
N
TN

U
N

or
w

eg
ia

n 
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n 

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f E
ng

in
ee

rin
g 

Cy
be

rn
et

ic
s

M
as

te
r’s

 th
es

is

Kristian Nilsen

Planning, Scheduling and Control for
Autonomous Passenger Ferry
Operations in Urban Environments

Master’s thesis in Cybernetics and Robotics
Supervisor: Anastasios Lekkas
June 2023





Kristian Nilsen

Planning, Scheduling and Control for
Autonomous Passenger Ferry
Operations in Urban Environments

Master’s thesis in Cybernetics and Robotics
Supervisor: Anastasios Lekkas
June 2023

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Engineering Cybernetics





Planning, Scheduling and Control
for Autonomous Passenger Ferry

Operations in Urban
Environments

Author:

Kristian Nilsen

Master of Science in Cybernetics and Robotics

Submission date: June 2023

Supervisor: Anastasios Lekkas, ITK

Norwegian University of Science and Technology

Department of Engineering Cybernetics





Preface

This master’s thesis is the result of my work during the spring of 2023 at the Nor-

wegian University of Science and Technology (NTNU), under the supervision of

Anastasios Lekkas. The thesis is a summary of my findings exploring how autonom-

ous passenger ferries can be used as an alternative method of transportation, using

the city of Trondheim as an example. Using autonomous ferries in urban envir-

onments has gotten an increased attention lately, and the transportation company

AtB wants to look at the possibility of using this. In this thesis, we have therefore

made a simulation exploring how this can be accomplished. In order to try to utilize

the available ferries most efficiently, we also incorporate a high-level mission planner

using a field of research within Artificial Intelligence (AI) called AI-planning.

The thesis assumes that the reader has prior knowledge of basic control theory,

such as Proportional-Integral-Derivative (PID)-controllers, as well as the basics of

optimization. Background within the use of optimization for control, and modeling

and motion control of marine vessels is beneficial, but relevant notation, methods and

kinematics will be explained. All theory regarding AI-planning needed to understand

the results will be presented.

The main contribution of this thesis is that it shows how a fleet of autonomous ferries

can be used for transportation in the channels in Trondheim. The whole simulation

is made in Python, and is not built on any existing source code. However, the

AI-planning algorithm is taken from GitHub [1]. For optimization, the Python

Application Programming Interface (API) for the open-source tool CasADi is used,

while NumPy and SciPy are used for mathematical operations. Matplotlib is used

for plotting, and the Python module subprocess is used to run the AI-planner from

the simulation.
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Abstract

Most urban areas are in some way connected to waterways because of their historical

importance. However, in modern times the usage of waterways has lost terrain as it

has been perceived to be too costly. With the increased capabilities of autonomous

systems, this trend seems to change again with the introduction of autonomous

passenger ferries. Several pilot projects regarding autonomous ferries have been

launched around the world, and this has sparked the interest of the transportation

company AtB. Trondheim faces a slight population shift as the old harbor area

at Nyhavna is set to be transformed into living spaces, making AtB interested in

exploring new methods of transportation.

The aim of this thesis is to investigate how small autonomous passenger ferries can

be used as a method of transportation in the channels of Trondheim. In order to

do this the thesis presents a simulation of a fleet of ferries. To make the simulation

realistic, the model of an existing vessel called milliAmpere 1 is used, and a control

system for the vessel is made. A stochastic simulation of passengers appearing is also

made, and is based on information provided by AtB. Lastly an Artificial Intelligence

(AI)-planner is used to distribute the ferries efficiently.

By simulating a day of operations for different scenarios it is shown how a fleet of

ferries can handle the expected amount of passengers, with an acceptable traveling

time. However, this requires a vessel with a capacity of at least 10 passengers, and

an operational velocity of around 3m/s. The AI-planner distributed the ferries in a

satisfactory way, but it did not manage to handle more detailed planning problems.

With lower-level actions, redundant parts could have been omitted, which could have

increased efficiency beyond what can be expected with purely predefined routes.

The control system was able to generate sensible trajectories between each port,

and follow them closely. To further develop this project the control system has

to be adjusted to work for the actual vessel that will be used as a ferry. Next,

control problems such as collision avoidance have to be included. Lastly, it would

be interesting to see if a planner could make the system more efficient.
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Sammendrag

De fleste urbane omr̊ader er p̊a en aller annen måte tilknyttet en vannvei, fordi dette

har historisk sett vært viktig. I moderne tid har ikke vannveier blitt brukt like mye

fordi det har vært ansett for å være for kostbart. Med utviklingen av autonome

systemer har denne trenden sett ut til å snu med introduksjonen av autonome pas-

sasjerferger. Flere pilotprosjekter har blitt lansert rundt omkring i verden, noe som

har vekket interessen til transportselskapet AtB. Trondheim st̊ar ovenfor et skifte

i befolkningstetthet ettersom havneomr̊adet Nyhavna skal gjøres om til boenheter.

Dette har gjort at AtB ønsker å se p̊a alternative måter for transport.

Målet for denne avhandlingen er å undersøke hvordan små autonome passasjerfer-

ger kan brukes som en transportmetode i kanalene i Trondheim. For å gjøre dette

presenterer denne avhandlingen en simulering av en flate med ferger. For å gjøre

simuleringen realistisk er det brukt en modell av det eksisterende fartøyet milli-

Ampere 1, og et kontrollsystem tilpasset fartøyet er laget. En stokastisk simulering

av ankommende passasjerer er ogs̊a laget, og er bygd p̊a informasjon fra AtB. Til

slutt er en Kunstig Intelligens (KI)-planlegger brukt for å fordele fergene effektivt.

Ved å simulere en dag i bruk for ulike scenarioer blir det vist at fergene kan h̊andtere

den forventede mengden med passasjerer, med en akseptabel reisetid. Samtidig kre-

ver dette et fartøy som har plass til minst 10 passasjerer og har en operativ hastighet

p̊a rundt 3m/s. KI-planleggeren fordelte fergene p̊a en tilfredsstillende m̊ate, men

klarte ikke å h̊andtere alternative formuleringer av planleggingsproblemet. Dette

kunne ha økt effektiviteten utover det som kan forventes med rene predefinerte

ruter. Kontrollsystemet klarte å generere fornuftige baner, og følge dem tett. For

å videreføre prosjektet må kontrollsystemet justeres for å virke for det fartøyet som

faktisk vil bli brukt som ferge. Det neste vil være å inkludere kontrollproblemer som

kollisjonsunng̊aelse. Til slutt ville det vært interessant å se om en planlegger kan

gjøre systemet enda mer effektivt.

vii





Table of Contents

Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

Sammendrag . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv

List of Acronyms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvii

List of Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xix

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Motivation and Background . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Past Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Objectives and Contributions . . . . . . . . . . . . . . . . . . . . . . 4

1.4 Thesis Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1 AI-Planning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Vessel Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3 Optimal Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.1 Map and Passenger Distribution . . . . . . . . . . . . . . . . . . . . . 16

3.2 Planner . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.3 Plan Delegator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.4 Plan Executor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.5 Task Interpreter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.6 Optimal Trajectory Planning . . . . . . . . . . . . . . . . . . . . . . 25

ix



3.7 Trajectory-Tracking DP Controller . . . . . . . . . . . . . . . . . . . 29

3.8 Thrust Allocation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4 Results and Discussions . . . . . . . . . . . . . . . . . . . . . . . . 33

4.1 Passenger Handling in Different Scenarios Throughout a Day . . . . . 33

4.2 System Performance During the Expected Busiest Hours . . . . . . . 47

4.3 Control System Performance During a Single Trip . . . . . . . . . . . 57

4.4 Limitations of AI-Planning . . . . . . . . . . . . . . . . . . . . . . . . 64

5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

Appendix A milliAmpere 1 Characteristics and Parameters . . . . 79

Appendix B Model Used in Optimal Control . . . . . . . . . . . . . 81

Appendix C Weights Used in Thrust Allocation . . . . . . . . . . . 83

Appendix D Timetable . . . . . . . . . . . . . . . . . . . . . . . . . . 84

Appendix E Domain File . . . . . . . . . . . . . . . . . . . . . . . . . 87

x



List of Figures

1.1 milliAmpere 1 (Photo credit: Kai T. Dragland [64]). . . . . . . . . . . 5

2.1 An illustration of the six DOF using the SNAME notation, taken from

the Handbook of Marine Craft, Hydrodynamics and Motion Control

by Thor I. Fossen [76]. . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 An example of a vessel position with respect to the NED reference

frame. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3 Thruster configuration of milliAmpere 1, taken from Control alloca-

tion for double-ended ferries with full-scale experimental results [63]. . 13

3.1 Overview of the system. The vessel model is presented in Section 2.2.3,

and the control block is expanded in Figure 3.2. . . . . . . . . . . . . 17

3.2 An overview of the control system of a single vessel. This is an ex-

pansion of the control block in Figure 3.1. . . . . . . . . . . . . . . . 17

3.3 A map of Trondheim taken from ArcGIS. Marked to the North is the

port for Nyhavna, to the west is Trondheim central station (Trond-

heim S) and in the middle is Solsiden. . . . . . . . . . . . . . . . . . . 18

3.4 Distribution of passengers throughout the day. Provided by AtB. . . 20

3.5 An illustration of the timetable coefficient, tt, used to push the ex-

pected amount of people towards the departure time denoted dt. It

goes from 0.1 to 1.9, which is symmetrical around 1. This means that

the total amount of expected passengers is unchanged. . . . . . . . . 21

3.6 An illustration of a convex area. The black boxes are static obstacles.

The orange polygon is the convex area, where it is safe to be within.

The blue rectangle is the vessel, and the dashed line around it is the

vessel with some margin. The green rectangle is the desired pose of

the vessel. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.1 The likelihood of different numbers of passengers for an hour with an

average expected number of passengers of 70, and a variance of σ2 = 72. 35

4.2 Number of passengers per hour for the first run of scenario 1 in Table 4.1. 36

xi



4.3 Average waiting time per hour for the first run of scenario 1 in

Table 4.1. The waiting time includes the time spent on the ferry

as well. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.4 How many people that are waiting at each port to take each trip every

minute for the first run of scenario 1 in Table 4.1. . . . . . . . . . . . 38

4.5 How many passengers each ferry has onboard for every minute for the

first run of scenario 1 in Table 4.1. . . . . . . . . . . . . . . . . . . . 39

4.6 Number of passengers per hour for the first run of scenario 2 in Table 4.1. 41

4.7 Average waiting time per hour for the first run of scenario 2 in

Table 4.1. The waiting time includes the time spent on the ferry

as well. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.8 How many passengers each ferry has onboard for every minute for the

first run of scenario 2 in Table 4.1. . . . . . . . . . . . . . . . . . . . 42

4.9 Average waiting time per hour for the first run of scenario 3 in

Table 4.1. The waiting time includes the time spent on the ferry

as well. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.10 How many passengers each ferry has onboard for every minute for the

first run of scenario 3 in Table 4.1. . . . . . . . . . . . . . . . . . . . 45

4.11 How many passengers each ferry has onboard for every minute for the

first run of scenario 4 in Table 4.1. . . . . . . . . . . . . . . . . . . . 46

4.12 How many passengers each ferry has onboard for every minute for the

first run of scenario 5 in Table 4.1. . . . . . . . . . . . . . . . . . . . 48

4.13 Movement of the two ferries in scenario 1 in Table 4.1 between 15:00

and 17:00. Ferry 1 is v1 and ferry 2 is v2. The locations between the

ports indicate that the ferries are traveling between the ports. . . . . 50

4.14 Passengers waiting at the different ports divided by their wanted des-

tination between 15:00 and 17:00 for scenario 1 in Table 4.1. . . . . . 51

4.15 Passengers onboard each ferry between 15:00 and 17:00 for scenario

1 in Table 4.1. Ferry 1 is v1 and ferry 2 is v2. . . . . . . . . . . . . . 52

4.16 Movement of the three ferries in scenario 2 in Table 4.1 between 15:00

and 17:00. Ferry 1 is v1, ferry 2 is v2 and ferry 3 is v3. The locations

between the ports indicate that the ferries are traveling between the

ports. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.17 Passengers waiting at the different ports divided by their wanted des-

tination between 15:00 and 17:00 for scenario 2 in Table 4.1. . . . . . 56

4.18 Passengers onboard each ferry between 15:00 and 17:00 for scenario

2 in Table 4.1. Ferry 1 is v1, ferry 2 is v2 and ferry 3 is v3. . . . . . . 57

xii



4.19 Overview of a trip between Nyhavna and Trondheim S. The map is

slightly skewed in some places because of the earth’s curvature. The

vessel is plotted as a rectangle every 10s. . . . . . . . . . . . . . . . . 58

4.20 The first 51s of the trip from Nyhavna to Trondheim S, shown in

Figure 4.19. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.21 The surge and sway velocity of the vessel for the trip from Nyhavna

to Trondheim S, shown in Figure 4.19. . . . . . . . . . . . . . . . . . 60

4.22 The yaw and yaw rate of the vessel for the trip from Nyhavna to

Trondheim S, shown in Figure 4.19. . . . . . . . . . . . . . . . . . . . 61

4.23 The thrust from each motor during the trip from Nyhavna to Trond-

heim S, shown in Figure 4.19. . . . . . . . . . . . . . . . . . . . . . . 62

4.24 The angles of the azimuth thrusters, as shown in Figure 2.3, during

the trip from Nyhavna to Trondheim S, shown in Figure 4.19. . . . . 63

4.25 The decomposed forces from the front thruster during the trip from

Nyhavna to Trondheim S, shown in Figure 4.19. . . . . . . . . . . . . 64

4.26 The decomposed forces from the back thruster during the trip from

Nyhavna to Trondheim S, shown in Figure 4.19. . . . . . . . . . . . . 65

4.27 An illustration of limiting factors when using AI-planning. The figure

is made in collaboration with Øystein Solbø, who has faced similar

problems [81]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

xiii





List of Tables

2.1 The SNAME notation used to describe the state of a marine vessel. . 11

3.1 A guess on how passengers will be distributed among the possible

trips in the morning rush (7:00-9:00), evening rush (14:00-17:00) and

the rest of the day. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.1 The different scenarios we look at. AtB expects around 700 passengers

a day. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.2 The number of passengers, average waiting time and vessel usage for

the first scenario in Table 4.1. . . . . . . . . . . . . . . . . . . . . . . 35

4.3 The number of passengers, average waiting time and vessel usage for

the second scenario in Table 4.1. . . . . . . . . . . . . . . . . . . . . . 40

4.4 The number of passengers, average waiting time and vessel usage for

the third scenario in Table 4.1. . . . . . . . . . . . . . . . . . . . . . . 43

4.5 The number of passengers, average waiting time and vessel usage for

the fourth scenario in Table 4.1. . . . . . . . . . . . . . . . . . . . . . 45

4.6 The number of passengers, average waiting time and vessel usage for

the fifth scenario in Table 4.1. . . . . . . . . . . . . . . . . . . . . . . 47

A.1 Characteristics of milliAmpere 1 [63, 77]. In this thesis we have used

Tmax = 1500N . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

A.2 Parameters for the 3-DOF model of milliAmpere 1 introduced in Sec-

tion 2.2.3 [77]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

C.1 Weights used in thrust allocation. . . . . . . . . . . . . . . . . . . . . 83

D.1 Ferry timetable from 05:22 to 07:39. . . . . . . . . . . . . . . . . . . . 84

D.2 Ferry timetable from 07:34 to 14:59. . . . . . . . . . . . . . . . . . . . 85

D.3 Ferry timetable from 14:54 to 00:07. . . . . . . . . . . . . . . . . . . . 86

xv





List of Acronyms

NTNU Norwegian University of Science and Technology . . . . . . . . . . . 1

AI Artificial Intelligence . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

STRIPS Stanford Research Institute Problem Solver . . . . . . . . . . . . . 2

POPF Partial Order Planning Forwards . . . . . . . . . . . . . . . . . . . . 2

OPTIC Optimising Preferences and Time-Dependent Costs . . . . . . . . . . 2

AUV Autonomous Underwater Vehicle . . . . . . . . . . . . . . . . . . . . 2

MAV Micro Aerial Vehicle . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

UAV Unmanned Aerial Vehicle . . . . . . . . . . . . . . . . . . . . . . . . 3

GA+TP Goal Allocation and Temporal Planning . . . . . . . . . . . . . . . 3

DHRTA Decentralised Heterogeneous Robot TaskAllocator . . . . . . . . . . 3

ASV Autonomous Surface Vehicle . . . . . . . . . . . . . . . . . . . . . . . 3

MIP Mixed-Integer Programming . . . . . . . . . . . . . . . . . . . . . . . 3

MPC Model Predictive Control . . . . . . . . . . . . . . . . . . . . . . . . 3

DP Dynamic Positioning . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

PID Proportional-Integral-Derivative . . . . . . . . . . . . . . . . . . . . . 3

OCP Optimal Control Problem . . . . . . . . . . . . . . . . . . . . . . . . 5

PDDL Planning Domain Definition Language . . . . . . . . . . . . . . . . . 6

EHC Enforced Hill-Climbing . . . . . . . . . . . . . . . . . . . . . . . . . . 8

FF Fast Forward . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

LP Linear Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

SNAME Society of Naval Architects and Marine Engineers . . . . . . . . . . 10

DOF Degrees of Freedom . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

NED North, East, Down . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

xvii





List of Symbols

η Position and Euler angle vector

ν Linear and angular velocity vector

τ Forces on vessel from actuators

f Decomposed force vector

u Input to vessel actuators

x State vector

ψ Heading/yaw

N Yaw moment

r Yaw rate

u Surge

v Sway

X Surge force

x North position in the NED-frame

Y Sway force

y East position in the NED-frame

xix





Chapter 1

Introduction

1.1 Motivation and Background

In recent years there has been a lot of interest in smart cities [2], which are cities that

use information and technology to make themselves more livable. One major part

of a smart city is to make transportation both more efficient and less polluting. A

solution to this is using electric autonomous ferries, which has gotten an increased

amount of attention lately [3]. Most urban areas are in some way connected to

waterways, but in modern times these have been utilized less because of how costly it

has been [4]. Small ferries without a crew, or with limited need for human interaction

mean that this is no longer an issue.

There have been several projects in the last years using autonomy for ferries. Already

in 2018 the car-ferry Falco, made by Rolls-Royce Marine (now part of Kongsberg

Gruppen), was the first to perform a fully autonomous transit, outside of Turku in

Finland [5]. The same year ABB demonstrated the use of autonomy for a passenger

ferry outside of the Helsinki harbor [6]. Both these projects were tested outside

of regular service, but in 2020 Kongsberg Maritime started using fully automatic

control for the Bastø Fosen VI ferry, which is a passenger ferry doing regular routes

[7]. An ongoing small passenger ferry project is the milliAmpere project developed

at Norwegian University of Science and Technology (NTNU). This project resulted

in the company Zeabuz, which had trial missions in Trondheim in 2022 [8]. In the

summer of 2023, Torghatten and Brødrene Aa will launch a fully autonomous ferry

service in Stockholm using the technology provided by Zeabuz. In the beginning

the ferry will always have a captain, but eventually the ferry will only be monitored

from land [9, 10]. Another project is the Roboat project in Amsterdam, which aims

1



to make small autonomous vessels able to handle tasks like passenger transportation

and rubbish collection [11].

Trondheim is a city with a river and a channel running through the city. According

to Trondheim Kommune a part of the city, called Nyhavna, is set to be transformed

from a harbor area to living spaces [12]. There is a single road connecting this part

of town to the city center, and it does not have the capacity to handle the increased

traffic. Therefore, the transportation company AtB wants to look at the possibility

of using small autonomous passenger ferries as an alternative to cars and buses,

since the western side of Nyhavna borders the waterways of Trondheim.

While manned ferries and buses are limited by work shifts of the personnel, an

autonomous ferry can wait dormant until it is needed. This presents an opportunity,

where, for example, two ferries can follow predefined routes, while a third ferry waits

and is ready to handle extra needed capacity. It can also take over a route as soon as

another ferry gets into some sort of trouble. Autonomy can also make the recharging

of ferries more seamless. When an active ferry needs recharging, a standby ferry can

already be en route to take over for this ferry. These kinds of intelligent decisions

can be handled by a high-level mission planner such as an Artificial Intelligence (AI)-

planner. Even though such high-level planning is an important part of autonomy,

it has received less attention than control and navigation [13].

1.2 Past Work

There have been developed a number of AI-planning methods, also called automated

planning methods [14]. Already in 1971 the first AI-planning algorithm, called the

Stanford Research Institute Problem Solver (STRIPS), was developed and tested on

a mobile robot operating in a controlled environment [15]. Since then, the field of AI-

planning has developed a lot. One area that has benefited from automated planning

is space exploration [16, 17], where signals have significant time delays. This leads

to operators not being able to control everything, and automatic solutions become

necessary.

Unlike STRIPS, some of the newer methods can handle temporal actions and numeric-

fluents, meaning that every action has a duration and can modify numeric variables.

Two of the most popular planners among these newer methods are Partial Order

Planning Forwards (POPF) [18] and its successor Optimising Preferences and Time-

Dependent Costs (OPTIC) [19]. These planners have been used in real missions for

Autonomous Underwater Vehicle (AUV) [20, 21], Micro Aerial Vehicle (MAV) [22]
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and Unmanned Aerial Vehicle (UAV) [23]. Even newer approaches have found that

combining several planners into portfolios [24, 25] makes more robust planners. Us-

ing AI-planners with temporal actions for a fleet of cooperative agents is an ongoing

research area [26]. Some have used POPF [27], while others have come up with

methods specialized for multi-agent purposes [28].

In marine applications AI-planning has mainly been used for environment sampling

missions [29, 30, 31]. Planners made specifically for mission planning for a fleet

of AUVs includes Goal Allocation and Temporal Planning (GA+TP) [32], and

Decentralised Heterogeneous Robot TaskAllocator (DHRTA) [33]. These planners

combine temporal planning with a goal distribution scheme. Using AI-planning for

Autonomous Surface Vehicle (ASV) has not gotten the same attention, but it has

been used for an autonomous container ship [13].

Another way to perform high-level mission planning is to use optimization, where

the problem is modeled using Mixed-Integer Programming (MIP). This has been

done for a single UAV [34], a fleet of UAVs [35], and military air missions [36]. It is

also possible to use more classical algorithms, or newer variations of these, such as

the multiple traveling salesman problem [37].

The lower level control hierarchy used in this thesis is described further in Section 1.3

and Chapter 3. At the top, there is a trajectory planner, which is used for both

docking and transit. Until recent years, research on automatic docking has been

limited. Some earlier papers use target tracking [38] or artificial potential fields

[39]. These papers do not take the vessel dynamics into account and their use is

quite limited. Some articles take the vessel dynamics into account, and use artificial

neural networks [40, 41] or Model Predictive Control (MPC) [42] to control the

vessel. However, these methods do not include collision avoidance with the harbor

layout. This can be taken into account by modeling the harbor as a convex area

[43, 44], such as has been done for the milliAmpere 1 [45].

In harbors with multiple obstacles a single convex set is impossible to find. There-

fore, some papers have included maneuvering in such complex environments [46, 47],

as done for the milliAmpere 1 [48]. This is done by using graph searching methods

that can find a proper path [49, 50]. There are several other path planning meth-

ods for transit [51], such as Voronoi diagrams [52], cell decomposition [53] or deep

reinforcement learning [54].

In the middle of the control hierarchy is a Dynamic Positioning (DP)-controller

used to track the planned trajectory. The simplest method for DP is a simple

Proportional-Integral-Derivative (PID) controller with feedforward terms [55, 44].
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These methods do not require a lot of computation, but do not use the vessel model

explicitly either. More complex methods use MPC [56], nonlinear MPC [57] or

backstepping [58], and thereby use the model explicitly. However, they require more

computations.

At the bottom of the control hierarchy lies the thrust allocation. There are several

ways to do this [59, 60], but the most usual ways are the Pseudo-inverse method

[61] or a variation of the Quadratic Programming method [62]. The simplest way is

the Pseudo-inverse method which is simple matrix operations. This yields low com-

putational complexity, but an unconstrained solution. A Quadratic Programming

method can include constraints, but its computational complexity is much higher.

The model constraints also have to be linearized, which can be limiting. For the

milliAmpere 1, an effective nonlinear optimization problem is proposed because of

the nonlinear nature of the thrusters [63].

1.3 Objectives and Contributions

The primary objective of this thesis is to see if it is possible to use a fleet of small

autonomous passenger ferries as an alternative to cars and buses when traveling to

and from Nyhavna in Trondheim. In order to do this, a simulation is made where a

number of passengers appear throughout the day, wanting to use the service. Then,

a system consisting of a central planner and several vessels is made to transport the

passengers. Each vessel has its own control system. The system hierarchy is further

described in Chapter 3.

To make the simulation realistic, a trajectory planner, a trajectory tracker and a

thrust allocation algorithm are implemented as described in Section 3.6, Section 3.7

and Section 3.8. The milliAmpere 1 model is used as a vessel model since there is

published a number of articles about the vessel and its capabilities [45]. A picture

of the milliAmpere 1 is shown in Figure 1.1. This combination gives realistic move-

ments, and a realistic amount of time the vessel uses when traveling between the

ports. Major aspects like collision avoidance, sensor uncertainty and environmental

forces are omitted for simplicity.

The secondary objective is to see how AI-planning can make intelligent decisions as

a high-level mission planner. In order to reach this objective, an AI-planner is used

to delegate different tasks, such as following a route connected to a timetable. In

addition, the high-level actions are translated into control actions by dividing the

actions into control tasks.
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Figure 1.1: milliAmpere 1 (Photo credit: Kai T. Dragland [64]).

1.4 Thesis Overview

This thesis is divided into five chapters, starting with some necessary background

in Chapter 2. This includes an introduction to AI-planning, how to make an AI-

planning problem, and how the AI-planner OPTIC solves a problem. In addition, the

background chapter introduces theory about marine vessel models, and the model

we use for milliAmpere 1. Lastly, there are some theory about how to model and

solve an Optimal Control Problem (OCP). In Chapter 3 the system architecture

and every single module in it is presented along with the world the system operates

within. At the top of the system architecture is an AI-planner, and at the bottom

is the control system for each vessel. A control system consists of a trajectory

planner based on an OCP, a trajectory tracker based on DP, and a thrust allocation

scheme based on nonlinear optimization. How the planner is communicating with the

control system is also described. How the system performs is explored in Chapter 4.

First, we look at the average waiting time for passengers and distribution of the

ferries throughout the day for five different scenarios. Next, we look closer at what

happens in the evening rush for two of the scenarios. Then we look at how the

control system performs during a single trip. Lastly, we discuss some challenges

encountered when using AI-planning. In Chapter 5 the thesis is concluded, and

future work is described.
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Chapter 2

Background

In this chapter the necessary theory about AI-planning, as well as how we model

the kinematics of a maritime vessel is presented. The model we use for milliAmpere

1 is also presented. Lastly, we look at how an OCP can be modeled and how it can

be solved with a direct collocation method.

2.1 AI-Planning

AI-planning, or automated planning, is a branch of AI that consists of algorithms

that do deliberate planning based on some sort of reasoning [14]. In this case, a

plan is an ordered sequence of actions that takes the system from an initial state

to a state where some goals are satisfied. The earliest AI-planner is the STRIPS

planner [15] which models the problem as a search tree, where every reachable state

is a node. The A-star algorithm [65] is then used to search the tree. In this case,

the reasoning is simply to find the shortest plan possible with a guided search.

There are different ways to model a planning problem. One of the most common

ways to do it is with the Planning Domain Definition Language (PDDL) [14], which

is presented in Section 2.1.1. It can also be done as a task network [14], or as a

proposition graph such as in Graphplan [66].

As of today, there has been developed a lot of different planners. None of them

supports all requirements (which are explained in Section 2.1.1), but in this thesis

the OPTIC planner is chosen. The necessary theory behind OPTIC is presented in

Section 2.1.2, and the reason for choosing it is presented in Section 4.4.
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2.1.1 PDDL

To model a planning problem we use the PDDL. There is a couple of different

versions, but for our purpose we use PDDL2.1 [67]. A planner needs two PDDL

documents to produce a plan. The first one is the domain file where the capabilities

of the system are described, while the second is the problem file where a specific

problem is described. The domain file we use is presented in Appendix E.

In a domain file we find requirements, types, predicates, functions and actions. The

requirements are everything the planner needs to be able to handle to solve the

problem. Several requirements exist, but for our case we need ”durative-actions”,

which means that every action has a time duration, and ”numeric-fluents”, which

means that we can use numbers. The types defined in the domain file are what

kinds of objects that can exist. Examples of this could be ”vessel” and ”location”.

Predicates are simple facts about the world that are either true or false. This can, for

example, be that a specific vessel is at a specified location. Since we use ”numeric-

fluents” we can also use functions, which is a different way to state a fact about

the world. A function in PDDL is a number that can be connected to an object.

As an example, a function can say how many passengers a vessel has onboard.

While predicates can be set to true or false by actions, functions can be increased or

decreased by a number, or assigned to a number by actions. The number can either

be constant or a combination of functions using addition, subtraction, multiplication

or division.

An action takes a set of parameters and has preconditions and effects. Since we use

”durative-actions” the actions also have a duration. A typical action is the move

action, where a vessel moves between two locations. In this case the parameters are

the vessel and the two locations. A condition for this action is that the vessel is at

the location it travels from. An effect of the action is that the vessel is now at the

location it travels to. When using ”numeric-fluents” can conditions also be that a

function has to be greater than, less than or equal to a number. At the same time,

effects can be an increase, decrease or assignment of a function. The duration of an

action can be a constant number, a function or a combination of functions. Another

difference when using ”durative-actions” is that the conditions can either be at the

start, the end or overall. The effects can also either happen at the start or at the

end. Looking at the move action, a condition at the start is still that the vessel is at

the start location. An end condition can be that the location the vessel moves to is

available, while an overall condition can be that the vessel is undocked. An effect at

the beginning is that the vessel is no longer at the start location and an end effect

7



is that the vessel is at the end location.

The problem file consists of objects, the initial state, the goals and since we use

”numeric-fluents” there is also a metric. Objects are the specification of types. As

an example, there can be two objects, ”v1” and ”v2”, of the type vessel. The

initial state is all predicates that are true in the initial state and all initial values

of functions. The goal is all predicates that have to be true in an end state, and

what values selected functions must be equal to, greater than or less than. Lastly,

the metric is what the planner should minimize or maximize. This is either a single

function or a combination of functions. If a metric is unspecified, the planner only

attempts to find a plan with the shortest total duration. If it is specified, it tries to

optimize the metric, as well as the total duration.

2.1.2 OPTIC and Its Predecessors

OPTIC [19] is an AI-planning algorithm that is an extension of another AI-planning

algorithm called POPF [18]. POPF is again based on the AI-planner COLIN [68],

which is based on CRIKEY3 [69], a newer version of CRIKEY [70]. In addition,

POPF has two updates, namely Stochastic-POPF [71] and POPF2 [72], where

OPTIC is based on POPF2. Since OPTIC uses concepts inherited all the way

from CRIKEY, this subsection will explain some relevant concepts from all the pre-

decessors of OPTIC, as well as what is new in OPTIC.

At the heart of AI-planning we find search techniques. CRIKEY introduced a search

technique based on Enforced Hill-Climbing (EHC), introduced in the non-temporal

AI-planner Fast Forward (FF) [73]. EHC sets the initial state as the current state,

and then performs a search to find a state with a lower heuristic than the current

state. The found state is set to the current state, and a new search is performed. In

FF the search is a breadth-first search, while CRIKEY uses a best-first search.

As opposed to STRIPS, where the user has to find a heuristic function, FF makes

a heuristic function automatically. To do this something called relaxed Graphplan

is used as a reachability analysis. The first step in Graphplan is to expand a graph

with reachable facts, here called propositions. In the first layer all propositions of

the initial state are contained, in the next layer are all propositions possible to reach

with one action, and so on [66]. In relaxed Graphplan it is not included that actions

also delete propositions, which makes the expansion faster, and it means that the

distance to the goals in the graph is an absolute minimum. In Metric-FF it is shown

how this graph can include numerical values as well [74], and this is also used by
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CRIKEY.

To use non-temporal search, CRIKEY divides temporal actions into something called

snap-actions. This means that every action is split into a start action and an end

action. The duration, d, of an action is enforced by ensuring that the end action

is performed exactly at d time after the start action. In CRIKEY3 the duration is

also used explicitly in relaxed Graphplan, as started actions are added as part of the

state. This also resulted in the layers of the proposition graph having a timestamp,

and the distance to the goals being described in time and not the number of actions.

Continuous effects on variables were supported from COLIN, where a Linear Pro-

gramming (LP) solver is used to find a lower and upper bound on the numerical

variables that are added to the proposition graph. The LP solver is also used to find

the earliest start time an action can have, when dependent on a continuous variable.

To reduce something called early commitment, POPF makes partial-order plans, as

opposed to total-order plans. Early commitment often happens in forward search

as actions are chosen one at a time when searching toward the goal. This can lead

to bad choices early on. In a partial order plan, the actions are not in a strict total

order unless they have to. This can be intuitive in temporal planning as plans do

not have to be a sequence, but rather independent actions with a start time and a

duration. To do this, POPF adds the most recent achievers and deleters of every fact

in a state, as well as the most recent changers of a numerical variable. An LP solver

is then used to find the earliest timestamp this state can have in the proposition

graph, and makes sure it is consistent with all temporal and numerical constraints.

In Stochastic-POPF two important functionalities are added. The first is the addi-

tion of a metric in the heuristic function, which was previously only the time to all

goals were fulfilled. Now, the cost of each action with respect to change in the met-

ric is added as well, by not including states reachable with a too large cost. What

is considered a too large cost leads to the next change, which is the introduction

of something called Any-Time Search. Just like Metric-FF, POPF will attempt to

find a solution with weighted A* (WA*) from the initial state if EHC fails. WA*

is a version of A* where a bias is used to prioritize states that are closer to the

goal. In Stochastic-POPF the Any-Time search works by first performing a EHC

search to try to find a solution. Regardless of the resulting solution, a WA* search

is performed, where states that increase the cost above the previously lowest cost

are not taken into account. When a new solution is found it is presented, and a new

WA* search is performed. The search is stopped for good when all states have been

visited.

9



Even though POPF is able to build partial-ordered plans with facts, the ordering of

changes in numerical variables is still total. However, in POPF2 the state repres-

entation is changed to include a queue of desired effects on each variable. What is

considered desirable is based on how the variable appears in the problem. If goals

or preconditions of actions require that a variable is above a constant, higher values

of the variable are desired. The queue is then used to check when a precondition

for an action is met, as opposed to adding the action after the variable is no longer

changed.

While POPF tries to find the shortest plan, OPTIC also facilitates the use of pref-

erences. This can be goals or preconditions that are preferable to be satisfied, but

do not have to be. It can also be that it is preferable that one fact become true after

another. If the preference is not met, a user-defined cost is added to the total cost of

a plan. In addition, OPTIC aims to support time-dependent goals, where being late

to meet a deadline has an increasing cost. In order to achieve this, an automaton

is made for each preference to track its status. The automaton’s position is then

added to the states in the problem. A dummy step is added to the plan every time

the preconditions of a transition in the automaton are met. A MIP solver is then

used to encode information about the dummy steps. This is done to minimize the

total cost by finding the optimal timestamps of the dummy steps.

2.2 Vessel Modeling

This section presents the Society of Naval Architects and Marine Engineers (SNAME)[75]

notation used to describe the state of a marine vessel. The general kinematic equa-

tions used for marine vessels, based on the theory from the Handbook of Marine

Craft, Hydrodynamics and Motion Control by Thor I. Fossen [76], will then be

presented. Lastly, the model we use for milliAmpere 1 is presented.

2.2.1 SNAME Notation

The SNAME notation is used to describe the state of a marine vessel, and an

overview of the symbols used is shown in Table 2.1. In Figure 2.1 the different

Degrees of Freedom (DOF) are shown. The positions and Euler angles are given

with respect to the North, East, Down (NED) reference frame, which is shown in

Figure 2.2. To denote the state of the vessel we use x =
[
η⊤ ν⊤

]⊤
, where η

contains positions and Euler angles, and ν contains velocities. In calm sea, heave,
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Table 2.1: The SNAME notation used to describe the state of a marine vessel.

DOF
Forces and
moments

Linear and
angular velocities

Positions and
Euler angles

surge X u x
sway Y v y
heave Z w z
roll K p ϕ
pitch M q θ
yaw N r ψ

Figure 2.1: An illustration of the six DOF using the SNAME notation, taken from
the Handbook of Marine Craft, Hydrodynamics and Motion Control by Thor I.
Fossen [76].

roll and pitch can be approximated to zero. This is called the 3-DOF model, and is

a useful simplification we will use.

2.2.2 Vessel Kinematics

The general kinematic equations for the 3-DOF model are given in Equation (2.1).

R is the rotation matrix from body to NED, while M is the inertia matrix, C is the

Coriolis matrix, and D is the dampening matrix. τ is the input forces vector given

by the vessel’s actuators, and τ env is the forces on the vessel from the environment,
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Figure 2.2: An example of a vessel position with respect to the NED reference frame.

such as wind and waves.

η̇ = R (ψ)ν (2.1a)

Mν̇ +C (ν)ν +D (ν)ν = τ + τ env (2.1b)

2.2.3 Vessel Model milliAmpere 1

The model we use for milliAmpere 1 is the surge-decoupled model found in Op-

timization Based System Identification for the milliAmpere Ferry by Anders Aglen

Pedersen [77]. It follows Equation (2.1), and the matrices are given in Equation (2.2),

where the elements in D and all parameters are given in Appendix A.

M =

m11 0 0

0 m22 m23

0 m32 m33

 (2.2a)

C =

 0 0 −m22v −m23r

0 0 m11u

m22v +m23r −m11u 0

 (2.2b)
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Figure 2.3: Thruster configuration of milliAmpere 1, taken from Control allocation
for double-ended ferries with full-scale experimental results [63].

D =

d11 (ν) 0 0

0 d22 (ν) d23 (ν)

0 d32 (ν) d33 (ν)

 (2.2c)

The milliAmpere 1 has two azimuth thrusters located Lx = 1.8m from the vessel’s

center. An illustration is shown in Figure 2.3. Each thruster can move around

360◦, and has a maximum thrust of Tmax = 500N . Since this makes the vessel

too slow for our case Tmax = 1500N is used instead. Because it takes some time

for the azimuth thrusters to rotate, the front thruster is only used backward and

sideways. This means that the angle α1, which can be seen in Figure 2.3, is limited

to
[
−π,−π

2

]
∪
[
π
2
, π
]
. Likewise, the back thruster is not used backward, such that

α2 ∈
[
−π

2
, π
2

]
. The input vector to the vessel is denoted u =

[
T1 T2 α1 α2

]⊤
.

The forces from the two thrusters, F1 and F2, can be decomposed into F1,x, F1,y, F2,x

and F2,y, as can be seen in Figure 2.3. This gives us the decomposed force vector

f =
[
F1,x F1,y F2,x F2,y

]⊤
. Furthermore, f relates to the input force vector

τ = Bf , where B is given in Equation (2.3).

B =

1 0 1 0

0 1 0 1

0 Lx 0 −Lx

 (2.3)

2.3 Optimal Control

Optimal control is used to find an optimal trajectory and control sequence for a

vehicle, by using mathematical optimization. In this section, we will first look at

how this can be modeled with continuous dynamics, and then we show how the

problem can be solved with a direct collocation method.
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2.3.1 Continuous Optimal Control Problems

An OCP can be formulated as in Equation (2.4) [78, 79].

min
x(·),u(·)

∫ t0+T

t0

L (x (t) ,u (t)) dt (2.4a)

subject to ẋ (t) = f (x (t) ,u (t)) , t ∈ [t0, t0 + T ] (2.4b)

x (t0) = x̄0 (2.4c)

h (x (t) ,u (t)) ≤ 0, t ∈ [t0, t0 + T ] (2.4d)

x is the state vector and u is the control input. In the objective function, in

Equation (2.4a), the function L is the loss function we want to minimize for each

time instance from t0 to t0 + T . The objective function is constrained by the state

dynamics given by the function f in Equation (2.4b), as well as the initial state

x̄0, in Equation (2.4c). Lastly, the trajectory is constrained by a function h in

Equation (2.4d).

2.3.2 Direct Collocation Method

To solve an OCP a direct collocation method can be used. The idea behind direct

methods is to discretize the whole system into N steps, such that it is possible to

solve it using finite-dimensional nonlinear programming. This means that instead of

looking at the continuous trajectory x (·), we look at a finite number of discretized

states xk and inputs uk at times tk, where k = 0, . . . , N .

Each collocation interval [tk, tk+1] is divided into a set of collocation points tk,i,

where i = 0, . . . , d. For each collocation interval we have a polynomial pk (t,vk)

which approximates the state trajectory. vk,i is then the approximation of the state

at time tk,i. We can then add the constraint given in Equation (2.5) [80].

c (vk,xk,uk) =


vk,0 − xk

ṗk (tk,1, vk)− f (vk,1,uk)
...

ṗk (tk,d, vk)− f (vk,d,uk)

 = 0 (2.5)
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To make sure the trajectory is consistent over all intervals we also have to add the

constraint given in Equation (2.6).

pk (tk+1,vk)− xk+1 = 0 (2.6)

Lastly, the objective function over each collocation interval,
∫ tk+1

tk
L (x (t) ,u (t)) dt,

has to be approximated by a quadratic formula using the same collocation points.

We denote this term lk (vk,xk,uk). This results in the nonlinear programming

problem in Equation (2.7).

min
v,x,u

N−1∑
k=0

lk (vk,xk,uk) (2.7a)

subject to x0 − x̄0 = 0 (2.7b)

c (vk,xk,uk) = 0, k = 0, . . . , N − 1 (2.7c)

pk (tk+1,vk)− xk+1 = 0, k = 0, . . . , N − 1 (2.7d)

h (xk,uk) ≤ 0, k = 0, . . . , N − 1 (2.7e)
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Chapter 3

Methodology

In this chapter the system and the world it operates within are presented. An

overview of the system is given in Figure 3.1, where the control block is further

expanded in Figure 3.2. The planner node uses AI-planning to generate plans,

and is presented in Section 3.2. For control, the trajectory planner described in

Section 3.6 and the control allocation described in Section 3.8 use optimization,

while the DP-controller presented in Section 3.7 use a simple PID controller. The

vessel nodes are an implementation of the model in Section 2.2.3. Lastly, the plan

delegation node and plan executor nodes presented in Section 3.3 and Section 3.4,

as well as the task interpreter nodes presented in Section 3.5, use knowledge about

the world and translate between the planner and the control system.

3.1 Map and Passenger Distribution

In this section the modeling of the relevant environment is presented. First, the map

of the area and which ports are used are shown, and the information about the area

given to the system is presented. Then the distribution of passengers is presented

in detail.

3.1.1 Map of the Area

A map of the northern part of Trondheim is shown in Figure 3.3, where the three

ports that passengers can travel from are marked. The eastern part of the opera-

tional area is the outlet of the river Nidelva. However, we assume that the effect of

the water stream is low, such that the environmental forces can be omitted. For the
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Figure 3.1: Overview of the system. The vessel model is presented in Section 2.2.3,
and the control block is expanded in Figure 3.2.

Figure 3.2: An overview of the control system of a single vessel. This is an expansion
of the control block in Figure 3.1.
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Figure 3.3: A map of Trondheim taken from ArcGIS. Marked to the North is the
port for Nyhavna, to the west is Trondheim central station (Trondheim S) and in
the middle is Solsiden.

task interpreter, described in Section 3.5, several overlapping convex areas have been

made manually. This is used during transit between ports to ensure a collision-free

path. Since the vessel always operates within the same area, where there are few

changes in static obstacles, the convex areas do not have to be made dynamically. As

long as the vessels are within these areas there are no collisions with static objects.

The possibility of collisions with each other, or other vessels is omitted for simplicity.

Since the channels are wide enough for two of our vessels to pass each other, the

convex areas could be split in two to allow collision-free passing. The ports could

also be made bigger in order to fit more vessels next to each other. However,

the overall performance of the system would probably be very similar, but this is

something that should be looked at in future work. Both because collision avoidance

is an important aspect of an autonomous vessel, but also because the planner might

increase efficiency if a delay is detected.
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3.1.2 Passenger Distribution

To add passengers for the system to serve, we have to make some assumptions. First,

we simplify and say that every minute a number of passengers appear at each port

ready to use the service. The number is taken randomly from a Poisson distribution.

We use this distribution because it is a discrete non-negative distribution. The

expected value of the Poisson distribution is found from the expected number of

people traveling the given hour, the given trip and the time to departure.

Where passengers want to travel to and from is decided by several factors. Before

the service is potentially launched and run for some time, we have to guess the dis-

tribution. Firstly, we have assumed that there are mostly living areas at Nyhavna.

Secondly, we know that Solsiden is more accessible with other methods of transport-

ation from both the other ports. This makes it a little less relevant to our service.

Our full guess is shown in Table 3.1. What time of day passengers travel is also

hard to guess before launching a service, but we use the average distribution for all

AtB services given in Figure 3.4.

Table 3.1: A guess on how passengers will be distributed among the possible trips
in the morning rush (7:00-9:00), evening rush (14:00-17:00) and the rest of the day.

Trip Morning rush Evening rush Outside rush hours
Nyhavna to Solsiden 14% 1% 15%
Nyhavna to Trondheim S 46% 10% 30%
Solsiden to Nyhavna 1% 14% 5%
Solsiden to Trondheim S 9% 20% 5%
Trondheim S to Nyhavna 10% 46% 30%
Trondheim S to Solsiden 20% 9% 15%

The timetable for the ferries is given in Appendix D. We think passengers are most

likely to come to the ports around when a ferry leaves. However, since we do not

know how long before departure passengers arrive, we approximate it linearly. The

idea is to have a coefficient, tt, that is multiplied with the expected number of

people for a given trip at a given minute. An illustration is shown in Figure 3.5. We

assume passengers are most likely to come 2 minutes before the ferry departs, and

least likely to come 2 minutes after. The likelihood is then increasing and decreasing

linearly between these points. This has to be done around 1, such that the total

likelihood doesn’t increase or decrease. As an example, we assume that we expect

10 passengers per minute. When using the coefficients from Figure 3.5, instead of

expecting 10 passengers every minute we expect 1 passenger at the low point and

19 at the high point. This of course adds up to 2 · 10 passengers, such that the total
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Figure 3.4: Distribution of passengers throughout the day. Provided by AtB.

expected number is unchanged.

The resulting expected value, λ, is then given in Equation (3.1). Here P is the

expected total amount of people traveling that day. h is the distribution throughout

the day. mh = 60 is minutes in an hour. tdh is the distribution for each trip that

hour. tt is the time to departure coefficient. The normal distribution, denoted

normal, is used to give an extra degree of randomness which can be set by the

developer by adjusting the variance σ2.

λ =
normal(P ∗ h, σ2)

mh
· tdh · tt (3.1)

3.2 Planner

The planner node has one task, and that is to take the state of the world and what

we want to achieve, and then produce a plan. First, the planner transforms the

information to a PDDL document (described in Section 2.1.1). Then it calls the

OPTIC planner (described in Section 2.1.2). Lastly, it returns the resulting plan

in a readable format. In this section the representation of the world state, the

goals and actions are presented. While PDDL is a quite expressive language, the

planners have some trouble with solving more complicated problems. Therefore,

in Section 4.4, some limitations we have encountered, and the reason OPTIC was

20



Figure 3.5: An illustration of the timetable coefficient, tt, used to push the expected
amount of people towards the departure time denoted dt. It goes from 0.1 to 1.9,
which is symmetrical around 1. This means that the total amount of expected
passengers is unchanged.

chosen, are presented. The planning domain used is shown in Appendix E.

3.2.1 World State

The physical objects in the world state are vessels, ports and possibly also passen-

gers. The vessel can either be at a port or between two ports. If there are any

passengers onboard when the planner starts they are added, together with what

vessel they are on and where they want to go.

In addition, the planner receives a number of routes that have to be covered. How

many are given by the plan delegation described in Section 3.3. The routes are

either planned routes following the timetable given in Appendix D, or predicted

extra needed capacity between two ports. Since Solsiden is between the other ports,

the possible extra routes are between Solsiden and one of the other ports, or taking

all three ports. While the planned routes have a start port, the extra routes can

start from any end.

3.2.2 Goals

Supporting priorities in goals is a requirement in PDDL that OPTIC is said to

support. However, we were not able to make it work with the available version.

Therefore, all the goals we add have to be possible to reach at the same time for
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the planner to find a solution. This means that we try to not add more goals than

necessary. However, some goals are essential. The most important goals are to

deliver passengers already onboard to their desired destination, cover the planned

routes and make sure the vessel is either taking a route or docked at a port. Lastly,

the extra routes are stated such that there is a capacity that needs to be covered. It

is up to the plan delegation, described in Section 3.3, to give the planner a capacity

it can manage to cover. Since we want to minimize travel time, we include this as

a metric.

3.2.3 Actions

The simplest actions are the two move actions, where there is one for moving between

two ports and one for moving to a port. Going between two ports has a duration

based on tests of how long it takes from starting the undocking to completing the

docking. To simplify, the time it takes to move to a port is half of what it takes to

move between the two ports the ferry is between. Next, is the ”let passengers off”

action, which is mostly used in the planner to set the predicate ”reachedDestination”

for the onboard passengers. In theory, it could be omitted because the vessels open

their doors when reaching a port to let off passengers anyway. However, there are

no if-statements in PDDL, so the ”reachedDestination” predicate can either be set

by a move action all of the time or not at all. Since the vessel can move without

passengers, we need a separate action to set this predicate. The action is always 15

seconds long.

Taking a route can be divided into move, let off passengers and take passengers

onboard actions in PDDL. However, as described in Section 4.4, this has several

challenges. Therefore, we look at taking a route as an effect and not an action

itself. This can be done because once the route has begun, there is no planning

involved. The vessel just goes from port to port following a route. To take a route

the vessel only has to be at the port where the route starts, and not be occupied

with another route. The action also has to use the two next ports to indicate that

onboard passengers can get out. Since we only have three ports we only need the

next two, but this can become a problem with more ports.

When switching from one to two routes after 6 o’clock there are two routes starting

at Nyhavna. The first start at 06:02 and the second at 06:12. To make sure the first

route is taken by the closest vessel, we introduce some turn functions. Each route

has a turn and cannot be taken before the previous has been delegated to a vessel.

This could become a problem if routes are starting at different locations at the same
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time. However, the routes are made such that when we are replanning, a vessel is

either at the starting port or on its way toward the port. If a recharging scheme is

introduced, where a vessel might have to go to recharge, this might not hold.

The actions for taking extra routes are similar to taking a planned route, except for

the fact that the vessel can start at any point on the route. Since taking a route

between Solsiden and another port means that there are twice as many departures as

taking all three ports, the amount of capacity covered is twice as much. Therefore,

we have one action for taking all three ports and one for going between two ports.

3.3 Plan Delegator

The plan delegator node is monitoring the whole system, and decides when it is

time to replan. Since there are not added any events where replanning is triggered,

there is a replanning every hour. Both the predicted number of passengers and

rush time status are changed every hour, so this is a sensible frequency to replan.

The timetable does not have a set frequency throughout the day, and the frequency

changes also happen around the same time.

When it is time to replan, the plan delegator gets the status of each vessel from the

plan executors. It needs to know if the vessels are at a port or between two ports,

and if there are any passengers onboard. The plan delegator also reads the timetable

and decides if there are one or two routes, and where they start. Lastly, it looks

at the predicted number of passengers, and calculates the extra needed capacity for

each trip. In this particular case, a trip refers to the stretches between Nyhavna and

Solsiden, and Trondheim S and Solsiden. If a passenger is going between Nyhavna

and Trondheim S, it takes both trips. To find the needed capacity the plan delegator

first finds how many passengers that are expected to take each of the two trips. Then

it divides the number by three, to get the number per 20 minutes, which is the time

it takes to go a full round. Then it finds how many full ferries this corresponds to.

This gives a form of unit capacity. Taking a timetable route means that a ferry

covers one unit capacity for both trips. The remaining capacity has to be filled

by any remaining ferries. Since the planner will crash if it receives an unsolvable

problem, the plan delegator also makes sure the extra capacity is manageable. The

goals given to the planner are described in Section 3.2.2, and the resulting plan is

split into actions for each vessel.
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3.4 Plan Executor

Each plan executor receives a plan in the form of a sequence of actions relevant to

the given vessel. This plan is split into a sequence of simpler tasks that are given to

the controller, one at a time. There are 5 types of tasks. The first is transit between

two ports, which requires the vessel to be undocked. The second is therefore to

undock. In a real system this would include things like closing the doors, but in the

simulation, this is a rather short action where the vessel is just given some initial

thrust. The third task is docking, which is simply the last part of the trip between

two ports. In real life this task would include opening the doors. The fourth task

is to load and unload passengers. This task is as simple as standing still with the

doors open until it is time to go, which is either after a minimum of 15s or until the

timetable says the vessel should leave. A direction is also added to make sure the

passengers know where the ferry is headed. The last task is to wait and stand still.

The move actions are translated to a task sequence of undock, transit and dock,

and if it is not a move between ports action the undock task is omitted. If this

is the last action for this vessel in the plan, there is also a load task, without any

direction. This is added to make sure that any undetected passengers are let off. A

”let passengers off” action is translated to the same task. Taking a planned route is

translated to a repeating sequence of load, undock, transit and dock tasks. Where

the load action is given a time and direction based on the timetable. The taking

extra capacity actions are translated to the same sequence except it always has a

loading time of the minimum of 15s.

3.5 Task Interpreter

The task interpreter receives a task, as described in Section 3.4, and translates it to

references to the controller. For the transit and docking tasks this is a desired state

given to the trajectory planner, while for the load and wait tasks the DP-controller

is given a state to track directly. The start of the transit task is the same as the last

part of an undocking phase in the sense that the vessel leaves a dock. Therefore, the

undocking task is very short and only includes giving the vessel some thrust forward.

It could have been omitted, but it is used to say that the vessel is undocked. It also

works like a placeholder for other functions important for a real system, such as

closing the doors. When the task interpreter detects that a task is completed, it

requests another task. If there are no new tasks, it receives a wait task until there
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is a new plan available.

The desired state, xd =
[
ηd

⊤ νd
⊤
]⊤

, given to the trajectory planner is different for

the docking and transit task. For the docking task, ηd is the dock of a port and νd is

the zero vector. The transit task is a little more complex. First, the task interpreter

runs a depth-first search to find a path of overlapping convex areas, as described

in Section 3.1.1, between two ports. These convex areas have a connection point

between them, which we use as ηd. Since the vessel should continue after reaching

a connection point, νd is set to
[
3 0 0

]⊤
, which is around the vessel’s maximum

velocity. The vessel has reached the next area when it is within 9m of the connection

point, and the task is done when reaching the last area. For the docking task, it is

done when the vessel is within 30cm of the docking point, and with a heading no

more than 5◦ from the desired heading.

The state, xp =
[
ηp

⊤ νp
⊤
]⊤

, given to the DP-controller is often the same for both

the load and wait tasks. One of the goals of the planner is to make sure no vessel

is undocked without performing a task, so the controller should not be given a wait

task without being at a dock. For both tasks, the vessel should stand still, so νp is

the zero vector. ηp is the given dock for the load task, and the vessel’s state at the

beginning of the task for the wait task. The load task is done after the time given

in the task by the plan executor. Since the wait task is always the last, it is not

done until the planner replans.

3.6 Optimal Trajectory Planning

This section presents how optimization is used to generate an optimal trajectory

for a milliAmpere 1 vessel. First, the problem is defined and then the cost function

is described. Then the constraints given by the model of the vessel, max thrust

for the thrusters, bounds for the states, and the area the vessel operates within

are described. The trajectory planning module is based on Autonomous docking

using direct optimal control [43], and Trajectory Planning and Control for Auto-

matic Docking of ASVs with Full-Scale Experiments [44], where the latter also uses

the milliAmpere 1. To solve the OCP we use direct collocation, as described in

Section 2.3, using the open-source tool CasAdi.

As long as there are no unforeseen events making it impossible, we want the vessel

to follow the same trajectory every time it goes between two ports. Therefore, the

trajectory planning presented in this section is done once between each port and
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recorded. This means that the trajectory planner block in Figure 3.2 usually works

as a ”database” giving recorded states and inputs.

3.6.1 Problem Definition

What we want from the trajectory planner is a sequence of optimal states with cor-

responding inputs that take the vessel from its current position towards a desired

state xd. The trajectory is discretized, meaning that each discrete state is a variable

in the optimization. This is also the case for the input. The timestep in the dis-

cretization is a tunable variable. A longer timestep increases speed, while a shorter

one increases accuracy. By some trial and error, a timestep of 2s seemed to give the

best results. The time horizon is also a tunable variable where a longer horizon gives

better accuracy, and a shorter decrease runtime. Just like in Trajectory Planning

and Control for Automatic Docking of ASVs with Full-Scale Experiments [44] the

trajectory planner calculates a trajectory every 10s. A time horizon of 20s then

seemed to both give good accuracy and reasonable runtime. This gives the variable

vector given in Equation (3.2), where N = 10 and the decomposed input vector is

explained in Section 2.2.3.

w =
[
x⊤
0 x⊤

1 . . . x⊤
N f⊤

0 f⊤
1 . . . f⊤

N−1

]⊤
(3.2)

3.6.2 Cost Function

The loss function we use in the cost function in Equation (2.4) is shown in Equa-

tion (3.3). This is based on the loss function in Autonomous docking using direct

optimal control [43], but with some modifications. The cost function from Trajectory

Planning and Control for Automatic Docking of ASVs with Full-Scale Experiments

[44], which also uses milliAmpere 1, has also been tested, with similar results. How-

ever, the chosen loss function is used because the tuning is slightly more intuitive.

L (x,f) = ||η − ηd||Qη + ||ν − νd||Qν + ||f ||Rf
(3.3)

One modification is that the loss function originally had a configuration loss to ensure

an even distribution of thrust for the different thrusters. Because one thruster brakes

and one thruster drives forward in milliAmpere 1, as described in Section 2.2.3, this is

not as relevant for this case. Another modification is the addition of νd. This is done
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because the trajectory planner is both used for docking and transit between docks.

For the docking cases νd is simply equal to zero, but in transit νd =
[
3 0 0

]⊤
to ensure that the vessel is not braking too much when it is about to enter a new

area. The last modification is not shown in Equation (3.3) for simplification of the

expression. When calculating ψ − ψd we take the smallest signed angle operation

of the result. The smallest sign angle operation is shown in Equation (3.4). This

is to ensure that the vessel turns in the right direction to get to the desired angle.

However, the modulo operation is not a differentiable function meaning that the

solver we use has to be able to handle MIP. The ssa function is also used every

time two states are compared in the direct collocation method.

ssa(x) = modulo(x+ π, 2π)− π (3.4)

The weight matrices Qη, Qν and Rf are diagonal matrices, and is presented in

Equation (3.5).

Qη = diag
{
104, 104, 106

}
(3.5a)

Qν = diag
{
102, 105, 107

}
(3.5b)

Rf = diag
{
10−2, 10−2, 10−2, 10−2

}
(3.5c)

3.6.3 Vessel Model Constraints

The model we use for the vessel in the trajectory planner is slightly different from

the milliAmpere 1 model presented in Section 2.2.3, and is taken directly from

Trajectory Planning and Control for Automatic Docking of ASVs with Full-Scale

Experiments [44]. The full model is presented in Appendix B, but the kinematic

equations are also given in Equation (3.6). This model is a simpler model than the

actual vessel model. Another change is the S matrix, which is added to make the

trajectory a little slower and easier to track.

η̇p = R (ψp)νp (3.6a)

SM pν̇p +Cp (νp)νp +Dp (νp)νp = τ p (3.6b)
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This gives us the state dynamics given in Equation (3.7).

ẋp = g
(
xp,f p

)
=

[
R (ψp)νp

(SM p)
−1 (−Cp (νp)νp −Dp (νp)νp +Bf p

)] (3.7)

Since the thrusters can only produce up to Tmax thrust, this could be added as a

constraint as shown in Equation (3.8). However, adding this constraint sometimes

results in the solver having problems with finding a feasible solution. The constraint

is therefore omitted. Because of the bounds on the variables, which will be described

shortly, this constraint tends to not be violated and when it is violated, it is not

severely violated.

F 2
x + F 2

y ≤ T 2
max (3.8)

All variables have to be given a lower and upper bound. For η the position will

already be bounded by a convex area as can be seen in Section 3.6.4, and ψ is

bounded by the ssa function described in Section 3.6.2. Therefore, η can simply

be bounded by ±∞ for every timestep. ν will be bounded by the maximum velo-

city the vessel can achieve. However, to force the trajectory to be smoother ν is

bounded between −
[
1 1 0.2

]⊤
and

[
6 1 0.2

]⊤
for every timestep. To include

the drive/brake configuration explained in Section 2.2.3, F1,x is bounded to be neg-

ative and F2,x is bounded to be positive. The bounds on F1,y and F2,y are set to

±3Tmax

5
to limit powerful sideways movements.

3.6.4 Harbor Layout Constraints

To make sure the vessel avoids collisions with static obstacles, convex sets are made.

As long as the whole vessel is within the convex set there are guaranteed to be no

collisions. An illustration of a convex set can be seen in Figure 3.6. Expressed as

constraints this gives us Equation (3.9) [43]. SNED
b is the set of the NED positions of

all corners of the vessel. Since the positions of the corners are given by the position

of the vessel, Equation (3.9) is rewritten as Equation (3.10). Here η =
[
x y ψ

]⊤
is part of the vessel’s state vector, R2 is the two-dimensional rotation matrix and

Sb
b is the positions of the vessel’s corners from the center of the vessel. For both sets

of Sb there are added some margins such that the vessel appears 10% bigger. This

is illustrated as dashed lines in Figure 3.6.
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Figure 3.6: An illustration of a convex area. The black boxes are static obstacles.
The orange polygon is the convex area, where it is safe to be within. The blue
rectangle is the vessel, and the dashed line around it is the vessel with some margin.
The green rectangle is the desired pose of the vessel.

Asxi
NED ≤ bs ∀xi

NED ∈ SNED
b (3.9)

As

(
R2 (ψ)xi

b +

[
x

y

])
≤ bs ∀xi

b ∈ Sb
b (3.10)

3.7 Trajectory-Tracking DP Controller

To follow the trajectory we get from Section 3.6, a trajectory-tracking DP controller

is used. The controller is based on Trajectory Planning and Control for Automatic

Docking of ASVs with Full-Scale Experiments [44], but with some modifications.

The controller gives us an input vector τ , which is the combination of a feed-forward

term and a feedback term, as seen in Equation (3.11).

τ (t) = τ ff (t) + τ fb (t) (3.11)

The feed-forward term is taken directly from the optimal trajectory found in Sec-

tion 3.6. We use the decomposed input vector f t, and get the feed-forward term by
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Equation (3.12). The timestep used in the trajectory planner is 2s, so every f t is

used for 2s before being updated.

τ ff (t) = Bf t (3.12)

In the feedback term we use a PID, where the difference between the actual state,

x, and the optimal state, xp, is used. However, since the state is updated at a rate

of 10Hz in the simulation, while the optimal state is found with a timestep of 2s,

there are significant ”jumps” between each optimal state. This leads to the actual

state chasing the optimal state. To smooth the optimal trajectory we use Euler

integration as shown in Equation (3.13).

xt = xt−1 + h · g (xt−1,f) (3.13)

Every 2s we use the optimal state as a x0, and Euler integrate with h = 0.1,

such that we get a unique xp (t) for each timestep. We can then define η̃ (t) =

η (t) − ηp (t). The feedback term is given by Equation (3.14), and the gains are

given in Equation (3.15). Every time the trajectory planner replans (every 10s), the

integral term is reset by setting tpt = t.

τ fb (t) = −R (ψ (t))⊤
(
Kpη̃ (t) +

∫ t

tpt

Kiη̃ (τ) dτ +Kd
˙̃η (t)

)
(3.14)

Kp = diag {1000, 1000, 10000} (3.15a)

Ki = diag {10, 10, 20} (3.15b)

Kd = diag {1000, 1000, 15000} (3.15c)

3.8 Thrust Allocation

The two azimuth thrusters have two degrees of freedom each, angle and thrust. In

contrast, the input force vector τ has only three degrees of freedom,
[
X Y N

]⊤
.

This means that the vessel is overactuated, and we will use optimization to solve

it. Control allocation for double-ended ferries with full-scale experimental results
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[63] explain how this is already done for milliAmpere 1, but this approach assumes

that the input vector is saturated. This means that the input vector is achievable

given the thrusters’ limitations. While the feed-forward term can be saturated by

the trajectory planner, we cannot guarantee that the input vector is saturated when

adding the feedback term. Therefore, we will do some modifications.

The variables we use in the optimization are all four decomposed forces, and a

scale variable, s, that is used to scale the input vector to an achievable size. Our

main objective is to make sure the scale is close to 1, meaning no scaling. The

resulting constraints are presented in Equation (3.16). We also have to make sure

the decomposed forces do not exceed Tmax, so Equation (3.8) is also implemented

for both thrusters.

F1,x + F2,x = s ·X (3.16a)

F1,y + F2,y = s · Y (3.16b)

F1,y − F2,y = s · N
Lx

(3.16c)

The bounds on the decomposed forces are almost the same as in Section 3.6, but

Fy for both thrusters are now allowed to be ±Tmax. This is done because the thrust

allocation is trying to follow an input, τ , and having smoother behavior is up to the

trajectory planner and trajectory tracker. The scale is bounded by zero and one.

The cost function is presented in Equation (3.17), where thrust, T , and the angle,

α, is found from Equation (3.18). ∆T and ∆α are the deviation from last timstep,

and δα are the deviation from the mean angle. In this case this is π for α1 and 0

for α2. All weights are given in Appendix C.

Cs = ws (s− 1)2 (3.17a)

CT = wTT
2
1 + wTT

2
2 + w∆T∆T

2
1 + w∆T∆T

2
2 (3.17b)

Cα = w∆αssa (∆α1)
2 + w∆αssa (∆α2)

2 + wδαssa (δα1)
2 + wδαssa (δα2)

2 (3.17c)

C = Cs + CT + Cα (3.17d)

T =
√
F 2
x + F 2

y (3.18a)
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α = arctan
Fy

Fx

(3.18b)
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Chapter 4

Results and Discussions

In this chapter we will look at some different scenarios for the ferries. The scen-

arios are presented in Table 4.1. First, in Section 4.1, we look at the movement of

passengers, average waiting time and vessel distribution throughout the day for all

scenarios. Next, in Section 4.2, we look at how the system works in the evening rush,

for the first two scenarios. This is done in order to look closer at how the system

works. An important detail is the definition of waiting time, which includes the

travel time. This means that the waiting time for a passenger is defined as the time

from arrival at a port to the passenger reaches its destination port. Lastly, we see

how the control system is performing on a single trip between Nyhavna and Trond-

heim S in Section 4.3, and some limitations we have encountered using AI-planning

in Section 4.4.

4.1 Passenger Handling in Different Scenarios

Throughout a Day

In this section we look at the different scenarios presented in Table 4.1. For all

scenarios, except the last, we assume a ferry can fit 10 passengers. The actual

maximum number of passengers the milliAmpere 1 can carry is 6 [45], while the

ferry that is about to be launched in Stockholm, introduced in the introduction,

can carry 25 passengers. Why a capacity of 10 passengers was chosen is explained

shortly in Section 4.1.1. For the last scenario we look at a capacity of 25 passengers.

For all scenarios, except one, the planner is given the same expected number of

passengers, P , as the passenger generator, described in Section 3.1.2.
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Table 4.1: The different scenarios we look at. AtB expects around 700 passengers a
day.

Scenario
Expected
passengers

Number
of ferries

Comment

Minimum number of ferries 700 2
To follow the timetable
2 ferries are needed.

Adding another ferry 700 3
An extra ferry give
more freedom.

The planner is given a
higher number of passengers

700 3
The planner expect 1.7 · 700
passengers instead of the actual 700.

Adding a simple
recharging scheme

700 3
Ferries have to recharge.
Only one recharging at a time.

More capacity on the ferries 1400 2
Change capacity on the ferries
to 25 passengers.

To look at some variance we run the simulation 5 times for every scenario, and show

the exact number of passengers and average waiting time. The controllable variance

for passengers is the standard deviation of the normal distribution introduced in

Section 3.1.2. For the first run of each scenario we set the standard deviation to

σ = 0, to look at a run with little variance. The next four runs have a standard

deviation of σ = 7. For the hour with the most passengers there is an expected

value of about 70 passengers, which results in the probability distribution shown in

Figure 4.1. To be able to run multiple simulations of a day in a reasonable time we

use records of the trips between the ports, such that the control inputs do not have

to be found for each timestep.

4.1.1 Scenario 1: Minimum Number of Ferries

To follow the timetable given in Appendix D, two active ferries are needed for most

of the day. From AtB we have been given 700 passengers as an expected number of

passengers per day. If we had used a capacity of 25 passengers this would be quite

easy to handle. Some initial testing has shown that a capacity of 10 passengers is

just enough to handle this amount of passengers. We will therefore use this capacity

as a basis to look at the added value of another ferry.

The results from the 5 runs are shown in Table 4.2. Looking at the average waiting

time, it is around ten and a half minutes, which includes the travel time. From

the distribution between the trips in Table 3.1 we see that it is most popular to

travel between Nyhavna and Trondheim S, where the trip takes about eight to nine

minutes. This means that the resulting average waiting times are quite good. In
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Figure 4.1: The likelihood of different numbers of passengers for an hour with an
average expected number of passengers of 70, and a variance of σ2 = 72.

Table 4.2: The number of passengers, average waiting time and vessel usage for the
first scenario in Table 4.1.

Number of
passengers

704 735 688 676 666

Average
waiting time

10 : 23 10 : 35 10 : 27 10 : 32 10 : 12

Usage
vessel 1

15h 15h 16h 15h 15h

Usage
vessel 2

20h 20h 19h 20h 20h

the third and fourth run we see that there are fewer passengers, but the average

waiting time is not reduced. As shown in Figure 4.5, the ferries are seldom loaded

with max capacity, so to decrease waiting time more ferries are needed. The last

run has a shorter waiting time than the others, but not by a lot. This is probably

mostly caused by randomness where passengers arrive closer to departure. Lastly,

we see that the ferries are used for 35 hours in total. This is the minimum required

to follow the timetable. As we can see, the load is not shared equally. This will be

discussed more in scenario 4.

Next, we look more closely at the first run. Looking at the passengers per hour in

Figure 4.2, it looks similar to the average distribution shown in Figure 3.4. This

run is without any randomness in the expected number of passengers per hour, but

since the number of passengers per min is decided with a Poisson distribution there
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Figure 4.2: Number of passengers per hour for the first run of scenario 1 in Table 4.1.

is still some randomness.

From the average waiting time per hour, shown in Figure 4.3, we see that the waiting

time is distributed mostly equally throughout most of the day. However, at five and

nine the waiting time is longer. At five a passenger arrived at the port long before

the ferry was supposed to leave. A situation like this is unlikely to happen in real

life, but could be fixed with an on demand function. Why it is so large at nine is a

little difficult to say, but two things might have happened. Firstly, the waiting time

per hour is the number of minutes waited by passengers divided by the number of

passengers that arrive at the given hour. Therefore, some of the passengers that

arrived before nine might have been traveling after nine and thereby increased the

average waiting time. We also see that the waiting time generally increases towards

the end of the day, as the ferries start to leave every 20 minutes instead of every

10 minutes. Still, the average waiting time is usually below 15 minutes, which is

reasonable outside rush hours.

In Figure 4.4 we see how many passengers are waiting at each port to take each trip

for every minute. Here we can see that a single passenger showed up at Nyhavna

to go to Trondheim S very early, and had to wait for a long time. Luckily the ferry

was already there so the passenger could wait inside the ferry. Mostly we see spikes,

which means that the passengers were picked up quite fast. The wider columns are

mainly single passengers that came too early. At the busiest hours, we see that the

number of waiting passengers does not reach zero every time a ferry comes to pick
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Figure 4.3: Average waiting time per hour for the first run of scenario 1 in Table 4.1.
The waiting time includes the time spent on the ferry as well.

up passengers. This is either because the ferry is full, or that new passengers come

right after the ferry leaves. While the latter is the passengers’ fault, the former

means that we need bigger ferries or more ferries for the busiest hours.

Figure 4.5 shows how many passengers each vessel has onboard. Here we also see

that the second vessel is active for more hours than the first. We also see that

the ferries are seldom filled to capacity, which means that it is unlikely that any

passengers are left behind. To test this we ran another 5 simulations with σ = 7,

and found that there are on average 2 passengers a day that have to wait on the next

ferry. The highest value was 3 passengers a day, and it happened during rush hours

every time. If the max capacity was increased slightly, leaving passengers behind

would then be very unlikely. In the morning the second vessel is traveling without

passengers for some time. This might indicate that we do not need two vessels that

early.

The other runs for this scenario were mostly similar to the first in terms of perform-

ance, even though the passenger distribution was different. For the second run, the

number of passengers traveling between 15:00 and 16:00 was above 90, while the

average waiting time for that hour was still below 11 minutes. Run 3 also had more

passengers between 15:00 and 17:00 than run 1, while the average waiting time was

also under 11 minutes for those hours. These runs were filled up to max capacity 5

and 7 times respectively. This could indicate that a capacity of 10 passengers and
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Figure 4.4: How many people that are waiting at each port to take each trip every
minute for the first run of scenario 1 in Table 4.1.
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Figure 4.5: How many passengers each ferry has onboard for every minute for the
first run of scenario 1 in Table 4.1.

2 ferries have too little capacity for an unusually busy rush hour.

4.1.2 Scenario 2: Adding Another Ferry

For the second scenario we added a third ferry. This means that in addition to

following the timetable, the planner can use an extra ferry for hours with a larger

expected number of passengers. From the results of the 5 runs, shown in Table 4.3,

we see that the total usage of the vessels has gone up to 36 and 37 hours. This

means that the system has only found the busiest hour to be worth using all three

ferries. Since the planner plans for the same number of passengers for all the 5 runs,

the one run with a usage of 37 hours is actually an issue with the planning problem.

The planner found that it is most effective for a vessel to let off passengers by taking

a route. This route is also taken by another vessel, which leads to the extra hour

of vessel usage. The reason for this happening is that taking a route is an effect,

and the action to start a route is quite short. Therefore, the planner thinks that

passengers are let off instantly by taking a route. This problem has to be looked at

in future work. We also see that the hours are not distributed equally between the

ferries, which we will look at in scenario 4.

The effect of having an extra ferry is a slightly lower average waiting time. Sim-

ultaneously, the usage has not gone up dramatically. This is expected, since two
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Table 4.3: The number of passengers, average waiting time and vessel usage for the
second scenario in Table 4.1.

Number of
passengers

701 697 673 727 674

Average
waiting time

10 : 10 10 : 25 10 : 12 10 : 30 10 : 15

Usage
vessel 1

3h 3h 3h 3h 4h

Usage
vessel 2

19h 20h 20h 15h 19h

Usage
vessel 3

15h 13h 13h 18h 13h

ferries were able to handle the same number of passengers. Decreasing the average

waiting time by a lot is also difficult, as the most popular trip takes around eight to

nine minutes. However, using three ferries at the busiest hour can make sure that

no passengers are left behind. Just as for the last scenario, 5 simulations were run

with σ = 7 to see how many that had to wait for the next ferry. The average was

now 1.5 passengers, and just as in the last scenario this happened during rush hours

with 3 passengers left behind as the largest value.

Looking at the passenger distribution through the day in Figure 4.6 we see that it

is a little different from the one for the last scenario, shown in Figure 4.2. This is

because the passenger distribution per minute is random even though the expected

number per hour is not. However, it is still similar to the last scenario, so the

distribution will not be included for the later scenarios.

In Figure 4.7 we see the average waiting time for the first run of scenario 2. Here we

see that it is low throughout most of the day, with the expected busiest hour, 15:00

to 16:00, being among the lowest. From Figure 4.6 we know that the previous hour

was actually busier, but it does not seem to increase the average waiting time by

much. Just as for the last scenario, the waiting time increases when the ferry starts

to leave every 20 minutes, instead of every 10 minutes. The effect where waiting

time is being assigned to the next hour, with a lower amount of passengers might

also have an effect here.

The plot of people waiting at each port is very similar to the last scenario, and it

has therefore not been included. The only difference between the scenarios is that

there is an extra ferry at one or two hours. Therefore, it is expected that we do not

see much difference.

When looking at the passengers onboard the ferries in Figure 4.8, we see that the

40



05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 00
Time [h]

0

10

20

30

40

50

60

70
Pa

ss
en

ge
rs

Passengers per hour

Figure 4.6: Number of passengers per hour for the first run of scenario 2 in Table 4.1.
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Figure 4.7: Average waiting time per hour for the first run of scenario 2 in Table 4.1.
The waiting time includes the time spent on the ferry as well.
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Figure 4.8: How many passengers each ferry has onboard for every minute for the
first run of scenario 2 in Table 4.1.

first ferry does not move a lot of passengers between 15:00 and 16:00 when all three

ferries are active. This means that passengers do not have to wait for the next ferry

because of crowded ferries. However, since there were other hours that were just as

busy, the extra ferry could be used more often to decrease the waiting time further.

4.1.3 Scenario 3: Planning for More Passengers Than the

Actual Number

Since the actual number of passengers can vary a lot, it is sensible to plan for a

higher number than the average. If we use the passenger distribution throughout

the day provided by AtB, shown in Figure 3.4, we see that the busiest hour has

10.9% of the passengers, which is almost 1.7 times as much as other rush hours.

This means that if we plan for 1.7 times as many passengers, the system should use

42



all ferries at all rush hours.

In Table 4.4 we can see that the total usage time has gone up to 41 hours. This

means that for 6 hours all three ferries are used at the same time. This results in

an even lower average waiting time, but not by a lot. However, when testing how

many passengers that have to wait for the next ferry, the average ended up being 0.8

passengers with 2 passengers as the highest. Another advantage of using 3 ferries

is that the waiting time can be less than 10 minutes to the next ferry during rush

hours. As the amount of passengers above capacity has not exceeded 3 for any of the

scenarios, slightly larger ferries would fix this problem, but could be more expensive.

Table 4.4: The number of passengers, average waiting time and vessel usage for the
third scenario in Table 4.1.

Number of
passengers

703 721 690 685 724

Average
waiting time

9 : 54 9 : 57 10 : 11 10 : 07 10 : 15

Usage
vessel 1

8h 6h 6h 8h 6h

Usage
vessel 2

18h 20h 20h 18h 20h

Usage
vessel 3

15h 15h 15h 15h 15h

The average waiting time per hour, shown in Figure 4.9, is overall very low. Towards

the end, it becomes a little higher, just as for the last scenarios. This is outside the

rush hours where the system works the same as for the last scenarios. So it is

expected that the results are similar. The passengers waiting at the ports plot is

similar to the first scenario, but with slightly thinner spikes, so it is omitted here as

well.

In Figure 4.10 we see that the ferries are filled to max capacity about as often as in

the first scenario. This is a little surprising since we have more ferries that go more

often. However, the passengers will always take the ferry that leaves first, so if there

are 10 passengers ready they will all take the first ferry arriving.

4.1.4 Scenario 4: Adding a Simple Recharging Scheme

In the first three scenarios the workload has been distributed quite unevenly. This

both means that the tear on the ferries is uneven, but also means that there is
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Figure 4.9: Average waiting time per hour for the first run of scenario 3 in Table 4.1.
The waiting time includes the time spent on the ferry as well.

no room for recharging or maintenance for the ferries with the biggest workload.

Therefore, we have added a very simple recharging scheme. If a ferry has been

active for three hours straight it has to take a break for an hour. However, since

two active ferries are needed to follow the timetable, only one ferry can have a break

at a time. This scheme is very simplistic, but shows how the system works with

unavailable ferries.

The results of the 5 runs for this scenario are shown in Table 4.5. Firstly, we

can see that the 36 hours workload is distributed more evenly. Next, we see the

largest variance in the number of passengers until now. This is a coincidence, as

the passengers are added in the same way as in the first three scenarios. Except for

the last run, the average waiting time is about the same as for the second run. The

last run is not that much worse either, so trying to see what increased the waiting

time for this particular run is difficult. Something that could have happened is that

when a ferry is set to inactive, the ferry taking over its route might be at the other

end of the channel. It then has to travel all the way to the start of the route, which

will increase waiting time. This can be avoided if the recharging scheme was a part

of the planning problem, and can be looked at in further work.

While the other plots are mostly similar to the first scenarios, the passengers onboard

plot is a little different, as we can see in Figure 4.11. This shows how the workload

is distributed much more evenly among the ferries. From 15:00 to 16:00 all ferries
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Figure 4.10: How many passengers each ferry has onboard for every minute for the
first run of scenario 3 in Table 4.1.

Table 4.5: The number of passengers, average waiting time and vessel usage for the
fourth scenario in Table 4.1.

Number of
passengers

690 675 761 587 724

Average
waiting time

10 : 20 10 : 32 10 : 14 10 : 11 10 : 52

Usage
vessel 1

12h 13h 12h 12h 12h

Usage
vessel 2

14h 11h 14h 14h 12h

Usage
vessel 3

10h 12h 10h 10h 12h
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Figure 4.11: How many passengers each ferry has onboard for every minute for the
first run of scenario 4 in Table 4.1.

are active, but we see that the first ferry carries much fewer passengers. The other

two ferries are probably the ones that follow the predefined routes, meaning that

the passengers know the departure times. In contrast, the ferry that is set to take

extra capacity just goes as fast as it can. This effect is present for all scenarios with

3 ferries, but it seems like the passengers were better at following the timetable in

this run.

4.1.5 Scenario 5: More Capacity on the Ferries

It would be sensible for AtB to use already existing ferries like the one about to

be launched in Stockholm, with a capacity of 25 passengers. Since the increased

capacity would simply mean that there would always be enough space in the ferries,

we also look at how the system would handle twice as many passengers.
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The results are shown in Table 4.6, where we can see that the average waiting time

is about the same as for the first scenario. However, there is a little less variance.

This might simply be because we have more passengers. Another observation is that

the bug we encountered in the second scenario, where a ferry takes a whole route

to let off passengers, is more prominent here. This is no surprise as the increase

in passengers also increases the likelihood of having passengers onboard. Then the

situation where this mistake is done becomes more likely.

Table 4.6: The number of passengers, average waiting time and vessel usage for the
fifth scenario in Table 4.1.

Number of
passengers

1441 1451 1455 1353 1341

Average
waiting time

10 : 25 10 : 23 10 : 27 10 : 25 10 : 21

Usage
vessel 1

15h 19h 15h 19h 15h

Usage
vessel 2

20h 17h 20h 17h 20h

Most of the plots are similar to the last scenarios, but with more passengers. In Fig-

ure 4.12 we see the passengers onboard the ferries throughout the day. As opposed

to before, the ferries are never filled to capacity. Through the five runs, a ferry was

only full one time, in the third run, but it did not result in any passengers being

left behind. This means that with a capacity of 25 passengers, the system is able to

handle twice as many passengers as expected by AtB.

4.2 System Performance During the Expected

Busiest Hours

In this section we look at how the ferries handle the passengers between 15:00 and

17:00 for the first two scenarios in Table 4.1. For both scenarios we start by looking

at the plans from the planner. Next, the ferries’ movements are presented, before

the movement of passengers is shown. For both scenarios the simulation is run one

time with σ = 0.
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Figure 4.12: How many passengers each ferry has onboard for every minute for the
first run of scenario 5 in Table 4.1.

4.2.1 Scenario 1: Minimum Number of Ferries

The plan made at 15:00 is shown in Listing 4.1, where the initial state was that

ferry 1 was on its way to Trondheim S (portd) with passengers onboard, and ferry 2

was on its way to Nyhavna (portb), also with passengers onboard. Both vessels are

coming from Solsiden (portc). There are two routes that have to be taken, namely

route 1 and 2. Since both ferries are between two ports, they begin with completing

the trip they have started. Next, they let off current passengers, before starting the

routes. Since the ferries are going towards the end ports, no passengers are going

further. Therefore, the last parameters in take planned route, which are the next

ports, have no effects and are therefore set by the planner to two identical ports.

0 . 0 0 0 : ( move to port v1 portd portc ) [ 1 4 7 . 5 0 0 ]

0 . 0 0 0 : ( move to port v2 portb portc ) [ 1 2 7 . 0 0 0 ]

127 . 001 : ( l e t o f f p a s s e n g e r s v2 pa2 portb ) [ 1 5 . 0 0 0 ]

147 . 501 : ( l e t o f f p a s s e n g e r s v1 pa1 portd ) [ 1 5 . 0 0 0 ]

162 . 501 : ( take p lanned route v1 route1 portd portb portb ) [ 1 . 0 0 0 ]

163 . 502 : ( take p lanned route v2 route2 portb portc portc ) [ 1 . 0 0 0 ]

Listing 4.1: Resulting plan, made at 15:00, for scenario 1 in Table 4.1. v1 and v2 are the

two ferries and pa1 and pa2 are groups of passengers onboard. portb is Nyhavna, portc is

Solsiden and portd is Trondheim S.
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This is a simple plan, that was found in 0.01s, and it is basically saying that the

ferry should keep following the timetable. With 2 ferries and 2 routes that have to

be taken, there is not much room for variance. So, unsurprisingly, the plan is the

exact same when planning at 16:00. With plans as simple as these, the planner is

not adding much value. However, with more ferries than routes this can change.

In Figure 4.13 the movements of the two ferries are shown. The possible locations

are the three ports and the trip between them. In a real system this would not be as

symmetrical, but since we use the recorded trips and do not add random delays this

is bound to happen in the simulation. To take the possibilities of delays into account

it does not take a full 10 minutes from one end port to another, where 10 minutes

is the shortest time between departures from the same port in the timetable. This

leads to a long loading time at the end ports, where it is around 140s at Trondheim

S and around 100s at Nyhavna. From the perspective of the passengers this is not

a problem, as the ferries leave at the given time. Being able to go onboard in good

time before the ferry leaves is probably also a positive thing. There is also added

some room for delay for Solsiden, where the ferry is loading for around 30s when

going westwards and 80s when going eastwards. While 30s might be a sensible

loading time, 80s is too long. However, moving the departure time with a minute

would make the loading time go below 20s, which might be too short.

Because Solsiden is almost exactly in the middle between the other ports, the two

ferries are loading there with some overlap. This could be fixed with a change in

the timetable. However, with more ferries and possible delays, handling multiple

cooperative ferries using the same dock is a task that has to be looked at in future

work anyway. At the same time, assuming that there is room for at least two

ferries at a time is not that far-fetched. So the time used will probably not change

drastically.

Figure 4.14 shows the passengers waiting at each port, just as in Section 4.1. In

addition, the departure times of the ferries are shown as crosses. As the number

of passengers waiting is updated every minute, it looks like passengers are being

picked up after the ferry has left sometimes. Another observation is that some of

the columns are quite wide, often starting right after a ferry has left. This is because

we made it as likely to come just a little too late as 5 minutes before departure,

as can be seen in Figure 3.5. If this is an unrealistic assumption and passengers

usually come on time, the average waiting time will be even better than the results

in Section 4.1. Lastly, we also see that the ferries pick up passengers almost every

time it loads.
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Figure 4.13: Movement of the two ferries in scenario 1 in Table 4.1 between 15:00
and 17:00. Ferry 1 is v1 and ferry 2 is v2. The locations between the ports indicate
that the ferries are traveling between the ports.

In Figure 4.15 the amount of passengers onboard the ferries is shown, together with

the arrival time at the different ports. At the beginning of the plot for ferry 2,

there is a double arrival at Nyhavna. The same also happens right after 16:00.

This is because the let off passengers action is translated to a load task and the

take planned route starts with a loading task. In Figure 4.14 this is not visible

because the first load task has no direction, which means that the ferry does not

indicate to waiting passengers if it is still active. For the passengers this might be

a little confusing, but with the timetable and the fact that the second load task

indicates that the ferry is active, it should not be a huge problem. Since ferry

1 also has the same action sequence, the same thing happens. However, in the

plot, the time is rounded down to a whole minute, resulting in the same timestamp

for both load actions. Given the slack in loading time, there is still more than

enough time to perform a normal loading sequence. At the same time, it adds a

potentially unwanted extra loading time of 15s, which is not a lot, but it might be

unnecessary. The problem comes from the planner, which has actions with different

levels of abstraction. While the move and let off passengers actions are translated

to just a few tasks, the taking a route actions are translated to many tasks. A plan

compression scheme could, however, fix some of these problems by detecting the

double loading task.

We can see from Figure 4.15 that the ferries are filled to max capacity three times.

Every time has been after visiting Solsiden. If we look at Figure 4.14 as well we see

clearly that there are none left waiting at the port after visiting. This indicates that

a capacity of 10 was just enough. However, we saw from Section 4.1 that passengers
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Figure 4.14: Passengers waiting at the different ports divided by their wanted des-
tination between 15:00 and 17:00 for scenario 1 in Table 4.1.

51



0

5

10

Pa
ss

en
ge

rs
on

bo
ar

d 
v1

15:00 15:20 15:40 16:00 16:20 16:40
Time [h]

0

5

10

Pa
ss

en
ge

rs
on

bo
ar

d 
v2

Passengers onboard vessel from 15:00 to 17:00

onboard Nyhavna Solsiden Trondheim S

Figure 4.15: Passengers onboard each ferry between 15:00 and 17:00 for scenario 1
in Table 4.1. Ferry 1 is v1 and ferry 2 is v2.

are left behind at times, using the same capacity. Another observation is that the

ferries are almost never empty. There are only two times that ferry 1 is traveling

without passengers. The ferries are at around half the capacity for most of the time

in this scenario. It could be interesting to see if a different planning scheme would

work better in future work. As an example, a pure on demand scheme with cameras

counting the amount of waiting passengers could be interesting. As discussed in

Section 4.4, this would require a different planning algorithm.

4.2.2 Scenario 2: Adding Another Ferry

The plan made at 15:00 is shown in Listing 4.2, and the plan made at 16:00 is shown

in Listing 4.3. At 15:00 the initial state is similar to the last scenario. Ferry 2 and

3 are on their way to Nyhavna and Trondheim S with passengers onboard. The

difference is, of course, that there is a third ferry already waiting at Trondheim S.

This results in almost the same plan, with the difference being that the third ferry

is covering the expected capacity between Solsiden and Trondheim S. Although

the planner only used 0.28s to solve this, it is a huge increase compared to the last

scenario. This shows how the solving time can increase rapidly with a small increase

in plan length.

The plan in Listing 4.2 could actually be a second shorter. To make sure that the
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route starting first is taken first we added a turn variable to the planning problem.

This does not make as much sense when the two routes start at the same time, or at

different ports. However, the plan is translated to tasks individually by the different

ferries. Therefore, this does not result in any actual time delay. In the planning

problem, it does have an effect. As we can see from the last two actions, route2

is taken after route1. However, if ferry 1 took route1, route2 could be taken right

after ferry 2 was done letting passengers off.

0 . 0 0 0 : ( move to port v3 portd portc ) [ 1 4 7 . 5 0 0 ]

0 . 0 0 0 : ( move to port v2 portb portc ) [ 1 2 7 . 0 0 0 ]

0 . 0 0 0 : ( r o u t e s i n g l e t r i p v1 t r i p cd portd ) [ 1 . 0 0 0 ]

127 . 001 : ( l e t o f f p a s s e n g e r s v2 pa1 portb ) [ 1 5 . 0 0 0 ]

147 . 501 : ( l e t o f f p a s s e n g e r s v3 pa2 portd ) [ 1 5 . 0 0 0 ]

162 . 501 : ( take p lanned route v3 route1 portd portb portb ) [ 1 . 0 0 0 ]

163 . 502 : ( take p lanned route v2 route2 portb portc portc ) [ 1 . 0 0 0 ]

Listing 4.2: Resulting plan, made at 15:00, for scenario 2 in Table 4.1. v1, v2 and v3 are the

three ferries and pa1 and pa2 are groups of passengers onboard. portb is Nyhavna, portc is

Solsiden and portd is Trondheim S.

It is a little difficult saying exactly what went wrong, but upon further inspection

we discovered that removing the metric resulted in the optimal plan. Since travel

time dominates the plan length, it will be minimized anyway, so removing the metric

would probably be a safe thing to do. Since the cost of the plan was unchanged, it

is unclear why the metric had an effect. However, by taking a route ferry 1 would

not be able to use a move action afterward, stopping that opportunity to increase

the cost.

0 . 0 0 0 : ( move to port v3 portd portc ) [ 1 4 7 . 5 0 0 ]

0 . 0 0 0 : ( move to port v1 portd portc ) [ 1 4 7 . 5 0 0 ]

0 . 0 0 0 : ( move to port v2 portb portc ) [ 1 2 7 . 0 0 0 ]

127 . 001 : ( l e t o f f p a s s e n g e r s v2 pa1 portb ) [ 1 5 . 0 0 0 ]

147 . 501 : ( l e t o f f p a s s e n g e r s v3 pa2 portd ) [ 1 5 . 0 0 0 ]

147 . 501 : ( take p lanned route v1 route1 portd portb portb ) [ 1 . 0 0 0 ]

148 . 502 : ( take p lanned route v2 route2 portb portc portc ) [ 1 . 0 0 0 ]

Listing 4.3: Resulting plan, made at 16:00, for scenario 2 in Table 4.1. v1, v2 and v3 are the

three ferries and pa1 and pa2 are groups of passengers onboard. portb is Nyhavna, portc is

Solsiden and portd is Trondheim S.

In the plan made at 16:00, given in Listing 4.3, the initial state is almost the same
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as for 15:00. The only difference is that ferry 1 is on its way to Trondheim S (portd),

instead of being there. Just as before, the extra ferry is only needed between 15:00

and 16:00, so no extra routes are taken in this plan. Since ferry 3 has passengers,

and ferry 1 is empty, ferry 1 is taking over the route. This could be a problem

as we do not add how far each ferry has come between the ports. However, as we

can see in Figure 4.16, ferry 1 is not delayed even though it was actually further

behind. As described in Section 4.4, we were not able to encode the departure time

in the planning problem, so the planner tries to find a ferry for the routes as fast

as possible. Therefore, having a more exact estimation of how far away the ferries

are would not necessarily give a better plan, as the ferry could have to wait for

departure anyway. Compared to two ferries, this is still a simple plan, computed

in 0.54s. Although this is not a lot either, it is still a major increase compared to

using two ferries.

With three ferries, the planner gives a bit more value by assigning ferries to routes.

If ferry 1 had any passengers onboard it would also have made sure these reached

their destination. At the same time, the planner does not need to come up with

a particularly intelligent plan. Therefore, it might be possible to make a planning

algorithm without the use of AI-planning, that does the same thing. Nevertheless,

the planner does its job reasonably well, even though it is not perfect. In future work,

it would be interesting to see if the planner can make the system more intelligent.

Maybe with the use of another AI-planner.

The movements of all three ferries are shown in Figure 4.16. While ferry 2 and 3

do the same as for the last scenario between 15:00 and 16:00, ferry 1 is traveling

between Trondheim S and Solsiden as frequently as possible. The lowest allowed

loading time in the simulation is 15s, which means that ferry 1 can take more trips

than the other two. The minimum loading time of 15s is not based on how long it

takes to load and unload passengers on the milliAmpere 1, but rather an estimate

based on buses outside rush hours. Therefore, it might be that this estimate is

incorrect, and should perhaps be simulated using a stochastic loading time. Since

the frequency of ferry 1 is different than the others, there are two instances where

all three ferries are loading at Solsiden around the same time. As mentioned before,

having multiple ferries wanting to use a port at the same time is a problem that has

to be looked at in future work. Lastly, we can see that ferry 1 was a little behind

ferry 3 when replanning at 16:00. However, ferry 1 had still more than enough time

to load at Trondheim S.

In Figure 4.17 we see the number of passengers waiting at the ports for this scenario.

For the trip between Solsiden and Trondheim S, we can see that crosses appear quite
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Figure 4.16: Movement of the three ferries in scenario 2 in Table 4.1 between 15:00
and 17:00. Ferry 1 is v1, ferry 2 is v2 and ferry 3 is v3. The locations between the
ports indicate that the ferries are traveling between the ports.

often before 16:00, resulting in a shorter waiting time for these trips. However, there

is often no one waiting when ferry 1 arrives. The passenger distribution is fitted to

the timetable, so it is not a surprise that the extra ferry has a little less to do. It does

not help that ferry 1 is sometimes arriving right after one of the other two ferries.

To make the passengers aware of the extra ferry, there should be some screens at

the ports with estimated departure times of all ferries, although passengers would

probably always take the first ferry, even if they were only going to Solsiden.

Around 15:40 we can see that a passenger was left behind for the trip from Solsiden

to Nyhavna. This begs the question if the trip between Solsiden and Trondheim

S is the only one needing extra capacity. The estimated extra needed capacity is

calculated by looking at the number of passengers wanting to travel on each stretch,

meaning that if someone wants to take a trip from Trondheim S to Nyhavna it counts

towards both stretches. Looking at Figure 4.17, we can see that the stretch between

Solsiden and Trondheim S is a little busier. In the generated planning problem there

is also just one unit capacity that has to be covered, meaning that the planner could

also have chosen to take the full route. Looking at Figure 4.18 we see that a ferry

is only full one time, so this kind of abnormality is hard to predict.

In Figure 4.18 we see the number of passengers onboard the three ferries. Here

we see even more clearly that ferry 1 is not adding that much value before 16:00,

as it mostly travels without any passengers. However, it did have a small effect on

average waiting time, as seen Section 4.1.2, although it might have been used better.

Having it be more reactive to the number of passengers waiting could be interesting

to look at in the future.
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Figure 4.17: Passengers waiting at the different ports divided by their wanted des-
tination between 15:00 and 17:00 for scenario 2 in Table 4.1.
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Figure 4.18: Passengers onboard each ferry between 15:00 and 17:00 for scenario 2
in Table 4.1. Ferry 1 is v1, ferry 2 is v2 and ferry 3 is v3.

4.3 Control System Performance During a Single

Trip

In this section we look at the performance of the control system. Since the per-

formance is similar for the different trips we only look at the trip from Nyhavna

to Trondheim S. An overview of the vessel’s path can be seen in Figure 4.19. The

vessel’s pose is plotted every 10 seconds as a rectangle such that we can see more

clearly how the vessel moves. It is worth noting that the map is simply plotted as a

picture behind the path. Together with the inaccuracies that come from the earth

being round and the plot being flat, the plotted map becomes a little inaccurate.

The control system operates with the actual coordinates of the convex sets, so even

though it looks like the vessel crashed into the corner at the bottom, the path is
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Figure 4.19: Overview of a trip between Nyhavna and Trondheim S. The map is
slightly skewed in some places because of the earth’s curvature. The vessel is plotted
as a rectangle every 10s.

collision-free.

If we look at the plotted paths we can barely see the optimal path, since the actual

path follows the optimal very well. The paths also look sensible, where the vessel

travels in the middle of the channels. One observation we can make is that the

vessel is not traveling with the front first, but rather with a front corner. This can

be seen more clearly in Figure 4.20. This could be because the milliAmpere 1 vessel

is almost squared, as seen in Figure 1.1, which means that going straight forward

might not be the most efficient. Something else that might have an effect is the

thrust configuration where one thruster drives and one brakes. The vessel might get

more effect from the thrusters if the front thruster gives thrust in the sway direction,

instead of braking or being inactive.

Looking at the surge and sway velocity in Figure 4.21 we see that also here the

vessel is able to follow the optimal trajectory quite well. In the surge velocity

plot we see some dips. This happens when the vessel reaches a connection point

between two convex sets. Since the trajectory planner tries to get the vessel to the

connection point, it slows down upon approaching. This effect could be avoided

by increasing the circle of acceptance for reaching the connection point. However,

58



570300 570350 570400 570450 570500 570550
East [m]

200

250

300

350

400

450

No
rth

 [m
]

+7.035e6 Path vessel
Optimal path
Actual path
Optimal vessel
Actual vessel

Figure 4.20: The first 51s of the trip from Nyhavna to Trondheim S, shown in
Figure 4.19.

when the channel becomes narrow, a bigger circle of acceptance could mean that

the vessel is outside the next convex set when reaching the connection point. A

possible solution to this could be to try to increase the overlap between the areas,

and combine it with a more complex acceptance criteria. As an example, an ellipse

could be used instead of a simple circle.

We initially expected the sway velocity to be close to zero, when the vessel is not

turning. However, since the vessel prefers to travel with a corner of the vessel point-

ing forward, the sway velocity is almost always saturated to ±1m/s. As previously

discussed this might not be very bad, if it is more effective or faster. It might also be

interesting to test this with passengers to see if it feels uncomfortable. Either way,

it is difficult to force the vessel to go straight forward. Having a sway velocity of

±1m/s might be natural when turning. Limiting the state to have a smaller mag-

nitude in the trajectory planner has resulted in infeasible solutions when testing.

Limiting the thrusters’ sway components even more is a more viable solution, but

some simple tests have shown that in order to get an effect it has to be limited to

±100N . This might limit the thrusters too much when the vessel is turning. The

last possible solution is to allow both thrusters to drive when in transit. However, if

the vessel has to brake suddenly, the front thruster might use too much time to turn

around for the solution to be safe. One last observation about the sway velocity is
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Figure 4.21: The surge and sway velocity of the vessel for the trip from Nyhavna to
Trondheim S, shown in Figure 4.19.

that it is a little oscillatory. We have omitted the thruster dynamics, making them

unrealistically responsive. This might be the cause of the oscillations, and will be

discussed more when looking at the thruster plots.

Both the yaw and yaw rate track the optimal trajectory quite well as we see in

Figure 4.22. Since the vessel can go both ways, the definition of which way is

forward is simply changed at the beginning of the trip, as seen by the sudden change

in yaw. This is done because the front should be towards land when docking, but

towards the channel when undocking. Just like the sway velocity, the yaw rate is

slightly oscillatory, which might also stem from the thruster dynamic being a little

unrealistic.

In Figure 4.23 we can see the motor thrust from both thrusters, and in Figure 4.24

we see the angles of the thrusters. Furthermore, we see the decomposed forces from

the thrusters in Figures 4.25 and 4.26. In all these figures we see that there is

no time delay for changing thrust or the thruster angles. This is a simplification

we did because we believed it would not have much effect. Furthermore, we use

more powerful thrusters than the milliAmpere 1, such that the thruster dynamics

would have to be estimated from the current thrusters [77]. When looking at the

rapid changes, the thruster dynamic might have a significant effect, and it would be
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Figure 4.22: The yaw and yaw rate of the vessel for the trip from Nyhavna to
Trondheim S, shown in Figure 4.19.

interesting to look at this in future work.

Looking at Figure 4.23 we see that the back thruster is often at maximum thrust

of 1500N . This is expected for the driving thruster since it is the fastest way to

get to the connection points or docks. There are some negative spikes, which come

when the vessel reaches a connection point as previously discussed. It might be hard

to see from the plots, but there are spikes for both the optimal and actual thrust.

The spikes are rather short, which means that the acceptance radius, for reaching a

connection point, is almost big enough.

Another observation is that the optimal back thrust is above the maximum thrust

quite often. This is because the decomposed forces from the thrusters are not

connected in the trajectory planner. As we have seen from the vessel response,

this simplification did not affect the vessel’s ability to track the optimal states.

Perhaps more strange is the actual thrust, which is not necessarily close to being

saturated when the optimal thrust is above the maximum. It is hard to say why this

is, but the optimal trajectory is made a little slower than it could be. This might

be the reason the vessel is still able to track the optimal states. At the same time,

the lower control parts try to track the optimal states and not thrust. Therefore

another thrust configuration has then been deemed to be more optimal.
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Figure 4.23: The thrust from each motor during the trip from Nyhavna to Trondheim
S, shown in Figure 4.19.

Having the thruster be at their maximum throughout large parts of the trip is not

necessarily the best way to use the thrusters with respect to tear and efficiency.

One solution could be to penalize the use of thrust a lot harder. However, to be

able to keep up with the routes we do not have that much to go on with respect

to velocity. Therefore, the thrusters have to be able to produce around 1500N

in normal operations. The results in Section 4.1 showed us that larger ferries are

needed, so this has to be looked further at in future work anyway. However, the

vessels have to be able to operate at around 3m/s in normal operations.

If we look at the front thruster in Figure 4.23 we see that it is quite active. Our initial

thought was that this thruster would only be active when turning or while braking

when approaching the dock. However, as discussed previously, there has been some

unforeseen behavior. The first is that the vessel is traveling with a saturated sway

velocity, which is produced using the front thruster. Next, is the braking upon

reaching connection points, where the back thruster is turned down and the front

thruster is turned up. The front thruster does not follow the optimal thrust closely

either. The reason for this is probably the same as for the back thruster.

The angle of the back thruster, shown in Figure 4.24, is about what is expected. It

is mostly around 0◦, meaning all thrust is going forward. When the angle is spiking,

62



0 50 100 150 200 250 300 350 400

−100

0

100
Fr
on
t a

ng
le
 [d

eg
]

0 50 100 150 200 250 300 350 400
Time [s]

−50

0

50

Ba
ck
 a
ng

le
 [d

eg
]

Motor angles

Optimal thr ster Act al thr ster

Figure 4.24: The angles of the azimuth thrusters, as shown in Figure 2.3, during the
trip from Nyhavna to Trondheim S, shown in Figure 4.19.

it corresponds to the dips in thrust. This means that the thruster is used in the

sway direction instead. The spikes often go between ±90◦ in rapid succession, which

is not very realistic.

The angle of the front thruster is going between ±90◦ quite often. This is not very

realistic behavior, and would result in a lot of tear on the thrusters. Since the

thruster is active throughout the whole trip it is not a surprise that the angle is

either ±90◦, since this means that the thrust is only in the sway direction. There

are some spikes where the angle goes to ±180◦, and these correspond with reaching

a connection point.

Looking at the decomposed forces in Figure 4.25, we see the same effects as previ-

ously discussed more clearly. The front thruster brakes when approaching connection

points and at the end. Meanwhile, the sway component is rather noisy, and in some

ways similar to the sway velocity plot. Where the sway velocity does not change

much, the sway component is rather stable. However, where the sway component is

noisy, the sway velocity is oscillatory. This is, of course, not a surprise since sway

velocity is an effect of the thrust in this direction. However, it would probably mean

that by using the actual thruster dynamics the thrust would be less noisy, such that

the sway velocity would be less oscillatory. Using the thruster dynamics could also
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Figure 4.25: The decomposed forces from the front thruster during the trip from
Nyhavna to Trondheim S, shown in Figure 4.19.

mean that the dips in the surge component would be smaller, such that the dips in

surge velocity would be smaller.

The surge component of the back thruster, shown in Figure 4.26, is almost identical

to the overall thrust in Figure 4.23. This is not very surprising as the back thruster’s

main task is to drive the vessel forward. The sway component is often around 0N ,

and is mostly active around the connection points.

4.4 Limitations of AI-Planning

Since AI-planning is not as commonly used as tools such as optimization or machine

learning, there are some major problems. This includes the availability of planners,

bugs in implementation and performance of planners. In Figure 4.27 an illustration

of limiting factors are shown. The figure is made in collaboration with Øystein

Solbø, who has faced similar problems [81]. In this subsection the figure will be

explained in more detail, before some problems specific to our planning problem are

presented.

At the bottom of the pyramid in Figure 4.27 all planners are present. This layer
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Figure 4.26: The decomposed forces from the back thruster during the trip from
Nyhavna to Trondheim S, shown in Figure 4.19.

Figure 4.27: An illustration of limiting factors when using AI-planning. The figure
is made in collaboration with Øystein Solbø, who has faced similar problems [81].
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is quite large, as there have been made a lot of different planners. The layer above

is unfortunately significantly decreased, as finding a planner with published source

code, or other ways to use the algorithm, is quite rare. Most available planners are

published as a contestant in one of the planning competitions held by the Interna-

tional Conference on Automated Planning and Scheduling.

The next layer refers to the difficulties in getting the source code to run. Unfor-

tunately, the source code is seldom documented very well, if it is documented at

all. Therefore finding out how to run the code and what tools are needed is time-

consuming, and requires in-depth knowledge about the tools. At times it might even

result in conflicts with the rest of the system.

Almost at the top of the pyramid is the limitation of requirements. There are several

possible requirements, so finding a planner that supports your needed requirements

is difficult. Furthermore, the published source code of a planner sometimes does

not support everything the proposed planner is said to support. At the top of the

pyramid, there are the bugs in the code that make the code crash or terminate even

though the planner is supposed to support the wanted functionalities. This layer

also includes problems planners have with certain problems. An example of this is

that planners usually have problems with concurrent actions.

While searching for planners, two planners reached the top layer of the pyramid.

This was the POPF planner and the OPTIC planner, where the latter had fewer

issues in the top layer. However, some limiting problems have still been encountered.

One of the main problems is the performance in finding solutions. If the problem

becomes too big, the planner can search for several minutes without finding a good

enough solution, before suddenly crashing. This would mean that we have to plan

for smaller time horizons. The problem becomes worse when there are concurrent

actions, which we will have with multiple vessels. This means that the planning

problem we make has to be rather simple for the planner to handle it.

A lot of planning problems revolve around moving goods [26]. However, when the

goods are passengers there is an extra challenge in the sense that passengers care

about how long they wait. Therefore, a fixed timetable makes it convenient for

passengers to arrive just before departure. Adding a departure time to a planning

problem is not an arbitrary task. Since the time an action start is not available to

use in an action, we have to look at some tricks.

The simplest way to add a departure time would be to use time initialed predicates,

which is a requirement the available OPTIC version [1] does not support. Time

initial predicates can be substituted using actions that have to start at time zero
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in the plan [82], however this adds complexity such that the rest of the problem

has to be even more simple. Another solution is to use a timer action that is

forced to start at time zero, and continuously increase a timer function. However,

continuously increasing a function is a functionality that OPTIC allows when parsing

the problem, but when trying to solve the problem, a bug makes the planner crash.

An alternative approach to using a timetable is a pure on demand solution where the

planner is given the full information about how many passengers that have arrived

and where they want to go. When testing this solution we encountered problems

using numerical variables. First, we discovered that the two different versions of

POPF we tried did not manage to solve problems where a numeric variable had

to obtain a certain value. In this case, a goal is that there are no more waiting

passengers. OPTIC managed to decrease numeric variables, but was not able to

solve a problem where a ferry had to leave passengers behind when it was full. It

also crashed when we had two ferries, and it would be optimal to use both. The last

test we did was to see if it managed to move two passengers from Nyhavna. One

was going to Solsiden and one to Trondheim S. This also resulted in the planner

crashing.
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Chapter 5

Conclusion

In this thesis we reached our primary objective by showing how a small fleet of

autonomous passenger ferries can be used as an alternative transportation method

in Trondheim. In order to do this we have shown how a high-level mission plan can

be split up into tasks such as docking, undocking, transit and loading, as well as how

to make a control system that can translate these tasks to input for the thrusters.

In addition, we showed how AI-planning could be used to make a high-level mission

plan. To simulate the distribution of passengers we made a stochastic simulation

that added a non-negative number of passengers at each port every minute.

To look at the different capabilities of the system we simulated five different scen-

arios. For all five scenarios the average waiting time was between ten and ten and a

half minutes. This is quite good as the waiting time includes the time spent on the

ferries, and it is most popular to take the longest trip which takes around eight to

nine minutes. To follow the routes set by the predefined timetable two ferries are

needed for most of the day. In the scenario with only two ferries, with a capacity of

10 people, the system is almost able to handle around 700 passengers a day. How-

ever, an average of about two passengers a day were left behind because the ferries

were filled up to their max capacity. When having a capacity of 25 passengers,

which is the same as a similar ferry system about to be launched in Stockholm [9],

the ferries always had enough space. Even though that scenario also doubled the

number of passengers, the capacity was more than doubled, so this was not very

surprising. However, it showed that using already existing ferries makes it possible

to handle more than enough passengers.

In the other three scenarios we had three ferries instead of two. In the scenario where

we only added a third ferry, the system found that it only needed more capacity
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between Trondheim S and Solsiden between 15:00 and 16:00. This slightly decreased

the average waiting time and the average passengers left behind throughout the day.

As the total usage of the ferries only increased with an hour this is quite good.

However, the ferry that was taking extra capacity routes was much less busy than

the ones following the timetable. This indicates that it could be possible to utilize

the third ferry better. The system calculates the extra needed capacity based on the

expected number of passengers. Since we added some significant uncertainty, one

scenario gave the planner a higher expected number of passengers. This resulted in

using all three ferries for the six busiest hours of the day, and a further decrease in the

average waiting time and number of passengers left behind. In the last scenario with

three ferries, we added a simple recharging scheme where the most used ferry had

to take an hour break if it had been active for three hours straight. Unsurprisingly,

this resulted in a much more even distribution of workload between the ferries. It

also showed the robustness of the system, as it was able to plan with an unavailable

ferry and the average waiting time was mostly unaffected.

The control system was able to handle every task it was given. When we looked at

one of the longest trips, we saw that the trajectory planner gave a sensible collision-

free path. However, at the connection point between convex sets the vessel started

to brake until it was close enough to the point. It then increased the velocity again

and kept going. The trajectory tracker and thrust allocation were able to follow

the path very closely. As a simplification, the thruster dynamics were not included

in the vessel model or the control system. This meant both the trajectory planner

and thrust allocator were allowed to change the vessel input infinitely fast. A little

surprisingly, this was something the control system exploited often, by frequently

changing the thrust and angles of the azimuth thruster between their minimum and

maximum limits.

With regards to our secondary objective, the AI-planner makes sure that the ferries

are distributed among the needed routes and that onboard passengers reach their

destination after a ferry become inactive. It is also compatible with the rest of the

system by translating the actions in the plan into tasks for the individual ferries.

Some bugs made some plans suboptimal, and one compatibility issue with double

loading tasks was encountered. These would have to be looked at in future work.

However, it might be best to look at the whole planning module as well. While the

planner does its job reasonably well, similar plans can be achieved by predefining

what route each ferry should take. By ending every route at either Nyhavna or

Trondheim S, the passengers will also reach their destination. In Section 4.4 we

discussed alternative formulations of the planning problem, and why it failed. To

69



get a more intelligent system, these approaches may be tried again with a different

planner. It might also be an idea to use other tools for mission planning, such as

optimization or more classical scheduling algorithms. The reason why the planner

is activated every hour is because the passenger distribution changes every hour and

because it was perceived to be a reasonable time horizon for planning. However,

one could also make a planning problem for the whole day, as long as the possible

actions are so high-level that the planner can handle the number of actions. Another

approach could be to have predefined routes, and activate the planner if some an-

omaly is detected. This could be a delay for a ferry, or a spike in waiting passengers

at a port.

To make sure the vessels were able to follow the timetable we had to use a differ-

ent maximum thrust than the thrusters on milliAmpere 1 actually give. A higher

maximum passenger capacity is also required. Therefore, another vessel has to be

used, with a capacity of at least 10 passengers and an operational velocity of around

3m/s. This would mean that the control system has to be modified to work for the

new vessel. In addition, the connection point problem has to be looked at, and the

thruster dynamics should be added to the model and the control system. Another

control problem that has been omitted for simplicity is collision avoidance. This

has to be added between the ferries, to make sure a possible collision is never en-

countered. The channel is also used by other vessels, so a full collision avoidance

scheme has to be implemented. How much the forces from the river affect the vessels

has to be investigated as well. If the system is ever launched in real life, it would

also be a good idea to fetch data for the actual passenger distribution. This could

be used for making even more intelligent decisions.
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Appendix A

milliAmpere 1 Characteristics and

Parameters

The characteristics of milliAmpere 1 are given in Table A.1. Parameters for the

3-DOF model [77] are given in Table A.2. The elements of the dampening matrix

D, introduced in Section 2.2.3, are presented in Equation (A.1).

d11 (ν) = −Xu −X|u|u|u| −Xuuuu
2 (A.1a)

d22 (ν) = −Yv − Y|v|v|v| − Y|r|v|r| − Yvvvv
2 (A.1b)

d23 (ν) = −Yr − Y|v|r|v| − Y|r|r|r| (A.1c)

d32 (ν) = −Nv −N|v|v|v| −N|r|v|r| (A.1d)

d33 (ν) = −Nr −N|v|r|v| −N|r|r|r| −Nrrrr
2 (A.1e)

Table A.1: Characteristics of milliAmpere 1 [63, 77]. In this thesis we have used
Tmax = 1500N .

Description Symbol Value
Hull length LOA 5m
Hull width B 2.8m
Max thrust Tmax 500N

Thruster distance from center Lx 1.8m
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Table A.2: Parameters for the 3-DOF model of milliAmpere 1 introduced in Sec-
tion 2.2.3 [77].

Parameter Value Unit
m11 2389.657 kg
m22 2533.911 kg
m23 62.386 kg
m32 28.141 kg
m33 5068.910 kgm2

Xu −27.632 kg/s
Xu|u −110.064 kg/s
Xuuu −13.965 kg/s
Yv −52.947 kg/s
Y|v|v −116.486 kg/s
Yvvv −24.313 kg/s
Y|r|v −1540.383 kg/s
Yr 24.732 kg/s
Y|v|r 572.141 kg/s
Y|r|r −115.457 kg/s
Nv 3.524 kg/s
N|v|v −0.832 kg/s
N|r|v 336.827 kg/s
Nr −122.860 kg/s
N|r|r −874.428 kg/s
Nrrr 0.000 kg/s
N|v|r −121.957 kg/s
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Appendix B

Model Used in Optimal Control

The optimal model is presented again in Equation (B.1) [44]. The differences from

the vessel model presented in Section 2.2.3, are the matrices S, M p, Cp and Dp,

which are presented in Equation (B.2). The elements of Dp are presented in Equa-

tion (B.3), and all parameters are found in Appendix A.

η̇p = R (ψp)νp (B.1a)

SM pν̇p +Cp (νp)νp +Dp (νp)νp = τ p (B.1b)

S = diag {2.5, 2.5, 5.0} (B.2a)

M p = diag {m11,m22,m33} (B.2b)

Cp =

 0 0 −m22vp

0 0 m11up

m22vp −m11up 0

 (B.2c)

Dp = diag {d11 (νp) , d22 (νp) , d33 (νp)} (B.2d)

d11 (νp) = −Xu −X|u|u|up| −Xuuuu
2
p (B.3a)

d22 (νp) = −Yv − Y|v|v|vp| − Yvvvv
2
p (B.3b)

d33 (νp) = −Nr −N|r|r|rp| (B.3c)
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Appendix C

Weights Used in Thrust Allocation

The weights used in the thrust allocation are given in Table C.1. Some values

are taken directly from Control allocation for double-ended ferries with full-scale

experimental results [63], as they seem to work fine in this case too.

Table C.1: Weights used in thrust allocation.

Description Symbol Value
Weight on scaling down ws 107

Weight on thrust usage wT 0.1
Weight on thrust change w∆T 0.1
Weight on angle change w∆α 10

Weight on deviation from mean angle wδα 3
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Appendix D

Timetable

The timetable for when a ferry should leave from each port is shown in Tables D.1

to D.3. This table is corresponding with the number 2 bus leaving from Trondheim

S, going south.

Table D.1: Ferry timetable from 05:22 to 07:39.

Nyhavna Solsiden westward Solsiden eastward Trondheim S
5:22 5:26 5:37 5:32
5:42 5:46 5:57 5:52
6:02 6:06 6:17 6:12
6:16 6:20 6:31 6:26
6:26 6:30 6:41 6:36
6:36 6:40 6:51 6:46
6:44 6:48 6:59 6:54
6:54 6:58 7:09 7:04
7:04 7:08 7:19 7:14
7:14 7:18 7:29 7:24
7:24 7:28 7:39 7:34
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Table D.2: Ferry timetable from 07:34 to 14:59.

Nyhavna Solsiden westward Solsiden eastward Trondheim S
7:34 7:38 7:49 7:44
7:44 7:48 7:59 7:54
7:54 7:58 8:09 8:04
8:04 8:08 8:19 8:14
8:14 8:18 8:29 8:24
8:24 8:28 8:39 8:34
8:34 8:38 8:49 8:44
8:46 8:50 9:01 8:56
8:56 9:00 9:11 9:06
9:06 9:10 9:21 9:16
9:16 9:20 9:31 9:26
9:26 9:30 9:41 9:36
9:36 9:40 9:51 9:46
9:46 9:50 10:01 9:56
9:56 10:00 10:11 10:06
10:06 10:10 10:21 10:16
10:16 10:20 10:31 10:26
10:26 10:30 10:41 10:36
10:36 10:40 10:51 10:46
10:46 10:50 11:01 10:56
10:56 11:00 11:11 11:06
11:06 11:10 11:21 11:16
11:16 11:20 11:31 11:26
11:26 11:30 11:41 11:36
11:36 11:40 11:51 11:46
11:46 11:50 12:01 11:56
11:56 12:00 12:11 12:06
12:06 12:10 12:21 12:16
12:16 12:20 12:31 12:26
12:26 12:30 12:41 12:36
12:36 12:40 12:51 12:46
12:46 12:50 13:01 12:56
12:56 13:00 13:11 13:06
13:06 13:10 13:21 13:16
13:16 13:20 13:31 13:26
13:26 13:30 13:41 13:36
13:36 13:40 13:51 13:46
13:46 13:50 14:01 13:56
13:56 14:00 14:11 14:06
14:06 14:10 14:21 14:16
14:14 14:18 14:29 14:24
14:24 14:28 14:39 14:34
14:34 14:38 14:49 14:44
14:44 14:48 14:59 14:54
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Table D.3: Ferry timetable from 14:54 to 00:07.

Nyhavna Solsiden westward Solsiden eastward Trondheim S
14:54 14:58 15:09 15:04
15:04 15:08 15:19 15:14
15:14 15:18 15:29 15:24
15:24 15:28 15:39 15:34
15:34 15:38 15:49 15:44
15:44 15:48 15:59 15:54
15:54 15:58 16:09 16:04
16:04 16:08 16:19 16:14
16:14 16:18 16:29 16:24
16:24 16:28 16:39 16:34
16:34 16:38 16:49 16:44
16:44 16:48 16:59 16:54
16:54 16:58 17:09 17:04
17:04 17:08 17:19 17:14
17:14 17:18 17:29 17:24
17:26 17:30 17:41 17:36
17:36 17:40 17:51 17:46
17:46 17:50 18:01 17:56
17:56 18:00 18:11 18:06
18:06 18:10 18:21 18:16
18:16 18:20 18:31 18:26
18:26 18:30 18:41 18:36
18:36 18:40 18:51 18:46
18:46 18:50 19:01 18:56
18:56 19:00 19:11 19:06
19:06 19:10 19:21 19:16
19:16 19:20 19:31 19:26
19:26 19:30 19:41 19:36
19:36 19:40 19:51 19:46
19:46 19:50 20:01 19:56
19:57 20:01 20:12 20:07
20:12 20:16 20:27 20:22
20:32 20:36 20:47 20:42
20:52 20:56 21:07 21:02
21:12 21:16 21:27 21:22
21:32 21:36 21:47 21:42
21:52 21:56 22:07 22:02
22:12 22:16 22:27 22:22
22:32 22:36 22:47 22:42
22:52 22:56 23:07 23:02
23:12 23:16 23:27 23:22
23:32 23:36 23:47 23:42
23:52 23:56 00:07 00:02
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Appendix E

Domain File

The domain file for the AI-planning used in this thesis is presented in listings E.1

to E.5.

Listing E.1: The domain name, requirements and types.

( define (domain manageRoutes )

( :requirements : s t r ips :durative−actions :typing :numeric−fluents )

( :types
v e s s e l
plannedRoute
t r i p
port
pas s enge r s

)
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Listing E.2: The predicates and functions.

( :predicates
( at ?v − v e s s e l ?p − port )
( betweenPorts ?v − v e s s e l ?p1 − port ?p2 − port )
( goingTo ?v − v e s s e l ?p − port )
( docked ?v − v e s s e l )
( a v a i l a b l e ?v − v e s s e l )
( notRecharge ?v − v e s s e l )

( r ou t eS ta r t i ng ? r − plannedRoute ?p − port )
( nextStop ? r − plannedRoute ?p − port )
( coveredPlannedRoute ? r − plannedRoute )

( endPoint ? t − t r i p ?p − port )
( d i f f e r e n tT r i p s ? t1 − t r i p ? t2 − t r i p )

( onboard ?pa − pas senge r s ?v − v e s s e l )
( d e s t i n a t i on ?p − port ?pa − pas senge r s )
( r eachedDest inat ion ?pa − pas senge r s )

)

( : functions
(movetime ? port f rom − port ? po r t t o − port )

( extraNeededVesse l s ? t − t r i p )

( turn ? r − plannedRoute )
( tota lTurn )

( t o ta lDe l ay s )
)
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Listing E.3: The two different move actions.

( :durative−action move between ports
:parameters (? v − v e s s e l ? port f rom − port ? po r t t o − port )
:duration (= ? durat ion (movetime ? port f rom ? po r t t o ) )
:condition (and

( at s t a r t ( at ?v ? port f rom ) )
( over a l l ( a v a i l a b l e ?v ) )

)
: e f f e c t (and

( at s t a r t ( increase ( t o ta lDe l ay s )
(movetime ? port f rom ? po r t t o ) ) ) ; l i n e s p l i t
( at s t a r t (not ( at ?v ? port f rom ) ) )
( at end ( at ?v ? po r t t o ) )

)
)

( :durative−action move to port
:parameters (? v − v e s s e l ? po r t t o − port ? port f rom − port )
:duration (= ? durat ion (/ (movetime ? port f rom ? po r t t o ) 2 ) )
:condition (and

( at s t a r t ( betweenPorts ?v ? port f rom ? po r t t o ) )
( over a l l ( a v a i l a b l e ?v ) )
( at s t a r t ( goingTo ?v ? po r t t o ) )

)
: e f f e c t (and

( at s t a r t ( increase ( t o ta lDe l ay s )
(/ (movetime ? port f rom ? po r t t o ) 2 ) ) ) ; l i n e s p l i t
( at s t a r t (not ( betweenPorts ?v ? port f rom ? po r t t o ) ) )
( at end ( at ?v ? po r t t o ) )
( at end (not ( goingTo ?v ? po r t t o ) ) )
( at end ( docked ?v ) )

)
)
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Listing E.4: The action for beginning a planned route, and the action for letting of
passengers.

( :durative−action take p lanned route
:parameters (? v − v e s s e l ? r − plannedRoute ?p − port

? por t next − port ? po r t nex t nex t − port )
:duration (= ? durat ion 1)
:condition (and

( at s t a r t ( at ?v ?p ) )
( at s t a r t ( a v a i l a b l e ?v ) )
( over a l l ( r ou t eS ta r t i ng ? r ?p ) )
( at s t a r t (= ( totalTurn ) ( turn ? r ) ) )
( over a l l ( nextStop ? r ? por t next ) )
( over a l l ( nextStop ? r ? por t nex t nex t ) )
( over a l l ( notRecharge ?v ) )

)
: e f f e c t (and

( at s t a r t (not ( a v a i l a b l e ?v ) ) )
( at end ( coveredPlannedRoute ? r ) )
( at end ( increase ( tota lTurn ) 1 ) )
( at s t a r t (not ( at ?v ?p ) ) )
( at end ( at ?v ? por t next ) )
( at end ( at ?v ? po r t nex t nex t ) )

)
)

( :durative−action l e t o f f p a s s e n g e r s
:parameters (? v − v e s s e l ?pa − pas senge r s ?p − port )
:duration (= ? durat ion 15)
:condition (and

( at s t a r t ( onboard ?pa ?v ) )
( over a l l ( at ?v ?p ) )
( over a l l ( d e s t i n a t i on ?p ?pa ) )

)
: e f f e c t (and

( at s t a r t (not ( onboard ?pa ?v ) ) )
( at end ( reachedDest inat ion ?pa ) )

)
)
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Listing E.5: The two actions for beginning a route for taking extra predicted needed
capacity.

( :durative−action r o u t e s i n g l e t r i p
:parameters (? v − v e s s e l ? t − t r i p ?p − port )
:duration (= ? durat ion 1)
:condition (and

( at s t a r t ( at ?v ?p ) )
( at s t a r t ( a v a i l a b l e ?v ) )
( over a l l ( endPoint ? t ?p ) )
( at s t a r t (> ( extraNeededVesse l s ? t ) 0 ) )
( over a l l ( notRecharge ?v ) )

)
: e f f e c t (and

( at s t a r t (not ( a v a i l a b l e ?v ) ) )
( at end (decrease ( extraNeededVesse l s ? t ) 2 ) )

)
)

( :durative−action r o u t e b o t h t r i p s
:parameters (? v − v e s s e l ? t1 − t r i p ? t2 − t r i p ?p − port )
:duration (= ? durat ion 1)
:condition (and

( at s t a r t ( at ?v ?p ) )
( at s t a r t ( a v a i l a b l e ?v ) )
( over a l l ( endPoint ? t1 ?p ) )
( over a l l ( d i f f e r e n tT r i p s ? t1 ? t2 ) )
( at s t a r t (> ( extraNeededVesse l s ? t1 ) 0 ) )
( at s t a r t (> ( extraNeededVesse l s ? t2 ) 0 ) )
( over a l l ( notRecharge ?v ) )

)
: e f f e c t (and

( at s t a r t (not ( a v a i l a b l e ?v ) ) )
( at s t a r t (decrease ( extraNeededVesse l s ? t1 ) 1 ) )
( at s t a r t (decrease ( extraNeededVesse l s ? t2 ) 1 ) )

)
)
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