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Abstract

During the past five years the framework of time-frequency analysis has been
complemented by notions like mixed-state localization operators, the Cohen
class of an operator and its accumulated version. The inspiration for these
developments has been the theory of Werner on quantum harmonic analysis
about 40 years ago. Among the many applications of these novel tools and
methodology Dörfler, Luef and Skrettingland have demonstrated that it provides
a way to detect correlations between different data sets. In this project we aim
to build on this approach and show its ramifications for convolutional neural
networks applied to audio signals which seem to fit well into the framework
of quantum harmonic analysis when viewed through the lens of time-frequency
analysis.

Sammendrag

I løpet av de siste fem årene har rammeverket for tid-frekvensanalyse blitt kom-
plementert med begreper som blandet tilstandslokalisering operatorer, Cohen-
klassen til en operator og dens akkumulerte versjon. Inspirasjonen for disse
utviklingene har vært teorien omWerner om kvanteharmonisk analyse for omtrent
40 år siden. Blant de mange anvendelsene av disse nye verktøyene og metodikken
har Doerfler, Luef og Skrettingland demonstrert at det gir en m̊ate å oppdage
korrelasjoner mellom forskjellige datasett p̊a. I dette prosjektet sikter vi mot
å bygge videre p̊a denne tilnærmingen og vise dens konsekvenser for konvo-
lusjonelle nevrale nettverk anvendt p̊a lydsignaler, som ser ut til å passe godt
inn i rammeverket for kvanteharmonisk analyse n̊ar det ses gjennom linsen av
tid-frekvensanalyse.



1

1 Introduction

Convolutional Neural Networks (CNNs) are a category of Artificial Neural Net-
works that have proven very effective in areas such as image recognition[26] and
classification [28]. Since their inception, they have been developed and refined,
powering a multitude of applications and forming a vital part of many advanced
technologies.[19]

CNNs have been utilized extensively in computer vision, a field concerned
with how computers can gain high-level understanding from digital images or
videos [3]. The use of CNNs in computer vision is significant as they can process
and understand images in a way that was not possible with previous models
[63]. This is due to the use of convolutional layers, which essentially ”slide”
over the input image to compute a map of features, providing an intuitive way
to recognize local and global patterns within an image [19].

CNNs have also been used in natural language processing (NLP) [61]. While
recurrent neural networks (RNNs) and transformer models like BERT and GPT
are more commonly associated with NLP, CNNs can be and have been used to
process text data for tasks such as sentiment analysis or text classification [56].
The convolutional layer in a CNN can identify local patterns, similar to n-
grams in text data, which makes them useful in NLP tasks [56]. However, it’s
important to note that for more complex NLP tasks, models like Transformers
often outperform CNNs [32][64].

Amongst the many CNN models developed over the years, certain ones have
gained significant attention due to their contributions to the field. LeNet-5,
developed by Yann LeCun in 1998, was one of the very first convolutional neural
networks, and it has largely influenced the design of subsequent networks. It
was initially used for digit recognition tasks, such as reading zip codes, digits in
checks. [35]

AlexNet, developed by Alex Krizhevsky, Ilya Sutskever, and Geoff Hinton,
was the winner of the 2012 ImageNet Large Scale Visual Recognition Challenge
(ILSVRC). It demonstrated the power of CNNs in large scale image recognition
tasks, significantly outperforming traditional computer vision models. AlexNet
is considered a landmark in the field and was responsible for the widespread
adoption of CNNs in computer vision. [34]

MobileNet is another significant model developed by Google. As the name
suggests, the primary aim of MobileNet is to provide a network architecture
that is efficient for mobile and embedded vision applications. Various versions
of MobileNet have been introduced over the years, each providing improvements
in efficiency and accuracy. MobileNetV3, for example, combined the advantages
of previous MobileNet models and added some new features like a new layer
type: HardSwish [29]

GhostNet is a more recent CNN model, proposed by researchers from Ten-
cent and the Chinese University of Hong Kong. It introduces a novel module,
named GhostModule, to generate more feature maps from cheap operations,
thus it’s more computational and memory efficient. This makes it very suit-
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able for deployment on devices with limited computational power, like mobile
devices. [23]

These advancements in CNNs showcase the rapid improvement in artificial
intelligence over the past two decades. With their capability to understand and
extract complex patterns from data, CNNs have set the stage for the future
development of more advanced AI technologies.

Indeed, the computation of convolutions is a cornerstone in the functioning
of CNNs, forming the basis for feature extraction in images, text, and even audio
data. The efficiency of these computations has been significantly improved with
the use of the Fast Fourier Transform (FFT)[7].

In the specific case where the input is a spectrogram, as is often the case when
dealing with audio signals in a CNN, this involves a special type of convolution
operation. This is where quantum harmonic analysis comes into play.[42][38]

Quantum harmonic analysis provides a mathematical framework for the
analysis of systems with a quantized phase space, and its use in the study
of convolution operators was first introduced by R. F. Werner in a paper ti-
tled ”Quantum harmonic analysis on phase space,” published in the Journal of
Mathematical Physics in 1984 [58].

In this paper, Werner introduced the notion of convolution operators in
the quantum context and established an analytic foundation for subsequent
explorations in this field.

Over the past five years, however, the understanding of quantum harmonic
analysis and convolution operators has been expanded upon through the work
of Monika Dörfler, Franz Luef, and Eirik Skrettingland. They have published
multiple papers that delve further into Werner’s original paper and propose new
ways to apply and understand convolution operators within the field of quantum
harmonic analysis. [14][37][38][39][54][55] This thesis aims to provide a compre-
hensive study of how Quantum Harmonic Analysis can be utilized to understand
the functioning and utility of Convolutional Neural Networks (CNNs). Despite
individual studies such as those by Luef and Skrettingland, demonstrating the
possibility of expressing localization operators and spectrograms as operator
convolutions [38], and Dörfler’s work applying Quantum Harmonic Analysis for
adaptive filters in CNNs and to detect correlations between different datasets
[13], a holistic exploration of this area remains uncharted.

Therefore, the objective of this thesis is to synergize various concepts from
the aforementioned studies, elucidate their interconnections with CNNs, and
explore the potential benefits of this formalism in CNNs.

In order to comprehensively address this goal, this thesis is meticulously
structured across various key areas – Time-frequency Analysis, Quantum Har-
monic Analysis, and Machine Learning – thereby serving as an intersection for
these domains.

An initial preliminary section aims to set the stage for readers from diverse
backgrounds by introducing elementary concepts in Time-frequency Analysis,
Fourier Analysis, and outlining different function spaces that will be crucial for
further discussion.

This is followed by a dedicated section on Time-frequency Analysis where
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we delve into the Short Time Fourier Transforms, Spectrograms, and Gabor
Analysis.

The subsequent section on Machine Learning navigates through the evolu-
tionary trajectory of CNNs, starting with an overview of supervised learning,
leading to the development of perceptrons which evolved into neural networks,
and finally culminating in the contemporary Convolutional Neural Networks.

The focus then shifts to Quantum Harmonic Analysis, where the thesis out-
lines various operator convolutions and their properties, accompanied by an
appropriate version of a Fourier Transform for operators.

The centerpiece of this thesis is a section that presents the main theorem,
illustrating how CNNs can be rewritten. This section will further explore the
implications of this theorem.

This is followed by a section devoted to defining a discrete version of the
theorem. This is done by adapting the main theorem into a discrete setting,
and this part will outline the modifications necessary to facilitate this adaption.

The thesis concludes with a summarization of the central findings, implica-
tions and prospective avenues for future research in the interplay of Quantum
Harmonic Analysis and CNNs.
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2 Preliminaries

This section will provide a foundation of the preliminary theory that is com-
monly taught at the undergraduate level. Its primary purpose is to define
various notations and terminologies that will be used throughout the paper.
Given that this paper draws from mathematical, physical, and machine learn-
ing disciplines, these preliminaries span across several fields of study. They are
presented in a self-contained manner to obviate the need for external sources to
comprehend the paper. Readers who are acquainted with the material in any
section may proceed directly to the subsequent section.

2.1 Fundamental operations

This section will cover the necessary fundamental operations that we will use in
future sections. This mostly consists of defining the different operations required
for time-frequency analysis. And is sourced from [21][39].

First, a quite trivial definition to make it clear what z is referring to later
in the text:

Definition 2.1 (Point in phase space). A point in phase space pR2q is denoted
by z “ px, ωq.

To simplify the theorems in time-frequency analysis, we also introduce the
standard notation for time shifts, frequency shifts, and a combination of both
shifts. A time shift simply shifts a function in time:

Definition 2.2 (Time shift). The time shift operator Tx acts on f as follows:

Txfptq “ fpx´ tq.

While a frequency shift multiplies the signal by an exponential:

Definition 2.3 (Frequency shift). The frequency shift operator Mω acts on f
as follows:

Mωfptq “ e2πiω¨tfptq.

Combining time and frequency shifts gives a compact notation for shifting
functions in phase space:

Definition 2.4 (Time-frequency shift). The time-frequency shift operator πpzq

shifts a function in phase space by z as follows:

πpzqfptq “ MωTxfptq “ e2πiωtfpt´ xq.

We may also want to examine functions that are reflected at the origin,
which can be accomplished using the parity operator. The parity operator P
acts on a function fpxq by reflecting it across the y-axis, and is defined as:

Definition 2.5 (Parity operator for functions). Pfpxq “ fp´xq.
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2.2 Fourier analysis

This section will cover some of the theory required to understand Fourier trans-
forms, which will later be relevant both for defining the Short Time Fourier
Transform (STFT) and to defining modulation spaces. Since the theory of
Fourier transforms does not work for arbitrary functions we will first look at
defining the appropriate space of functions. Sourced from [8] [11] [21]

2.3 Sequence spaces

The idea for why we are interested in p-norms is easier to understand by first
starting with sequences instead of functions.

Generally speaking, the norm is simply a way of measuring the size of el-
ements from a space. One quite important family of norms is given by the
p-norms:

Definition 2.6 (p-norm for sequences). Let x be a sequence then for p ě 1:

}x}p “

˜

n
ÿ

i“1

|xi|
p

¸
1
p

. (1)

Since this expression is not valid for p “ 8, it is separately defined as the
largest entry: }x}8 :“ maxi |xi|. The main interesting thing to note for this
thesis is that the space is increasing in p:

Theorem 2.1. For 1 ď p ď q ď 8 the following equation holds:

}x}q ď }x}p.

Using the p-norms allows us then to define the ℓp sequence spaces as the set
of sequences that are bounded in the p-norm:

ℓppRdq :“ tpxiqiPN : }x}p ă 8u , (2)

which by Theorem 2.1 monotonically decreases in size as p increases. This means
that if p ă q then there are more sequences in ℓp than ℓq.

Example: Consider the sequence of all 1’s. This sequence is in ℓ8, with
the largest element being 1. Yet the same sequence is not in ℓ1 as

ř8

i“1 |1| “ 8

or any ℓp-space for p ă 8.
This is a quite simple way of imposing some stricter restrictions on sequences,

which will later be leveraged again in the section on trace class operators.

2.4 Elementary function spaces

For many theorems, it is important to restrict functions or operators to an
appropriate class that possesses certain desirable properties. This section will
cover the different elementary spaces of functions that are required in the further
sections.
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2.4.1 LppRdq space and ℓppRdq

An important space of functions that will later appear in multiple theorems is
the function spaces that are derived from the p-norms.

It is no coincidence that LppRdq and ℓppRqd both share quite similar notation,
as we proceed in almost the same manner. First define the p-norms for functions:

Definition 2.7. Let fptq be a function then:

}fptq}p “

ˆ
ż

Rd

|fptq|pdt

˙
1
p

. (3)

First we have the important function spaces of Lp which are:

LppRdq :“

#

fptq :

ˆ
ż

Rd

|fp|dt

˙
1
p

ă 8

+

. (4)

This is simply the set of functions that have finite }.}p-norm. Often we refer
to L1pRq as the space of integrable functions, and L2pRq as the space of square-
integrable functions. Later an analogous definition for operators will be defined
in the form of trace class operators, and Hilbert-Schmidt operators.

2.4.2 Convolutions

As convolutions are an essential part of Convolutional Neural Networks, this
section aims to provide a comprehensive introduction to convolutions. Gener-
ally, a convolution is an operation that takes two functions as input, and outputs
a new function by using the following formula:

Definition 2.8 (Convolution). The convolution of two complex valued func-
tions f, g:

pf ˚ gqptq “

ż

R
fptqgpt´ τqdτ “

ż

C
fpt´ τqgptqdτ,

where the map is defined from pC,Cq to C.

In the discrete case this can be turned into;

Definition 2.9 (Convolution). The convolution of two functions f, g defined
on Z is

pf ˚ gqptq “

8
ÿ

τ“´8

f rτ sgrt´ τ s.

The computational complexity of such discrete convolutions corresponds to
the number of operations required. This means that if signal f has length N
and signal g has length N the computational complexity would be OpN2q. [48]
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2.4.3 Fourier transform

The Fourier transform is an operator that acts on functions, decomposing them
into their sinusoidal components. This then allows you to see which frequencies
are present in a function or a signal. Intuitively we consider it as an operator that
transforms a function from the time domain, where the function is represented
by how it changes with respect to time, to the frequency domain where we can
see how much of each frequency the signal contains.

Definition 2.10 (The Fourier Transform). For f in L1pRq we define the Fourier
transform by

F rfptqs “ f̂pξq “

ż 8

´8

fptqe´2πiξtdt

Example 1: As an example, we shall look at the Fourier transform of the
Gaussian function fptq “ e´t2 , which has special importance in Fourier analysis
due to some of its nice properties:

F rfptqs “

ż 8

´8

e´t2e´2πiξt “
?
πe´pπξq

2

. (5)

Example 1 showcases two of the properties that make the Gaussian special.
The Fourier transform of the Gaussian is another Gaussian. Additionally, this
gives us a trivial example of a function which has a Fourier transform that is
never equal to zero.

We also define an operator that acts on functions by taking them from the
frequency domain to the time domain, namely the inverse Fourier transform:

Definition 2.11 (The Inverse Fourier Transform).

F´1
”

f̂pξq

ı

“ fptq “

ż 8

´8

f̂pξqe2πiξtdξ

By taking the Fourier transform we can analyze a function in the frequency
domain where some problems are easier to solve. For example, it is easy to make
a filter that removes high-frequency components or low-frequency components
of a signal which can help filter out unwanted noise from audio recordings. It
might also be possible to decouple signals which are intertwined, so a recording
of two people talking at the same time can be turned into two signals where
only one person is talking. Additionally, it might be easier to make filters on
the Fourier side.

Using equation 2.10, we then define the Symplectic Fourier transform using
the standard symplectic form.

Definition 2.12 (Symplectic Fourier Transform). Let A P L2pR2dq:

FθpApzqq “

ż

R2d

Apz1qe´2πiθpz,z1
qdz1
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where θpz1, z2q “ ω1 ¨ x2 ´ ω2 ¨ x1. An additional subscript of θ is added to
differentiate the symplectic Fourier transform from the regular one. The choice
of θ as a variable highlights that the symplectic Fourier transform is a rotated
version of the Fourier transform. This can be seen by the following equation:

FθpApx,wqq “ FpApw,´xqq

Additionally, we have that:

FθpApzqq´1 “ FθpApzqq,

FθpApzqq2 “ Apzq.

Here Apzq is used ,instead of fpzq, to highlight that it is a function on L2pR2dq

and not L2pRdq.

2.4.3.1 Basic properties of the Fourier transform

The Fourier transform has some nice properties when it comes to convolution,
translation and differentiation. So we start by defining these operators.

These operators can easily be combined with the Fourier transform, which
the following properties show:

1. F rTxf s pξq “ e´2πixξ f̂pξq

2. F rf ˚ gs “ F rf sF rgs

3. F
“

dn

dtn f
‰

pξq “ p2πiξqnf̂pξq

Writing these properties in words:

1. Translating before taking the Fourier transform is equivalent to multiply-
ing by a factor of e´2πixt.

2. Taking the Fourier transform of two functions that have been convoluted
is equivalent to finding the Fourier transform of each function, then mul-
tiplying their Fourier transform together.

3. Taking the derivative of a function and then finding the Fourier transform
is equivalent to multiplying the Fourier transform by p2πiξq

This shows that convolution, translation and derivation combine nicely with
Fourier transforms. Some additional relevant properties are the Riemann-Lebesgue
lemma, Parseval’s identity, and the Plancherel theorem:

Definition 2.13 (Riemann-Lebesgue lemma). If f P L1pRdq then f̂pξq Ñ 0 as

|ξ| Ñ 8 and f̂ is uniformly continuous

In other words functions in fpxq P L1pRdq gets mapped into C0pRdq, the
space of functions vanishing at infinity.
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Definition 2.14 (Parseval’s identity). For f, g in L2pRdq we have

xf, gy2L “

ż 8

´8

fpxqgpxq “

ż

Rd

f̂pxqĝpxq,@f, g P L2pRdq.

Definition 2.15 (Plancherel Theorem). The Fourier transform defined on the
dense subspace L1 XL2pRdq may be extended to a unitary operator on L2pRdq.

2.4.3.2 Fundamental operations and Fourier transform

There are some useful properties of the fundamental operations that we will
later leverage, so this section is dedicated to covering some of the more es-
sential properties when the fundamental operations are combined with Fourier
transforms[21]. For the definitions of time-shifts and frequency-shifts see Defi-
nition 2.2 and Definition 2.3.

Proposition 1.
TxMω “ e´2πix¨ωMωTx (6)

Proof: follows from direct calculation:

TxMωfptq “ e2πiωpt´xqfpt´ xq “

e´2πix¨ωe2πiωtfpt´ xq “ e´2πix¨ωMωTxfptq

For any of the Lp-spaces, the shifts also define isometries:

||TxMωf ||p “ ||f ||p.

By direct calculation, the following relations with fundamental operators
and the Fourier transform hold:

{pTxfq “ M´xf̂ , (7)

{pMωfq “ Tω f̂ . (8)

Or by combining (7) and (8)

p {TxMωfq “ M´xTω f̂ “ e2πix¨ωTωM´xf̂

2.4.3.3 Convolutions and Fourier transforms

One of the advantages of Fourier transforms is how it turns computing con-
volutions into something both practically and theoretically more simple. This
follows from the following theorem:

Theorem 2.2. Supposed that f, g P L1pRdq. Then we have that

zf ˚ g “ f̂ ĝ.
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With some creative usage, this theorem has various uses when it comes to
optimizing calculations. Some examples include: very efficient algorithms for
multiplications, or for finding prime factors. [2] [33].

The trick usually done is using the well-known fast algorithm for numerically
computing Fourier transforms which is called the fast Fourier transform.

Implementing the convolution using the fast Fourier transform that leverages
this convolution theorem has a computational complexity of OpN logpNq [48].
That is a quite big improvement from the naive implementations complexity of
OpN2q.

This is achieved by using the convolution theorems and calculating the con-
volution in the following way:

f ˚ g “ F´1Fpf ˚ gq “ F´1pf̂ ¨ ĝq (9)

The trick of using an appropriate Fourier transform for calculating convolu-
tions is one of the motivations for later theorems.

2.5 Function spaces for time-frequency analysis

As noted in the section about Fourier transforms any arbitrary function does
not necessarily have a well-behaved Fourier transform. This section will cover
some of the potential choices of function spaces and will end with defining the
Feichtinger’s algebra which is the space that is currently considered the most
appropriate for time-frequency analysis.

2.5.1 Schwartz space

This section will cover one of the most used spaces for making sure the Fourier
transform is well defined, namely the Schwartz space of functions.

The idea behind the Schwartz space is to add some requirements for smooth-
ness and for the function to decay sufficiently fast to zero. Formally the Schwartz
space SpRq is defined as the set of all infinitely differentiable functions f : R Ñ C
such that for any multi-indices α, β and any constant Cα,β , we have that the
following family of seminorms is finite:

cα,βqpfq :“ sup
xPRd

}xαBβfpxq} ă 8,

where Bβfpxq denotes the β-th derivative of f at x, and xα denotes the α-th
power of x. This is equivalent to the following equation: [60]

|xαBβfpxq| ď Cα,β ¨ p1 ` x2q´
|α`β|

2 ,@x P Rd (10)

has to be finite regardless of the choice of α, β P N. This allows us to define
a notion of convergence:

Definition 2.16 (Convergence in Schwartz spaces). A sequence of functions fn
converges to f if:

}fn ´ f}cα,β
Ñ 0
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as n Ñ 8. For all α, β P N.

The topology of Schwartz spaces is defined by the countable family of norms
cα,β . This topology is not derived from a norm, but it is metrizable by the
following norm:

dpf, gq “
ÿ

α,βPN{0

kα,β}f ´ g}cα,β

1 ` }f ´ g}cα,β

(11)

Furthermore, this metric space is complete with respect to this metric. Since
the topolgogical vector space is complete and defined by a countable family of
seminorms it is a Fréchet space. [4]

Functions in the Schwartz space are rapidly decreasing, which makes them
well-suited for Fourier analysis. Specifically, the Schwartz space has the follow-
ing properties.

• Any function in SpRq and its Fourier transform are also in SpRq.

• The Fourier transform is a continuous and invertible linear operator on
SpRq.

• SpRq is dense in L2pRq, meaning that any function in L2pRq can be ap-
proximated arbitrarily well by a sequence of functions in SpRq.

Example of a Schwartz function: Let ϕ0 be the L2- normalized Gaussian:

ϕ0 :“ 2
d
4 e´πx2

. (12)

Then ϕ0 P S.
Unfortunately, the Schwartz spaces is quite “small”, which we can see in the

following example.
Example: Consider the function: gptq “ 1 ´ |t|. Which is quite an elemen-

tary and simple function, yet since it is not differentiable at gptq “ 0 it is not
in the Schwartz space.

Working with equation 10 is unfortunately not very nice as dealing with
multi-indices is quite challenging, and it is quite easy for a function to drop out
of a Schwartz space after some transformation.

To avoid dealing with these issues a different space that is more suitable for
this thesis is used instead. Namely the Feichtinger algebra:

2.5.2 Feichtinger’s algebra

To understand Feichtinger’s algebra this section will first cover tempered dis-
tributions which are required for defining modulation spaces, which the Fe-
ichtinger’s algebra is just a special case of.

We call the dual space of the Schwartz space for the space of tempered
distributions. Which is the space all linear and continuous functionals on S:
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Definition 2.17 (Tempered distributions). The set of all linear and continuous
functions from S Ñ R. Denoted by S 1

S 1pSq “ tf P S : f Ñ R is linear and continuousu.

The tempered distributions will be the building blocks of modulation spaces,
they have some interesting properties.

Then the definition of modulation spaces is as follows:

Definition 2.18 (Modulation spaces).

Mp,q
m pRdq :“

$

&

%

f P S 1pRdq :

¨

˝

ż

Rd

˜

ż

Rd

ˆ
ˇ

ˇ

ˇ

ˇ

ż

Rd

fptqgpx´ tqe´2πiωtdt

ˇ

ˇ

ˇ

ˇ

p

mpx, ωqpdx

˙

q
p

dω

¸

1
q

ă 8

˛

‚

,

.

-

The canonical choice of g is letting it be equal to ϕ0, but any other Schwartz
functions may be used. Later the expression inside the absolute values will
become important as this is actually a short-time Fourier transform. But to
finally get to the Feichtinger algebra, introduced by Feichtinger in [15], which
contains the Schwartz spaces [2]. We need simply to consider the modulation
space where m “ p “ q “ 1.

Then the Feichtinger algebra is defined to be the set of all tempered dis-
tributions (Defintion: 2.17) such that the integral of the absolute value of the
STFT(equation 3.1) of the distribution with the normalized Gaussian (equation:
12) as a window is finite. Written explicitly this is then the following:

Definition 2.19 (Feichtinger’s algebra).

S0pRdq :“ tf P S 1pRdq :

ż

R2d

ˆ

|

ż

R
fptqgpx´ tqe´2πiωt|dt

˙

dz ă 8u

If we compare with the definition for modulation spaces matches for m “

p “ q “ 1 as previously noted. Another way of denoting Feichtinger’s algebra
is as the modulation space M1pRdq.
Examples of M1pRdq functions:

• Two sided exponential: gptq “ e´|t|

• Triangle function: gptq “ 1 ´ |t|

• Hyperbolic secant: gptq “ 1
coshπt

Note now that the triangle function is included!
Feichtinger’s algebra turns out to be a good class of test functions and can

in many cases be a good substitute for the Schwartz spaces. See the survey[30].
The continuous dual space of M1pRq may be identified by M8pRq which is the
space of all tempered distributions f P S 1 such that:

∥f∥M8 “ sup
zPR2

|Vgpfpzqq| ă 8. (13)

Examples of elements in M8pRq:
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• The δ-distribution: δptq “ limbÑ0
1

|b|π e
´p x

b q
2

.

• The shah distribution: fptq “
ř8

n“´8 δn.

In order to distinguish between tempered distributions and these distribu-
tions we refer to elements of M8 as mild distributions.

Feichtinger also proved that there exists a kernel for bounded linear operators
A :M1pRq Ñ M8pRq. Similar to how there exists a kernel of continuous linear
operators between the Schwartz space and the space of tempered distributions.
[16]

Theorem 2.3 (Feichtinger). LetA be a bounded linear operator fromM1pRqq Ñ

M8pRqq. Then there exists a kA P M8pRq such that xg, Tfy “ xf b g, kAy.

Here the x., .y denotes the pairing between M1pRqq and M8pRq which is
well-defined since the space of linear functionals of M1pRq may be identified
with M8pRq

Ultimately we also need to define translation invariant operators. These are
the operators which are unaffected by shifting them back and forth:

Definition 2.20 (Translation invariant). An operator A is translation invariant
if the following property is satisfied for all x P R:

TxA “ ATx

or equivalently if
TxAT´x “ A.

Let kA P M8pR2q be the kernel of an operator A. Then the translation
invariance Definition 2.20 implies that the kernel is of the form:

kApx, yq “ kpx´ yq (14)

for some k P M1. This allows us to rewrite the operator A in the following
manner for a f P M1:

A “ Afk ˚ f (15)

Which is a convolution operator. Reiterating this result gives us a quite useful
theorem:

Theorem 2.4. Any bounded and translation invariant operator fromM1pRq Ñ

M8pRq is a convolution operator.

Another well-known characterization of this class of operators is [10]:

Theorem 2.5. Let A be a translation invariant linear bounded operator from
M1pRq Ñ M8pRq. Then there exists a mild distribution m P M1pRq such that
xAf “ m ¨ f̂ for all f P M1pRq
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Such operators are called Fourier multipliers. The previous theorem in terms
of operators we have:

FpAfq “ mF (16)

or equivalently:

Apfq “ F´1pmFqpfq (17)

Convolution operators appear in many areas of engineering, physics and
mathematics, for example in filters in signal analysis. One of the reasons for
this is that they have this nice description in the form of a Fourier multiplier.

There exists an analogous result in Quantum harmonic analysis that we
exploit for describing convolutional neural networks.

2.6 Properties of operators

This section will cover some special types of operators that have properties that
are needed later. First, we look at compact operators which are of interest since
they can be decomposed using a singular value decomposition.

Definition 2.21 (Compact operator). A linear operator that maps compact
subsets of the domain to relatively compact subsets in the codomain.

For compact operators we have a quite useful decomposition [22]:

Definition 2.22 (Singular value decomposition). Let S be a compact operator
on L2pRd. Then there exist two orthonormal sets tbiuiPN and tviuiPN in L2pRdq

and a sequence tsipSquiPN of positive numbers with snpSq such that S may be
expressed as:

S “
ÿ

nPN
snpSqbn b vn

The definition of positive operators is necessary when defining trace class
operators:

Definition 2.23 (Positive operators). An operator is positive if it satisfies the
following condition:

xSf, fy ě 0, @f P L2pRdq.
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3 Time-frequency analysis

Time-frequency analysis is a crucial tool in signal processing, audio analysis, and
image processing. It allows for simultaneous examination of signals in both the
time and frequency domains, providing insights into their temporal and spectral
characteristics. In this section, we explore various techniques of time-frequency
analysis, including the Short-time Fourier Transform (STFT), spectrograms,
sampled spectrograms, Gabor analysis, and Gabor frames. These techniques
offer valuable insights into signal properties, localization, and representation.
By studying these methods, we aim to enhance our understanding of time-
frequency analysis and its applications.

3.1 Short-time Fourier Transform

The idea of the short-time Fourier transform is to obtain some information about
the local properties of a function. This is done by restricting the function to a
smaller duration in time by multiplying it with a function with finite support
called a window function.

The STFT is defined to be [17]:

Definition 3.1.

Vgfpt, ξq “

ż

Rd

fptqgpt´ xqe´2πit¨ξdt,@t, ξ P Rd,

where gpxq is often a window function with compact support, here we follow
the notation of [14]. But we can then rewrite it the following way:

ż

Rd

fptqgpt´ xqe´2πit¨ξdt “ xfpxq,MξTtgy “ xfpxq, πpzqgy

Following Gröchenig’s [21] book it is possible to rewrite the STFT in the
following equivalent ways:

(a) {f ¨ Txgpωq

(b) xf̂ , TωM´xĝy

(c) e´2πix¨ωVĝFfpw,´xq

(d) e´2πix¨ωpf ˚Mωg
˚qpxq

(e) pf̂ ˚M´xĝ
˚qpωq

(f) e´πix¨ω
ş

Rd fpt` x
2 qgpt´ x

2 qe´2πix¨ωdt

Where h˚pxq “ hp´xq.
For this thesis the main things to note are the following. Using equation (c)

above shows why this is a valid time-frequency representation as it relates the
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STFT of a function to the STFT of the Fourier transform of the same function.
Notice that the difference is simply a phase factor and a rotation. Writing it
explicitly out:

Vgpfpx,wq “ e2πix¨ωV
pg
pfpω, xq. (18)

This is the fundamental identity of time-frequency analysis.
Additionally, there are other quadratic form representations that might be

useful for different applications such as the Ambiguity function:

Definition 3.2 (Ambiguity function).

Apf, gq “ eπix¨ωVgf.

Or if you consider equation (f) instead you get the cross-ambiguity function
which is often used in radar and optics[21]:

Definition 3.3 (Cross-ambiguity function).

ż

Rd

fpt` x
2 qgpt´ x

2 qe´2πix¨ωdt. (19)

3.2 Spectogram

A spectrogram is a visual representation of the frequency content of a signal over
time and was introduced in [9]. It provides information about how the frequency
components of a signal change over time, making it useful in a variety of fields
including audio signal processing, speech analysis, and acoustic studies. In a
spectrogram, the horizontal axis represents time, the vertical axis represents
frequency, and the color or intensity represents the amplitude or power of the
frequency component.

To find calculate a spectogram simply take the square of the STFT:

Definition 3.4 (Spectogram). The square of the absolute value of the STFT:

|Vgpf, ξq|2.

Figure 1 shows a signal and its corresponding spectrogram generated using
the code in the example. The signal is a combination of two sine waves with
frequencies of 2 Hz and 20 Hz, respectively. The top plot in Figure 1 shows the
time-domain representation of the signal, which is a plot of the signal amplitude
versus time. The bottom plot in Figure 1 shows the spectrogram of the same
signal, which is a 2D plot of the signal’s frequency content versus time. In the
spectrogram, the color represents the magnitude of the signal at each frequency
and time point.

From the spectrogram, we can see that the signal has a dominant frequency
of 20 Hz and a weaker frequency component at 2 Hz. The color changes over time
indicating the variation in the signal’s frequency content. We can also observe
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that the frequency content of the signal changes rapidly at the beginning and
end of the signal while remaining relatively stable in the middle.

Spectrograms have been widely used in various fields such as audio signal
processing, speech analysis, and acoustic studies [46]. They provide valuable
information on the frequency components of a signal over time, making them
useful for analyzing and visualizing signals with complex frequency content.

Figure 1: Illustration of a signal and its spectogram

A spectrogram, depicted as a heatmap, represents the intensity of each fre-
quency component in a signal at a given time. More intense colors represent
more of that frequency at a given time.

3.3 Gabor analysis

In the continuous case, Gabor analysis is about taking a Gabor system of the
following form: tπpzqg : z P R2u.

And attempting to write a reconstruction formula for f P L2pRq:

f “

ĳ

R2

Vgfpzqπpzqg dz. (20)

The idea proposed by Daubechies was to modify these reconstruction formu-
las by using a STFT mulitplier. This leads to the following class of operators,
localization operators defined by

Aaf “

ĳ

R2

apzqVgfpzqπpzqg dz (21)

for a symbol a P M8pR2q.
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Definition 3.5 (Gabor systems). The Gabor system of a window g is the set
of translations and modulations of g given by:

tga,b “ Mav0Tbt0g : a, b P Zu

For the appropriate choice of a, b the spectogram can be calculated like this
as well back from this definition. But by also considering different modulations,
it is possible to create better sampling schemes. Either approach works but
there are some theoretical reasons for preferring Gabor systems. For an in-
depth survey of Gabor systems, the interested reader may refer to [53].

3.4 Gabor frames

A special case of Gabor systems has some nice properties. Namely the Gabor
frames:

Definition 3.6 (Gabor frames). Let ga,b be a Gabor system, and if it addition-
ally satisfies the following bounds for all f P L2pRq:

A∥f∥2 ď
ÿ

a,bPN
|xf, ga,by|2 ď A∥f∥2

then ga,b is a Gabor frame for L2pRq.

Example Gabor frame: If we consider the Gaussian function and the
lattice Λ “ aZ ˆ bZ. Then this forms a Gabor frame if and only if ab ă 1, a
well-known result due to Seip-Wallsten and Lyubarskii.

For a Gabor system there are three fundamental operations:

• Analysis operator L2pRq Ñ ℓ2pΛq: Cf Ñ txf, πλgyuλPΛ which takes a
function and gives you a sequence.

• Synthesis operator ℓ2pΛq Ñ L2pRq: Dc “
ř

λPΛ cλπλg

• Frame operator L2pRq Ñ L2pRq:S D ˝ C “
ř

λPΛxf, πλgyπλg
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4 Machine learning

Machine learning and artificial intelligence have received significant attention in
recent years, with the development of increasingly sophisticated models such as
the Chat GPT[51]. The present thesis will focus on convolutional neural net-
works (CNNs), which represent a class of deep learning models that have shown
remarkable performance in various domains, including image [27] and speech
recognition[1], natural language processing[6], and reinforcement learning[41].

To facilitate readers who may be unfamiliar with CNNs, it is pertinent to
provide a brief overview of the inception of neural network research, which be-
gan with the development of perceptrons. Perceptrons are a class of artificial
neurons that are capable of learning and making decisions based on input sig-
nals. They were introduced in the 1950s by Frank Rosenblatt, who proposed a
simple algorithm for training them. However, perceptrons had limited capabil-
ities and could only classify linearly separable data. This limitation led to the
”perceptron controversy,” which questioned the ability of perceptrons to solve
complex problems.[45]

Over time, researchers discovered that stacking multiple layers of neurons
(i.e., creating neural networks) could overcome the limitations of individual
perceptrons and enable them to learn complex patterns[19]. This led to the de-
velopment of backpropagation, an algorithm for training neural networks, which
enabled them to learn from large datasets and generalize to new examples[57]. In
the 1980s, researchers began exploring the use of convolutional layers in neural
networks[36], which were inspired by the visual cortex in the human brain[20].

Convolutional layers introduced the concept of weight sharing, which re-
duced the number of trainable parameters in the network and allowed it to
learn translation-invariant features[36]. This greatly improved the performance
of neural networks on image classification tasks, and in 2012, the AlexNet model
achieved state-of-the-art performance on the ImageNet benchmark, which con-
sists of millions of labeled images [34]. Since then, CNNs have become a
dominant model in computer vision and have been extended to various other
domains[3].

The outline of the subsequent sections is as follows

1. Supervised machine learning

2. Perceptrons

3. Artificial neural networks

4. Activation functions

5. Convolutional neural networks

6. Some implementation details
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4.1 Supervised learning

Supervised learning methods are machine learning methods that try to figure
out the underlying relationship between data about an object and its classifica-
tion, when we are given samples of different data with the correct classification.
This can be broken into two different paradigms, either finding the right label
(classification) or by finding a relation between the dependant variables, and
one or more explanatory independent variables. [25].

In supervised learning, the data consists of samples, each with a correspond-
ing correct label. So given some sample data denoted by D which is sampled
from a distribution X of different objects, there is also given a corresponding
description of these objects called the target T with the correct label taken from
a set of labels Y. The goal of supervised learning is then to find a function which
could be used to describe new data points. [25]

Definition 4.1 (Supervised learning). Given data samples pD, T q Ă pX ,Yq,
try to find a function that satisfies fpX q “ Y

Multiple different functions solve this problem[24], so to pick which function
is the ”best” we need some way to compare them. This is done by using a
statistical tool called loss functions. Which measure how well the function we
chose coincides with the samples we were given[25].

Definition 4.2 (Loss function). A loss function L is a function that measures
how well a function f fits the data at each point by comparing the target with
the estimated target.

L : pY, fpX qq Ñ R

Different loss functions can be used depending on how you would like to
compare the functions, but some commonly used ones are:[24]

• L1 norm loss function: Lpyi, ŷiq “ |yi ´ ŷi| [31]

• L2 norm loss function: Lpyi, ŷiq “ pyi ´ ŷiq
2[31]

• Cross entropy loss function: Lpyi, ŷiq “ ´yi logp eŷ
ř

eŷj
q[25]

4.2 Perceptrons

The first steps towards neural networks were taken in 1958 with Frank Rosen-
blatt’s model of the brain, called the Perceptron.[52]. The core idea of the
papers were that neurons in the brain respond and fire of a signal when they
are given sufficiently large inputs based on some threshold.

As the different inputs x might not necessarily be equally important they
are given some associated weight w of how important the input is, and then a
bias b is added to allow for different levels of thresholding[25].
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Definition 4.3 (The perceptron). The perceptron is the function:

fpxq “

#

1 w ¨ x` b ą 0

0 otherwise

Visualizing the perceptron or neural networks has been done by various
authors [19][25]. Below is an illustration using the same idea:

Figure 2: Illustration of a Perceptron

Here the vectorized notation is used which is shorthand for writing out:

w ¨ x “

n
ÿ

i“1

w1x1 “ w1x1 ` w2x2 ` w3x3 ` ...wnxn

Which shows that each input is given an associated weight. The main lim-
itation of this method is that it is a linear function that classifies the input
domain into 0 or 1 based on which side of the line w ¨ x ` b “ 0 the input falls
on. Which means the boundary which separates the inputs into 0 or 1 has to be
a straight line which means non-linear decision boundaries can not be modelled.

4.3 Neural Networks

Artificial Neural Networks were developed in 1986 [47] and it is a method that
improves on the issues on perceptrons. In this model, a network’s architecture
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is defined where the data points are fed through potentially multiple layers of
perceptrons, each with a non-linear activation function [25].

Definition 4.4 (Activation function). An activation function is a non-linear
function that takes the data as input similar to the perceptron denoted by σp¨q

Some commonly used activation functions are:

• Rectified Linear Unit (ReLU): σpxq “ maxp0, xq[62]

• Sigmoid like functions with an S-shape. Examples include σpxq “ 1
1`e´x

or σpxq “ tanhx. [43]

There are various different ways of writing an expression for one unit in a
layer of a neural network [25][19], which takes the previous layer as an input
and passes it through an activation function, but some of the commonly seen
ones are:

σpax` bq “ σ

˜

n
ÿ

i“1

xiwi ` b

¸

“ σ
`

wTx` b
˘

(22)

A layer in a neural network will usually consist of multiple of these units
stacked on top of each other. Some commonly used terms that are useful to
know when talking about neural networks:[25]

1. Input layer pXiq: The first layer which constitutes a vector of inital inputs
to the neural network.

2. Hidden layer: The middle layers in a neural network which takes the
previous layer as input and outputs a vector for the next layers.

3. Output layer: The final layer in a neural network which takes the inputs
and transforms it into the final output. Where the final prediction is
denoted by: ŷ
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Figure 3: Illustration of an example of a Neural Network

This is faster to compute, and here we will then denote the number of units
in a layer by Kn. If the activation functions in a given hidden layer is identical,
it is possible to combine the entire column into a vector. This is computationally
more efficient, and we denote the number of units in a layer by Kn

σpAX `Bq “ σ

˜

Kn
ÿ

kn“1

xipknqwipknq ` 1 b b

¸

“ σ

¨

˚

˚

˚

˝

»

—

—

—

–

wT
1 x1 ` b1

wT
2 x2 ` b2

...
wT

Kn
xKn

` bKn

fi

ffi

ffi

ffi

fl

˛

‹

‹

‹

‚

.

If there is only one layer of such activation functions it is usually called an
neural network, but if there are multiple layers it is called a deep neural network.
[25]

Definition 4.5 (Deep Neural network). A neural network with multiple layers.

As an example consider the Deep Neural network illustrated in figure 3 which
consists of two hidden layers. Representing it mathmathically can be done as
following if the output layer is simply the identity function fpxq “ x:

ŷ “ σ2 pA2σ1pA1X `B1q `B2qq
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4.4 Convolutional Neural Networks

The main topic of interest for this paper are neural networks least one of the
layers uses convolutions. These are called Convolutional Neural Networks.

Definition 4.6 (Convolutional Neural Networks). A neural network where one
of the layers is computed using a convolution, this also reduces the amount of
parameters.

Then we can represent the convolutional layers by the following formulas:

σpAx` bq “ σp

Kn
ÿ

kn“1

pSnpknq ˚ wpnqq ` 1 b bq (23)

The symbol wpnq is used to denote that the entries in the matrix may be
sampled from functions. Later in our discussion, we will encounter the notation
wp´nq, which indicates that we are sampling from the function fp´xq instead
of fpxq.

4.5 Implementation details

When implementing convolutional neural networks there are two additional
things that is important to cover. How the weights are chosen in Equation
24 and how the convolutions are actually computed in practise.

As previously mentioned in the section about convolutions (equation: 9),
computing the convolution is usually done with the FFT instead. Which means
the actual formula used in implementations is given by:

σpAx` bq “ σp

Kn
ÿ

kn“1

F´1p {Snpknq ¨ zwpnqq ` 1 b bq (24)

This facilitates understanding of the connection to the Quantum Harmonic
Analaysis counterpart of the formula later.

There are several methods for initializing these weights, and interested read-
ers may refer to Chang et al, 2005 [5] for some of the different properties of
different initialization schemes. But some natural choices are:

1. Zero initialization, all the weights are equal to 0.

2. Sample from a Gaussian distribution.

3. Sample from a uniform distribution

Zero initialization can easily be shown to be sub-optimal either through
numerical experiments such as [12], or by simply noting that a zero initialization
with multiple linear layers will be mathematically equivalent to a single layer.

There are various different ways of deciding how to sample from the Gaussian
or uniform distribution and, but it generally boils down to what parameters for
the distribution to pick. See [44] for a more in-depth overview.
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5 Quantum harmonic analysis

This section will introduce several contemporary techniques from Quantum Har-
monic Analysis (QHA) that are essential to our discussion. These include:

1. Time modulation and frequency modulation.

2. The convolution of operators and functions.

3. Trace class operators, and why we need to restrict ourselves to a smaller
set of operators.

4. The Fourier Wigner and Symplectic Fourier transforms.

5. The properties of operator convolutions

6. A QHA represent of the convolution of a spectogram and a sequence.

The following sections will explore each of these techniques in greater detail,
highlighting their importance to the field of QHA and their relevance to our
analysis.

5.1 Notation

The section on Quantum Harmonic Analysis will incorporate the material found
in [37].

5.1.1 Trace class operators

Similarly to how integrable functions are required for the Fourier transform of
functions, we will restrict operators to trace class operators for the corresponding
Fourier transform to be well-behaved.

For this to make sense we first have to discuss two essential ideas related to
operators: compact operators and their singular value decomposition.

The idea of trace class operators is that we consider only compact operators
which have singular values which satisfy some conditions.

The main reason we are interested in compact operators is that they allow
for a singular value decomposition. Taken from [50], but using the notation
from [39] as it is more consistent with the rest of the thesis:

Definition 5.1 (Signular value decomposition). Let S be a compact operator
on L2pRd. Then there exists two orthonormal sets tbiuiPN and tviuiPN in L2pRd

and a sequence tsipSquiPN of positive numbers with snpSq such that S may be
expressed as:

S “
ÿ

nPN
snpSqbi b vi
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where sn are the singular values of the operator S.
To define trace class operators we simply impose the same conditions on the

singular values as we do on ℓ1 spaces. See equation 2.
So to define the space of Schatten class operators, denoted by T p, where p

is a positive real number. The operators in this subclass are compact and have
singular values that belong to the sequence space ℓp. More precisely, we say
that S belongs to T p, if psiqiPN P ℓp.

Definition 5.2 (Schatten class T p).

T p :“ tT compact : psiqiPN P ℓpu

This condition ensures that the singular values of S decay sufficiently fast,
which is important in the analysis of operators. The Schatten class T 1 is called
the space of trace class operators since it allows on to define a trace.

Given an orthonormal basis teiuiPN the trace of a positive operator (definition
2.23) S P BpL2pRdqq:

trpSq “
ÿ

nPN
xSei, eiyL2 . (25)

This definition is independent of the basis, well-defined, and a bounded linear
functional, [54].

Another important Schatten class is T 2, which is known as Hilbert-Schmidt
operators [18]. Which is also a Hilbert space under the inner product:

xT, SyT ∈ :“ TrpST˚q. (26)

The spaces T 1, T 2 are the operator analogs for the function spaces of inte-
grable and square-integrable functions.

5.2 Operator convolutions

In order to obtain the necessary formulas for our analysis, we draw upon a
similar argument applied to convolutions and the Fourier transform. A detailed
explanation can be found in [55], while a shorter description is given here.

At the heart of the argument is the recognition of certain operations that
bear a resemblance in both the function and operator settings. By leverag-
ing these similarities and swapping the relevant definitions for convolution and
Fourier transform, we arrive at the equivalent forms for operators.

The shared operations include integrals and traces for functions and trace-
class operators, respectively, as well as translations and modulations for both.
Additionally, we consider the parity operator, which applies equally to functions
and operators.

This section will cover how convolutions are generalized to operators, this
is done by taking the building blocks of regular convolutions on functions and
finding equivalent building blocks for operators. [38]

As convolutions can be made with the following operations:
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1. Fold one function over the y ´ axis.

2. Shift one function and weight it by the other one.

3. Integrate.

Our goal will be to modify the convolution given by

pf ˚ gqptq “

ż

C
fptqgpt´ τqdτ “

ż

C
fpt´ τqgptqdτ

such that it works for operators. To be able to define convolutions of op-
erators we need the equivalent of translates of an operator to generalize the
convolution formula to work for operators as well:

Definition 5.3 (Translation of an operator).

αzpAq “ πpzqAπpzq˚.

This idea was first put forward by Werner in his seminal work on quantum
harmonic analysis, see also Skrettingland’s master thesis, which leads to two
types of operator convolutions:

Definition 5.4 (Convolution of a function and a trace class operator). Let
f P L1pR2dq and S P T 1. Then we define the function-operator convolution by

f ‹ S :“ S ‹ f “

ż

R2d

fpyqaypSqdy.

Definition 5.5 (Convolution of two trace class operators). Let S, T P T 1. Then
the operator-operator convolution is given by

S ‹ T pzq “ TrpSαzp qT q

These two operations are associative and commutative. We will refer to
the proof presented in [38] to demonstrate the associativity and commutativity
properties of these convolutions.

First we start by showing commutativity. By utilizing the definitions of α
and Ť , we can expand S ‹ T as follows.

Proposition 2.
S ‹ T “ T ‹ S

Proof:
S ‹ T pzq “ TrpSazŤ qq “ TrpSπpzqPTPπpzq˚q

This allows us to perform simple algebra to simplify the equation as follows:

“ TrpT ­pa´zSq “ TrpTazŠq “ T ‹ S

This completes the proof and shows that T ‹ S “ S ‹ T . During these
calculations the fact that TrpABq “ TrpBAq is extensively utilized.

For the proof of associativity, please see [38] Proposition 4.4, which proves
that three operators R,S, T P T satisfy:
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Proposition 3.
pR ‹ Sq ‹ T “ R ‹ pS ‹ T q

Outline of proof: First, consider an operator T0 P T 1. Then consider
the dual action of xT1 ‹ pT2 ‹ T3q, T0y “ xpT1 ‹ T2q ‹ T3q, T0y. This commutes
by the commutativity of the inner product and shows the expressions define
the same thing in the dual space. Finally show that TrpT0pT1 ‹ pT2 ‹ T3qq “

TrpT0ppT1 ‹ T2q ‹ T3q which proves they are the same operators.
Furthermore, we also have commutativity and associativity with regular con-

volution [55]:

pf ˚ gq ‹ S “ f ˚ pg ‹ Sq (27)

f ˚ pS ‹ T q “ pf ‹ Sq ‹ T (28)

5.2.1 Examples of operator convolutions

This section will cover the simplest examples of operator convolutions, namely
when the operators are rank one operators.

The first is an example of Definition 5.4 with rank one operators.

Proposition 4. Let S “ f b g for h, g P LpR2dq:

f ‹ pSq “ f ‹ phb gq “

ż

R2d

fpyqayphb gqdy “ Ah,g
f (29)

Proof:
This follows from a relatively straightforward calculation [38]:

f ‹ Spψq “

ĳ

R2d

fpzqpαzSqpψqdz

“

ĳ

R2d

fpzqxπpzq˚ψ, gyπpzqhdz

“

ĳ

R2d

fpzqVgψπpzqhdz “ Ah,g
f

(30)

Here the definition of convolution is first used, then rewritten as an inner
product. Which we then identify as a short time Fourier transform with an
extra phase factor, Which by definition is a localization operator.

S ‹ T “ Trppf b fqαzpqg b qgqq “ |Vgf |2 (31)

Now for an example use Definition 5.5 to calculate the operator convolution
of two rank one operators.
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Consider the two rank one operators S “ pf bfq and T “ pqgbqgq by writing
out the definition of an operator convolution we get:

S ‹ T “ TrpqSαzppqg b qgq

Now use that S, T P T ∞ which allows the trace to be written according to
equation 25. Let teiuiPN be a basis for L2pRdq then we can rewrite:

“
ÿ

iPN
xqSπp´zqpqg b qgqπp´zq˚ei, eiy

“
ÿ

iPN
xπp´zq˚ei, qgyxqSπp´zqqg, eiy

“
ÿ

iPN
xei, πp´zqqgyxqSπp´zqqg, eiy

“ xqSπp´zqqg, πp´zqqgy

“ xSπpzqg, πpzqgy

This expression is the Berezin transform of S. Using the assumption that
S “ pf b fq this can be rewritten as:

S ‹ T “ pf b fq ‹ pqg b qgq “ |Vgpfq|2, (32)

which is an expression that will later be leveraged to rewrite the convolutions
in convolutional neural networks.

5.2.2 Fourier transforms for operators

As expected from a ”convolution,” there is a way to separate them by employing
appropriate Fourier transforms. In the case of operator convolutions, symplectic
Fourier transform and Fourier-Wigner transform are the appropriate transforms.

Theorems presented in [39] state that for f P L1pR2dq and S, T P T , the
following equations hold:

FθpS ‹ T q “ FW pSqFW pT q (33)

FW pf ‹ Sq “ FθpfqFW pSq (34)

Operator convolutions are not only inspired by regular convolution, but share
their properties when it comes to Fourier transforms. One of the reasons we
are interested in the regular Fourier transform is that in the Fourier space con-
volutions turn into regular products. As shown above there are some similar
identities for the operator convolutions, which give the justification for why they
are called convolutions. As operator convolutions act nicely with the appro-
priate Fourier transform, and have some nice associativity and commutativity
relations.
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5.3 Operator Fourier transform

To take the Fourier transform of an operator, we can follow the same procedure
as for functions.

F rfptqs “ f̂pξq “

ż 8

´8

fptqe´2πiξtdt (35)

In the equation above, we modify the function by an exponential and then
calculate the integral. However, for trace class operators, we need to use the
trace instead of the integral, and we also need to shift the operator around. To
achieve this, we use the πpzq operator. By replacing the integral with a trace and
the translations with π-shifts, we obtain the Fourier-Wigner transform, which
is defined as:

Definition 5.6 (Fourier-Wigner transform). FW pSpzqq “ eiπx¨ω Trpπp´zqSq

In the simplest case where S is a rank one operator we get the following:
Example with rank one operator: Assume that S “ pf b gq. Then

FW pSpzqq “ eπix¨ω Trpπp´zqpf b gqq “ |Vgf |2 (36)

Additionally, we have a Riemann-Lebesgue lemma:

Theorem 5.1. For S P T 1 we have

FW pSq P C0pR2dq.

Where C0pR2dq denotes the set of functions that vanish at infinity. In addi-
tion, there is also a variation of the convolution to multiplication theorems:

Theorem 5.2. Let f P L2pR2dq and S P T 1. Then the following holds:

FW pf ‹ Sq “ FθpfqFW pSq (37)

To obtain the inverse Fourier-Wigner transform, we integrate over the en-
tire time-frequency or position-momentum plane using the translation operator
πpx, ωq, resulting in the following formula:

F´1
W “

ż

FW pSqπpx,wqdxdw,

which by Pool’s theorem extends to a unitary mapping between L2pR2dq to the
space of Hilbert-Schmidt operators T 2.[49]

5.4 Proposal for Convolutional Neural Networks

The focus of this study is to explore the functionality of convolutions between
spectograms and a sequence of numbers, as this is essential in redefining con-
volutions in CNNs. In this context, the spectogram is denoted as S “ |Vgf |2

to highlight how it is an operator. To proceed we write the convolution in the
following way as is done in [14]:
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S ˚m “ |Vgf |2 ˚m “ m̌ ‹ pf b fq ‹ pǧ b ǧq

This mathematical formulation enables the separation of the spectogram
into three distinct parts, each of which can be further separated using Fourier
transforms. By defining rm̌ ‹ pf b fqs as S, and pǧ b ǧq as T , the convolution
of two operators can be rewritten as:

rm̌ ‹ pf b fqs ‹ pǧ b ǧq “ S ‹ T

Employing the formula described in equation (33), we obtain the following
equation:

FθpS ‹ T q “ FW pSqFW pT q “ FW pm̌ ‹ pf b fqqFW pǧ b ǧq

The term FW pm̌ ‹ pf b fqq can be further broken down using equation (34),
which leads to the following:

FW pm̌ ‹ pf b fqq “ Fθpm̌qFW pf b fq

This decomposition enables us to express the convolution between the spec-
togram and a sequence of numbers in the following manner:

S ˚m “ Fθpm̌qFW pf b fqFW pǧ b ǧq (38)
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6 Main Theorem

After presenting all of these preliminaries we can present the main theorem that
is the topic of this thesis. Here we use the rewriting of convolutions of sequences
and spectrograms (equation 38) to rewrite the formula for the CNN (equation
24). To start with a lemma first needs to quickly be derived.

Using the operator convolutions makes it possible to represent the spectro-
gram in another way. So the goal of this lemma is to show that the following
representation of the spectrogram is valid. Following the proof from[14]:

Lemma 6.1.
S ˚m “ |Vgf |2 ˚m “ m̌ ‹ pf b fq ‹ pǧ b ǧq (39)

Proof:
First write out the definition of a spectrogram in terms of an inner product

(Definition 3.1), then take the convolution:

|Vgf |2 ˚m “ x

ż

z1

Vgfpz1q ¨mpz ´ z1qπpz1qdz1, fy

Now we use the trick that mpz´z1q “ Tzmp´zq to rewrite mpz´z1q as Tz qm:

“ xTz qmpg b gqf, fy “ qm ˚ rpf b fq ‹ pqg b qgqss pzq

Since we know that normal convolution commutes according to equation
(28). We can finally rewrite this in the desired form of:

S ˚m “ qm ‹ pf b fq ‹ pqg b qgq

Alternate proof: Combine equation 32 and 28 and the proof is trivial .
Now assume that Snpknq “ |Vgnfn|2 then it is possible to rewrite equation

(24) using equation (38) and Lemma 6.1 in the following way:

Theorem 6.2. [Main theorem]

˜

Kn
ÿ

k“1

Snpknq ˚ wn`1pkn`1, knq

¸

“ F´1
σ

˜

Fσ

«˜

Kn
ÿ

k“1

w̌k

¸

‹ pfn b fnq ‹ pǧn b ǧnq

ff¸

Despite the convoluted appearance of this formula this is quite similar to
how convolutions are already computed using equation 9. But this formulation
allows us to seperate r

řKn

k“1 wk ‹ pfn b fnqs and T “ pgn b gnq. And as T will
not change we can cache the value of T to avoid repeated calculations. This is
not doable in the previous formalism.
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6.1 Proof of main theorem

If we assume the first stage of a CNN is given by a spectrogram. namely:

S0 “ F 0pzq “ |Vgfpzq|2 “ |xf, πpzqg, |y2,

Formula for the next layer in a CNN following the notation in both [14] [25]:

Sn`1pkn`1q “ σ

«˜

Kn
ÿ

k“1

Snpknq ˚ wn`1pkn`1, knq

¸

` bb 1

ff

Which then gives that

S1pk1q “ σ

«˜

K0
ÿ

k“1

S0pk0q ˚ w1pk1, k0q

¸

` bb 1

ff

Now the parts in the parenthesis is what we will modify.
Then the convolution part in the parenthesis of the second layer is given by:

Kn
ÿ

k“1

S0pknq ˚ w1pk1, k0q “

Kn
ÿ

k“1

pF 0 ˚ wkq “

Kn
ÿ

k“1

r|wk ‹ pf b fqs ‹ ppǧ b ǧq,

Taking the symplectic fourier transform of this then yields:

Fσ

˜«

Kn
ÿ

k“1

|wk ‹ pf b fq

ff

‹ ppǧ b ǧq

¸

“ |Vgpfpzqq|2
Kn
ÿ

k“1

Fσp|wkq “ |Vgpfpzqq|2Fσ

˜

Kn
ÿ

k“1

|wk

¸

,

Here }wkn consists of swapping the weights of wk which are sampled from
wiipkq “ fpkq to wiipkq “ fp´kq.

Since the spectrogram can also be rewritten in terms of the Fourier-Wigner
transform we can rewrite it as following:

Fσ

˜

Kn
ÿ

k“1

|wk

¸

FW rpf b fq ‹ pǧ b ǧqs “ FW

«˜

Kn
ÿ

k“1

|wk

¸

‹ pf b fq ‹ pǧ b ǧq

ff

This then allows for the convolution part of the second layer to be rewritten
to the following form:

F 1pz, kq “ F´1
W

˜

FW

«˜

Kn
ÿ

k“1

w̌k

¸

‹ pf b fq ‹ pǧ b ǧq

ff¸

Similarly we can then derive the following formula for Sn`1:

Sn`1 “ σ

˜

F´1
W

˜

FW

«˜

Kn
ÿ

k“1

w̌k

¸

‹ pf b fq ‹ pǧ b ǧq

ff¸

` bb 1

¸



6.2 Consequences of theorem 34

By using this theorem we can rewrite the convolutional part of convolutional
neural networks in the following way:

σ

«˜

Kn
ÿ

k“1

Snpknq ˚ wn`1pkn`1, knq

¸

` bb 1

ff

“

σ

˜

F´1
σ

˜

Fσ

«˜

Kn
ÿ

k“1

w̌k

¸

‹ pf b fq ‹ pǧ b ǧq

ff¸

` bb 1

¸

6.2 Consequences of theorem

In normal convolutional neural networks the calculations are taken to the fourier
realm when you compute the convolutions anyways, but by leveraging QHA an
analysis of what happens during this computation is easier. This allows for some
theoretical improvements for how CNN’s are computed by using this formalism
to come with both theorems for what weights might be sensible to initialize the
network with and how to reduce the number of computations.

6.2.1 Speedup calculations

By swapping to this formalism it is possible to see that there are some redundant
calculations. As pǧ b ǧq will appear in every node of the convolutional layer it
is natural to cache this value to avoid repeated calculations of the same object.

6.2.2 Theory of weight initialization

With this change of perspective some problems that have been difficult to answer
about convolutional neural networks might be easier to solve.

If we now look at the different initialization schemes we can show some
interesting results at least by considering the term Fσp

řKn

k“1 |wkq.
Zero initalization: is again clearly a bad choice as:

Fσp

Kn
ÿ

k“1

|wkq “ 0

Which plugged into Theorem 26.2 would lead to the operator convolutions
also being zero. As the zero initialization has been shown empirically and in
theory to be a bad initialization this might suggest that zeros in the expression
Fσp

řKn

k“1 |wkq makes the network worse.
Gaussian initialization: From equation (5) we see that the Fourier trans-

form of a Gaussian is another Gaussian. This means that

Fσp

Kn
ÿ

k“1

|wkq ą 0

.
Uniform initialization: Let |wk „ Upa, bq.
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Then X “
řN

k“1 |wk will follow a Irwin–Hall distribution which has the
property that it approaches a normal distribution as N Ñ 8 [40], this follows
by the central limit theorem. This explains why the uniform initialization could
also work as it approximates a Gaussian distribution quite well for sufficiently
large values of N .

6.2.3 New results related to the network

Firstly the Tauberian theorems can say something about which weights are sen-
sible to choose. This then provides a mathematical framework they understand
why choices of different initialization schemes perform better. (This subsection
might be removed as I cannot find any concrete sources for this)

And if a weight initialization with non-zero STFT performs better then we
can propose a new weight initialization scheme based on the one-sided exponen-
tial.

6.2.4 New freedom in the choice of activation function:

By viewing the network in this manner it is easier to see what the activation
functions do. This also allows for some new novel approaches to activation
functions, and some more insight into what ReLU does for CNN’s with audio
signals.

Since the ReLU function simply thresholds the values that are too large we
can move it inside the Fourier-Wigner transform, and instead do the threshold-
ing on the Fourier side:

σ

˜

F´1
W

˜

FW

«˜

Kn
ÿ

k“1

w̌k

¸

‹ pf b fq ‹ pǧ b ǧq

ff¸

` bb 1

¸

“

F´1
W

˜

FW

«

σ

˜˜

Kn
ÿ

k“1

w̌k

¸

‹ pf b fq ‹ pǧ b ǧq

¸ff

` bb 1

¸

This allows for thresholding directly on the spectrograms/Cohen classes
which can be easier to interpret.
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7 Discretization of theory

Changing from the continuous case to the discrete case requires some adapta-
tions. First, the spectrogram has a lot of redundancy, so it would be nice to
have a more efficient representation. Additionally, the calculation requires an
integral over the phase space in the calculation of

S0 “ F 0pzq “ |Vgfpzq|2 “ |xf, πpzqgy|2.

The issue of integrals over unbounded domains is solved by choosing a win-
dow function g with compact support. Whilce the issue of redundancy is solved
by using Gabor frames instead.

Additionally, we also need some changes to adopt the different ideas from
time-frequency analysis and QHA to be usable as well.

7.1 Lattice

As R is not usable when dealing with computers we swap our setting to Zn. We
will consider lattices of the form:

Λ “ Za ˆ Zb “ tpx, yq|x P Za, y P Zbu (40)

The theory on how to choose the lattice constants a, b is a little lacking.
Following [53] it is suggested that they at least satisfy the following:

1. They are divisors of n: There exists A,B P N such that aA “ n “ bB

2. They have sufficiently many samples : The different choices of a, b
correspond to how frequently the signal will be sampled, which leads to
three cases.

(a) ab ă n which is over-sampling, there is more than enough information
to reconstruct the signal.

(b) ab “ n which is critical sampling, there is just the necessary infor-
mation for reconstructing the signal.

(c) ab ą n which is under-sampling, there is not enough information for
perfect reconstruction.

We will restrict our attention to the case where ab ď n, here we have some
theorems from Gabor frame theory that are helpful.

And we will use one of the tricks from Fourier analysis where we extend
a function through the use of periodization. This then lets us employ Fourier
transforms and do calculations on the Fourier side, then do the Fourier inversion.
This allows us to easier deal with convolutions.

Some theorem will require the use of the dual lattice, we follow Skretingland’s
notation in [54]:
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Λ˝ “ λ˝ P R2d : e2πiσpλ˝,λq “ 1 for any λ P Λ (41)

Using these definitions we can then also define the size of the lattices as:

|Λ| “ ab

|Λ˝| “
1

|Λ|
“

1

ab

Where a, b are the lattice constants defined in equation 40. It is also possible
to define the lattice in more general terms, but for this thesis this is sufficient.

7.2 Periodization

In this study, we shall consider signals from the finite set Zn, where it is necessary
for these signals to have finite length. To facilitate Fourier analysis, we confine
our focus to periodic signals. An illustration of periodization is provided in
Figure 4. The core idea is that a signal on Zn can be extended continuously if
the first and last elements of the signal are the same. This allows us to create
a signal on Z satisfying fpx` nq “ fpxq,@n P N.

As an example consider the function fpxq “ sinp5x{πq on the domain r´5, 5s.
See figure 4 for how it can be extended:

Figure 4: Illustration of periodization

We will also consider 2d-signals which will be found on the lattice:

Za ˆ Zb “ tpx, yq|x P Za, y P Zbu

In our subsequent analyses, the use of quotient groups is deemed necessary,
which is an extension of the fundamental concept of periodization that enables
the extension of a lattice to become periodic. An illustration of the function
defined on a quotient group is presented in Figure 5. The extension of the
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function to a larger domain is performed not only in one dimension but in
multiple dimensions. As exemplified in the aforementioned figure, the function
defined on the domain r´5, 5s ˆ r´5, 5s is extended to r´15, 15s ˆ r´15, 15s

through a periodic extension. This process of periodic extension provides a
more comprehensive analysis of the function over a larger domain. For this
kind of periodization we then require the signal to have the same values on the
corresponding edges.

Figure 5: Illustration of a function on a quotient group.

Before introducing the final periodization we need a small digression in order
to explain the notation for quotient groups, and functions on quotient groups:

Definition 7.1 (Quotient groups). Let Λ be a lattice then the periodization of
a function fpλq on λ that extends it according to figure 5 to R is denoted R{Λ.

Following the notation in [54] anytime a function is defined on the quotient
group a dotted variable, such as 9z, will be used to highlight this.

For the final form of periodization we need to extend a signal in the following
way.

Definition 7.2 (Periodization on lattice). Let Λ be a lattice then the peri-
odization operator is defined on the quotient group of R{Λ:

PΛpfqpz˝q “ |Λ|
ÿ

λPΛ

fpz ` λq

Where z˝ is taken from the dual lattice see equation 41.
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7.3 Discrete notation

Just like in the continuous case we need to define some of the building blocks
of time-frequency analysis that helps us understand the theory better.

7.3.1 Discrete Fourier analysis

Having obtained a periodic signal, we can extend the definition of Fourier trans-
form to the discrete case as well. The discrete Fourier transform is a widely used
tool for analyzing digital signals and has been extensively studied in the litera-
ture. [56] [59]

The discrete Fourier transform of a sequence of length N, denoted by Fpf rksq,
is defined by the following formula:

Definition 7.3 (Discrete fourier).

FΛf rks “

N
ÿ

n“1

f rnse
´2πink

N ,

where f rns is the nth element of the sequence and k is an integer between 1
and N.

Equation 7.3 provides a way to decompose the original signal into its fre-
quency components. The resulting Fourier coefficients represent the amplitudes
and phases of the sinusoidal components that make up the original signal.

Similarly, we define the symplectic Fourier transform as:

Definition 7.4 (Discrete symplectic Fourier series).

FΛ
θ pcqp 9zq “

ÿ

λPΛ

cpλqe2πiθpλ,zq, for z P R2d

This allows us get a nice formula using the Poisson summation formula, see
[54] for a proof:

Definition 7.5 (Poisson summation).

1

|Λ|

ÿ

λ˝PΛ˝

fpz ` λ˝q “
ÿ

λPλ

Fθpfqpλqe2πiσpλ,zq, for z P R2d

7.4 Discrete quantum harmonic analysis

The section on discrete quantum harmonic analysis will be based on [54]. First,
some basic notation is covered, and then the convolution and discrete Fourier
transforms are covered until finally a discretized version of the main theorem is
derived.
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7.4.1 Banach space B

For the discrete case, another space of operators is needed as well: another
space of operators which is the Banach space of trace class operators with Weyl
symbol in the Feichtinger’s algebra. So this section will first explain the Weyl
symbol and then define the space B.

To define the Weyl symbol we first need to define the cross-Wigner distri-
bution:

Definition 7.6 (cross-Wigner distribution).

W pξ, ηqpx, ωq “

ż

Rd

ξpx`
t

2
qηpx´

t

2
qe´2πiωtdt,@ξ, η P S0pRdq

This allows us to define the Weyl transform Lf of f which is the following
operator:

Definition 7.7 (Weyl transform).

xLfη, ξyS0,S1
0
:“ xf,W pξ, ηqyS0,S1

0
,@ξ, η P S0pRdq

So Lf is an operator from S0pRdq Ñ S 1
0pRdq, where f P S 1

0pR2dq.
Now the definition of a Weyl symbol is the following:

Definition 7.8 (Weyl-symbol). The subscript in the operator Lf is called the
Weyl symbol.

This means that for an operator S its corresponding Weyl symbol which we
denote by aS satisfies:

LaS
“ S

This finally allows for a definition of B:

Definition 7.9 (Banach space B). Banach space of trace class operators with
Weyl symbol in the Feichtinger’s algebra.

B :“
␣

S P T 1 : aS P M1
(

.

7.4.2 Discrete notation

Now we extend the ideas from previously to the discrete domain. To extend
the idea of a convolution of a sequence with an operator we define the following
operator, which is identical to the continuous case just restricted to the lattice:

c ‹Λ S “ S ‹Λ s “
ÿ

λPΛ

cpλqaλS

Similarly, we define the convolution between two operators as the sequence,
which is identical to the continuous case but with the αz shifts restricted to
λ P Λ:

S ‹Λ T pλq “ TrpSaλpPTP q “ TrpSπpλqqPTπp´λq˚q
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7.4.3 Properties of discrete convolutions

Similar to the continuous case there are some theorems for calculating the con-
volution of Fourier transform of convolutions.[54] As these properties are nearly
identical to the continuous case this section is brief.

FΛ
θ pS ‹Λ T q “

1

|Λ|

ÿ

λ˝PΛ˝

FW pSqpz ` λ˝qFW pT qpz ` λ˝q (42)

FW pc ‹Λ Sqpzq “ FΛ
θ pcqpzqFW pSqpzq (43)

convolutions are also associative and commutative like in the continuous
case. Where a direct calculation is sufficient to show associativity. Let c, d P

ℓ1pΛqS, P B, and T P T then:

c ˚Λ pS ‹Λ T q “ pc ‹Λ Sq ‹ T (44)

pc ‹λ dq ‹Λ T “ c ‹Λ pd ‹Λ T q (45)

Where B is defined in defintion(7.9). Additionally, since we define the dis-
crete convolutions as a restriction to the lattice of the continuous operator con-
volutions commutativity follows by definition.

8 Discrete main theorem

Following the same reasoning as in the continuous case it is possible to rewrite
the convolution of a spectrogram and a sequence as an operator convolution.
Unfortunately, the cost of going from the continuous case to the discrete case
is that now a periodization is also needed which is reflected in the PΛ˝ being
included in the formula. This then gives the following theorem:

Theorem 8.1 (Main theorem discrete version).

˜

Kn
ÿ

k“1

Snpknq ˚ wn`1pkn`1, knq

¸

“ F´1
θ

˜

Fθ

«

PΛ˝

˜

Kn
ÿ

k“1

w̌k

¸

‹ pfn b fnq ‹ pǧn b ǧnq

ff¸

Proof: Proceed the same way as in the continuous case. First, assume that
the input to the neural network is a spectrogram of the form:

S0 “ F 0pzq “ |Vgfpzq|2 “ |xf, πpzqg, |y2 “ pf b fq ‹ pqg b qgq,

Following the continuous derivation the spectrogram is rewritten:

F ˚ wk “ |wk ‹Λ pf b fq ‹Λ pqg b qgq

Take the discrete symplectic Fourier transform, then prepare for some rewrit-
ing:

FΛ
θ p|wk ‹Λ pf b fq ‹Λ pqg b qgqq
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Note that |wk ‹Λ pf b fq is an operator which means this can be rewritten using
equation 42:

FΛ
θ pr|wk ‹Λ pf b fqs‹Λpqgbqgqq “

1

Λ

ÿ

λ˝PΛ˝

FW pr|wk ‹Λ pf b fqsqpz`λ˝qFW pT qpz`λ˝q

“
1

Λ

ÿ

λ˝PΛ˝

FΛ
θ p|wkqp 9zqFW pr|wk ‹Λ pf b fqsqpz ` λ˝qFW pT qpz ` λ˝q

“ PΛ˝ pFΛ
θ p|wkqFW pf b fqFW pqg b qgqp 9zq

This gives a similar result as equation 38, but now we have to add a peri-
odization.

FΛ´1
θ FΛ

θ pF ˚ wkq “ PΛ˝ pFΛ
θ p|wkqFW pf b fqFW pqg b qgqp 9zq
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9 Conclusion

This thesis ventured into the promising domain of applying quantum harmonic
analysis to optimize the efficiency of convolutional neural networks (CNNs), par-
ticularly in the realm of audio processing. Traditional methods of computing
convolutions in CNNs can pose significant computational challenges. One strat-
egy to mitigate these issues is to employ the Fourier transform, which facilitates
the conversion of convolutions into pointwise multiplication in the frequency
domain.

This technique has already been integrated into CNNs through the applica-
tion of the convolution theorem for Fourier transforms, represented as:

pS ˚mq “ F´1FpS ˚mq “ F´1pŜ ¨ m̂q

However, the traditional convolution theorem does not consider that S is a
spectrogram. Consequently, this thesis presents the possibility of exploiting the
structure of spectrograms to develop new insightful formulas, synthesized from
the theory of quantum harmonic analysis and time-frequency analysis. By capi-
talizing on the structure of a spectrogram, the convolution of a spectrogram and
a mask can be deconstructed into operator convolutions that involve different
parts in a more elegant manner, as exhibited in the following formulas:

S ˚m “ qm ‹ pf b fq ‹ pqg b qgq “ F´1
θ Fθpqm ‹ pf b fq ‹ pqg b qgqq

This approach holds potential benefits for theoretical exploration of CNNs,
specifically by offering insights into the type of weights that may be advan-
tageous to select. Although empirical evidence suggests that Gaussian weight
initialization performs well, the framework introduced in this thesis provides a
theoretical basis that supports this observation.

Moreover, the thesis proposes how the same principle can be adapted to
express convolutions in a discrete setting, where the signals are confined to a
lattice Λ. This adjustment accommodates the constraints of computer programs
incapable of representing continuous functions. This is achieved by recasting the
convolution of a spectrogram using the ensuing formula:

FΛ´1
θ PΛ˝ pFΛ

θ p|wkqFW pf b fqFW pqg b qgqp 9zq

In sum, this thesis contributes to the intersection of Quantum Harmonic Anal-
ysis and CNNs, introducing theoretical explanations and practical adaptations
that could potentially enhance the performance and efficiency of CNNs in vari-
ous applications.
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