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Executive summary

This thesis have evaluated and compared the performance of five different equivalent-
circuit model (ECM) based state estimators for estimation of the state of charge (SOC) of a
lithium-ion battery (LIB) cell. The utilized state estimators were the Luenberger observer,
the linear Kalman filter, the linear Moving Horizon Estimator, the extended Kalman filter
and the Sigma-Point Kalman filter. All estimators achieved a RMS error below 3 % in the
simulations that were run. The best performing estimator was the Sigma-Point Kalman
filter (SPKF), with RMS estimation error below 1 % at a relatively low computational cost.
The SPKF should therefore be investigated more closely in further work. Moreover, the
potential performance of the Moving Horizon Estimator (MHE) as indicated by literature
suggest that it is worth looking deeper into for nonlinear models.

iii



Table of Contents

Preface i

Acknowledgements ii

Executive summary iii

List of Tables vi

List of Figures viii

Abbreviations ix

1 Introduction 1
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Problem description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Delimitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.4 Structure of the report . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Theory 3
2.1 Lithium-ion Batteries . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Capacity C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.3 State of charge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.4 Open-circuit voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.5 Polarization voltages . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.6 Warburg impedance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.7 Hysteresis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3 Modeling of battery cells 8
3.1 The Rint model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.2 The Thevenin model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.3 The enhanced self-correcting model . . . . . . . . . . . . . . . . . . . . 10

iv



3.4 The single particle model . . . . . . . . . . . . . . . . . . . . . . . . . . 11

4 State estimation 14
4.1 A modified linear model . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.2 Luenberger observer . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.3 Linear Kalman filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.4 Moving Horizon Estimator . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.5 Extended Kalman filter . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.6 Sigma-Point Kalman filter . . . . . . . . . . . . . . . . . . . . . . . . . 21

5 Experimental methodology 24
5.1 An identified linear LIB model . . . . . . . . . . . . . . . . . . . . . . . 24
5.2 Test dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
5.3 Nonlinear estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
5.4 Single particle model simulation . . . . . . . . . . . . . . . . . . . . . . 26
5.5 Battery pack simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
5.6 EV simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
5.7 State estimator implementation . . . . . . . . . . . . . . . . . . . . . . . 29

5.7.1 Luenberger observer, KF and MHE . . . . . . . . . . . . . . . . 29
5.7.2 EKF and SPKF . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

6 Results 31
6.1 Linear state estimators . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
6.2 Nonlinear state estimators . . . . . . . . . . . . . . . . . . . . . . . . . . 33
6.3 Single particle model simulation . . . . . . . . . . . . . . . . . . . . . . 35
6.4 Battery pack simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
6.5 EV simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

7 Discussion 39
7.1 Results of SOC estimation . . . . . . . . . . . . . . . . . . . . . . . . . 39
7.2 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
7.3 Further work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

8 Conclusion 43

Bibliography 44

v



List of Tables

5.1 LIB cell specifications. . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
5.2 Identified Thevenin model paramters. . . . . . . . . . . . . . . . . . . . 25
5.3 Available identified parameters for the ESC-model based on the E2 cell at

an ambient temperature of 5 ◦C. . . . . . . . . . . . . . . . . . . . . . . 26

6.1 Summary of performance metrics for the state estimators. . . . . . . . . . 35

vi



List of Figures

2.1 The setup of an LIB during a discharge process [1]. . . . . . . . . . . . . 3
2.2 The Randles circuit [2]. . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 Nyquist plot of a realistic cell’s electrochemical impedance spectrum (EIS)

[3]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.4 Approximation of the Warburg impedance element using RC subcircuits [3]. 7

3.1 The Rint ECM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.2 The Thevenin ECM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.3 The enhanced self-correcting ECM. . . . . . . . . . . . . . . . . . . . . 10

4.1 An example of a linear approximation of the OCV-SOC-relationship [4]. . 15
4.2 A block diagram of the Luenberger observer [5]. . . . . . . . . . . . . . 16
4.3 Illustration of the difference between actual sampling, linearized EKF

transformation and the SPKF uscented transformation, in that order [6]. . 21

5.1 DST profile at 25 ◦C [7]. . . . . . . . . . . . . . . . . . . . . . . . . . . 25
5.2 6 cycles of the FUDS current profile. . . . . . . . . . . . . . . . . . . . . 25
5.3 16 cycles of the UDDS current profile. . . . . . . . . . . . . . . . . . . . 26
5.4 Simulation strategy of EV [4]. . . . . . . . . . . . . . . . . . . . . . . . 28

6.1 Linear approximation of the OCV-SOC relationship for the 18650 cell. . . 31
6.2 Estimated SOC for the three linear state estimators plotted against true

SOC for the FUDS cycles. . . . . . . . . . . . . . . . . . . . . . . . . . 32
6.3 Estimation error plotted with the KF 3σ bounds for the FUDS cycles. . . 32
6.4 Estimated SOC for the three linear state estimators plotted against true

SOC for the FUDS cycles after tuning. . . . . . . . . . . . . . . . . . . . 33
6.5 Estimation error plotted with the KF 3σ bounds for the FUDS cycles after

tuning. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
6.6 EKF estimated SOC plotted against the true SOC with the 3σ bounds. . . 34
6.7 EKF SOC estimation error plotted with the EKF 3σ bounds. . . . . . . . 34

vii



6.8 SPKF estimated SOC plotted against the true SOC with the 3σ bounds. . 34
6.9 SPKF SOC estimation error plotted with the SPKF 3σ bounds. . . . . . . 35
6.10 The surface concentration of lithium-ions on a spherical electrode particle. 36
6.11 The cell currents in each PCM. . . . . . . . . . . . . . . . . . . . . . . . 36
6.12 The SOC for each cell in each PCM. . . . . . . . . . . . . . . . . . . . . 37
6.13 The desired and actual speed and acceleration of the EV during one UDDS

cycle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
6.14 The SOC, load current and delivered power of the battery in the EV during

one UDDS cycle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

viii



Abbreviations

Abbreviation Description
LIB Lithium-Ion Battery
EV Electric Vehicle
BMS Battery Management System
SOC State of Charge
SOH State of Health
SOAP State of Available Power
ECM Equivalent-Circuit Model
OCV Open-Circuit Voltage
RC Resistor-Capacitor
SPM Single Particle Model
LKF Linear Kalman Filter
MHE Moving Horizon Estimator
EKF Extended Kalman Filter
SPKF Sigma-Point Kalman Filter
MHE Moving Horizon Estimator
PCM Parallel Cell Module
SCM Series Cell Module

ix



1
Introduction

1.1 Background

Lithium-ion batteries (LIBs) are extensively used as an energy storage technology, and
their usage and areas of application are growing. They provide high energy density, low
weight, a long lifespan, and can be a vital component in the transition to energy sustain-
ability [8]. They have proven to be a preferred power source in electric vehicles (EVs)
such as electric cars and electric ships, where safety and integrity concerns are particularly
important [9]. In such usage, a battery management system (BMS) is essential. The BMS
monitor and control the condition of the batteries to optimize their operation, and more
importantly to ensure safe operation.

Internal states such as state of charge (SOC), state of health (SOH) and state of available
power (SOAP) in the LIB are essential to monitor and control to provide safe operation
[10]. These quantities cannot be measured directly, and therefore a BMS must provide ac-
curate estimates of the internal states in real-time. This is not a trivial task, as batteries are
time-varying, nonlinear systems that are significantly affected by temperature and noise,
and thus they become difficult to model accurately. The importance of accurate models
cannot be understated if model-based estimation is to be used [11]. Methods that use
no models are for instance the Coulomb counting method, which measures and ’counts’
the amount of charge that is going in and out of the battery. Model-based estimation is
however more suitable for EV applications due to increased estimation accuracy and other
advantages [12] [13]. The battery models can be divided into three categories, namely
physics-based electrochemical models, equivalent-circuit models (ECMs) and data-driven
models [11].

1



1 Introduction 1.2 Problem description

1.2 Problem description
The main goal of this thesis is to evaluate and compare the performance of five different
ECM-based state estimators for state of charge estimation in lithium-ion batteries. These
state estimators are namely the Luenberger observer, the linear Kalman filter (LKF), the
Moving Horizon Estimator (MHE), the extended Kalman filter (EKF) and the Sigma-Point
Kalman filter (SPKF). The Luenberger observer, the LKF and the MHE are evaluated with
a linear LIB model, whereas the EKF and the SPKF are evaluated with a nonlinear model.
The result of the comparison will lay the foundation and the set the course of further work
to be conducted in a master thesis within state estimation for LIBs. Smaller additional
problems and simulations are covered in the thesis as well. These include investigating the
possibility of running battery pack simulations, EV simulations and using physics-based
models in simulations.

1.3 Delimitations
The scope of the thesis has been narrowed down to SOC estimation for ECM-models
in terms of the estimation problem. Hence SOH and SOAP estimation, as well as SOC
estimation using physics-based models and data-driven models, are disregarded at this
time. Note that there exists other defined internal states of LIBs, which are also not covered
herein.

1.4 Structure of the report
The report is divided into eight chapters, where the current one is the first. Following
the second chapter presents relevant theory needed in order to perform and understand
state estimation of LIBs, before modeling of lithium-ion batteries are presented in chapter
three. The state estimators that are utilized with these models are then presented in chap-
ter four. Chapter five proceeds with laying forward the experimental methods that have
been used during the work of this thesis, where the results that were obtained here are
presented in chapter six. These results are then discussed and concluded upon in the two
last chapters.
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2
Theory

2.1 Lithium-ion Batteries

This section presents the basic working principle of rechargeable lithium-ion batteries rel-
evant for this project thesis. In practice an LIB can be a single lithium-ion cell, or it may
be constructed by two or more interconnected cells to increase the delivered power. One
lithium-ion cell consists of four major elements: two electrodes: anode and cathode, a sep-
arator and electrolyte [14]. The typical setup is shown in Figure 2.1 with the corresponding
chemical reaction equation.

Figure 2.1: The setup of an LIB during a discharge process [1].

3



2 Theory 2.2 Capacity C

Here the anode consists of an active material in LixC6 and a negative current collector
of copper. The cathode have an active material of Li(1−x)MyOz and a positive current
collector of aluminum. These electrodes are surrounded with lithium-ion conducting elec-
trolyte, and are electrically isolated from each other by a separator. The separator allows
for flow of lithium-ions between the electrodes, but not electrons. Thus by connecting the
two electrodes together with an external conductive cable, a flow of electrons, or current,
can occur [1].

During discharge, due to a difference in electrochemical potential energy between the elec-
trodes creating an electromotive force, the favoured reaction is that the active material in
the anode releases lithium-ions into the electrolyte, and electrons into the external circuit.
The resulting flow of electrons can be utilized to do useful work, e.g. powering a device.
During charging, the mentioned reaction is reversed [3].

2.2 Capacity C
To orderly define other relevant and important internal states of the battery later in the
report, a clear definition of a battery’s capacity C is needed. The actual capacity C of
a battery is the amount of electric charge that a fully charged battery can deliver under
predetermined reference conditions, and is given in unit of ampere-hours (Ah). The fully
charged and empty state of the battery is defined by the manufacturer. Due to aging of
the battery during its lifetime, the actual capacity will continuously decrease from the
’beginnng of life’ (BOL) until its ’end of life’ (EOL) [15].

2.3 State of charge
An LIB’s state of charge (SOC) can be defined as the ratio between the available capacity
and the total available capacity of a fully charged battery under reference conditions. In
short:

SOC = SOC(t) =
q(t)

C
(2.1)

where q(t) is the available capacity, or equivalently, the stored electric charge in the bat-
tery at a given point in time [15]. The SOC is a unitless number in the range [0 1] or
[0% 100%], where SOC = 100 % implies a fully charged battery and SOC = 0 % implies
a fully discharged battery [3]. Throughout the report the SOC is denoted by the letter
z.

2.4 Open-circuit voltage
The battery’s open-circuit voltage (OCV) is the voltage between the terminals of the bat-
tery when there is no battery current. In general, since stored electric charge q(t) is depen-
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2 Theory 2.5 Polarization voltages

dent on time, and since the open-circuit voltage is dependent on the stored electric charge
in the battery, then OCV(t) can also be seen as time dependent. Also, since the SOC is
dependent on q(t), the OCV can be described as dependent on the SOC of the battery [15].
The latter relationship will be used in this report, and it is often a static function that is
found experimentally in laboratories under specific conditions, such as constant temper-
ature for instance [3]. For further reading, this relationship is described by the function
OCV (z(t)).

2.5 Polarization voltages

Polarization in lithium-ion batteries refers to the voltages that create a notable deviation in
terminal voltage and open-circuit voltage due to a current flowing in the cell [3]. There are
several different polarization phenomena present in an LIB during charge and discharge
cycles, and they all have in common that they cause loss of energy and decreases the
efficiency of the cell. Typical forms of polarization are ohmic polarization, activation
polarization and concentration polarization. These occur in different parts of the cell, and
their individual voltage contributions varies with the external cell excitation current [16].
In [17], the deviation is formulated as

Vbat − VOCV = Vohmic + Vf,pos + Vf,neg + Vact,pos + Vact,neg + Vcon (2.2)

where Vf,pos and Vf,neg represent the voltage drop due to passivation films or layers on
the postive and negative electrodes, and Vf,act and Vf,act are voltage drops due to interfa-
cial charge-transfer reactions at the electrodes. Vcon adds the polarization obtained from
phenomena such as lithium diffusion.

Ohmic polarization represents the general limitation in conductivity of ions and electrons
in the current collectors, active materials, terminals, connectors and electrolyte [17]. This
can be modeled through Ohm’s law with a resistor R0 to indicate the near instantaneous
voltage drop that occurs when a battery current is passing through the cell, such that

Vohmic = R0ibat (2.3)

where ibat is the battery current [3].

Activation polarization occurs since the electrochemical reaction rate at the electrodes is
lower than the electron velocity [18], This phenomena will not be elaborated or explored
in any greater detail. Concentration polarization implies voltage drops due to effects such
as diffusion, migration and convection [17]. Of relevance for this report is the diffusion
dynamics.
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2 Theory 2.6 Warburg impedance

2.6 Warburg impedance
For alternating current excitations of batteries, the electrochemical interface of the battery
shows resistance in terms of impedance. This can be modeled and explained with an
equivalent-circuit, namely the Randles circuit depicted in Figure 2.2.

Figure 2.2: The Randles circuit [2].

The resistor Rb represents the bulk resistance of the cell, where the resistance in the electric
conductivity in the electrolyte, separator and electrodes is considered. The resistor Rct

models the charge transfer resistance and the capacitor Cdl stands for the double layer
capacitance. These two in combination contributes to the activation polarization. The
Warburg impedance element Zw models the impedance due to diffusion of lithium-ions
in the cell [2], which is part of the concentration polarization. The Warburg impedance
element may be described by

Zw =
Aw√
jω

(2.4)

where Aw is called the Warburg coefficient and frequency ω is given in rad
s . A Nyquist

plot of the cell impedance is shown in Figure 2.3.

Figure 2.3: Nyquist plot of a realistic cell’s electrochemical impedance spectrum (EIS) [3].

Here it can be observed that at low frequencies, a straight line of 45◦ appears in the EIS,
which is due to the 45◦ phase shift that is contributed by the Warburg element to the cell.
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2 Theory 2.7 Hysteresis

For the intermediate frequencies, the charge transfer dynamics are represented, which are
modeled by the RC pair. At the intersection between the curve and the real axis, the
impedance in the cell in form of pure ohmic resistance Rb is found [3].

As there is no simple ordinary-differential equation for the dynamics of the Warburg
impedance element, simulations using the Randle’s circuit becomes cumbersome. In or-
der to model and simulate these dynamics, the Warburg element can be approximated by
multiple resistor-capacitor subcircuits in series, as illustrated in Figure 2.4.

Figure 2.4: Approximation of the Warburg impedance element using RC subcircuits [3].

To be equivalent to the original Warburg element, an infinite number of RC subcircuits is
required. However, over some frequency range, a reasonably small number of RC subcir-
cuits can model the diffusion effects very well [3].

2.7 Hysteresis
The OCV is present in most equivalent-circuit models (ECMs), and the OCV as a function
of the SOC is principal in many aspects when it comes Battery Management Systems.
If the OCV-SOC relationship is well known, the SOC can be determined based on the
OCV. However, this assumes a one-to-one relationship between the two, which is not the
case if hysteresis is present [19]. In short, hysteresis in LIBs originates from entropic
stress, mechanical stress and microscopic distortions within the active materials in the
electrodes [20]. A consequence of this is that the cell relaxes to a different OCV depending
on if the cell was last charging or discharging, which implies that there exists several
possible open-circuit voltages for the the same SOC. This can cause signifacant inaccuracy
in SOC estimation. To improve on this accuracy, some knowledge of the charge-discharge
history must be included in the modeling [19]. However, it is in general difficult to model
hysteresis because it is not a phenomena that is very well understood [3].
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3
Modeling of battery cells

In this chapter two different approaches to modeling of battery cells are presented. The
main focus, and the majority of the models that will be presented here, are equivalent-
circuit models. The ECMs may be represented by circuit diagrams, as can be seen in the
following sections, where the circuit dynamics is meant to approximate the behaviour of
a battery cell with regards to how voltage responds to different input currents [3]. More-
over, one section will include a physics-based model that represent the electrochemical
processes inside a battery on a micro-scale level, in order to demonstrate some of the most
important dynamics that are present here. The equivalent-circuit method is thereby the first
method of modeling, whereas physics-based methods is the second. For all the models the
discrete-time equations will be given. This is because these models are intended for use in
a discrete computer system in a BMS for real-time applications.

3.1 The Rint model
One of the simplest Equivalent-Circuit models is the Rint model [21] [3], which is repre-
sented by the circuit diagram shown in Figure 3.1. The ideal voltage source models the
Open-Circuit voltage of the battery, which is a static function of the state of charge, z(t).
The resistor R0 models the instantaneous internal ohmic resistance in the battery cell, and
i(t) is the load current defined as positive in its shown direction. This direction of load
current implies a discharge of the battery cell.

The behaviour of this model in continuous time can be described by

ż(t) = −η(t)
i(t)

Q
(3.1)

v(t) = OCV (z(t))−R0i(t) (3.2)

8



3 Modeling of battery cells 3.2 The Thevenin model

−
+

OCV (z(t))

R0 i(t)

+

−

v(t)

Figure 3.1: The Rint ECM.

or in discrete-time as

zk+1 = zk − ∆t

Q
ηkik (3.3)

vk = OCV (zk)−R0ik (3.4)

where η(t) is the coloumbic efficiency and Q is the nominal capacity in units ampere-
seconds As.

3.2 The Thevenin model
Another popular ECM is the Thevenin model [21][3], illustrated in the circuit diagram in
Figure 3.2. The difference from the Rint model is that an RC subcircuit has been added,
in order to model the slow diffusion process of lithium-ions in the battery cell. These
voltages are referred to as diffusion voltages.

−
+

OCV (z(t))

R0

C1

R1 iR1

i(t)

+

−

v(t)

Figure 3.2: The Thevenin ECM.

The dynamics of the model may be described by

ż(t) = −η(t)
i(t)

Q
(3.5)

i̇R1(t) = − 1

R1C1
iR1(t) +

1

R1C1
i(t) (3.6)
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3 Modeling of battery cells 3.3 The enhanced self-correcting model

v(t) = OCV (z(t))−R1iR1
(t)−R0i(t) (3.7)

or in discrete time

zk+1 = zk − ∆t

Q
ηkik (3.8)

iR1,k+1 = exp

(
∆t

R1C1

)
iR1,k + exp

(
1− ∆t

R1C1

)
ik (3.9)

vk = OCV (zk)−R1iR1,k −R0ik (3.10)

3.3 The enhanced self-correcting model
A slightly more advanced ECM compared to the preceding models, namely the enhanced
self-correcting (ESC) model [3], can be observed in Figure 3.3. In addition to the elements
found in the previous models, the ESC model also contain a nonlinear hysteresis element
to account for voltage hysteresis in the battery cell.

−
+

OCV (z(t))

hyst

C1

R1

R0 i(t)

+

−

v(t)

Figure 3.3: The enhanced self-correcting ECM.

Here a nonlinear time-varying system, as proposed in [3], is used to model hysteresis h(t)
somewhat simple. The differential equation of the element is given by

ḣ(t) = −
∣∣∣∣η(t)i(t)γQ

∣∣∣∣h(t) + ∣∣∣∣η(t)i(t)γQ

∣∣∣∣M(z, ż) (3.11)

whereas in discrete-time the difference equation when using the simple representation
M(z, ż) = sgn(ik) becomes

hk+1 = exp

(
−
∣∣∣∣ηkikγ∆t

Q

∣∣∣∣)hk +

(
exp

(
−
∣∣∣∣ηkikγ∆t

Q

∣∣∣∣)− 1

)
sgn(ik) (3.12)

10



3 Modeling of battery cells 3.4 The single particle model

where in addition to the previously defined parameters, γ > 0 tunes the rate of decay for
the hysteresis voltage. The state hk accounts for dynamic hysteresis. By also adding a
memory variable sk, instantaneous hysteresis is accounted for. Let

sk =

{
sgn(ik), |ik| > 0
sk−1 otherwise (3.13)

The full model is represented by

zk+1 = zk − ∆t

Q
ηkik (3.14)

iR1,k+1 = exp

(
∆t

R1C1

)
iR1,k + exp

(
1− ∆t

R1C1

)
ik (3.15)

hk+1 = exp

(
−
∣∣∣∣ηkikγ∆t

Q

∣∣∣∣)hk +

(
exp

(
−
∣∣∣∣ηkikγ∆t

Q

∣∣∣∣)− 1

)
sgn(ik) (3.16)

vk = OCV (zk) +Mhk +M0sk −R1iR1,k −R0ik (3.17)

3.4 The single particle model
The single particle model (SPM) is a physics-based electrochemical model that describes
the dynamics inside a lithium-ion battery on a microscale level [3]. In general, the mi-
croscale models describes the chemical and physical processes that occur in the assumed
homogeneous materials inside the battery. This includes the movement of particles in the
solid material electrodes and in the electrolyte. Here a set of five coupled equations make
up microscale cell models, which describes the following:

1. Charge conservation in the homogeneous solid electrode.

2. Mass conservation in the solid material electrode.

3. Mass conservation in the electrolyte.

4. Charge conservation in the homogeneous electrolyte.

However, the SPM only considers point 2, mass conservation in the homogeneous solid
electrode active material. This is due to the fact that diffusion of lithium ions inside the
solid active material in the electrodes in the cell is the slowest process, and therefore
the dominant dynamics. Thus only the equations predicting this diffusion is used. The
model can be considered relatively simple when compared to other physics-based models,
but it provides a good basis for understanding the dynamics that are present at this level.
Moreover it can be used to make good estimations of the state of charge for an LIB. In
continuous-time, the lithium-ion diffusion equation reads as

11



3 Modeling of battery cells 3.4 The single particle model

∂cs
∂t

= ∇ · (Ds∇cs) (3.18)

which in brief states that the rate of change of lithium concentration in every sample vol-
ume within the homogeneous solid electrode is equal to the total lithium flux density into
that volume. Here cs denotes the lithium concentration, ∇· the divergence operator, ∇ the
gradient operator and Ds is the diffusion coefficient. The subscript s implies that this is in
solid phase [3].

The following presents a finite-volume method for discretizing the diffusion equation
(3.18) [3]. A simplification made here is to consider an electrode as a spherical parti-
cle of the the relevant active material in the electrode. The spherical particle is divided
into shells of equal thickness, similar to the shell-structure of an onion. Then each time
step, the total flux of lithium from one shell to another is computed, and the concentration
of lithium in each shell is updated. This flux is forced into or out of the particle through
the outermost shell by an applied cell current. Assume the following:

• The particle has a radius Rs

• There are Nr shells of equal thickness, thus each shell has thickness dR = Rs/Nr.

• The innermost shell has volume dV1 = 4
3π(dR)3 and an outer surface area Sa1 =

4π(dR)2

• The next shell has volume dV2 = 4
3 (2dR)3 − dV1 and outer surface area Sa2 =

4π(2dR)2

• Following the same pattern yields the nth shell volume dVn = 4
3π(ndR)3− 4

3π((n−
1)dR)3 and surface area San = 4π(ndR)2

The molar flux density N as function of distance r is now discretized by

N = −Ds∇cs = −Ds
∂cs
∂r

≈ −Ds
∆cs
∆r

(3.19)

Thus the flux density each time step in or out from one shell to the next is stated as

Nn ≈ −Ds
cn+1 − cn

dR
(3.20)

A negative Nn corresponds to flux entering the nth shell from the (n + 1)st shell, and a
positive Nn corresponds to flux leaving the nth shell to the (n + 1)st shell. The unit of
this flux density is given in mol m−2s−1. By multiplying each shell’s flux at the shell
boundaries with its surface area, the total rate of lithium movement is obtained in unit
mol s−1, i.e.

Mn = NnSan = −Ds
cn+1 − cn

dR
San (3.21)

12



3 Modeling of battery cells 3.4 The single particle model

Note that an exception for this is the outermost shell, which will be addressed shortly.
The change in in lithium concentration for each of the n − 1 inner shells per time step is
then

∆cn,k =
NnSan −Nn−1San−1

dVn
∆t (3.22)

At the outermost shell an applied flux density j is taken into account. Thus the change in
concentration at the outermost shell is

∆cn,k = j
San∆t

Vn
(3.23)

where the applied flux density j is calculated by

j =
iapp

asFAL
mol m−2s−1 (3.24)

and iapp is the applied cell current in ampere A, as = 3εs
Rs

where εs is the total surface
area of electrode per volume of electrode in the cell. Moreover F is Faraday´s constant,
A [m2] is the cell-current collector area and L [m] is the electrode thickness.

Now state of charge is given by the average concentration of lithium in the electrode. The
average concentration is calculated by the total amount of lithium in an electrode divided
by the total volume of the solid active material in the electrode. For a fully charged battery
the negative electrode has an amount of lithium that is at is maximum allowed limit while
the positive electrode is at its minimum allowed limit. These are limits are respectively
defined as

cnegs,avg/c
neg
s,max = x100%, cposs,avg/c

pos
s,max = y100% (3.25)

For the opposite case, when the negative electrode contains the minimum allowed amount
of lithium, and the positive electrode is at its maximum amount, the notation x0% and y0%
is used. Hence overall cell state of charge z is

z =
cnegs,avg/c

neg
s,max − x0%

x100% − x0%
=

cposs,avg/c
pos
s,max − y0%

y100% − y0%
(3.26)
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4
State estimation

4.1 A modified linear model
To more easily deploy the linear state estimators to be presented in this chapter, the linear
Thevenin model in section 3.2 was modified. The new model includes the assumptions of
Gaussian white process-noise wk and measurement-noise vk, which captures the model
uncertainty and measurement noise, respectively. Secondly, the output equation has to be
slightly modified to arrive at the measurement equation yk. The modified model is given
by

xk+1 = Axk +Buk +wk

yk = Cxk +Duk + vk

(4.1)

where

xk =

[
zk

iR1,k

]
, uk = ik

A =

[
1 0

0 exp
(

∆t
R1C1

)]
, B =

[
−∆t

Q

exp
(
1− ∆t

R1C1

)]

is unchanged. In order to produce a linear measurement equation yk, a given OCV-curve
of the relevant cell can be approximated by the linear function

OCV (zk) ≈ azk + b (4.2)
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4 State estimation 4.2 Luenberger observer

such that the original output equation

vk = OCV (zk)−R1iR1,k −R0ik (4.3)

is approximated as

v̂k = (azk + b)−R1iR1,k −R0ik (4.4)

implying that

yk = v̂k − b, C =
[
a −R1

]
, D = −R0

Note that this approximation can be particularly inaccurate for zk < 10%, which is evident
from Figure 4.1.

Figure 4.1: An example of a linear approximation of the OCV-SOC-relationship [4].

4.2 Luenberger observer
A widely used state estimator is the Luenberger observer. This observer uses a determinis-
tic linear model to predict the model dynamics, where the predictions are corrected at each
time step by feeding back output error in a closed loop [22]. The block diagram setup of
the Luenberger observer is shown in Figure 4.2. For the Luenberger oberver, the model
(4.5) is here used without the inclusion of process-noise wk and measurement-noise vk is
used, i.e.

xk+1 = Axk +Buk

yk = Cxk +Duk

(4.5)
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4 State estimation 4.3 Linear Kalman filter

Figure 4.2: A block diagram of the Luenberger observer [5].

The observer provides an estimate x̂k of the system states at time step k according to the
update law

x̂k+1 = Ax̂k +Buk + L(yk − ŷk)

ŷk = Cx̂k +Duk

(4.6)

where yk is the actual measurement, ŷk is the estimated output and the differene between
the two is the output error. The matrix L is the observer feedback gain, which is designed
by pole placement. In the discrete time domain, this involves placing the eigenvalues of
the matrix (A − LC) arbitrarily inside the unit circle in the complex plane to ensure a
state estimation error e = x− x̂ that converges towards zero. Note that for this statement
to hold, the pair (A,C) must be observable [23]. The process of pole placement is not
a straight forward task, and the problem is dual to the task of pole placement for state
feedback controllers. Generally poles placed closer to the origin yield a fast response of the
observer, whereas poles placed closer to the edge of the unit circle yield a slower response.
The former placement results in a observer that is a lot more to prone to amplification of
noise, and the latter tends to attenuate noisy measurements [24].

4.3 Linear Kalman filter
Another popular state estimation algorithm is the linear Kalman filter (LKF). The LKF is a
linear quadratic estimator that realizes the optimal solution to the Bayesian filter, under the
assumptions of Guassian distributed uncertainties. The algorithm solves this probabilistic
sequential inference problem in a recursive manner. The linear Kalman filter recursive
algorithm is summarized below [4].
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4 State estimation 4.4 Moving Horizon Estimator

Algorithm 1 The linear Kalman filter

Linear state-space model:

xk = Axk−1 +Buk−1 +wk−1

yk = Cxk +Duk + vk

Initialize: For k = 0

x̂+
0 = E[x0]

Σ+
x̄,0 = E[(x0 − x̂+

0 )(x0 − x̂+
0 )

T ]

Computation: For k = 1,2, ... end calculate:

Prediction part

A priori estimate: x̂−
k = Ax̂+

k−1 +Buk−1

A priori state error-covariance matrix: Σ−
x̄,k = AΣ+

x̄,k−1A
T +Σw̄

Output estimate: ŷk = Cx̂−
k +Duk

Correction part

Kalman gain matrix: Lk = Σ−
x̄,kC

T
k [CkΣ

−
x̄,kC

T
k +Σv̄︸ ︷︷ ︸

Σỹ,k

]−1

A posteriori estimate: x̂+
k = Ax̂−

k + Lk(yk − ŷk)

A posteriori state error-covariance matrix: Σ+
x̄,k = Σ−

x̄,k − LkΣỹ,kL
T
k

4.4 Moving Horizon Estimator

The Moving Horizon Estimator (MHE) is a powerful state estimator that has obtained in-
creasing success over the recent years. The MHE takes into consideration a series of noisy
measurements over a fixed horizon N backwards in time, and solves an optimization prob-
lem that yields an optimal state estimate each time step k. The optimization problem can
be formulated as a linear, quadratic or nonlinear program with constraints, implying that
the MHE is able to handle both linear and nonlinear systems as well as system constraints
during state estimation. Obtaining the solution of the optimization problem requires the
use of a mathematical programming solver each iteration, which can be be a computation-
ally expensive task [25].

Typically the optimization problem is formulated as a minimization of a cost function,
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4 State estimation 4.4 Moving Horizon Estimator

which in the literature come in different variants for the SOC estimation problem. Using
the model (4.5), one such formulation based on [26] and [27] is

min
x̂

∥x̂k−N+1 − x̄k−N+1∥2P−1
k−N+1

+

k∑
i=k−N+1

∥yi −Cx̂i −Dui∥2R−1

+

k−1∑
i=k−N+1

||x̂i+1 −Ax̂i −Bui||2Q−1

s.t.

x̄k−N given

yk−N+i given; i = 1, ..., N

uk−N+i given; i = 1, ..., N

x̂k−N+i+1 = Ax̂k−N+i +Buk−N+i; i = 0, ..., N − 1

0 < ẑk < 1

(4.7)

Here y and u are sets of the N last voltage and current measurements respectively, and
the solution x̂ is the optimal state estimates over the horizon N . Thus the optimal state
estimate at time step k is the last element in the solution, denoted x̂k. The intuition be-
hind the formulation above is that one wants to minimize the deviation between measured
and estimated output in the second term in the cost function, while also minimizing the
deviation between the optimized state estimate and the propagated system dynamics in the
third term. The desired penalization of these deviations are set by the constant weighting
matrices R−1 and Q−1, which is set to be the inverse of the covariance matrices R and Q
for the measurement and process noise respectively, as in [27] and [28].

The first term in the cost function is the arrival cost. This cost is an approximation that
takes into account the information received up until i = k − N + 1, i.e. prior to the
start of the current estimation horizon. Here the deviation between the initial estimate
x̂k−N+1 in the current horizon and the a priori estimate x̄k−N+1 is penalized with the
inverse covariance matrix P−1

k−N+1 of the a priori estimate. The a priori estimate in the
current horizon is the optimal estimate computed at k−N +1 time steps back. Using this
approximation of arrival cost is termed the filtering formulation of the MHE. In practice
this can be implemented by running Kalman filter covariance matrix updates in parallel
with the operation of the MHE, and then store the covariances for use N time steps later
[28].

In [27], it is shown that if no constraints are active, the MHE and the Kalman filter are
the same for linear systems. This is because the arrival cost approximation mentioned
above becomes exact. There exist other MHE formulations, such as the smoothing formu-
lation, which approximates the arrival cost slightly differently. This will however not be
investigated in this thesis.
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4 State estimation 4.5 Extended Kalman filter

4.5 Extended Kalman filter
The linear Kalman filter that was presented in section 4.3 is only applicable to linear sys-
tems. In this section the extended Kalman filter (EKF) is implemented, which applies to
nonlinear systems. Therefore, the EKF is here realized in combination with the nonlinear
ESC model in (3.3) with additive Gaussian distributed measurement noise vk and process
noise wk. The general form of the nonlinear ESC model can be stated as

xk+1 = f(xk,uk,wk)

yk = g(xk,uk,vk)
(4.8)

The working principle of the EKF is similar to that of the LKF in terms of the prediction
and correction steps, but due to the nonlinearites of the system, a linearization is per-
formed each time step. The EKF makes two simplifying assumptions in order to apply
the sequential probabilistic inference equations to a nonlinear model. Firstly, the approx-
imation E[f(x)] ≈ f(E[x]) is used, which essentially states that the expected value of a
nonlinear function f evaluated at the unknown state x is approximately the same as the
nonlinear function f evalutated in the expected value of the unknown state x. This is
strictly exact only for linear systems, and therefore the approximation becomes worse the
more nonlinear the function f is. Secondly, when computing the covariance matrices, EKF
only uses a first-order Taylor series expansion when linearizing the system around the cur-
rent operating point, and truncates the higher order terms. This also a reason that the EKF
performs better for systems with mild nonlinearities. The EKF algorithm based on [29]
and [4] used here is summarized below.
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Algorithm 2 The extended Kalman filter

Nonlinear state-space model:

xk = f(xk−1,uk−1,wk−1)

yk = g(xk,uk,vk)

where wk are vk are independent samples from Gaussian distributions with means w̄ and
v̄ and covariance matrices Σw̄ and Σv̄.

Define linearization:

Âk =
∂f(xk,uk,wk)

∂xk

∣∣∣∣
xk=x̂+

k

, B̂k =
∂f(xk,uk,wk)

∂wk

∣∣∣∣
wk=w̄k

Ĉk =
∂g(xk,uk,vk)

∂xk

∣∣∣∣
xk=x̂−

k

, D̂k =
∂g(xk,uk,vk)

∂vk

∣∣∣∣
vk=v̄k

Initialize: For k = 0

x̂+
0 = E[x0]

Σ+
x̄,0 = E[(x0 − x̂+

0 )(x0 − x̂+
0 )

T ]

Computation: For k = 1,2, ... end, calculate:

Prediction part

A priori estimate: x̂−
k = f(x̂+

k−1,uk−1, w̄k−1)

A priori state error-covariance matrix: Σ−
x̄,k = Âk−1Σ

+
x̄,k−1Â

T
k−1+B̂k−1Σw̄B̂T

k−1

Output estimate: ŷ−
k = g(x̂−

k ,uk, v̄k)

Correction part

Kalman gain matrix: Lk = Σ−
x̄,kĈ

T
k [ĈkΣ

−
x̄,kĈ

T
k + D̂kΣv̄D̂

T
k︸ ︷︷ ︸

≈Σỹ,k

]−1

A posteriori estimate: x̂+
k = Ax̂−

k + Lk(yk − ŷk)

A posteriori state error-covariance matrix: Σ+
x̄,k = Σ−

x̄,k − LkΣỹ,kL
T
k
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4.6 Sigma-Point Kalman filter
The simplifying assumptions in the EKF causes reduced estimation accuracy for highly
nonlinear systems, which merits the use of the Sigma-Point Kalman filter (SPKF) [30].
The SPKF substitutes local linearization with evaluation of the statistical distribution of the
nonlinear system output by deterministic sampling [22]. More specifically the SPKF esti-
mates the mean and variance of the outputs of a nonlinear function using a small, fixed set
of function evaluations called sigma-points. For this purpose, a set of input sigma-points
are carefully chosen such that the mean and covariance of the input points coincide with
the mean x̄ and the covariance Σx̄ of the random variable that is normally used as input to
the nonlinear function. The input sigma-points are then propagated through the nonlinear
function individually, yielding a transformed set of output sigma-points [4]. This trans-
formation of sigma-points is referred to as the unscented transform [6]. In Figure 4.3 the
difference between the actual sampling of the mean and variance of a transformed random
variable x is shown and compared to that of the EKF and SPKF transformations. Notice
how accurate the SPKF transformation is compared to the EKF transformation.

Figure 4.3: Illustration of the difference between actual sampling, linearized EKF transformation
and the SPKF uscented transformation, in that order [6].

For details of how the different steps in the algorithm is derived, consult [4] for a com-
prehensive deduction. For the purpose of reasonable simplicity, a summary based on the
same reference is provided below.
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Algorithm 3 The Sigma-Point Kalman filter

Nonlinear state-space model:

xk = f(xk−1,uk−1,wk−1)

yk = g(xk,uk,vk)

where wk are vk are independent samples from Gaussian distributions with means w̄
and v̄ and covariance matrices Σw̄ and Σv̄.

Define:

xa
k = [xT

k ,w
T
k ,v

T
k ]

T , X a
k = [(X x

k )
T , (Xw

k )T , (X v
k )

T ]T (sigma-points)
p = 2× dim (xa

k)

Initialize: For k = 0

x̂+
0 = E[x0], Σ+

x̄,0 = E[(x0 − x̂+
0 )(x0 − x̂+

0 )
T ]

x̂a,+
0 = E[xa

0 ] = [(x̂+
0 )

T , w̄, v̄]T

Σa,+
x̃,0 = E[(xa

0 − x̂a,+
0 )(xa

0 − x̂a,+
0 )T ] = diag(Σ+

x̃,0,Σw̃,Σṽ)

Computation: For k = 1,2, ... end, calculate:

Prediction part

A priori estimate:

X a,+
k−1 =

{
x̂a,+
k−1, x̂a,+

k−1 + γ
√
Σa,+

x̂,k−1 , x̂a,+
k−1 − γ

√
Σa,+

x̃,k−1

}
X x,−

k,i = f
(
X x,+

k−1,i′uk−1,Xw,+
k−1,i

)
x̂−
k =

p∑
i=0

α
(m)
i X x,−

k,i

A priori state error-covariance matrix:

X̃ x,−
k,i = X x,−

k,i − x̂−
k

Σ−
x̃,k =

p∑
i=0

α
(c)
i

(
X̃ x,−

k,i

)(
X̃ x,−

k,i

)T
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Output estimate:

Yk,i = h
(
X x,−

k,i ,uk,X v,+
k−1,i

)
ŷk =

p∑
i=0

α
(m)
i Yk,i

Correction part

Kalman gain matrix:

Ỹk,i = Yk,i − ŷk

Σỹ,k =

p∑
i=0

α
(c)
i

(
Ỹk,i

)(
Ỹk,i

)T

Σ−
x̃x̃,k =

p∑
i=0

α
(c)
i

(
X̃ x,−

k,i

)(
Ỹk,i

)T

Lk = Σ−
x̃ȳ,kΣ

−1
ỹ,k

A posteriori estimate:

x̂+
k = Ax̂−

k + Lk(yk − ŷk)

A posteriori state error-covariance matrix:

Σ+
x̄,k = Σ−

x̄,k − LkΣỹ,kL
T
k
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5.1 An identified linear LIB model

For testing and simulation of the linear state estimators, a first order Thevenin cell model
identified in [7] was used. The model is of a 18650 LiNiMnCoO2/Graphite lithium-ion
cell, with specifications given in Table 5.1.

Type
Nominal
voltage

Nominal
capacity

Upper/lower
cut-off voltage Max. current Usage temperature

18650 3.6 V 2.0 Ah 2.5 V/4.2V 22 A (at 25 ◦C) 0-50 ◦C

Table 5.1: LIB cell specifications.

In the aforementioned paper, a dynamic stress test (DST) was performed on several sam-
ples of the relevant LIB cell for model parameter identification. The DST is designed by
the US Advanced Battery Consortium (USABC), and it is a dynamic discharge simulation
that can be scaled to meet the maximum performance specifications of a battery. It is as
a dynamic load current profile that has both discharge and charge steps of different am-
plitudes, as can be seen in Figure 5.1. Furthermore, a low-current OCV-SOC relationship
for the given cell was found experimentally. This OCV-curve was approximated to a lin-
ear function in order to fit the modified linear model derived in section 4.1 by using the
function polyfit in MATLAB.

In [7] they used the least squares (LS) algorithm to arrive at the identified Thevenin model
parameters in Table 5.2.
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Figure 5.1: DST profile at 25 ◦C [7].

R0(Ω) R1(Ω) C1(F ) RMS modelling error

0.0710 0.0222 1201.4 6.257e-4

Table 5.2: Identified Thevenin model paramters.

5.2 Test dataset
For performance evaluation of the linear state estimators with the identified linear model,
the Federal Urban Driving Schedule (FUDS) was used. This load current profile has been,
along with the DST profile in the last section, collected from the open dataset posted
by the CALCE Battery Research Group online [7]. The FUDS is a more dynamic load
current profile compared to the DST, and it is based on the cell-level current demand of a
industry standard electric vehicle [31]. In particular, the FUDS associated with an ambient
temperature of 25 ◦C, sampling time of 1s and an accurate inital SOC of 80% is used in
the test simulations. In Figure 5.2 the FUDS current profile is shown.
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Figure 5.2: 6 cycles of the FUDS current profile.
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5.3 Nonlinear estimation
The previous sections in this chapter have elaborated on methods of linear SOC estimation,
which have been the main focus of this thesis. In order to get an introduction to nonlinear
SOC estimation, a useful open source MATLAB toolbox and additional code handed out
by Dr. Gregory L. Plett in [4] have been used. Here both the EKF and the SPKF have been
simulated with use of the nonlinear ESC-model introduced in section 3.3. The toolbox
contains six identified LIB cell models that fits the ESC-model and their corresponding
OCV-SOC relationships for different temperatures ranging from - 25 ◦C to 45 ◦C. More-
over, empirical partial derivatives of the OCV-SOC curves have been provided, in order to
readily simulate the EKF. In this thesis the E2 type cell with nonimal capacity of 5.16 Ah
in the toolbox was used for performance evaluation of the nonlinear state estimators by
applying 16 cycles of the provided Urban Dynamometer Driving Schedule (UDDS) load
profile in Figure 5.3. The available specifications of the E2 type cell and the parameters of
the corresponding indentified ESC-model are listed in Table 5.3.
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Figure 5.3: 16 cycles of the UDDS current profile.

R0(Ω) R1(Ω) C1(F ) M(V ) M0(V ) η γ

0.0313 0.0071 256.6 0.0805 0 0.9776 106.2

Table 5.3: Available identified parameters for the ESC-model based on the E2 cell at an ambient
temperature of 5 ◦C.

5.4 Single particle model simulation
Based on the equations for the physics-based single particle model in section 3.4, a simula-
tion of the surface concentration of lithium in an electrode was performed. This was done
purely to learn and observe the slow diffusion of lithium in an LIB, rather than employing
this type of model for SOC estimation at this time. The simulation was performed with
MATLAB code provided in the same reference in which the model itself was derived [3].
Simulation constants were defined as follows

• Spherical electrode particle radius: Rs = 10−6 [m]
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• Maximum allowed concentration: cmax = 12000 [mol
m3 ]

• Initial lithium concentration: c0 = 9500 [mol
m3 ]

• Initial lithium flux density: j0 =
5000Rs

3

1800 [mol
m2s ]

In the simulation the applied initial flux was held constant for 30 minutes, followed by no
applied flux for 1 hour, followed by the negative of the initial flux for another 30 minutes,
and at last no applied flux. Thus a discharge-rest-charge-rest lithium flux profile was
applied.

5.5 Battery pack simulation
At a certain point the battery pack as a whole must be monitored and controlled in a BMS.
A battery pack can consist of several interconnected cells that are assembled in modules,
where the modules are interconnected to form packs [4]. In [4] parallel connected mod-
ules (PCM) and series connected modules (SCM) are mentioned. The PCM battery packs
have parallel connected cells that are assembled in modules, where the modules are then
connected together in series. The SCM battery packs are the opposite where the cells con-
nected in series in each module, and then the modules are connected in parallel. Here the
PCM configuration of a battery pack was simulated with MATLAB code provided in [4] to
observe some of the minor variations in each individual module and cell that one in reality
can expect. The cell model used here is also based on the E2 type cell in the ESC toolbox,
with an ambient temperature of 25 ◦C.

For the PCM pack, total current and voltage is calculated by

ik =

Np∑
j=1

vfj,k
R0,j

− vk

Np∑
j=1

1

R0,j
(5.1)

vk =

∑Np

j=1
vfj,k

R0,j
− ik∑Np

j=1
1

R0,j

(5.2)

where vfj,k is the fixed voltage of cell j at timestep k, R0,j is the resistance of cell j and
Np is the number of modules. In the code random, small variations were added to each
resistance R0,j , the initial SOC of each cell and the total capacity of each cell to simulate
the fact that no cell is exactly identical. The random SOC was placed in the range 30%
- 70%, the random resistance in the range 5mΩ - 25mΩ and the random capacity in the
range 4.5 Ah - 5.5 Ah. The load current was set to 10C, which is unrealistically high,
but it serves to demonstrate some important aspects. 1C is the relative measure of current
that explains how much constant current is needed to completely discharge the battery in
1 hour [3].
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5 Experimental methodology 5.6 EV simulation

5.6 EV simulation
For electric vehicle (EV) applications it is essential to simulate the dynamics of the vehicle
and asses the demanded performance from the battery pack before design and implemen-
tation of the battery pack. In [4] a comprehensive collection of MATLAB code for running
EV simulations are given, and this was used here to perform EV simulations with the men-
tioned UDDS cycle. The simulation strategy is shown in Figure 5.4.

Figure 5.4: Simulation strategy of EV [4].

The simulation yields the desired and actual speed and acceleration of the EV during one
UDDS cycle, and the corresponding battery power, current and SOC.
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5 Experimental methodology 5.7 State estimator implementation

5.7 State estimator implementation

5.7.1 Luenberger observer, KF and MHE
The linear state estimators were all implemented and simulated in MATLAB using their
respective algorithms and the identified Thevenin model. The Luenberger observer and the
KF was implemented straight forward in a MATLAB script, whereas the MHE was im-
plemented using the CasADi optimization toolbox in MATLAB [32]. The utilized solver
here was the nonlinear ’IPOPT’ solver in the toolbox.

For the Luenberger observer, the final tuning of the gain matrix L was obtained from the
pole placement p = [0.99, 0.98]. For the KF and the MHE, two different tunings were
implemented and tested. First, the covariance matrices (Σw̃ and Σṽ for the KF, Q and
R for the MHE) were set to be same as the covariance of the simulated white Gaussian
process and measurement noise, which is often a good initial guess in practice. Thereafter
the process noise covariance matrix of the two was reduced by a factor of 100, implying
that the model should be trusted more than the measurements, to see if better results could
be obtained.

Assuming that the process noise is current sensor noise and the measurement noise is
voltage sensor noise, the applied random, white process noise and measurement noise had
a standard deviation of 20 mA and 20 mV, respectively. This is a reasonable representation
of the uncertainties found in actual applications according to [33], which states that most
commercial sensors used in Battery Management Systems lie between 0.1 % and 1 %
of the measurement range in measurement error. The constant values for the covariance
matrices and the inital value for the state-error covariance matrix were then set to

Σw̃ = Q =

[
0.022 0
0 0.022

]
, Σṽ = R = 0.022.

Σx̃,0 = P0 =

[
0.1 0
0 0.1

] (5.3)

Simulations of the estimators were then run with 6 cycles of the FUDS as input, with a
sampling time of 1s. The ground truth in the simulations for the linear estimators was
computed by the Coloumb counting method, i.e. by simulating the SOC state zk without
the addition of simulated measurement noise.

5.7.2 EKF and SPKF
The EKF and SPKF were simulated with the provided MATLAB code from [4] and the
UDDS load current profile as input. Here the true initial SOC of the simulated E2 cell was
100 %, and the covariance matrices were set to
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5 Experimental methodology 5.7.2 EKF and SPKF

Σw̃ =

[
0.2 0
0 0.2

]
, Σṽ = 0.2.

Σx̃,0 =

[
1 0
0 1

] (5.4)

The applied UDDS load profile had a total of 16 cycles stretched over approximately 11.3
hours, and the simulations were run with a sampling time of 1s. The ambient temperature
chosen for the simulation was 5 ◦C to assess the estimation accuracy for conditions where
nonlinear hysteresis is a significant contribution factor to the cell terminal voltage [4]. For
these simulations the ground truth was provided by the toolbox.
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6
Results

6.1 Linear state estimators
In Figure 6.1 the approximation of the OCV-SOC relationship for the 18650 cell at 25 ◦C
can be observed. The resulting estimated SOC from the simulations using this approx-
imation and the initial tuning of the covariance matrices can be seen in Figure 6.2. In
Figure 6.3 the estimation error for the different linear estimators are plotted using the ini-
tial tuning. Observe that the 3σ bounds from the LKF are included, which is the bound for
which one with 99.7 % confidence can say that the true state will lay within [4].
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Figure 6.1: Linear approximation of the OCV-SOC relationship for the 18650 cell.
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Figure 6.2: Estimated SOC for the three linear state estimators plotted against true SOC for the
FUDS cycles.
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Figure 6.3: Estimation error plotted with the KF 3σ bounds for the FUDS cycles.

Figure 6.4 illustrates the obtained SOC estimates during the FUDS cycles after tuning of
the covariance matrices for the KF and MHE, where the corresponding estimation error is
plotted in Figure 6.5. Also here the 3σ bounds for the LKF are included in the estimation
error plot.
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Figure 6.4: Estimated SOC for the three linear state estimators plotted against true SOC for the
FUDS cycles after tuning.
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Figure 6.5: Estimation error plotted with the KF 3σ bounds for the FUDS cycles after tuning.

6.2 Nonlinear state estimators

The SOC estimation results acquired from the nonlinear estimators are presented in this
section. In Figure 6.6 the SOC estimates produced by the EKF during the UDDS cycles are
shown, with the corresponding estimation error plotted in Figure 6.7. The EKF 3σ bounds
are included here as well for both plots. In Figure 6.8 the SOC estimates computed by the
SPKF during the UDDS cycles can be observed, with the following estimation error and
SPKF bounds in Figure 6.9. At the end of the section in Table 6.1 the performance of the
SOC estimators are summarized.
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Figure 6.6: EKF estimated SOC plotted against the true SOC with the 3σ bounds.
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Figure 6.7: EKF SOC estimation error plotted with the EKF 3σ bounds.
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Figure 6.8: SPKF estimated SOC plotted against the true SOC with the 3σ bounds.
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6 Results 6.3 Single particle model simulation
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Figure 6.9: SPKF SOC estimation error plotted with the SPKF 3σ bounds.

RMSE MAE
Avg. computation
time per iteration

Luenberger observer 2.49 % 1.83 % 2.95e-6 s

KF 2.92 % 2.27 % 2.90e-5 s

MHE (N = 10) 2.60 % 1.95 % 9.95e-3 s

KF (tuned) 2.53 % 1.88 % 2.90e-5 s

MHE (N = 10, tuned) 2.53 % 1.88 % 9.95e-3 s

MHE (N = 20, tuned) 2.53 % 1.86 % 10.47e-3 s

MHE (N = 30, tuned) 2.52 % 1.85 % 10.88e-3 s

MHE (N = 100, tuned) 2.52 % 1.81 % 13.35e-3 s

EKF 1.53 % 1.40 % 1.77e-4 s

SPKF 0.84 % 0.61 % 2.51e-4 s

Table 6.1: Summary of performance metrics for the state estimators.

6.3 Single particle model simulation
In Figure 6.10 the lithium-ion surface concentration of an assumed spherical homogeneous
electrode particle during the previously specified simulation is observed.
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6 Results 6.4 Battery pack simulation
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Figure 6.10: The surface concentration of lithium-ions on a spherical electrode particle.

6.4 Battery pack simulation
The results from the battery pack simulations can be observed in this section. Figure 6.11
shows the individual cell currents in each module in a PCM configured battery pack. The
resulting indivdual cell SOC in each module are then plotted in Figure 6.12.

0 500 1000 1500 2000 2500 3000 3500 4000

Time [s]

-100

0

100

C
u
rr

e
n
t 

[A
]

Cells in PCM 1

Cell 1

Cell 2

Cell 3

0 500 1000 1500 2000 2500 3000 3500 4000

Time [s]

-50

0

50

C
u

rr
e
n

t 
[A

]

Cells in PCM 2

Cell 1

Cell 2

Cell 3

0 500 1000 1500 2000 2500 3000 3500 4000

Time [s]

-100

0

100

C
u

rr
e
n
t 
[A

]

Cells in PCM 3

Cell 1

Cell 2

Cell 3

Figure 6.11: The cell currents in each PCM.
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Figure 6.12: The SOC for each cell in each PCM.

6.5 EV simulation
In this section the EV simulation results are presented. From Figure 6.13 the speed and
acceleration data of the EV can be seen troughout one cycle of the UDDS. In Figure 6.14
the battery data during the cycle is shown, where the power denotes the delivered power
of the battery, and the current is the load current drawn by the electric motor and gener-
ated by regenerative breaking [3]. The SOC of the battery pack during the cycle is also
plotted.
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Figure 6.13: The desired and actual speed and acceleration of the EV during one UDDS cycle.
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Figure 6.14: The SOC, load current and delivered power of the battery in the EV during one UDDS
cycle.
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7
Discussion

7.1 Results of SOC estimation
The performance of the linear state estimators were overall reasonably good. They all
achieved both a Root-Mean-Square error (RMSE) and a Mean-Absolute error (MAE) in
SOC estimation below 3 % when compared to the true SOC. The Luenberger observer per-
formed very well relative to its simple implementation and function, and actually slightly
outperformed both the KF and the MHE in terms of total estimation accuracy, which was
surprising. Due to the noisy measurements, it was necessary to place the poles very close
to the edge of the unit circle in the complex plane to attenuate noise, which caused a slow
convergence of the observer. From Figure 6.2 it can be seen that the Luenberger observer
requires about 200s to converge to the proximity of the true SOC, which is much slower
than the KF and the MHE. In Table 6.1, the simplicity of the Luenberger observer is re-
flected in the average required computation time per iteration, which was lowest of all the
estimators. Although the performance of all linear state estimators were relatively good
when simulated with a constant ambient temperature, they might not suffice for real-world
applications where temperature variations are significant and increased estimation error is
expected.

When comparing the results in Figure 6.2 and Figure 6.4, it is clear that the KF performed
better after tuning, while the performance of the MHE was practically the same after tun-
ing. What is interesting, is the very similar SOC estimation results and trajectory for the
KF and the MHE in Figure 6.4. This may be explained by the choice of the arrival cost
in the MHE, which is based on Kalman filter state-error covariance updates. Referring to
section 4.4 where it was stated that MHE and KF coincide for unconstrained linear sys-
tems, it is observed in Figure 6.4 that the inequality constraints are inactive because the
SOC lies between 0 and 1 the entire simulation. This is part of the reason for the simi-
lar results. However, since the model is included as an equality constraint over the entire
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7 Discussion 7.1 Results of SOC estimation

horizon, it would be reasonable to think that more accurate or smoothed estimates could
be obtained when compared to the KF. A possible explanation for this is that the model
itself as an equality constraint does not provide enough information to improve upon the
estimates of the KF. This is possibly verified by the fact an increase in horizon length N
for the linear MHE yielded practically the same estimation results except from an increase
in computation time. It should be noted here that a faster computation time could have
been achieved for the MHE, since the use of a nonlinear solver was unnecessary for the
given QP problem. However, a QP solver was not readily available at the time. Based on
the performance results, there is no other incentive to use the MHE over the KF for linear
systems given the difference in computational cost, other than the fact that the linear MHE
can handle system contraints.

The nonlinear estimators performed better in the simulations purely based on the per-
formance metrics in Table 6.1. The SPKF performed best of all the estimators in terms
estimation accuracy, yielding an RMS estimation error below 1 %. Although the cell
chemistry, the models and the conditions for the simulations of the linear and nonlinear
estimators are different, a reasonable comparison can be made. Considering the nonlin-
ear estimators were simulated with an ambient temperature of 5 ◦C where for instance
nonlinear hysteresis is significant, there is reason to believe that a similar ambient tem-
perature would increase the estimation error for the linear estimators, since hysteresis is
not included in the linear model. Furthermore, it is clear that the linear approximation of
the OCV-SOC curve is simply too inaccurate to able to compete with the more accurate
nonlinear OCV-SOC curves of the nonlinear estimators. This is especially true for an SOC
below 10 % and above 90 %, which is evident from Figure 6.1.

Results received from the SPM simulations have provided an understanding of the slow
diffusion processes inside lithium-ion batteries. They explain why it can take hours before
the diffusion voltages of a battery relaxes entirely, as shown in Figure 6.10. Moreover
the simulation has demonstrated the possibilities of using physics-based models for even
more accurate, microscale state predictions of internal LIB states. The complexity of these
models are however evident from the model derivation and the corresponding simple sim-
ulation, which implies that the ECMs provide simpler and more comprehensible battery
models.

The additional results obtained from the battery pack simulations have not been discussed
in the light of state estimation. They have however highlighted some important aspects
to consider when performing state estimation, such as the non-uniqueness in each cell as
illustrated in Figure 6.11 and Figure 6.12. Here it is understood that cell-level battery
management is important for a BMS, since two equal cells can behave notably different.
Moreover, the plots show some of the automatic cell balancing that occur in PCM config-
ured battery packs as the individual cell currents and SOCs converge to the same rest value
towards the end of the simulation.
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7 Discussion 7.2 Limitations

The EV simulations demonstrated their usefulness with the fact that they can simulate
the required performance from a battery pack as seen in Figure 6.14. This has not been
directly linked with LIB state estimation, but it should be pointed out that before designing
battery packs and corresponding LIB state estimators, the dynamics and requirements of
the area of application should be simulated and investigated to ensure that there is a good fit
between each part. For instance, for slow discharge and charge processes the MHE is better
suited than for the faster ones due to extra required computation time. EV simulations can
therefore be used to tailor the battery pack and state estimators to the intended area of
application, which can be of interest in further work with LIB state estimation.

7.2 Limitations
Limitations of the study conducted in thesis are a few. Ideally, the comparison of linear and
nonlinear estimation methods should have been performed on the same battery cell under
similar conditions. However, due to the short time span and broad scope of the thesis, this
was deemed unrealistic. Therefore pre-identified models were used, and focus was put on
learning and laying a good foundation for further work on state estimation for LIBs in the
master thesis. Another thing to note is that more, different types of load current profiles
should have been applied to the cells at different ambient temperatures to get a broader
understanding of the performance of the state estimators, as these conditions are of great
significance in state estimation for LIBs.

7.3 Further work
Based on the comparisons presented in this thesis, further work on state estimation for
lithium-ion batteries should focus on nonlinear models and estimators. The SPKF demon-
strated very accurate SOC estimations even at low ambient temperatures, and should there-
fore be investigated further. Moreover, despite performing equally well as the Luenberger
observer and the KF at a greater computational cost, the MHE should also be studied
closer. However, this time it should be implemented with a nonlinar model. The reason
for this is that in literature [34] [35], the nonlinear MHE tends to outperform the SPK-
F/UKF for LIB state estimation. With the addition of system constraint handling as well,
improvement on the preservation of the safety and integrity of the battery can be made,
which is principal for a BMS.

The CasADi toolbox offers a great framework for implementation and efficient solving of
nonlinear optimization problems, and is available for MATLAB, C++ and Python. Another
possibility here is to use CasADi in combination with acados, which is an open-source
software package that provides fast nonlinear optimization solvers for embedded systems
as well as an interface to CasADi-written code [36]. An interesting approach would then
be to investigate the feasibility of implementing Moving Horizon estimation for the possi-
bly resource-limited systems that are used in a BMS.
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7 Discussion 7.3 Further work

Further work should also ideally include more internal states such as SOH and SOAP in
the state estimation problem, as these are important to monitor and control in a BMS. The
models can potentially also include descriptions of how temperature affects the battery,
which could result in even more accurate estimates.
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8
Conclusion

The performance evaluation and comparison of the different ECM-based state estimators
indicated that the SPKF performed the best with an RMSE and MAE below 1 %. There-
after the EKF performed well given its non-ideal operating conditions with an RMSE and
MAE below 2 %. The linear state estimators all achieved achieved a RMSE and MAE
below 3 %, although this was under milder conditions than those of the nonlinear estima-
tors. Here the Luenberger observer performed well relative to its simple implementation
and low computational cost. That being said, it is expected that estimation error increases
for the linear state estimators with more realistic operating conditions such as low tem-
peratures and temperature variations in general. Therefore further work should focus on
using nonlinear models with the SPKF or similar filters and the MHE. In literature, the
MHE demonstrated great performance in LIB state estimation with nonlinear models, and
should therefore also be studied closer. At last, other important internal states such as SOH
and SOAP in the LIB should be included in the state estimation problem to provide a more
complete solution.
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