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Abstract
The range of potential applications for Unmanned Aerial Vehicles (UAVs) continues to ex-
pand due to their enhanced capabilities and decreased costs in recent years. A domain in
which they could offer valuable advancements is aerial transportation and logistics. This
thesis presents a complete system for performing precision landing of a UAV on a land-
ing platform in the context of autonomous aerial cargo delivery. The proposed method
assists the primary autopilot in navigation during the descent phase from an initial posi-
tion susceptible to noise originating from Global Navigation Satellite Systems (GNSSs).
The discrepancy between the global positioning error and the mechanical tolerances of
the landing platform is substantial and necessitates corrections. To correct the global po-
sitioning error, the designed and implemented system uses visual detections of fiducial
markers embedded in the landing platform to estimate the relative position and orientation
between the platform and aircraft. The adoption of a recursive arrangement of fiducial
markers ensures marker visibility throughout the entire descent. This arrangement effec-
tively maintains horizontal alignment above the center of the landing platform, all while
minimizing the required platform footprint.

By employing the onboard camera and Inertial Measurement Unit (IMU), the companion
computer of the aircraft provides real-time estimates of the relative pose using an Invariant
Extended Kalman Filter (IEKF). The IEKF represents the complete extended pose of the
aircraft within a Lie group framework, inherently adhering to geometric constraints associ-
ated with attitude representation. This framework guarantees that the filter updates remain
confined to the manifold, thereby preserving the integrity of the attitude estimate. For the
given system, it is shown that the logarithmic mapping of the estimation error follows a
linear differential equation which is independent of the true state of the system, commonly
referred to as the log-linear property. This ensures local stability around any trajectory, a
rare trait to hold for nonlinear estimators.

The full pose estimate in six degrees of freedom is computed analytically by exploiting
geometric properties and the known scale of the fiducial markers in the Infinitesimal Plane-
Based Pose Estimation (IPPE) method. The analytical solution to the Perspective-n-Point
(PnP) problem is significantly faster than traditional iterative approaches, making it ideal
for real-time estimation. The filter parameters in terms of process and measurement noise
covariance matrices are tuned using real data obtained from a motion capture environment,
and subsequently assessed for consistency and performance. The evaluation metrics are
based on Normalized Innovation Squared (NIS), Normalized Estimation Error Squared
(NEES) and Root Mean Square Error (RMSE) and are employed on a hold-out dataset.

Finally, a statistical analysis of the full system performance is conducted through experi-
mental trials. The results of this study demonstrate the effectiveness of an inertially-driven
IEKF based on pose updates from the IPPE method applied to recursive fiducial markers.
The proposed system reliably converges to the center of the landing platform with high
precision compared to the platform’s tolerances. The IEKF shows potential for further
development and application within the domain of inertial navigation.
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Sammendrag
De potensielle bruksområdene for ubemannede luftfartøy har i løpet av de siste årene
utvidet seg betydelig grunnet deres reduserte kostnad og forbedrede funksjonalitet. Et
område hvor de kan tilby verdifulle fremskritt er innen lufttransport og logistikk. I denne
masteroppgaven presenteres et komplett system for presisjonslanding av ubemannede luft-
fartøy på en landingsplattform i kontekst av autonom luftfraktlevering. Systemet gaider
den primære autopilotens navigasjon under landingssekvensen fra en initiell posisjon som
er utsatt for støy fra satellittbaserte posisjoneringssystemer. Den globale posisjonerings-
feilen er uproporsjonalt høy sammenliknet med plattformens mekaniske toleranser og må
derfor korrigeres. For å korrigere den globale posisjoneringsfeilen, baserer presisjonsland-
ingssystemet seg på visuell deteksjon av fiduciale markører fastmontert til landingsplat-
tformen for å estimere relativ posisjon og orientasjon mellom plattformen og luftfartøyet.
Bruken av fiduciale markører i en rekursiv ordning sikrer synlighet av markørene gjennom
hele nedstigningen. Denne ordningen opprettholder horisontal innretting over midten av
landingsplattformen, samtidig som den minimerer nødvendig plassbehov for plattformen.

Ved å benytte seg av et ombordkamera og treghetsmålinger, vil luftfartøyets datamaskin
benytte et invariant utvidet Kalman-filter for å gi estimater i sanntid. Det invariante filteret
representer posisjon, hastighet og orientasjon for luftfartøyet i et matematisk rammeverk
basert på Lie-grupper som har den iboende egenskapen til å overholde geometriske begren-
sninger knyttet til representasjon av orientasjon. Dette rammeverket garanterer at filterets
oppdaterte estimater forblir på manifolden, hvilket ivaretar integriteten til orientasjonsesti-
matet. Det er vist at logaritmen til estimeringsfeilen for det gitte systemet følger en lineær
differensiallikning som er uavhengig av systemets sanne tilstand, ofte referert til som den
log-lineære egenskapen. Dette sørger for lokal stabilitet rundt en vilkårlig bane, en sjelden
egenskap for ikke-lineære observatører.

Posisjon og orientasjon i seks frihetsgrader er estimert analytisk ved å utnytte geometriske
egenskaper og den kjente størrelsen på de fiduciale markørene i Infinitesimal Plane-Based
Pose Estimation (IPPE)-metoden. Den analytiske løsningen på Perspective-n-Point (PnP)-
problemet er vesentlig raskere enn tradisjonelle iterative tilnærminger, hvilket gjør den
ideell for sanntidsestimering. Filterets parametere i form av kovariansmatriser for prosess-
og målestøy er funnet ved hjelp av ekte data innhentet med høypresis bevegelsessporing
og senere evaluert for kvalitet og ytelse. Den endelige evalueringen er basert på normalis-
erte innovasjoner og estimeringsfeil kvadrert i tillegg til det kvadratiske gjennomsnittet av
estimeringsfeilen og er gjennomført for et separat datasett.

Avslutningsvis er det gjennomført en statistisk analyse basert på eksperimentell data av
effektiviteten til systemet som en helhet. Resultatene av dette studiet demonstrerer ytelsen
til et treghetsbasert invariant utvidet Kalman-filter basert på orientasjon- og posisjonsop-
pdateringer. Oppdateringene har opphav i IPPE-metoden anvendt på rekursive fiduciale
markører. Systemet konvergerer pålitelig til landingsplattformens senter med høy pre-
sisjon sammenliknet med plattformens toleranser. Det invariante utvidede Kalman-filteret
viser potensial for videre utvikling og anvendelse som treghetsnavigasjonssystem.
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Chapter 1
Introduction

1.1 Motivation

In the vast landscape of modern robotics, the emergence of Unmanned Aerial Vehicles
(UAVs) has ignited a paradigm shift that extends beyond the constraints of terrestrial nav-
igation. As aerial counterparts to their ground-based robotic companions, UAVs have
opened up new dimensions for scientific research, industrial applications, and societal ad-
vancements. By combining robotics and aviation, UAVs have not only enhanced existing
applications but have also unlocked entirely new avenues for exploration and problem-
solving. The integration of sophisticated sensors, machine learning algorithms, and pre-
cise control systems has enabled UAVs to autonomously navigate complex environments,
adapt to changing conditions, and perform intricate tasks with remarkable precision. Over
the last two decades, there has been an exponential growth in UAV technology and its
integration into everyday life. The miniaturization of sensors, increase in computational
power, reduced cost of hardware, advancements in materials, and the widespread adoption
of wireless communication systems has accelerated the development of smaller, more ag-
ile UAVs. This progress opened up entirely new domains of application, such as search
and rescue operations, infrastructure inspections, and delivery services.

Over the past years, Vertical Take-Off And Landing (VTOL) hybrid designs have become
increasingly popular. VTOL UAVs combine conventional multirotor and fixed-wing air-
craft design in a single, more capable platform. The multirotor capabilities of a VTOL
UAV allow it to hover in place or takeoff and land without the need for traditional infras-
tructure such as runways, launchers or nets. By transitioning to fixed-wing flight, a VTOL
UAV can also enjoy the increased energy efficiency and range of conventional winged
aircrafts. These properties make VTOL UAVs common for long range aerial delivery ser-
vices, utilizing the hover capabilities to winch down payloads in cluttered environments
from a safe distance. One of the VTOL UAVs used by Aviant is shown in Figure 1.1.
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(a) In fixed-wing flight, efficiency is attained through
the utilization of forward airspeed and wings to gener-
ate lift.

(b) In multirotor flight, the aircraft possesses the capa-
bility to achieve vertical takeoff and landing, as well as
hover in a stationary position.

Figure 1.1: An instance from Aviant’s fleet of VTOL UAVs which is the focus in this thesis. Pho-
tographer: Author.

The level of autonomy in typical UAV applications range from fully manual remote piloted
vehicles, to assisted or even fully autonomous systems. Robotics research continually
strives toward achieving higher levels of autonomy and minimizing human intervention,
aiming to liberate our time and resources to be applied elsewhere. In the context of au-
tonomous aerial delivery, the need for human intervention to recharge batteries and load
new payloads poses a constraint on scalability, thereby impeding the realization of a fully
autonomous solution. To reduce the downtime and human intervention in an autonomous
delivery service, a landing platform can be designed to perform the required interactions
with the UAV. The mechanical tolerances of the landing platform within which the UAV
must land are typically much lower than the accuracy of the Global Navigation Satellite
System (GNSS) modules used by most aerial delivery UAVs. This motivates the pursuit
for a precision landing system, which ensures that the UAV reliably lands within the toler-
ances of the landing platform.

Aviant has purposefully designed and constructed a prototype landing platform tailored
to cater to their fleet of aerial delivery vehicles, taking into consideration this specific use
case. The landing platform uses electromechanical actuators to align the UAV, connect to
the battery charging interface and load new payloads. The operational vision entails the
utilization of multiple landing platforms in daily activities, including the deployment of
certain platforms in the field, thereby expanding the delivery range of the system. In order
to maintain scalability and preserve the end-to-end nature of the solution while enabling
mobility, the landing platform’s overall size and footprint must be physically manageable.
The platform’s footprint is constrained to that of a trailer, not exceeding the dimensions of
a standard parking space.

The desired mechanical tolerances of the platform will directly impact several key factors,
including its footprint, the dimensions and strength of the actuators, as well as consid-
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erations related to weight and cost. Achieving consistent and precise landing with high
accuracy is sought after as it enables the reduction of the landing platform’s mechanical
tolerances and the benefits it entails.

1.2 Problem Formulation and Contributions

As a contribution towards the goal of a fully autonomous end-to-end delivery service, the
objective of this thesis is to design, implement and test a precision landing system capable
of aiding a UAV’s autopilot in reliably descending onto a landing platform within its me-
chanical tolerances. The system must detect the landing platform from a safe distance and
provide accurate real-time estimates of the relative position and orientation between the
UAV and the platform in order to provide correctional setpoints for the autopilot during
the descent.

In order to remain scalable, the precision landing system should be based on affordable and
easily available sensors which are present by default on typical delivery UAVs, such as the
autopilot’s Inertial Measurement Unit (IMU) and the onboard camera which is enforced by
the Norwegian Civil Aviation Authority (CAA) for Beyond Visual Line Of Sight (BVLOS)
operations. It is desirable to keep the computational cost low, ensuring minimal constraints
on the onboard companion computer.

This thesis focuses on using fiducial markers in a recursive layout in combination with an
Invariant Extended Kalman Filter (IEKF) to detect and estimate the relative pose of the
landing platform in real time. The estimate is then used for guiding the UAV’s autopilot in
a decent. The research question on which this thesis is based is the following:

• Is a framework based on pose measurements of recursive visual fiducial markers and
an IEKF driven by inertial data a viable approach to reliably guide a UAV from an
initial, known position above the ground subject to GNSS noise to a state in which
the UAV has touched down and aligned itself according to the mechanical tolerances
of its landing platform?

Expanding on the recent research of Lie groups in invariant filtering and the works of [5],
[6], [7] and [8] in addition to flexible and efficient fiducial marker design and presented in
[4], the main goal of this thesis is to design, implement and experimentally demonstrate
the viability of a precision landing system that can be integrated with a broad range of UAV
platforms. With the exception of the fiducial markers, the system should utilize sensors
and hardware already present on the UAV and an efficient implementation that imposes
low computational demands on the companion computer.

Aligned with the primary objective, this thesis will also pursue the following intermediate
goals:

• Based on theoretical and experimental results, determine if the use of a recursive
fiducial layout and an IEKF can provide some notion of guarantees in terms of
convergence, safety and reliability of the system as a whole.

• Determine the consistency of an IEKF used to estimate the extended pose of the
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UAV based on IMU data and full six Degrees Of Freedom (DOF) pose measure-
ments.

• In pursuit of reducing the footprint of the landing platform, determine bounds for
landing precision and accuracy such that future revisions of the landing platform can
decrease its mechanical tolerances.

This thesis makes the following key contributions related to the research question:

• An implementation of the IEKF capable of estimating the orientation, position and
velocity of a UAV in addition to IMU biases.

• A tool for logging, tuning and evaluating the filter consistency.

• A proposed design and implementation for a precision landing framework based on
visual fiducial marker detections and inertial measurements which can be used to
guide the primary autopilot during a decent.

• A physical realization of the fiducial marker layout used as a landing target, which
can be embedded on the landing platform.

• Statistical analysis of the integrated system’s performance in terms of accuracy and
precision, based on real life experiments.

• An interface for autopilot communication based on industry standards, which can
be integrated with existing and future compliant autopilots.

1.3 Delimitations, Limitations and Assumptions
Intended to focus the scope of this thesis and facilitate relevant development and progres-
sion pertaining to the research questions, the following key delimitations are established:

• The landing platform is subject to ownership and design freedom, including fiducial
marker arrangement.

• The detection system must be capable of operating under low-light conditions, al-
though partial illumination can be provided on the landing platform to mitigate ab-
solute darkness.

• The production version of the landing platform will incorporate heating or actuated
roofing mechanisms that selectively open during the landing sequence to prevent
occlusion caused by the accumulation of snow or other debris.

• Prior information regarding the approximate location of the landing platform is
available up to noise inherent to GNSS measurements.

• The landing platform possesses the capability to accurately align the position and
heading of the UAV upon landing, provided that it lands within the mechanical tol-
erances of the platform.

To acknowledge the constraints and potential challenges inherent in this thesis, the follow-
ing key limitation is recognized:
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• In capturing the ground truth of the UAV’s pose, the motion capture system is con-
fined to a height limitation lower than the intended altitude encountered during a
landing sequence.

In order to establish the fundamental framework for the research conducted in this thesis,
specific key assumptions have been defined:

• Within the flight volume encompassing the potential initial positions of the UAV
down to the landing platform, it is assumed that there are no obstacles present, en-
suring unimpeded navigation.

• During the landing process, the GNSS-based position estimate of the autopilot is an-
ticipated to experience minimal drift, enabling it to maintain position with accuracy,
albeit with the possibility of an offset in its estimate relative to the true position.

1.4 Thesis Outline
This thesis is composed of a total of six chapters. Chapter 1 serves as an introduction,
outlining the motivation behind the thesis, elucidating the key research question, and em-
phasizing the contributions made by the thesis. Additionally, it provides an overview of
the key delimitations, limitations, and assumptions, which are presented to facilitate the
reader’s understanding and provide contextual clarity. Chapter 2 comprehensively ex-
amines the pertinent theories that underpin all facets of the proposed precision landing
system. It also introduces previously conducted research related to the suggested sys-
tem modules, its auxiliary components and methodology used in this thesis. Chapter 3
presents the framework of the precision landing system, encompassing the entirety of its
design and functionality. In contrast, Chapter 4 delves into the technical intricacies and
implementation details of pivotal procedures and novel algorithms associated with the sys-
tem. Chapter 5 is dedicated to the presentation of the testing results, accompanied by a
comprehensive evaluation and in-depth discussion. Subsequently, Chapter 6 serves as the
culmination of the research effort in this thesis, offering concluding remarks and recom-
mending future avenues of exploration to address the limitations observed in the proposed
and implemented precision landing system.

5



Chapter 2
Background

2.1 Lie Groups

The intention of this section is to provide definitions and basic properties of Lie groups.
Lie theory is a vast mathematical field and cannot be fully covered in this contribution
alone. The approach is motivated by the problems encountered in the field of robotics and
state estimation, choosing a selected subset of the topics from Lie theory. Categorically,
this section focuses on groups related to rigid transformation and rotation matrices in three
dimensions. According to [5], a Lie group unifies the mathematical concepts of a group
and a smooth manifold. The group, denoted (G, ◦), is defined as a set G on which the
composition operator ◦ satisfies the following axioms for the elements A,B, C ∈ G and
the identity E ∈ G:

1. Closure: A ◦ B ∈ G

2. Identity: E ◦ A = A ◦ E = A

3. Inverse: A−1 ◦ A = A ◦ A−1 = E

4. Associativity: (A ◦ B) ◦ C = A ◦ (B ◦ C)

The smooth manifold represents a topological space which is differentiable, implying a
uniquely defined tangent space to any point on the manifold. In Lie theory applied to
robotics, we can say that our state vector evolves on the surface of the manifold and the
linear tangent space can be used to perform calculus. This representation allows con-
straints imposed on the state vector to be encoded in the manifold. Due to the axiom of
closure, we can therefore guarantee that said constraints are satisfied under the composi-
tion operator. This is especially useful when representing orientation, which is discussed
in Section 2.2.3.

This thesis only considers the matrix Lie groups. A matrix Lie group is a subgroup of
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the set of square, invertible n× n matrices with real entries, GL(n,R), which follows the
axioms above. For matrix Lie groups, the axioms are satisfied by the matrix product, the
identity matrix and the matrix inverse.

According to Section 0.2 of [9], any topological property valid at a single point of the
manifold can be applied to any other point. This means that all tangent spaces on the
manifold are alike, and we can conveniently use the tangent space at the identity to perform
calculus. The Lie algebra g of a matrix Lie group G is defined as the tangent space at the
identity, TEG. g is a vector space associated with G, which is a a subspace of all n × n
matrices with real entries. Specifically, the Lie algebra can be related to Rm due to it
being a vector space, where m is the number of DOF for the Lie group [5]. The Lie
algebra allows us to join local properties of a smooth, differentiable manifold with global
properties such as the composition of distant objects which may be nonlinear. The relation
is composed of two isomorphisms, commonly referred to as hat and vee:

Hat : Rm → g ; τ 7→ τ∧ (2.1a)
Vee : g→ Rm ; τ∧ 7→ (τ∧)∨ = τ (2.1b)

In general, the elements of the Lie algebra can be cumbersome to work with directly as they
might be represented with imaginary numbers, quaternions or skew-symmetric matrices.
The linear, invertible mapping provides a convenient representation of the Lie algebra in
Rm which can be manipulated with linear algebra. It is common to denote elements τ in
the tangent plane as τ∧ when expressed in the Lie algebra and omitting the hat decorator
when τ is represented as a vector in Rm. A left superscript can be used to explicitly state
the exact point in which the tangent space is defined [5]. For example, Xτ∧ ∈ TXG means
the τ element in the tangent space at X ∈ G. The left superscript is commonly omitted for
the identity E , i.e. the Lie algebra.

Figure 2.1: Visual representation of the mapping between a Lie group G, its Lie algebra g = TEG
and the isomorphisms relating the elements of the Lie algebra to their respective Cartesian vector
space. Adapted from [5].

The Lie algebra g and its Cartesian vector representation can be exactly mapped into the
elements of the Lie group G and back using the exponential map and its inverse, the loga-
rithmic map:

exp : g→ G ; τ∧ 7→ X = exp(τ∧) (2.2a)
log : G → g ; X 7→ τ∧ = log(X ) (2.2b)
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For convenience, the capitalized exponential mapping can be defined similarly,

Exp : Rm → G ; τ 7→ X = Exp(τ ) (2.3a)
Log : G → Rm ; X 7→ τ = Log(X ) (2.3b)

Equation 2.3a and 2.3b provide a direct mapping from the from the Cartesian vector space
representation to the Lie group. Figure 2.1 provides a visual overview of the mappings
between the Lie group, its tangent space and the isomorphism between the Lie algebra and
Cartesian vector space representation. A visual representation of the relation between a
Lie group’s manifold G and the Lie algebra TEG is shown in Figure 2.2.

Figure 2.2: Visual representation of how elements in the Lie group’s manifold G relate to the corre-
sponding element in the Lie algebra TEG, which is the tangent space to the manifold at the identity.
Similarly to how a piece of string can be wrapped around a ball’s geodesic1, all elements in the Lie
algebra have an corresponding representation in the Lie group. For instance, an element τ in the Lie
algebra has the equivalent element Exp(τ ) in the Lie group. Inversely, an element X on the group
has the Lie algebra equivalent element Log(X ). Adapted from [5].

It is desirable to be able to express small increments of a manifold in the local tangential
vector space. With this in mind, the plus and minus operators are defined by combining
a composition with the exponential map or its inverse. Recall that commutativity is not
guaranteed for the composition according to the Lie group axioms. For this reason, each
operator has two definition; a left and a right formulation:

Right-⊕ : Y = X ⊕ Xτ = X ◦ Exp(Xτ ) ∈ G (2.4a)

Right-⊖ : Xτ = Y ⊖ X = Log(X−1 ◦ Y) ∈ TXG (2.4b)

1A sphere in R3 is not a Lie group, but it is easy to visualize and helps build intuition.
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Note that this thesis uses the same notation as [5], i.e. Xτ at the right hand side of the
composition in Equation 2.4a is said to be expressed in the local frame at X .

Left-⊕ : Y = Eτ ⊕X = Exp(Eτ ) ◦ X ∈ G (2.5a)

Left-⊖ : Eτ = Y ⊖ X = Log(Y ⊖ X−1) ∈ TEG (2.5b)

Similarly, we now define Eτ on the left hand side of Equation 2.5 to be expressed in the
global frame. Since the ⊖ operator is ambiguous, this thesis uses the right formulation
by default. From Equations 2.4 and 2.5 a relation between the local and global elements
is observed. The adjoint operator is used to exactly transform tangent vectors between
tangent spaces by a linear operation:

AdX : g→ g ; τ∧ 7→ AdX (τ∧) = X (τ∧)X−1 (2.6)

The adjoint is commonly used to transform vectors in the tangent space at X ∈ G, TXG
to the Lie algebra, E

τ∧ = AdX (
X
τ∧). Since the transformation is linear, it can also be

performed with a matrix operation. The adjoint matrix can be calculated by applying the
vee operator to Equation 2.6,

AdXτ = (X (τ∧)X−1)∨ (2.7)

An important characteristic of the adjoint matrix is its property of Ad−1
X = AdX−1 due to

the lower computational cost associated with the right-hand side compared to the left-hand
side [5].

2.1.1 The Special Orthogonal Group, SO(3)

One of the most common Lie groups in robotics is SO(3), the group of 3D rotations.
SO(3) is used to represent the orientation of a rigid body with a 3× 3 rotation matrix R,
subject to the following constraints:

SO(3) = {R ∈ R3×3 | R⊤R = I, detR = 1} (2.8)

SO(3) is not commutative and and the tangent space around the identity is found from the
orthogonality condition, R⊤R = I, by differentiating both sides with respect to time:

R⊤Ṙ+ Ṙ⊤R = 0 =⇒ R⊤Ṙ = −Ṙ⊤R = −(R⊤Ṙ)⊤ (2.9)

This means that R⊤Ṙ is skew-symmetric. At the identity, R = I and we get

Ṙ = [ω]× (2.10)

where [a]× is used to obtain the cross-product matrix,

[a]× =

 0 −az ay
az 0 −ax
−ay ax 0

 (2.11)
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The Lie algebra of SO(3) in which [ω]× lies is called so(3) and is the space of skew-
symmetric matrices in 3D. Since the skew-symmetric matrices are isomorphic to R3,
ω∧ = [ω]× and ([ω]×)∨ = ω.

Now, consider the angle-axis rotation uθ = ωt ∈ R3 which is the rotation about a vector
u of unit length with angle θ obtained by a constant ω over a time t. The exponential map
is given by the Rodrigues rotation formula,

exp([uθ]×) = I+ sin θ[u]× + (1− cos θ)[u]2× (2.12)

as shown in Example 4 of [5].The capitalized exponential map is Exp(uθ) = exp([uθ]×)
as defined in Equation 2.3a. The logarithmic map is given by

θ = arccos

(
TrR− 1

2

)
(2.13a)

logR =
θ

2 sin θ
(R−R⊤) (2.13b)

with the capitalized logarithmic map defined as in Equation 2.3b. The adjoint matrix is
simply AdR = R.

The left and right Jacobians of SO(3) are given in Appendix A.1.

2.1.2 The Special Euclidean Group, SE(3)

The direct spatial isometries denoted SE(3) are useful for representing orientation-position
pairs in three dimensions and can be considered an expansion of SO(3) for rigid motion
transforms. Such pairs are often referred to as poses and can be embedded in a single
matrix,

SE(3) =

{[
R T
0⊤ 1

]
∈ R4×4 | (R,T) ∈ SO(3)× R3

}
(2.14)

Here, T ∈ R3 represents a translation vector and R ∈ SO(3) is a 3D rotation matrix as
defined in Equation 2.8. The bottom row of the matrix in Equation 2.14 makes composition
straightforward as it can be performed with the matrix product,[

Ra Ta

0⊤ 1

] [
Rb Tb

0⊤ 1

]
=

[
RaRb RaTb +Ta

0⊤ 1

]
(2.15)

The inverse is then [
R T
0⊤ 1

]−1

=

[
R⊤ −R⊤T
0⊤ 1

]
(2.16)

because [
R T
0⊤ 1

] [
R⊤ −R⊤T
0⊤ 1

]
=

[
RR⊤ −RR⊤T+T
0⊤ 1

]
= I (2.17)

The Lie algebra, se(3), is formed from the tangent space around the identity and is of the
type

τ∧ =

[
[θ]× ρ
0⊤ 0

]
∈ se(3) | τ =

[
ρ
θ

]
∈ R6 (2.18)
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in which θ = uθ as defined in Equation 2.12. The capitalized exponential and logarithmic
maps are given as

M = Exp(τ ) =
[

Exp(θ) V(θ)ρ
0⊤ 1

]
(2.19a)

τ = Log(M) =

[
V−1(θ)T
Log(R)

]
(2.19b)

where V(θ) = I+ 1−cos θ
θ2 [θ]× + θ−sin θ

θ3 [θ]2×. The derivation is not recited in this thesis,
but the reader is referred to Appendix D of [5] for more details. In short, the expression
is obtained by expanding the power series of the exponential, grouping the odd and even
factors and identifying the coefficients from common Taylor expansions.

Consider the group element M =

[
R T
0⊤ 1

]
, its Lie algebra τ∧ =

[
[θ]× ρ
0⊤ 0

]
and vector[

ρ
θ

]
∈ R6. Inspired by Example 6 in [5], we can expand Equation 2.6 for the adjoint

matrix,

AdMτ = (Mτ∧M−1)∨ =

[
R[θ]×R⊤ −R[θ]×R⊤T+Rρ

0⊤ 0⊤

]∨
=

[
[Rθ]× −[Rθ]×T+Rρ
0⊤ 0⊤

]∨
=

[
[Rθ]× [T]×Rθ +Rρ
0⊤ 0⊤

]∨
=

[
[T]×Rθ +Rρ

Rθ

]
=

[
R [T]×R

03×3 R

] [
ρ
θ

] (2.20)

which in turns implies that the adjoint matrix is given by

AdM =

[
R [T]×R

03×3 R

]
(2.21)

where the properties [Ra]× = R[a]×R⊤ and [b]×c = −[c]×b were used to obtain the
second and third matrix expansions of Equation 2.20.

The left and right Jacobians of SE(3) are given in Appendix A.2.

2.1.3 The Group of Double Direct Spatial Isometries, SE2(3)

Similarly to how SE(3) can be considered an expansion of SO(3), the group of double
direct spatial isometries can be considered an expansion of SE(3). SE2(3) can be used to
describe extended poses, which include a velocity vector component in addition to position
and orientation [6]. Similarly to SE(3), this triplet can conveniently be embedded in a
single matrix,

SE2(3) =


R v T
0⊤ 1 0
0⊤ 0 1

 ∈ R5×5 | (R,v,T) ∈ SO(3)× R3 × R3

 (2.22)
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The composition of two extended poses follows a similar structure as the SE(3) case and
is performed by matrix multiplication,Ra va Ta

0⊤ 1 0
0⊤ 0 1

Rb vb Tb

0⊤ 1 0
0⊤ 0 1

 =

RaRb Ravb + va RaTb +Ta

0⊤ 1 0
0⊤ 0 1

 (2.23)

According to [6], the Lie algebra se2(3) is defined similarly to se(3) and is of the type,

τ∧ =

[θ]× ν ρ
0⊤ 0 0
0⊤ 0 0

 ∈ se2(3) | τ =

ρν
θ

 ∈ R9 (2.24)

The capitalized exponential and logarithmic maps from SE(3) as defined in Equations
2.19 can be directly expanded to SE2(3), in which the position and velocity components
obey the same structure. According to [6], the respective mappings are defined as

M = Exp(τ ) =

Exp(θ) V(θ)ν V(θ)ρ
0⊤ 1 0
0⊤ 0 1

 (2.25a)

τ = Log(M) =

V−1(θ)T
V−1(θ)v
Log(R)

 (2.25b)

The adjoint matrix follows as similar pattern. Using the same derivation as in Equation
2.20 expanded to SE2(3), one arrives at

AdM =

 R [v]×R [T]×R
03×3 R 03×3

03×3 03×3 R

 (2.26)

The left and right Jacobians of SE2(3) are given in Appendix A.3.

2.2 The Kalman Filter

In this section, the linear Gaussian Kalman filter and its default extension to nonlinear
systems are presented as contextual knowledge for the reader, albeit with the assumption
of prior familiarity. Their properties are used to motivate a modification of the Extended
Kalman Filter (EKF) for invariant updates, referred to as the IEKF. The IEKF addresses the
nonlinear nature of motion models used in navigation, particularly how one can conform
to the geometric constraints related to representing attitude by containing the state in a Lie
group framework.
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2.2.1 The Linear Gaussian Kalman Filter
In the domain of control theory and state estimation, it is often often desirable to esti-
mate the state variables as a joint probability distribution rather than basing it on single
measurements. The most popular approach is arguably the Kalman filter [10], which has
been used extensively since the 1960s. The Kalman filter recursively estimates the true
state using measurements and inputs to the system over multiple time steps. By utilizing
prior knowledge of the process and measurement models, the Kalman filter will output
an optimal estimate. The prediction and update steps are typically performed at a low
computational cost, making the filter ideal for real-time estimation.

Consider the linear discrete-time system defined as

xk = Akxk−1 + vk +wk, k = 1...K (2.27a)
yk = Ckxk + nk, k = 0...K (2.27b)

where k is the discrete-time index and

• xk ∈ RN is the system state

• x0 ∈ RN ∼ N (x̌0, P̌0) is the initial state

• vk = Bkuk ∈ RN is the system input

• wk ∈ RN ∼ N (0,Qk) is the process noise

• yk ∈ RM is the measurement

• nk ∈ RM ∼ N (0,Rk) is the measurement noise

Matrix Ak ∈ RN×N is the transition matrix and Ck ∈ RM×N is the observation matrix,
which respectively define the system dynamics and the measurement model at time step k.
It is assumed that x0, wk and nk are uncorrelated to each other and themselves at different
time steps. Using a Bayesian inference approach [11], the prior estimate at k − 1 is

p(xk−1|x̌0,v1:k−1,y0:k−1) = N (x̂k−1, P̂k−1) (2.28)

Using vk, the prediction step gives us the prior at time step k,

p(xk|x̌0,v1:k,y0:k−1) = N (x̌k, P̌k) (2.29)

with mean and covariance

x̌k = Ak−1x̂k−1 + vk (2.30a)

P̌k = Ak−1P̂k−1A
⊤
k−1 +Qk (2.30b)

using the linear motion model. In general, there is no closed-form solution to the predic-
tion step, i.e. the Chapman-Kolmogorov equation which is introduced below in Equation
2.35. When Bayes’ formula is applied in the update step, there are no guarantees for
the expression to even be a valid Probability Density Function (PDF) [12]. The linear
Gaussian Kalman filter is a special case in which the closed-form solution exists under
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the assumption of a Gaussian initial PDF in addition to the Markov model and likelihood
being linear and Gaussian.

In the Markov model, the underlying assumption implies that the PDF of future states,
conditioned on the current state, is solely influenced by the present state and not influenced
by past states. At time k, the joint density of the state and latest measurement is

p(xk,yk|x̌0,v1:k,y0:k−1) = N (

[
x̌k

Ckx̌k

]
,

[
P̌k P̌kC

⊤
k

CkP̌k CkP̌kC
⊤
k +Rk

]
)

= N (

[
µx

µy

]
,

[
Σxx Σxy

Σyx Σyy

]
)

(2.31)

The conditional density for the current state at time step k, often referred to as the posterior,
is then given by Bayesian inference theory

p(xk|x̌0,v1:k,y0:k) = N (µx +ΣxyΣ
−1
yy (yk − µy),Σxx −ΣxyΣ

−1
yy Σyx) (2.32)

This leads to the the Kalman filter equations,

Predictor

{
P̌k = Ak−1P̂k−1A

⊤
k−1 +Qk

x̌k = Ak−1x̂k−1 + vk

(2.33a)

Kalman gain
{
Kk = P̌kC

⊤
k (CkP̌kC

⊤
k +Rk)

−1 (2.33b)

Corrector

{
P̂k = (I−KkCk)P̌k

x̂k = x̌k +Kk(yk −Ckx̌k)
(2.33c)

Here, the notation (̌·) is used to denote a prior estimate and (̂·) is used for the posterior esti-
mates. The term yk−Ckx̌k is often refereed to as the innovation, and indicates how much
the prior estimated measurement differs from the actual measurement. Together with the
Kalman gain, it is used to correct the estimate when measurements become available. The
Kalman gain effectively assigns appropriate weights to the contribution of the innovation.
Other variations of the Kalman filter follow the same structure of a predict-update scheme,
using prior knowledge about the motion model to propagate the estimate and uncertainty
until a measurement is available and the estimate is corrected.

Under the assumption of Gaussian noise and prior with linear motion and measurement
models, the posterior will remain a Gaussian. In this case, the mean coincides with the
mode. The Kalman filter is optimal in the sense that it is unbiased and the covariance of
the filter is exactly at the Cramér–Rao Lower Bound (CRLB), meaning we cannot be more
certain of the estimate. From Section 3.3 of [11], we know that the covariance of the error
is perfectly modeled by the estimated covariance and we should expect the error to decay
to zero after an infinite number of trials. The filter is therefore refereed to as the best linear
unbiased estimator.

2.2.2 The Extended Kalman Filter
The Kalman filter introduced in Section 2.2.1 and its optimality proofs can only be applied
for linear and Gaussian systems, but nonlinear and non-Gaussian derivations exist and are
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widely used in academia and industry. The EKF is considered the de facto nonlinear
state estimator in many applications. The EKF uses Taylor series expansion to obtain a
linearized model around a working point. This approach can be highly effective for non-
Gaussian systems with mild nonlinearities according to [11]. Unfortunately, there are no
optimality guarantees for the EKF. The main weakness of the EKF is the propagation
of the estimation error through a first-order linearization. The linearization is performed
around the estimated trajectory, which may differ significantly from the true state. If the
estimate is too far away from the true state, the linearization does not hold and may lead
to a positive feedback loop in the error dynamics, which causes the filter to diverge. For
stronger nonlinearities this distance is effectively reduced, rendering the filter unstable.

Consider the motion and measurement models of the nonlinear form

xk = f(xk−1,uk,wk), k = 1...K (2.34a)
yk = g(xk,nk), k = 0...K (2.34b)

where k is the discrete-time index of which K is the maximum, f and g are the nonlinear
motion model and nonlinear observation model, respectively. Unlike the linear case, we
will not make any assumptions on the random variables. The derivation of the EKF is made
by invoking the assumption of a Markov process. By combining the Markov property with
the introduction of the hidden state xk−1, we arrive at the Chapman-Kolmogorov integral
of the Bayes filter:

p(xk|x̌0,v1:k,y0:k) = ηp(yk|xk)

∫
p(xk|xk−1,vk)p(xk−1|x̌0,v1:k−1,y0:k−1)dxk−1

(2.35)
For more details, the reader is pointed to Section 4.2.2 of [11]. The Bayes filter adheres
to the predict-update scheme, but cannot be implemented for two important reasons: The
PDFs are continuous functions and require an infinite amount of memory to be represented.
Therefore, only an approximation of the belief can be made. This is done e.g. through an
approximate Gaussian representation or a finite number of samples from the PDF. Second,
the integral part is intractable, except for the linear Gaussian case which has a closed-
form solution. This integral too must be approximated, either by Monte Carlo integration
or a linearization of the motion and observation models. As Monte Carlo integration is
computationally expensive, the latter is often chosen. Significant resources are put into
handling the two issues, and only a subset of them are discussed in this thesis.

The equations for the EKF are obtained by constraining the noise and belief to be Gaussian,

p(xk|x̌0,v1:k,y0:k) = N (x̂k, P̂k) (2.36)
wk ∼ N (0,Qk) (2.37)
nk ∼ N (0,Rk) (2.38)

Since the Gaussian PDFs of the noise may become non-Gaussian when transformed through
a nonlinearity, we cannot assume they are additive and instead represent them through lin-
earization of the motion and observation models. The linearized motion and observation
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model around the state estimate prior becomes,

f(xk−1,uk,wk) ≈ x̌k + Fk−1(xk−1 − x̂k−1) +w′
k (2.39a)

g(xk,nk) ≈ y̌k +Gk(xk − x̌k) + n′
k (2.39b)

in which

x̌k = f(x̂k−1,uk,0) (2.40a)

Fk−1 =
∂f(xk−1,uk,wk)

∂xk−1

∣∣∣
x̂k−1,uk,0

(2.40b)

w′
k =

∂f(xk−1,uk,wk)

∂wk

∣∣∣
x̂k−1,uk,0

wk (2.40c)

y̌k = g(x̌k,0) (2.40d)

Gk =
∂g(xk,nk)

∂xk

∣∣∣
x̌k,0

(2.40e)

n′
k =

∂g(xk,nk)

∂nk

∣∣∣
x̌k,0

nk (2.40f)

The equations for the classic recursive update EKF are obtained by inserting Equations
2.39 into 2.35. The result is similar in structure to the linear Gaussian Kalman filter de-
scribed in Equations 2.33,

Predictor

{
P̌k = Fk−1P̂k−1F

⊤
k−1 +Q′

k

x̌k = f(x̂k−1,vk,0)
(2.41a)

Kalman gain
{
Kk = P̌kG

⊤
k (GkP̌kG

⊤
k +R′

k)
−1 (2.41b)

Corrector

{
P̂k = (I−KkGk)P̌k

x̂k = x̌k +Kk(yk − g(x̌k,0))
(2.41c)

where Q′
k = E[w′

kw
′
k
⊤
] and R′

k = E[n′
kn

′
k
⊤
] are the noise covariances in which the

motion and observation model Jacobians are embedded. Another distinct difference from
the linear Gaussian filter is the nonlinear functions used to propagate the estimate mean.
There are little to no guarantees for the optimality or efficiency of the EKF for a given sys-
tem. The Kalman gain for the EKF is computed under the assumption that the estimation
error is small and can be propagated through a first-order linearization of the dynamics.
Since the operating point is located at the mean of the estimated trajectory, it may differ
from the true state by a significant amount. If the estimate differs significantly from the
true trajectory, the linearization does not hold and the filter might become inconsistent or
biased and in the worst case diverge due to amplification of the error.

2.2.3 The Invariant Extended Kalman Filter
Proving stability for the EKF is nontrivial, even locally [13]. Convergence can be proved
for certain classes of nonlinear systems [14], but few practical examples hold such prop-
erties. This motivates the use of an IEKF, a variant of the EKF modified to operate on
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Lie group state spaces. The IEKF can be proven to converge locally around any trajectory
for a broad class of systems implemented as a Lie group in the matrix form. To show this
property, consider the continuous time process model with state Xt ∈ G at time t evolving
on a matrix Lie Group G ⊂ RN×N ,

d

dt
Xt = f(Xt,ut) (2.42)

Consider the state estimate X̂t. The left and right invariant errors between the estimated
and true state are

Right invariant : ηrt = X̂tX−1
t (2.43a)

Left invariant : ηlt = X−1
t X̂t (2.43b)

In the case that the two trajectories are equal, the errors are reduced to the identity. Ac-
cording to Theorem 1 in [6], a system is group affine if

f(X1X2,ut) = f(X1,ut)X2 + X1f(X2,ut)−X1f(I,ut)X2 (2.44)

is satisfied for all positive t and X1,X2 ∈ G where I ∈ G is the identity matrix of the
group. If this condition is satisfied, the right and left invariant errors satisfy

d

dt
ηrt = gr(ηrt ,ut) = f(ηrt ,ut)− ηrt f(I,ut) (2.45a)

d

dt
ηlt = gl(ηlt,ut) = f(ηlt,ut)− f(I,ut)η

l
t (2.45b)

Note that the error dynamics in this case are independent of the true state trajectory, which
is referred to as autonomous error evolution. Consider the Lie algebra of G denoted g and
ξ ∈ Rdim g. We can then define the matrix Ai

t to satisfy

gi(exp(ξ∧),ut) = (Ai
tξ)

∧ +O(∥ξ∥2) (2.46)

such that for all t > 0, ξt is defined by the linear differential equation in Rdim g

d

dt
ξit = Ai

tξ
i
t, i ∈ {l, r} (2.47)

According to Theorem 2 of [6], if exp(ξi0) = ηi0 the following mapping between ξit and
the true nonlinear error ηit will hold for all errors at any t > 0:

ηit = exp(ξit) (2.48)

The result is commonly referred to as the log-linear property in the literature and means
that the logarithm of the IEKF’s linearized error dynamics are independent of the true
state under the assumption of affinity. As shown in Theorem 4 of [6], the estimate from
the IEKF is an asymptotically stable observer around any trajectory.
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Consider the noisy continuous time system, which obeys the group-affine dynamics,

d

dt
Xt = f(Xt,ut)−Xtw

∧
t , t ∈ [0, T ] (2.49a)

Left invariant : yt = Xtd+ nt (2.49b)

Right invariant : yt = X−1
t d+ nt (2.49c)

in which wt ∼ N (0,Q) and nt ∼ N (0,R) are the process and measurement noises,
respectively. The vector d ∈ RdimX is known for the given measurement and relates the
state matrix to the measurement. There are now two equivariant linearized measurement
models, one for left and one for right invariant observations. The nonlinear case is further
discussed in Section 3.3.3. The left invariant observations are usually associated with
measurements of state variables in a global frame, whereas the right invariant observations
are commonly used for measurements in the local frame. The IEKF follows a predict-
update scheme like the EKF, but the formulation of the innovation terms is altered such
that it can be composed with the Lie group representation of the state estimate. Using the
same definitions as in Equation 2.40 adapted to the new observation models we get the left
IEKF equations,

Predictor

{
P̌k = Φk−1P̂k−1Φ

⊤
k−1 +Φk−1QkΦ

⊤
k−1h

X̌k = f(X̂k−1,uk)
(2.50a)

Kalman gain

{
Sk = (HkP̌kH

⊤
k + R̂k)

−1

Kk = P̌kH
⊤
k Sk

(2.50b)

Corrector

{
P̂k = (I−KkHk)P̌k

X̂k = X̌kexp(Kk(X̌−1
k yk − d))

(2.50c)

where the left invariant observation model of Equation 2.49b has been left multiplied with
X̂−1

k to obtain X̂−1
k yk = η−1

k d + X̂−1
k nk such that a conventional Kalman gain can be

applied due to the first-order approximation exp(ξ) ≈ I+ξ∧. The Gk matrix from the EKF
Equations 2.41 is then replaced by Hk which is implicitly defined through Hkξ = ξ∧d.
The discrete time transition matrix at time step k is here denoted Φk = exp(Ath), where
h is the time duration of a time step. The introduction of R̂k is to reflect the modified
measurement noise, n̂k = X̂−1

k nk. The right IEKF are almost identical, but reflects the
use of a right invariant error and observation model,

Hkξ = −ξ∧d (2.51a)

X̂k = exp(Kk(X̌kyk − d))X̌k (2.51b)

Qk ← Ad⊤
f(X̂k,uk)

QkAdf(X̂k,uk)
(2.51c)

in addition to the modified measurement noise now being n̂k = X̂knk.

For applications were the system state fits into a Lie group framework, the filter will out-
perform the EKF because the error dynamics of the IEKF are independent of the true
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state. In state representations containing rotations, the linearization of the EKF fails to
consider the geometric constraints of the attitude representation. The linear update of the
EKF attempts to linearize the nonlinear space representing the orientation. By doing so, it
introduces estimation error and the new estimate will likely not be a valid rotation. Tricks
are commonly applied to ensure that the new attitude representation is valid, but the IEKF
linearizes on the Lie algebra which is a linear space to begin with. Using the exponential
mapping, the IEKF update ensures that the estimate moves along the manifold. The same
goes for the covariance, which is expressed in the Lie algebra. The EKF on the other hand,
would move tangentially to the manifold in the direction of the covariance and thus leave
the manifold altogether. The difference in update for the EKF and IEKF is illustrated in
Figure 2.3.

Figure 2.3: Visualization of differences in the EKF and IEKF updates. The prior estimate X̌ is
consistent with the manifold G and has a covariance represented by the shaded region. The updated
estimates for the EKF will then leave the manifold, whereas the IEKF update remains consistent
with the group G. Adapted from [7].

For non-zero rotations, the linearization error of the EKF will increase and potentially
cause estimator inconsistencies or divergence in the extreme cases. For high-accuracy
navigation purposes, the IEKF improves consistency and performance compared to the
regular EKF. Not only the conventional EKF is outperformed by the IEKF. For an esti-
mate evolving on a subgroup of G, the IEKF will remain on the subgroup through the
exponential map relating the manifold to its Lie algebra on which the IEKF linearizes.
Other means of attitude estimation, such as the Multiplicative Extended Kalman Filter
(MEKF) are not guaranteed to remain on the subgroup despite ensuring consistency with
G. According to [7], the IEKF can be seen as an extension of the MEKF for more general
state spaces, taking advantage of the group affine dynamics and group actions as updates
to obtain the autonomous error evolution. A full comparison between the MEKF and the
IEKF is outside the scope of this thesis, but the reader is pointed to [15], [16] and [17] for
more details.
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2.3 Camera Geometry

The intention of this section is to introduce basic camera geometry the concept of geomet-
ric intrinsic camera calibration, which aims to identify the optical parameters of a camera
relating a 3D point in the world scene to 2D points in the camera’s image plane. The out-
put of this process is the intrinsic camera matrix, which is used in many computer vision
tasks such as pose estimation, augmented reality and 3D scene reconstruction. Section
2.4 discusses the utilization of intrinsic parameters and the model used to delineate image
formation, in the application of ascertaining the pose of a camera based on known feature
points and their corresponding representations in the image.

Figure 2.4: Geometry of the pinhole camera model.

The geometry of the pinhole camera model is shown in Figure 2.4. The optical center is
the origin for the 3D world coordinates, denoted by X,Y, Z. The virtual image plane is
introduced to remove the need for image rotation when performing computations. Both
the image plane and the virtual image plane are located a distance f away from the optical
center in the z-direction. The distance f is commonly known as the focal distance. The
geometric properties of similar triangles can be exploited to arrive at the following:

x

f
=

X

Z
,
y

f
=

Y

Z
=⇒ x = f

X

Z
, y = f

Y

Z
(2.52)

In practical applications, lenses are used to focus parallel light rays from the 3D scene to
the focal point. The lens introduces additional issues such as focus, vignetting, exposure,
aberration and distortion. These issues are discussed here, but the reader is referred to
Section 2.2.3 of [18] for more details on the topic of optics. Equation 2.52 is the first
step in deriving the ideal transform from world coordinates to pixel coordinates. Before
deriving the transform, three coordinate frames are introduced:

• The world frame (W ).

• The camera frame (C).

• The image frame (O).
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The origin of the camera frame is placed in the optical center. The camera frame is related
to the world frame which is arbitrarily defined through an rotation R and a transform T.
Finally, the image frame is located in the virtual image plane, with the distance of one
focal length from the camera frame in the z-direction. The frames are illustrated in Figure
2.5.

Figure 2.5: World, camera and image coordinate frames.

In practical applications, it is inconvenient to work directly on the image frame, due to
pixel coordinates potentially being negative. This motivates the introduction of pixel coor-
dinates. In Figure 2.5, the two-dimensional pixel coordinates (x′, y′) are shown in the top
left of the virtual image plane. They represent the discrete index of the pixels spanning the
image plane: (x′, y′) ∈ [0,W )× [0, H) where W and H is the image width and height in
number of pixels.

In general, when transforming a 3D point Xw in the world frame to pixel coordinates, the
following transforms are applied:

1. Using R and T, apply a rigid body transformation to obtain Xw in camera coordi-
nates, denoted Xc.

2. Perform a perspective projection of the 3D point using the pinhole camera model to
the 2D image plane. Denote the point as (x, y).

3. Transform the image coordinates to discrete pixel coordinates, (x′, y′).

In some applications, only the geometric relation of the world point to the camera is of
interest. In this case, the first step can be omitted. Before discussing the details of the
steps above, some additional geometric primitives will be introduced. When working
with 2D points, such as projections of 3D points to an image, the intuitive representa-
tion is a two-dimensional representation such as x = (x, y) ∈ R2. Alternatively, one
could use homogeneous coordinates x̃ = (x̃, ỹ, w̃) ∈ P2. The 2D projective space is
defined such that P2 = R3 − (0, 0, 0). For consistency, the same notation as [18] is
used. The points in which w̃ = 0 represent the ideal points, which are located at infin-
ity. Such points do not have an inhomogeneous representation. For all other points in
P2, it is straightforward to convert back to inhomogeneous coordinates by dividing with
w̃: x̄ = (x, y, 1) = ( x̃

w̃ , ỹ
w̃ , w̃

w̃ ) = ( x̃
w̃ , ỹ

w̃ , 1). The vector x̄ is commonly referred to as
the augmented vector. The projective space extends beyond the two-dimensional case. In
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general, any point in a projective space Pn is described by a vector of n+ 1 components.
A key property of the projective space, is that any vector in said space is only defined up
to a scaling factor. Intuitively, this makes sense in the process of image formation. All 3D
points along the line casted from a point in the image plane will project to the same point,
e.g. all points along the green line in Figure 2.5. The loss of information when going from
3D to 2D space means that only the direction of the homogeneous vector is of importance,
not the scale. Specifically, all points λx̃ describe the same point x̃ ∈ Pn ∀λ ∈ R \ {0}

An additional benefit of homogeneous coordinates written in the augmented form, is the
more compact notation. For example, consider the 2D rigid body motion x′ = Rx + T
where R is a 2 × 2 orthonormal rotation matrix and T is a two-dimensional translation
vector. Using matrix form, one could then write x′ = [R T]x̄. Alternatively, one could
use a full-rank 3× 3 matrix which preserves the homogeneous form:

x̄′ =

[
R T
0⊤ 1

]
x̄ (2.53)

where 0 is the two-dimensional zero vector. The example generalized to higher dimen-
sionalities and is common for representing rigid body motion in SE(3). By appending the
bottom row, the full-rank matrix can be used to calculate the inverse transform or chaining
matrix multiplication. This is the basis for creating the transform between a 3D point and
its corresponding pixel coordinates. Recall the first step in this process, which is to obtain
the camera coordinates Xc = (X,Y, Z) from the world coordinates Xw = (X0, Y0, Z0).
Using homogeneous coordinates, the following transform is applied:

X
Y
Z
1

 =

[
R T
0⊤ 1

]
X0

Y0

Z0

1

 (2.54)

Using Equation 2.52, step two can be performed the following way:[
x
y

]
=

f

Z

[
X
Y

]
(2.55)

Using matrix notation in homogeneous coordinates, this can be rewritten as

Z

xy
1

 =

f 0 0
0 f 0
0 0 1

1 0 0 0
0 1 0 0
0 0 1 0



X
Y
Z
1

 (2.56)

in which the rightmost 3× 4 matrix performs a projection and the leftmost 3× 3 matrix
scales the output. For compactness, it is common to merge the two matrices intro one.
The leftmost Z is often rewritten to λ, a scaling factor representing the scale ambiguity
of the perspective. Equations 2.54 - 2.56 represent the transforms from a 3D point in the
world to 2D image coordinates. The geometric model is referred to as the ideal perspective
projection in [19] because the only points contributing to irradiance at point p in the image
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plane are those located on the line between p and the 3D point P, as shown in Figure 2.5.
The ideal pinhole model is an paradigmatic geometric construct, which only approximates
a well-focused camera. Effects such as distortion, diffraction and blurring breaks these
assumptions, but the model is a good starting point for many computer vision applications.
Recall that the origin of the image frame is located at the optical center as shown in Figure
2.4. It is usually preferred to place the origin of the pixel coordinates away from the optical
axis. A common choice is the top-left corner as seen in Figure 2.5. In this step, there are
two considerations; the scale factors and the offsets between image and pixel coordinates
in each direction. The scaling part of the image transformation is performed as follows:[

xs

ys

]
=

[
sx sθ
0 sy

] [
x
y

]
(2.57)

The translation to the top-left corner can then be applied with[
x′

y′

]
=

[
xs

ys

]
+

[
cx
cy

]
(2.58)

Similarly to Equation 2.56, the two transforms are usually merged into one matrix opera-
tion using homogeneous coordinates for a more compact notation:x′

y′

1

 =

sx sθ cx
0 sy cy
0 0 1

xy
1

 (2.59)

Combining the results from Equations 2.56 and 2.59, one arrives at the following projective
equation:

λ

x′

y′

1

 =

fsx sθ cx
0 fsy cy
0 0 1

1 0 0 0
0 1 0 0
0 0 1 0



X
Y
Z
1

 (2.60)

The leftmost matrix of Equation 2.60 is commonly referred to as the intrinsic camera
matrix, K, which is followed by the perspective projection matrix. The elements of K
represent physical properties of the camera:

• fsx and fsy represents the focal lengths in X and Y-direction. For a true pinhole
camera, these should be equal. In practice, they may differ due to manufacturing
flaws, lens distortion or other imperfections.

• The ratio fsx
fsy

is often called the aspect ratio.

• cx and cy denotes the distance to the principal point located at the image center in
pixel coordinates.

• sθ refers to the pixel skew, which may occur if the pixels are not perfectly rectangu-
lar or if the sensor is not perpendicular to the optical axis. In practice, this value is
often close to zero.
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A more common representation, where the focal length is embedded in the adjacent s-
terms is denoted by

K =

fx s cx
0 fy cy
0 0 1

 (2.61)

2.3.1 Determining the Intrinsic Matrix

As discussed, the pinhole camera model is a geometric construct and does not fully en-
capsulate all aspects of image formation. In most applications it is sufficiently accurate in
describing the geometric relation between the pixel coordinate of a point in an image to
the 3D coordinates in the camera frame up to scale. A good approximation of the intrinsic
calibration parameters will therefore greatly improve the quality of perception. The intrin-
sic matrix is often assumed to be constant for a camera, unless it is subject to excessive
vibrations or external forces. This means that the calibration can be performed once in a
controlled environment and the parameters can be saved for future use.

The process of determining the intrinsic parameters is often referred to as intrinsic calibra-
tion. According to [18], the classical approach to intrinsic calibration involves estimating
the internal camera parameters while simultaneously estimating the extrinsic pose of the
camera with respect to some known calibration pattern. There are numerous ways to per-
form the intrinsic calibration, adhering to a trade-off between accuracy and complexity in
calibration rig and setup. Within the domain of mobile robotics, one of the most common
approaches is to move a planar calibration pattern in the camera’s field of view and sav-
ing a picture from each location. In this approach, the location of the calibration pattern
does not need to be known in advance. This method requires that the pose of the calibra-
tion target is calculated together with the intrinsics, which in general is less accurate than
the N-planes calibration approach where the location of the calibration boards is known.
However, it is sufficiently accurate for most applications and is less cumbersome than the
alternative.

The calibration pattern can take many shapes and display various visual features. One
of the most common target is the checkerboard pattern. The accuracy of the calibration
depends on the tolerances of the calibration target manufacturing. As a rule of thumb,
the tolerances of the manufacturing should be at least one order of magnitude lower than
the desired accuracy of the calibration. After collecting the images of the calibration tar-
get, features from the calibration pattern are extracted for each image. Using the prior
information of the planar calibration pattern’s geometry, a homography matrix describ-
ing the projective transform between the calibration points of image i in the world frame,
(Xi, Yi, Zi, 1) and the respective pixel coordinates (x′

i, y
′
i) can be computed.

Only the relative pose between the camera and the calibration target is of interest during the
calibration. This means that without loss of generality, one can assume that the calibration
target is located in Z0 = 0 of the world frame. The following simplification then holds
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true according to [20]:

λ

x′

y′

1

 =

fsx fsθ cx
0 fsy cy
0 0 1

 [
r1 r2 r3 T

] 
X0

Y0

0
1


= K

[
r1 r2 T

] X0

Y0

1


(2.62)

ri denotes the i-th column of R. The 3×3 homography H̃ can now be defined up to scale:

H̃ =
[
h1 h2 h3

]
= K

[
r1 r2 T

]
(2.63)

The matrix B = K−TK−1 is known as the Image Of The Absolute Conic (IAC), which
is useful for representing orthogonality in an image and it frequently occurs in projective
geometry. Since its elements are composed of intrinsic parameters only, it is commonly
used in camera calibration. According to Section 8.5 of [21] and Appendix A of [20],
Equation 2.63 can be rewritten using the orthonormal properties of the columns in R:

h⊤
1 Bh2 = 0 (2.64a)

h⊤
1 Bh1 = h⊤

2 Bh2 (2.64b)

There are in total six DOF related to the extrinsic parameters, three for rotation and three
for translation. The homography matrix is composed of nine elements, but is only defined
up to scale. Therefore, the homography only has eight DOF. The result is only two con-
straints on the intrinsic parameters from a single homography. Consider the matrix B on
the form

B = K−TK−1

=


1
f2
x

− s
f2
xfy

cys−cxfy
f2
xfy

− s
f2
xfy

s2

f2
xf

2
y
+ 1

f2
y

− s(cys−cxfy)
f2
xf

2
y

− cy
f2
y

cys−cxfy
f2
xfy

− s(cys−cxfy)
f2
xf

2
y

− cy
f2
y

(cys−cxfy)
2

f2
xf

2
y

+
c2y
f2
y
+ 1


=

B11 B12 B13

B12 B22 B23

B13 B23 B33


(2.65)

The explicit form of the IAC reveals a symmetric structure.
Let b = [B11 B12 B22 B13 B23 B33]

⊤ hold the nonduplicate elements of B. The funda-
mental intrinsic constraints of Equations 2.64 can therefore be rewritten as[

v⊤
12

(v11 − v22)
⊤

]
b = 0 (2.66)
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in which

vij =


hi1hj1

hi1hj2 + hi2hj1

hi2hj2

hi3hj1 + hi1hj3

hi3hj2 + hi2hj3

hi3hj3

 (2.67)

letting hij denoting the j-th element of the i-th column in H̃. In general for a system of
n images, the homogeneous representation of the fundamental intrinsic constraints can be
rewritten as

Vb = 0 (2.68)

where V is a 2n × 6 matrix. Assuming the number of images n ≥ 3 which is usually
the case during image calibration, there is in general a unique solution for b defined up
to scale2. The solution of Equation 2.68 can be retrieved as the eigenvector associated
with the smallest eigenvalue of V⊤V. One can compute the parameters of K from b as
follows:

cy =
B12B13 −B11B23

B11B22 −B2
12

(2.69a)

λ = B33 −
B2

13 + cy(B12B13 −B11B23)

B11
(2.69b)

fx =

√
λ

B11
(2.69c)

fy =

√
λB11

B11B22 −B2
12

(2.69d)

s = −B12f
2
xfy

λ
(2.69e)

cx =
scy
fy
− B13f

2
x

λ
(2.69f)

2.4 Pose Estimation

This section aims to introduce the main concepts of conventional iterative extrinsic pose
estimation and introduce the Infinitesimal Plane-Based Pose Estimation (IPPE) as an an-
alytical and fast alternative solution when the structure of the feature points adhere to a
certain structure. By continuing on the procedure from Section 2.3, we can now estimate

2There exists some degenerate configurations, such as parallel target planes. The reader is referred to [20] for
more details.
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the camera’s pose under the assumption that K is known. The pose can be retrieved by

r1 = λK−1h1 (2.70a)

r2 = λK−1h2 (2.70b)
r3 = r1 × r2 (2.70c)

T = λK−1h3 (2.70d)

using the property of orthonormality in R to compute r3 via the cross-product and defining
λ = 1

∥K−1h1∥ . In general, there is some degree of noise involved in the procedure. As
a result, R will likely not satisfy the properties of a proper orthogonal rotation matrix,
namely R⊤ = R−1 and detR = 1. The procedure of finding the best rotation matrix R
to a given 3×3 matrix Q can be done by minimizing the Frobenius norm of R−Q. More
precisely, the problem is defined as follows:

min
R
∥R−Q∥2F s.t. R⊤R = I (2.71)

where I is the 3× 3 identity matrix. We can rewrite ∥R−Q∥2F = trace((R−Q)⊤(R−
Q)) = trace(R⊤R − R⊤Q − Q⊤R + Q⊤Q) = 3 + trace(Q⊤Q) − 2trace(R⊤Q)
using the definition of Frobenius norm from Equation 2.3.1 in [22]. Equivalently to the
problem defined in Equation 2.71, one can maximize the trace of R⊤Q. Following the
procedure in Appendix C of [20], let the singular value decomposition of Q be USV⊤ s.t.
S = diag(σ1, σ2, σ3). By defining an orthonormal matrix Z = V⊤R⊤U, we can write

trace(R⊤Q) = trace(R⊤USV⊤) = trace(V⊤R⊤US)3

= trace(ZS) =
3∑

i=1

ziiσi ≤
3∑

i=1

σi

(2.72)

The property of trace(ABC) = trace(BCA) = trace(CAB) is used in the second equal-
ity. The last inequality follows from the assumption of orthonormality in Z. The maximum
is obtained when Z = I, e.g. by setting R = UV⊤.

The solution to Equation 2.68 is generally subject to noise. Under the assumption that this
noise is independent and identically distributed, one can refine the estimate with maximum
likelihood estimation. By iterating over all points j in image i, the following functional
can be used to obtain an accurate estimate:∑

i

∑
j

∥pij − π̂(K,Ri,Ti,Pj)∥2 (2.73)

Here, pij is point j of image i and π̂ is the estimated projection of the world point Pj

according to the projection model from Equation 2.60. The functional is the sum of all
reprojection errors squared. The reprojection error is a common benchmark for assessing
the quality of camera calibration and pose estimation. The problem is nonlinear and can
e.g. be solved with Levenberg-Marquardt using the solution from Equation 2.68 as an
initial guess. The presence of lens distortion has not been accounted for, and a linear pro-
jection model has been assumed in the above derivations. In practice, straight lines in real
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life may appear curved due to radial distortion of wide-angle lenses. In practice, various
distortion models using polynomial approximations can be applied during the calibration
process to estimate this effect and adjust for it as shown in Section 2.1.5 of [18]. This is
discussed in Section 3.3.2.

The pose estimation can of course be performed independently from the calibration pro-
cess, which is often the case in practical applications. The problem of estimating a cal-
ibrated camera’s pose given a set of 3D points in a scene and the coordinates of their
correspondences in the 2D image plane is commonly referred to as the Perspective-n-
Point (PnP) problem. Prior information about the geometry of the visual target can in
many cases be exploited to make the pose estimation more accurate, reliable and efficient.
Consider a flat, square target with a point of interest in each of the four corners such that
the points are coplanar and zero centered. This problem solved completely analytically
using the IPPE algorithm [23]. Under these assumptions, IPPE is faster and more accurate
than traditional iterative PnP methods by exploiting redundancy in the coefficients of the
homography. These properties make IPPE useful for real-time applications with a limited
computational budget. The IPPE method is further discussed in Section 3.3.3.

2.4.1 AprilTag 3 Fiducial Markers
Fiducial markers are artificial visual features placed in a camera’s frame to provide spatial
context and are commonly used to determine the scale of a scene. If placed in a known
location, they can also be used to determine the camera’s position. AprilTag 3 [4] is
designed to be faster, more accurate and reliable than its predecessor, while introducing
several new tag families.

By allowing data bits outside of the separation border, more data bits can be encoded with
a higher Hamming distance between tags. Families in AprilTag 3 can be detected with
higher recall and precision at higher Frames Per Second (FPS) than alternative fiducial
marker frameworks such as AprilTag 2 and ArUco 3 [4]. The tag families are parame-
terized by the number of bits, n, in the embedded codeword and the minimum Hamming
distance, d, between each codeword. For example, the custom48h12 family has 48 variable
bits in each codeword and a minimum Hamming distance of 12 between each codeword.
There are 42, 211 unique tag codewords in this family.

AprilTag codewords are designed such that a rotation by 90◦, 180◦ or 270◦ still maintains
the minimum Hamming distance from any other codeword. For the purpose of robust lo-
calization, AprilTags are designed to be easily distinguishable from naturally occurring
features in the environment. In general, the candidate codewords are considered in lexi-
cographic order. The implementation guarantees the ability to detect d

2 erroneous bits and
correct up to ⌊d−2

2 ⌋ of them. AprilTag 3 introduces new tag families which are designed to
be flexible and customizable, offering circular layouts or recursive ones as shown in Figure
2.6. Other tag families exist, all with different key properties. This thesis focuses on the
custom48h12 family due to its recursive structure. The markers used in this system are
designed such that each individual marker in the recursion has a unique codeword, which
is used to query the marker size. When the size of the currently tracker marker is known,
the PnP problem can be solved for the relative pose. As discussed, the IPPE method is
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(a) An instance of the AprilTag custom48h12 family.
The shaded area in the center can be filled arbitrarily.

(b) A recursive AprilTag, using a depth of three tags
from the custom48h12 family.

Figure 2.6: Examples of the AprilTag custom48h12 and how they can be used recursively.

highly efficient for pose estimates of planar, zero centered feature points. For this reason,
it is a popular choice for pose estimation based on fiducial markers.
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Chapter 3
Method

3.1 Solution Concept and System Overview
The purpose of the vision-based precision landing system is to aid a UAV during a land-
ing sequence in a reliable and safe manner with sufficiently high precision to descend
onto a landing platform within its mechanical tolerances. The system is intended for on-
board companion computers with a limited computational budget, using affordable sensors
which are standard issue for most aerial systems. There are three main components of the
proposed system:

1. Landing target detector: Process the image stream from the onboard camera and
detect visual markers. Using prior information about the landing target configura-
tion, the size of the marker is determined from its encoded bit arrangement and the
PnP problem is solved for the UAV’s pose relative to the landing target.

2. Filtering: The vision-based pose measurement and the UAV’s high rate IMU read-
ings are used to estimate the realtive pose in an IEKF.

3. Autopilot interface: This module is responsible for reading IMU data and the state
of the vehicle to initialize the filter when a landing sequence is started. When initial-
ized, setpoints are generated and forwarded to the UAV based on the filter output.
Sanity checks are applied to ensure consistency and the module is designed to be
integratable with popular autopilots such as PX4 [1] or ArduPilot [24].

In addition to the main components, the proposal features a custom marker design, a simu-
lation environment to test system modules and integration in addition to a tool for logging
and evaluating filter performance. A high-level visualization of the proposed system can
be seen in Figure 3.1.

The proposed solution has been devised within the context of the concluding phases of
round trip aerial delivery. Specifically, it addresses the scenario in which the UAV has
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Figure 3.1: Visualization of system overview in the proposed solution. The system consists of three
main modules indicated by different colors; landing target detector, extended pose estimation and
autopilot interface. The system is designed to be reliable, efficient and deployable to affordable and
computationally limited hardware.

successfully executed the delivery and subsequently returned to the operational base. At
the base, the UAV is required to land for battery recharging and cargo reloading purposes.
The system is based on a VTOL UAV, as shown in Figure 1.1. It possesses a wingspan of
250 cm and a Maximum Take-Off Mass (MTOM) of 16 kg. These specifications enable it
to transport cargo weighing up to 1.2 kg with a maximum range of 120 km. The proposed
solution aims to achieve centimeter-level landing precision using only a single downward-
facing camera, the IMU of the autopilot, a companion computer and a solitary external
visual target consisting of recursive fiducial markers. Alternative methods include the
utilization of Real-Time Kinematic (RTK) GNSS, necessitating a compatible receiver for
each UAV, along with the use of either an external or self-hosted service for streaming
correction data. In this case, the location of the platform must also be measured precisely,
introducing some additional complexity when quickly deploying platforms in the field or
to a customer. External services often incur significant expenses, particularly when dealing
with a fleet of multiple UAVs, and neither service can ensure uninterrupted availability.
Similarly, Ultra-wideband positioning beacons could also be used for this purpose, but
that would also require additional hardware on both the platform and UAV.

3.2 Geometry of the Landing Platform

The intended use case assumes design freedom and ownership of the landing platform,
notably that the platform can be equipped with visual markers of choice and that the ap-
proximate location of the landing platform is known. Aviant has developed a landing
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platform intended for such use, which is embedded in a car trailer and thus mobile. The
landing platform is shown in Figure 3.2.

(a) The automatic alignment system. (b) The charging interface.

Figure 3.2: Images displaying the landing platform along with its automatic mechanical alignment
and charging interface. The visual marker, which aids in precision landing, can be integrated into the
floor of the platform. The mechanism for cargo loading is not depicted in the image. Photographer:
Author.

The landing platform is equipped with guiding cross bars which can be used to align the
UAV after it has landed, both in terms of yaw and horizontal position. The mechanical
alignment can successfully position and orient the UAV if the initial position is anywhere
in the platform’s interior and the yaw angle alignment between the UAV and the platform
differs less than 35◦. After alignment, a linear actuator connects the onboard Battery Man-
agement System (BMS) to external power to charge the batteries. It is assumed that future
iterations of the platform will be equipped with lights and heating elements or roofing to
ensure visibility and prevent snow from covering the platform. Due to the mobile nature
of the landing platform, it can also be placed at strategic locations in the operational area
to serve as range extenders on which the UAV can land and recharge before continuing its
mission. Despite the platform being mobile, practical applications would greatly benefit
from increasing the landing accuracy and precision, thus reducing the required footprint
of the platform.

When in the open position, the interior geometry of the cross bars is 102 cm × 103 cm
and the visual markers are to be placed inside this area. The charging interface protrudes
23 cm vertically from the plane of the landing target, which potentially obstructs the view
of the visual markers if viewed from an angle. This is expected to happen, because the
initial approach before precision landing is started is limited to the precision of the GNSS
module of the UAV.

By reducing the dimensions of the visual marker, this occlusion can be alleviated. Con-
sequently, the altitude at which the onboard camera of the UAV can accurately detect the
marker is also decreased. A side view of the geometry is shown in Figure 3.3. The geo-
metric constraints of the marker size and placement are driven by three factors:

1. The error of horizontal position measurements before the precision landing is started.

2. The minimum altitude at which the UAV is considered safe to fly in the landing area,
assuming a horizontal position error governed by the GNSS accuracy.
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Figure 3.3: Visualization of landing target geometry. The figure is not to scale.

3. The maximum distance to the visual marker from which it reliably can be detected.

The UAV is to initiate the precision landing from no less than 10m Above Ground Level
(AGL) for safety purposes. The estimated altitude AGL is accurately known down to
centimeter precision due to an onboard laser altimeter. For applications with less con-
straints on the initial altitude AGL for precision landing initialization, the altitude can also
be determined from the fiducial marker detection as the UAV descends over the prior be-
lief of the landing platform’s location. According to the data sheet of the u-blox M8P-2
GNSS module used [25], the standalone horizontal position accuracy is 2.5m Circular
Error Probability (CEP). That is, the measured horizontal position will be within 2.5m
of the true horizontal position 50% of the time. Using the geometry of Figure 3.3 and
the triangle similarities, the margin from the edge of the visual marker to the cross bars
is identified as x = p

e−w
2

h−p . Since the uncertainty of the landing platform’s horizontal po-
sition is comparable to that of the UAV, a horizontal position error of e = 5m from the
platform center is assumed. Using h = 10m, w = 102 cm and p = 23 cm, the desired
margin is found to be 10.6 cm. The available area for visual markers was therefore limited
to a 90 cm× 90 cm square, centered on the landing platform.

In addition to occlusion by the platform itself, the landing target must be visible from
10m AGL considering the initial horizontal displacement due to erroneous GNSS mea-
surements and the camera’s Field Of View (FOV). Similarly to the derivation of the marker
size, the geometry shown in Figure 3.4 is used to determine the minimum FOV of the
camera. The trigonometric relations reveal that the vertical FOV needs to be Fy ≥
2 arctan

e+m
2

h . Using e = 5m, m = 90 cm and h = 10m, one obtains Fy ≥ 57.2◦.
The calculations were made for the vertical FOV, which is typically the smallest of the
two. This is congruent with the 64◦ vertical and 80◦ horizontal FOV of the camera used.

Considering its wings, the aircraft has a higher propensity to encounter significant pertur-
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Figure 3.4: Visualization of landing target visibility based on camera FOV. The figure is not to
scale.

bations in roll compared to pitch. Therefore, the camera is positioned in a manner that
accommodates this behavior. The camera is mounted such that the larger horizontal FOV
compensates for a rolling motion, thereby improving visibility of the marker.

Figure 3.5: Visualization of axes x, y and z of the UAV’s body frame and the respective axes for
roll, pitch and yaw movement.

For a camera affixed in a rigid manner to the ventral section of the UAV, facing down along
the z-axis as shown in Figure 3.5 and oriented such that the vertical image axis aligns with
the x-axis passing through the aircraft’s nose, the resulting values leave a 6.8◦ margin in
pitch and a 22.8◦ margin in roll. For a stable hover, this coincides with historical attitude
data for the UAV platform in windy conditions.

To rapidly prototype and test different marker configurations, a custom VTOL quadplane
equipped with a camera was added to PX4’s Gazebo based Software In The Loop (SITL)
simulator. The model streamed the camera feed over User Datagram Protocol (UDP) to a
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receiving node, e.g. the Ground Control Station (GCS). The simulator environment was
modified to display visual fiducial markers in an otherwise empty world. The camera of
the model was setup with horizontal and vertical FOV to match the onboard camera used in
real flights. The ground control station QGroundControl [26] was used to view the image
and send commands to the simulated vehicle. The setup can be seen in Figure 3.6.

(a) Gazebo world with camera-equipped UAV and a vi-
sual marker.

(b) Simulated camera feed and vehicle controls in
QGroundControl.

Figure 3.6: Image of test setup to determine visual marker configuration.

Prior to testing, it was clear that no single marker could be used for tracking at a distance
and in proximity to the platform. At close range, larger markers would exceed the camera’s
FOV and smaller markers would not be detectable at range. The originally envisioned ap-
proach considered multiple adjacent markers placed in the unobstructed area of the landing
platform. The initial simulator testing revealed three main flaws in this approach:

1. Multiple markers of different sizes placed adjacently are suboptimal for utilizing the
available space of the landing platform.

2. The UAV must move horizontally as it switches from tracking one marker to the
next. During this phase, it is more likely to lose track due to the roll and pitch
motions causing the rigidly mounted camera to point away from the target.

3. The smallest marker used for close range tracking could not be located at the center
of the platform, because the largest marker occupied a majority of the space. Effec-
tively, this reduced the tolerances for landing precision because the UAV was forced
to land closer to the perimeter of the platform.

To solve these issues, the third generation of AprilTag [4] with its custom and flexible
layouts was used. The localization properties of the AprilTag markers are discussed in
Section 3.3.1, but the geometry of the custom markers is relevant for the problem at hand.
The custom48h12 family of tags have an empty space in the middle which does not af-
fect detection and can be filled arbitrarily. This makes it possible to design recursive tags,
as shown in Figure 2.6. The configuration solves all three problems stated above; it uti-
lizes the entire available area of the landing platform, the UAV can track the center of the
platform at all times and it is now possible to land at the platform center for maximum
tolerance in positioning error.
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3.3 Landing Target Detector

3.3.1 Fiducial Marker Geometry
The main task of the landing target detector is to process the raw image stream from the
onboard camera and detect fiducial markers. The custom48h12 tags are square with a side
length of ten bits. The innermost four bits of the marker are omitted and can be used
for recursion. This means that the side length of each layer is five times smaller than the
previous one. Considering a three layer design with an outter layer of 90 cm side length,
the two next layers have side lengths of 18 cm and 3.6 cm respectively.

The maximum detection range of a tag, zmax, is given by

zmax =
t

2 tan Fxbp
2W

(3.1)

where t is the tag width in meters, Fx is the horizontal FOV, b is the tag width in bits, W
is the horizontal image size in pixels and p denotes the number of image pixels needed
per tag bit for detection. p therefore serves as a tuning parameter which determines the
robustness of detections. In cases of high viewing angles and low illumination, a higher
value of p is needed. p = 5 is considered good for robust detection and p = 2 corresponds
to the Nyquist frequency.

Figure 3.7: Visualization of the geometry for the minimum detection distance calculation, shown in
a side view for perturbations in roll. The figure is not to scale.

An approximation of the minimum detection range of a tag, zmin was derived by the
camera’s FOV and expected perturbations in orientation of the UAV during the descent as
shown in Figure 3.7:

zmin =
t

2 tanF ′ (3.2a)

F ′ = min(
Fx

2
− |ϕmax|,

Fy

2
− |θmax|) (3.2b)

The expression for F ′ given by Equation 3.2b is based on the minimum of the horizontal
and vertical FOVs to ensure that zmin is not underestimated. The FOVs are adjusted for
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the expected maximum roll and pitch movement expected during a descent, ϕmax = 20◦

and θmax = 12◦. The maximum perturbations in orientation are based on historical data
for the UAV during multirotor descents in strong wind. The formula assumes the precision
landing module is active and the camera is centered above visual marker with no positional
offset in the horizontal plane. In practice there will always be some offset, but the formula
is useful for building intuition for overlap of the detection distances. Additionally, vertical
movement is not requested until sufficient horizontal alignment is achieved. This is further
discussed in Section 3.5. Since the altitude of initialization is above the minimum detection
distance, this assumption is considered fair.

Maximum detection range, zmax

Marker size, t p=5 p=4 p=3 p=2 Minimum detection range, zmin

90 cm 10.30m 12.89m 17.18m 25.78m 1.24m
18 cm 2.06m 2.58m 3.44m 5.16m 0.25m
3.6 cm 0.41m 0.52m 0.69m 1.03m 0.05m

Table 3.1: Maximum and minimum detection ranges for different marker sizes and pixel per bit
ratios. The values are based on Equations 3.1 and 3.2.

The UAV is equipped with landing legs, making the vertical distance from the onboard
camera to the landing target 14 cm while grounded. As shown in Table 3.1, there is over-
lap of the detection distances for the three markers during the entire descent. Even in the
most conservative case, the system is expected to perform contiguous detections all the
way from 10m AGL until the UAV is grounded. In practice, the overlap and maximum
detection ranges are likely higher for two reasons; the UAV is equipped with a low-light
camera which requires little illumination and the viewing angle is expected to approach
zero as the UAV centers horizontally over the landing platform. Real-life tests were con-
ducted to address these claims, which is discussed in Chapter 5.

3.3.2 Camera Calibration

In addition to the pixel coordinates obtained from detections of the fiducial markers, the
camera intrinsics are necessary to calculate the pose. The intrinsic matrix is obtained
obtained from a calibration scheme as discussed in Section 2.3.

The calibration was performed using the pinhole camera model. In reality, the cam-
era aperture cannot be infinitely small as that would prevent any light from reaching
the sensor. A lens is required to focus the light onto the sensor, which in turn con-
tributes to some distortion effects. The distortion effect can be assumed to have a ra-
dial symmetry, meaning its value only depends on the distance from the principle point,
i.e. r(x′, y′) =

√
(x′ − cx)2 + (y′ − cy)2. The distortion can be pointed outwards or

inwards, which is referred to as barrel and pincushion distortion respectively. A visual-
ization of this effect is shown in Figure 3.8. The effect of the distortion can be modelled
in numerous ways. Brown’s even ordered radial distortion model [27] is among the more
commonly used distortion models.
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(a) Reference orthogonal grid
pattern.

(b) Visualization of barrel distor-
tion.

(c) Visualization of pincushion
distortion.

Figure 3.8: Comparison between barrel and pincushion radial distortion effects of an orthogonal
grid pattern. The distortion is exaggerated compared to expected results for illustrative purposes.

In this case, the two first radial distortion parameters were used:

x′
ru = (1 + k1r

2 + k2r
4)x′

rd (3.3)

Where x′
ru are the radially undistorted pixel coordinates and x′

rd is the pixel coordinates
subject to radial distortion. The distortion effect is usually more prevalent towards the
edges of the image, which follows from Equation 3.3. For high-quality cameras with a
low FOV, the distortion can sometimes be negligible. In this project, this is not the case as
the camera lens provides a wide-angle view. This motivates the use of a radial distortion
model, because it accommodates more accurate detections and pose estimates of targets in
the camera’s peripheral view.

(a) Illustration of camera lens not being parallel to im-
age plane.

(b) Illustration of camera lens being offset relative to
image plane center.

Figure 3.9: Illustration of a skewed and offset lens which introduces tangential distortion.

In addition to the radial distortion caused by lens imperfections, misalignment of the lens
during manufacturing will also lead to distortion as shown in Figure 3.9. This type of tan-
gential distortion occurs if the image plane is not parallel to the lens or if the lens is offset
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from the image plane center. Even high-end cameras often have some degree of tangential
distortion, but the effect is more visible in lower-end hardware. For these reasons, both
the radial and tangential distortion models were used in this project to address some of the
weaknesses for the pinhole camera model.

Tangential distortion differs from the radial distortion by not being symmetric and can be
described by the following model [27]:

x′
tu =

[
2p1x

′y′ + p2(r
2 + 2x′2)

p1(r
2 + 2y′2) + 2p2x

′y′

]
⊙ x′

td (3.4)

in which ⊙ denotes the Hadamard product, x′
tu is the tangentially undistorted pixel co-

ordinates and x′
td is the pixel coordinates subject to tangential distortion. The radial and

tangential distortion can be introduced to the projection model in Equation 2.60 and their
parameters can be estimated similarly to the scheme outlined in Section 2.3 given a suffi-
cient number of calibration images to account for the extra DOF introduced by the distor-
tion parameters.

(a) Reference orthogonal grid pattern. (b) Visualization of tangential distortion.

Figure 3.10: Visualization of tangential distortion of a reference orthogonal grid pattern. Unlike
the radial distortion, the effect is not radially symmetric. The distortion is exaggerated compared to
expected results for illustrative purposes.

The effect of tangential distortion on an image is shown in Figure 3.10. A second order
approximation of the radial and tangential models were used, as the provided accuracy
is sufficiently high for this application. For computer vision applications with very high
accuracy requirements, higher degree polynomials or a different model entirely may be
required.

3.3.3 Relative Pose Measurement
The UAV is equipped with a downward-facing low-light camera, which is used to detect
the fiducial markers. To obtain detections reliably in various lighting conditions, an in-
creased pixel size is desirable for high quantum efficiency. In this thesis, the Sony Exmor
IMX323 based camera from Blue Robotics [28] was used. It has a pixel size of 2.8 µm
which is relatively high for a 2Mpx camera. The camera is light weight at only 17 g,
but can provide a high definition image with good low-light performance at a low cost.
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To maximize low-light performance, the camera was setup to use binning; an artificial
increase in pixel size by merging sensor data from adjacent pixels. This decreases the
overall image size in terms of pixels, reducing the maximum detection range. The calcu-
lations from Table 3.1 were computed for the camera in binning configuration, meaning
it does not compromise on the detection range over the intended flight pattern. The de-
creased image size reduces the computational load for the onboard companion computer
per image, allowing the detections to be performed at a higher rate. This is beneficial for
consistency, which is discussed in Section 3.4.

The corners of the fiducial marker are detected as a multi-stage, sequential process [4]:

1. The input Red Green Blue (RGB) image is converted to grayscale.

2. The image is downsampled, while maintaining the original FOV. This step is op-
tional, but can be done to reduce the computational load and speed up the detection.

3. The image is thresholded.

4. Pixel unions are computed with a union-find algorithm based on gradient magnitude
and direction for each pixel. The output is used to determine connected components
in the thresholded image.

5. The boundaries between dominating black and white components are found by seg-
mentation, similar to the graph-based method described in [29]. The outputs serve
as candidates for the tag contours. In general, this is the slowest part of the detection
algorithm.

6. The boundaries are searched for quadrilateral shapes which are fitted to the contours.

7. A perspective correction is applied. The homography is estimated using an approach
similar to the one discussed in Section 2.3.1.

8. Sharpening and decoding of data bits.

The output of individual detection steps are shown in Figure 3.11 for a sample image of
the landing target during a test flight. In this example, the two outermost markers of the
recursive target are correctly identified. The innermost tag is only populated by 10 × 10
pixels, which corresponds to p = 1 in Equation 3.1 since the marker is only 10 bits wide.
This is below the minimum value for reliable detection and explains why only the two
larger tags are found.

The detection corners define the edges between the black and the white borders inside the
tag as shown in Figure 3.12. Using the codeword of the detected tag’s data bits, its scale is
determined based on the known physical configuration. Since the points are coplanar and
the detection corners are zero centered, the detected points can the be used to obtain a pose
measurement using the IPPE algorithm given the camera intrinsics. In IPPE, a transform
is applied around an infinitesimally small region on the target’s surface to determine its
pose.

The following derivation aims to outline the steps of the IPPE method and how they result
in a completely analytical expression for the relative pose. Further details of the individual

40



(a) Grayscale conversion of input im-
age and decimation.

(b) Individual pixels are thresholded by
value.

(c) Connected components in the image
are identified and grouped.

(d) Segmented areas are used to define
contours between dark and light areas.

(e) Tag candidates are identified based
on contours.

(f) Quadrilaterals are fitted to the tag
candidates.

(g) Perspective correction and sampling
of data bits.

(h) Output of the tags detected in the
image.

Figure 3.11: Visualization of the AprilTag 3 detection steps.
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Figure 3.12: Detection corners visualized in red on an instance of the AprilTag custom48h12 family.

steps are provided by [23]. Consider a set of n points in the model plane of the fiducial
marker uk ∈ R2, k ∈ [1, n]. The points are zero centered,

∑n
1 uk = 0. Using the fiducial

marker shown in Figure 3.12, the model plane points span a square with n = 4. Each point
in the model plane has a known corresponding point qk ∈ R2 in the camera’s image. The
camera intrinsic matrix K is known.

The normalized image coordinates are obtained by [q̃⊤
k , 1]

⊤ = K−1[q⊤
k , 1]

⊤. The best
fitting homography H up to noise is then computed between {q̃k} and {uk} and H is
rescaled to ensure that H33 = 1. The Jacobian of the plane-to-image function π(·) is then
calculated at u = 0,

J =

[
H11 −H31H13 H12 −H32H13

H21 −H31H23 H22 −H32H23

]
(3.5)

We then let v = π(H[0⊤,1]⊤) = [H13, H23]
⊤, i.e. the 2D point in the image where the

marker center is located, expressed in normalized coordinates. By defining

cos θ =
1

∥[v⊤, 1]⊤∥2
(3.6a)

sin θ =

√
1− 1

∥[v⊤, 1]⊤∥22
(3.6b)

[k]× =
1

∥v∥2

[
0 v
−v⊤ 0

]
(3.6c)

we can use Rodrigues formula to compute Rv = I+ sin θ[k]× + (1− cos θ)[k]2×, which
is the smallest possible rotation aligning [v⊤1] with the z-axis. Given v and Rv , we can
now compute [B|0] = [I| − v]Rv and A = B−1J.

Let

AA⊤ =

[
a1 a2
a2 a3

]
(3.7)

42



such that

γ = σA
1 =

√
1

2
(a1 + a3 +

√
(a1 − a3)2 + 4a22) (3.8)

is the largest singular value of A. There are two possible solutions R1,R2 ∈ SO(3) for
the rotational part of the relative pose between the marker and the camera,

R1 = RvR̃1 (3.9a)

R2 = RvR̃2 (3.9b)

The matrices R̃1 and R̃2 can be found by

R̃1 =

[
R̃22 c
b⊤ a

]
(3.10a)

R̃2 =

[
R̃22 −c
−b⊤ a

]
(3.10b)

where

R̃22 =
1

γ
A (3.11a)

b⊤b = R̃⊤
22R̃22 (3.11b)[

c
a

]
=

[
R̃22

b⊤

] [
1
0

]
×

[
R̃22

b⊤

] [
0
1

]
(3.11c)

In Equation 3.11, b can be obtained by the rank-1 decomposition of I− R̃⊤
22R̃22.

In theory, the translational part of the relative pose could be obtained through Ti =

1
γ

[
v
1

]
− Ri

[
u0

0

]
, i ∈ {1, 2}. Since v was computed at u0 = 0, only the first term

is used. However, v was also computed using the homography H which is subject to
noise. Therefore, a more accurate estimate is found by using the solution for R and linear
least squares regression with the cost function to be minimized,

n∑
i=1

∥∥∥∥R22ui +

[
T1

T2

]
− (s3

[
ui

0

]
+ T3)q̃i

∥∥∥∥2
2

(3.12)

in which s3 is the third row in R. Since the error is minimized in the 3D camera space and
not the 2D image space, the problem is convex and the solution T will thus be a global
minimum. This can be solved very efficiently, by rewriting the functional to be minimized
on the form

∥WjTj − bj∥22, j ∈ 1, 2 (3.13)

such that the minima is located at T⋆
j = (W⊤

j Wj)
−1Wjbj . The solution is unique

because Wj has rank 3. Since Wj is 2n × 3, W⊤
j Wj is 3 × 3 and its inverse can be

computed with low computational cost. For a coplanar square object defined by its four
corners, the homography H is computed analytically.
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Looking at the steps above, the IPPE method as a hole will then compute the relative
pose completely analytically, which makes it extremely fast. This is further discussed in
Section 5.2. The underlying geometry of this problem makes it prone to ambiguity, which
cannot be accounted for by any PnP method alone. In general, IPPE returns two solutions.
The solution associated with the lowest reprojection error can be chosen in most cases. In
some configurations, the reprojection error is an ambiguous metric due to noise, especially
when viewed from a distance or if the marker is small. In this scenario, the projection of
the marker appears affine and the ambiguity arises due to symmetry around the axis from
the camera’s center to the marker’s center [23]. Both of these conditions may apply for
the intended trajectory, meaning other measures must be taken to resolve the ambiguity.
In the proposed system, pose measurements inconsistent with the current pose estimate or
too different from previous measurements are discarded.

3.4 Invariant Filtering
The pose measurements discussed in Section 3.3.3 are used to determine relative height,
yaw alignment and positional errors in the horizontal plane during the descent, which the
autopilot can use to align the UAV with the center of the landing platform. The raw pose
measurements are subject to noise and would result in a trajectory with high-frequency
components the vehicle is unable to follow. Additionally, raw measurements are prone to
dropouts and ambiguity with no sense of uncertainty associated to the believed pose. To
address this, the UAV’s pose is estimated with an IEKF. In addition to effectively smooth-
ing the trajectory, the filter can predict the UAV pose in the event of missing detections
for a short time period and the filter’s innovation and estimated state along with their re-
spective covariances can be used to assess consistency and quality of the estimates in real
time.

3.4.1 Bias-Free Motion Model
First, we consider the motion model based on a bias-free IMU. In this case, the IEKF
represents the state space as an extended pose, using the SE2(3) double direct spatial
isometries. The IMU measurements of acceleration and angular velocity are assumed to
be corrupted with zero-mean Gaussian noise,

ãt = at + ant, ant ∼ N (0,Σa) (3.14a)
ω̃t = ωt + ωnt, ωnt ∼ N (0,Σω) (3.14b)

where (·)t denotes the true value, (·)nt denotes the noise and (̃·)t denotes the measured
value at time t. Using Equation 3.14, the system dynamics in continuous time are

Ṙt = Rt[ω̃t − ωnt]× (3.15a)
v̇t = Rt(ãt − ant) + g (3.15b)
ṗt = vt (3.15c)

in which g is the gravity vector, which is assumed to be known [6]. In Equations 3.15,
the IMU measurements are used as input, ut, to the system. The SE2(3) Lie group is
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particularly useful in inertially driven estimation problems, because it involves using sen-
sor data from gyroscopes and accelerometers to evolve the orientation and velocity states.
This will in turn propagate into the position component. By using the IMU measurements
as input to the system, one avoids the need to model the dynamics of the acceleration, i.e.
the jerk of the system. The matrix representation of the dynamics as an SE2(3) extended
pose is then

d

dt
Xt =

Rt[ω̃t]× Rtãt + g vt

0⊤ 0 0
0⊤ 0 0


−

Rt vt Tt

0⊤ 1 0
0⊤ 0 1

[ωnt]× ant 0
0⊤ 0 0
0⊤ 0 0


= f(Xt,ut)−Xtw

∧
t

(3.16)

where the process noise wt =
[
ω⊤

nt a⊤nt 0⊤]⊤ has covariance Q with diagonal ele-
ments Σω,Σa,03×3. Together with the discrete time transition matrix Φk, the covariance
is propagated as described in Equations 2.50 and 2.51.

To prove the group affine property, consider

Xa =

Ra va Ta

0⊤ 1 0
0⊤ 0 1

 (3.17a)

Xb =

Rb vb Tb

0⊤ 1 0
0⊤ 0 1

 (3.17b)

such that

f(Xa,u) =

Ra[ω̃]× Raã+ g va

0⊤ 0 0
0⊤ 0 0

 (3.18a)

f(Xb,u) =

Rb[ω̃]× Rbã+ g vb

0⊤ 0 0
0⊤ 0 0

 (3.18b)

The identity function is then

f(I,u) =

I[ω̃]× Iã+ g 0⊤

0⊤ 0 0
0⊤ 0 0

 (3.19)
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Next, we compute f(XaXb,u),Xaf(Xb,u), f(Xa,u)Xb and Xaf(I,u)Xb,

XaXb =

RaRb Ravb + va RaTb +Ta

0⊤ 1 0
0⊤ 0 1

 (3.20a)

f(XaXb,u) =

RaRb[ω̃]× RaRbã+ g Ravb + va

0⊤ 0 0
0⊤ 0 0

 (3.20b)

Xaf(Xb,u) =

RaRb[ω̃]× RaRbã+Rag Ravb

0⊤ 0 0
0⊤ 0 0

 (3.20c)

f(Xa,u)Xb =

Ra[ω̃]×Rb Ra[ω̃]×vb +Raã+ g Ra[ω̃]×Tb + va

0⊤ 0 0
0⊤ 0 0

 (3.20d)

Xaf(I,u)Xb =

Ra[ω̃]× Raã+Rag 0⊤

0⊤ 0 0
0⊤ 0 0

Rb vb Tb

0⊤ 1 0
0⊤ 0 1


=

Ra[ω̃]×Rb Ra[ω̃]×vb +Raã+Rag Ra[ω̃]×Tb + va

0⊤ 0 0
0⊤ 0 0


(3.20e)

From the Equations 3.20, it is clear that f(XaXb,u) = Xaf(Xb,u) + f(Xa,u)Xb −
Xaf(I,u)Xb and the group affine property defined in Equation 2.44 is satisfied. The dy-
namics in Equation 3.16 can therefore be shown to have state independent error trajectories
with provable local stability around any trajectory as discussed in Section 2.2.3.

The expression for ηt can be approximated as

ηt = exp(ξt) ≈ I+ ξ∧t (3.21)

meaning the right invariant formulation1 of 2.45b can be rewritten to

g(I+ ξ∧t ,ut) = (Atξt)
∧

At =

03×3 03×3 03×3

[g]x 03×3 03×3

03×3 I 03×3

 (3.22)

according to [30]. In the bias-free model, the matrix At is constant for a larger set of
trajectories in the right IEKF unlike the left invariant formulation which can be derived
similarly. This is a benefit when performing predictions at a high rate, e.g. when using
an IMU because a recalculation at each prediction increases the computational load. In

1g denotes the gravitational vector in At.
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practice, the adjoint matrix can be utilized to transform between the two representations,

ξr = AdX̂ ξl (3.23a)

Pr = Ad⊤
X̂PlAdX̂ (3.23b)

(3.23c)

For this reason, the right invariant formulation of the IEKF is used unless stated otherwise.

3.4.2 Estimating IMU Biases
In practice, the biases of the IMU must be estimated to perform reliable tracking of the true
trajectory. Unfortunately, the bias does not fit into the framework of Lie Groups like the
extended pose. It is therefore included as a state augmentation, resulting in an imperfect
IEKF. The log-linear property has not been demonstrated in this case, meaning conver-
gence around any trajectory cannot be proven like in the conventional IEKF formulation.
The biases are usually represented with Brownian Motion, for which the dynamics are
modelled as a random walk. Since the bias dynamics are slow compared to the vehicle
dynamics, the coupling between the augmented states and the extended pose is in general
weak. Although the attractive mathematical proofs no longer hold, the imperfect IEKF
still outperforms the EKF in practice.

The IMU measurements and biases are now described by

ãt = at + ba
t + ant, ant ∼ N (0,Σa) (3.24a)

ω̃t = ωt + bω
t + ωnt, ωnt ∼ N (0,Σω) (3.24b)

ḃa
t = ba

nt, ba
nt ∼ N (0,Σba) (3.24c)

ḃω
t = bω

nt, bω
nt ∼ N (0,Σbω) (3.24d)

The continuous-time process noise with the augmented state is
wt =

[
ω⊤

nt a⊤nt 0⊤ bω⊤
nt ba⊤

nt

]⊤
using the bias-enabled IMU dynamics, with the

diagonal elements of the covariance matrix Q following the same augmented structure.

By inserting Equations 3.24 into the dynamics of Equation 3.16 and linearizing using stan-
dard Euler integration, the estimated discrete-time dynamics for the augmented extended
pose can be derived,

R̂k = R̂k−1exp((ω̃k−1 − b̂ω
k−1)h) (3.25a)

v̂k = v̂k−1 + R̂k−1(ãk−1 − b̂a
k−1)h+ gh (3.25b)

p̂k = p̂k−1 + v̂k−1h+
1

2
R̂k−1(ãk−1 − b̂a

k−1)h
2 +

1

2
gh2 (3.25c)

b̂a
k = b̂a

k−1 (3.25d)

b̂ω
k = b̂ω

k−1 (3.25e)

in which h is the time step duration. The linearization is performed under the assumption
of constant IMU measurements over the sample time. For this assumption to remain valid,
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the IMU’s sample rate must be sufficiently high relative to the dynamics of the vehicle. To
arrive at the matrix At, the same approach shown in Equation 3.22 of the bias-free motion
model can be applied.

At =


03×3 03×3 03×3 −R̂t 03×3

[g]x 03×3 03×3 −[v̂]xR̂t −R̂t

03×3 I 03×3 −[T̂]xR̂t 03×3

03×3 03×3 03×3 03×3 03×3

03×3 03×3 03×3 03×3 03×3

 (3.26)

Due to the addition of biases as a state augmentation, the IEKF correction applies the
Kalman gain in two steps; for an invariant error defined on the Lie Group and a bias error.
The invariant errors use the definitions from Equation 2.43 with the exponential mapping
between errors defined in Equation 2.48. The error is used to update the state estimate
using the matrix exponential and the associated Kalman gain is denoted Kξ. In the second
case, the biases are updated using a linear sum of the vectors like in a conventional EKF
with Kalman gain Kζ such that K = [Kξ Kζ ]

⊤. The adjoint matrix is also modified to
represent the augmented states: AdX = diag(AdSE2(3), I, I).

3.4.3 Observation Models
The IEKF uses the measurements of the marker relative to the UAV to perform a full six
DOF pose update. In principle, one could also fuse the GNSS measurements in the IEKF.
This was not implemented because the precision landing is only concerned with local po-
sitioning, and the added complexity would likely not be justifiable considering the high
uncertainty of GNSS compared to the fiducial marker-based pose measurements. Addi-
tionally, the proposed architecture is more flexible in terms of future use cases as it does
not rely on external positioning services and could e.g. be used in GNSS-denied environ-
ments. When estimating the relative pose, the yaw of the UAV is estimated with higher
certainty than e.g. a magnetometer which the autopilot uses, improving the alignment of
heading between platform and UAV during the landing sequence.

By tracking the landing platform center using the recursive arrangement as shown in Fig-
ure 2.6b instead of adjacent markers, the marker center is always aligned with the platform
center. This removes the need to perform a rigid body transform to the platform center
depending in which marker currently being detected. Therefore, the update model is sim-
plified and consistent for all three markers. First, consider the simplified IEKF update for
position only. For a given position pt, the noisy measured position will be of the form
yp
k = pk + np

k which intrinsically is a left invariant observation. The update can be per-
formed according to Equation 2.49b with dp =

[
0 0 0 0 1

]⊤
corresponding to the

last column in the unaugmented state matrix. For reasons discussed in Section 3.4.1, it is
desirable to use the right invariant formulation. This can be achieved by transforming the
resulting measurement matrix using the adjoint; Hr

p = Hl
pAd−⊤

X̂ .

For the full pose update, the measurement matrix is computed according to the following
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ideal measurement model of the unaugmented state Xk ∈ SE2(3):

Yk = Φ(Xk)d (3.27)

In this derivation, Yk,d ∈ SE(3) because the linearized model used for pure position
updates falls short when dealing with the rotational component of the pose measurement.
The group homomorphism Φ is given by

Φ : SE2(3)→ SE(3) ;

R v T
0⊤ 1 0
0⊤ 0 1

 7→ [
R T
0⊤ 1

]
(3.28)

According to [31], Equation 3.27 with the addition of noise can be rewritten as a group
action

Yk = (Xk · d)⊕ nk (3.29)

where nk ∈ R6 is additive Gaussian noise with covariance Rk. We can now define the
innovation as

νk = (X̂−1
k Yk)⊖ d (3.30)

Recall from Equation 2.4, that the result of a ⊖-composition is an element in R6 in the
case of SE(3) composition. Thus, the expression of Equation 3.30 can replace the term
multiplied with the Kalman gain in Equation 2.50c. In the case of ideal measurements,
subject to no noise, X̂−1

k Yk = X̂−1
k Xkd = ηkd. In the event that ξk = 0, ηk = exp(ξk) is

at the identity and X̂−1
k Yk = d. The composition of⊖d in Equation 3.30 will then ensure

that the innovations are of zero mean. The Jacobian DΦ(ηk)
Dηk

is constant,

DΦ(ηk)

Dηk
=

DΦ(η)

Dη
=

[
I 03×3 03×3

03×3 03×3 I

]
(3.31)

such that

Dηk · d
Dηk

=
DΦ(ηk)d

Dηk

=
DΦ(ηk)d

DΦ(ηk)

DΦ(η)

Dη
= Add−1

DΦ(η)

Dη

(3.32)

using the chain rule and the following property for composition of Jacobians2:

DX · Y
DX

= lim
τ→0

Log((XY)−1(XExp(τ )Y))
τ

= lim
τ→0

Y−1Exp(τ )Y

= lim
τ→0

(Y−1τ∧Y)∨

τ

= Ad−1
Y = AdY−1

(3.33)

2For more comprehensive details on the steps in this derivation, the reader is referred to [5].
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The measurement matrix for the full six DOF pose update is then

Hk = J−1
r (zk)

Dη · d
Dη

(3.34)

where Jr is the inverse right Jacobian as defined in Appendix A.2.

3.5 Autopilot Interface

Figure 3.13: High-level flow diagram of autopilot interface finite-state machine.

The estimation of relative pose between UAV and landing target is performed separately
from the autopilot’s primary estimator used for navigation and control. This is partly done
because the precision landing module is designed to be flexible and agnostic of autopilot
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choice, but it also makes it easier to configure safety measures to prevent the landing
target estimator from causing potentially dangerous behaviour of the UAV. The autopilot
interface is based on a finite-state machine, of which the logic flow is shown in Figure
3.13.

Figure 3.14: Overview of the cascaded control architecture used by the multirotor position controller
in PX4. Adapted from [1].

Initially, the UAV moves to a predefined location where it is expected to be able to visually
detect the landing target. The invariant filter then initializes and waits for convergence,
receiving IMU messages from the autopilot and images from the onboard camera. The
UAV is then commanded to move horizontally at the current altitude towards the center of
the platform before it starts to descend using the cascaded control architecture shown in
Figure 3.14. The precision landing system, distinct from the navigation and control system
of the primary autopilot, is focused on guiding the aircraft during the landing process.
In essence, the standalone module of the precision landing system can be implemented
across various autopilots, regardless of the specific techniques employed for navigation
and control.

To make sure the filter is consistent during operation, the landing sequence is delayed
from the initial detection to allow the filter to converge. The log-linear property of the
IEKF contributes to a fast initial convergence for any trajectory, which is important for
repeatability and it reduces already limited hover time requirements. The IEKF used for
precision landing uses the same IMU as the autopilot, but runs as a standalone system.
In theory, one could use the IMU bias estimates of the autopilot’s EKF to hot start the
invariant filter. However, due to the already fast convergence of the IEKF this was not
found to be necessary.

During the landing sequence, different means of sanity checks are applied to ensure con-
sistency. The raw pose measurements are filtered based on the camera intrinsics and ex-
trinsics, discarding any measurements which are infeasible in terms of the current UAV
pose, the FOV and distance to the ground. Most importantly, the consistency of the IEKF
is used to assess whether the current position estimate is usable or not and the covariance
in position and yaw are be compared to the acceptable tolerances of the landing platform.
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If the filter becomes inconsistent, means are taken to improve the estimate or abort the
landing procedure. The metrics used to assess filter consistency are further discussed in
Section 3.6.

The behavior shown in Figure 3.13 is repeated until the UAV has landed. If the estimator
becomes inconsistent or fails a sanity check, the UAV will move back to the initial pre-
defined location. If the filter reacquires track on the way, the precision landing module
continues from the current location. In the event that track is lost close to the target, the
UAV will land at the current location. This is expected if the camera is mounted in such a
way that the marker becomes unobservable as the vehicle is about to land or because the
rotational blur when in proximity to the landing target becomes too excessive for reliable
detection. The specific altitude at which this happens serves as a tuning parameter and
depends on the specific vehicle type and the tolerances of the landing platform. If the
pose estimate remains inconsistent or the marker is not detected over multiple precision
landing attempts, the UAV will land at the current location or at a nearby safe landing site
of choice, depending on the autopilot settings. The failsafe can also trigger from battery
depletion.

3.6 Filter Tuning
In state estimation, it is important to assess the consistency of the estimate to ensure op-
timal performance. Before using the estimator in a production setting, one should make
sure the estimate is as close to the true state as possible with an uncertainty reflecting the
quality of the estimate. The notion of filter consistency is based on the criteria in Section
5.4.2 of [32], which are recited for convenience:

1. The estimation errors have mean zero (i.e., the estimates are unbiased).

2. The estimation errors have covariance matrix as calculated by the filter.

3. The state errors should be acceptable as zero mean and have magnitude commensu-
rate with the state covariance as yielded by the filter.

4. The innovations should also have the same property.

5. The innovations should be acceptable as white.

To assess the quality of the estimate, several metrics exist. In this thesis, the Normalized
Estimation Error Squared (NEES) and Normalized Innovation Squared (NIS) metrics are
used to tune the IEKF and determine consistency.

For an estimation error ξk = Xk ⊖ X̂k at a time step k with estimator covariance P̂k, the
NEES, ϵX ,k, is defined as

ϵX ,k = ξ⊤k P̂−1
k ξk (3.35)

To fit into the Lie group framework, the error ξk must be defined according to the compo-
sition in Equation 2.4 for a right invariant error and analogously for the left invariant case.
Specifically, the capitalized logarithmic mapping of the invariant errors in Equation 2.43
is applied.
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The sum of squared normally distributed random variables follows a chi-square distribu-
tion. As a result, ϵX ,k is chi-square distributed if the consistency conditions are met [32].
One can then use the property E[ϵX ,k] = dim(ξk) which corresponds to the DOF of the
state vector. This can be used to formulate a hypothesis test,

• H0: X̂k with covariance P̂k is consistent.

Given a desired Type I error probability α, the filter is consistent with probability 1− α if
ϵX ,k ∈ [lX (α), uX (α)] for a given time k. The bounds for the Confidence Interval (CI) are
calculated from Percent Point Function (PPF)3 for the chi-square distribution, F−1. The
CI is then given by

lX (α) = F−1(
α

2
, dim(ξk)) (3.36a)

uX (α) = F−1(1− α

2
, dim(ξk)) (3.36b)

The innovation is defined as the measurement residual given in Equation 2.51b and 2.50c
for linear right and left invariant updates, respectively. The generalized case for a nonlinear
update of the full six DOF pose update is shown in equation 3.30. The innovation covari-
ance matrix Sk is defined according to Equation 2.50b. Similarly to the NEES defined in
Equation 3.35, the NIS is defined as

ϵY,k = ν⊤k S−1
k νk (3.37)

Using the same approach by formulating a hypothesis test, the bounds for the correspond-
ing NIS CI are then given by

lY(α) = F−1(
α

2
, dim(Y)) (3.38a)

uY(α) = F−1(1− α

2
, dim(Y)) (3.38b)

If the NIS or NEES lies outside the CI, the filter is believed to be inconsistent. There are
multiple approaches to assessing filter consistency based on NIS and NEES given values
for a set of k = 1...K. The most straightforward approach is to count the percentage
of values within their respective CI. For a well-tuned filter, 100(1 − α)% of the values
should be between the lower and upper bounds depending on the desired α. By adding
together all ϵX ,k or ϵY,k for the K time steps, the resulting random variable is chi-squared
distributed with dim(ξk)K or dim(Y)K DOF [32]. If scaled by the number of samples K,
the Average Normalized Innovation Squared (ANIS) and Average Normalized Estimation

3The PPF is the inverse of the Cumulative Distribution Function (CDF)
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Error Squared (ANEES) can be determined for a higher statistical significance,

ϵ̄X ,k =
1

K

K∑
i=1

ϵX ,k (3.39a)

ϵ̄Y,k =
1

K

K∑
i=1

ϵY,k (3.39b)

The normalized CIs are

ANEES


l̄X (α) =

1

K
F−1(

α

2
, dim(ξk)K)

ūX (α) =
1

K
F−1(1− α

2
, dim(ξk)K)

(3.40a)

ANIS


l̄Y(α) =

1

K
F−1(

α

2
, dim(Y)K)

ūY(α) =
1

K
F−1(1− α

2
, dim(Y)K)

(3.40b)

In the case of inconsistency, the filter is said to be underconfident in terms of ANIS or
ANEES if their respective values are below the CI bounds. If the values are above the
CI bounds, the filter is deemed overconfident. For example, if the ANEES is too high,
the elements of Q are likely too small given that R is set correctly. The covariance ma-
trix R is in general easier identify, because the measurement noise is often given by the
datasheet of the sensor used or by experimental results. If the filter is not tuned to consis-
tency it will provide suboptimal estimates. However, overconfidence is considered more
dangerous than underconfidence because too small elements in P̂k are more likely to cause
divergence for most nonlinear filters.

Both the NIS and NEES metrics are useful for tuning, and are the standard tools for check-
ing the third and fourth criteria of consistency. The NEES necessitates knowledge of the
true state, which can only be accurately obtained through simulations. For this reason, it
is not possible to fully guarantee filter consistency on real data. In real-life experiments,
motion capture systems or RTK GNSS can be used to obtain high accuracy measurements
serving as ground truth approximations. In this case, the ANEES can be used to check the
two first consistency criteria. However, estimates such as the IMU biases are in practice
not measurable. This thesis is most concerned with consistency of the position estimate,
followed by orientation. The yaw part of the orientation estimate is particularly important
for alignment upon touchdown.

The NIS limits the consistency check to the measurement space of the system, but does
not require any ground truth data unlike the NEES. Tuning by NIS alone can is the only
option in some cases, but it can be very effective due to the innovation covariance directly
contributing to the Kalman gain and thus filter efficiency. To check the last consistency
condition a sample autocorrelation metric can be applied, but this was not further pursued
in this thesis. To assess the filter consistency in terms of NEES, a Qualisys motion capture
system was used to serve as ground truth for the pose estimation. With submillimeter
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accuracy, the motion capture is deemed sufficiently accurate to for this project. The QTM
Qualisys Track Manager was used to record the six DOF pose of the UAV during the
experiments. Due to height limitations of the motion capture environment, experiments
of the full 10m landing sequence could not be conducted. The absolute positioning error
is most important in the final approach of the landing sequence, because of the limited
landing platform tolerances for horizontal position and yaw angle displacements.
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Chapter 4
Implementation

4.1 Companion Computer Software

The vision-based precision landing system proposed in this thesis is intended to be run
on the UAV’s onboard companion computer. Flying robots usually have a strict weight
and power budget and therefore use smaller, lighter companion computers with limited
computational power. The proposed solution is intended to be computationally feasible
for most Single-Board Computers (SBCs), enhancing its accessibility for lighter and more
resource-constrained platforms. The proposed system utilizes several free and open-source
software libraries and middleware components. Their intended function and necessity are
discussed in this section.

In this project, the Raspberry Pi 4B with 8GB Random Access Memory (RAM) was used
with Ubuntu 20.04 Server as operating system. The Raspberry Pi was used due to its flex-
ibility in terms of General-Purpose Input/Output (GPIO) pins, video encoding, hardware
accessories such as modems, low cost and computational power compared to its small size.
In addition to the functionality discussed in this chapter, the companion computer is re-
sponsible for other tasks such as video streaming for BVLOS flight, telemetry and control
links, winching and payload delivery, system monitoring and more. Ubuntu 20.04 Server
was chosen for its direct compatibility with the Robot Operating System (ROS) Noetic
[33] middleware and because it is less resource demanding than the full Desktop variant.

4.1.1 ROS
ROS is a middleware framework designed to facilitate communication among a distributed
network of nodes. Contrary to its name, ROS is not an independent operating system
but rather a collection of software frameworks widely employed in the field of robotics.
Within ROS, the nodes have the capability to communicate in an asynchronous manner
through message passing, utilizing a publish-subscribe model across various topics. Com-
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munication can also occur through service calls. The standardized communication allows
nodes to be written in different programming languages such as C++ or Python, using
Application Programming Interface (API) calls to the underlying framework. The com-
position of nodes with well-defined inputs and outputs facilitate modular designs of more
complex systems and scalability. Topics may have multiple subscribers and publishers,
which makes data sharing easier. When published, each message asynchronously triggers
a callback function in the subscriber node. The topics have standardized message defini-
tions, with the possibility of creating custom messages. Examples of message definitions
include image and pointcloud data, frame transforms and pose with corresponding covari-
ance. The message flow between publishers and subscribers is controller by the roscore,
which also handles parameter sharing and logging.

The utilization of ROS entails a certain computational overhead, along with dependencies
on the underlying operating system. Consequently, the proposed system is not strictly
reliant on ROS for its operation. The main reason for the inclusion of ROS was the devel-
oper tools during prototyping and tuning. In particular, the objective was to leverage an
existing framework capable of visualizing, recording, and replaying data streams. RViz
was utilized for this purpose, which enables subscription to topics and visualization of data
to the user. Spatial information such as poses and trajectories can be displayed in 3D in
addition to the support for camera feeds. The second and most important reason was the
data collection, commonly referred to as bagging. Bagging allows data from all topics to
be recorded and saved to a rosbag, which can be replayed later. This is useful when
tuning or modifying the system, because it allows for rapid testing on data collected from
previous real-life or simulated experiments, ensuring data consistency between trials.

4.1.2 MAVLink
MAVLink is a messaging protocol designed for communication between onboard compo-
nents of a Micro Air Vehicle (MAV) and as well as the off-board communication between
the MAV and a GCS. The MAVLink library is header-only and designed to be lightweight
and highly efficient in terms overhead per sent package, making it ideal for platforms with
limited computational budget and communication bandwidth. MAVLink supports a wide
variety of software and hardware solutions and is widely adopted in research and industry.
Similar to ROS, MAVLink works by sending data as predefined messages with standard-
ized definitions [2]. For the isolated purpose of autopilot communication, the advantage
of MAVLink compared to larger frameworks like ROS is the reduced computational over-
head, simplicity and wider support in terms of hardware platforms and programming lan-
guages. MAVLink has official support for bindings in 13 programming languages, with
numerous other independent contributions. It can be used directly on ARM7, ATMega and
STM32 based microcontrollers or full-fledged operating systems such as Linux, Windows,
MacOS, iOS or Android.

In this project, the MAVLink router [34] project was used to read data from the autopi-
lot’s IMU and publish the position of the landing target as a setpoint. It is mainly written
in C++ and is based on the MAVLink C library. MAVLink router is designed to trans-
mit MAVLink messages to multiple connections, including the GCS. Similar functionality
can be performed using mavros, a ROS wrapper for MAVLink messaging, but using
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MAVLink directly imposes less constraints on the hardware and software platforms re-
quired. The MAVLink router enables multiple interfaces, including Transmission Control
Protocol (TCP), UDP, Universal Serial Bus (USB) and Universal Asynchronous Receiver-
Transmitter (UART). In this project, the latter option was used to communicate with the
autopilot.

The most relevant message definitions are listed in Appendix B. The message definitions
exhibit non-minimal characteristics, implying that certain fields may be disregarded based
on the compatibility and requirements of the receiving system. The heartbeat message def-
inition shown in Appendix B.1 is required by the standard for all components, indicating
that it is present and responding. Recall that there are multiple IMUs present on the au-
topilot. Consequently, in addition to the acceleration and angular speed fields depicted in
Appendix B.2, the identification field was utilized to account for the presence of multiple
IMUs. In principle, data from all IMUs could be used to reduce noise in the measured
angular velocity and accelerometer data in addition to improve the respective bias esti-
mates. To account for autopilots constrained to a single IMU, the optional functionality
discussed here was left as a proposal for future work. Within this thesis, the relative pose
was employed for the purpose of aiding corrections, thereby utilizing solely the MAVLink
2 extension fields denoted by blue text in Appendix B.3.

4.1.3 AprilTag

The official AprilTag detector based on [4] was used in this project. AprilTag is a C library
with minimal dependencies designed for fast detections and is used in many applications
including calibration and real-time localization. In this thesis, the AprilTag library was
used to detect markers in the raw image stream. The third generation of AprilTag is sup-
ported in the official library, meaning flexible tags such as the custom48h12 family is
supported with a detector more than two times faster than the previous generation. For the
user’s convenience, a Python wrapper for running the C code is generated upon compila-
tion. The core functionality of the AprilTag library is accessed through the apriltag
object, on which the detect() function can be invoked:

• apriltag(family, Nthreads, max_hamming, decimate, blur,
refine_edges, debug): Constructor for the AprilTag detector object. The
family argument is the only required argument and set to "tagCustom48h12", cor-
responding to the marker shown in Figure 2.6a. Nthreads is the number of threads
used by the detector. The Raspberry Pi 4B used in this project has no simultaneous
multithreading hardware, but four Central Processing Unit (CPU) cores capable of
running one thread at a time. This value was accordingly set to 4. The value of the
max_hamming argument corresponds to the number of erroneous bits the detector
can correct for. Since larger values require exponentially more RAM and increased
false positive rates, this value was set to 1, but other configurations were also tested
as discussed in Section 5.2. The decimation argument can be used to downsam-
ple the image for faster detections at the cost of pose accuracy. Since pixel binning
was already applied, this effect was disabled. The other arguments were kept at the
recommended defaults.
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• detect(image): This function takes a grayscale image as the only argument and
returns the detections within the image as a tuple. The tuple consists of individual
detections represented as a keyed dictionary. The id is an integer codeword used
to identify tag instance within a family. This value is used to query the tag size
from the design specifications in order to determine scale. The center represents
pixel coordinates of the tag center. The lb-rb-rt-lt value is the four corners of
the tag in pixel coordinates. The pixel coordinates of the marker corners combined
with the prior information of marker scale and squareness are used to determine the
relative pose by solving the PnP problem with the IPPE method. The hamming
value represents the number of corrected bits. In this case, it would be at most one.
The margin measures difference in decision threshold and data bit intensity. A
higher margin indicates a higher quality decoding process. In practice, this could be
used for pre-filtering purposes, but the metric is only valid for very small tags.

4.1.4 OpenCV
OpenCV [3] is an open source library for computer vision, primarily written in C++. The
library is optimized and designed for real-time applications and widely adopted in re-
search, industry and among hobbyists. OpenCV is actively maintained and contributed
to, aiming to deliver a comprehensive set of efficient implementations for state-of-the-
art algorithms related to computer vision. Numerous methods for applications such as
photogrammetry, pose estimation, object detection, classification and tracking are read-
ily available from OpenCV. In total, over 2500 optimized algorithms are provided cross-
platform for C++, Python, Java and MATLAB interfaces. Instead of downloading prebuilt
packages, OpenCV was built from source with support for GStreamer [35]. This is due
to the onboard camera using an embedded Image Signal Processor (ISP) to compress and
transmit the video. By using GStreamer, OpenCV can utilize hardware video decoding to
reduce latency of the video feed and offload the companion computer’s CPU to reduce the
overall computational load. The OpenCV functions relevant to this thesis are:

• VideoCapture(index, api_reference): Constructor for a
VideoCapture object using for capturing image sequences. The index specifies
which video device to open. The api_reference is used to specify the specific
implementation used in the backend. In this case, it was set to CAP_GSTREAMER.

• set(property, value): Used to interface the capture device in order to spec-
ify capture settings such as resolution, FPS and exposure.

• cvtColor(image, conversion_code): Returns a representation of the in-
put image in an different color space. This function was used to convert the frames
of the RGB video stream to grayscale, which is expected by the AprilTag detector.

• solvePnP(object_points, image_points, camera_matrix,
distortion_coefficients, method): Returns the translation and rota-
tion vector representing the object pose based on 3D-2D point correspondences.
The object_points are the world coordinates of the four corners of the square
AprilTag relative to the tag center. The scale of this configuration is determined
based on tag codeword returned by the AprilTag detector. The image_points are
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the four corners’ pixel coordinates returned by the detector. Their sequence matters,
as it defines the yaw component of the marker orientation. The camera_matrix
and distortion_coefficients are obtained from the camera calibration dis-
cussed in Section 3.3.2. Finally, the method argument is set to
SOLVEPNP_IPPE_SQUAREwhich is suitable for fiducial markers in a square, pla-
nar configuration as discussed in Section 3.3.3.

The recursive marker configuration contributes to easier implementation compared to mul-
tiple adjacent markers, because the need for a rigid transformation from the detected
marker to the platform center was removed. The CvBridge ROS package was used
to convert between ROS and OpenCV images. This functionality was only implemented
for bagging purposes, as it allowed image sequences from experiments to be saved an re-
played using the rosbag workflow mentioned in Section 4.1.1. By using the square IPPE
method, the object-to-image homography and relative pose can be solved completely ana-
lytically. This makes the pose estimation 50 to 80 times faster than the default PnP solver
in OpenCV [23].

4.1.5 InEKF
The InEKF C++ project [36] is a modular and flexible library for Lie group operations and
invariant filter design. Using static types from Eigen [37] at its core, the library is designed
to be efficient and offer good performance. The library features Lie groups such as SO(2),
SO(3), SE(2) and SE(3), in addition to relevant group methods like logarithmic and ex-
ponential mappings, inversion, adjoint and multiplication. InEKF also allows additional
columns to be added to the special Euclidean group and accessory Euclidean states. This
means that the double direct spatial isometries of SE2(3) can be created with the addition
of a velocity state to SE(3). The full state can be created by adding augmented states
representing IMU biases. The library can also be used with dynamic Eigen types in order
to add or remove columns of a special Euclidean group on the fly, which can be useful in
applications such as Simultaneous Localization And Mapping (SLAM) where the size of
the state may vary. The InEKF library provides Python bindings to the core C++ imple-
mentation in terms of prebuilt packages. However, these are only available for the x86-64
architecture. To use the library on the ARM based architecture of the Raspberry Pi 4B
companion computer, it was built from source using pybind11 [38] to create the Python
bindings.

In this thesis, the classes defined by the constructors mentioned below, along with their
member functions from the InEKF library, are utilized:

• InertialProcess(): The constructor for a InertialProcess class uses
a ProcessModel base class with the augmented SE2(3) Lie group. The public
function f(u,dt,state) representing the nonlinear dynamics used to propagate
the state one time step is overridden with the IMU-driven dynamics of Equation
3.16. The constructor overrides the makePhi(u,dt,state) function for creat-
ing the discrete time transition matrix used to propagate the covariance. The u argu-
ment is the angular velocity and linear acceleration measurements from the IMU and
dt is the duration of the time step. The InertialProcess has setter functions
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to specify the accelerometer and gyroscope noise and the noise of their respective
bias dynamics which builds the Q matrix as discussed in Section 3.4.2. The stan-
dard deviations are obtained by multiplying the noise density from Table 4.1 with
the square root of the sampling rate.

• MeasureModel(d, R, error_type): The constructor for a
MeasureModel class. The d argument represents the linearized measurement
model vector relating the measurement to the state matrix as discussed in Section
2.2.3. For a full six DOF pose update, the measurement matrix H is set manually as
discussed in Section 3.3.3. The R argument represents the measurement covariance
matrix and the error_type denotes whether it is a right or left invariant measure-
ment. The innovation and its inverted covariance matrix can be calculated by the
calcSInverse(state) and calcV(y, state).

• InEKF(process_model, x0, error_type): The constructor for a IEKF
class. The process_model argument is the InertialProcess type above.
The x0 argument is the initial state of the filter, a LieGroup type which also
holds uncertainty. The initial state is obtained from the first valid landing target
pose measurement and the initial covariance is set conservatively high relative to
the covariance matrices for process and measurement noise. The error_type
can be either left or right invariant. The right invariant formulation was used in
this thesis. The addMeasureModel(name, measurement_model) public
function can be used to add the measurement models introduced above. The name is
a string used to identify the correct measurement model object when updating. The
public interface of its realization is used to perform the predict(u, dt) and
update(name, measurement). The current estimated state and covariance
can be retrieved by the state attribute.

For efficiency, the measurement and process model Jacobians are both calculated analyti-
cally for the InertialProcesswith MeasureModel corresponding to pose updates.
The functions provided for accessing the current estimate and computing innovations with
their corresponding inverse covariances can be used to assess filter consistency during op-
eration or compute NIS and NEES for the purpose of filter tuning as discussed in Section
3.6. Naturally, only NIS can be determined during production flights because no ground
truth is available.

In the case of inconsistency in-flight, filter outputs are not published and the UAV behavior
is determined by the flow diagram shown in Figure 3.13. The filter inconsistency threshold
depends on the nature of the operation and acceptable risk levels. The Type I probability
α can in this context serve as configurable parameter in addition to the time duration of
which the filter must remain inconsistent before contingency measures are taken.
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4.2 Auxiliary Components

4.2.1 Camera Calibration
Besides the software and middleware components employed by the companion computer
during its operation, the integration of supplementary hardware and software components
is necessary either prior to or during the flight. The calibration procedure is included in this
category, as the resulting intrinsics are required when computing the pose, but the routine
itself only needs to be performed once and can be conducted on a more powerful desktop
computer. The calibration procedure was conducted with a 7 × 10 grid of AprilTags of
size 800mm× 600mm× 6mm obtained from Calib.io [39]. The targets are made from
aluminum and low density polyethylene in order to obtain a rigid structure with a flat
surface and low thermal expansion. The individual markers are printed using ultra violet
light, which gives a very precise end result and a matte finish which limits calibration
noise through reflection. A white border is present around calibration target to provide
a contrast to the grid elements. This increases the probability of detection and makes it
easier for the user to hold the target during calibration without occluding the elements. The
manufacturing tolerances aims to be as low as possible, because they in general need to be
an order of magnitude lower than the desired calibration accuracy as discussed in Section
2.3.1. The targets from Calib.io have feature point tolerances of 0.1mm. The pattern of
the calibration target can be seen in Figure 4.1.

Figure 4.1: Target used for camera calibration.

The benefit of using AprilTags instead of the conventional checkerboard target is to detect
partially visible components of the calibration target. To get the best calibration results
possible, it is important to ensure that the calibration target fills the entire camera FOV
over the union of image frames used for calibration. When using a checkerboard target,
the individual squares cannot be accurately detected when partially visible. In practice,
this means that there is some padding around the image border in which the calibration
routine has little to no information. This impairs the accuracy of the lens distortion pa-
rameter estimation. The use of AprilTags during calibration removes ambiguity related to
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calibration target orientation. When using AprilTag feature points, the data collection is
simplified and the expected result improves.

The free and open-source calibration toolbox Kalibr [40] was used to determine the intrin-
sic matrix in addition to the IMU-to-camera transform and time shift. Kalibr supports cal-
ibration with the pinhole camera model, using radial and tangential distortion as discussed
in Section 3.3.2. The second order models were used for both the radial and tangential
distortion models.

4.2.2 Autopilot
In this thesis, the PX4 flight control software was used on a CubePilot Cube Orange au-
topilot. PX4 is a free and open source flight control software, which is extensively used in
research, consumer drones and industry. The use cases are numerous, ranging from UAVs
to submersibles and rovers. PX4 is designed to be modular and flexible, allowing user
to customize it to their needs. Although PX4 has been used for countless experimental
platforms, the most common airframes include multicopters, fixed wings and VTOLs. In
addition to the flight control software, PX4 provides drivers and middleware for an exten-
sive set of sensors and hardware. PX4 is actively maintained and supported by contributors
from industry, manufacturers, researchers and hobbyists. The communication between the
autopilot and the precision landing system is limited to reading IMU data and publishing
precision landing setpoints. The precision landing module in this thesis is written accord-
ing to the Landing Target MAVLink Protocol, which in principle is agnostic of autopilot
choice. The functionality is tested and confirmed to be working as expected with PX4. In
principle, it should be compatible with other MAVLink compliant systems such as ArduPi-
lot, but this is not tested. The integrated IMU of the Cube Orange was used as input to the
invariant filter, although an external IMU could also be used. The CubePilot Cube Orange
features three IMUs from TDK InvenSense. Their key properties are listed in Table 4.1
and the full accelerometer and gyroscope characteristics of the datasheets are shown in
Appendix C.

IMU Gyroscope noise Accelerometer noise Temperature controlled Mounting
ICM206491 17.5mdps√

Hz
285 µg√

Hz
Yes Fixed

ICM206022 4mdps√
Hz

100 µg√
Hz

Yes Isolated

ICM209483 5.1mdps√
Hz

230 µg√
Hz

Yes Isolated

Table 4.1: Overview of IMU models, their noise spectral density and mounting for the CubePilot
Cube Orange.

The isolated mounting means the respective IMU is mechanically isolated from the Cube
Orange through a material which dampens high frequency vibrations. In practice this

1Full ICM20649 datasheet: https://invensense.tdk.com/wp-content/uploads/2021/
07/DS-000192-ICM-20649-v1.1.pdf

2Full ICM20602 datasheet: https://invensense.tdk.com/wp-content/uploads/2016/
10/DS-000176-ICM-20602-v1.0.pdf

3Full ICM20948 datasheet: https://invensense.tdk.com/wp-content/uploads/2021/
10/DS-000189-ICM-20948-v1.5.pdf
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works as a low-pass filter, allowing the slower dynamics of the UAV to pass and high fre-
quency vibrations from the motors to be dampened. The ICM20602 was chosen for this
thesis due to it having the lowest noise spectral density for accelerometer and gyroscope.
The spectral density of the noise is large compared to high-end IMUs, but acceptable for
this application given a sufficiently high update rate of the filter to limit dead reckoning
time. In general, the bias of a Microelectromechanical Systems (MEMS) gyroscope is
influenced by fluctuations in temperature. By actively controlling the temperature, it is
reasonable to assume that the IMU is operating within its calibrated and nominal temper-
ature range, thereby mitigating the bias drift to some degree. As a consequence of bias
instability, the bias gradually deviates to a notable extent during operation, even in the
presence of a constant temperature. For this reason, it is necessary to estimate the bias in
order to compensate for its drift. In the intended use case where the UAV is set to land after
a round-trip long range mission, the bias may have drifted significantly. This is motivates
the inclusion of bias estimation in the proposed system.

The IMU data was streamed from the autopilot to the companion computer using MAVLink
messages over UART. The message rate was increased from the standard 50Hz to 100Hz,
allowing the IEKF to more accurately track the vehicle dynamics.

4.2.3 Landing Target
The landing target fiducial marker was manufactured similarly to calibration target dis-
cussed in Section 4.2.1, but is expected to undergo daily usage on a larger scale. Consider-
ing their specific form factor, these targets typically incur high costs and require significant
time for international shipping. This serves as a driving force for exploring alternative op-
tions that are more affordable and can be obtained with shorter lead times. The landing
targets used in this thesis were custom built from CEWE [41], which are produced in
Norway. The landing target was manufactured with a matt finish to limit noise in terms
of reflections. An aluminum plate of dimensions 900mm × 900mm × 3mm was used
for durability, weather and scratch resistance. Unlike the calibration target, the landing
targets are intentionally designed without a white border. This deliberate decision aims
to maximize the available space on the landing platform. In the intended usage scenario,
the landing target is affixed to a white background surface, ensuring sufficient contrast for
reliable detections. Consequently, the inclusion of additional padding is unnecessary. The
landing target is manufactured according to Figure 2.6b and is shown in Figure 4.2. The
thickness of the plate is 3mm, only half the thickness of the calibration target. As a re-
sult, the rigidity of the landing target is significantly reduced, leading to increased bending.
While this may adversely affect accuracy in situations involving handheld use or mounting
with a single point of contact, it is not considered problematic in the current application.
This is because the landing target rests horizontally on a flat surface, where the reduced
rigidity is not expected to compromise its functionality.

The main drawback of the landing target compared to the calibration target is the manu-
facturing feature point tolerance. Calib.io guarantees 0.1mm accuracy, whereas CEWE
claims 1mm accuracy. These claims have not been investigated in this thesis as the accu-
racy was deemed sufficiently high for the intended purpose. This is because the same level
of accuracy required for calibration often is not required during operation. According to
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Figure 4.2: Image of the landing target capture from the UAV’s onboard camera in-flight as seen
from 2m AGL.

[42], the pixel Root Mean Square Error (RMSE) of AprilTag localization within the range
where the recall was more than 95% remains almost constant as the distance to the tag
increases. This result is only indicative for this thesis as the camera resolution used in the
original paper was notably higher, but it can be used in a qualitative argument for why the
higher tolerances are acceptable. From Equation 2.60, it can be seen that a small displace-
ment in pixel coordinates has a linear relation to the displacement of world coordinates.
The approximation is less accurate towards the edges of the image due to distortion, but it
is still suggestive for how the estimation error relates to the distance between the camera
and the marker. Efforts in terms of experimental data to investigate this relationship were
not in scope for this thesis, but the single marker results of [43] coincide with the obser-
vation. In the operating range, the absolute position error therefore approximately follows
the altitude above the landing target linearly. In practice, one is most concerned with the
positioning error close to the landing target, which should be well within the mechanical
tolerances of the landing station alignment mechanism in either scenario.
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Chapter 5
Results and discussion

To test the viability of the proposed system, a combination of unit and integration tests
were conducted in addition to a final complete system test. First, the quality of the cam-
era calibration was evaluated as it affects all other components related to pose estimation.
The reprojection errors and coverage are the most important metrics for this evaluation.
Thereafter, the marker detection was tested in terms of recall, detection time and pose cal-
culation time as a function of distance to the marker. Then, the CPU load and RAM of the
marker detection and pose calculation was measured to provide insight inon the computa-
tional load of the system. Lastly, the filter consistency and full system performance was
evaluated. The filter consistency is quantified in terms of NIS and NEES. The full system
performance is based on the position and yaw errors over multiple flights. Specifically,
the RMSE of the filter estimates and the ground truth mean and standard deviations over
all the flights are used to determine the reliability and reproducibility of the system. The
same metrics are also discussed in the special case where the UAV has landed, as that is
were the accuracy and precision matters most.

5.1 Camera Calibration

The camera calibration was performed using 32 images of the calibration target, applying
the method described in Section 3.3.2 and the tools discussed in Section 4.2.1. In each
image, the 7 × 10 AprilTag grid pattern was used with four corners serving as a feature
point for each AprilTag. Although every feature point was not visible in every frame, the
overall feature count is considered high. After minimizing the functional in Equation 2.73
expanded with the distortion parameters of Equation 3.3 and 3.4, the final reprojection
errors for all visible feature points in the images was used as a reference for calibration
quality. The reprojection errors are decomposed into their vertical and horizontal compo-
nent, respectively the polar and azimuthal angle. The distribution of feature points and the
corresponding reprojection errors is shown in Figure 5.1.

66
































































ioE'IgioIa co
un

t

(a) Reprojection error and feature point distribution for polar angle.
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(b) Reprojection error and feature point distribution for azimuthal angle.

Figure 5.1: Reprojection error for the calibrated camera model and distribution of detected feature
points as a function of angular coordinates.

The desired upper bound for reprojection error depends on camera type and resolution.
Since the unit of reprojection error is pixels, the reprojection error will in general increase
with camera resolution. For a 1920 px × 1080 px resolution (2.07Mpx) camera using
pixel binning, a subpixel reprojection error in each dimension is considered good for most
computer vision applications. Figure 5.1a and 5.1b show that the reprojection error for the
vast majority of feature points are located below this upper bound. Specifically, 99.8% of
the decomposed reprojection errors are subpixel in magnitude.
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By looking at the union of calibration target feature point locations from all images, the
image coverage of the calibration process can be evaluated. If the location of the calibra-
tion targets is overrepresented in the image center, the estimated intrinsics do not reflect
the true projection of the camera. In particular, the distortion parameters are usually inac-
curate due to their effect being most prevalent towards the edges of the image. Consider
the case where the calibration is performed exclusively on targets close to the image cen-
ter. In this case, little to no distortion effects are perceived. The calibration then overfits
due to the low amount of noise, which is reflected in a low reprojection error.
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(a) Image coverage and reprojection error scatter plot by image index.

(b) Location of removed outliers in the image using pixel coordinates.

Figure 5.2: Visualization of image coverage during the calibration process, the reprojection errors
scatter plot for each image frame and the location of outliers in the image.
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For this reason, reprojection error alone is not a sufficient metric for evaluating calibra-
tion quality. As discussed in Section 2.3.1, parallel target planes might cause degenerate
configurations and thus not contribute to the overall intrinsic estimation. The target should
therefore be rotated over the calibration sequence to provide more data points. Figure 5.2a
shows that the camera’s FOV was mostly covered by the 32 images used. Individual im-
ages reveal sufficient rotation of the target during the calibration sequence. In the bottom
right part of the image, the coverage does not fully extend to the corner. Since the other
three corners are covered, it likely does not affect the radial distortion due to its sym-
metry. However, the gap in coverage might degrade the estimate of tangential distortion.
Due to the tangential distortion in general being less prevalent than the radial one and the
comparatively small area of the coverage gap, this was not considered to be an issue.

In Figure 5.2b, the distribution of outliers from the calibration images are shown in pixel
coordinates. During the calibration, outliers of higher-than-normal reprojection errors are
excluded because they may delude the estimated intrinsics. Outliers are expected and
may happen for several reasons. During the calibration sequence, the camera was rigidly
mounted and the calibration target was moved within the camera’s FOV. Since the cali-
bration target is not perfectly rigid and point features are subject to manufacturing imper-
fections, some noise is expected. Secondly, image noise and errors in the feature detector
contribute to noise and increase in reprojection error. If there are clear patterns in the lo-
cation of outlier, this might indicate an inadequate mathematical model of the camera. For
example, if there is a clear radially symmetric bias in scatter towards the edges of the im-
age, this could imply that a radial distortion model of second order is insufficient. In this
case, a higher order model or a different model altogether might be more suitable. The
distribution shown in Figure 5.2b is mostly uniform over the image, with a slight skew
towards the lower left corner. This is likely due bias in the image sequence, in which the
lower left corner of the image frame was slightly overrepresented as shown in Figure 5.2a.

5.1.1 Final Intrinsic Parameters and Reprojection Errors
The final intrinsic parameters, reprojection error mean and standard deviations are shown
in Table 5.1. Most notably, the reprojection errors are zero mean with an acceptably low
standard deviation. The camera model is subject to some distortion, but it is not excessive.
Of the two distortion models, the radial one is most prevalent as expected. Overall, the
standard deviations for the estimated parameters is relatively low. This is likely due to
the large feature count in the calibration images. The standard deviation of the projection
parameters is slightly higher than expected, but reflects that the working distance during
the calibration was varying, as is the case for the intended application. To reduce the
standard deviation in the projection parameters, the calibration target must remain in focus
over the entire working distance. To achieve this, it would likely be required to use a
camera with an increased depth of field. This would in turn require a smaller aperture,
which results in reduced low-light performance. Alternatively, one could use a camera
with a longer focal length but that would in turn reduce the FOV. The calibration results
are deemed satisfactory for the intended use case in this thesis.
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Parameter Mean value Standard deviation
fx 557.71648131 0.91693309
fy 557.32860671 0.87194409
cx 409.18438123 0.93325968
cy 255.37187531 0.74082091
k1 0.00144607 0.00195112
k2 0.01087497 0.00222046
p1 0.00104504 0.00040071
p2 -0.00287254 0.00046702

Horizontal reprojection error 0.000000 0.237480
Vertical reprojection error 0.000001 0.212465

Table 5.1: Overview of final projection and distortion parameters in addition to reprojection error
after camera calibration.

5.2 Marker Detection and Pose Measurement

To further assess the system performance, the marker detection and pose calculations were
timed. The recursive landing target shown in Figure 2.6b was used to conduct the tests.
During the data collection process, the UAV started in a landed state centered on the land-
ing target, performed a takeoff and climbed to 11m AGL. Over the course of the experi-
ments, at least one of the markers was visible in every frame. Despite the possibility for
multiple markers being visible, only the marker with the highest confidence determined
by the detector was used for pose calculations. The computations are performed on the
Raspberry Pi 4B companion computer to better represent the expected computational load
during operation. The CPU load factors and RAM usage are given relative to the idle
performance of the system.

The computation times are important, because they determine the maximum frequency
for IEKF updates. This affects filter drift between updates and therefore consistency. In
conjunction with assessing the average system load, it was desirable to analyze how the
computation times would vary over the expected trajectory. This is because the AprilTag 3
detector significantly increases detection speed for smaller tags compared to the previous
generation. The tag size was expected to vary during the experiment. In particular, the tags
are perceived as small during the initial stages of the landing sequence when the UAV is
furthest away from the landing target. The worst case behavior was used when determining
filter update rates.

5.2.1 Single Error Bit Tolerated
Initially, the AprilTag detection method was performed with the hamming argument set
to 1, meaning the detector was able to tolerate one erroneous bit in the marker during
detection. A vertical velocity of 1m s−1 was used, with a camera FPS of 15. In total,
172 images were used in the first trial. Due to the flight altitude, motion capture could
not be used as a ground truth. Therefore, the pose calculations were used to determine the
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Figure 5.3: Time to detect a landing target where one erroneous bit is tolerated as a function of
distance to the marker.

distance between marker and camera. The accuracy of the pose measurements is further
discussed in Section 5.3. Nonetheless, they are useful to show trends in the captured data.
Detection time and time required to compute relative pose using the IPPE method were
determined as a function of distance to the landing target. The results are shown in Figure
5.3 and 5.4.

The most apparent result is how much faster the pose calculation is relative to the marker
detection. This is expected, due to the analytical solution of the IPPE algorithm discussed
in Section 2.4. The average time for calculating the relative pose was only 0.7ms with a
standard deviation of 0.9ms. The expected computation time is higher when the marker
is close to the camera, but it is not significant for the overall computational load. Being
almost two orders of magnitude slower on average, the tag detection imposes a much larger
contribution for the computational load.

In Figure 5.3, the average detection time was 52.8ms with a standard deviation of 5.9ms.
It is also clear that the computational time for marker detection increases noticeably as
the distance increases. Some fluctuations are seen when the proximity to the target is low,
due to the detector switching from the smaller markers to the next one. From 2.15m and
beyond, only the outermost marker is used for detection. This matches the theoretical
results from Table 3.1 for when the second tag can be reliably detected. For the sake
of intuition, the landing target image shown in Figure 4.2 is the perceived marker size
to the onboard camera at 2m AGL. From 10m AGL the outermost tag appears similar
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Figure 5.4: Time to compute relative pose as a function of distance to the marker.

in size to the second largest marker at 2m AGL. In the range of 3m and beyond, the
expected computation time stabilized at 59.1ms on average. The detection rate matches
the the desired filter update frequency, which is set to match the 15 FPS of the camera.
Considering the average performance of 52.8ms and a worst case behavior of 65.5ms,
this is achievable. For reference, a desktop with a Intel i7-7500U CPU running the same
detector at four cores averaged a 35.2ms detection time on the same data. Increasing the
decimate and blur arguments of the detector would also speed up the detector, but this
results in reduced accuracy of feature point localization and thus a worse pose estimate. In
total, the marker detection recall was at 98% during the first experiment.

The marker detection was found to occasionally fail when the camera was located close
to the landing target. There are mainly two reasons for this. First, the camera has a fixed
focus which is not optimized for close range sharpness. Second, the vibrations and motion
of the UAV cause artifacts in terms of motion blur when close to the target. The rotational
blur seems to be the main contributor to reduced recall. An example frame is shown in
Figure 5.5a. In this case, the lines between the bits have a lower contrast which affects the
segmentation step of the detection algorithm. In particular, quadrilaterals are difficult to
fit to the tag contours due to the noisy output of the segmentation step as shown in Figure
5.5b.

This effect could likely be reduced by decreasing the shutter time, but that would in turn
reduce the low-light performance. The experiments were conducted in a dimly lit environ-
ment which reflect the lighting conditions in a production setting. In this case, insufficient

72



lighting was not considered a problem and it is likely that a decrease of shutter time could
be applied to increase the recall. This was not pursued as the current recall was accept-
able. One could also adjust the detection confidence threshold for marker candidates, but
that would increase the risk of false positives in addition to returning markers with poorly
estimated feature point coordinates.

(a) Example of motion blur when the camera is
close to the landing target.

(b) Grouping of the connected components in the
image.

Figure 5.5: Example of an input image where the AprilTag is not detected. When the camera is
subject to a large angular speed during shutter, a the relative marker displacement causes a blurring
effect. The rightmost part of the smallest tag is subject to an artifact similar to aliasing. The detector
is then unable to determine the location of the bit from the segmented pixel map and fit a quadrilateral
shape to the feature points without significant error. In this case, the confidence of the detector was
adjusted such that this marker is ignored.

During the experiment, the CPU load factor and system RAM usage was logged. The load
factor represents the percentage of one CPU core used on average during the experiment.
Since the companion computer has four cores, the load factor can take a maximum value
of 400%. During the first experiment, the average load factor was at 314% and the RAM
usage was 249MB over the idle value. These values represent the system load in its
entirety, including middleware.

5.2.2 No Error Bits Tolerated
The recall and computation times in the first experiment were overall considered satisfac-
tory, but a second experiment was conducted to assess how the error bit tolerances would
affect overall performance using a larger set of pictures. During the second experiment, the
hamming argument of the detector was set to 0, making it unable to correct for erroneous
bits. In total, 687 images were used. The results are shown in Figure 5.6.

In the second experiment, the average detection time was 56.2ms with a standard deviation
of 8.5ms. The mean and standard deviation do not differ greatly from the first experiment,
however the load average and RAM usage is decreased. On average, the load average was
reduced from 317% to 274% with the RAM usage decreasing from 249MB to 152MB.
The lower computational load allows more auxiliary processes to run on the companion
computer or more freedom in terms of required processing power. Unfortunately, the worst
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Figure 5.6: Landing target detection time where no erroneous bits are tolerated.

case detection time is increased to 71.0ms. This means that the filter, temporarily might
update at 14Hz. This is still close to the target update rate, but might affect performance to
some degree. The recall was also slightly lower, at 96% over the entire trajectory. The pose
calculation time plot is not shown, as it remains consistent between the two experiments.
The results are summarized in Table 5.2. Attempts were made to investigate the effect
of allowing the detector to accept two erroneous bits, but the companion computer with
8GB of RAM suffered from insufficient memory as a result of the exponential memory
complexity of the detection algorithm.

Similarly to the majority of detection problems, a fundamental trade-off arises between
precision and recall. Increasing the acceptable number of erroneous bits corresponds to
an elevation in recall, albeit potentially compromising the detector’s precision. In the
envisioned utilization scenario, it is improbable for elements within the operational en-
vironment to exhibit resemblances to the landing targets, except for the markers on the
landing platform. Additionally, experimental results were obtained without any false pos-
itives. Consequently, configuring the detector to accommodate a single erroneous bit was
deemed admissible. The decision was also motivated by the hamming distance of 12 for
the custom48h12 family used in this experiment. This means that all members of the fam-
ily differ from each other by at least 12 bits. As multiple adjacent landing platforms are
envisioned in future applications, the 42, 211 unique tag codewords in the custom48h12
family allow for a scalable solution where irrelevant tags can safely be ignored.
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Metric Mean Standard deviation Maximum
Pose calculation time [ms] 0.7 0.9 3.8

Single
error
bit

tolerated

Detection time [ms] 52.8 5.9 65.6
Recall [%] 98

Load average [%] 314
RAM usage [MB] 249

No
error
bits

tolerated

Detection time [ms] 56.2 8.5 71.0
Recall [%] 96

Load average [%] 274
RAM usage [MB] 152

Table 5.2: Overview of detection time, recall, load average and RAM usage for both AprilTag
detector configurations in addition to the pose calculation time using the IPPE method.

5.3 Filter Consistency

To validate the output of the IEKF in terms of consistency, the NIS and NEES metrics
were used as discussed in Section 3.6. The tuning process for NIS was performed on
data collected from a piloted decent from 10m AGL subject to horizontal movement. The
UAV idled for 2 s to allow the filter to initialize before the movement started. Using the
methodology from Section 3.6, the filter was tuned by manually adjusting the Qk and Rk

covariance matrices until consistency was achieved. The 3D flight path of the UAV during
the experiment is shown in Figure 5.7. The NEES was tuned in a similar manner, but the
flight trajectory could not represent the full landing sequence due to height limitations in
the motion capture room. For this reason, the trajectory was limited to 4m AGL. Still,
the results are useful for quantifying the filter performance close to touchdown where the
accuracy matters most. When the filter was tuned and the two metrics were considered
satisfactory, the performance was validated on a second dataset to prevent overfitting to
the data from the first experiment. In all datasets, the touchdown itself was cropped out
from the NIS and NEES data because of spikes in the accelerometer data affecting the
filter’s estimate. In the final decent stage just before touchdown, as described by Figure
3.13, the filter is not used for guidance, meaning this decision does not affect the overall
system performance.

5.3.1 NIS
In the inertial process model shown in Equation 3.25, we can see that the main contrib-
utors to process noise come from the accelerometer and gyroscope measurements which
are propagated into the position and orientation. For this reason, the IMU noise param-
eters were used as a starting point for the Qk matrix. The gyroscope and accelerometer
random walk including the bias random walk values were obtained from the datasheet
which can be found in Appendix C.2. The elements of the Rk corresponds to the mea-
surement noise which in this case arises from the pose calculation based on the marker
detection using the onboard camera. The measurement noise is in general greater fur-
ther away from the marker, as discussed in Section 4.2.3. Since the performance close to
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Figure 5.7: 3D visualization of the flight trajectory used for NIS tuning as estimated by the filter
after the final tuning was applied. The vehicle position is given in a right-handed coordinate system
centered on the landing target such that the z-axis points upwards when the target lies flat on the
ground.

the landing target is of most importance, an initial guess of the measurement noise was
obtained by comparing the motion capture data to the raw pose calculation values. The
process noise is as shown in Equation 3.24 and the diagonal elements of Qk correspond
to diag(

[
ω⊤

nt a⊤nt 0⊤ bω⊤
nt ba⊤

nt

]
). By assuming constant noise over the respective

predict and update intervals h, the initial continuous-time measurement and process noise
matrices were obtained as discussed in Section 4.3 of [44]:

Qk = Q(t)hpredict (5.1a)

Rk =
R(t)

hupdate
(5.1b)

The initial values were adjusted for a 100Hz prediction rate, with full pose updates ob-
tained at a 15Hz rate. If higher-grade IMUs were used, the update rate could likely be
reduced while maintaining consistency because the noise and drift would be less preva-
lent. To simplify the tuning process, the NIS values were decomposed into a position
update and orientation update component. The initial NIS and ANIS values in addition to
their respective CI are shown in Figure 5.8.

In Figure 5.8a, only 46.2% of the NIS values fall inside the 95% CI. 54.2% of the val-
ues are above the upper bound and the resulting 1.6% are below the lower bound. This
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(a) Orientation update component.
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(b) Position update component.

Figure 5.8: NIS values with the initial tuning for measurement and process noise covariance matri-
ces.
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clearly shows that the filter is overconfident in terms of orientation update NIS, meaning
the respective elements of the covariance matrix must be increased. For a higher statistical
significance, the ANIS can be compared to a CI scaled by the number of data points. The
ANIS of 8.57 is far above the upper bound of 3.36, supporting the hypothesis of inconsis-
tency due to overconfidence.

Similarly to the orientation update, the NIS for position updates shown in Figure 5.8b
exhibit symptoms of filter overconfidence. In this case, 67.4% fall inside the 95% CI.
32.1% of the values are above the upper bound while 0.5% are below. This is better than
the orientation update NIS, but still not passable as consistent. The ANIS of 9.01 is above
the upper bound, but relatively close to the orientation update ANIS. Although a larger
percentage fall inside the CI for the position update, the NIS has much higher spikes than
in the orientation update. By looking at the ANIS alone, this behavior might go unnoticed
which illustrates why both values should be considered when assessing filter consistency.

After the tuning process was completed1, the NIS values were computed for the validation
flight. The results are shown in Figure 5.9. In this experiment, 98.5% of the NIS values
related to the orientation update fall inside the 95% CI. The resulting 1.5% are below
the lower bound. Similarly, the ANIS of 3.04 lies inside the scaled CI of [l̄Y(0.05) =
2.67, ūY(0.05) = 3.52].

The NIS values related to the position update shown in 5.9b display similar improvements
as the orientation update NIS. In this case, 87.2% of the values lie inside the 95% CI. 5.6%
of the values are located below the lower bound and 7.1% are located above. Overall, the
NIS of the position update is more noisy with larger spikes than the orientation update.
This is likely due to the uncertainty in the position part of the relative pose measurement
fluctuating more than the orientation part as detector switches from one marker to another
or as the perceived size of the marker changes. The ANIS of 3.15 fall inside the scaled CI,
albeit somewhat closer to the upper bound than the orientation update NIS. This property
is also reflected in the number of samples above the upper NIS CI bound being higher than
the samples below the lower bound.

In general, the filter uncertainty tends to grow with increased distance to the landing target.
This matches the hypothesis of approximate linear relationship between the pose calcula-
tion error and distance to the marker discussed in Section 4.2.3. The same behavior was
observed for the orientation estimate. Particularly, the quality of altitude, roll and pitch
estimates are adversely affected by an increase in distance between the camera and the
marker.

From a geometric point of view, this makes sense as the four feature points of the tracked
marker approach a single point in the image with increasing distance to the target. As
the distance between the camera and marker increases, the area in the image occupied by
the marker decreases. In this case, horizontal movement is easier to detect as it causes a
translation of the marker in the image, whereas an altitude change when centered over the
marker only result in a minor scaling of the marker in the image. Similarly, it is easier
to detect a change in marker orientation relative to the camera if the marker is rotated

1Including NEES tuning, which is covered in Section 5.3.2.
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(a) Orientation update component.
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Figure 5.9: NIS values with the final tuning for measurement and process noise covariance matrices.
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around the optical axis. This corresponds to a yaw movement of the UAV when viewed
directly from above, making the perceived feature points rotate in the image plane. A roll
or pitch movement is in general more difficult to detect, because the perceived change in
feature points in the image is similar to that of horizontal translation. When further away,
the dilution of precision causes a less accurate pose calculation which affects the filter
performance. If one were to adjust the Rk matrix based on the estimated distance to the
landing target, one could limit the filter inconsistency caused by this effect. This was not
done in this thesis, as the final values were considered tolerable in order for the filter to
pass as consistent in terms of NIS.

5.3.2 NEES
The NIS filter consistency metric from Section 5.3.1 was divided into two components,
because individual measurement models were used for orientation and position updates.
The NEES values discussed in this section differ, as they are calculated for the entire pose
estimated by the filter. Note that the NEES values are limited to a subset of the full state,
which is motivated by two main factors: First, no ground truth data is available for the
gyroscope and accelerometer biases. Secondly, neither the velocity nor the bias estimates
are used when sending setpoints to the autopilot. Only the yaw angle and position estimate
is used, but the NEES was computed over the full pose to be congruous with the NIS
metric.

This means that six DOF are used for the 95% CI instead of three DOF for the respective
NIS metrics. The NEES upper and lower bounds are thus [lX (0.05) = 1.24, oX (0.05) =
14.45] according to Equation 3.36. In this implementation, the NEES also differs from
the NIS by considering the cross terms between the position and orientation uncertainty
of the state covariance matrix, which in general is nonzero because the measurements of
both updates originate from the same sensor.

The motion capture system used for recording the ground truth was able to publish pose
updates at 350Hz, but the NEES computation rate was matched to every filter update at
15Hz. The downside of doing this is that one does not fully encapsulate the estimation
error built up during the prediction steps at 100Hz between updates. However, the updates
are performed at a relatively high rate to begin with so the accumulated error is in that sense
limited. The accumulated error of dead reckoning is also encapsulated in the innovations
used when computing the NIS. The reason for tying the NEES computation to the filter
updates is that it better represents the quality of the landing target estimate sent to the
autopilot. Given sufficient filter consistency, these are sent every filter update. This is
when the filter estimate is at its best, which in some sense is a dataset bias that is important
to consider when looking at the NEES values.

The NEES was tuned in a similar manner as the NIS, using one dataset for tuning and
a different one for validation. The final NEES values on the validation data is shown in
Figure 5.10. For the same reason as before, the final touchdown when landing was not
included in the data. In general, the NEES values are noisier than the NIS values. This is
likely due to the fact that both orientation and position errors contribute to a single metric
as previously discussed. Of the NEES values, 94.7% lie inside the 95% CI. The resulting
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Figure 5.10: NEES values with the final tuning for measurement and process noise covariance
matrices.

5.3% are above the upper bound. The ANEES is 6.33, which is considerably closer to the
scaled upper bound of 6.51 than the lower bound at 5.51. Considering the values were
sampled after the update, it may be desirable to further increase the measurement and
process noise covariance to make the filter less confident. Either way, the filter is still
passable as consistent. The main results in terms of filter consistency are summarized in
Table 5.3.

Metric Value Lower bound Upper bound
NIS inside CI, position component 87.2% 0.22 9.35

NIS inside CI, orientation component 98.5% 0.22 9.35
NEES inside CI, full pose 94.7% 1.24 14.45
ANIS, position component 3.15 2.67 3.35

ANIS, orientation component 3.04 2.67 3.35
ANEES, full pose 6.33 5.51 6.51

Table 5.3: Overview of key metrics for filter consistency, calculated with the final tuning over the
validation dataset.

In both the NEES and NIS values for the tuned filter, it is clear that the filter converges
quickly. The initial values are low due to the first covariance matrix being set high to
prevent overconfidence. The filter converges in less than a second, which is due to the
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high rate of updates and the log-linear property of the IEKF. This contributes to preserve
energy in terms of hover time during landing. In this thesis, the collected data was repre-
sentative of operational flight conditions in terms of flight duration, trajectory and when
the estimation error was sampled. To obtain higher statistical significance for the consis-
tency hypothesis, longer flights could have been conducted when collecting experimental
data. Filter estimates for all prediction steps could have been logged and used for a more
comprehensive NEES study. This should be considered if the filter is to be used for flight
control directly, but was not further pursued in this thesis as the filter is limited to navi-
gation aiding. In the case of the former, the data should also be collected to represent all
flight conditions and not only those relevant to the landing sequence. Further tuning was
not conducted in this thesis, because the desired filter performance and consistency was
achieved given the intended use case. The final Qk and Rk matrices used are shown in
Equations 5.2.

Qk =


1.22 ∗ 10−7I 0 0 0 0

0 9.0 ∗ 10−8I 0 0 0
0 0 03×3 0 0
0 0 0 1.0 ∗ 10−6I 0
0 0 0 0 1.0 ∗ 10−6I


(5.2a)

Rorientation
k =

6.6 ∗ 10−1 0 0
0 6.6 ∗ 10−1 0
0 0 6.6 ∗ 10−1

 (5.2b)

Rposition
k =

1.5 ∗ 10−1 0 0
0 1.5 ∗ 10−1 0
0 0 6.0 ∗ 10−1

 (5.2c)

5.4 System Performance
The NIS and NEES metrics are useful for determining the filter consistency as defined
in Section 3.6. The two metrics are essentially Mahalanobis distances of innovations and
estimation errors respectively, which is useful for determining if the residuals are com-
mensurable with their respective covariance matrices. In principle, it is possible for a filter
with low estimation error to be inconsistent and vice versa. To analyze the full system
performance, a series of test flights were conducted in a final experiment. The test flights
were conducted using motion capture to record the UAV’s movement, which served as a
ground truth for performance assessment.

In this experiment, the filter estimates were used to aid the UAV during the landing se-
quence from a fixed initial position. This made it possible to analyze the repeatability and
reliability of the system. During the experiments, the drone was set to idle at 4m AGL for
1 s while centered horizontally above the landing target in order to let the filter converge.
After the filter initialized, the landing target corrections were sent to the main autopilot.
As a result, the UAV recentered itself above the marker according to the self-estimated
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Figure 5.11: 3D visualization of single flight trajectory from an initial starting position to the landed
state, as recorded by the motion capture system.

value before continuing the landing sequence. A 3D visualization of an example flight is
shown in Figure 5.11. In total, 10 flights were conducted.

From the experimental results, the positioning and alignment errors can be used to analyze
the filter performance and repeatability which in turn determines the overall reliability of
the system. The position and yaw mean values and their respective standard deviations for
all flights are shown as a function of time in Figure 5.12. It is clear that the pose estimation
error grows with increased altitude above the landing target. This property is expected, as
the filter updates are based on the relative pose calculation of the detected fiducial marker.
As discussed, within the operating range the error of the pose calculation is expected to
grow approximately linearly with the distance to the marker. Additionally, it is expected
that the vertical accuracy is lower than the horizontal accuracy.

Spatial parameter RMSE
Vertical position [cm] 23.3

Horizontal position [cm] 12.3
Yaw angle [◦] 2.5

Table 5.4: The RMSE values for vertical position, horizontal position and yaw angle over all 10
sample flights as estimated by the IEKF.

The RMSE of the IEKF’s yaw angle estimate, vertical and horizontal position are listed in
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Figure 5.12: Mean value and standard deviation for position and yaw ground truths as a function of
time over all 10 sample flights.

Table 5.4. The RMSE values confirm that the horizontal accuracy is lower than the vertical.
The errors are in general consistent with the expected fiducial marker pose estimation
accuracy present in [43] when considering the marker size and camera intrinsics used in
this thesis.

There are several limitations to consider when analyzing the results of these experiments.
First, the spatial limitations of the motion capture setup limited the upper flight volume
to 4m AGL. As discussed in Section 5.3.1, the filter is consistent in terms of NIS at the
operational limits of 10m AGL. Despite being consistent, the RMSE of the estimate is ex-
pected to grow with an increase in relative distance between the marker and the UAV. The
values shown in Figure 5.12 are shown with respect to time. As the autopilot corrects for
position or attitude disturbances, it contributes to a temporal offset between the trajectories
in the experiment, which introduces noise. The time series shown from this experiment
have therefore been cropped to match the shortest flight. For reference, the difference in
duration of the longest and shortest flight was 0.4 s. For a more realistic estimate of the
system performance, the tests could have been conducted outside in windy conditions. If
available, RTK GNSS could have been used as a ground truth. In this case, one would be
limited of the 2.5 cm CEP of the u-blox M8P-2 GNSS module used which is significantly
higher than the sub-millimetre accuracy of the motion capture system. Similarly to the
filter consistency tuning, more test flights with longer flight times could also be used to
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Figure 5.13: Side view of the sample test flights. The flight paths are ground truth position of the
UAV after it is centered above the marker according to the onboard estimate.

Spatial parameter Mean Standard deviation
Horizontal displacement [cm] 0.0 3.5

Yaw misalignment [◦] 0.2 1.9

Table 5.5: Mean and standard deviation of displacement in horizontal position and yaw misalign-
ment when the UAV has landed. The values are calculated based on 10 test flights.

increase the statistical significance of the experimental results.

Despite the limitations, the results indicate a clear trend in the landing trajectories: During
the final stage of the landing sequence, the estimation error decreases and the UAV position
converges to the landing target center while the yaw angle is aligned with the marker. This
behavior is apparent from Figure 5.13, demonstrating the systems ability to reliably land
in the platform center with high precision. The displacement of the horizontal position
and yaw angle as the UAV touched down were close to unbiased as shown in Figure 5.12
with standard deviations of 3.5 cm and 1.9◦ respectively. The values were sampled just
as the vehicle touched the ground in order to not include the bounce which often occurs
when physical contact with the ground is made. Recall that the mechanical tolerances of
the landing platform are 102 cm × 103 cm with a yaw misalignment tolerance of up to
35◦. The main results of the full system performance in terms of accuracy and precision
when landed are shown in Table 5.5.

Assuming the horizontal position and yaw angle of the UAV when landing approximately
follows a normal distribution, the UAV would in 99.7% of the cases land within a circle
of radius 10.5 cm with a yaw error less than 5.7◦ according to the 3σ rule. In principle,
this could be used to reduce the mechanical tolerances of the landing platform and thus
its footprint. However, reducing the footprint would also make the outermost marker of
90 cm × 90 cm infeasible with the current layout which constrains the range at which
detections are possible. If one were to disable pixel binning and use the full 1920 px ×
1080 px image, the formula for maximum detection range shown in Equation 3.1 can be
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used to determine the minimum marker width to reliably obtain detections at an altitude
10m AGL. Given p = 5 pixels per bit, the minimum marker width in this case is found
to be 36.4 cm. This would also ensure contiguous detections in terms of overlap and
estimated minimum detection range. Given sufficient lighting, this could be employed on
future revisions of the landing platform to greatly reduce its footprint without changing
the sensors on the UAV. Although there is no significant bias to horizontal position or
yaw angle when landing, there is a bias initially. The yaw angle is approximately 1.9◦

on average whereas the initial y-coordinate is −4 cm. The bias is likely not caused by
incorrect alignment and placement of the landing target, because it would then persist
throughout the flight path. It is possible that this is caused by a change in the mechanical
alignment of the camera relative to the IMU post calibration or camera imperfections and
artifacts not accounted for by the mathematical model based on a pinhole camera model
with radial-tangential distortion. In practice, this bias does not affect the convergence of
the full system, but it should be addressed if the landing procedure is to be conducted in
areas with nearby obstacles.
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Chapter 6
Conclusion and future work

The concluding chapter of this thesis encompasses the presentation of conclusions and
suggestions for future work. Initially, a comprehensive summary of the thesis work is
provided, followed by the deduction of conclusions based on the initial problem defini-
tion. Subsequently, potential avenues for extending and enhancing the proposed system
are explored and presented.

6.1 Conclusion
In this thesis, a precision landing system for UAVs based on camera and inertial measure-
ments has been designed, implemented and tested in real-life experiments. The system
relies on an IEKF for state estimation, using recursive fiducial markers on the landing
platform for vision-based pose updates. The inertial process model is driven by IMU mea-
surements, resulting in a standalone filter estimating the full extended pose of the UAV
relative to the landing target in addition to IMU biases. The position and yaw estimates
of the filter are used as aiding corrections for the autopilot. During the landing sequence,
the UAV aligns itself in the horizontal plane based on the estimated center and heading of
the landing platform. The vertical position estimate is then used for a smooth touchdown.
The log-linear property of the invariant filter grants fast convergence around any trajectory,
which reduces the time spent in hover during convergence and increases reliability. Sanity
checks are applied to the raw measurements and filter outputs to ensure filter consistency
during operation. In the event of estimation inconsistencies, the aiding corrections from
the IEKF are halted. Depending on the failsafe settings, the autopilot is then guided back
to a safe contingency landing site or the last place aiding corrections were obtained in
an attempt to reacquire an estimate. The autopilot interface uses standardized MAVLink
messages, making it possible to integrate the solution with existing autopilots such as PX4
or ArduPilot.

The individual system modules were tested sequentially, followed by a full system inte-
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gration test with live data. First, the camera calibration was evaluated according to average
reprojection error, image coverage and uncertainty of the intrinsic estimates. Thereafter,
the AprilTag 3 detector was tested on real data using the estimated intrinsics. The results
were evaluated according to pose calculation and marker detection time, detection recall
and system load. The computation times were identified by their mean and maximum val-
ues over the entire flight trajectory, which were compared to the desired update rate of the
IEKF. The computational load was based on average RAM and CPU usage for different
configurations of the AprilTag detector. Then, the filter consistency was evaluated in terms
of NIS and NEES values. The NIS and NEES values were used to tune the process and
measurement noise covariance matrices until consistency was achieved. A data set from
a validation flight was then used to identify the final consistency metrics. Lastly, the full
system performance was identified by a series of test flights. The filter performance was
evaluated according to the RMSE of the position and yaw estimates for all flights. Ad-
ditionally, the reliability and repeatability of the full system was assessed by determining
the mean and standard deviation of the ground truth flight trajectories from a given starting
position from all test flights. The same analysis was then conducted for the ground truth
data obtained when the drone was in the landed state to determine the landing accuracy
and precision.

The precision landing system produces promising results in terms of aiding the UAV to
the landed state - centered and aligned with the landing platform - from an uncertain initial
position and heading relative to the platform. The landing procedure is conducted in a
safe and efficient manner given the mechanical tolerances of the platform, with evidence
of system repeatability and reliability. The conclusion is based on theoretical proofs of the
estimator, specifically the log-linear property of the IEKF which leads to an autonomous
error evolution and a convergence around any trajectory, in addition to empirical evidence
gathered through experimental results. The precision and accuracy of the final landed state
is sufficiently high, such that future revisions of the landing platform can be developed
with lower tolerances for alignment and thus a smaller footprint. In the test flights, the
RMSE of the filter was only estimated for a vertical position up to 4m AGL. Although
consistency is demonstrated up to 10m AGL, the estimated error is expected to increase
for larger altitudes due to the single marker pose measurement. This must be considered
for operational use, since the proposed system assumes that there are no obstacles in the
flight path. Generally, the significance of precision in the guiding system is diminished
during flight, as it naturally converges to an accurate estimate when the UAV approaches
the platform. Overall, the system shows good performance and it is the author’s hope that
it will be expanded and evolve into an open-source implementation compatible with the
rich ecosystem of existing autopilots.

6.2 Future Work

In this section, potential paths for future academic research and application at a larger scale
are outlined. The precision landing system proposed in this thesis is subject to several
assumptions and delimitations which must be overcome for reliable usage outside a test
environment. Furthermore, shortcomings of the design process should be addressed before
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adopting the solution at a larger scale.

6.2.1 Camera Calibration and Filter Tuning
In the IEKF, the inertial process model is vehicle independent, because the dynamics are
driven by the IMU inputs which are propagated to obtain the full extended pose. How-
ever, the filter tuning and calibration depend on the sensors used and can be cumbersome
unless means of auto-tuning the filter are applied. It has not been investigated weather
the calibration and tuning must be redone in the case of two or more UAVs with identical
sensor configuration. In practice, the results are expected to be degraded in some degree
due to manufacturing tolerances. Whether individual differences significantly impairs per-
formance is not tested. In this case, means should be taken to reduce time and effort
required for manual calibration and tuning. An implementation of [45] based on Bayesian
Optimization is suggested to replace manual tuning, which was found to be the most time
consuming of the two.

6.2.2 Delimitations, Limitations and Assumptions
Currently, the precision landing method assumes an obstacle free landing site in which
the fiducial markers are visible. As discussed, the estimation error is expected to increase
with altitude, resulting in a larger obstacle-free buffer required. In practice, this is typically
achieved for fixed landing stations. In the event of a forwarded temporary platform, the
presence of airspace obstructions such as trees or masts might be a problem. To determine
the required buffer, experimental flights should be conducted at the target altitude with
RTK GNSS other other means of an approximate ground truth. One could also arrive at
a rudimentary approximation of the buffer by repeating the experiments conducted in this
thesis with a scaled-down marker in a motion capture environment or extrapolate from the
given results. Second, the assumption of landing target visibility is not guaranteed with the
current setup. Occlusion due to precipitation, leaves or dust will eventually happen if not
mitigated. The same holds true for lighting, which affects the detectors capabilities. To
reduce the possibility of occlusion, it is suggested that permanent installations of landing
platforms are equipped with roofing which only opens during the brief time period the
UAV is landing. The landing target itself could also be heated, which may be required
if landing during heavy snowfall. In this thesis, experiments were conducted in dimly
lit conditions to represent the intended operational environment. This proved not to be
an issue for the onboard low-light camera, but installing lights on the landing platform is
considered a simple approach to remove this hardware dependency and increase overall
reliability.

6.2.3 System Improvements
The current implementation features a working solution proposal, but there are likely as-
pects which can be improved. First, it is believed that filter consistency would be improved
by adjusting the measurement noise covariance matrix based on the estimated distance to
the landing target. The pose measurement error increases with the distance to the marker
or a decrease in marker size, which should be reflected by an increase in the covariance
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matrix. Tuning the filter according to this relation was not pursued in this thesis, but would
likely improve consistency of the filter and contribute to a more accurate covariance esti-
mate.

The IPPE solution to the PnP problem used in this system is subject to ambiguity. This
implementation always uses the pose estimate with the lowest reprojection error. In the
case of a measurement inconsistent with the current estimate or previous measurements,
it is discarded. The presence of pose ambiguity did not yield any significant issues in the
conducted experiments. However, it is advisable to explore methods that can restrict the
range of marker poses in order to enhance the level of reliability and bolster the assurance
of accurate results. The ambiguity is a property of the problem itself and cannot be solved
using any PnP algorithm. The original paper [23] suggests four main options. In the
intended use case, using additional non-coplanar markers mounted on the landing platform
would make the solution to the pose estimate unique.

In the proposed system, no manual adjustment of the camera settings was performed. In
total, 14 settings can be adjusted including, but not limited to: Brightness, contrast, satu-
ration and exposure. These were set to the default values or auto if available. Considering
that the detector operates on grayscale images, the camera settings could likely be adjusted
to trade off accurate color representation for improved low-light performance. One could
also disable pixel binning to increase resolution, resulting in a higher detection accuracy
with an increased detection range, albeit with a trade-off in terms of diminished low-light
performance and a higher computational load. It is also possible that one could fine-tune
the exposure such that desired low-light performance would be achieved, while reducing
rotational blur. The same holds true for the camera focus, which had to be set manually.
Since the scene depth varies from 14 cm to 10m, one would ideally use automatic focus
to keep the landing target sharp while maintaining a high FOV. This can be challenging in
computer vision applications, due to the dynamic nature of the resulting camera intrinsics.
In this thesis, the focus was set to compromise the desired sharpness over the flight path.

The system is designed with existing autopilot compatibility in mind, but it has currently
only been tested with PX4. In principle, other platforms such as ArduPilot would also
be supported. This has not been verified and there is likely some work to be done before
full compatibility with both systems is achieved. Section 5.2 showed that the distance
to the marker and thus the marker size in the image greatly affected the detection speed.
For this reason, one might benefit from performing the marker detection on a cropped
image which reflects a region of interest based on the current pose estimate and previous
detections. If no detections were made, the full image could be used instead. Being the
most time consuming part of the pipeline, this is a natural starting point for increasing
performance. Considering the achieved landing accuracy and precision, the mechanical
tolerances of the landing platform could be reduced significantly in order to reduce the
footprint. This would in turn reduce the free space available for landing target placement.
For a scaled down landing platform accommodated by a smaller landing target, disabling
binning would likely make the marker detectable from an altitude of 10m AGL with a
landing target width of only 36.4 cm. This can be achieved with the sensors currently
used on the UAV and greatly reduce the footprint and complexity of future revisions of
the platform. If this approach is to be pursed, two things must be considered: First, the
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low-light performance will be significantly impaired, meaning more illumination on the
landing platform is required. Second, the computational load for marker detection will
increase beyond the currently available system capacity. To accommodate this, one could
disable tolerance for erroneous marker bits and apply the region of interest based detection
as formerly discussed.

Lastly, the IEKF used in this thesis can be improved and repurposed for other applications.
For example, the filter and the autopilot interface could be expanded to support data from
multiple IMUs. Incorporating this approach would result in a reduction of noise present
in acceleration and angular velocity measurements, including a more precise estimation
of the biases. In principle, one could also use the bias estimates of the autopilots EKF
to hot start the IEKF. There are two primary reasons for the absence of additional cou-
pling between the two filters in this thesis: Firstly, to emphasize the rapid convergence
capabilities of the IEKF in its existing form. Secondly, to establish the viability of the
IEKF as an independent filter. In the context of state estimation for navigation, the state
representation usually consists of and extended pose which can be represented in the Lie
group framework. In this case, the IEKF outperforms the EKF by ensuring the filter update
remains on the Lie manifold. The EKF fails to adhere to the geometric constraints of the
attitude representation by linearization, making the estimate leave the manifold. Although
the EKF in many ways has become industry standard, the IEKF should be considered for
high-accuracy navigation purposes as it improves reliability, reduces errors and has a low
convergence time. This could be used in autopilots for state estimation or as a backend for
Visual-Inertial Odometry (VIO) or SLAM applications. If the IEKF used in this thesis is
to be expanded to the primary filter for navigation, a more comprehensive tuning should
be conducted. Specifically, more aggressive maneuvers should be applied to represent the
full range of expected in-flight movement including large deviations from non-zero orien-
tation. For this purpose, a more exhaustive study of all state estimates should be conducted
while comparing the results to the output of a conventional EKF or MEKF for the given
platform.
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Appendix A
Matrix Lie Group Jacobians

A.1 SO(3)

Given θ = Log(M), M ∈ SO(3), the right Jacobian and its inverse [5] are given by

Jr(θ) = I+
1− cos θ

θ2
[θ]× +

θ − sin θ

θ3
[θ]2× (A.1a)

J−1
r (θ) = I+

1

2
[θ]× + (

1

θ2
− 1 + cos θ

2θ sin θ
)[θ]2× (A.1b)

The left Jacobian and its inverse are

Jl(θ) = J⊤
r (θ) (A.2a)

J−⊤
l (θ) = J−⊤

r (θ) (A.2b)

A.2 SE(3)

Given τ =

[
ρ
θ

]
= Log(M), M ∈ SE(3), the left Jacobian and its inverse are given by

Jl(τ ) =

[
Jl(θ) Q(ρ,θ)
03×3 Jl(θ)

]
(A.3a)

J−1
l (τ ) =

[
J−1
l (θ) −J−1

l (θ)Q(ρ,θ)J−1
l (θ)

03×3 J−1
l (θ)

]
(A.3b)
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where

Q(ρ,θ) =
1

2
[ρ]× +

θ − sin θ

θ3
([θ]×[ρ]× + [ρ]×[θ]× + [θ]×[ρ]×[θ]×)

+
θ2

2 + cos θ − 1

θ4
([θ]2×[ρ]× + [ρ]×[θ]2× − 3[θ]×[ρ]×[θ]×)

+
θ + θ

2 cos θ −
3
2 sin θ

θ5
([θ]×[ρ]×[θ]2× + [θ]2×[ρ]×[θ]×)

(A.4)

The right Jacobian and its inverse are

Jr(τ ) = Jl(−τ ) (A.5a)

J−1
r (τ ) = J−1

l (−τ ) (A.5b)

A.3 SE2(3)

Given τ =

ρν
θ

 = Log(M), M ∈ SE(3), the left Jacobian and its inverse are given by

Jl(τ ) =

Jl(θ) Q(ρ,ν) Q(ρ,θ)
03×3 Jl(θ) 03×3

03×3 03×3 Jl(θ)

 (A.6a)

J−1
l (τ ) =

J−1
l (θ) −J−1

l (θ)Q(ν,θ)J−1
l (θ) −J−1

l (θ)Q(ρ,θ)J−1
l (θ)

03×3 J−1
l (θ) 03×3

03×3 03×3 J−1
l (θ)

 (A.6b)

The right Jacobian and its inverse are

Jr(τ ) = Jl(−τ ) (A.7a)

J−1
r (τ ) = J−1

l (−τ ) (A.7b)
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Appendix B
MAVLink message definitions

In this chapter, the MAVLink message definitions most relevant to this thesis are presented.
For a more extensive compilation of commonly used messages and the requirements man-
dated by the MAVLink standard, please refer to [2].
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Figure B.1: MAVLink heartbeat message definition.
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Figure B.2: MAVLink high resolution IMU message definition.
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Figure B.3: MAVLink landing target message definition.
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Appendix C
IMU gyroscope and accelerometer
specifications

The full gyroscope and accelerometer specifications given by their respective datasheets of
the TDK InvenSense ICM-20649, ICM-20602 and ICM-20948 featured in the CubePilot
Cube Orange autopilot are listed below. The key properties are listed in Table 4.1, along
with a link to the full datasheet from which these sections are extracted.
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 ICM-20649 
 

Document Number: DS-000192  Page 12 of 89  

Revision: 1.1 
 

3 ELECTRICAL CHARACTERISTICS 

3.1 GYROSCOPE SPECIFICATIONS 

Typical Operating Circuit of section 4.2, VDD = 1.8 V, VDDIO = 1.8 V, TA = 25°C, unless otherwise noted. 

Note: All specifications apply to Standard (Duty-Cycled) Mode and Low-Noise Mode, unless noted otherwise. 

PARAMETER CONDITIONS MIN TYP MAX UNITS NOTES 

GYROSCOPE SENSITIVITY 

Full-Scale Range GYRO_FS_SEL = 0  ±500  dps 1 

 GYRO_FS_SEL = 1  ±1000  dps 1 

 GYRO_FS_SEL = 2  ±2000  dps 1 

 GYRO_FS_SEL = 3  ±4000  dps 1 

Gyroscope ADC Word Length   16  bits 1 

Sensitivity Scale Factor GYRO_FS_SEL = 0  65.5  LSB/(dps) 1 

 GYRO_FS_SEL = 1  32.8  LSB/(dps) 1 

 GYRO_FS_SEL = 2  16.4  LSB/(dps) 1 

 GYRO_FS_SEL = 3  8.2  LSB/(dps) 1 

Sensitivity Scale Factor Tolerance 25°C  ±0.5  % 3 

Sensitivity Scale Factor Variation Over 
Temperature 

-40°C to +85°C  ±2  % 2 

Nonlinearity Best fit straight line; 25°C  ±0.1  % 2, 4 

Cross-Axis Sensitivity   ±2  % 2, 4 

ZERO-RATE OUTPUT (ZRO) 

Initial ZRO Tolerance 25°C (Component-level)  ±5  dps 3 

ZRO Variation Over Temperature -40°C to +85°C  ±0.05  dps/°C 2 

GYROSCOPE NOISE PERFORMANCE (GYRO_FS_SEL=0) 

Noise Spectral Density Based on Noise Bandwidth = 10 Hz  0.0175  dps/√Hz 3 

GYROSCOPE MECHANICAL FREQUENCIES  25 27 29 kHz 3 

LOW PASS FILTER RESPONSE Programmable Range 5.7  197 Hz 1, 4 

GYROSCOPE START-UP TIME From Full-Chip Sleep mode  35  ms 2, 4 

OUTPUT DATA RATE 

Standard (duty-cycled) Mode 4.4  562.5 Hz 

1 

Low-Noise Mode 
GYRO_FCHOICE = 1; 
GYRO_DLPFCFG = x 

4.4  1.125k Hz 

Low-Noise Mode 
GYRO_FCHOICE = 0; 
GYRO_DLPFCFG = x 

  9k Hz 

Table 1. Gyroscope Specifications 

Notes:  
1. Guaranteed by design. 
2. Derived from validation or characterization of parts, not guaranteed in production. 
3. Tested in production. 
4. Low-noise mode specification. 

  

C.1 ICM-20649
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 ICM-20649 
 

Document Number: DS-000192  Page 13 of 89  

Revision: 1.1 
 

3.2 ACCELEROMETER SPECIFICATIONS 

Typical Operating Circuit of section 4.2, VDD = 1.8 V, VDDIO = 1.8 V, TA = 25°C, unless otherwise noted. 

Note: All specifications apply to Standard (Duty-Cycled) Mode and Low-Noise Mode, unless noted otherwise. 

PARAMETER CONDITIONS MIN TYP MAX UNITS NOTES 

ACCELEROMETER SENSITIVITY 

Full-Scale Range 

ACCEL_FS = 0  ±4  g 1 

ACCEL_FS = 1  ±8  g 1 

ACCEL_FS = 2  ±16  g 1 

ACCEL_FS = 3  ±30  g 1 

ADC Word Length Output in two’s complement format  16  bits 1 

Sensitivity Scale Factor 

ACCEL_FS = 0  8,192  LSB/g 1 

ACCEL_FS = 1  4,096  LSB/g 1 

ACCEL_FS = 2  2,048  LSB/g 1 

ACCEL_FS = 3  1,024  LSB/g 1 

Initial Tolerance Component-level  ±0.5  % 3 

Sensitivity Change vs. Temperature -40°C to +85°C ACCEL_FS=0  ±0.026  %/ºC 2 

Nonlinearity Best Fit Straight Line  ±0.5  % 2, 4 

Cross-Axis Sensitivity   ±2  % 2, 4 

 

Initial Tolerance Component-level, all axes  ±65  mg 3 

Zero-G Level Change vs. Temperature 0°C to +85°C  ±0.80  mg/°C 2 

ACCELEROMETER NOISE PERFORMANCE 

Noise Spectral Density Based on Noise Bandwidth = 10 Hz  285  µg/√Hz 3 

LOW PASS FILTER RESPONSE Programmable Range 5.7  246 Hz 1, 4 

INTELLIGENCE FUNCTION 
INCREMENT 

 
 32  mg/LSB 1 

ACCELEROMETER STARTUP TIME 
From Sleep mode  20  ms 2, 4 

From Cold Start, 1ms VDD ramp  30  ms 2, 4 

OUTPUT DATA RATE 

Low-Power Mode 0.27  562.5 Hz 

1 

Low-Noise Mode  
ACCEL_FCHOICE = 1; 
ACCEL_DLPFCFG = x 

4.5  1.125k Hz 

Low-Noise Mode 
ACCEL_FCHOICE = 0; 
ACCEL_DLPFCFG = x 

  4.5k Hz 

Table 2. Accelerometer Specifications 

Notes:  
1. Guaranteed by design. 
2. Derived from validation or characterization of parts, not guaranteed in production. 
3. Tested in production. 
4. Low-noise mode specification. 

  

105



 ICM-20602 

 

Document Number: DS-000176  Page 9 of 57  

Revision: 1.0 
Revision Date: 10/03/2016 

 

3 ELECTRICAL CHARACTERISTICS 

3.1 GYROSCOPE SPECIFICATIONS 
Typical Operating Circuit of section 4.2, VDD = 1.8V, VDDIO = 1.8V, TA=25°C, unless otherwise noted. 

PARAMETER CONDITIONS MIN TYP MAX UNITS NOTES 

GYROSCOPE SENSITIVITY 

Full-Scale Range FS_SEL=0  ±250  dps 3 

FS_SEL=1  ±500  dps 3 

FS_SEL=2  ±1000  dps 3 

FS_SEL=3  ±2000  dps 3 

Gyroscope ADC Word Length   16  bits 3 

Sensitivity Scale Factor FS_SEL=0  131  LSB/(dps) 3 

FS_SEL=1  65.5  LSB/(dps) 3 

FS_SEL=2  32.8  LSB/(dps) 3 

FS_SEL=3  16.4  LSB/(dps) 3 

Sensitivity Scale Factor Initial Tolerance 25°C  ±1  % 1 

Sensitivity Scale Factor Variation Over 
Temperature 

-40°C to +85°C  ±2  % 1 

Nonlinearity Best fit straight line; 25°C  ±0.1  % 1 

Cross-Axis Sensitivity   ±1  % 1 

ZERO-RATE OUTPUT (ZRO) 

Initial ZRO Tolerance 25°C  ±1  dps 1 

ZRO Variation vs. Temperature -40°C to +85°C  ±0.01  dps/ºC 1 

OTHER PARAMETERS 

Rate Noise Spectral Density @ 10 Hz  0.004  dps /√Hz 1, 4 

Total RMS Noise  Bandwidth = 100 Hz  0.04  dps -rms 1, 4 

Gyroscope Mechanical Frequencies  25 27 29 KHz 2 

Low Pass Filter Response Programmable Range 5  250 Hz 3 

Gyroscope Start-Up Time Time from gyro enable to gyro drive ready  35 100 ms 1 

Output Data Rate 
Low-Noise mode 3.91  8000 Hz 3 

Low Power Mode 3.91  333.33 Hz 3 

Table 1. Gyroscope Specifications 

Notes:  
1. Derived from validation or characterization of parts, not guaranteed in production. 
2. Tested in production. 
3. Guaranteed by design. 
4. Noise specifications shown are for low-noise mode. 
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3.2 ACCELEROMETER SPECIFICATIONS 
Typical Operating Circuit of section 4.2, VDD = 1.8V, VDDIO = 1.8V, TA=25°C, unless otherwise noted. 

PARAMETER CONDITIONS MIN TYP MAX UNITS NOTES 

ACCELEROMETER SENSITIVITY 

Full-Scale Range AFS_SEL=0  ±2  g 2 

AFS_SEL=1  ±4  g 2 

AFS_SEL=2  ±8  g 2 

AFS_SEL=3  ±16  g 2 

ADC Word Length Output in two’s complement format  16  bits 2 

Sensitivity Scale Factor AFS_SEL=0  16,384  LSB/g 2 

AFS_SEL=1  8,192  LSB/g 2 

AFS_SEL=2  4,096  LSB/g 2 

AFS_SEL=3  2,048  LSB/g 2 

Sensitivity Scale Factor Initial Tolerance Component-level  ±1  % 1 

Sensitivity Change vs. Temperature -40°C to +85°C  ±1.5  % 1 

Nonlinearity Best Fit Straight Line  ±0.3  % 1 

Cross-Axis Sensitivity   ±1  % 1 

ZERO-G OUTPUT 

Initial Tolerance 
Component-level, all axes  ±25  mg 1 

Board-level, all axes  ±40  mg 1 

Zero-G Level Change vs. Temperature -40°C to +85°C 
X and Y axes  ±0.5  mg/ºC 1 

Z axis  ±1  mg/ºC 1 

OTHER PARAMETERS 

Power Spectral Density @ 10 Hz  100  µg/√Hz 1, 3 

RMS Noise Bandwidth = 100 Hz  1.0  mg-rms 1, 3 

Low-Pass Filter Response Programmable Range 5  218 Hz 2 

Accelerometer Startup Time From sleep mode to valid data  10 20 ms 2 

Output Data Rate 
Low-Noise mode 3.91  4000 Hz 

2 
Low Power Mode 3.91  500 Hz 

Table 2. Accelerometer Specifications  
Notes:  

1. Derived from validation or characterization of parts, not guaranteed in production. 
2. Guaranteed by design. 
3. Noise specifications shown are for low-noise mode. 
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 ICM-20948 
 

Document Number: DS-000189 Page 11 of 89 

Revision: 1.5 

3 ELECTRICAL CHARACTERISTICS 

3.1 GYROSCOPE SPECIFICATIONS 

Typical Operating Circuit of section 4.2, VDD = 1.8V, VDDIO = 1.8V, TA=25°C, unless otherwise noted. 

NOTE: All specifications apply to Low-Power Mode and Low-Noise Mode, unless noted otherwise 

PARAMETER CONDITIONS MIN TYP MAX UNITS NOTES 

GYROSCOPE SENSITIVITY 

Full-Scale Range GYRO_FS_SEL=0  ±250  dps 1 

GYRO_FS_SEL=1  ±500  dps 1 

GYRO_FS_SEL=2  ±1000  dps 1 

GYRO_FS_SEL=3  ±2000  dps 1 

Gyroscope ADC Word Length   16  bits 1 

Sensitivity Scale Factor GYRO_FS_SEL=0  131  LSB/(dps) 1 

GYRO_FS_SEL=1  65.5  LSB/(dps) 1 

GYRO_FS_SEL=2  32.8  LSB/(dps) 1 

GYRO_FS_SEL=3  16.4  LSB/(dps) 1 

Sensitivity Scale Factor Tolerance 25°C  ±1.5  % 2 

Sensitivity Scale Factor Variation Over 
Temperature 

-40°C to +85°C  ±3  % 2 

Nonlinearity Best fit straight line; 25°C  ±0.1  % 2, 3 

Cross-Axis Sensitivity   ±2  % 2, 3 

ZERO-RATE OUTPUT (ZRO) 

Initial ZRO Tolerance 25°C (Component-level)  ±5  dps 2 

ZRO Variation Over Temperature -40°C to +85°C  ±0.05  dps/°C 2 

GYROSCOPE NOISE PERFORMANCE (GYRO_FS_SEL=0) 

Noise Spectral Density Based on Noise Bandwidth = 
10 Hz 

 0.015  dps/√Hz 2 

GYROSCOPE MECHANICAL FREQUENCIES  25 27 29 kHz 2 

LOW PASS FILTER RESPONSE Programmable Range 5.7  197 Hz 1, 3 

GYROSCOPE START-UP TIME From Full-Chip Sleep mode  35  ms 2, 3 

OUTPUT DATA RATE 

Low-Power Mode 4.4  562.5 Hz 

1 

Low-Noise Mode 
GYRO_FCHOICE=1; 
GYRO_DLPFCFG=x 

4.4  1.125k Hz 

Low-Noise Mode 
GYRO_FCHOICE=0; 
GYRO_DLPFCFG=x 

  9k Hz 

Table 1. Gyroscope Specifications 

NOTES:  

1. Guaranteed by design. 
2. Derived from validation or characterization of parts, not guaranteed in production. 
3. Low-noise mode specification. 
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3.2 ACCELEROMETER SPECIFICATIONS 

Typical Operating Circuit of section 4.2, VDD = 1.8V, VDDIO = 1.8V, TA=25°C, unless otherwise noted. 

NOTES: All specifications apply to Low-Power Mode and Low-Noise Mode, unless noted otherwise 

PARAMETER CONDITIONS MIN TYP MAX UNITS NOTES 

ACCELEROMETER SENSITIVITY 

Full-Scale Range 

ACCEL_FS=0  ±2  G 1 

ACCEL_FS=1  ±4  G 1 

ACCEL_FS=2  ±8  G 1 

ACCEL_FS=3  ±16  G 1 

ADC Word Length Output in two’s complement format  16  Bits 1 

Sensitivity Scale Factor 

ACCEL_FS=0  16,384  LSB/g 1 

ACCEL_FS=1  8,192  LSB/g 1 

ACCEL_FS=2  4,096  LSB/g 1 

ACCEL_FS=3  2,048  LSB/g 1 

Initial Tolerance Component-level  ±0.5  % 2 

Sensitivity Change vs. Temperature -40°C to +85°C ACCEL_FS=0  ±0.026  %/ºC 2 

Nonlinearity Best Fit Straight Line  ±0.5  % 2, 3 

Cross-Axis Sensitivity   ±2  % 2, 3 

ZERO-G OUTPUT 

Initial Tolerance Component-level, all axes  ±25  mg 2 

Initial Tolerance Board-level, all axes  ±50  mg 2 

Zero-G Level Change vs. Temperature 0°C to +85°C  ±0.80  mg/°C 2 

ACCELEROMETER NOISE PERFORMANCE 

Noise Spectral Density Based on Noise Bandwidth = 10 Hz  230  µg/√Hz 2 

LOW PASS FILTER RESPONSE Programmable Range 5.7  246 Hz 1, 3 

ACCELEROMETER STARTUP TIME 
From Sleep mode  20  ms 2, 3 

From Cold Start, 1 ms VDD ramp  30  ms 2, 3 

OUTPUT DATA RATE 

Low-Power Mode 0.27  562.5 Hz 

1 

Low-Noise Mode  
ACCEL_FCHOICE=1; 
ACCEL_DLPFCFG=x 

4.5  1.125k Hz 

Low-Noise Mode 
ACCEL_FCHOICE=0; 
ACCEL_DLPFCFG=x 

  4.5k Hz 

Table 2. Accelerometer Specifications 

NOTES:  

1. Guaranteed by design. 
2. Derived from validation or characterization of parts, not guaranteed in production. 
3. Low-noise mode specification. 
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