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ABSTRACT

Rapid medical assistance can mean the difference between life and death in many
cases. For this reason, it is essential that emergency response vehicles reach the
scene of an incident as quickly as possible to provide patients with timely treat-
ment. Unfortunately, recent years have seen a rise in the average response time to
incidents in Oslo, which could have severe consequences. As the Emergency Medi-
cal Communication Centre in Oslo and Akershus faces limited resources, reducing
ambulance response time has become a crucial challenge.

This thesis aims to address this challenge by researching and developing tools to
improve the management and utilization of existing resources. The optimization
involves strategically allocating ambulances to specific ambulance base stations so
that they are more likely to be close to upcoming incidents. Simulations using real-
world historic incidents in the area of Oslo and Akershus can evaluate different
allocations through the resulting response times. The simulations are used to
heuristically find good allocations using artificial intelligence methods, specifically,
an evolutionary approach that takes advantage of the genetic algorithm’s ability
to search in a great number of possible allocations.

The primary contribution of this thesis is the adaptation of the optimization
method to consider the different urgencies of incidents. Correctly classifying the
acute incidents is important since their response time is critical and resources
should prioritize those incidents over less critical ones. Additionally, contributions
include the improvement of both the evolutionary optimization algorithm and the
accuracy of the simulation. By addressing the important challenge of reducing
ambulance response time, this research has the potential to enhance emergency
medical services and improve patient outcomes.
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SAMMENDRAG

Mange hendelser som krever assistanse fra medisinsk personell er tidskritiske. Det
er derfor nødvendig at utrykningskjøretøy når frem til hendelsesstedet så raskt som
mulig for å gi pasienten den behandlingen de trenger. De siste årene har den gjen-
nomsnittlige responstiden ved akutte hendelser i Oslo økt, noe som kan ha store
konsekvenser. Med begrensede ressurser har Akuttmedisinsk kommunikasjonssen-
tral i Oslo og Akershus en viktig utfordring med det å redusere ambulansens
responstid.

Denne masteroppgaven vil forsøke å bistå i denne utfordringen, ved å undersøke og
utvikle verktøy som kan forbedre utnyttelsen av eksisterende ressurser. Optimalis-
eringen gjøres ved å strategisk allokere ambulanser til spesifikke ambulansebases-
tasjoner slik at de har større sannsynlighet for å være i nærheten av kommende
hendelser. Simuleringer ved hjelp av et sett med historiske hendelser i Oslo og Ak-
ershus kan evaluere ulike allokeringer gjennom den resulterende gjennomsnittlige
responstiden fra simuleringen, som brukes til å heuristisk finne gode allokeringer
ved hjelp av metoder innenfor kunstig intelligens. Spesielt brukes en evolusjonær
tilnærming som utnytter den genetiske algoritmens evne til å søke i det store
antallet mulige allokeringer.

Hovedbidraget til denne oppgaven er tilpasningen av optimaliseringsmetoden til
å håndtere alvorsgraden av hendelser. Riktig klassifisering av akutte hendelser er
viktig, da responstiden er kritisk, og ressurser bør prioriteres til disse hendelsene
fremfor mindre kritiske hendelser. Videre inkluderer bidragene forbedring av både
den evolusjonære optimaliseringsalgoritmen og simuleringens nøyaktighet.
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CHAPTER

ONE

INTRODUCTION

This chapter gives an introduction to the motivation of the project, the general
problem, and how the research and contributions aims to improve the current
solution. Specifically, the research goals and research method of this thesis will be
elaborated upon.

1.1 Motivation
Different incidents require varying levels of urgency in medical response, and in this
thesis the incidents are categorized into three levels: acute, urgent, and regular.
For acute incidents, the national goal in Norway is that ambulances arrive within
12 minutes in 90 percent of the incidents in urban areas and within 25 minutes
in rural areas. Unfortunately, this goal has not been met by any of the regions in
Norway, and emergency medical response time has been getting worse in recent
years (Helsedirektoratet 2022). This thesis focuses on the notion of response time,
which is defined as the time from an emergency call being received to when the
ambulance arrives at the incident location. A typical emergency response timeline
of relevant events can be seen in Figure 1.1.1.

Figure 1.1.1: Emergency response timeline with the response time duration
marked in black nodes.

1



2 CHAPTER 1. INTRODUCTION

Acquiring more resources like ambulances, base station facilities, and employees is
not only expensive, but a long and potentially difficult political process. The Nor-
wegian Board of Health Supervision reported that the service of the Emergency
Medical Communication Centre (EMCC) in Oslo was not acceptable, partly be-
cause of staffing and workload issues (Helsetilsynet 2022). This makes the EMCC
interested in exploring other options to improve their system. An optimized allo-
cation of ambulances can help to utilize the resources more efficiently, which can
lower the workload for both the EMCC and the ambulance employees. Reducing
response time for acute incidents ultimately saves lives and reduces the probability
of lasting injuries from an incident, which evidently is the end goal.

Another reason which the supervision report claimed was a factor in lowering the
quality of service of the EMCC, was the inaccuracy in urgency level that the op-
erators assign to an incident when receiving an emergency call. The operators
use a triage system to categorize incidents by severity level, but many non-acute
incidents are reportedly classified as acute as a safety measure. As a consequence,
unnecessary dispatching of ambulances occurs, which results in the waste of valu-
able resources that could have been more useful in upcoming incidents. The ripple
effect of incorrectly assigning urgency levels can be difficult to observe, so research-
ing this phenomenon could give valuable insight into the benefits of improving the
triage system.

Finally, an improvement in emergency vehicle response time is not only of interest
to the city of Oslo, it is a common need among other parts of the world. Other
regions may have different challenges, but any research or contribution is valuable.

1.2 Research Goals

The overarching goal of this thesis is to investigate potential solutions for improv-
ing the service provided by emergency response vehicles, with a specific focus on
reducing response times, particularly for incidents with acute urgency. The the-
sis builds upon several theses done on the same domain, outlined in Section 1.3.
Among other tools, a simulation of the real system and an optimization model
for ambulance allocations were developed in these theses, which are utilized and
expanded upon in this work. While the focus is on achieving tangible results,
the goal is also to expand knowledge in this area and explore the applicability of
bio-inspired artificial methods. To achieve this, the thesis will concentrate on four
research goals:

• Goal 1: The first goal aims to improve simulation realism to accurately re-
flect real-world conditions, including travel time calculation, EMCC dispatch
behaviour, and incident types. By enhancing the simulation, the optimiza-
tion solutions and research outcomes become more relevant.

• Goal 2: The second goal is to explore different dispatch strategies that
could improve the average response time. Choosing which ambulance to
dispatch in various situations can be challenging and has significant impacts
on response times. One especially interesting strategy that will be examined
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is implementing demand prediction to guide the EMCC in selecting the best
ambulance to dispatch for each incident.

• Goal 3: The third goal is to study the urgency aspect of incidents. This
will mainly involve observing the impact on response times from reducing the
number of non-acute incidents assigned as acute as a precautionary measure.
It will also be interesting to examine this effect under different dispatch
strategies.

• Goal 4: The fourth goal aims to reduce ambulance response times to inci-
dents by optimizing the allocation of ambulances to base stations. This will
involve enhancing the algorithm used to optimize the allocation of ambu-
lances.

1.3 Research Method
The focus of this thesis is to propose and experiment with potential improvements
to the simulated emergency medical service (EMS) system itself, as well as the
allocation optimization. To ensure the relevance of the proposed improvements,
related works will be used as a source of inspiration and validation. The research
domain encompasses both the simulation of the EMS system and optimization
through bio-inspired artificial intelligence methods.

The research will be done by improving on and using work done in three previous
theses. Hermansen (2021) focuses its research on predicting future demand based
on historic data of incidents. This data, received from OUS, contains incidents
from 2015 to 2019 in the area of Oslo and Akershus. The dataset was also used
in the other theses, where Van De Weijer and Owren (2022) continues to focus
on demand prediction, while Bekkevold and Schjølberg (2022) focuses their re-
search on allocation optimization using a simulation to evaluate the EMS system.
Both the same dataset, and the optimization and simulation system developed in
Bekkevold and Schjølberg (2022), will be used for research in this thesis.

1.4 Thesis Structure
This thesis is structured to provide a comprehensive understanding of the proposed
solutions and research goals. Chapter 2 will provide the necessary background
information on different aspects of the problem. Chapter 3 will focus on the
theory of relevant methods that are used. Chapter 4 will focus on the related
work done in the literature. The architecture of the proposed solutions and the
results of the research goals are studied in Chapter 5, while Chapter 6 concludes
with a summary of the thesis, including contributions, limitations and suggestions
for further work.
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CHAPTER

TWO

BACKGROUND

This chapter will give further knowledge required to understand the problem do-
main and the solution space. First, an explanation of the EMS of Oslo and Aker-
shus will be presented. The service is the basis for the simulation, and is an integral
part of the thesis. Second, the dataset will be explained and analysed. Lastly, the
possible solutions for the ambulance allocation problem will be explained.

It is important to note that the dataset used in this research is from 2015 to 2019,
which means that this thesis will only present and use the elements of the EMS
system during that period. The changes that have been made since the recording
of the data have not been taken into account, in order to ensure an accurate
simulation and evaluation of the system with potential improvements.

2.1 EMS

The EMS of Oslo and Akershus is the largest EMS provider in Norway, serving a
population of 1.5 million people. The EMS of Oslo and Akershus includes various
departments and entities, such as the ambulance department and the EMCC,
which work together to provide medical assistance to the population. According
to a report from 2014, the EMCC received up to 500,000 calls, which is expected
to have increased at a similar rate to the reported increase in incidents over the
past years. These calls to the EMCC result in approximately 150,000 incident
operations every year (OUH 2022a) (OUH 2022b).

2.1.1 EMCC

The EMCC is responsible for taking emergency calls from the public, evaluating
what resources are necessary for the incident, and dispatching ambulances or other
response vehicles. The EMCC in Oslo and Akershus is located at Ullevål Hospital,
and one of their offices is shown in Figure 2.1.1.

5
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Figure 2.1.1: EMCC office environment at Ullevål Hospital (NRK 2022).

2.1.2 Ambulance Department

The ambulance department is responsible for all the ambulances and ambulance
personnel required to respond to the incidents in Oslo and Akershus. They have
a total of 45 ambulances that are able to respond to all types of incidents in
operation during the day, where 29 of them are also operational during the night
shift. The department and its ambulances are currently distributed across 15 base
stations in 5 different regions.

2.1.3 Triage

When emergency calls are received by the EMCC from the public, the operators
answering the call make decisions about the resources that should be deployed.
The incidents can range from not requiring any assistance to needing expert med-
ical help to arrive as soon as possible. The urgency of the incident is sorted into
three different categories, usually referred to as a triage. In Oslo and Akershus,
the EMCC uses a triage system with the following levels:

• Acute (A): Immediate dispatch and call-out. It was described to the author
that ambulance employees should drop everything in their hands and rush
to the ambulance. The ambulance will use sirens and lights for this type of
incident.

• Urgent (H): Dispatching should have no delay, but no need to run. The
ambulance will not use sirens and lights.

• Regular (V): No particular urgency. These events are split into planned
and unplanned events, and are not prioritized. Planned events include mis-
sions like transporting patients between hospitals.
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Assigning the appropriate level of urgency to an incident is not always straightfor-
ward for EMCC operators, as callers may be unable to provide clear information
due to their state of distress or misunderstanding of the situation. As mentioned
in Section 1.1, the EMCC is frequently dealing with a large number of calls which
causes the operators to make decisions with a limited amount of time, leading to
a lack of information being processed and a higher chance of human error. Several
additional reasons for assignment inaccuracy are presented in Ivanov et al. (2021).
Consequently, operators often err on the side of caution and assign a higher level
of urgency than necessary, resulting in what is referred to as ’over-triage’. When
the EMCC decides to dispatch an ambulance to an incident that in fact does not
require immediate assistance, the ambulance might leave an area where another
actual acute incident occurs. However, if the first incident was correctly assigned
as a non-acute incident, the EMCC could dispatch an ambulance located fur-
ther away from the incident, but in an area with lower demand or abundance of
ambulances.

2.1.4 Base Stations

The ambulance department controls 45 ambulances during daytime operations
and 29 ambulances during the night that are stationed across five areas within the
responsibility area of the EMS of Oslo and Akershus. In total, there are 15 base
stations where the ambulances and working personnel are stationed when they are
inactive between incident operations. The base stations function as a place for the
ambulance employees to rest between missions, but also to preserve and maintain
the ambulance equipment in garages sheltered from rain and snow. A base station
typically hosts two or three ambulances with associated personnel, but the most
central stations have a larger capacity. An overview of the different base stations
can be seen in Table 2.1.1 which includes their position in the Universal Transverse
Mercator (UTM) coordinate format with zone 33.

Name Region Easting Northing
Asker West 244478 6641283
Bærum West 248901 6648585
Smestad West 259127 6652543
Ullevål Mid 261774 6652003
Sentrum Mid 262948 6649765
Brobekk East 267085 6651035
Lørenskog East 275840 6650643
Nittedal East 270631 6663254
Aurskog-Høland East 307577 6642937
Ullensaker North 286455 6671754
Eidsvoll North 287187 6692448
Nes North 304199 6669959
Prinsdal South 265048 6640259
Northern Follo South 266827 6627037
Southern Follo South 259265 6621267

Table 2.1.1: Base stations in Oslo and Akershus.
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In addition to the 15 base stations, it was decided to establish a set of standby
points to decrease response time in certain areas. Since building and maintaining
completely new base stations is expensive, it was deemed more resource efficient
to utilize these simple standby points which can easily be moved if it is discovered
that they are more useful elsewhere. The dynamic standby points are typically
positioned at gas stations which provide necessary personnel facilities in addition
to being located close to main road junctions. The 4 additional standby points
give a total of 19 stations, and are presented in Table 2.1.2.

Name Region Easting Northing
Bekkestua West 253295 6650494
Grorud East 270248 6654139
Skedsmokorset East 279154 6657789
Ryen South 265439 6646945

Table 2.1.2: Standby points used in Oslo and Akershus.

2.1.5 Hospitals

Hospitals are significant locations frequently visited by ambulances, both as a
destination for transporting patients and as a starting point after completing in-
cident missions. The EMS of Oslo and Akershus is responsible for eleven hospital
locations, as listed in Table 2.1.3, some of which are located with a base station.

Name Region Easting Northing
Bærum Hospital West 248901 6648585
Asker and Bærum emergency ward West 248901 6648585
Radiumhospitalet West 257732 6651563
Diakonhjemmet Hospital West 260024 6652122
Rikshospitalet West 260789 6653451
Ullevål Hospital Mid 261774 6652003
Lovisenberg Diaconal Hospital Mid 262348 6651667
Storgata emergency ward Mid 262948 6649765
Aker emergency ward East 265200 6652210
Aker Hospital East 265200 6652210
Akershus university hospital East 276381 6650642
Nedre Romerike emergency ward East 278942 6652867
Ski Hospital South 266359 6628267
Follo emergency ward South 266359 6628267

Table 2.1.3: Hospitals in Oslo and Akershus.

All the relevant infrastructure that the EMCC and the ambulances deals with are
presented in Figure 2.1.2, which shows the base stations and the hospitals within
the EMS of Oslo and Akershus. Generally, the infrastructure is more concentrated
around highly populated areas, as one might expect.
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Figure 2.1.2: Map of EMS infrastructure in Oslo and Akershus.

2.2 Datasets

The dataset, referred to as incidents-original in this thesis, was obtained from
OUS in 2021 and comprises 754 811 incidents mainly from 2015-2018, with some
incidents from 2019. The incident locations were anonymized by OUS using a
1km x 1km grid for research purposes. The dataset includes several columns, or
features, with the most significant ones presented in Table 2.2.1.

Feature Description
Urgency The urgency level that the EMCC assigned the incident
Resource type The type of vehicle that was dispatched
Call time Time when the EMCC was called about the incident
Notified time Time when the ambulance was notified of the incident
Dispatch time Time when the ambulance left its location
Arrival time Time when the ambulance arrived at the incident
Departure time Time when the ambulance left the scene of the incident
Hospital time Time when the ambulance arrived at the hospital
Available time Time when the ambulance became available again
X coordinate UTM-33 easting value for grid coordinate of incident
Y coordinate UTM-33 northing value for grid coordinate of incident

Table 2.2.1: Incident dataset features with description. All time features are
timestamps with both the date and the time.
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The dataset has been processed similarly to what has already been done in previous
theses, but with minor changes. Optional size reducing steps of processing include:

• Filter years: Only keep incidents that happened in years that are complete
(2015-2018).

• Filter regions: Incidents that are not within the response area of Oslo and
Akershus are removed.

• Filter erroneous timestamps: Incidents that have obvious timestamp
errors are removed.

• Filter dispatch types: Do not include incidents that were responded to
by a special unit.

• Filter urgency: Only include incidents that are either acute or urgent.

• Aggregate concurrent incidents: When multiple ambulances respond to
an incident, there are two rows. These are merged into one, keeping count
of the demand.

In addition to filtering, some unimportant feature columns for the incidents have
been removed, while others have been converted to a more useful and understand-
able format. A couple of alternate versions of the dataset has been created as a
result of processing. The main processed version, incidents-processed, is used for
data analysis as well as the baseline for other versions. The processing steps of
incidents-processed are outlined in Figure 2.2.1.

The incidents-processed dataset contains a large number of incidents over several
years, which is not suitable for the simulation since it would take an excessive
amount of time to simulate all incidents. For this reason only incidents in week
32 between 7.8.2017 and 14.8.2017 were chosen to be used for most simulations
in this thesis. This week of incidents is denoted incidents-simulation. A separate
version for simulations, incidents-simulation-33, was also created for comparison,
containing incidents from week 33 in 2017. These versions are not processed any
differently than incidents-processed, other than the time frame of incidents.

Figure 2.2.1: Processing steps resulting in incidents-processed.
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Bekkevold and Schjølberg (2022) filtered out regular incidents in the data prepara-
tion for the simulation model because the dispatch behavior needed for a realistic
simulation was considered outside the scope of their thesis. However, this led to a
significant reduction in the number of incidents, which in turn reduced the likeli-
hood of the EMCC facing difficult decisions regarding which ambulance to dispatch
since there were likely many available. The reduced number of incidents is deemed
unrealistic and reduces the potential to observe improvements from new methods.
Therefore, regular incidents have been retained in the incidents-processed dataset
for analysis and subsequently in the incidents-simulation dataset for simulating
the system.

An additional version of the dataset, incidents-processed-predict, was also created.
This version is almost identical to incidents-processed, but the regular incidents
have in fact been removed. This was done for the purpose of predicting demand,
where regular planned incidents would interfere with the prediction. This dataset
is therefore essentially what was used as the main dataset in Bekkevold and Schjøl-
berg (2022), which subsequently gave a smaller set of incidents for their simulation
dataset incidents-simulation-B&S. A summary of all dataset versions is displayed
in Table 2.2.2.

Dataset version Incidents Description
incidents-original 754 811 Raw dataset
incidents-processed 443 805 Main processed dataset
incidents-processed-predict 368 068 Regular incidents removed
incidents-simulation 2 005 Only week 32 in 2017
incidents-simulation-33 2 064 Only week 33 in 2017
incidents-simulation-B&S 1 625 Regular incidents removed

Table 2.2.2: Incident dataset versions with number of incidents and description.

2.3 Data Analysis
In this thesis it is interesting to analyse the response time, especially in combina-
tion with the urgency of the incidents. Additionally, spatial and temporal trends
are analyzed in order to understand how to best predict incident demand.

2.3.1 Urgency

The urgency distribution of the incidents in the dataset is shown in Figure 2.3.1,
where it can be observed that the distribution for incidents-simulation is almost
identical to incidents-processed which shows that the simulation will not use inci-
dents that differ from the norm in the data.

Figure 2.3.1 also reveals that there are approximately the same number of acute in-
cidents as there are urgent incidents. However, as previously mentioned in Section
1.1, many incidents are assigned as acute as a precautionary measure. Accord-
ing to a contact person from OUS, the percentage of acute incidents that were
later understood to actually be acute was as low as 20-25%, and the percentage of
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incidents where a quick response time would make a difference in the patient’s out-
come were even lower. Figure 2.3.2 shows the estimated real urgency distribution
of the incidents when 75% of the acute incidents are changed to be urgent.

(a) incidents-processed (b) incidents-simulation

Figure 2.3.1: Urgency distribution for acute(A), urgent(H), and regular(V) in-
cidents.

(a) incidents-processed (b) incidents-simulation

Figure 2.3.2: Urgency distribution for acute(A), urgent(H), and regular(V) in-
cidents in incidents-processed without over-triage.

2.3.2 Response Time

The incidents with different urgencies naturally have different response times.
Table 2.3.1 presents the average, median, and 90th percentile of response times
for acute, urgent, and regular incidents.

Average Median 90%-percentile
Acute 11.57 9.9 18.75
Urgent 24.30 19.5 42.08
Regular 85.58 56.0 190.46

Table 2.3.1: Response time statistics for acute, urgent, and regular incidents.
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Analyzing response time for acute and urgent incidents further in Figure 2.3.3, it
is evident that the response times of acute incidents are more concentrated than
those of urgent incidents. A response time limit of 120 minutes was set so that the
outliers would not make the difference between the the graphs of acute and urgent
incidents unreadable. The reason for the long response times of outliers remains
unknown, but when analyzing one specific incident, there were not an exceptional
number of incidents in the same time period causing a long queue. It is therefore
reasonable to assume incorrect timestamps as the most likely cause. The longest
response times for acute incidents reach up to 30 hours.

(a) Acute incidents (b) Urgent incidents

Figure 2.3.3: Histograms with kernel density estimation functions of response
time under 120 minutes for acute and urgent incidents in incidents-processed.

2.3.3 Temporal and Spatial Trends

In the second goal in section 1.2, an implementation of demand prediction for an
improved dispatch strategy was highlighted as promising. To get better insight
of how to best predict incident demand, an analysis of both when and where the
incidents occur has been done on the incidents-processed-predict dataset.

Figure 2.3.4: Total incidents per day from 2015 to 2018 in the incidents-
processed-predict dataset. The orange line shows the general trend.
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Temporal trends can provide valuable insights into patterns of behavior that may
affect ambulance response demand. Figure 2.3.4 shows the total number of inci-
dents per day in the whole dataset from 2015 to 2018, indicating that the number
of incidents is generally on the rise. This is likely due to population growth.

Figure 2.3.5 shows the average count of incidents per day over a year, which reveals
certain temporal patterns. The figure highlights that there are spikes in incident
counts on New Year’s Eve and Constitution Day on the 17th of May, which are
public holidays and often involve celebrations that may lead to a higher number of
incidents. Additionally, the figure shows that there are slightly more incidents in
the winter months, which could be attributed to various factors such as weather
conditions and the holiday season.

Figure 2.3.5: Average number of incidents per day of the year. The averages are
from 2015 to 2018 in the incidents-processed-predict dataset.

Figure 2.3.6 displays the average incident counts per hour for each weekday, illus-
trating the variability of incident occurrences across weekdays and weekends. The
weekend days differ from the weekdays by having more incidents at night, which
is possibly due to increased social activity during those hours, such as parties and
nightlife. Additionally, the weekends have fewer incidents during the daytime,
which could be a result of people mostly staying at home during that time. Nev-
ertheless, there is a general trend of a peak in incidents during midday, gradually
decreasing towards the evening.

Figure 2.3.6: Average incident counts per hour for each weekday in the incidents-
processed-predict dataset.
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For the demand prediction to be useful in the dispatch decisions, it was necessary
to employ a relatively high temporal resolution, which means that predictions
are made for a small time period. Given the significant hourly difference in de-
mand during a day shown in Figure 2.3.6, predicting demand per hour might be
appropriate. This will however cause the data to become quite sparse.

In addition to predicting when incidents will occur, it is useful to know in which
areas they might occur as well. Spatial analysis is a powerful tool for understanding
trends in incident demand across different geographical areas. As shown in Figure
2.3.7 there have been more incidents in highly populated areas like the center of
Oslo. Figure 2.3.7b shows all incidents that occurred in the same time period as
incidents-simulation, and it is evident that the sparsity of incident data increases
when the time period is decreased to a week. The data becomes even sparser if
one considers the predicted demand within single grid cells, making it challenging
to create meaningful predictions.

(a) All (b) Week 32, 2017

Figure 2.3.7: Heatmaps showing total incidents per grid. Grids with no incidents
in the entire incidents-processed-predict dataset are outlined with a border. Note
that the two sub-figures have different color scales.

One possible solution to this sparsity is to group the individual grids into larger
spatial areas. Bekkevold and Schjølberg (2022) divided the grids into responsibil-
ity areas for all the base stations using K-means clustering, and these areas were
deemed appropriate for helping with the sparsity of incident counts. The responsi-
bility areas are displayed in Figure 2.3.8, and a heatmap of incident counts across
all responsibility areas within one hour is presented in the Figure 2.3.8b.
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(a) Base station responsibility areas (b) Incident heatmap

Figure 2.3.8: Base station responsibility areas and heatmap showing total inci-
dents per base station for the hour 11:00-12:00, 11.08.2017.

2.4 Allocation Problem

Optimizing ambulance allocation in order to reduce response time to incidents
involves determining the optimal number of ambulances that should be distributed
to different base stations, in order to cover areas most effectively. However, this
problem quickly becomes challenging when the number of ambulances and base
stations increase, due to the vast number of possible solutions.

2.4.1 Representation

To better understand the problem at hand, allocations can be represented in a
more visually coherent way. One option which is shown in Equation 2.1, is to
represent the ambulances and base stations as symbols in a string. Here, the
number of stars between two bars represent the number of ambulances in a base
station. Two subsequent bars in the string means that that base station is empty.
Other than making sure the sequence of symbols start and end with a bar, the
sequence can be reordered in any possible way to create another valid allocation.
Since the ambulance department deals with both a day shift and a night shift, a
solution will contain one allocation for the day shift and another allocation for the
night shift.

Allocation = | ∗ ∗| ∗ | ∗ ∗ ∗ | ∗ || ∗ ∗ ∗ | ∗ | ∗ ...| (2.1)
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2.4.2 Solution Space

The solution space is the set of all possible solutions to a given problem. The size
of the solution space for the ambulance allocation problem is massive, and can
be calculated by taking the product of the number of ways in which ambulances
can be distributed to each base station. The total number of possible allocations
for each shift can be calculated using Formula 2.2. This formula calculates the
number of possible allocations of n ambulances to k base stations, taking into
account that each base station can have any number of ambulances from 0 to n.
The binomial function is used to calculate the number of ways to choose n − 1
objects out of n + k − 1 objects, which is equivalent to the number of ways to
distribute n indistinguishable objects into k distinguishable containers, allowing
for empty containers.

Nsolutions =

(
n+ k − 1

k − 1

)
=

(n+ k − 1)!

n!(k − 1)!
(2.2)

For the day shift, with 45 ambulances, there are approximately 2.59×1015 possible
allocations. For the night shift, with 29 ambulances, there are approximately
4.57×1012 possible allocations. Since a solution is a combination of the two shifts,
the total number of solutions is therefore approximately (2.59 × 1015) × (4.57 ×
1012) = 1.18× 1028. Thus, exploring the entire solution space is not feasible, and
finding an optimal solution using an exhaustive search algorithm is not practical.
This calculation matches the analysis done by Bekkevold and Schjølberg (2022).

2.4.3 Software Tools and Hardware

Most of the software tools used for the implementation in this thesis is continued
from the implementation of Bekkevold and Schjølberg (2022).

Java 18 was used for the main components of the implementation, including simu-
lation and optimization. For visualization of the simulation, JavaFX 19 was used,
together with Mapjfx (Meisch 2023). Visualization of an optimization method
used an interface library called matplotlib4j (Nakamura 2023), which uses the
Python library Matplotlib.

Python 3.10 was used for data analysis using the Pandas and Numpy libraries.
Python was also utilized for generating most of the graphs and visualizations in
this thesis, mainly with Matplotlib. Visualizations for map data was made with
tools such as Selenium and Folium. Prediction models was developed with Keras
and Statsmodels.

An open source map tool called Open Street Map (OSM 2023) was used to calcu-
late travel times for the simulation, as explained in Section 5.1.3.3.

The implementation code for the thesis can be found in the GitHub repository at
https://github.com/erikmoh/ambulance-optimization. Since the dataset provided
by OUS contains sensitive data, it is not included in the repository. Most of the
implementation depends on this data.

https://github.com/erikmoh/ambulance-optimization
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2.4.3.1 Hardware

The system on which the implementation was developed and the results were
generated for this thesis had the following specifications:

• Operating System: Windows 10 (64-bit)

• Processor: 11th Gen Intel Core i7-11700K @ 3.60 GHz

• RAM: 32 GB
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This chapter will present methods related to simulation, prediction and optimiza-
tion, which are all important parts of the thesis. The goal of the chapter is to
provide the reader with knowledge and understanding of the methods that are
used in the rest of this thesis.

3.1 Simulation

Simulation is an essential tool in evaluating the performance of EMS systems
without making any changes to the real-world system. By simulating the system,
the response times of the incidents can be calculated, which can be used as an
output to evaluate the system’s performance. Additionally, simulation allows for
experimentation with different system configurations to evaluate the impact of
changes, which may not be feasible or ethical to do on a real EMS system with
observational studies or controlled experiments.

3.1.1 Discrete Event Simulation

Discrete Event Simulation (DES) is a common method used in simulation where
the system is modeled as a sequence of events that occur at specific points in time
Ridler, Andrew J. Mason, and Raith 2022. Each event can modify the state of the
system, such as when an ambulance is dispatched to an incident or when it arrives
at the incident location. To calculate the state of the system at each event, a set
of update equations is used. Equation 3.1 shows how the system state changes as
a result of the event. In this equation, Xt represents the state of the system at
time t, and Ut represents the input at time t. The function f is used to describe
how the system state evolves from one time step to the next.

Xt+1 = f(Xt, Ut) (3.1)

19
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3.1.2 Continuous Simulation

Continuous simulation is another option where the state of the system changes
continuously over time Raczynski 2003. This approach may be used in situations
where events are more difficult to predict and model. The system’s state is calcu-
lated using a set of differential equations, as seen in Equation 3.2. The equation
represents the rate of change of the state of the system, where X is the state of
the system, U is the input or control, and f is a function describing how the state
of the system changes over time.

dX

dt
= f(X,U) (3.2)

In some cases, a combination of both discrete and continuous simulation may be
used to model complex systems that have both discrete events and continuous
changes.

3.2 Prediction
One part of this thesis revolves around predicting future demand for ambulance
services to make better informed decisions about ambulance dispatching. This
section will explain relevant machine learning methods that are used for prediction.

3.2.1 Artificial Neural Network

One common method for prediction is the use of neural networks, which are mod-
els inspired by the structure of the human brain. The biological brain contains
billions of neurons that propagate signals between them in a way that creates
complex cognitive processes. Artificial Neural Networks (ANN) aim to mimic this
propagation of information in a simplified way. ANNs consist of layers of artificial
neurons, and the propagation of information from one neuron to the next is based
on the inputs to the neuron. Each incoming connection to a neuron has a weight
associated with it, which is multiplied by the activation value of the previous neu-
ron. These weighted values are then summed and passed through an activation
function that determines whether the neuron will fire and propagate its output to
the next layer of neurons. The weights of the connections between neurons are
learned through a training process that involves adjusting the weights to minimize
the difference between the predicted output and the target value. This process is
often referred to as backpropagation, where the error at the output layer is prop-
agated backward through the network to update the weights. A simple example
of an ANN is shown in Figure 3.2.1.

3.2.2 Feature Extraction and Selection

Feature extraction and selection are important steps in preparing data for use in
prediction models, including ANNs. Feature extraction is the process of selecting
and transforming relevant features from raw data in order to enhance the perfor-
mance of the model. Giving the prediction model enough features is important to
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Figure 3.2.1: A simple ANN with three input features, one hidden layer, and
one output neuron.

avoid underfitting, which occurs when the model is too simple and fails to capture
the underlying patterns in the data.

Feature selection is to identify the most relevant features to use in the model. By
reducing the number of input variables the risk of overfitting is reduced, and the
model’s performance might improve. Overfitting occurs when the model becomes
too complex and starts to fit to the noise in the data rather than the underlying
patterns. This can lead to poor generalization performance when the model is
applied to new, unseen data.

3.2.3 Regression and Classification

Machine learning models can be used for both regression and classification tasks.
Regression involves predicting a continuous output variable, while classification
involves predicting a categorical output variable. The choice between regression
and classification depends on the nature of the problem being addressed. Regres-
sion is typically used when the goal is to predict a numerical value, such as the
price of a house. On the other hand, classification is used when the goal is to
assign a label to a given input, such as classifying emails as spam or not spam.

3.2.4 Evaluation

Evaluation of model performance means to make sure that the model is making
accurate predictions on new data. One common approach for evaluating models
is to use metrics that quantify how well the model is able to make predictions on
a test dataset.

The mean squared error (MSE) is a widely used metric for evaluating the perfor-
mance of regression models. It quantifies the average of the squared differences
between the predicted output values and the actual values in a dataset. Specifi-
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cally, for each data point, the difference between the predicted output value and
the actual output value is calculated as yi− ŷi, where yi is the actual output value
and ŷi is the predicted output value. This difference is then squared as (yi − ŷi)

2.
Finally, the average of all these squared differences is computed to obtain the
MSE. The formula for MSE can be expressed as:

MSE =
1

n

n∑
i=1

(yi − ŷi)
2 (3.3)

3.2.5 K-fold Cross-validation

In addition to evaluating a model using predictions on a test dataset, it is common
to employ more robust methods such as k-fold cross-validation. In k-fold cross-
validation, the data is split into k equally sized subsets, or folds. The model is
then trained on k − 1 folds and evaluated on the remaining fold. This process
is repeated k times, with each fold used exactly once for evaluation. The results
from the k evaluations are then averaged to provide an estimate of the model’s
performance on new, unseen data. An example is shown in Figure 3.2.2.

Figure 3.2.2: K-fold cross-validation with k=4.

3.2.6 Poisson Regression

In addition to neural networks for prediction, there are several other statistical
and machine learning methods that can be used to model and predict data. One
popular statistical method is the Poisson regression model, which is used to model
count data, such as the number of accidents, emergency room visits, or insurance
claims.

The Poisson regression model estimates the expected count of events based on
one or more predictor variables, assuming that the count data follows a Poisson
distribution Yang and Berdine 2015. The model uses a logarithmic function to
predict the expected count and finds the coefficients that maximize the likelihood
of observing the observed count data.
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3.3 Optimization

As explained in Section 2.4.2, the solution space of possible allocations is too large
to be explored using an exhaustive search algorithm.

Rather than blindly searching through a vast set of solutions, it is often more
efficient to use heuristics in the optimization process. Heuristics involve incor-
porating "rule of thumb" knowledge to guide the search towards better solutions.
One such heuristic is the Genetic Algorithm (GA), which is inspired by the process
of evolution. This algorithm maintains a population of candidate solutions and
evaluates their quality, or fitness, to guide the search process. Based on the eval-
uation, certain solutions are selected to combine into new solutions, while others
are chosen to survive into the next generation. This iterative process continues
until a satisfactory solution is found or another termination condition is met.

3.3.1 Parent Selection

Parent selection is a key aspect of the GA, as it determines which solutions will
be used to create the next generation. There are various methods for selecting
parents, each with its own advantages and disadvantages. One of the commonly
used methods is tournament selection, which involves randomly selecting a small
subset of solutions from the population and selecting the one with the highest
fitness value as a parent. This process is repeated to select a second parent.

One important aspect related to parent selection is the concept of selection pres-
sure. Selection pressure refers to the degree to which fitter individuals are favored
in the selection process. Higher selection pressure gives a stronger advantage to
individuals with higher fitness values, leading to a more exploitative search, while
lower selection pressure allows for greater exploration of the search space. Tour-
nament selection provides a means to adjust the selection pressure by controlling
the tournament size. A larger tournament size increases selection pressure, since
a high quality individual is more likely to be a part of the tournament.

3.3.2 Genetic Operators

The GA works by combining two solutions to create new solutions with potentially
better fitness. This is achieved through two main genetic operators: crossover and
mutation.

Crossover involves selecting two candidate solutions and exchanging some of their
genetic information to create two new solutions. This allows the algorithm to
explore different combinations of good solutions and potentially create better so-
lutions. Mutation, on the other hand, involves randomly changing some part of
a single solution. This is done to introduce diversity into the population and to
prevent the algorithm from getting stuck in local optima.
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3.3.3 Survival Function

The survival function determines which solutions will survive to the next genera-
tion. The survival function can be based on a variety of criteria, such as fitness
score or diversity. One common approach is to use a combination of fitness and
diversity, where solutions with high fitness scores and low similarity to other so-
lutions in the population are more likely to survive.

Another approach is to use elitism, which involves carrying over the best solutions
from the current population to the next generation without any changes. This
ensures that the best solutions are not lost in the search process and can be
further improved upon in future generations.

3.3.4 Diversity

Maintaining diversity in the population is crucial for the GA to work effectively.
If all the solutions in the population are very similar, the algorithm will converge
to a suboptimal solution. One way to maintain diversity is to use Island Model
Genetic Algorithm (IMGA), which utilizes separate subpopulations that evolve
independently. This allows for different parts of the search space to be explored
simultaneously and can increase the chances of finding a good solution.

Another technique employed to maintain diversity in genetic algorithms is crowd-
ing. Crowding is a mechanism utilized in the survivor selection step to preserve the
diversity of solutions within the population and prevent premature convergence
towards local optima. It consists of pairing the offspring to similar solutions in the
population, before selecting one of the solutions in each pair that is carried on into
the next generation, based on a replacement approach. Two main approaches are
Deterministic and Probabilistic crowding, where deterministic crowding always
choose the most fit solution in the pair, while probabilistic crowding chooses a
solution with a probability according to the fitness of the solutions in the pair.
These methods reduces the number of similar solutions in the population.

3.3.5 Parameter Tuning

Like many optimization algorithms, the performance of the GA depends on the
values of several parameters, such as population size, crossover rate, mutation rate,
and selection pressure. Proper tuning of these parameters can greatly improve the
performance of the algorithm. Several methods can be used for parameter tuning,
including grid search and manual tuning. The parameter values could also change
during the search process of the GA.

Grid search involves defining a grid of possible parameter values and exhaustively
evaluating the algorithm’s performance for each combination of parameter values
in the grid. It systematically explores all combinations, making it a brute-force
approach. Grid search is easy to implement and interpret, but it can be compu-
tationally expensive, especially when dealing with a large number of parameters
or a wide range of parameter values.
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Manual tuning involves iteratively adjusting the values of the parameters of an
optimization algorithm based on observation and experimentation. It relies on
personal judgment and domain knowledge to select parameter values that are
expected to improve the algorithm’s performance.

Another way to control a parameter is to automatically modify the value of the
parameter during the search process. This could be done either by adapting the
value based on the performance or diversity of the population, or to change the
parameter value according to the current generation of the GA.

3.3.6 Constraints

In many optimization problems, the search space is limited by constraints that
must be satisfied in addition to finding the optimal solution. The GA can be
extended to handle such constraints through several methods, such as penalty
functions, repair algorithms, and feasibility rules. These methods modify the
genetic operators or the fitness function to ensure that the solutions generated by
the algorithm satisfy the constraints.

3.3.7 Multi-Objective Optimization

In some cases, optimization problems involve multiple conflicting objectives, and
the goal is to find a set of solutions that are optimal with respect to all the objec-
tives. The GA can be extended to handle multi-objective optimization problems
through methods such as Pareto optimization and weighted sum methods. These
methods aim to find a set of solutions that are optimal with respect to a trade-off
between the different objectives.

NSGA-II (Non-dominated Sorting Genetic Algorithm II) is a widely used multi-
objective optimization algorithm that extends the basic GA framework to handle
problems with multiple conflicting objectives. Developed by Deb et al. (2002),
NSGA-II aims to find a set of solutions that represent the optimal trade-off be-
tween the different objectives.

One of the key aspects of NSGA-II is its utilization of Pareto dominance, a concept
that allows for the comparison of individuals in the population based on their
objective values. In NSGA-II, an individual is considered to dominate another
if it is better in at least one objective and not worse in any other objective.
This dominance relationship forms the foundation for identifying non-dominated
solutions, which are the ones that cannot be improved upon in any objective
without sacrificing performance in another objective.

To classify individuals into different fronts based on their dominance relationships,
NSGA-II applies a non-dominated sorting technique. This sorting process results
in a hierarchy of fronts, with the first front containing the non-dominated individ-
uals, followed by subsequent fronts where individuals are dominated by those in
the preceding front. By organizing the population into fronts, NSGA-II is able to
maintain diversity and establish a ranking mechanism for selection.
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In order to ensure a well-distributed set of solutions along the Pareto front, NSGA-
II employs the concept of crowding distance. Crowding distance measures the
density of solutions surrounding an individual in the objective space. Solutions
with larger crowding distances are preferred during the selection process as they
contribute to a better coverage of the front. By considering both dominance and
crowding distance, NSGA-II strikes a balance between exploring diverse regions
of the search space and focusing on promising areas that exhibit high-quality
solutions.
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RELATED WORK

This chapter will explore and discuss work that has been done in relation to the
topics of this thesis. Literature concerning the problem domain of ambulance
location and allocation will be discussed first, before exploring the many options
that have been presented in work related to optimization.

4.1 Problem Domain and Simulation

This section will present literature related to the simulation and some different
available approaches of implementation. It will also cover survivability as an
evaluation metric.

4.1.1 Simulation Approaches

In the domain of emergency management systems and emergency medical re-
sponse, numerous studies have been conducted on ambulance location and alloca-
tion. Many of these studies focus on the coverage provided by ambulance alloca-
tions. For example, Schmid and Doerner (2010) developed a model that considers
time-varying coverage areas. However, coverage-based approaches often struggle
to accurately represent important operational factors such as ambulance availabil-
ity (Zaffar et al. 2016). As a result, simulation methods have been suggested as a
more accurate approach (McCormack and Coates 2015). Simulation models im-
prove accuracy and realism, leading to better results (Yue, Marla, and Krishnan
2021; Henderson and A. Mason 2004). While deterministic models have been com-
mon in the literature, Beraldi and Bruni (2009) notes the increasing prevalence of
probabilistic models, proposing their own stochastic model for emergency service
facility location with demand uncertainty.

Almost all of of the literature related to simulating EMS systems employ a DES as
simulation approach (Ridler, Andrew J. Mason, and Raith 2022). One example is
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presented in Lam et al. (2015), which utilizes a DES to evaluate dynamic alloca-
tion plans in Singapore. Their simulation uses historical emergency calls data to
model when the calls occur, in addition to response delays and travel times. Inter-
estingly, their approach modeled the pre-dispatch delays and the handover delays
from empirical distribution functions based historical data. These delays are in
this thesis referred to as handling time, dispatch time, and hospital time. Zaffar
et al. (2016) utilized a simplified service completion time, estimating weighted av-
erages of on-scene time, travel time, and drop-off time from the data. Kergosien
et al. (2015) mentions that uncertain random delays should not be generated dy-
namically, but rather generated a priori since variance in the results should be
eliminated in order to enable comparisons of changes to the EMS system without
the influence of random factors.

Van Barneveld et al. (2018) notes that historical travel times should not be used
in the simulation since the observed historical times are largely dependent on
the location of the ambulance that responded at the time. They noted that this
location is a result of previous incidents, so an estimation of travel times has
to be used. Zaffar et al. (2016) calculated travel times using the average speed
and the Manhattan distance between specific zones. Other approaches to travel
time calculation include modelling a road network with either deterministic or
stochastic travel times. As mentioned in Ridler, Andrew J. Mason, and Raith
(2022), Andrew James Mason (2013) uses a road network with both deterministic
and temporally dynamic travel times. Ridler, Andrew J. Mason, and Raith (2022)
incorporated a road network from Open Street Map (OSM), an open-source project
for geographic data (OSM 2023), to find all pairs of shortest paths in the network.
This network was subsequently simplified by reducing intermediate nodes, and
saving the network to be used for all simulations. Their implementation included
off-road travel times, which may occur when the incident location is not on a road.
Additionally, the travel speed for an ambulance travelling with lights and sirens
were set to be 43% faster than regular travel speed.

Ridler, Andrew J. Mason, and Raith (2022) mentions that planned transports
of patients may occur in the EMS system, but that most models do not include
these regular incidents. Kergosien et al. (2015) included planned incidents by
making the simulated EMS system handle both emergency requests and patient
transport. They mention that these incidents are generally received dynamically,
but in advance so that they can be scheduled. It is further discussed that some
EMS systems split the ambulances into two groups where one of the groups is
assigned to transporting tasks.

To validate their simulation model, Ridler, Andrew J. Mason, and Raith (2022)
implemented a visualization of the simulation which enabled verification that the
ambulances follow the right order of operations, and generally that the EMS sys-
tem behaves as it should. The simulation model was also compared to a validated
simulation model which gave almost the exact same response times from the same
input data.
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4.1.2 Dispatch Behaviour

The dispatch behavior plays a crucial role in ambulance allocation simulations.
One simplification commonly used is assuming that an ambulance is dispatched
only from its base station. However, it is also common to relax this restriction and
allow dispatch while the ambulance is returning to the base station (Zaffar et al.
2016; McCormack and Coates 2015). Similarly to this relaxation, ambulances can
be considered available for dispatch in other situations. Ridler, Andrew J. Mason,
and Raith (2022) mentions that a common form for this is redispatch, where an
ambulance assigned to a low-priority incident can be redispatched to a new high-
priority incident nearby. In this thesis this operation is referred to as reassigning.
They also mention a second situation which is when the ambulance assigned to a
call can be changed because some new ambulance that is closer to the call has just
become available. A third situation is presented in Van Barneveld et al. (2018),
which is about ambulances that are currently dropping off a patient at a hospital.
In this situation it is evident that the ambulance will become available in the near
future. Their results show that considering these ambulances as available has no
significant impact on response times. This operation is referred to as queuing in
this thesis.

Other more complex dispatching decisions are further expanded upon in Ridler,
Andrew J. Mason, and Raith (2022), who explains that some EMS operators do
not always dispatch the closest ambulance to low priority calls. In some situations
it can be beneficial to dispatch an ambulance that is further away in order to keep
the available ambulances in a preferable state. This desirable state refers to the
preservation of area coverage. Van Barneveld et al. (2018) proposes the notion
of coverage being a reflection of preparedness of the system to respond to future
calls. They then present one common method for increasing the coverage, called
redeployment, which consists of relocating an idle ambulance to an area that
in turn provides the highest expected coverage. This method is closely related
to the maximum expected coverage location problem (MEXCLP) (Daskin 1983).
Coverage can be estimated from several factors, such as the number of available
ambulances within a certain area, and the expected demand for the area.

Another approach of utilizing incident priority and future demand for dispatch
strategies is presented in Bandara, Mayorga, and Albert (2012), who proposes
a solution that incorporates a Markov Decision Process. This decision process
enhances dispatching by taking two levels of incident urgency into account.

Stochastic programming formulations have also been suggested, considering un-
certainty about future emergency demand over two stages (Chun Peng 2020). One
stage considers the probability of covering the demand while minimizing the cost,
and the second stage employs probabilistic constraints that enables control of the
degradation of coverage.

4.1.3 Demand Prediction

Predicting future demand can consist of both spatial and temporal trends. The
resolution of these trends are highly dependent on the domain, and the formal
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definition of what counts as a low or high resolution is nonexistent, as explained in
Van De Weijer and Owren (2022). For the case of predicting ambulance demand,
H. Huang et al. (2019) presents a Poisson Neural Network for predicting daily
demand of the city of Ningbo in China, assuming that the data follows a Poisson
distribution. Another method for demand prediction is proposed in Chen et al.
(2016), which uses ANNs to, among other combinations of resolution, predict
demand for 3-hour periods in 3km x 3km areas. These methods utilizes input
features such as weather, year, and weekday, but also extra generated features
such as weekend and season which can help the methods learn the trends that the
features are related to.

In addition to ANNs, statistical methods for predicting demand has also been
researched. Lam et al. (2015) presents a geographical information system to an-
alyze the spatio-temporal heterogeneity of emergency call volumes. This system
utilizes a statistic, which essentially is a z-score that can facilitate the statistical
test for identifying statistically significant hot and cold spots. Another statistical
method is presented in Zhou and Matteson (2015), who use a spatio-temporal
kernel density estimation to predict hourly demand in Toronto in Canada.

4.1.4 Urgency

When the EMCC operators receive an emergency call, they have to decide on which
urgency in the triage the incident belongs to. This task can be challenging, as
explained in Ivanov et al. (2021) who also proposed using both Natural Language
Processing and Machine Learning methods to improve assigning accuracy.

4.1.5 Survivability

Several studies suggest that survivability is a better evaluation metric than re-
sponse time or coverage alone (Zaffar et al. 2016; Bandara, Mayorga, and Albert
2012). Erkut, Ingolfsson, and Erdoğan (2008) introduced survival functions based
on response time, providing the probability of survival for specific incident types,
particularly cardiac arrests. They argue that response time is important for other
acute incidents as well, and that the probability of recovery decreases gradually
over time, even though these incidents are likely to have different survival func-
tions. This work has been expanded upon by various authors, leading to the
proposal of different measures for assessing survivability.

Knight, Harper, and Smith (2012) proposed slightly different survival functions as
those presented in Erkut, Ingolfsson, and Erdoğan (2008), even though they based
their functions partially on the same research. They also proposed a heterogeneous
approach, using different survival functions for different urgencies. The survival
functions for the lower-priority incidents are step-functions, based on the respective
response time goals. These survival functions have different associated weights, in
order to appropriate the consequences of response time for different urgencies.
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4.2 Optimization
Both coverage and response time optimization problems have been explored using
various techniques. Metaheuristic techniques such as the GA have been commonly
employed. For instance, Aytug and Saydam (2002) implemented two versions of
the GA to solve a MEXCLP. Simulated annealing and Tabu search have also been
suggested as optimization techniques (McCormack and Coates 2015). Addition-
ally, particle swarm optimization has been investigated for ambulance distribution
(Zhang et al. 2022).

4.2.1 GA

In the realm of optimization algorithms, one key aspect that significantly influ-
ences their effectiveness is the representation of solutions. A well-designed repre-
sentation ensures the attainment of feasible solutions without the requirement for
continuous feasibility checks. McCormack and Coates (2015) adopts an encoded
string of genes as the chosen representation for solutions, for optimizing locations
of potential base stations and the ratio of emergency vehicle types at each base
station in addition to the ambulance allocation. This optimization problem re-
quires a more advanced representation than what is needed for the optimization
problem in this thesis.

Diversity preservation in GAs are important for their performance. One method of
preserving diversity is the IMGA as presented in Whitley, Rana, and Heckendorn
(1998). Gozali and Fujimura (2019) proposes a further improvement by a localized
strategy for the migration procedure often seen in IMGAs. Chang, W.-H. Huang,
and Ting (2010) mentions that the applications of GAs for solving combinatorial
problems are often faced with early convergence, and proposes a dynamic diversity
control method to counter this.

Another method for preserving diversity is presented in Mengshoel, Galán, and de
Dios (2014) who explored an adaptive generalized crowding for GAs. In addition
to having a scaling factor to influence the replacement rule, they proposed an
approach where this scaling factor is adapted according to the diversity of the
population. They also explored a self adaptive method where the scaling factor
is a part of the representation of the solution, and in turn is a part of the search
process.

4.2.2 Multi-Objective Optimization

Multi-Objective Optimization is a commonly utilized method when faced with
multiple objectives. One application for this is presented in Olivos and Caceres
(2022), optimizing mean response time, maximum response time, and uncovered
demand of the EMS system of Antofagasta in Chile. They incorporate a Pareto
set of efficient solutions.

Knight, Harper, and Smith (2012) mentions that a variety of survival functions for
different urgencies are in essence a multi-objective optimization when weighting
of the survival functions is applied.
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METHOD

This chapter presents the research conducted for the thesis, focusing on the archi-
tecture changes and experiments performed. The structure of the chapter follows
the research goals outlined in Section 1.2. It begins with improvements to the
simulation, followed by the exploration of different dispatch strategies, including
demand prediction. The chapter then examines the impact of more accurate ur-
gency assignment and concludes with enhancements to the optimization method.
An overview of how the simulation and the optimization method interacts is pre-
sented in Figure 5.0.1. For all the simulations done in this chapter, the incidents-
simulation dataset outlined in Section 2.2 is used.

Figure 5.0.1: Overview of the optimization and simulation interaction.
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5.1 Goal 1: Improve Simulation Realism
In the study conducted by Bekkevold and Schjølberg (2022), the developed sim-
ulation demonstrated a comprehensive and reasonably accurate representation.
Notably, the timing of events and the response times in the simulation was similar
to what is reflected in incidents-original. While it is challenging to capture every
intricate detail of the system, there are still improvements that can be made.

5.1.1 Discrete Event Simulation (DES)

DES was chosen in the existing simulation, using a sequence of events that occur at
specific points in time and changing the state based on update equations for each
event. To simulate the continuous nature of ambulance movement, an adaptation
was made to fit the movement into an event based simulation by updating an
ambulance’s location at 5 minute intervals. This adaptation was only used when
an ambulance was travelling back to its base station so that it could respond to
a new nearby incident. In the implementation used in this thesis however, all
ambulance movement utilizes this location update adaptation. Although this very
slightly increases the time it takes to run a simulation, it creates a more realistic
representation of the system which enables the exploration of different dispatch
strategies presented in Section 5.2.

Pseudo code for the main parts of the updated simulation is presented in Algorithm
1. This algorithm includes the update equations for each state, but many details
are not included in the pseudo code since the simulation is too complex.

5.1.2 Regular Incidents

In contrast to the simulation developed by Bekkevold and Schjølberg (2022), this
simulation includes regular incidents that are treated differently from urgent and
acute incidents in some situations. The regular incidents in the dataset are either
planned or unplanned events, but the behaviour of planned incidents is not in-
cluded in the simulation, as with most simulations in the literature Ridler, Andrew
J. Mason, and Raith 2022.

5.1.3 Response Time

The primary objective of the simulation is to evaluate the system with different
allocations using the resulting response times. It is therefore important that the
response times of incidents are accurately simulated and calculated. The evalu-
ation only considers response times for acute and urgent incidents, since regular
incidents are not time-critical and are often planned events. As seen in Figure
1.1.1, the response time tR is a sum of handling time tH , dispatch time tD, and
travel time tT , expressed by Equation 5.1. These times are explained in 5.1.3.1,
5.1.3.2, and 5.1.3.3 respectively. In Algorithm 1, tR is referred to as event.duration
on Line 13, which determines when the Scene Arrival event should happen.

tR = tH + tD + tT (5.1)
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Algorithm 1 Discrete event simulation
1: Input: allocations X, configuration parameters θ
2: Output: list of response times r = (r0, r1, ..., rmax)
3: function Simulate(X, θ)
4: r ← (), C ← ∅, Q← initializeEventQueue()
5: ambulances← initializeAmbulances(X)
6: while Q is not empty do
7: event← Q.pop(), t← event.time
8: ambulances← setCurrentShift(t)
9: switch event do

10: case NewCall
11: ambulances← dispatch(event)
12: if |ambulances| > 0 then
13: Q.add(SceneArrival(t+ event.duration, event))
14: else
15: C.add(event)
16: end if
17: case AbortIncident
18: for each ambulance ∈ event.ambulances do
19: ambulance.flagAsAvailableOrFinishShift()
20: end for
21: CheckQueue(C)

22: case SceneArrival
23: append event.responseTime onto the end of r
24: Q.add(SceneDeparture(t+ event.duration, event))
25: case SceneDeparture
26: for each ambulance ∈ event.ambulances do
27: if ambulance.isTransport then
28: tA ← event.duration
29: Q.add(HospitalDeparture(t+ td, ambulance))
30: else
31: ambulance.flagAsAvailableOrFinishShift()
32: CheckQueue(C)
33: end if
34: end for
35: case HospitalDeparture
36: event.ambulance.flagAsAvailableOrFinishShift()
37: CheckQueue(C)

38: case LocationUpdate
39: event.ambulance.updateLocation()
40: if event.ambulance.isNotAtDestination() then
41: Q.add(LocationUpdate(t+∆t, event.ambulance))
42: end if
43: end while
44: return list of response times r = (r0, r1, ..., rmax)
45: end function
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5.1.3.1 Handling Time

Handling time is the duration between when the EMCC gets called about an
incident to when they call the ambulance that is dispatched. This time is used
by the EMCC operators to listen to the caller describe the situation to get an
understanding of the urgency of the incident among other information that might
need to be relayed to the ambulance personnel. Additionally, the EMCC have to
decide on which ambulance to dispatch, if there are any available.

Handling time is highly situational, as it depends whether the EMCC is over-
loaded with many incident calls, the location and number of currently available
ambulances, and if there are other incidents or events that needs to be prioritized.
In a simulation which is made for experimenting with changes of the allocation,
the status of the available ambulances might be completely different from what
it actually was. So although Notified time is present in the dataset, as shown in
Table 2.2.1, it was decided to not utilize this time to determine the handling time
for each incident. Instead, the median handling times corresponding to the differ-
ent incident urgencies was used, similarly to what was done in Lam et al. (2015)
and Zaffar et al. (2016). Table 5.1.1 shows that the median handling time tHM

for
regular incidents is very long, probably because other incidents were prioritized
at that time, which might not be the case in the simulated state. Since response
times of regular incidents are not used in the evaluation, it was decided to assume
instant handling time for regular incidents.

Urgency Acute Urgent Regular
tHM

2m 5s 6m 5s 36m 26s

Table 5.1.1: Historic median handling times tHM
for incidents in incidents-

processed.

If there are no available ambulances when the EMCC receives a call about an
incident, it is put into a call-queue which is serviced when an ambulance becomes
available. In such cases, the total handling time is the max duration of the queue
time and the historic median time, since it is assumed that the EMCC operators
can do the necessary dispatching work while waiting for an ambulance to become
available. The simulated handling time tH is expressed by the following equation
where tHM

is the historic median time and tQ is the queue time:

tH = max(tHM
, tQ) (5.2)

5.1.3.2 Dispatch Time

Dispatch time is the time it takes from when an ambulance is notified about
an incident to when it starts to move from its current location. In the study
conducted by Bekkevold and Schjølberg (2022), the developed simulation used
historic dispatch times for each incident, utilizing the Dispatch time presented in
Table 2.2.1. Unfortunately, the dispatch times vary a lot, even between incidents
with the same urgency, which creates similar problems as with the handling time
since the cause of the variation is unknown. An ambulance could for example
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already be on the road when notified of an incident, or it could be parked at the
base station with the ambulance personnel needing time to get equipped. This
makes it unreasonable to use the historic dispatch time as part of the simulation.

The new simulation uses the median dispatch times corresponding to the different
incident urgencies shown in Table 5.1.2. These times are only used in situations
when the ambulance is located at a base station, so short dispatch times are not
included in the calculation of the median because it is assumed that the short times
were for ambulances already on the road. When such an ambulance is dispatched,
it is assumed a dispatch time of 60 seconds for the ambulance personnel to process
and plan the response mission. The dispatch time is presented in the following
equation where tDM

is the historic median time:

tD =

{
tDM

, ambulance is at base station
60, otherwise

(5.3)

Urgency Acute Urgent Regular
tDM

1m 28s 2m 2s 3m 43s

Table 5.1.2: Historic median dispatch times tD for incidents in incidents-
processed with dispatch time longer than one minute.

5.1.3.3 Travel Time

Travel time is usually the most influential part of the response time, and is the
time it takes for an ambulance to reach the scene of the incident from its current
location. In addition to being a part of the response time calculation, travel times
are used to simulate how the ambulances travel in all other parts of the system,
for example when an ambulance returns to its base station. It is therefore critical
to have an accurate and robust calculation of travel time.

Bekkevold and Schjølberg (2022) implemented a calculation using a third party
software called Ferd, created by Norkart (2023). This implementation consists
of an origin-destination distance matrix between grids created with this software,
which could be efficiently used in the simulation. There was however some dis-
tances that were lacking, so some assumptions had to be made to create a complete
matrix. Additionally, this implementation did not give any information about the
route that the ambulance takes, which can be very useful, for example for dispatch-
ing available ambulances that are returning to their base station. The general lack
of control with the travel time implementation motivates a new method for simu-
lation.

The main goal of the simulation is to evaluate the system by analyzing the result-
ing response times under various allocation scenarios. The optimization method,
further described in Section 5.4, employs a GA to explore a substantial number of
allocations. Consequently, the simulation model shown in the overview in Figure
5.0.1 must be run many times to evaluate all the allocations explored during this
process, which necessitates fast travel time calculation. For each simulation run
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using incidents-processed-simulation, the travel time between various points are
needed approximately 100,000 times. A pre-calculated distance matrix, similar to
the previous implementation, and argued for in Van Barneveld et al. (2018), is
therefore preferable. For more control, a distance matrix was created using OSM,
similar to what was done in Ridler, Andrew J. Mason, and Raith (2022). OSM
provides geographic data of roads and junctions in a directed network, which in-
cludes information like type of road and speed limits. With this network, which
can be seen in Figure 5.1.1a, it is possible to retrieve the fastest path between two
coordinate points. The speed limits for the different types of roads was adjusted
to more accurately represent real travel times. However, the fact that ambulances
responding to acute incidents often exceed the speed limit is not accounted for,
which creates an important limitation.

(a) All edges and nodes (b) Simplified

Figure 5.1.1: OSM network of roads near Ullevål Stadion in Oslo.

The network is a fully connected graph, so all coordinates are valid to use as
both origin and destination. Initially nodes in the graph are positioned at all
points where a road changes direction, such that a curvy road is split into several
edges. To speed up the calculations a few simplifications of the graph was done,
mainly removing intermediate nodes and other information not needed for the
calculations. The simplified network is shown in 5.1.1b. As mentioned in Section
2.2, the dataset of incidents are distributed on a grid of coordinates, which in
most cases does not have the same coordinate as any node in the OSM graph.
A mapping of grid coordinates to the corresponding closest node was therefore
created. The matrix was then built by using OSM to calculate the travel time
between all combinations from one grid coordinate to another.

In addition to saving the travel time between two coordinates, the new imple-
mentation made it possible to save the route of the fastest path. To avoid an
unnecessarily large matrix, the path coordinates were only saved for every 5 min-
utes of travelling along the path. This time interval is what is currently used for
updating the ambulance positions in the simulation. This new combined matrix
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which includes both travel time and the route coordinates required some adjust-
ment in the simulation, but it replaced an implementation which caused some
inaccuracies with the calculated path. The main part of the matrix creation is
presented in Algorithm 2.

Algorithm 2 Travel Time Path Matrix
1: Input: OSM graph G, grid ids I, grid to nearest node map M
2: Output: dictionary of origin-destination pairs matrix
3: function FindPaths(G, I,M)
4: matrix← ∅
5: for each grida ∈ I do
6: for each gridb ∈ I do
7: if grida = gridb then
8: matrix[grida][gridb]← {”time” : 60, ”route” : []}
9: end if

10: nodea ←M.get(grida)
11: nodeb ←M.get(gridb)
12: routeNodes← G.shortestPath(nodea, nodeb)
13: time, routeGrids← getRouteInfo(routeNodes)
14: matrix[grida][gridb]← {”time” : time, ”route” : routeGrids}
15: end for
16: end for
17: return dictionary of origin-destination pairs matrix
18: end function

With this travel time matrix, the travel time tT for an ambulance a to an incident
i can be expressed as the following equation:

tT = matrix[grida][gridi].time (5.4)

5.1.4 Abort Incident Event

Two of the features shown in Table 2.2.1 are Arrival time and Departure time,
which informs when and how long an ambulance was present at the incident.
However, some of the incidents lack these timestamps, which leads to an assump-
tion that the response to these incident was aborted. This could happen when the
EMCC receives additional information that deems medical assistance unnecessary.
In such cases, all dispatched ambulances, which may have already started moving
towards the incident, are set to available and to return to their base station.

Although it is not shown in Algorithm 1, this event is created in the New Call
event if the relevant timestamps are detected missing from the incident. The
Available time shown in Table 2.2.1 will always be present however, which is used
to determine when the Abort Incident event should happen, which notifies the
dispatched ambulances to abort the incident. The Abort Incident event is shown
on Line 17 in Algorithm 1.
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5.1.5 Scene Events

When Arrival time and Departure time are present for an incident, the Scene
Arrival event is created using the response time explained in Section 5.1.3. The
duration that an ambulance was present at the incident is then used to create the
Scene Departure event, shown on Line 24 in Algorithm 1. If the incident required
patients to be transported to a hospital, a Hospital Departure event is created.
Otherwise, the ambulances are set as available and told to return to their base
station.

5.1.6 Hospital Time

Hospital time is the duration it takes from when an ambulance arrives at a hospital
to when it is ready to leave. This time is used to offload the patient at the hospital
and potentially assist the hospital personnel.

The historical hospital time for each incident could be used, since both Hospital
time and Available time is present in the dataset as shown in Table 2.2.1. In
contrast to handling time and dispatch time, it is assumed that hospital time is
not dependent on the state of the EMS system in a significant way. The historical
hospital time is therefore used.

To determine the time until an ambulance becomes available after offloading a
patient tA, the travel time to the hospital tTH

and the hospital time tP is used, as
shown in Equation 5.5. This time is used when creating the Hospital Departure
event on Line 35 in Algorithm 1.

tA = tTH
+ tP (5.5)

5.1.7 Simulation Accuracy

The simulation proposed in this thesis focuses on being a realistic representation
of how the EMS system would react to incidents, in different states. Since the
state of the simulation is rarely the same as it was for the real EMS system at the
time, historic handling times and dispatch times have been replaced with simulated
times. This has caused the resulting response times from the simulation to deviate
further from the historic response times. Therefore, a comparison between the
two is less informative of the simulation accuracy. However, figure 5.1.2 shows
the historic response times compared to the simulated response times, which still
contains some correlation. The figure has been limited to only show response times
below 100 minutes to enable comparison of the two sets of response times.

The simulated response times was created by a simulation that was run on an allo-
cation called PopulationProportionate. This allocation was created in Bekkevold
and Schjølberg (2022), using the population of the different base station areas
to determine how many ambulances should be at each station. Although not an
optimal allocation, as will be shown in Section 5.4, the allocation was deemed a
viable and realistic allocation for doing experiments with.
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Figure 5.1.2: Historic (blue) and simulated (orange) response times in minutes
for acute and urgent incidents in incidents-simulation.

In addition to observing simulated response times, a visualization of the simulation
was developed by Bekkevold and Schjølberg (2022), similarly to Ridler, Andrew J.
Mason, and Raith (2022), for further validation that the simulated EMS system
behaves correctly. This visualization has been improved to enable easier debugging
and in general give a more clear representation of the system. The visualization
shows where incidents occur and how the ambulances move between base stations,
incident locations, and hospitals when responding to the incidents.

5.2 Goal 2: Explore Dispatch Strategies

When the EMCC receives a call regarding an incident, they are faced with the
decision of which ambulance to dispatch. Typically, the closest available ambu-
lance in terms of travel time to the incident is dispatched. This strategy will
in this thesis be called Fastest. However, there are situations where this may
not be the optimal strategy Bandara, Mayorga, and Albert 2012. This section
will first present two new dispatching enhancements that increases the number of
ambulances available for dispatch, before exploring three coverage-based dispatch
strategies for choosing which ambulance to dispatch. These enhancements and
strategies will then be evaluated by the response times from running simulations.
All simulations in this section is run on the PopulationProportionate allocation.

5.2.1 Dispatching Enhancements

In the simulation presented in Bekkevold and Schjølberg (2022), an enhancement
was implemented to better represent the options that the real EMCC has. This
enhancement involves making ambulances that travel back to their base station
available for dispatching, as present in Zaffar et al. (2016) and McCormack and
Coates (2015). For this to be possible in the simulation, the location of the am-
bulances has to be updated along the way back to the base station. As mentioned
in 5.1.1, the simulation in this thesis updates ambulance position while travelling
to any location, which was done in order to enable the enhancements presented in
this section.
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5.2.1.1 Reassigning Ambulances

The first enhancement is to be able to dispatch ambulances that are already on
their way to another incident, which is presented in Ridler, Andrew J. Mason, and
Raith (2022). The idea being that if an acute incident is called in it should have
higher priority, so an ambulance that is on its way to a less urgent incident can be
reassigned if it is the closest ambulance. Another available ambulance will then
be dispatched for the less urgent incident. This strategy is somewhat complex
since there are two ambulances and two incidents involved in the operation, and
the response time calculation has to use the right pair of ambulance and incident.
Some limitations to when an ambulance can be reassigned are presented:

• Only reassign ambulance if its current incident is of lower urgency than the
new one

• Do not reassign ambulance if it has arrived at its current incident

• Only reassign ambulance if it is the only ambulance responding to its current
incident (for simplification of the implementation)

Figure 5.2.1 shows a situation where the Reassigning enhancement is utilized.
Here, the ambulance is travelling to incident 2, which is a regular incident, when
a new acute incident occurs nearby to the ambulance. Since this ambulance is
the closest ambulance to incident 1, and none of the limitations are in effect, the
ambulance is reassigned from incident 2 to incident 1.

Figure 5.2.1: A situation where the Reassigning enhancement is utilized. Circles
mark incidents, where incident 1 is the new acute urgency that the ambulance
will be reassigned to, and incident 2 is the regular urgency that the ambulance is
currently travelling to. The unnumbered incident is not a part of the reassigning
procedure in this case.



CHAPTER 5. METHOD 43

5.2.1.2 Queuing Incidents

The second enhancement is the introduction of a queuing mechanism for ambu-
lances currently transporting a patient to a hospital, or currently at the hospital.
The Queuing enhancement enables these ambulances to be available for dispatch-
ing by allowing each ambulance to have a queue with a capacity of one incident in
addition to the ongoing patient transport. When a new incident occurs, it can be
added to this queue. Once an ambulance completes its current patient transport,
it can respond to the incident that was added to its queue. Unlike the Reassigning
enhancement, there are no limitations based on urgency, so all incidents can be
queued. This enhancement is used in Van Barneveld et al. (2018).

When a new incident occurs, an ambulance eligible for queuing must reach the
new incident before any other available ambulance in order to be selected. This
means that tA as shown in Equation 5.5 and the subsequent travel time tT to
the new incident, must result in the shortest response time TRQ

compared to
the response time TR of other available ambulances. This is represented by the
following equation:

tRQ
= tA + tT (5.6)

The Queuing enhancement stops the possibility of an ambulance being dispatched
to an incident far away, when a much closer ambulance is almost done with its
current incident. This situation is shown in Figure 5.2.2, where the ambulance is
transporting a patient to the hospital when a new incident occurs nearby.

Figure 5.2.2: A situation where the Queuing enhancement is utilized. The
ambulance is transporting a patient to the hospital indicated by the red line, and
the circle marks the incident that the ambulance will respond to after offloading
the patient.
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5.2.1.3 Response Times

Both the Reassigning and the Queuing enhancements reflects how the real EMCC
operates, and contribute to improving response times of acute incident. To ob-
serve the resulting effect that these enhancements have on response times, four
simulations were run. The result is displayed in Figure 5.2.3, which shows how the
enhancements impact the average response time of all, acute, and urgent incidents.
The simulations used the Fastest dispatch strategy.

The results in Figure 5.2.3a show that reassigning ambulances improves response
times of acute incidents, but response times of urgent incidents increases. This
is because the Reassigning enhancement prioritizes acute incidents. Queuing in-
cidents does however cause slightly shorter response times for both acute and
urgent incidents. The combination of Both enhancements is deemed best since it
has quickest average response time to acute incidents, as shown in Figure 5.2.3b,
which should be given precedence. This combination was therefore decided to be
used as the standard dispatch enhancement procedure, giving an average acute
response time improvement of about 12 seconds.

(a) All incidents (b) Acute incidents

Figure 5.2.3: Average response times in minutes for each dispatch enhancement.

5.2.2 Coverage-Based Dispatch

Dispatching an ambulance to an incident reduces the coverage in the area previ-
ously occupied by that ambulance. As a result, response times to new incidents
in that area might become longer. In such cases, it may be more effective to dis-
patch an ambulance from an area with greater coverage provided by other available
ambulances, as explained in Ridler, Andrew J. Mason, and Raith (2022). This
strategy ensures a more balanced distribution of resources and potentially shorter
travel times to subsequent incidents.

In this thesis, coverage is a term to describe how many available ambulances are lo-
cated within an area. Available ambulances are ambulances not currently assigned
to an incident, or ambulances available because of the dispatch enhancements pre-
sented in Section 5.2.1.
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As mentioned in Section 1.2, response times for acute incidents is a focus for the
thesis. None of the three proposed strategies presented in Section 5.2.2.1, 5.2.2.2,
and 5.2.2.3 will therefore be utilized in the case of acute incidents, since these
incidents should be prioritized for fastest dispatch regardless of coverage status.
To use the distinction between urgencies, a coverage importance value cI is set to
0 for acute incidents, 1 for urgent incidents, and 2 for regular incidents. This will
give a weight to coverage in relation to the response time, which will value faster
response time the more urgent an incident is. For acute incidents, the closest
ambulance will always be dispatched.

The dispatch strategies will use a penalty based on the coverage in the area of
the ambulance a. This penalty cP (a) will together with cI(i) and response time
tR(a, i) from the ambulance a to incident i, form a dispatch cost dC(a, i) that is
used to sort the ambulances to find the best ones to dispatch. This calculation
is shown in Equation 5.7, where a lower dC indicates a more favorable ambulance
to dispatch. These strategies incentivizes dispatching of ambulances from an area
that is covered by other available ambulances.

dC(a, i) = tR(a, i) + cP (a)× cI(i) (5.7)

A problem with this coverage penalty cP is determining its value, which affects the
balance between the importance of coverage versus response time. An excessively
large coverage penalty cP will lead to more dispatching of ambulances far from
the incident since it is more important to preserve coverage for future incidents,
which can increase average response time. A small penalty leads to the coverage
element being insignificant, and there might not be any available ambulances close
to future incidents.

A gradual penalty depending on how many available ambulances Aa there are in
an area was deemed advantageous. Additionally, only the number of available am-
bulances remaining Ar will be considered, which is the available ambulances when
subtracting the incident demand id as shown in Equation 5.8. A simplification
that only considers three cases of Ar was implemented: 0, 1, and 2 or more. All of
the three dispatch strategies presented in Section 5.2.2.1, 5.2.2.2, and 5.2.2.3 have
different penalty values to calculate the coverage penalty cP depending on Ar.

Ar = max(0, Aa − id) (5.8)

The penalty values in each strategy were found through experimentation, running
hundreds of simulations with different sets of values and observing which values
gives the best average acute response time. Since the simulations are only run
using the PopulationProportionate allocation, the penalty values are most likely
not optimal with other allocations. This is also the case for other incident sets
than the incidents-simulation dataset. This method of finding penalty values could
therefore be improved to increase generalization, but for the purpose of comparing
the strategies the method is deemed satisfactory.
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5.2.2.1 Base Station Coverage

One way to dispatch with hopes of not losing coverage is to give a coverage penalty
cP to ambulances that are assigned to a base station with few other available
ambulances Aa also assigned to this base station. The calculation of the coverage
penalty cP for the Base Station strategy is presented in Algorithm 3.

Algorithm 3 Coverage Penalty Base Station
1: Input: Ambulance a, incident i, map of ambulances in base stations M
2: Output: Coverage penalty cP
3: function CoveragePenalty(a, i,M)
4: Aa ← countAvailable(M.get(a.BaseStation())
5: Ar ← max(0, Aa − i.demand)
6: cP ← 0
7: switch Ar do
8: case 0
9: cP ← 1510

10: case 1
11: cP ← 60

12: case ≥ 2
13: cP ← 0

14: return cP
15: end function

One factor which can make this penalty a misrepresentation of coverage of an
area, is that the available ambulances might not be located inside the base station
responsibility area at the time. However, since the ambulances are available they
are either travelling back to the base station, or they are they will start travelling
quite soon. The only occasion when this is not the case, is when an ambulance is
available because it can be reassigned.

5.2.2.2 Nearby Coverage

A second approach to coverage-based dispatching, is to give a coverage penalty cP
to the ambulance considered for dispatch a if it is located far from other available
ambulances Aa. This penalty works similar to the penalty for the Base Station
strategy, but instead of counting available ambulances for each base station, it
counts available ambulances that are nearby in a specific range to the ambulance
a considered for dispatch.

In contrast to base station coverage, the Nearby strategy has to take into account
the position of all other available ambulances at the time. This made this strategy
computationally slow, which is an important factor for optimization as discussed
in 5.1.3.3. The range which determined whether an ambulance was nearby or
not, was set to 7 minutes (7× 60 seconds) of travel time, after experimenting the
same way as with the penalty values. The calculation of the coverage penalty is
presented in Algorithm 4.
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Algorithm 4 Coverage Penalty Nearby
1: Input: Ambulance a, incident i, list of available ambulances V
2: Output: Coverage penalty cP
3: function CoveragePenalty(a, i, V )
4: Aa ← 0
5: for each ambulance in V do
6: distance← ambulance.timeTo(a)
7: if distance < 7.0× 60 then
8: Aa ← Aa + 1
9: end if

10: end for
11: Ar ← max(0, Aa − i.demand)
12: cP ← 0
13: switch Ar do
14: case 0
15: cP ← 1590

16: case 1
17: cP ← 55

18: case ≥ 2
19: cP ← 0

20: return cP
21: end function

5.2.2.3 Predicted Demand Coverage

General ambulance coverage can be an advantageous strategy, but giving equal
importance to covering all the different areas might not be the best strategy. As
seen in Section 2.3.3, some areas have a higher number of incidents than others.
This leads to the idea of giving a higher coverage importance to these areas, since
a prediction can be made that it is more likely that incidents occur there than
in other areas. By considering future demand and the current coverage of the
area, the EMCC can make informed decisions to optimize ambulance dispatch
and improve overall emergency response efficiency.

As discussed in Section 2.3.3, the sparsity of the data in which predictions could
be based on led to the generalization of grouping number of incidents in grids
into base station areas. Although Van De Weijer and Owren (2022) explored
using different areas for prediction, it was deemed best to use base station areas
for implementation convenience. Additionally, since ambulances will eventually
return to their base station, the base station areas can be beneficial compared to
randomly placed areas.

Only acute and urgent incidents should be considered for predictions, so the
incidents-processed-predict dataset was used for training the model. The inci-
dents in the same period as incidents-simulation was extracted since this period
is used for simulations. Since the data has important temporal trends, k-fold
cross-validation was not chosen for validation as the temporal dependencies in the
data can cause each fold to have significantly different characteristics, leading to
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largely varying performance across the folds. Instead, the month of august, 2018
was extracted from the training data as validation data. The different models
created during development was evaluated using the mean MSE across 10 training
runs on the same validation data. The best performing model from experimenting
with model configuration and input features was then chosen to make predictions
in the period of incidents-simulation for use in the Predicted Demand dispatch
strategy.

To enhance the prediction model’s ability to understand the temporal and spa-
tial incident demand, additional preprocessing was performed on the incidents-
processed-predict dataset. The dataset represents single incidents, but an aggre-
gation was done which involved counting the number of incidents that occurred
within each hour and base station area. As a result, the dataset was modified to
have one row for every hour and base station combination, with the corresponding
count of incidents during that hour. This alteration of the dataset is only used
for demand predictions. Figure 5.2.4 shows that the rows with 0 incidents are in
majority.

Figure 5.2.4: Number of rows with the different incident counts in the altered
version of incidents-processed-predict.

The spatial feature represents the base station’s ID, which corresponds to its
responsible area. This information was obtained by extracting the coordinates
of each incident and identifying the base station area to which it belongs. The
temporal features were derived from the call time of the incidents. These features
include Year, Month, Day, Week, Weekday, and Hour. In addition to these default
features, feature extraction was done to help make the distinction between certain
temporal aspects clearer for the model. Inspiration was taken from Chen et al.
(2016), who introduced the Season feature and the Weekend feature. As discussed
in 2.3.3, these trends are significant. The Season feature determines in which
season it is, while the Weekend feature determines whether it is in a weekend or
not. In addition to adding the Season and the Weekend features, a third feature
was implemented. The Daytime feature categorizes the incident count into one of
six 4-hour intervals, representing different parts of the day. The Daytime feature
was introduced to help the model generalize across different time periods rather
than focusing too much on specific hours.
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Table 5.2.1 shows the mean MSE when training the model with different feature
sets. Other feature sets were also experimented with, but the best feature set was
found to be all of the features, except for Daytime. As seen in Section 2.3.3, many
of the temporal features are important.

Feature Set MSE
Default Features 0.5508
+ Season 0.5505
+ Season, Weekend 0.5503
+ Season, Weekend, Daytime 0.5507

Table 5.2.1: MSE for different feature sets.

The model that was developed was inspired by one of the models presented in Van
De Weijer and Owren (2022). Specifically, a regression model using a neural net-
work was implemented, using temporal and spatial features as input, and incident
count as output. The model consists of two hidden layers with 64 and 32 nodes for
each layer, using the Swish activation function, and dropout layers between each.
The Adam optimizer was chosen with a learning rate of 0.0005. Early stopping
was utilized with a patience of 5 to reduce overfitting, using MSE on the vali-
dation data as monitoring metric. The model’s configuration values were found
through experimentation with different values, some of which are shown together
with their respective result in Table 5.2.2.

Hidden layers MSE
64 0.5524
64, 32 0.5503
128, 32, 8 0.5529
128, 128, 64, 8 0.5522

Table 5.2.2: MSE for different hidden layer configurations.

Instead of using a neural network, a statistical method was also experimented
with. This was done to see whether these types of methods could compete with
the neural network and be viable for predictions on such sparse data. Figure 5.2.4
shows that the data has a Poisson distribution, similarly to the emergency medical
data in H. Huang et al. (2019), so a Poisson regression model was tested. The
model achieved an MSE of 0.7462, which shows that it is able to capture some of
the temporal and spatial features. However, it seems it may not be able to capture
the more complex patterns, so the statistical methods were discarded from further
consideration.

Since the neural network model is a regression model, it returns the count as a
float value. Figure 5.2.5 shows the predicted demand for all base station areas in
a given hour, compared to the actual count. The color range values in the figure
is exponentially distributed between a predicted demand value of 0.1 and 2.5, in
order to better see the difference between predictions. Evidently, the prediction
is not completely accurate, but the main spatial and temporal trends are found
which can be valuable for the dispatch strategy.
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(a) Prediction 04:00-05:00 (b) Actual 04:00-05:00

(c) Prediction 19:00-20:00 (d) Actual 19:00-20:00

Figure 5.2.5: Predicted and actual incident counts for the different base station
areas, for two different hours on 11.08.2017.
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The predicted incident counts for each hour was then used in the Predicted De-
mand strategy. This was done by increasing the penalty based on how many
incidents are predicted to occur in the next hour. The predicted demand was
converted to an appropriate penalty scale with a static factor of 185. This value
was optimized similar to what was done for the penalty values. The penalty values
was also optimized specifically for this strategy. The coverage penalty calculation
is presented in Algorithm 5.

Algorithm 5 Coverage Penalty Predicted Demand
1: Input: Ambulance a, incident i, map of ambulances in base stations M ,

predictions P
2: Output: Coverage penalty
3: function CoveragePenalty(a, i,M)
4: Aa ← countAvailable(M.get(A.BaseStation())
5: Ar ← max(0, Aa − i.demand)
6: cP ← 0
7: switch Ar do
8: case 0
9: cP ← 1920

10: case 1
11: cP ← 280

12: case ≥ 2
13: cP ← 0

14: predictedDemand← P.get(A.BaseStation()).get(I.time)
15: cP ← cP + predictedDemand× 185
16: return cP
17: end function

5.2.2.4 Response Times

Figure 5.2.6 shows how the three new dispatch strategies performed in terms
of average response time compared to the Fastest strategy and to each other.
Figure 5.2.6b shows that the Predicted Demand strategy is able to reach the lowest
average acute response time. As seen in Figure 5.2.6a, the response times of
urgent incidents increase when using these strategies however, which is an effect
of prioritization of acute incidents. As presented in the strategy algorithms and
in Table 5.2.3, the optimal penalty values are all quite high when considering that
they represent seconds in travel time. This causes future coverage to be valued
higher than response time of urgent incidents. Interestingly, the optimal penalty
values for the Predicted Demand strategy are higher than the others, possibly
because the information from the predictions is valuable.

Ar Base Station Nearby Predicted Demand
0 1510 1590 1920
1 60 55 280

Table 5.2.3: Optimized penalty values for the coverage penalty cP of the different
dispatch strategies.
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The average acute response time improvement is about 41 seconds, which is a
significant improvement when considering the number of incidents in the dataset.
A small average improvement can save lives. In any case, both the enhancement
results in Figure 5.2.3 and the strategy results in Figure 5.2.6 shows that the
simulation is able to model changes and give information about their effects.

(a) All incidents (b) Acute incidents

Figure 5.2.6: Results of each dispatch strategy in terms of average response time
(a) and average acute response time (b).

5.3 Goal 3: Incident Urgency
The third research goal of this thesis is to explore the urgency aspect of incidents.
This section will mainly explore the impact of improving the accuracy of assigning
urgency to incidents. This will be done by running simulations with and without
the improved accuracy, and observing the average response times of acute and
urgent incidents. The effect that different dispatch enhancements and dispatch
strategies has when the accuracy is improved will also be explored. The simulations
will as in Section 5.2 also be run using the PopulationProportionate allocation.

5.3.1 Preset Urgency

As mentioned in Section 1.1, non-acute incidents are often assigned as acute as
a precautionary measure which can lead to inefficient use of resources. In an
ideal world, the EMCC operators would perfectly assign urgencies to incidents
in a way that enables optimal efficiency in deployment of resources. Although
this is not currently a realistic goal, this section will research the effect of having a
better urgency assignment procedure. Investing in research on urgency assignment
procedures like the machine learning and natural language processing methods in
Ivanov et al. (2021), could give valuable results in terms of resource management
and response time.

To simulate the urgency assigning accuracy, the actual urgency for all incidents
would be useful to know. Unfortunately, this information is not present in the
dataset provided by OUH. Instead of using real historic data about the incidents,
a synthetic modification of the incidents-simulation dataset was created. In this
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synthetic dataset, called incidents-simulation-corrected, a percentage of the acute
incidents have been corrected to be urgent. As expanded upon in Section 2.3.1,
75% of the acute incidents should be changed to create the best case scenario where
the urgency assignment is perfect. The set of 75% incidents that are corrected are
randomly distributed in incidents-simulation-corrected, but the same incidents are
always corrected in every simulation to enable comparison. It is assumed that no
incidents were assigned a lower urgency than what it actually was, and no incidents
are corrected from urgent to regular since this occurrence is assumed to be rare,
seeing as many of the regular incidents are planned. A confusion matrix for the
relation between assigned and actual urgency is shown in Figure 5.3.1.

Figure 5.3.1: Assumed incident urgency confusion matrix showing the percent-
age relation between assigned and actual urgency.

5.3.1.1 Benchmark

As a benchmark, two simulations were run on incidents-simulation and incidents-
simulation-corrected without using any of the new dispatch enhancements or dis-
patch strategies presented in Section 5.2. The comparison of the resulting average
response times can be viewed Figure 5.3.2.

Figure 5.3.2: Average response times in minutes from simulations with no new
dispatch enhancements and strategies, with and without urgencies correctly clas-
sified as acute (A) or urgent(H).
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Even though no prioritization is being done in terms of dispatching, the simulation
still uses historic median times for handling time and dispatch time. The median
times for urgent incidents are slower than acute incidents as discussed in Section
5.1.3.1 and Section 5.1.3.2. Subsequently, the increase in overall response time for
incidents-simulation-corrected compared to incidents-simulation is expected since
there are many more urgent incidents. The variance in average acute and urgent
response times is unknown, but it could possibly be a cause of randomly correcting
urgencies of incidents that are located far from any base station or ambulance.

5.3.1.2 Dispatch Enhancements and Strategies

With the incidents-simulation-corrected dataset, simulations were run with the
different dispatch enhancements and strategies to research the effect they have in
a more ideal world of correct incident urgency diagnosis. The experiment results
can be seen in Figure 5.3.3, where Figure 5.3.3a uses the Fastest dispatch strategy,
and Figure 5.3.3b uses Both dispatch enhancements. Only the acute response
times are included in the results since it is the most important metric, in order
to better differentiate between the strategies. The penalty values for the dispatch
strategies were optimized again specifically for this set of synthetic incidents, and
are presented in Table 5.3.1.

Ar Base Station Nearby Predicted Demand
0 1315 1780 1590
1 310 255 20

Table 5.3.1: Optimized penalty values for the coverage penalty cP of the different
dispatch strategies on incidents-simulation-corrected.

(a) Dispatch enhancements (b) Dispatch strategies

Figure 5.3.3: Average response time for acute incidents in minutes when sim-
ulating on incidents-simulation-corrected using new dispatch enhancements and
strategies.

The results in Figure 5.3.3 show that the dispatch enhancements and dispatch
strategies contribute to better response time for the reduced number of acute
incidents. When most of the incidents are urgent, it gives the EMCC more options
to preserve coverage so that an ambulance is more likely to be nearby and ready
for new acute incidents.
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For incidents-simulation, the average acute response time went from 10m 46s to
9m 53s when utilizing the Predicted Demand strategy, which is a difference of
53 seconds. In comparison, average acute response time for incidents-simulation-
corrected went from 10m 23s to 9m 16s when utilizing the Predicted Demand
strategy, which is a difference of 67 seconds. The improvement on incidents-
simulation-corrected is significantly bigger, which further motivates efforts to im-
prove the accuracy of urgency assignment. Additionally, it is assumed that as
average response times decrease, it becomes increasingly more challenging to fur-
ther reduce them, as there is a natural lower limit.

5.3.2 Survivability

For the previous experiments, the simulated EMS system has been evaluated using
incident response times, especially response times of acute incidents. As mentioned
in Section 5.2.2.4, the dispatch strategies prioritizes acute incidents, which in ad-
dition to the Reassigning enhancement, increases urgent response times. Although
acute incidents should be prioritized, urgent incidents should not be completely
excluded from evaluation of the EMS system.

One method to include urgent incidents in the evaluation, is to utilize survival
functions. In the domain of ambulance location problems, a survival function is
a function that gives a measure of the survivability of the patient based on the
response time to the incident. Since acute incidents require medical care in a more
time-critical manner than less urgent incidents, a heterogeneous approach of using
two different survival functions for acute and urgent incidents was implemented.
It is natural to give more weight to slow response time to acute incidents than to
urgent incidents.

Detailed information about each incident would enable the use of more fine tuned
survival functions fit for the specific incident illnesses. Unfortunately, the dataset
from OUH does not contain this information. An option for survivability approx-
imation is to have more general survival functions. Equation 5.9 shows a general
survival function presented in Bekkevold and Schjølberg (2022), which followed
the work done by Amorim, Ferreira, and Couto (2019). Here the ck coefficient
influences the starting point or initial level of survival probability for minimal re-
sponse times, while mk determines the rate of change in survival probability with
respect to the response time variable r.

sk(r) = (1 + eck+mk∗r)−1 (5.9)

From this general survival function, two urgency specific survival functions are
suggested. Equation 5.10 shows the survival function used for acute incidents,
which in Knight, Harper, and Smith (2012) is meant specifically for cardiac ar-
rests. Although not all acute incidents are cardiac arrests or similarly time-critical
incidents, these coefficients are considered satisfactory for representing the impor-
tance of fast response times for all acute incidents. Equation 5.11 is used for urgent
incidents, which in contrast to the acute survival function does not use coefficients
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approximated from data. The urgent survival function is rather an attempt to cre-
ate a reasonably realistic survival function by relaxing the acute survival function.
For this thesis, the survivability works more as a scoring system than an actual
representation of probability of survival. The behaviour of the survivability score
related to response time for acute and urgent incidents are presented in Figure
5.3.4.

sa(r) = (1 + e−0.26+0.139r)−1 (5.10)

su(r) = (1 + e−4+0.05r)−1 (5.11)
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Figure 5.3.4: Survival functions for acute and urgent incidents. Acute incident
survivability drops instantly when response time increases.

The dispatch strategies presented in Section 5.2 can be evaluated using surviv-
ability as metric of performance instead of just the average acute response time.
Figure 5.3.5 shows the dispatch strategies now evaluated with the survival func-
tions presented above. The Predicted Demand strategy performs marginally better
than the other strategies.

Figure 5.3.5: Average survivability of incidents when simulating on incidents-
simulation using different dispatch strategies.
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The penalty values for the dispatch strategies have here been optimized to increase
survivability instead of average acute response time. This causes the optimal
penalty values to be lower, since survivability is affected by response times to both
acute and urgent incidents. Lower penalty values means that urgent incidents are
more likely to be responded to by the closest ambulance. The penalty values are
presented in Table 5.3.2.

remainingAvailable Base Station Nearby Predicted Demand
0 1050 690 720
1 50 210 220

Table 5.3.2: Optimized penalty values for the dispatch strategies when optimiz-
ing for survivability.

One important thing to note is that the survivability is not linear, so even if average
acute response time increases, the survivability of acute incidents might also in-
crease. Additionally, both acute and urgent incidents are considered which makes
the relation between average response time and survivability more complicated.

5.4 Goal 4: Optimization

The fourth research goal of this thesis is to reduce ambulance response times
to incidents by optimizing the allocation of ambulances. An optimal allocation
makes sure that high-activity areas are covered by enough ambulances to quickly
respond to incidents. This section will present the GA developed in Bekkevold and
Schjølberg (2022) and the improvements done in this thesis to this optimization
method. A multi-objective approach will also be explored, trying to optimize both
acute and urgent response times. Finally, the results of the improvements will be
presented and discussed.

To compare the different optimization methods and improvements, it was decided
to set a total maximum optimization time of 40 minutes. This will enable com-
parisons of methods that are computationally different in terms of running time.
To mitigate the impact of randomness in the stochastic methods, the allocated
40-minute running time is divided into 10 separate optimization runs, each lasting
4 minutes. This division ensures that no single method is evaluated more favor-
ably than another due to random factors alone. By conducting multiple runs for
each method, the influence of chance is minimized, allowing for a more reliable
and robust comparison between the methods.

For all optimization methods in this section, Both dispatch enhancements are
enabled and the Demand Prediction dispatch strategy is used.

5.4.1 GA

Bekkevold and Schjølberg (2022) presented a GA as an optimization method for
ambulance allocation. They also explored using a local search algorithm called
Stochastic Local Search, and a hybrid GA called Memetic Algorithm. However,



58 CHAPTER 5. METHOD

the results obtained from these alternative approaches were not as promising as
those achieved with the GA. Consequently, further development of Stochastic
Local Search and Memetic Algorithm was not pursued in this thesis. Pseudo
code for a generic GA is presented in Algorithm 6.

Algorithm 6 Genetic Algorithm
1: Initialize population
2: Evaluate fitness of solutions
3: while Termination condition not met do
4: Select parents for reproduction
5: Do crossover to create offspring
6: Mutate offspring
7: Evaluate fitness of new solutions
8: Select solutions for next generation
9: end while

10: return Best solution

The GA and the configurations presented in Bekkevold and Schjølberg (2022) is
used as a baseline method for new methods and improvements. This BaselineGA
optimization method was developed to find good allocations for a slightly differ-
ent simulation, since changes has since been done to the simulation as described
in Section 5.1. Importantly, it also uses total average response time as fitness
function for optimization. The configuration of the BaselineGA method is pre-
sented in Table 5.4.1. The total number of generations in this configuration shows
approximately how many generations the method reaches in 4 minutes of run time.

Parameter Value
Fitness Response Time
Initializer Random
Elite Size 4
Generations 1600
Population Size 30
Tournament Size 5
Crossover Probability 0.2
Mutation Probability 0.05

Table 5.4.1: Configuration parameters for the BaselineGA optimization method.

The optimization results of the BaselineGA method is presented in Table 5.4.2.
The Best row in all the result tables in this section refers to the run with the best
fitness, while the Average row refers to the average of the 10 different optimiza-
tion runs. As mentioned in 5.3.2, the relation between survivability and average
response times is not linear, which can be observed in some of the result tables.
The relation is even more obscured since some of the results are averages of several
runs.

Figure 5.4.1 presents the fitness values per generation for the best run, showcasing
the progression of the algorithm over time. This graph shows that the algorithm
quickly finds good solutions, before slowly trying to reach optimal solutions.
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Response Time SurvivabilityAll Acute Urgent
Best 11m 56s 9m 41s 14m 5s 0.7680
Average 12m 0s 9m 40s 14m 16s 0.7680

Table 5.4.2: Optimization results from running the BaselineGA method.

Figure 5.4.1: The best fitness value (average response time in minutes) in the
population for each generation of the best run of the BaselineGA method.

5.4.1.1 Fitness Function

The fitness function is a crucial component of the GA, responsible for evaluating
each allocation solution in the population. For ambulance allocation optimization,
the fitness function is based on the response times returned from the simulation
of the EMS system when a specific allocation is used, as mentioned in Section 5.4.
Bekkevold and Schjølberg (2022) used the average response time of all incidents
as fitness for the solutions.

Since the average response time of all incidents is used as a fitness function, the
acute and urgent response times are valued the same. Some allocations might
be better suited to respond to acute incidents, while others are better for urgent
incidents. Therefore, it is considered more interesting to use a fitness function
that gives more weight to acute response times. The survivability score presented
in Section 5.3.2 does indeed provide such a weighting, so it was decided to use
this as fitness function for the rest of the optimization methods in this section.
Table 5.4.3 shows the results of running the BaselineGA method, but now using
the survival functions for fitness when optimizing. This optimization method is
referred to as the SurvivabilityGA method.

Response Time SurvivabilityAll Acute Urgent
Best 12m 12s 9m 28s 14m 49s 0.7736
Average 12m 18s 9m 34s 14m 54s 0.7727

Table 5.4.3: Optimization results from running the SurvivabilityGA method.
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5.4.1.2 Genotype

The genotype serves as a representation of the solution, facilitating the implemen-
tation of essential genetic operators during the search process. In this thesis, the
genotype is comprised of two allocations: one for the daytime shift and another
for the nighttime shift. Each allocation is represented as a list of numbers, where
each number corresponds to a specific ambulance and its value signifies the ID of
the base station to which that ambulance is assigned. Equation 5.12 defines one
shift allocation A with n number of ambulances available for that shift. The set of
base station IDs is denoted as B, and ai represents ambulance a with ambulance
ID i which can have any value in B.

A = (a1, a2, . . . , an), ai ∈ B (5.12)

The complete genotype for the solution consists of the daytime shift allocation
Aday and the nighttime shift allocation Anight. For the daytime shift n is 45 while
for the nighttime shift n is 29, as mentioned in Section 2.1.

Three different approaches for generating allocations were chosen from the ones
presented in Bekkevold and Schjølberg (2022) to experiment with in terms of
initialization. Instead of relying on a single approach, a proposed strategy is
to randomly select an approach per allocation in the initial population. This was
done to try to include solutions that are considered favorable starting points for the
algorithm, but still creating a diverse range of initial solutions. This initialization
approach is called Mix, and consists of the following approaches:

• Random : Ambulances are randomly assigned to base stations. Selected
with a probability of 80%.

• PopulationProportionate : Ambulances are assigned to base stations so
that the number of ambulances per base station correlate to the population
of the base station area. Selected with a probability of 10%.

• UniformRandom : Ambulances are assigned to base stations so that they
are evenly distributed across all base stations, with the rest of the ambu-
lances assigned randomly. Selected with a probability of 10%.

Solutions generated from the three different approaches exhibit distinct character-
istics, which might offer a broader exploration of the problem space. This diversity
can be advantageous for the GA, as it increases the chances of discovering promis-
ing solutions early. The MixGA optimization method uses the Mix initialization
instead of only the Random initialization in the Baseline method. The result of the
MixGA method is presented in Table 5.4.4, which shows that the Mix initializer
performs similarly to the Random initializer, but is slightly worse. The difference
can still be a factor of the stochastic nature of the optimization method, but one
reason can be that the PopulationProportionate and UniformRandom methods
are not good starting points and only decrease the diversity of the starting pop-
ulation. The Random initializer was therefore chosen for the implementation in
this thesis and for the rest of the optimization methods in this section.
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Response Time SurvivabilityAll Acute Urgent
Best 12m 6s 9m 24s 14m 41s 0.7741
Average 12m 13s 9m 35s 14m 49s 0.7726

Table 5.4.4: Optimization results from running the MixGA method.

5.4.1.3 Parent Selection

A main aspect of the GA is to explore new solutions based on current good solu-
tions. The process of selecting which current solutions to modify is called parent
selection. Tournament selection was implemented in this thesis, which enables
adjustment of selection pressure. The parameter for adjusting selection pressure
is discussed further in Section 5.4.1.6.

5.4.1.4 Genetic Operators

The exploration of new solutions is done through genetic operators which alter the
genotypes of solutions to create new ones. The first genetic operator is crossover
which combines two solutions or parents to make offspring. Since the genotype
consists of two allocations, the crossover operation combines the dayshift alloca-
tions and the nightshift allocations separately. Figure 5.4.2 shows an example of
a crossover operation on two different allocations. The crossover operation splits
the allocations at the same random crossover point and swaps the last part of both
allocations.

Figure 5.4.2: Example of crossover operation creating dayshift allocations for
offspring O1 and O2 from combining the dayshift allocations of parents P1 and
P2. The number of dayshift ambulances is only 8 in this example.

The base station IDs are not sorted in the allocations so the crossover operation
will likely not keep much of the information about how many ambulances are as-
signed to a base station. Figure 5.4.2 shows that base station 3 has assigned four
ambulances in the allocation for P1 and that the P2 allocation has two assigned
ambulances for base station 1, 2, and 7. Neither of the offspring O1 and O2 con-
tains the information that base station 2 and 7 had more assigned ambulances than
average in the parent allocations, and the especially high number of ambulances
assigned to base station 3 in P1 is not kept either. This shows that the crossover
operation for this problem is quite destructive, meaning that it explores solutions
far from the parents, instead of exploiting the found knowledge. Subsequently, a
low probability of doing crossover is deemed favorable.
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Since the parent solutions might be good solutions, it could be advantageous to
search the solutions that are similar to the parents. A slightly altered approach
to the crossover operation is therefore proposed, which is to sort the base station
IDs in the allocations. The idea being that sorted allocations will be able to
preserve more of the information gathered in the parents. Figure 5.4.3 shows that
this approach would achieve this exploitative goal for this specific case. However,
the results of using this SortedGA method shows that this approach is not an
improvement. The reason for this could be that sorting the allocations reduce the
diversity of the population. Non-sorted crossover is therefore implemented in this
thesis and utilized for the rest of the optimization methods in this section. The
results are presented in Table 5.4.5.

Figure 5.4.3: The same example as Figure 5.4.2, but with the allocations sorted
before the crossover operation is done.

Another alternate approach was initially thought of, which was to represent an
allocation as a list of numbers for each base station, where each value is the number
of ambulances at that base station. However, this approach faces problems when
doing genetic operations since the total number of ambulances need to be static.

Response Time SurvivabilityAll Acute Urgent
Best 12m 19s 9m 35s 14m 55s 0.7736
Average 12m 16s 9m 33s 14m 51s 0.7726

Table 5.4.5: Optimization results from running the SortedGA method.

After crossover is done, the offspring solutions will have a chance of being mutated.
This genetic operation will go through every gene and mutate it with a certain
probability, which can result in multiple genes in the genotype being mutated.
A gene in this genotype is an ambulance, so an ambulance has the chance of
being randomly assigned to a new base station. Mutation is usually considered
as an explorative operation since it is completely random and does not utilize the
knowledge gained during optimization. However, one mutation is a much smaller
change to the allocation than the crossover operation, so it effectively searches the
neighbourhood of the parents, which might contain good solutions or even better
solutions than the parents. Mutation rate is discussed in Section 5.4.1.6.

5.4.1.5 Survival Function

Elitism was selected as the survival function for the GA because it serves two
crucial purposes. Firstly, it allows for the preservation of the best solutions in
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the population from one generation to the next, ensuring that the most promising
individuals continue to contribute to the overall evolution. Secondly, it helps
maintain a diverse population, preventing the GA from quickly converging to
local optima. The balance between exploration and exploitation can be adjusted
by changing the size of the elite population. The elite size is discussed further in
Section 5.4.1.6.

5.4.1.6 Parameter Tuning

The optimization method has several parameters that can be tuned to improve
performance. Several of the parameters are dependent on each other, so a form of
grid search would be optimal. However, since the stochastic nature of the method
requires multiple runs to give a fair comparison of the method with different
parameters, the process of experimenting is tedious. It was therefore decided to
do manual tuning, guided by observing the progress of the population in terms of
best fitness, average fitness, and diversity.

The population size is an important parameter that was tuned in the optimization
method. The Baseline method used a population size of 30 individuals. However,
through observation and experimentation, it was found that significantly increas-
ing the population size to 200 individuals improved the algorithm’s performance.
With a larger population, there was a higher diversity of solutions, allowing for
better exploration of the search space. It also helped to mitigate the risk of pre-
mature convergence and provided a larger pool of potential parents for the genetic
operations. The change of population size has a large effect on the other pa-
rameters of the algorithm, and reduced the number of generations to 250 for the
4-minute run.

As mentioned in Section 5.4.1.3, tournament selection was chosen for parent se-
lection. The parameter for tuning the selection pressure of this method is the
tournament size. The Baseline method used a tournament size of 5, or 16.7% of
the population. After increasing the population size and experimenting with both
a higher percentage and a lower percentage, it was found that a tournament size
of 6, or 3%, was appropriate. It seemed like the diversity of the population was
reduced too much because of the selection pressure with a large tournament size,
so the algorithm was not able to explore other parts of the search space.

Since the population characteristics will change as the algorithm moves to new
generations, some parameters might not be optimal during the whole run. An
example is when the crossover probability was experimentally set to 0.7 in order
to increase exploration of the search space. It was observed that later generations
in the algorithm contained a moderately strong elite population, but offspring
created from the crossover operation was very different so the good solutions were
not exploited. An idea is therefore to decrease the crossover probability with new
generations, such that the algorithm has a higher chance of exploring in the early
generations, before the best solutions are exploited in the later generations. The
crossover probability was therefore set to linearly decrease from 0.8 to 0.1 across
the first 200 generations, before staying static for the rest.
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Another parameter that was tuned, is the mutation probability. Since the prob-
ability is used on each gene and a genotype consists of 45+29 = 74 genes, the
average number of genes being mutated in a solution will be 1 with a mutation
probability of 1/74 = 0.014. The Baseline method has a mutation probability
of 0.05, which results in an average of 3.7 genes being mutated. Mutation is in
this implementation of the algorithm used as a local search operation, so a lower
mutation probability was considered advantageous. The same dynamic parameter
strategy for crossover was chosen for mutation, where the mutation probability is
set to decrease from 0.05 to 0.014 across the first 200 generations. This slowly
changes the algorithm from focusing on exploration in the early generations to
focus on exploitation in later generations.

As mentioned in 5.4.1.5, elitism was chosen as survival function for the population.
Different elite sizes were experimented with, including having an elite size equal to
population size to see if accelerated convergence would lead to a bad local optima.
The results of the experimentation indicated that this was the case. The best elite
size found was 10, keeping a balance between exploration exploitation.

The complete list of tuned parameters is presented in Table 5.4.6, and the results
of this TunedGA optimization method is shown in Table 5.4.7. These tuned pa-
rameters gave a significant improvement, and was subsequently chosen to be used
as a basis for the rest of the optimization methods in this section.

Parameter Value
Fitness Survivability
Initializer Random
Elite Size 10
Generations 250
Population Size 200
Tournament Size 6
Crossover Probability 0.8-0.1
Mutation Probability 0.05-0.014

Table 5.4.6: Configuration parameters for the TunedGA optimization method.

Response Time SurvivabilityAll A H
Best 12m 17s 9m 30s 14m 55s 0.7741
Average 12m 14s 9m 31s 14m 50s 0.7733

Table 5.4.7: Optimization results from running the TunedGA method.

5.4.2 Diversity

There are different ways to measure diversity. Bekkevold and Schjølberg (2022)
implemented the Shannon entropy formula which assumes a probabilistic inter-
pretation of diversity.

An alternative method was also implemented to measure diversity in terms of the
phenotype rather than the genotype. This approach utilizes pairwise distance as a
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metric for quantifying the differences between two solutions based on the number of
ambulances assigned to each base station. The diversity of the population is then
determined by calculating the average pairwise distances between all solutions, as
expressed in Equation 5.13. In this equation Ai is the allocation of individual i, and
N is population size. Since the genotype is not sorted by base station, there are
many genotypes that result in the same phenotype, which can make this diversity
measurement inaccurate. However, the probability that this happens is low, and
the diversity values seemed a good indication of diversity when investigating the
population closely at different generations. This diversity measure is therefore
used.

Diversity =
1

N

N∑
i=1

N∑
j=1

distance(Ai, Aj) (5.13)

The two diversity measures can be observed in Figure 5.4.4, which shows that they
behave similarly as the population evolves. The figure also shows that the diversity
is quickly reduced before staying at a low value for most of the generations.

(a) Shannon entropy (b) Distance diversity

Figure 5.4.4: Diversity measures for the population for each generation during
optimization using the TunedGA method.

Lack of diversity in the population can lead to premature convergence and hinder
the effectiveness of a GA. When the population becomes too homogeneous, the
algorithm may converge to a suboptimal solution or get stuck in a local optima.
As seen in the Table 5.4.7, the average survivability of all runs is significantly
lower than the survivability from the best run, when considering the range of
observed survivability scores in this section. This indicates that the algorithm
often converges too quickly to a local optima which is difficult to move away from
as the population evolves. In order to explore more of the search space, diversity
in the population is critical.

An attempt to maintain diversity was implemented, where offspring would only be
added to the population if they are different from their parents. This is checked
after both the crossover and the mutation operations are done. Since the tourna-
ment selection procedure picks parents that are of high quality, the exclusion of
offspring identical to its parent will reduce the speed of convergence, but diversity
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will be better maintained. The number of generations increased to around 300
when utilizing this method. The results of this DistinctGA method is presented
in Table 5.4.8 which shows that the method increased performance significantly.

Response Time SurvivabilityAll A H
Best 12m 9s 9m 28s 14m 43s 0.7751
Average 12m 11s 9m 28s 14m 47s 0.7739

Table 5.4.8: Optimization results when running the DistinctGA method.

In addition to discarding offspring equal to their parents, an adaptive crowding
technique was also experimented with, similarly to the technique presented in
Mengshoel, Galán, and de Dios (2014). This method was implemented by pair-
ing offspring with the most similar parent based on the distance metric used in
Section 5.13, before selecting the survivor based on the fitness of the solutions in
the pair. Generalized crowding was implemented to enable the application of a
diverse range of selective pressures through the crowding factor. By incorporat-
ing diversity-adaptive control of the scaling factor, the selective pressure of the
crowding technique is adjusted according to the current population diversity. The
following equation represents how the scaling factor ϕ is adapted to the diversity
at generation g as presented in Mengshoel, Galán, and de Dios (2014):

ϕ(g) =
∆(g)

∆(1)
(5.14)

As shown in Figure 5.4.4b, the diversity quickly decreases to a value below 10.
In order to maintain a lower selective pressure for more generations at the start
of the search, the diversity of the first generation ∆(1) was set to 20, and not 50
which is closer to the usual diversity at generation 1. This causes the crowding
selection to have a higher probability of selecting the worst solution in each pair
during the first couple of generations. The results of this CrowdingGA method
is shown in Table 5.4.9 where it can be observed that it performed slightly worse
than the DistinctGA method. This might be an effect of the crowding factor not
being appropriately tuned based on the diversity. Subsequently, the DistinctGA
optimization method was chosen as a basis for the rest of the methods in this
section.

Response Time SurvivabilityAll A H
Best 12m 12s 9m 30s 14m 47s 0.7742
Average 12m 14s 9m 30s 14m 50s 0.7734

Table 5.4.9: Optimization results when running the CrowdingGA method.

Another approach for maintaining diversity is the use of an IMGA, as presented
in Whitley, Rana, and Heckendorn (1998). One way of implementing this strat-
egy is to have multiple separate subpopulations that evolves independently, before
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combining the islands into one. Islands promote diversity by maintaining different
sets of solutions, facilitating exploration across various regions of the search space.
For implementation convenience, the islands were created and evolved sequentially
before combining them, since parallel functionality was already used for creating
new solutions and running all the simulations required to evaluate them. Unfor-
tunately, this eliminated the possibility of migration of solutions between islands
during the evolution process.

It was decided to use 3 islands that could evolve for 90 generations each, before
combining the populations into one island. This combined population is reduced
to be of the same size as the islands, and is evolved for the rest of the available
optimization time for the run, which is typically around 150 generations. The
population was reduced to be of size 150, in order to enable more generations
for the islands. Additionally, the tournament size was increased to 10, while
the crossover and mutation rates now decrease across the first 100 generations.
This was done to make the islands converge quicker, so that at least one of the
islands will contain good solutions when the islands are combined. The results of
this IMGA optimization method is presented in Table 5.4.10 which shows that the
islands do not lead to an improved survivability score compared to the DistinctGA
method. The IMGA method showed promise earlier on in the development phase,
indicating that the parameters might not be tuned correctly.

Response Time SurvivabilityAll A H
Best 12m 4s 9m 24s 14m 38s 0.7748
Average 12m 12s 9m 27s 14m 50s 0.7738

Table 5.4.10: Optimization results when running the IMGA method.

5.4.3 Constraints

In the real-world system considered in this thesis, there are practical constraints
that could be considered. Firstly, the process of creating new base stations is
expensive and challenging. As a result, the optimization approach is constrained
by only focusing on allocating ambulances to the existing base stations, without
considering the option of introducing new ones.

Another constraint is that the base stations have a capacity in terms of how many
ambulances that are able to be stationed there. Both because of garage space and
because the station need to have enough facilities for the number of ambulance
personnel. According to a contact person from OUS, most base stations presented
in 2.1.1 have a capacity of about 4 ambulances while Lørenskog, Sentrum, and
Ullevål have a capacity of about 10 ambulances each. The standby points are
assumed to have a capacity of only 2 ambulances. It could be interesting to observe
how the optimization method performs when these constraints are implemented.

It was decided to implement the constraints in the optimization method by giving
solutions that break the constraints a penalty to its fitness value. This encourages
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the allocations of the solutions to conform to the capacity of the base stations.
Another option would be to limit which solutions are possible, but this requires
invalid solutions to be corrected which can be an expensive operation.

As shown in the results presented in Table 5.4.11, the inclusion of the constraints
in the ConstrainedGA optimization method has a noticeable impact on the perfor-
mance of the algorithm. In Section 5.4.2, the DistinctGA method was employed to
achieve a diverse set of solutions. However, it was observed that the best alloca-
tion obtained through this approach exceeded the capacity of three base stations
by a total of six ambulances. Interestingly, all three base stations are standby
points, which encourages more research on additional standby points. The num-
ber of ambulances exceeding capacity from the DistinctGA method suggests that
the decrease in performance seen with the Constrained GA method could be at-
tributed to the fact that very few or none of the high-quality solutions conform
to the constraints. Another possibility is that the penalties assigned to invalid
solutions may hinder the search in the vicinity of valid solutions. Even when a
valid solution exists nearby, the penalty associated with the invalid region of the
search space could prevent the algorithm from further exploring that area.

Response Time SurvivabilityAll A H
Best 12m 20s 9m 33s 15m 0s 0.7728
Average 12m 14s 9m 33s 14m 47s 0.7721

Table 5.4.11: Optimization results when running the ConstrainedGA method.

5.4.4 Multi-Objective Optimization

For evaluating the system, both average response times and survivability have been
used. Survivability was introduced to deal with urgency and that acute and urgent
incidents should be weighted differently. Because of the dispatch enhancements
and strategies in Section 5.2, response time to acute incidents and response time to
urgent incidents are influenced by each other in a conflicting manner. When acute
response times decrease the urgent response times usually increase. Since there
are two potentially conflicting objectives, a multi-objective evolutionary algorithm
is proposed.

NSGA-II was chosen as the multi-objective evolutionary algorithm due to its
widespread usage and effectiveness, but mainly for its ability to maintain a di-
verse set of solutions as elaborated upon in Section 3.3.7. The two objectives
are average acute response time and average urgent response time. A solution in
this implementation will therefore effectively dominate another if it has shorter
response time for both acute and urgent incidents, since equal average response
time is rare for two different allocations. Figure 5.4.5 shows the different fronts
in the population at two stages of the optimization, and how the solutions move
towards shorter response times.
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(a) Generation 10 (b) Generation 50

Figure 5.4.5: Population fronts at two stages of the multi-objective optimization
method. The response times are averages in minutes. The Pareto front consists
of the solutions colored in red.

The best solution in the population is picked from the Pareto front. Since none of
the solutions in the Pareto front can be considered better than the others in terms
of the two objectives, the solution with the highest survivability is chosen. All the
improving strategies and parameters implemented for the GA in Section 5.4.1 are
kept for this NSGA-II optimization method, which means that the DistinctGA
method was used. The results of the NSGA-II method are presented in Table
5.4.12, which shows that it on average reaches both the lowest average acute
response time and the average urgent response time.

Response Time SurvivabilityAll A H
Best 12m 1s 9m 22s 14m 33s 0.7744
Average 12m 3s 9m 25s 14m 34s 0.7724

Table 5.4.12: Optimization results when running the NSGA-II method.

5.4.5 Results

The results from all the different approaches to the optimization method and
their parameter settings show that there are improvements to be found. The most
limiting factor is believed to be maintaining diversity of the population shown in
Section 5.4.2. This caused most of the optimization runs to converge to a local
optima, when the best run showed that there was a significantly better solutions to
be found. The DistinctGA method was able to improve performance significantly
because of the increased diversity. Another factor which made optimizing difficult
is that the crossover operation seems to not be effective due to the representation
of the solutions.
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An overview of the performance of most explored versions of the optimization
methods is presented in Figure 5.4.6. This figure shows the survivability of the
best allocation found in each run of each optimization version in a box plot. The
box plot is a graphical representation that displays the distribution of a dataset
by showing the median, quartiles, and any outliers or extreme values. The figure
does not show the Baseline method that was optimized on response time, since it
is unfair to compare it using survivability as fitness.

Figure 5.4.6: Box plot of all explored optimization methods using survivability
as fitness.

5.4.5.1 Response Time

The best version of the optimization method is considered to be the DistinctGA
method. This version performed well in terms of survivability, but it is not clear
how large the improvement is, and this metric might not be the best metric for
performance. Therefore, a comparison to the Baseline method is made by opti-
mizing the average response time using the DistinctGA method. This comparison
is displayed in Figure 5.4.7, which shows that the DistinctGA method is slightly
more consistent. The difference in lowest response time is only of about 2 seconds,
which indicates that around 12 minutes (714 seconds) average response time is
close to the lowest possible for the time period of incidents-simulation.

Figure 5.4.7: Box plot comparing the Baseline method and the DistinctGA
method in terms of average response time in seconds.
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The NSGA-II method seemed to also perform well, since it achieved the lowest
average acute and urgent response times of all methods. It is however difficult
to compare it to the other methods using survivability or total average response
time, since it did not use these metrics as the fitness function for optimization.

5.4.5.2 Allocation Comparison

In Section 5.2 and Section 2.3.1 the PopulationProportionate allocation was used
to evaluate the impact of different strategies and situations. The purpose of the
optimization method is to find a better allocation than PopulationProportionate
to increase survivability and reduce response times. Figure 5.4.8a shows the per-
formance of the best allocation found with the DistinctGA method in terms of
survivability, compared to PopulationProportionate. The improvement of the op-
timized allocation is a difference of 0.01, which may not sound like a substantial
improvement, but when considering the range of survivability scores, it is signifi-
cant. Figure 5.4.8b shows a response time comparison of the best allocation found
from the DistinctGA method when optimizing the response time. The improve-
ment of the optimized allocation is 43 seconds in average response time, which is
a more clear improvement.

(a) Survivability (b) Response Time

Figure 5.4.8: Comparison of average survivability and response time for the
PopulationProportionate allocation and the DistinctGA allocations.

Figure 5.4.9 and Figure 5.4.10 presents the ambulance count for each base station
for the different allocations, which shows that the three allocations are not too
dissimilar.
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Figure 5.4.9: Comparison of the different allocations for the daytime shift.

Figure 5.4.10: Comparison of the different allocations for the nighttime shift.

5.4.5.3 Generalization

As mentioned in Section 5.4.5.2, the optimized allocations are quite similar to
the PopulationProportionate allocation even though the differences in response
time and survivability are significant. Small changes in the allocation cause large
fluctuations in the results. This indicates that the performance metrics of average
response time and survivability are very specific to the set of incidents in incidents-
simulation.

Figure 5.4.11 shows the results of using the optimized allocations versus the Pop-
ulationProportionate allocation on the incidents-simulation-33 set of incidents in-
stead. Even though this dataset is only the next week compared to incidents-
simulation for which the results are shown in 5.4.8, the improvement of the op-
timized allocations has reduced, showing the lack of generalization that these
allocations have. The optimized allocation achieved an improvements of 0.005 in
survivability, and 21 seconds of average response time, which is about 50% of the
improvement presented in Section 5.4.5.2.

Bekkevold and Schjølberg (2022) explored simulating over a longer time period
than a week and observed that the PopulationProportionate allocation performed
better than the optimized allocations in terms of average response time when
simulating a whole year. A similar result is expected for the optimized allocations
on the simulation in this thesis.
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(a) Survivability (b) Response Time

Figure 5.4.11: Comparison of average survivability and response time for the
PopulationProportionate allocation and the optimized allocations when simulating
on incidents-simulation-33. This figure is in comparison to Figure 5.4.8.
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CHAPTER

SIX

CONCLUSION

In this thesis, the focus has been on the ambulance allocation problem within the
EMS system of Oslo and Akershus. Throughout the previous chapters, various
research goals were identified and explored. This chapter provides a summary of
the research goals, presenting the main contributions made throughout the thesis.
Furthermore, limitations of the research are acknowledged, and suggestions for
future work are proposed.

6.1 Contributions

This section provides a summary of the extent to which the thesis achieved its
goals and contributed to the knowledge in the research areas.

6.1.1 Goal 1: Improve Simulation Realism

The goal of achieving a higher simulation realism compared to the simulation de-
veloped by Bekkevold and Schjølberg (2022) was pursued by expanding the simu-
lated EMS system. The main goal was to enhance the accuracy of how ambulances
move in different situations to more closely resemble the patterns observed in the
real EMS system. Firstly, the travel time calculations was updated with the imple-
mentation of OSM to include the quickest path between two points, which enabled
the location of travelling ambulances to be better simulated. Secondly, median
times for handling time and dispatch time were implemented instead of the his-
toric times for each incident recorded in the dataset. This improved the simulation
to behave similarly to how the real EMS system would behave, since the state of
the simulation most likely differ from the historic state at a certain point in time,
where the cause of the historic times do not apply for the simulation.

In addition to ambulance movement, a significant improvement was the inclusion
of regular incidents. The number of incidents that the system has to respond
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to, impacts the average availability of the ambulances, which subsequently makes
the central task of dispatching more difficult. The simulated behaviour of the
EMCC in terms of dispatching was also improved by the implementation of the
reassigning and queuing operations, which are options that the real EMCC has.

The simulation has been developed to not consider certain historic timings since
the causes are unknown, in order to improve simulation realism. This has caused
the response times of the simulation to be distanced from historic response times,
and especially from the outlier response times. It is therefore difficult to evaluate
how accurate the simulation is. However, careful observation of the system has
been done for many different states, to verify that the system behaves reasonably.

6.1.2 Goal 2: Explore Dispatch Strategies

The second goal was to explore different dispatch strategies that could improve
the average response time. The dispatch enhancements of reassigning and queuing
ambulance were included in this goal in addition to being a part of the simulation
realism in Goal 1, since their effects are interesting to research in relation to the
dispatch strategies.

The inclusion of the enhancements improved the average response time of acute in-
cidents, since the reassigning operation prioritizes acute incidents in the dispatch-
ing procedure. The balance between reducing response times to both acute and
urgent incidents, and in what degree acute incidents should be valued above ur-
gent incidents proved challenging. The coverage-based dispatch strategies showed
promise in that they further reduced response time to acute incidents.

The most interesting strategy attempted to use predictions of future demand to
influence dispatching decisions. The results of this strategy only showed a small
improvement compared to the other coverage based strategies, but further research
is needed. The sparsity of the incident data made accurate predictions challenging.

6.1.3 Goal 3: Incident Urgency

The goal of studying the urgency aspect of incidents was firstly pursued by observ-
ing the impact on response times from improving the accuracy of urgency assigned
to incidents by the EMCC. This effect was most interesting when examined with
the different dispatch enhancements and strategies. The reduced number of acute
incidents allowed for the dispatch enhancements and strategies to have more of an
impact since the EMCC have more options for preserving coverage. The improve-
ment of implementing the dispatch enhancements and strategies when incidents
are accurately assigned as acute was 67 seconds in average acute response time,
while the improvement when incidents are over-triaged was 53 seconds. This re-
sult indicates that reducing over-triaged can be advantageous in terms of resource
management, and subsequently response time to critical incidents.

To explore the balance of acute and urgent incidents in relation to prioritization
and response time, survivability of the patient was researched. This was done with
survival functions that give a survivability score based on the response time to the
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incident and its urgency. The survivability of all incidents when different dispatch
strategies were applied showed that the survivability is an effective measure of
performance. The optimization results also show that survivability considers re-
sponse time of urgent incidents in addition to response time of acute incidents in
the evaluation of the EMS system.

6.1.4 Goal 4: Optimization

The fourth goal was to reduce response times to incidents by optimizing the al-
location of ambulances to base stations. This was pursued by exploring different
strategies of improving the optimization method. Finding near-optimal solutions
proved challenging because of the solution representation being sub-optimal for
the crossover operation, but mainly because of diversity preservation. Tuning
the parameters of the GA, including dynamic parameters for crossover, mutation
and tournament selection, gave a small improvement in performance. The biggest
contribution was the strategies implemented for diversity preservation, which gave
significantly better allocations.

In addition to the GA, a multi-objective optimization approach was implemented.
This approach enabled the optimization of two potentially conflicting objectives,
namely acute response time and urgent response time. The results of this method
show that it is able to find allocations with lower average response time for both
objectives than the allocations found by the islands strategy. This is an encour-
aging result which motivates further research on multi-objective optimization in
the context of acute and urgent response times.

The different allocations found were quite similar, but fluctuated significantly in
terms of survivability score and response times. This indicates that the allocations
might be overfitted to the incidents in the simulation. Researching the perfor-
mance of the allocations on a different set of incidents revealed that the optimized
allocations, which initially exhibited notable improvements, did not maintain the
same level of superiority compared to the non-optimized allocation

6.2 Limitations

This section discusses some of the major limitations related to each research goal.

6.2.1 Goal 1: Improve Simulation Realism

The accuracy of the OSM paths and travel times was not extensively researched.
Some random samples showed that although most travel times are close to what
you would get when using Google Directions, they seem to be shorter in urban
areas since the OSM calculation does not consider traffic. As described in Sec-
tion 5.1.3.3, the travel time is only calculated from the speed limit and length
of the roads of the path. Adjustment of the speed limits was done to get travel
times more accurate in urban areas, but this increased the travel times in rural
areas. Additionally, the fact that ambulances travel faster to acute incidents is
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not considered. The off-road travel times mentioned in 4.1.1 were not included
either.

The median times for handling time and dispatch time completely removes the
variety of these times that are observed in the real EMS system. Situations where
these times are significantly longer or shorter might be important to simulate.

Even though the regular incidents were included to more accurately simulate the
number of incidents that the EMCC has to handle, the implemented handling
of the regular incidents in the simulation is not accurate. The regular incidents
are simulated the same way as urgent incidents, and will only get deprioritized
through the reassigning operation. In the real EMS system, the EMCC will of-
ten delay these incidents if there is high demand at the time. Additionally, the
planned regular incidents are not separated from unplanned regular incidents in
the simulation.

The lack of an extensive evaluation of the simulation accuracy reduced the trust
that can be placed in the simulation.

6.2.2 Goal 2: Explore Dispatch Strategies

A major limitation of the dispatch strategies is the custom penalty values used to
balance the importance of coverage, both depending on how many available ambu-
lances there are and depending on the predicted demand. The penalty values were
optimized to improve the result of the strategies on the same set of incidents that
was used to compare the strategies. They also depend on the specific allocation
used in the simulation. Since the strategies have not been evaluated on different
allocations and sets of incidents, the results might not be accurate.

The training of the prediction model used incidents more recent than the incidents
in the simulation. This could have given the model information about trends that
would otherwise not be possible.

6.2.3 Goal 3: Incident Urgency

The particular synthetic set of incidents utilized to investigate a scenario with
reduced over-triaged incidents may yield results that are not representative of the
broader range of possible synthetic sets with the same over-triage rate. The various
selections of which incidents to correct, could give vastly different outcomes from
the simulation. This would also change the effect that the dispatch strategies has
on the synthetic dataset.

The lack of research done to calculate the survivability of patients reduces its
relevancy. The survival function for acute incidents only uses research related to
cardiac arrests, and not other types of acute incidents. The survival function for
the urgent incidents have not been created from research, but rather created to
work in relation to the importance of acute incidents.
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6.2.4 Goal 4: Optimization

The optimization method is stochastic, so the results have a significant variance.
This could be a result of the lack of diversity, but the number of runs made to
estimate the performance of the methods might also be too small. The number of
runs was limited by the amount of time it would take to the test all the variations
of the optimization methods.

6.3 Future Work
This section will suggest some ideas and areas for future work in relation to this
thesis. The topics are all related to the research goals presented in Section 1.2.

6.3.1 Goal 1: Improve Simulation Realism

A potential change is to vary the travel time of an ambulance depending on what
type of incident it is responding to. The OSM method as a whole could potentially
be improved, researching the optimal speed limits for travel time accuracy and
other possibilities enabled by OSM. Lastly, completely new methods could be
researched, for example the Google Direction API or a machine learning method.

To introduce more variability of the median handling time and the median dis-
patching time, the inclusion of small variances around the median values can be
explored. This can help capture the diverse range of scenarios observed in the
real EMS system. Additionally, the regular incidents can be simulated more real-
istically, by incorporating similar methods as those proposed in Kergosien et al.
(2015). This will make the simulation handle a more diverse set of situations
which are present in the real world.

Conducting a more extensive evaluation of the simulation’s accuracy can provide
valuable insights and enhance trust in the simulation results. Instead of evaluating
accuracy by observing the system at a small set of specific situations, a statistical
analysis could be done to evaluate the overall performance and behavior of the
simulation.

6.3.2 Goal 2: Explore Dispatch Strategies

One idea for future work is to optimize the penalty values using techniques that
provide values that achieve better results across different sets of incidents and
allocations. The incorporation of a more extensive search method like a genetic
algorithm could be researched.

To address the challenge of accurate predictions due to sparse incident data, re-
search can be done on training the prediction model to predict demand for a longer
time period. The random factor of incidents occurring within one hour instead
of another made such detailed predictions difficult. It is easier for the prediction
model to capture the more general patterns in the data. The predictions would
give a less detailed view of future demand, but this might not be damaging for
the dispatch strategy. Additionally, considering additional factors such as weather
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conditions or other relevant variables in the prediction model could lead to more
accurate future demand predictions.

Investigating the possibility of implementing an MDP similar to the one discussed
in 4.1.2 can be an interesting approach. An MDP framework can provide a sys-
tematic and decision-driven approach to dispatching decisions, considering various
factors such as incident urgency, ambulance availability, and predicted demand.
This dispatch strategy could be compared to the ones presented in this thesis.

6.3.3 Goal 3: Incident Urgency

Since the survival functions have limitations in terms of their accuracy, getting
illness specific coefficients would be interesting. This would only be a benefit if
detailed information was available in the dataset of incidents, however. Asking
for professional insight on the balance between response time and survivability for
different urgencies can be more achievable.

Obtaining more data and a more detailed dataset would be good for the possibility
of creating more realistic survival functions. Additionally, information about the
actual urgency of the incidents in the dataset would make the limiting synthetic
dataset obsolete.

6.3.4 Goal 4: Optimization

Further work in optimizing the genetic algorithm can focus on enhancing diversity
within the population. Several strategies can be employed to improve diversity
and prevent premature convergence. One approach is to add self-adaptive param-
eters that evolve as part of the solution representation, including the crowding
factor. Another potential improvement could be to enable migration between the
islands in the islands method. Other approaches include novelty search, adap-
tive population size, and fitness sharing. Additionally, more extensive parameter
tuning for the different methods could give significant improvements.

In addition to these specific improvements, other optimization methods, such
as swarm intelligence algorithms, can also be explored. Techniques like parti-
cle swarm optimization or ant colony optimization offer alternative approaches
to solving optimization problems that can be better suited for the problem of
optimizing ambulance allocations.
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