding the data itself, leading to more
accurate estimations and a better foundation for the cost metrics, thus aiding
the plan selection. A significant portion of the earlier research on the topic has
been on the creation of various types of database statistics that are accurate and
efficient. Recent years have seen a rise in research on maintenance and automatic
adaption of said statistics and has shown promising results [3; 4; 5; 6]. Automatic
management of database statistics may provide more up-to-date statistics better
suited for changes in the data, significantly increasing usability and accuracy.

This thesis intends to further explore MySQL’s new hypergraph optimizer,
how it responds to various types of statistics, and different methods of creating
these statistics. The rest of this chapter is structured as follows: Section 1.1

1
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covers the background and motivation for the thesis and its place in the area of
database management systems. Section 1.2 presents the goal for the thesis and
the research questions utilized to accomplish said goal. Section 1.3 describes the
research methodology applied and the reasoning behind the methodology. The
following section, Section 1.4, briefly summarizes the thesis’ main contributions.
Lastly, Section 1.5 covers the structure of the thesis for the following chapters.
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1.1 Background and Motivation

Oracle’s MySQL team is currently in the process of developing and implementing a
new query optimizer that represents join relations as edges of a hypergraph. This
optimizer makes decisions substantially more based on cost than the current opti-
mizer, and has the aim of improving query plan selection with better cardinality
estimates. The use of statistics to estimate cardinalities is already extensive in
relational database management systems with the use of histograms. MySQL also
relies on histograms to provide statistics for use in selectivity estimates [7], but as
of now, these need to be created and maintained manually. There are also other
structures used for statistics, such as sketches [8; 9], that may be eligible for use in
MySQL to improve selectivity estimates. The need for accurate or elaborate statis-
tics has not been as prevalent in MySQL, as the current optimizer is significantly
more heuristic-based, forming a large portion of its decisions based on existing
heuristics [10]. As the hypergraph optimizer is still in a phase of development it
is too early to determine the exact impact of having precise information available,
but experiments show that the response to more accurate statistics is promising
[11]. These factors allow for further exploration on the topic of automatically
gathering information on the data that are inserted into the database.

In this thesis, the prospect of piggybacking an existing data stream in MySQL
to build relevant statistics for use in the optimization stage of query processing
is explored. It aims to determine what data structures are suitable to achieve
a fast and precise estimation of the data distribution, and how this compares to
traditional histogram statistics. The hypergraph optimizer is also given the correct
information in order to determine how it behaves in a best-case scenario.
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1.2 Goals and Research Questions

The goal of the thesis is as follows:

Goal Exploring the possibility of automatic statistic creation in MySQL with the
intent of improving the performance of the hypergraph optimizer.

An important aspect of a database management system is performance. A
database that is responsive and fast will positively impact the user experience
and its applicability. While there are several factors to explore on the topic of
performance, the query plan selection done by the optimizer has a large impact
on the execution speed. MySQL’s new hypergraph optimizer follows a more rigid
cost-based approach, with estimates based to a higher degree on the information
available to the optimizer. Automatic statistic creation and management may en-
sure that the stored statistics are more up-to-date and accurate, which in turn
will benefit the hypergraph optimizer greatly. A stepping stone towards this direc-
tion may be to explore the effect of utilizing the data streams created by existing
database operations, to improve the accuracy of the statistics. These results will
hopefully set precedence or a starting point for further exploration of automatic
statistic management in MySQL.

To accomplish the goal, the following research questions are explored:

Research question 1 How does MySQL’s hypergraph optimizer respond to hav-
ing access to correct statistics?

In theory, the hypergraph optimizer should perform better with improved statistics
due to the implementation of a stricter cost-based approach. What effect does it
have when correct selectivities for predicates in a query are injected into it?

Research question 2 How can existing data streams in MySQL be exploited to
create statistics?

During the execution of a query, some of the data or records are handled by the
database system. How can these existing operations that already read the data
be exploited to continuously create or update statistics, in contrast to explicitly
conducting a sample?
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Research question 3 What are the alternatives to histograms when it comes to
storing statistics from data streams?

Considering alternatives to the histogram may highlight areas where the histogram
underperform, and provide an indication on advantages and disadvantages of both
histograms and other alternatives.

Research question 4 How can a combination of sketches and histograms im-
prove the performance of MySQL’s hypergraph optimizer?

Different statistic types will serve dissimilar purposes and may therefore not have
the same strengths and weaknesses. A solution that utilizes a combination of both
sketches and histograms could therefore be able to amplify the strengths of the
two types while reducing the impact of their weaknesses.
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1.3 Research Method

The research strategy applied in this thesis is an experiment and is chosen due
to the fact that Research Question 1 and Research Question 2 insinuate
an experiment to evaluate the feasibility of implementations that can help answer
these questions.

As an experiment is used as the research method, two main hypotheses have
been created in order to prove or disprove which factors contribute to certain
outcomes [12]. These hypotheses are closely tied with the aforementioned research
questions:

Hypothesis 1 MySQL’s hypergraph optimizer improves performance when statis-
tics improve.

The experiment tied to Hypothesis 1 consists of executing the Join Order
Benchmark queries with MySQL’s hypergraph optimizer with selectivity estimates
of various stages of precision. The stages are no statistics (1), histogram statistics
(2), and correct selectivity (3). The implementation of (3) is further elaborated in
Section 3.1, while the experimental setup is presented in Section 4.2.1.

Hypothesis 2 Existing data streams in MySQL can be utilized to get more precise
selectivity estimates.

Hypothesis 2 is explored by implementing two different sketch-datastructures,
the count-min, and the count-min mean sketches. The Join Order Benchmark
queries are also executed here with the hypergraph optimizer, now with the selec-
tivity being estimated by sketches of varying sizes. Implementation of the sketches
can be found in Section 3.2, while the setup of the experiment is presented in Sec-
tions 4.2.2 and 4.2.3.

Quantitative data analysis is used to present the results. As the data from the
experiment has true zero to the scale of measurement, the results provide ratio
data. The central tendency used to describe the data in Section 4.3 is the mean of
several executions of each JOB query, while the visual aid that is used to present
the data is bar charts.
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1.4 Contributions

In this section, the main contributions of the work are summarized in a brief
fashion, while a further elaboration on these contributions can be found in Section
5.2.

1. Determining the impact of injecting correct selectivities to MySQL’s hyper-
graph optimizer for the Join Order Benchmark.

2. Conducting an experiment to determine the possible impact of using count-
min and count-min mean sketches to improve selectivity estimates for MySQL’s
hypergraph optimizer.

3. Highlighting the effect of database statistics created from data streams in
MySQL.

4. Addressing directions for future work on exploiting existing data streams for
semi-automatic statistic management.

The injection of correct selectivities illustrates the impact of improved statistics
for MySQL’s new hypergraph optimizer, laying the foundation for further research
on the topic of improved database statistics. The implementation of the count-min
and count-min mean sketches allows the exploitation of existing data streams in
MySQL and highlights the impact of such statistics on the optimizer. Exploiting
existing data streams reduces the need for explicit statistic collection, such as
samples, which in turn leads to fewer resources required to achieve equivalent or
even better statistics. Experimental results from the aforementioned topics are
used to address direction for further work on the topic of semi-automatic statistic
management based on existing data streams.
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1.5 Thesis Structure

The thesis consists of a total of five chapters with the next one, Chapter 2, covering
background theory related to the experiment. We take a look at how query pro-
cessing is done in relational database management systems in general and MySQL
specifically and how the query optimizer uses statistics to make informed choices
on how to execute the query. Topics such as data stream processing and hash
functions are covered, alongside the theory on count-min sketches which are im-
plemented and used in the experiment conducted.

Chapter 3 provides an explanation of how the structures used in the experi-
ment are implemented in MySQL, in which files, and how this changes the flow of
execution for the MySQL hypergraph optimizer.

In Chapter 4 the experimental plan is presented, with an explanation of which
questions or sub-questions each part of the experiment aims to answer. Further,
the setup of the experiment is covered in such a fashion that it can be repro-
duced. Finally, a presentation and evaluation of the most relevant results to lay
the foundation for the discussion and conclusions to come in Chapter 5.



Chapter 2

Background Theory

This chapter presents the background theory that lays the foundation for the rest
of the thesis. Section 2.1 covers how a query is processed by an RDBMS and takes
a deeper dive into how the query optimizer operates by looking at optimization
techniques and query plan selection. It also looks at the new hypergraph optimizer
in MySQL. After having covered how the optimization of a query is done, Section
2.2 investigates the types of statistics the optimizer utilizes to make decisions on
what query execution plan should be chosen. Further, a closer look at four differ-
ent commercial database systems and what kinds of statistics these systems use.
Finally, Sections 2.3 and 2.4 explore the topics of data stream processing and hash
functions respectively, before existing theory on count-min sketches is investigated.

9
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2.1 Query Processing

Utilizing a SQL query is a way of retrieving meaningful or relevant information
from a database. From the user’s point of view, this seems like a fairly straightfor-
ward task: execute a query and the results are presented almost instantaneously,
for many queries at least. However, before the query can yield its desired results,
the DBMS must process it internally. Query processing can be defined as the
collection of operations involved in extracting the data from a database [13]. Al-
though there are some common similarities, various database systems will have
different approaches for how they handle this processing. As presented by Elmasri
and Navathe, a general approach might be explained with a few common steps [14].
The first step is scanning the query, identifying query language keywords, rela-
tion names, and attribute names, also known as tokens or language components.
Next up is parsing, checking the query syntax to determine if it corresponds to
the rules of the query language. Scanning and parsing is essentially performed
simultaneously, as scanning continuously produces lexemes sent to parsing. Af-
ter this, the query is validated, making sure that attribute and relations names
are semantically meaningful and valid considering the database in use. Lastly, an
internal representation of the query is created, known as a query plan. This inter-
nal representation describes an approach for retrieving the results, usually based
on relational algebra. There are however many ways of reaching the same result,
and a single query will have multiple possible methods of execution. An important
part of query processing is consequently the selection of a suitable execution path,
which is the job of the query optimizer.

The query optimizer then selects a query plan or execution plan and passes
this to the code generator. In this stage, the query plan is transformed into
executable code that executes the given plan. Lastly, the code is run and the
results are produced, with the help of the runtime database processor.

As mentioned previously, the ways of handling the internal query processing
may differ between database systems. Figure 2.1 highlights the differences between
the textbook approach for query processing compared to the described approach
for a selection of modern database systems, including MySQL, PostgreSQL, and
Microsoft SQL Server. Overall, the query processing approaches are relatively sim-
ilar, which is not as surprising as they all intend to reach an equal end goal. There
are however some differences in the naming schema of components and phases,
in addition to dissimilar placements of the operations. As an example, Microsoft
SQL Server performs rewriting as an early part of the optimizer step, while Post-
greSQL has a defined ”Rewrite system” component prior to the planner/optimizer
step. MySQL also has differences compared to the textbook approach, defining
the first step as parsing [10]. The parsing step in MySQL checks the syntax of
the query, parses the languages, and creates an abstract syntax tree, which in



2.1. QUERY PROCESSING 11

Figure 2.1: Query processing as described in MySQL, PostgreSQL and MS SQL
Server compared to textbook approach described in Fundamentals of a Database
System. Main differences are seen in the form of a merge or split of selected steps
and renamed phases or components. Figure adapted and based on information
from [14; 10; 15; 16]

practice is a combination of scanning and parsing as described earlier. The next
step is preparing, which consists of resolving and transforming. This step performs
both name-binding and static query transformation. Since these transformations
are static - and not cost-based - this includes transformations such as IN/EX-
ISTS/ANY expressions to SEMI JOIN and view expansion transformations. The
prepare-step creates a logical plan that is sent to the next step, optimization. This
step intends to find the best, or more accurately the most optimal query plan. The
executable physical plan is sent to the execute-step, where the query is executed
and at last a result is returned. The next section goes further into detail on an
important part of the query processing, namely the query optimizer.

2.1.1 Query Optimizer

Due to the nature of SQL being a declarative language, a query will specify what
it wants to be done, without regarding specifics on how it should be done [14].
Exactly how a query should be executed is a concern for the DBMS and the main
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purpose of the query optimizer. The query optimizer intends to transform the
internal query representation into an executable query plan that is as efficient
as possible [17]. Since there are multiple ways of reaching the same result, the
optimizer must choose between multiple plans when selecting the most desirable
plan of execution. As a side note, the term query optimization can be seen as a
bit misleading, as in most cases finding the absolute best - or most optimal - plan
can be excessively time-consuming or even impossible [14]. A more suitable term
would be that the optimizer aims to find reasonably efficient execution strategy.

Traditional query optimization can be split into two main phases of processing,
the logical and the physical optimization. While the logical optimization intends to
rewrite the query to a semantically equivalent but more optimal form, the physical
optimization looks at access methods, join orders, and methods in order to optimize
the query plan [18]. There are generally two methods of optimization, heuristic
optimization, and cost-based optimization. Many modern DBMSes utilize a
combination of both heuristic and cost-based optimization. An important point is
that heuristic optimization can be applied first to reduce the number of plans the
cost-based approach must consider.

Heuristic Optimization

The goal of heuristic optimization is to rewrite the internal representation of the
query to a more efficient one. This may sometimes require catalog lookups, but
does not require access to the data. Heuristic optimization and rewriting are sim-
ilar in practice, where they both share techniques such as transformation of the
query based on predefined rules without changing the semantics of the query. It
is hard to set a defined border between the two as it may vary among different
systems, with MS SQL Server being an example of a system where rewriting is
performed as an early step within the optimizer [17]. An important difference
is that the goal of rewriting is to translate the query to canonical or normalized
form, making plan comparisons easier for the optimizer, while the goal of heuris-
tic optimization is to create a fast execution plan. The rewriting to canonical
form ensures a known starting point for the optimizer and makes sure that seman-
tically equivalent queries are optimized equally. Some parts of the rewriting are
view expansion, logical rewriting of predicates, constant arithmetic evaluation, and
subquery flattening. Without changing the semantics of the query, the optimizer
can then transform and alter the query to improve efficiency [14].

Based on this, it is therefore important to have a set of rules for equivalence
among algebraic expressions which can be exploited when optimizing the query.
One of the main heuristic rules is to apply SELECT or PROJECT operations
before applying binary operations such as JOIN. JOIN or other binary operations
are usually multiplicative functions of the input, therefore SELECT or PROJECT
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should be applied first to reduce the number of tuples and attributes respectively.
Additionally the SELECT or PROJECT operations that are the most restrictive,
leading to the fewest amount of tuples or attribute size, should be applied prior
to other similar operations. For the optimizer to be able to perform the afore-
mentioned transformation of the query, it must have a set of rules on relational
algebra equivalence to ensure that the query is still semantically equivalent. Some
examples of common rules used are [14]:

Cascade of selection A conjunctive selection can be split into a sequence of
multiple individual selections.
σAandBandC(R) ≡ σa(σb(σc(R)))

Commutativity of selection The select operation is commutative, meaning that
the order of selection can be swapped.
σa(σb(R)) ≡ σb(σa(R))

Cascade of projection For a sequence of project operations, all but the last one
may be removed.
πa,b,c(πb,c(πc(R))) ≡ πc(R)

Commutativity of inner join and cross product The order of join does not
affect the result.
R ▷◁ S ≡ S ▷◁ R
R× S ≡ S ×R

Commutativity of selection and inner join/cross product If all attributes
in the selection condition c are only on one of the relations R or S, the
operations are commutative, meaning that selection can be done prior to the
join.
σc(R ▷◁ S) ≡ (σc(R)) ▷◁ S

The rules presented are a small sample of the rules that can be utilized for
the heuristic optimization. These rules allow the optimizer to transform the query
step by step to a more efficient representation, while still preserving semantic
equivalence.

Cost-Based Optimization

For cost-based optimization, the optimizer tries to determine the cost of operations
needed to execute the plan [19]. Multiple possible parameters could be taken into
account for these estimations, where typical examples can be CPU cost, memory,
I/O, and network (for distributed systems). These costs are summarized and then
used as an overall metric when comparing the different plans. It is essential to note
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that these cost functions are estimates, which means that the plan with the lowest
cost is not necessarily guaranteed to be the absolute best plan. The accuracy
of these estimates can be increased with catalog information, where both table
statistics and column statistics have been proven to be helpful [14]. This may be
statistics such as tuple size, number of tuples, number of disk blocks, number of
distinct values, selectivity, and value distribution.

An important part of cost-based optimization is the cost model. The cost
model defines how the costs of the plans are calculated, for example by defining
the attributes and operations to consider and the weighting between them. As a
simplified example, one could consider the cost model of single relation access in
System R [1]:

COST = PAGE FETCHES +W ·RSI CALLS

In essence, this cost model utilizes a weighted measure between I/O (page
fetches) and CPU (RSI calls). W is the weighting factor, that can be adjusted to
emphasize either I/O or CPU, page fetches is the number of pages fetched from
disk while RSI calls is the predicted tuples returned from the Research Storage
System (RSS), the storage subsystem in System R. In theory, this cost model
aims to ensure that the plan with the lowest cost is the plan requiring the least
resources to execute. However, this might not always be the case as it is depen-
dent on both the cost model and the information available to the optimizer. As
previously stated the RSI calls is the predicted number of tuples returned from the
RSS, meaning that this is an estimation and not the exact number. Knowledge
of the exact number of tuples is impossible to retrieve unless the query is already
executed or the data is explicitly read. These estimations, therefore, require the
optimizer to make assumption and have information regarding the data, which
is where the catalog look-ups play their part. The catalog look-ups in System R
retrieves statistics on relations and the access paths available in the query and are
defined in Table 2.1.



2.1. QUERY PROCESSING 15

Table 2.1: Selection of catalog statistics in System R. Table adapted from [1].

Abbreviation Definition
NCARD(T) The cardinality of relation T
TCARD(T) The number of pages that contains tuples of re-

lation T
P(T) The fraction of pages that contains tuples of re-

lation T.
P(T) = TCARD(T) / (number of non-empty
pages in segment

ICARD(I) The number of distinct keys on index I
NINDX(I) The number of pages on index I

In system R, these statistics are updated periodically to reduce the inaccuracies
after modifications of the data. These statistics are used to assign a selectivity
factor F to each of the predicates. The selectivity factor will be an estimation of the
fraction of tuples that satisfies the given predicate, and if possible are calculated
with the aid of the catalog look-up statistics. The following list displays an excerpt
of predicate types and their respective selectivity factors F in System R [1]:

column = value F=1/ICARD(Column Index) if there exists index on
column.
F=1/10 for all other cases.

column1 = column2 F=1/MAX( (ICARD(column1 index), ICARD(column2
index) ) if indexes on both columns.
F=1/ICARD(column-x index) if index on column-x.
F=1/10 for all other cases.

column > value F=(high key value - value) / (high key value - low key
value) if column is arithmetic and the value is known
at access path selection.
F=1/3 for all other cases.

column IN (value list) F=(number of items in list) · (selectivity factor for col-
umn = value).
Maximum allowed value is 1/2.

The selectivity factors can be used to calculate the query cardinality, which is
the product of the relation cardinalities multiplied by the product of all selectivity
factors in the query block’s predicate list. The estimated number of RSI calls, the
CPU cost can then be calculated as the product of all relation cardinalities times



16 CHAPTER 2. BACKGROUND THEORY

the selectivity factor of all sargable boolean factors. These selectivities together
with statistics on available access paths are used to find the optimal access path
for a single relation. In System R, this cost model is expanded and generalized to
handle n-way joins and nested queries by combining the cost of scans on each of
the relations and cardinalities.

Query Plan Selection

According to Chaudhuri [19], desirable features in a query optimizer are a search
space that includes low-cost query plans, a cost estimation technique that is ac-
curate to assign a cost to each of the plans in the search space, and an efficient
enumeration algorithm. An important part of query plan selection is limiting or
reducing the search space [19], which can be done by using heuristics such as
grouping k -table joins and redefining edges of the joins are often applied in order
to limit the size of the search space and avoid exhaustive enumeration [20]. These
are ”rules” that can be used to eliminate certain query plans, and can for instance
be to use index scans whenever possible or to prefer merge joins if the input is
already sorted [14]. The reduction of search space enhances the importance of an
accurate cost estimation algorithm, as it will be the determining factor of how
favorable the selected plan is. One aspect that can help on the cost estimation of
the query plan is the available statistics. Certain operations can be done in vari-
ous ways, and their efficiency will be determined by what data is in the relations.
Consequently, statistics that provide information on this data will benefit the cost
estimation of the algorithms.

Query trees are mainly represented either as a left-deep, right-deep, or bushy
tree. In a left-deep tree, the child to the right of a non-leaf node is a base re-
lation, while right-deep trees are the same, but opposite. Bushy trees have no
such restrictions and contain both of the above [12]. Selinger et al. [1] limited
the search space of the query optimizer to only consider left-deep trees due to (1)
the number of left-deep trees is smaller than for example bushy trees, and (2) left
deep trees generate only one intermediate result [21]. Figure 2.2 shows a left deep
(left), right-deep (center), and bushy (right) query tree.

Figure 2.2: Left-deep (left), right-deep (center) and bushy (right) query trees.
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When evaluating the plan space, there are two main approaches: top-down
and bottom-up. Using the top-down approach, the optimizer starts at the top
and works itself down the tree, considering the best option at each step, while the
bottom-up approach starts at the bottom and works up the tree. In theory, both
strategies can evaluate the entirety of the plan space, but the bottom-up approach
is often used in commercial database systems as it is better suited to pipelining
[12] due to the fact that each node can be evaluated separately. While bottom-
up optimizers use dynamic programming by breaking problems down into simpler
sub-problems [22], top-down optimizers use a technique called memoization. This
is the equivalent of dynamic programming for top-down approaches [23] and is
used to produce the best join tree by recursively calling itself for every subset of
the set of relation that it is considering [21].

Cardinality Estimation

Cardinality estimates play an important part in determining the query plan se-
lected by the optimizer and are the estimated number of rows returned from an
operation. The estimates influence the order in which the query optimizer chooses
to execute join-, and access methods, and also the type of methods used. For in-
stance, a low cardinality estimate could lead to the optimizer choosing to perform
a nested loop join when joining two tables, while a high cardinality estimate may
lead to a hash join being chosen instead. If this cardinality estimate is wrong,
the join operation could take longer than initially expected and other query plans
could prove to be more efficient. As pointed out in [24] errors multiply through
joins. This means that if we join three relations R1, R2, R3, and the cardinality
estimates for each of the relations are off by a factor of 5, the total cardinality esti-
mate for R1 ▷◁ R2 ▷◁ R3 will be off by a factor of 125 [21]. Cardinality is estimated
in database systems due to the complexity of trying to calculate them exactly.
This is usually done with the help of single-column statistics - like histograms
- or certain assumptions in regards to the distribution of data, like uniformity,
independence, or inclusion [25].

The Query Optimizer in MySQL

In 2007, Hellerstein et al. stated that the MySQL optimizer was entirely heuristic-
based, and mostly relied on exploiting key/foreign key constraints and indexes
[17]. This statement is not entirely true today, as the MySQL optimizer has been
utilizing a combination of cost metrics and heuristics for query plan selection for
many years now. However, the optimizer still relies too heavily on heuristics during
important decisions and is not optimally rigged for the future, according to Ryeng
in his presentation ”Refactoring Query Processing in MySQL” [10]. An example
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is that the optimizer currently performs an exhaustive search on plan selection for
joins up to 7 tables, while additional tables in the join leads to greedy search based
on heuristics. Some other notes worth mentioning is that the optimizer does not
track interesting orders and only supports left-deep trees [26]. In MySQL version
8.0 there was a refactor of the entire query processing pipeline, with an exception
of the query optimizer that was left mostly untouched. The optimizer has done a
good job this far but struggles with more complex queries [10], which led to the
development of the hypergraph optimizer.

The hypergraph optimizer is built to rely on a better defined cost-based query
plan selection, making it resemble the optimizer from System R [1] more closely. It
is, as the name implies, based on expressing join relations as edges of a hypergraph,
defined as [27]:

Definition 1. A hypergraph is a pair H = (V, E) such that

1. V is a non-empty set of vertices, and

2. E is a set of hyperedges between the vertices, where each hypergraph is a set
of vertices E ⊆ {{u, v, . . . } ∈ 2V }.

Figure 2.3 illustrates the difference between a regular graph and a hypergraph,
where the edges of a regular graph connect exactly two vertices, while a hyperedge
connects two or more vertices. In the figure, a hyperedge is represented as an
ellipse and denoted en. The vertices of a hypergraph represent the relations of a
query, while the hyperedges represent a join operation. When having a traditional
query graph, two edges are used to represent the join predicate PXY ∧ PXZ and
reordering is used to have a query that is still equivalent. With hypergraphs,
predicates joining more than two relations are never broken up but represented
with one single hyperedge [28].
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Figure 2.3: The figure shows the difference between a regular graph (left) and
a hypergraph (right). The edges (line) of a regular graph connects exactly two
vertices, where a hyperedge (ellipse) connects two or more vertices. Figure taken
from [29].

While it can be said that System R utilizes multiple dimensions for the model
- cost and interesting orders - the hypergraph optimizer takes advantage of more
dimensions when estimating the cost, providing a more generalized model [30].
This allows the optimizer to store multiple plans concerning different cost-metric
dimensions, and also opens up the possibility to discard query plans that are
dominated by others in all dimensions. This essentially creates a skyline of the
lowest-cost query plans for each dimension.

The goal for the hypergraph optimizer is to eventually replace the old optimizer.
This replacement will ensure that MySQL is better equipped for handling more
complex queries and future development. However, according to the source code
documentation [31], the hypergraph optimizer is currently still in an experimental
stage, with a simplistic cost model and other limitations.
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2.2 Statistics

A cost-based optimization model as mentioned in Section 2.1.1 is used in the
majority of relational database management systems when choosing a query plan
[32]. This model makes decisions based on cost estimates of the various sub-plans
of the query plan, which again are reliant on the cardinality estimates. As pointed
out in Section 2.1.1, good optimizer statistics and statistics on base tables are
needed for precise cardinality estimates.

The most commonly stored attributes for a relation in an RDBMS include
the number of tuples (r), the average size of the records (R), how many blocks
the relation occupies on disk (b), and finally, the blocking factor (bfr) which is
the number of tuples in a block [14]. For the attributes within a relation, the
RDBMSs often store the number of distinct values (NDV ) and the selectivity (sl).
An attributes selectivity is defined as the number of tuples that satisfy a certain
equality condition and allows estimation of the selection cardinality (s = sl ∗ r).
This is an estimate of the number of tuples that satisfy an equality condition on
the given attribute [14].

Databases commonly store information on the distribution of data within a
column using histograms [32]. Histograms split the attribute over ranges called
buckets and store the number of tuples that belong in a bucket alongside the NDV
of a bucket [14]. Traditionally, the assumption of query optimizers has been a
uniform distribution and independence of data [21]. This could lead to substantial
errors in estimation if the dataset is skewed. Assume a relation storing information
on employees within a company where one attribute is the gender of the employee
stored as a CHAR (i.e., M/F). The optimizer would assume that the gender column
would have a possibility of 256 distinct values, while the real number is 2.

Several different types of histograms can be used in a database system, the
most common being equi-width, equi-depth, and frequency histograms [33]. Figure
2.4 illustrates a comparison of the different histogram types. Usage of equi-width
histograms in databases was first introduced in [34] by Kooi, although their usage
in the field of statistics dates back decades [35]. In equi-width histograms, all
buckets are of equal size, and the approximation of the frequency of attributes is
done through the height of the bucket.

Equi-depth histograms were in [36] recommended by Piatetsky-Shapiro and
Connell and populates its buckets with approximately the same number of values.
The buckets are thereby of equal depth and an approximation of a value is found
by dividing the population of the bucket by the number of attribute values.
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Figure 2.4: Equi-width (top-left), equi-depth (top-right) and frequency (bottom)
histograms.

Frequency histograms keep track of the frequency of each distinct value by
placing it in its own bucket. This requires the frequency histogram to have an
equal amount of buckets, or more, than the number of distinct values [37], and
allows for a recreation of the value distribution that is more precise than equi-width
and equi-height histograms. A variation on the frequency histogram is called the
top frequency histogram and allows having a number of buckets that is lower than
the number of distinct values. This is done by ignoring values that are nonpopular
or insignificant, utilizing the statement from [38] that accurate data on the most
common values makes a significant contribution to selectivity estimates.

2.2.1 Statistics in Modern Database Systems

This section presents the state-of-the-art when it comes to statistics in four dif-
ferent database systems: MySQL, PostgreSQL, Microsoft SQL Server and Oracle
Database.

MySQL

In MySQL, histograms are created using the ANALYZE TABLE statement along
with UPDATE HISTOGRAM and are stored in the information schema.column statistics
table [39]. The default number of buckets for a histogram is 100 if not otherwise
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specified. If the number of distinct values (NDVs) is less than the number of
buckets, the histogram is created as a frequency histogram, otherwise equi-depth
histograms are chosen [7]. MySQL store histograms in the JSON 1 format, and also
keep track of information such as the sampling rate used to create the histogram
and the fraction of null values in the column.

PostgreSQL

PostgreSQL has, in addition to regular single-column statistics, what they call
extended statistics. While the single-column statistics have no knowledge of any
correlations across columns, the extended statistics objects are able to capture
such correlations [40]. Creating the extended statistics object does not compute
multivariate statistics itself, but it merely tells the PostgreSQL server to gather
statistics on interesting columns.

Functional dependencies are the simplest kind of correlation that is tracked by
extended statistics, where a column y is dependent on a column x if knowing the
value of x is enough to say what the value of y will be [41]. Two columns that
have a functional dependency are for instance the columns zipcode and city, where
one always is able to tell what city belongs to a certain zip code. Another statistic
that is stored by extended statistics is multivariate N-distinct counts. Here, the
statistics object tells the server to keep track of the number of distinct values across
N columns [42] Finally, extended statistics can store multivariate most-common
value (MCV) lists. MCVs are often stored by regular statistics on a column level,
but extended statistics can keep track of such lists across several columns [42].
Table 2.2 shows an example of a most-common value list of city and state and
reveals that Washington and DC is the most common combination. It also shows
with the base frequency, that if the value had been computed using single-column
frequencies, it would be underestimated by two orders of magnitude.

1JavaScript Object Notation
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Table 2.2: Example multivariate most-common value (MCV) list stored in Post-
greSQL extended statistics. The table implies that the MCV of city and state is
Washington and District of Columbia with a frequency of 0.003467, while the base
frequency which is computed from single-column frequencies, underestimates by
two orders of magnitude. Table adapted from [40].

index values frequency base frequency

0 {Washington, DC} 0.003467 2.7e-05
1 {Apo, AE} 0.003067 1.9e-05
2 {Houston, TX} 0.002167 0.000133
3 {New York, NY} 0.001967 0.000114

Microsoft SQL Server

In Microsoft’s SQL server, the statistics that are used for query optimization is
stored in binary large objects (BLOBs). The BLOBs are created on one or sev-
eral columns of a table and contain information about the distribution of data,
alongside a histogram. The histogram displays the distribution of the first col-
umn of the BLOB. If the BLOB is created on multiple columns, it also includes
information on the correlation of values between the columns by calculating the
density (1/NDV ) [43]. Histograms linked to a BLOB are created either through a
sampling or a full scan of all rows of the table in question. This is done by sorting
the values and then aggregating them into a max of 200 histogram steps.

The Microsoft SQL Server the flags AUTO CREATE STATISTICS and
AUTO UPDATE STATISTICS to create or update statistics respectively, and both are
set to ON by default [44]. Automatic creation of statistics happens for columns
for which there are no current histograms in any existing BLOB, and are created
strictly single-column. The recompilation threshold used for updating statistics
is presented in Table 2.3, and shows the number of modifications (insert, delete,
update, merge) needed before an update is triggered.

Table 2.3: Microsoft SQL Server recompilation threshold by table type and table
cardinality. Adapted from [43].

Table type Table cardinality (n) Recompilation threshold (# modifications)

Temporary n<6 6
Temporary 6<=n<=500 500
Permanent n<=500 500

Temporary or permanent n>500 MIN(500 + (0.20 * n), SQRT(1000 * n))
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Oracle Database

The Oracle Database collects statistics on the number of rows, the number of
blocks, and the average length of a row for a table, along with the number of
distinct values and the number of nulls for a column. For columns, the distri-
bution of data is also stored as a histogram, and Oracle DB chooses between
four different types of histograms: Frequency histograms, equi-depth histograms,
hybrid histograms, and top n frequency histograms [45]. An illustration of the
decision-making process in Oracle Database is shown in Figure 2.5.

Figure 2.5: Figure illustrating the decision tree used by Oracle DB in order to
choose what histogram to create. Adapted from [46].

The initial step in the decision-making tree is to check whether NDV is larger
than the number of buckets specified for the histogram (default 256). If the number
of distinct values is less than the number of buckets, a frequency histogram can
be constructed. The next check is on whether the parameter estimate percent is
changed from the default value of equalling AUTO SAMPLE SIZE, and if it is, an equi-
depth (here called height-balanced) histogram is chosen. The final step includes
checking whether the percentage of rows for the top n most frequent values is
greater than or equal to what is called the internal percentage threshold. This
threshold, in the Figure named p, is defined as (1 − (1/n)) ∗ 100 where n is the
number of buckets in the histogram. A top n frequency histogram is created if the
check returns true, otherwise, a hybrid histogram is chosen [46].
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2.3 Data Stream Processing

A data stream can be defined as a sequence of instances - a continuous flow of data
- that can be read only once or a small number of times [47]. Typical examples
of systems producing such data streams can be wireless networks, radio frequency
identification (RFID), or multimedia data services [48]. Although a traditional
RDBMS is not explicitly a streaming system, it will still produce data streams
of some sort, for instance during a table scan or when presenting the user with
the desired results. This is also the case for MySQL, where records read through
an internal iterator can be seen as a stream of data. However, an important
difference to note is that these data streams are not infinite/continuous in the
same manner as ordinary data streams, as there is a defined end to the data
stored in the database. Processing and utilizing the information in this stream
is not something previously done in MySQL but might prove beneficial for the
management of database statistics. During processing of a data stream, there are
multiple challenges to consider. Generally speaking, the system does not have
control over the arrival order of the elements in a data stream or across data
streams [47]. In addition to this, a data stream may be unbounded in size. The final
size of the data stream can be impossible to predict, and in some instances, there
is no end to the data stream as new data is continuously produced, typically the
case with sensors. Another challenge is that once an element has been processed,
it is usually archived or discarded. This makes re-accessing the element quite
problematic unless it is stored for instance in memory. As the size of the data
stream can be rather large, storing all elements in memory is often not a possible
approach.

One of the major differences between traditional processing and data stream
processing involves processing time. In traditional processing, the data is stored
as data in raw form, then processed at a later stage as shown in Figure 2.6. An
example of this would be the creation of histograms in DBMSs. The data is
inserted into the database and stored before a request to create the histograms
is made. The processing time for creating histograms does not then have any
constraints and can in theory be unlimited.
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Figure 2.6: Example of traditional processing, where data is stored, and a request
needs to be made in order to receive the processed result.

Data stream processing on the other hand needs the data needs to be processed
before storage. This makes the processing time-limited, as the stream is a contin-
uous flow of data that needs to be handled when it comes in. A representation of
data stream processing can be seen in Figure 2.7.

Figure 2.7: Example of stream processing where the data is analyzed before it is
stored.

2.3.1 Compact Summary Data Structures

An important aspect of data stream processing is being able to utilize the relevant
information retrieved from the data stream. To access the information at a later
stage, the data must be stored. It is possible to store all of the data from the
stream, but this might quickly become too large to handle and is not necessarily
scalable. Compression is a way of solving this but since most compression algo-
rithms serves as an archival space-saving method, generally using or querying the
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information at a later point requires decompression. A compact data structure
aims to solve this problem, maintaining the data in a form that uses less space,
but also allows for querying the data in this form without decompression [49].
These are essentially methods for efficiently representing the data from the data
stream while still being able to navigate and operate on the data.

Summary data structures is a term that has seen more usage in recent years,
due to the handling of increasingly larger data sets [50]. While a compact data
structure, in general, will aim to cover all aspects of the data, a summary data
structure will need to consider which parts of the data should be conserved and
how accurate this preservation needs to be. However, they both share the trait
of representing the data in a smaller manner, while still being able to query and
operate on the structure. While traditional lossless compression can be decom-
pressed into the original data, a summary data structure does not come with any
guarantees of such reconstruction [50]. Some examples of summary data struc-
tures are samples, sketches, histograms, and wavelets [8]. The different structures
will have various advantages and disadvantages compared to each other, based on
dimensions such as accuracy, space efficiency, performance, or maintenance. For
instance, samples have the advantage of being flexible and simple, making them
applicable in many use-cases. However, samples may in some cases have high error
bounds, and will not be optimal for raw count problems, such as estimating the
number of distinct values [50]. Sketches on the other hand are also known for
being flexible, while allowing for a variety of operations, including distinct counts,
dot products, and matrix computations. Some of the drawbacks of the sketches
have been that they may become large and slow to update, and supports a limited
set of operations on a single type of sketch.
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2.4 Hash Functions

Hash functions are used to map elements from a large domain D to a smaller
domain m [51]. In practice, this is often done by storing the hash value h(x) of
element x at location h(x) in an array m. From good hash functions operations
can be expected to perform in O(1) time, and are defined as follows [52].

h : x → (ax+ b mod p) mod R (2.1)

where p is a prime, a ̸= 0, and b ∈ Zp. It is desirable for the hashed values h(x) to
have a ”random behaviour” and be distributed uniformly across m, and in order to
obtain this, k-independent hashing was introduced by Wegman and Carter in [53].
A family of hash functions is k-wise independent if a randomly selected function
can guarantee that the hash-values h(x) from any of the k keys are random and
independent variables 2.

Wegman and Carter states that a family of hash functions H = {h : U → [m]}
is k-wise independent in the case of ∀a1, . . . , ak ∈ Uk and distinct x1, . . . , xk ∈ [m]k,
if

Pr
h∈H

[h(a1) = x1 ∧ . . . ∧ h(ak) = xk] = m−k (2.2)

This definition states that for any distinct keys a1, . . . , ak ∈ U , and randomly
drawn hash function h from H the hashed values h(x) are both independent ran-
dom variables, and uniformly distributed in [m].

2Random variables are independent if the realization of one does not affect the probability
distribution of the others [54].
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2.5 Count-Min Sketch

The count-min sketch data structure was proposed by Cormode and Muthukrish-
nan in [55] with the intention of being used to approximately summarize a stream
of data. It is essentially a two-dimensional array that takes two parameters (ϵ, δ)
that determines the width w = ⌈ e

ϵ
⌉ and depth d = ⌈ln1

δ
⌉. The array is filled with

counters that are initially set to zero. In addition, d number of pairwise inde-
pendent hash functions are chosen randomly. Items inserted into the sketch are
hashed and mapped to a cell in each of the rows in the two-dimensional array, and
the counter of that cell is incremented [56]. This procedure is shown in Figure 2.8.

To estimate items using the count-min sketch, one simply needs to hash the
item in question to then look at the counter of the given cell. As the matching
counters of the d number of rows may differ in value, the lowest is chosen as the
estimate to minimize the error due to hash collisions.

Figure 2.8: Every item it is mapped to exactly one cell in each row. When an
update is called for the item, the specified cells are incremented by ct. Figure
adapted from [57].

Count-min sketches can be utilized to answer point queries, with an approach
similar to the one updating the sketch. A point query on value i can be estimated
by finding min1≤j≤d CM [j, hj(i)] [58]. Due to the fact that every i is mapped
to exactly one cell in each row, these counters will be an approximation of the
result. It is expected that collisions might occur when the sketches are updated as
they are not exact representations, therefore the row with the smallest value for
the specified cell is selected as the answer. This is an approximation and might
therefore not be the actual answer. However, the count-min sketch comes with
some guarantees regarding the accuracy of the estimate: with a probability of 1-δ
the error is not larger than the actual answer plus ϵ · ||a||1. In other words, if
we define the actual answer as ai with vector a, the estimated answer esti will be
defined as following, with a probability of 1-δ:

esti ≤ ai + ϵ||a||1
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Inner product queries can be answered with the count-min sketch, by estimating
the join size between relations a · b [57]. This estimation is achieved by using
the count-min sketch matrix as a collection of d vectors with a length of w, and
calculating the dot-product between corresponding rows for the two sketches. The
minimum value of the dot-products for all rows is then selected as the join size
estimation. Utilizing the row with the smallest value has the same intention as
other estimates, which is to reduce the impact of possible collisions. An important
note is that this requires the count-min sketches for the two relations to be of equal
depth and width, and also that corresponding rows use the same hash functions.
The estimation for inner product also comes with some error guarantees. For
relations a · b with the actual join size jsa·b, the estimation will be as follows with
a probability of 1− δ:

esta·b ≤ jsa·b + ϵ||a||1||b||1

2.5.1 Count-Min Can Do More

In 2007, Deng and Rafiei built upon the existing count-min sketch structure and
proposed new algorithms for estimation of multiplicity-queries (point-queries) and
self-join queries, known as the count-min mean (CMM) [59]. The original estima-
tion techniques would lead to inaccuracies on less skewed data, a problem aiming
to be solved with the new algorithms. The paper found that the new estimation
algorithms significantly improved the estimation accuracy compared to the original
ones when the data was less skewed.

The original algorithm for estimating point queries finds each cell that item
i hashes to for every row in the sketch, and returns the minimum value as the
estimate. Since these are sketches, the counter is usually affected by other elements
as well due to collisions in the hashing. In other words, elements other than i might
also hash to the same cell in the sketch, characterized as noise by Deng and Rafiei
[59]. The CMM algorithm aims to calculate the noise for each counter, remove
the noise and then return the median value of d counters. Finding the exact
value of noise is generally not feasible, but the expected value can be estimated.
The estimated noise for each counter can be calculated as the average value of
all the other counters in the row except the counter itself. If we define the total
number of elements (stream size) as N, the noise n can be estimated as follows:
1

w−1
(N − CM [j, hj(i)]). The noise is found and subtracted for all d counters, and

lastly returning the median value of the subtracted counters as the estimate for
the point query.

The new algorithm for solving inner product queries follows a similar approach,
by utilizing noise estimation. Originally, the estimate was calculated as the sum of
all dot-products for each row and then returning the minimum value found. With
the CMM approach, the noise for each counter is subtracted before multiplying
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with the equivalent counter in the other sketch. For each row, the product of the
sum and (w-1)/w is calculated, and the median value of d rows is returned as the
final estimate. The noise is estimated in a similar manner to the method for point-
queries, by finding the average value of all counters in the row except the actual
counter itself. If we reuse the previous definition of noise, we can define noise for a
given counter on any sketch x as follows: noisex(j,k) =

1
w−1

(N −CMx[j, k]). Using
this definition, the inner product query estimation algorithm is as follows:

w − 1

w

w−1∑
k=0

(CMa[j, k]− noisea(j,k)) · (CMb[j, k]− noiseb(j,k))
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Chapter 3

Architecture/Model

This chapter presents how the implementation of the experiment is done in MySQL.
First, Section 3.1 gives a thorough explanation of how the correct per-predicate se-
lectivities are injected into the hypergraph optimizer. Further, Section 3.2 shows
how the count-min and count-min mean datatypes are implemented, how they uti-
lize the existing data streams to approximate the distribution of data, and how they
are used in order to estimate the selectivity of a predicate.
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3.1 Injection of Correct Selectivity

During startup of the MySQL server, all the predicates from the JOB data set
and their selectivities are read from a CSV file and stored in the Table struct.
This is done using the file selectivity reader.cc, reading the data from the CSV file,
creating a vector of tuples with their respective selectivity and handing this over
to the Table struct.

The hypergraph optimizer utilizes the EstimateSelectivity method from esti-
mate selectivity.cc when deciding the selectivities for a given query. Our implemen-
tation latches on to this method and forces the pre-calculated correct selectivity to
be returned for each predicate or condition expression. To preserve original func-
tionality, an optimizer switch flag is checked, deciding if the method should return
the injected selectivities or the original estimates. Finding the correct selectivity
is done by matching the predicate expression with the corresponding tuple from
the Table struct, and returning the selectivity from this tuple.

Figure 3.1: Architectural sketch of the selectivity injection. The predicate is sent
to tuple struct.cc, returning the respective selectivity.

Figure 3.1 presents a simplified overview of how the selectivity injection fits
in the current system. For a given predicate, the hypergraph optimizer makes
use of estimate selectivity.cc to find the selectivity. If the optimizer switch flag
OPTIMIZER SWITCH JOB SELECTIVITIES is enabled, the predicate is sent further
to tuple struct.cc, taking advantage of the Table struct to retrieve the actual se-
lectivity.
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3.1.1 tuple struct.cc

The file tuple struct.cc is created to define the Structures Table and Row used to
manage the correct selectivities for the JOB data set. The Table struct keeps track
of a vector of Row structs, essentially keeping track of a vector of tuples. Each
tuple (Row) contains four elements. The first one is the left side of the predicate.
The next one is the operator, such as IN, ’=’ or LIKE. The third element is the
right side of the predicate, and the last element is the correct selectivity for the
predicate.

The method GetSelectivityForCondition is important for the usage of the Table
struct, and takes the arguments Item and string. The class Item is an existing
MySQL base class that can represent any kind of expression in a relational query
[60], and the string is essentially used for handling optional output from the opti-
mizer trace. The Item argument contains the condition or predicate and is there-
fore utilized to find the correct selectivity. The condition is compared with the
stored Rows in the Table structure, and given a match the respective selectivity
from the Rows last element is returned. If no match is found, a selectivity of -1.0
is returned. In theory, this should not occur for any of the JOB-queries, as all of
the predicates along with their selectivity should be loaded on startup.

3.1.2 selectivity reader.cc

Reading the selectivities from the CSV file is performed with the help of selec-
tivity reader.cc and its method GetSelectivitiesFromFile. The method takes the
file path as an argument in the form of a string, and parses the file line by line,
removing unwanted characters such as the column separators. For each line, the
elements are placed in their correct order in the tuple and added to a vector of
tuples. Lastly this vector of tuples is returned.

The current implementation utilizes the read-method within the existing init.cc-
file that is run during boot-up. The selectivities are first read using the selectiv-
ity reader, and then given to the Table struct which populates the Rows. In theory,
these operations could be performed in other parts of the code structure as long as
it happens once before the JOB queries are run. Init.cc was chosen for simplicity
as it was guaranteed to happen only once at boot-up of the server.
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3.2 Count-Min Sketch Implementation

The count-min sketch implementation is based on the theoretical description pre-
sented in section 2.5. The sketch is intended to be used as a replacement for
histogram statistics, providing the optimizer with selectivity estimations for pred-
icates in the query. The current implementation is able to estimate selectivity for
multiplicity queries, join size relations, and IN-predicates.

There are several reasons for the choice of implementing a count-min sketch as a
representation of the statistics. For one, as described in section 2.3.1, sketches are
known for being flexible and allow for a wide variety of operations such as distinct
counts, dot-products, and matrix computations, making them very suitable for
selectivity estimation. Additionally, the count-min sketch addresses many of the
drawbacks of a regular sketch such as becoming too expensive in space and update
processing, making them more fast and suitable for database statistics. The count-
min sketch can also be implemented in MySQL in a relatively simple manner,
providing selectivities directly to the optimizer without altering too many other
parts.

3.2.1 count min sketch.cc

The file count min sketch.cc defines the class CountMinSketch and takes the two
parameters epsilon ϵ and delta δ. From these values, the width w and depth d of
the sketch are calculated as per the definitions from Section 2.5. It also includes a
counter which keeps a count of the total number of inserts into the sketch. Finally,
a two-dimensional array with the size of w × d is initialized alongside d pairwise
independent hashes.

The Update method is used to insert elements into the sketch, accepting either
an int or a string as the argument. When inserting a string into the sketch, a
hash value (int) is generated using the djb2 hash function [61]. This value is then
hashed to a cell C[h(x)] for each of the d rows using Formula 2.1, and the counter
for those specific cells is incremented.

The Estimate method works similarly to the update and takes either a string
or an int as an argument. The initial process is equal to an update, hashing the
string and hashing the int value to a cell for each of the rows. The difference is
in the latter part, where instead of incrementing the specified counters, the lowest
counter is returned as the estimate for the value.

3.2.2 Using the Count-Min Sketch

To get an estimation of the contents of each column of a table, a count-min sketch
object is created for each of the columns and put in a map. The key of the map
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is the table name and the column name such that the individual sketches can be
easily retrieved. Inserts into the sketches happen in iterators where a reading of
records already happens such as the TableScanIterator .

When using the count-min sketch implementation to estimate the selectivity
of a predicate the method first checks whether the optimizer flag
OPTIMIZER SWITCH AUTO STATISTICS is set. It then uses the table- and column
name to get the correct sketch(es) for the predicate. The value(s) of the predicate
are retrieved from the sketches and used to calculate the estimated selectivity. If
the optimizer flag is not set, estimation proceeds as normal.

Figure 3.2: The figure visualizes the selectivity estimation process when using the
count-min sketch. After the hypergraph optimizer receives a query it asks for the
estimated selectivity of each predicate. The method in esitmate selectivity.cc that
is responsible for selectivity estimations finds the correct count-min sketch which
returns a count of the value that is to be estimated. Furthermore, the selectivity
estimation method calculates the selectivity based on the estimated count of the
value, and returns this to the hypergraph optimizer.

An approximate visualization of the estimation process using sketches is shown
in Figure 3.2, where the hypergraph optimizer receives a query. For each pred-
icate in the query it asks for an estimated selectivity from a method in esti-
mate selectivity.cc. This method finds the correct count-min sketch which returns
the estimated count of the value in question. The estimated selectivity is calcu-
lated and returned to the hypergraph optimizer, which is able to proceed in its
execution.
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3.2.3 Using the Count-Min Mean Sketch

The count-min mean sketch is implemented in the same manner as the count-
min sketch, storing the sketches for each column in a map with table name and
column name as the key. Inserts also happen correspondingly as the CM-sketches,
taking advantage of already present record reading. The important difference
between the two types of sketches is how the value sent from the sketch is handled.
The algorithm for estimating point-queries and join size relations are different for
count-min mean sketches. This implementation uses the original CM-algorithm
for point-queries, but the new method for estimates on join size relations. As
explained in subsection 2.5.1, this is done by removing the estimated noise in each
counter before multiplying with the equivalent counter for the other sketch. This is
performed in estimate selectivity.cc, where the value is returned and the estimated
selectivity is calculated according to the specified algorithm.



Chapter 4

Experiments and Results

This chapter presents the experiment, with Section 4.1 showcasing what question
each step of the experiment aims to answer. In Section 4.2, the setup of the exper-
iment is explained in order to make it reproducible by other researchers. This in-
cludes the hardware used and the settings of MySQL. Finally, Section 4.3 presents
the most interesting and relevant results, alongside a discussion on what these
results imply.
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4.1 Experimental Plan

The plan for the experiments is divided and aims to answer several questions. One
of the goals is to pinpoint how well the hypergraph optimizer performs with optimal
statistics injected. This serves as a stepping stone for following tests, exploring the
usage of count-min sketches for selectivity estimation. These experiments aim to
cover the feasibility of automatic creation of such statistics, where the sketches are
created by listening to the existing data stream from a table scan. Additionally,
the sketches serve as an experiment on the efficiency and accuracy of an alternate
method for storing statistics other than histograms.

4.1.1 Injecting Correct Selectivity

The first part of the experiment includes injecting the correct values where the op-
timizer asks for estimates of selectivity on predicates from the Join Order Bench-
mark 1 queries. This experiment is done with the intent of answering Hypothesis
1, determining whether the performance of the hypergraph optimizer improves
when it has the ”optimal” information available. To have a reasonable compari-
son, the same tests are also done on the standard hypergraph optimizer without
statistics available, and the hypergraph optimizer with histograms on all relevant
columns.

One could argue that injection of correct cardinalities should be performed
instead, but there are some reasons for the choice of using selectivities. First and
foremost, the injection of selectivities is a simpler approach that fits more easily
into the existing MySQL code base. Additionally, this injection can be performed
without altering other aspects of the optimizer, which essentially means providing
better statistics to the optimizer without directly changing any other parts of
decision-making or behaviour. The optimizer can then utilize its cost model and
functions to determine query cardinalities.

4.1.2 Count-Min Sketch for Selectivity Estimation

The next part of the experiment is an implementation of a data stream summary
algorithm, the count-min sketch, and utilization of these sketches to estimate the
selectivity for predicates in the JOB-queries. The sketches are implemented in a
manner so that they can answer point queries (also collections of them, such as
IN-queries) and inner product queries. The sketches ”highjack” the data stream
of a table scan for all of the tables in the JOB-dataset, making this part of the
experiment descend from Hypothesis 2.

1Join Order Benchmark dataset is found at https: // github. com/ gregrahn/

join-order-benchmark .

https://github.com/gregrahn/join-order-benchmark
https://github.com/gregrahn/join-order-benchmark


4.1. EXPERIMENTAL PLAN 41

Several executions of the JOB-queries are run with different sizes and accuracy
requirements for the CM sketches. This is done with the intention of being able to
pinpoint the optimal accuracy required for the optimizer, by possibly discovering
breakpoints in the query plan selection, and be able to find a suitable trade-off
between performance, accuracy, and space requirement for the sketches.

4.1.3 Count-Min Mean for Selectivity Estimation

The count-min mean (CMM) experiment is similar to the count-min, being a
direct result of Hypothesis 2, whereas the difference is the CMMs algorithm for
estimating join size relations. The CMM sketches are implemented in the same
manner as count-min, meaning they can answer identical types of queries. The
experiment will test the effectiveness of CMM sketches compared to CM sketches,
and discover changes in accuracy while still requiring an equal amount of memory
as previously.

4.1.4 Selectivity Estimation Error

As mentioned in Section 2.1.1, MySQL’s hypergraph optimizer uses a more cost-
based optimization technique than the current MySQL optimizer which partly de-
pends on heuristics. This, along with the fact that the hypergraph optimizer is still
under development, reveals the need to evaluate both the count-min and count-min
mean sketches in more dimensions than just execution time. The most prominent
evaluation of whether the sketch implementations can improve the performance of
the hypergraph optimizer, and thus give a definitive answer to Hypothesis 2, is
to examine the error of the selectivity estimates.

4.1.5 Memory Usage

In order to determine whether the implemented sketches are usable in practice,
their performance needs to be evaluated in context with the space they require in
memory. No matter how accurate it is, for a statistics structure to be feasible in a
real-life database system, the size requirement of the structure can not be of such
a size that it may impact the performance of the rest of the system.
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4.2 Experimental Setup

All experiments are done in MySQL version 8.0.28 built from source with the hy-
pergraph optimizer enabled. To enable the hypergraph optimizer in a production
build, the CMake option -DWITH HYPERGRAPH OPTIMIZER=1 has to be provided.
In each session, the SET optimizer switch="hypergraph optimizer=on" -option
has to be set, as the hypergraph optimizer is not the default optimizer. Table 4.1
shows the hardware setup used for all tests.

Table 4.1: Specifications for the computer used in the experiment

Hardware Specification
OS Ubuntu 21.10
CPU Intel i7-8700
Memory 48 GB DDR4 2400 MHz
Disk 512 GB Samsung PM981 Polaris M2 NVME SSD

The experiments in this project utilize the Join Order Benchmark introduced
in [62]. These queries are based on the Internet Movie Data Base (IMDB) dataset
and have been proven to be more suitable than other benchmarks such as TCP-H
for evaluating cardinality estimates. This is because a real-world dataset such as
the one from IMDB is non-uniform and has correlations in the data.

For all experiments, the JOB-queries are run six times in succession. The first
execution is to ”warm-up” the database and ensure that parts of the dataset are
in memory. The final five executions are timed and the average is calculated and
reported as query execution times.

4.2.1 Injecting Correct Selectivity

The structure presented in Section 3.1 keeps track of the selectivities of all pred-
icates in the JOB dataset to be able to feed the optimizer with the correct selec-
tivities when asked for. For the selectivities to be read on startup and injected,
the optimizer flag OPTIMIZER SWITCH JOB SELECTIVITIES must be set. As the
population of the structures defined in tuple struct.cc is done on server startup, the
overhead when injecting the selectivities is approximately the same as the method
MySQL uses and thereby negligible in terms of results.

4.2.2 Count-Min Sketch for Selectivity Estimation

The tests for the count-min sketch implementation are performed in the same
manner as the tests for selectivity injection, but with the optimizer flag
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OPTIMIZER SWITCH AUTO STATISTICS set. To simulate that the MySQL instance
has been running and sketches have been populated, a table scan of each relation
in the JOB dataset is performed prior to the tests being started.

The tests are executed in three separate runs with a variety of parameters
epsilon (ϵ) and delta (δ) for the count-min sketch. The parameters alongside a
calculation of the width w and depth d are shown in Table 4.2. To change the
parameters of the sketches, the values need to be changed where the count-min
sketch object for each column is created in basic row iterators.cc and MySQL need
to be rebuilt.

Table 4.2: Table showing experimental parameters epsilon (ϵ) and delta (δ), along-
side the width w and depth d for the count-min sketch.

ϵ δ w = ⌈ e
ϵ
⌉ d = ⌈ln1

δ
⌉

0.000001 0.001 2718282 7
0.0001 0.01 27183 5
0.001 0.01 2719 5

4.2.3 Count-Min Mean for Selectivity Estimation

Preliminary testing highlighted that the original algorithm for estimating point
queries had sufficient accuracy, with near-perfect selectivity estimation in many
cases. The CMM-estimation was therefore only implemented on inner-product
queries, causing our CMM-implementation to be a hybrid of both. The setup is
similar to the CM experiment, whereas the major key difference is the estimation
algorithm used for selectivity estimation of inner-product queries. The experiment
is run twice, with different values for ϵ but with a static value of 0.01 for δ. Table
4.3 displays the parameters used for the CMM sketch implementations.

Table 4.3: Experimental parameters ϵ and δ alongside width and depth for the
count-min mean sketch.

ϵ δ w = ⌈ e
ϵ
⌉ d = ⌈ln1

δ
⌉

0.0001 0.01 27183 5
0.001 0.01 2719 5

4.2.4 Selectivity Estimation Error

In order to get per-predicate selectivity estimates for JOB queries, MySQL needs
to be built with sketches of the wanted parameters. In this experiment, the
same parameters as presented in Figures 4.2 and 4.3 were used for count-min
and count-min mean sketches respectively. Selectivity estimates can be read from
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the optimizer trace of the hypergraph optimizer. Before running a JOB query,
the statement SET OPTIMIZER TRACE="enabled=on" needs to be executed in or-
der to enable optimizer tracing. The selected query can then be run, before
running SELECT * FROM information schema.OPTIMIZER TRACE to extract the
trace from the query.

4.2.5 Memory Usage

By running the Linux htop -command before and after a table scan, the memory
used by the MySQL instance in an idle state with no sketches, and after sketches
are created can be found. Thus, one can calculate the memory used by the sketch
structures.

Furthermore, the theoretical memory usage is calculated in order to determine
the best-case space requirement. For simplicity, theoretical memory usage is calcu-
lated by looking solely at the size of the counter-matrices, where each cell requires
4 bytes of space for storing the counter. Final size calculations are summarized
for sketches on all 103 columns. Defining N as the total number of columns, the
formula for calculating theoretical memory usage is therefore:

⌈e/ϵ⌉ · ⌈ln(1/δ)⌉ · 4 ·N
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4.3 Experimental Results

This section displays the most notable results from the experiments conducted.
The full set of results can be found in appendices A - C, additionally all raw data
produced from the experiments are found in appendices D - G. In Section 4.3.1,
we look at how the hypergraph optimizer behaves when it has different types of
information present, both histograms and correct selectivity, in order to determine
the best possible return for having statistics available. Section 4.3.2 investigates
how count-min sketches of various sizes compare to histograms. In Section 4.3.3
histograms and the most optimal count-min sketch are compared to count-min
mean sketches of two different sizes to determine whether there are major dif-
ferences in terms of performance. These three sections concerns executions time
exclusively. As mentioned previously, the hypergraph optimizer is in a state of
development, which suggests that it does not necessarily make the optimal choice
even though it is presented with more precise estimates. We will therefore present
the estimation errors provided by the various structures in Section 4.3.4. Finally,
in Section 4.3.5, the measured memory use of the data structures presented in this
thesis is compared to their theoretical memory use.

4.3.1 Injecting Correct Selectivity

The figures presented in this section are an excerpt of interesting results from the
experiment, highlighting queries where correct injected selectivity improves per-
formance but also queries displaying the opposite effect. It also shows occurrences
where having histograms on base columns deteriorates in performance compared
to not having statistics available at all. Complete results are found in Appendix
A.

Figure 4.1 shows a graph of the execution time of five queries from the Join
Order Benchmark run without statistics, with histograms on relevant columns,
and with correct selectivity injected. The graph shows that query 3a is slightly
slower with histograms than it is without, but sees a significant boost in perfor-
mance when the correct selectivities are injected. Query 2b has approximately the
same execution time without statistics and with correct selectivities but performs
substantially worse with histograms. The rest of the queries (19c, 17c, and 9d)
see a slight improvement with histograms and correct selectivity over no statistics,
although there seems to not be much gain from having the correct selectivities
over the ones calculated from histograms in these queries.



46 CHAPTER 4. EXPERIMENTS AND RESULTS

3a 2b 19c 17
c 9d

0

20

40

60

80

100

120

140

160

Queries

E
x
ec
u
ti
on

ti
m
e
(s
)

w/o hist
w/hist

correct sel

Figure 4.1: Execution times for a selection of queries displaying the difference
between no statistics, histograms, and correct selectivity. Lower is better.
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Figure 4.2: Execution times for a selection of queries displaying difference between
no statistics, histograms, and correct selectivity. Lower is better.

Figure 4.2 shows queries for which injection of correct selectivity improves the
execution time significantly. Queries 6c, 11a, and 27a show enhanced results with
histograms but even more so with correct selectivity, while queries 20b, 21b, 3b,
and 3a perform slightly worse with histograms but still improve with correct selec-
tivities. Results from the experiment show that execution times when injecting the
correct selectivity into the hypergraph optimizer are lower than both histograms,
and also without statistics. There are certain exceptions from this case where the
execution time drastically increases, which can be seen in Figure 4.3.
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Figure 4.3: Queries where the execution times become significantly worse when
correct selectivity is injected.

It is stated in Section 1.1 that the hypergraph optimizer chooses query plans
considerably more cost-based than the current MySQL optimizer. The selected re-
sults from injecting the correct selectivities for the Join Order Benchmark queries
show that in its current state, this needs not always be the case. There are also
cases where the hypergraph optimizer chooses the wrong plan when using his-
togram statistics, and not when having the correct selectivities. The results show
that if histogram statistics perform better than no statistics for a given query, then
correct selectivities will most likely outperform histograms. This indicates that the
hypergraph optimizer more often than not chooses better plans when having more
accurate information available, confirming Hypothesis 1.
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4.3.2 Count-Min Sketch for Selectivity Estimation

This section presents interesting results of the count-min sketch implementation,
comparing the execution time with histogram statistics. Figure 4.4 presents the
results of running the same queries as in Figure 4.1 with an implementation of
the count-min sketch and is an excerpt of the full results which can be found
in Appendix B. The columns represent different sizes of count-min sketches, and
the results from the count-min sketch implementation are shown in comparison
to the standard histograms. Queries 3a and 19c do not see any improvements in
execution time for sketches of any size, and query 19c becomes severely slower.
Query 2b improves with the introduction of sketches over histograms, but Figure
4.1 shows that histograms made the query perform worse than without any statis-
tics. Improvements in execution time when using count-min sketches are shown
for queries 17c and 9d, and the largest gain comes from the count-min sketch with
ϵ = 0.0001 and δ = 0.01.
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Figure 4.4: JOB query execution times for hypergraph optimizer with histograms
on base tables and hypergraph optimizer with count-min sketches of various sizes.
Lower is better.
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The experiment shows a variation of results between the queries when using
count-min sketches over histograms. The sketch size that gives the overall best
results is the same as for queries 17c and 9d as mentioned previously with ϵ =
0.0001 and δ = 0.01. On certain queries such as 19c, 5c, 9a, and 8d one or more
of the count-min sketches suddenly make the hypergraph optimizer choose a much
slower plan even though it is presented with more accurate estimates. This might
be due to the current simplistic cost model of the hypergraph optimizer. Even so,
the cause of the abnormal plan selection should be evaluated in context with the
selectivity estimates, and thus is further discussed in Section 4.3.4.

The results indicate that the theoretically more precise sketch in fact does not
yield the best results. Lower values for ϵ and δ create a bigger sketch, making hash
collisions for the hashed values less likely and giving more accurate estimates. This
increased theoretical accuracy does not necessarily improve performance there-
after. On the contrary, the trend of the results is that the count-min sketch with
ϵ = 0.0001 and δ = 0.01 is the one that has the overall lowest execution time for
JOB queries.
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Figure 4.5: Queries where the count-min sketch with parameters ϵ = 0.0001 and
δ = 0.01 suddenly spikes in execution time.
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Similar to the injection of correct selectivity, the count-min sketches also show
certain oddities in terms of execution times. Examples can be seen from the queries
in Figure 4.5 where the execution time for these queries suddenly spike when
using estimates from the sketch that shows the overall best results. These spikes
in execution time need to be evaluated in the context of whether the selectivity
estimates become better with larger sketches or not in order to confirm or disprove
Hypothesis 2, as the hypergraph optimizer in theory should improve with better
estimates.
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4.3.3 Count-Min Mean for Selectivity Estimation

This section presents interesting results of the count-min mean sketch implemen-
tation, comparing the execution time with histogram statistics and one of the
previous count-min sketches. The full results from the experiment can be found
in Appendix C. Figure 4.6 displays the results for two types of count-min mean
sketches on the same queries as Figures 4.1 and 4.4. In terms of execution time,
there is a slight improvement with the count-min mean for queries 3a and 2b. For
the rest of the selected queries, the result from using the count-min mean sketches
shows no improvement over regular count-min sketches.
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Figure 4.6: JOB query execution times comparison between histograms, count-min
sketch and count-min mean sketch. Lower is better.

The results show that the smallest count-min mean sketch with ϵ = 0.001 and
δ = 0.01 is the one that is overall closest to the most optimal count-min sketches
in execution time. Initially, this seems somewhat counter-intuitive as one would
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expect the larger sketch to have more accurate statistics, which in turn lead to
improved performance. For most queries it is very similar or even slightly better,
but in certain cases, the count-min mean sketches become severely slower than
both regular count-min sketches and histograms. This topic is explored further in
Section 4.3.4.
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Figure 4.7: Count-min mean sketches outperforming regular count-min sketches
for queries 5c, 9a and 3b, while being significantly worse on queries 8c, 19c, 17b-d,
and 17f.

The smallest CMM-sketch, with ϵ value of 0.001 and δ value of 0.01, performs
somewhat similarly to the two smallest CM-sketches, but there are still outliers in
execution time both positively and negatively. Figure 4.7 shows that the CMM-
sketches significantly outperforms the selected CM-sketch for query 5c, 9a, 3b,
and 3a, while the opposite is shown for query 8c, 19c, 17b-d, and 17f. This initial
testing shows promising results for the effectiveness of the CMM-sketch but opens
up for a further investigation into the causes of the outliers and oddities present.
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4.3.4 Selectivity Estimation Error

Figure 4.8 shows the cumulative relative error in selectivity estimation for the
selected queries. The errors are calculated by summarizing the relative error for
each predicate in a single query.
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Figure 4.8: Per-query cumulative relative selectivity estimation error for his-
tograms, count-min sketch and count-min mean sketch. Lower is better.

The histogram estimation error protrudes for queries 2b and 17c, with a sum-
marized error several orders of magnitude larger than the sketches. The predicate
k.keyword = ’character-name-in-title’ is present in both of these queries and con-
tributes to a huge portion of the error. For query 2b, the histogram estimates a
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selectivity over 20 000 times larger than the actual selectivity for this predicate. A
common denominator for several queries is that point predicates on text columns
with a large number of distinct values will drastically affect the accuracy of the
selectivity estimation of the histograms. Due to the size of the histogram errors,
removing the histogram bar from the chart gives a better visual representation of
the summarized error for the sketches:
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Figure 4.9: Per-query cumulative relative selectivity estimation error for count-min
sketch and count-min mean sketch. Lower is better.

Figure 4.9 shows the cumulative selectivity estimation error for all of the
sketches. As the graph displays, a larger sketch leads to more accurate estima-
tions. Additionally, the CMM-sketches of equal size to the original count-min
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sketches see a drastic improvement in accuracy. This is also the case for queries
19c, 17c, and 9d, despite performing slower than the selected count-min sketch
as shown in Figure 4.6. This per-query cumulative estimation error serves as an
initial overview, but is a simplification and will not highlight the extremes or other
interesting finds. Figure 4.10, therefore displays the average estimation error for a
selection of predicate type categories:
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Figure 4.10: Average estimation error grouped by selected predicate categories.
Histograms see a significantly larger average error than both of the sketch types
for text column equality and IN-predicates.

Average estimation error by predicate type/category gives a more precise visual
representation of the results. On inner join predicates, the histogram estimation
error somewhat resembles the estimation errors of the sketches. Additionally, the
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CMM sketches outperform their CM-sketch counterparts of equal size on inner
join, with an average error estimation several orders of magnitude less. For IN-
predicates and equality on text columns, all of the sketches have lower estimation
errors than those of the histogram. It is also worth noting that for both of these
categories, the CM- and CMM-sketches of the same size see a roughly equal esti-
mation error.

The results show that for a selection of the queries, the per-query cumulative
estimation error is significantly larger for histogram statistics than for the sketches.
The CMM-sketches also have lower estimation error than the CM-sketches of equal
size. Interestingly enough this does not guarantee better performance, an example
that can be seen with for instance queries 19c and 17c, where the CMM sketches
perform considerably worse than the CM sketch based on execution speed while
still having better estimation accuracies. The hypergraph optimizer is still in a
relatively early phase and under development, which may have an impact on the
achieved results. Prior testing has also shown similar results happening [11]. Ad-
ditionally, as highlighted in section 2.1.1 the cost model and functions for utilizing
selectivity factors will play an important role. As an example, if the cost model is
poorly adjusted for a certain type of query, improved statistics might not lead to a
more accurate cost metric. Since the optimizer is still under development, there is
reason to believe that the cost model and functions might still have some of these
challenges.

Figure 4.10, displaying the average estimation error per-predicate type, shows
the largest differences for text column equality and IN-predicate. For both of
these categories, the histogram statistic leads to an estimation error several or-
ders of magnitude larger than the error present with the sketches. The inner
join predicates on the other hand, show a higher inaccuracy for the two smallest
CM-sketches compared to both the other sketches and the histogram. Identifying
categories where different types of statistics perform contrasting may be a promis-
ing start for the development of a hybrid model. The results may indicate that a
combination of a CMM-sketch on columns usually queried by text column equality
or as a part of IN-predicates and histogram statistics on columns often used for
joins/inner joins such as ids can lead to accurate statistics while maintaining a
better space-efficiency.
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4.3.5 Memory Usage

Altering the parameters ϵ or δ will affect the accuracy and maximum error for
estimations, but will also impact the disk space occupied by the sketches. This
is because ϵ and δ are deciding factors for the width and depth of the sketch
respectively. Approaches for calculating theoretical and measured memory usage
are defined in Section 4.2.5. Table 4.4 highlights both the measured memory usage
and theoretical memory usage for the earlier parameters used, for sketches on all
the columns.

Table 4.4: Theoretical and measured memory usage for different parameters of ϵ
and δ on JOB-dataset

ϵ δ Theoretical memory
usage (MB)

Measured memory
usage (MB)

0.000001 0.001 7839 7934.40
0.0001 0.01 56.00 141.70
0.001 0.01 5.601 93.80

Table 4.4 shows that the topmost row with the lowest δ and ϵ values most likely
is not feasible in practice, as both theoretical and measured memory usage is almost
8 GB in size. Incorporating database statistics of these size proportions is probably
unheard of, especially considering the size of the data set itself. Additionally, the
increased estimation accuracy does not have a great impact on performance as
seen by prior results, meaning that the trade-off between size and performance
is not optimal in this case. The other two rows in the table highlight a more
promising disk usage, with a static value of 0.01 for δ and three or four decimal
place accuracy for ϵ having a measured memory usage of 93,80 and 141,70 MB,
respectively. For both cases, the measured memory usage might be slightly large,
but it is reasonable to believe that these numbers can be greatly reduced. First
and foremost, the current implementation is a prototype with an experimental
approach, without a focus on implementing the sketches in an optimal or space-
efficient way. Improvements in the implementation should considerably reduce
the gap between theoretical memory usage and measured memory usage. Later
implementations should additionally include the opportunity of compression when
stored outside of memory. Sketches were also created on all of the columns in
the data set, which is generally not the case for real-world usage. In practice,
such thorough column statistics are usually generated for a selection of interesting
columns. Further testing may experiment with sketches on a limited amount of
columns and the impact on accuracy compared to memory usage.



Chapter 5

Conclusion and Future Work

In this chapter, the experimental results are evaluated along with the experiment
itself. Section 5.1 discuss what the results mean and the impact these have on the
research, including limitations and other eventual drawbacks of the experiments.
Conclusions are drawn in Section 5.2 based on the research questions presented
in Chapter 1. Finally, in Section 5.3, we present work that can be done by fu-
ture researchers extending this topic based on limitations of the experiment and/or
experimental results.
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5.1 Discussion

As seen from the results in Section 4.3 both the count-min and the count-min
mean sketches show promising results when it comes to improving the informa-
tion available to the hypergraph optimizer when making an informed and correct
query plan selection. Results from the tests where the optimizer was injected with
the correct selectivities for the Join Order Benchmark show that the hypergraph
optimizer on a general basis seems to perform better with more precise estimates
although some odd results occur. One could argue that multiple different bench-
marks could have been utilized, but the Join Order Benchmark has been acknowl-
edged as an improvement from previous industry-standard benchmarks, such as
TPC-H, and deemed a good fit for evaluating query optimizers [62]. The sketches
improve execution times for a majority of queries over histograms, but the biggest
improvement is seen when looking at the selectivity estimates. As mentioned pre-
viously, the hypergraph optimizer may not always make better choices although it
has more accurate statistics. This might occur due to several reasons, where one
of them is since the optimizer still is in a state of development, impacting the cost
model or other functions that determine behaviour and plan selection. This makes
the results from the selectivity estimates of the sketches even more promising, as
there is still room for improvements in execution time.

As each query is executed six times, with the first being a warm-up run, the
execution times reported in the results are averages of the five runs preceding the
warm-up. An average of several executions allow for better accuracy and lowers
the impact of a ”malfunctioning” run. One could argue that five runs are too
low and that the impact such a malfunctioning run could have on the specific
result still would be too high. Considering the time and resources available for the
experiment, alongside the fact that the initial testing with more runs done in [11]
showed little to no benefits to accuracy, five runs was a good trade-off between
efficiency and preciseness.

More thorough checks on why the hypergraph optimizer chooses certain query
plans over others when specific information is available to it could have been done
in the experiment, to better determine why the aforementioned oddities in execu-
tion time occur. This was not strictly prioritized due to limitations in resources
and the scope of the thesis. One could also argue for the possible redundancy of
such investigation, as later versions of the hypergraph optimizer might not include
such occurrences - at least not to the same degree.

The experiment as presented in Section 4.2 is simplified in comparison to what
a full implementation of count-min or count-min mean sketches would look like
and does not take into account how updates to the data would be handled. It
is also designed to simulate a MySQL instance that has been running for a while
to fully populate the sketches with all data in all tables, through the table scan
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that is performed previous to the experiment itself. In a real-world scenario, the
population of sketches would happen in the MySQL iterator classes - during table
scans, join iterations, etc. - meaning that sketches may be populated with only
parts of relations. Considering this, the experiment could have been performed
with various fractions of the total amount of data in the sketches to compare
usability. Additionally, since the sketches were only populated using a table scan,
further exploration on exploiting other existing data streams would most likely
require taking into account several other questions. If the data stream does not
include all records, how would one handle requests on missing records? Is the
record missing or has it just not yet been a part of the data stream? What if a
duplicate stream comes along and the sketch is not marked as ”full”, will this lead
to non-existing skew?

Research question 3 (1.2) looks at the alternatives to histograms with regard to
storing statistics from data streams specifically. Several possible structures that
could be used for data stream processing are discussed in Section 2.3, but only
count-min and count-min mean sketches are implemented and tested against his-
tograms in the experiment. This limits the foundation for answering Research
Question 3, as several of the other structures remain untested in this use-case.
Due to limitations in resources available, a selection of able and interesting struc-
tures had to be made. The reasoning for the selection of sketches was explained
in detail in Section 2.5. Another option that was not explicitly explored in this
thesis, was techniques allowing the histogram to be used to store data from a data
stream, which showed promising results in [63].
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5.2 Conclusions

The thesis aims explore the possibility of automatic statistic creation in MySQL
with the intent of improving the performance of the hypergraph optimizer. The
research questions defined in Section 1.2 are revisited and answered in order to
accomplish the goal of the thesis.

Research question 1 How does MySQL’s hypergraph optimizer respond to hav-
ing access to correct statistics?

The effect of correct predicate statistics on MySQL’s hypergraph optimizer
is observable in the results from Section 4.3.1, where the correct selectivities for
the JOB data set are injected. These results are overall promising in terms of
performance, with some caveats to consider. For most of the queries, the execution
time is lower with the injected correct statistics, but some queries do display the
opposite, with an increasing execution time in the presence of the correct statistics.

The complete results highlight that the negative effect is limited to a selec-
tion of the queries, with the execution time of the remaining queries either being
similar or improved compared to histograms or no statistics present. Addition-
ally, as mentioned previously the hypergraph optimizer is still in an early phase
of development [31], with a simplistic cost model and certain limitations that will
affect the behaviour of the optimizer. It is therefore reasonable to expect later
implementations to be even more consistent on correct statistics present.

To summarize, MySQL’s hypergraph optimizer generally responds well to the
presence of correct statistics - with some exceptions - but with an overall trend of
improvements regarding execution times.

Research question 2 How can existing data streams in MySQL be exploited to
create statistics?

Experimental results from Section 4.3.2 and 4.3.3 shows how statistics based
on existing data streams can be used for selectivity estimation in queries. These
experiments use a compact summary data structure in the form of a count-min
or count-min mean sketch that is populated using the basic row iterator present
in a table scan. For simplicity, these sketches were created by forcing an initial
table scan, but these results also open up the possibility of later exploiting other
existing data streams, such as those of a join iterator or a filter.

It is essential that the statistic can represent and/or utilize the data from the
data stream in a sensible way that is helpful to the optimizer. Storing the entire
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data stream gives a good representation of the data, but is inherently pointless
as it requires double the storage, but storing too little information will on the
other hand reduce the benefit of the statistic. These initial results highlight the
usefulness of the CM and CMM sketches and provide promising results in regard
to performance and space efficiency. Section 5.1 highlights some of the drawbacks
of the simplistic implementations, and questions needing to be addressed when
considering other data streams than the table scan. The sketches show promising
results, but exploiting other types of data streams will require adjustments in the
existing implementation.

Research question 3 What are the alternatives to histograms when it comes to
storing statistics from data streams?

Some of the alternatives to storing statistics from data streams are discussed
in Section 2.3 and include sketches, wavelets and samples. The CM and CMM
sketches were selected for the experiments, based on their advantages and areas
of use compared to the other alternatives, as mentioned in Section 3.2. These
sketches provide space efficiency, fast performance, reasonable guarantees for error
bounds and can be used to answer multiplicity queries (point queries) and estimate
join size relations among other things. The experiments showed improvements
in execution time for many of the queries in the JOB dataset, highlighting the
possibility of the sketches as reasonable alternatives. As mentioned in Section 5.1,
there has also been research on techniques allowing histograms to be used as a
tool for storing data from a data stream. Wavelets might also be an interesting
alternative to histograms in MySQL, where previous research in other systems has
featured promising results [64; 65].

Research question 4 How can a combination of sketches and histograms im-
prove the performance of MySQL’s hypergraph optimizer?

The experimental results presented in Section 4.3 show that the count-min and
count-min mean sketches are superior to histograms on point-predicate columns.
This is displayed well when looking at the selectivity estimation errors in Section
4.3.4. Table 4.8 shows that for point predicates, histograms hold up just as well, if
not better than sketches of various sizes. This, along with the fact that the sketches
are somewhat large and occupy a big portion of memory when they are created for
all columns leads us to conclude that a combination of sketches and histograms
would be a prominent solution. Sketches could then be created for point-predicate
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columns, and histograms would be used elsewhere. Not only would this be an
improvement in terms of selectivity estimates, but would also give better space-
to-performance efficiency than the use of sketches exclusively.

Testing a combination of sketches and histograms was not a part of the experi-
ment conducted in this thesis due to time constraints, and will be further discussed
in Section 5.3.

This thesis has presented a novel implementation of the count-min and count-min
mean sketch data structures for estimating data distribution in MySQL. Com-
parisons with histograms on the Join Order Benchmark have shown promising
results in performance, and a vast improvement in selectivity estimation accu-
racy. This increased accuracy is notably prominent for equality predicates on text
columns, with an average estimation error several orders of magnitude lower than
histograms.

Based on the experiments, utilizing the existing data streams in MySQL emerges
as a viable solution in terms of automatic statistics management. As the hyper-
graph optimizer is more reliant on up-to-date statistics due to its more cost-based
approach, it is theoretically better suited to make use of such solutions.
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5.3 Future Work

In this section, we present directions that could be taken when conducting further
research on the topic of exploring the possibility of automatic statistic creation in
MySQL with the intent of improving performance of the hypergraph optimizer. As
the focus of this thesis has been to utilize the existing data streams in MySQL to
generate statistics automatically, we will both suggest work that takes a similar
approach, but also varying directions that have the same ultimate goal.

The obvious suggestion based on the setup of the experiment is to do a full
implementation of count-min or count-min mean sketches in MySQL that are
populated in the iterators. Each time a record passes through the iterator, the
sketch data structure is updated to keep the statistics as up-to-date as possible.
This also requires handling of updates and deletes of records. As per the discussion
in Section 5.1, the experiment conducted in this thesis is simplified and designed
to simulate a MySQL instance that has been running for a while with a sketch
implementation that has been fully populated.

Another way to go in terms of extending the work that is done in this thesis is to
examine other data structures used for data stream processing and compare results
with the results from Section 4.3 and Appendices B & C. Some data structures
that are fit for data stream processing are mentioned in Section 2.3, but there are
also techniques such as the ones presented in [63] that allow histograms to be used
to store data from a data stream.

As mentioned in Section 5.2 and in line with Research Question 4, a combi-
nation of sketches and histograms should be implemented and tested to determine
whether this has any effect on selectivity estimates. Such a solution would result
in the sketches handling point-query estimations while histograms taking the rest.
Further exploration on what types predicates the sketches have a major advantage
over histograms, if any, could also lead to improving this implementation.

Based on the results and the hypergraph optimizer’s current state one should
try to pinpoint why the optimizer fails to improve when having accurate selectivi-
ties on certain queries. We can see that it has a considerable improvement on JOB
query 11a (Table 4.2) with injected selectivity but becomes significantly worse on
11c (Table 4.3). Groups of Join Order Benchmark queries (i.e. 11a - 11d) are
similar in structure and only certain WHERE -clauses are replaced from one to an-
other. The results show several occurrences where queries within a group respond
differently to correct selectivity, opening up the possibility to further determine
when this happens and why.

Another direction for future work is to examine whether the optimizer can
learn from queries that are executed in order to incrementally adjust its selectivity
estimates. Currently, if there are no statistics or indices available for a predicate,
the fallback selectivity used in MySQL’s estimate selectivity.cc is calculated
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based on the number of rows in the table, which often leads to an overestimation.
It would be imaginable that adjusting this number for certain predicates could be
possible in order for the MySQL hypergraph optimizer instance to become more
and more accurate for each query that is executed. A similar approach is taken
when developing the Neo optimizer [66], even though the traditional optimizer
is replaced with a deep neural network. We believe that a ”learning” effect can
be achieved with the hypergraph optimizer too if an adjustment of the estimated
selectivity happened after the selectivity is returned.
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A Injecting Correct Selectivity - Full Results
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Figure A.1: JOB query execution time results between plain hypergraph optimizer,
hypergraph optimizer with histograms on base tables, and hypergraph optimizer
with correct selectivity injected (1/6).
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Figure A.2: JOB query execution time results between plain hypergraph optimizer,
hypergraph optimizer with histograms on base tables, and hypergraph optimizer
with correct selectivity injected (2/6).
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Figure A.3: JOB query execution time results between plain hypergraph optimizer,
hypergraph optimizer with histograms on base tables, and hypergraph optimizer
with correct selectivity injected (3/6).
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Figure A.4: JOB query execution time results between plain hypergraph optimizer,
hypergraph optimizer with histograms on base tables, and hypergraph optimizer
with correct selectivity injected (4/6).
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Figure A.5: JOB query execution time results between plain hypergraph optimizer,
hypergraph optimizer with histograms on base tables, and hypergraph optimizer
with correct selectivity injected (5/6).
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Figure A.6: JOB query execution time results between plain hypergraph optimizer,
hypergraph optimizer with histograms on base tables, and hypergraph optimizer
with correct selectivity injected (6/6).
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B Count-Min Sketch - Full Results
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Figure B.1: JOB query execution times for hypergraph optimizer with histograms
on base tables and hypergraph optimizer with count-min sketches of various sizes
(1/6).
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Figure B.2: JOB query execution times for hypergraph optimizer with histograms
on base tables and hypergraph optimizer with count-min sketches of various sizes
(2/6).
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Figure B.3: JOB query execution times for hypergraph optimizer with histograms
on base tables and hypergraph optimizer with count-min sketches of various sizes
(3/6).
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Figure B.4: JOB query execution times for hypergraph optimizer with histograms
on base tables and hypergraph optimizer with count-min sketches of various sizes
(4/6).
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Figure B.5: JOB query execution times for hypergraph optimizer with histograms
on base tables and hypergraph optimizer with count-min sketches of various sizes
(5/6).
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Figure B.6: JOB query execution times for hypergraph optimizer with histograms
on base tables and hypergraph optimizer with count-min sketches of various sizes
(6/6).
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C Count-Min Mean Sketch - Full Results
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Figure C.1: JOB query execution times comparison between histograms, count-
min sketch and count-min mean sketch (1/6).
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Figure C.2: JOB query execution times comparison between histograms, count-
min sketch and count-min mean sketch (2/6).
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Figure C.3: JOB query execution times comparison between histograms, count-
min sketch and count-min mean sketch (3/6).
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Figure C.4: JOB query execution times comparison between histograms, count-
min sketch and count-min mean sketch (4/6).
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Figure C.5: JOB query execution times comparison between histograms, count-
min sketch and count-min mean sketch (5/6).
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Figure C.6: JOB query execution times comparison between histograms, count-
min sketch and count-min mean sketch (6/6).
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D Injecting Correct Selectivity - Raw Data

Table D.1: Full results from the experiment where cor-
rect selectivity is injected into the hypergraph optimizer.
Execution time given in seconds.

Query w/o hist w/ hist correct sel

2a 2.58853675 2.69676675 2.00926375
2b 2.08080775 38.07224025 1.73027175
2c 2.0032295 0.0662555 1.68844175
2d 3.6966445 3.161599 1.814434
3a 6.742449 8.1684315 1.26032225
3b 6.3150285 7.522327 0.84944075
3c 7.984523 10.696397 3.32574975
5a 2.508009 2.489173 2.36445625
5b 2.34805275 2.252633 2.28487775
5c 3.869021 2.68629525 2.649735
6a 8.4957745 13.8494665 0.16962925
6b 18.4843655 15.85076875 3.28243675
6c 8.223749 4.328338 0.12841725
6d 18.51093675 18.708708 16.4478675
6e 8.25196575 13.8802745 0.172997
6f 29.71459925 29.75479475 16.716101
7a 13.126766 13.88148575 0.79686075
7b 10.73327725 14.77227075 0.74129275
7c 96.470184 94.39113625 80.383847
8a 19.77113625 21.1962555 18.3900055
8b 3.2503945 3.659481 2.366226
8c 58.609154 43.645827 54.2379
8d 43.12644175 18.885254 19.2984495
9a 2.518727 3.707231 4.21251625
9b 2.409987 11.594051 3.94440475
9c 25.4429075 28.91763325 16.41382
9d 66.05356375 65.09944 57.604711
10a 3.63146275 3.453816 3.06198
11a 7.17719275 4.7518925 1.70656725
11b 0.699008 2.5378685 0.20213575
11c 328.7634565 6.7738725 69.26705175
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Table D.1: Full results from the experiment where cor-
rect selectivity is injected into the hypergraph optimizer.
Execution time given in seconds.

Query w/o hist w/ hist correct sel

11d 35.21942875 21.41897925 84.91566725
15a 37.167377 3.95552175 7.059823
15b 0.54780875 0.2842715 0.37202325
15c 272.7584675 18.98529025 1000.087345
15d 367.711999 96.99746575 283.3681665
16a 11.44680275 1.43005575 0.3835555
16b 126.3152055 66.16808075 62.257468
16c 20.06148825 5.92175675 5.34589175
16d 19.1024705 4.8488275 4.129613
17a 98.27308975 48.86463975 40.6133175
17b 160.9077675 160.695851 159.6204175
17c 160.9894367 160.1039987 159.4582862
17d 162.3715385 160.9996547 160.6970997
17e 101.4084663 45.98694075 42.8577035
17f 162.5433955 161.8619682 160.6669907
19a 4.55264025 4.5972645 4.4869465
19b 4.087252 2.0456875 4.0031995
19c 45.43445625 43.698162 43.69360025
19d 893.972948 920.3295277 181.213744
20a 14.15565475 14.11826675 5.5925925
20b 5.18019725 5.216318 2.41922
20c 11.88342675 12.79470025 4.9529625
21a 8.3793975 8.67775125 2.625996
21b 6.542759 6.62233575 1.444413
21c 25.42423525 24.68209925 4.22025225
23a 8.95349925 2.7220665 400.8502742
23b 8.946744 2.60756525 5.564684
23c 28.66044375 7.51796225 1000.359032
24a 34.8406315 72.805419 N/A
24b 19.67539325 1.2776215 584.1497695
27a 9.00323225 6.80409 2.6240095
27b 2.64061525 2.513611 1.8769665
27c 31.64145075 14.66880375 3.96732875
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Table D.1: Full results from the experiment where cor-
rect selectivity is injected into the hypergraph optimizer.
Execution time given in seconds.

Query w/o hist w/ hist correct sel

32a 0.08055775 0.0810145 0.085014
32b 12.3776165 12.3556265 2.96388275
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E Count-Min Sketch - Raw Data

Table E.1: Full results from the experiment where count-
min sketches are used to estimate selectivity. Execution
times given in seconds.

Query CM (0.000001, 0.001) CM (0.0001, 0.01) CM (0.001, 0.01)

2a 2.5650785 2.474683 2.545426
2b 3.17262525 2.99944575 2.5458755
2c 3.5978725 0.11484775 0.1088055
2d 3.8174205 3.12629875 2.53245875
3a 23.63970475 22.35376775 21.553254
3b 15.8976475 15.83384425 16.04752025
3c 19.79431475 25.64060225 24.850627
5a 3.3088655 3.02016025 3.22954575
5b 3.24532525 3.02016025 3.13582
5c 3.606082 20.96851525 3.52443075
6a 0.37446575 0.1996845 0.1934495
6b 3.310659 3.201223 9.7753455
6c 0.33623375 0.16017075 0.155253
6d 16.08609275 16.10441275 21.01561175
6e 0.386614 0.21113075 0.20316175
6f 16.540675 16.45962175 21.48759825
7a 1.2938105 0.8861305 1.014807
7b 1.23441475 0.768178 1.01553875
7c 82.25874 80.151132 81.05602725
8a 21.2210805 18.4090715 18.8877435
8b 3.6756245 3.11780675 3.228798
8c 40.8477855 205.1818402 48.2426155
8d 24.41747225 143.194065 21.5784965
9a 3.24869525 60.65085025 3.5278255
9b 13.849919 19.56620575 12.2632595
9c 17.71699175 36.26010075 30.36576875
9d 37.44019925 34.29839025 67.06318775
10a 3.139556 2.9864655 8.7524834
11a 1.26802325 0.720041 9.693694
11b 0.61392175 0.23512675 0.2123025
11c 3.53482525 26.69191375 35.13661625
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Table E.1: Full results from the experiment where count-
min sketches are used to estimate selectivity. Execution
times given in seconds.

Query CM (0.000001, 0.001) CM (0.0001, 0.01) CM (0.001, 0.01)

11d 25.9075645 26.14517725 36.0898175
15a 26.15991925 27.40795674 29.2971195
15b 1.19421725 0.387972 0.45740324
15c 30.384671 27.5669455 27.126717
15d 30.603499 36.5825885 30.9759984
16a 1.07300725 0.59754774 0.53627824
16b 61.65049275 58.403262 66.7617454
16c 5.574065 5.53633625 11.2886695
16d 4.537524 4.17145875 3.865373
17a 39.850939 19.47687224 32.77629824
17b 174.4110575 14.5762125 26.9708005
17c 174.3011943 14.133 26.1122194
17d 175.5115027 15.89654675 28.0601825
17e 42.513318 39.47130525 49.339469
17f 175.7178545 28.47918724 39.10696025
19a 118.2164578 94.99467974 114.5594114
19b 11.39509225 11.3001855 11.1591355
19c 433.4752872 152.8284164 429.5830762
19d 1000.544122 1000.062502 1000.050788
20a 6.16947025 9.89145625 8.76196325
20b 4.00093275 4.888448 3.75852
20c 2.8316284 6.639118 2.94817374
21a 2.748 1.0350324 1.90374075
21b 2.23 0.7678365 8.9547005
21c 4.4457055 2.115167 27.73550774
23a 9.028374 24.70354475 3.22518974
23b 1.53870125 0.4487005 2.6631954
23c 26.5619855 29.8349695 30.3041984
24a 83.73618725 2.732418 490.7009347
24b 2.33209975 1.1832505 1.1305504
27a 3.8362765 3.40057275 6.2210725
27b 3.2093695 2.753577 2.87742724
27c 4.93580425 3.8000165 9.58638625
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Table E.1: Full results from the experiment where count-
min sketches are used to estimate selectivity. Execution
times given in seconds.

Query CM (0.000001, 0.001) CM (0.0001, 0.01) CM (0.001, 0.01)

32a 0.3539035 0.12001575 2.545426
32b 4.41247625 4.807608 2.5458754
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F Count-Min Mean Sketch - Raw Data

Table F.1: Full results from the experiment where count-
min mean sketches are used for selectivity estimation.
Execution time given in seconds.

Query CMM (0.0001, 0.01) CMM (0.001, 0.01)

2a 1.197671 2.45072925
2b 1.388152 3.1181505
2c 1.6854225 3.43896225
2d 1.7820235 3.69890325
3a 4.88215825 2.7593645
3b 4.07637725 1.7011865
3c 6.94601175 6.598852
5a 3.05010875 3.08916475
5b 3.00358075 2.99686425
5c 3.37660375 3.40726325
6a 0.20835075 0.19673175
6b 3.25473225 3.270626
6c 0.1706815 0.16594675
6d 16.2538145 16.30323175
6e 0.21205 0.20861325
6f 16.47420375 16.54112575
7a 0.7371715 0.96912175
7b 0.717843 0.78762825
7c 132.8966747 80.66908625
8a 20.80986875 20.67298475
8b 3.4904135 3.90589375
8c 352.3121462 38.42666075
8d 320.533047 13.80165
9a 4.75234025 2.670492
9b 3.76353775 2.84001925
9c 30.24026375 16.18769225
9d 63.6688925 59.04935525
10a 2.9378275 2.921202
11a 0.63497875 0.62576775
11b 0.24231 0.21359875
11c 20.53614775 3.02464374
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Table F.1: Full results from the experiment where count-
min mean sketches are used for selectivity estimation.
Execution time given in seconds.

Query CMM (0.0001, 0.01) CMM (0.001, 0.01)

11d 24.79246525 17.445123
15a 24.951208 26.44100024
15b 0.50455925 0.38762174
15c 26.731698 28.12791424
15d 25.022485 25.9797844
16a 0.5408345 0.52151924
16b 62.6908205 62.34864075
16c 5.19604225 5.185538
16d 4.10532575 4.053022
17a 41.2510825 40.83252975
17b 181.410215 179.7245527
17c 181.503286 179.9711144
17d 182.8048305 181.4477162
17e 43.04156875 42.76634175
17f 182.8655517 181.401201
19a 117.1735312 117.9057314
19b 11.2254525 11.2860775
19c 430.946747 435.687544
19d 1000.10052 1000.068411
20a 9.041787 9.07129475
20b 3.80392575 3.82192574
20c 2.93016325 2.98481524
21a 1.50685275 1.46353025
21b 1.053241 0.9601875
21c 2.46161525 2.59177774
23a 426.4736507 1.7320435
23b 0.872163 0.62852
23c 1000.463883 5.38797025
24a 82.899823 82.48641
24b 1.14394625 1.21350575
27a 3.249746 2.639471
27b 82.00266275 2.20942874
27c 3.61531175 3.48180024
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Table F.1: Full results from the experiment where count-
min mean sketches are used for selectivity estimation.
Execution time given in seconds.

Query CMM (0.0001, 0.01) CMM (0.001, 0.01)

32a 0.132668 0.12157
32b 3.7260165 5.62407775
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G Selectivity Estimates - Raw Data
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