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ABSTRACT

Decision-based black box attacks are a rising concern in the field of adversarial
machine learning, as they allow attackers to manipulate the outputs of machine
learning models without having access to the model’s internal workings or pa-
rameters. Sparse attacks, which aim to minimize the number of perturbed pixels,
expose critical vulnerabilities in machine learning models, representing a consid-
erable threat to real-world systems. A current limitation of sparse attacks is the
need to query the target model in the range of thousands of queries to create im-
perceptible adversarial examples, which in a real-world scenario can be costly and
easy to detect. This thesis demonstrates the potential of the patch-wise adver-
sarial removal (PAR) algorithm, integrated with the state-of-the-art sparse attack
SparseEvo, in improving the query efficiency of sparse attacks. We also present
multiple options for defensive techniques, including an adversarially trained model
that has been shown to increase robustness in other black-box attack settings, and
adversarial detection and median filtering that target specifics of sparse attack
algorithms. An adversarially trained ResNet-50 model proved an effective coun-
termeasure, further strengthened by using median filtering. Adversarial detection
also demonstrated promising potential, and we probe the possibility of further
enhancements to the attacks with a new version of the PAR algorithm that blurs
the adversarial example together with the original unperturbed input, making it
harder to detect. Results show that the f1-score of the trained detector drops from
0.97 to 0.89 with the new version of the PAR algorithm. The study highlights the
importance of continued research into the optimization, defenses, and potential
severity of sparse attacks, a crucial step toward ensuring the safety of deployed
systems.
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CHAPTER

ONE

INTRODUCTION

Deep Neural Networks (DNNs) have been increasingly popular due to an increase
in available computational power, and the networks’ abilities to make accurate
predictions in tasks such as image classification. As a result, these trained mod-
els have found widespread application in real-world domains such as diagnosing
diseases [1, 2], autonomous driving [3, 4], security and surveillance [5], content
moderation [6] and many other areas.

Failures in the classification models used in several of these systems can have
severe consequences. Despite their performance, it has been demonstrated that
these DNNs are vulnerable to maliciously crafted perturbations [7, 8]. This can
have significant repercussions in applications such as autonomous cars that rely
on these models to navigate and read traffic signs. Because of this, continued re-
search into adversarial attacks and defenses is important to evaluate and improve
the robustness of DNNs used in critical systems.

Adversarial attacks are typically divided into two categories: white-box and black-
box attacks. A white-box attack assumes access to internal information of the
target model, such as the underlying architecture and the model gradients. In
deployed real-world applications of DNNs, this information is usually not avail-
able to a potential attacker. In the black-box scenario, the adversarial input is
crafted only from the output predictions of the model. In this environment, some
attackers exploit the transferability of DNNs [9, 10, 11] by training a surrogate
model and then transferring these attacks to the target model. However, training
a surrogate is not always feasible or practical, limiting the available information
to the output labels of the target model. Attacks that are restricted to only the
output labels are called decision-based attacks.

Decision-based attacks are evaluated by their similarity to benign inputs, measured
by the size of the added perturbations. Dense attacks, attacks where this similar-
ity is measured by the L2 or L∞ norm, have been explored in a variety of studies
[12, 13, 14, 15]. Sparse attacks, where the L0 norm measures the distortions, are
limited to only a handful of studies [16, 17]. This limits our understanding of
the threat of sparse attacks, and if current defensive techniques are as effective
against sparse attacks. This warrants a need for additional research in improving

1



2 CHAPTER 1. INTRODUCTION

end evaluating the robustness of DNNs against sparse attacks. In this thesis, we
investigate how we can create more query-efficient sparse attacks, and evaluate
several defensive techniques. Finally, we propose a modified initialization algo-
rithm to create an attack that is harder to defend against.

This thesis is divided into eleven chapters. In introduction and related work, we
present the reader insight into the background and motivation for our research.
In the chapter methodology, we present our motivation and research questions
that we aim to answer through experiments in chapters 4 to 9. We discuss our
results in discussion and suggest some directions for future work. In conclusion
we summarize our findings.



CHAPTER

TWO

RELATED WORK

2.1 Attacks targeting DNNs

In a decision-based black-box attack, the adversary has access to the top predicted
labels of the target network [18]. All the attacks we present in this chapter focus
on the top 1 label output, the target model’s highest predicted class, as this usu-
ally is the only available output of commercially available classifiers.

Figure 2.1.1: In a white-box attack the attacker typically has access
to the model weights and gradients of all layers. In a decision-based
attack, the attacker is restricted to only the output label.

We separate targeted attacks from untargeted attacks [19, 20]. In the untargeted
setting, the attacker aims to deceive the target classifier into predicting any label
other than the original label. In the targeted setting, the attacker selects a target
label and creates perturbations to an original image such that it is classified as the
target label. For example, an attacker may have an image of a dog and want the
target model to classify it as a cat. The attack is considered successful if the image
is classified as a cat, and not as a dog or any other class e.g. a horse. Some attacks
focus on either setting, while many algorithms can be used for both targeted and
untargeted attacks.

In the following sections, we look at some recent dense- and sparse attacks. There
are mainly two areas in which they have improved the previous SOTA: the attack

3



4 CHAPTER 2. RELATED WORK

success rate (ASR), and their query efficiency. The ASR determines the number of
attacks that are successful under a given distortion threshold. The query efficiency
metric measures the number of queries to the target model used to generate a
successful attack below a predefined threshold, or how low perturbations are after
a set amount of queries.

2.1.1 Dense Attacks

In the dense attacks, adversarial perturbations are measured by the L2 or the L∞
distance.

The L2 distance is also known as Euclidean distance. It is calculated as the
distance between two vectors in an n-dimensional space:

d(p, q) =
√

(p1 − q1)2 + (p2 − q2)2 + · · ·+ (pi − qi)2 + · · ·+ (pn − qn)2 (2.1)

The L∞ distance is given by the largest distance between the original and the
adversarial image:

d(p, q) = ||p− q||∞ (2.2)

In 2017, the Boundary Attack (BA) [21] emerged as the first decision-based attack
that got significant attention. Prior to this, the majority of publications predomi-
nantly focused on white box attacks or transfer-based black box attacks. Chen et
al. published HopSkipJumpAttack (HSJA) in 2020, inspired by the Boundary At-
tack, but highlighting the need to optimize for query efficiency. They achieved this
with a novel estimation of the gradient direction at the decision boundary, draw-
ing inspiration from zeroth-order optimization [18]. After the release of HSJA,
several other dense attacks have been proposed to create even more query-efficient
attacks. We give a quick overview of these attacks, most of them compare their
results directly to HSJA.

GeoDa [22], Triangle Attack [23], and SurFree [24] are three geometry-based at-
tacks that take advantage of the observation that the decision border of a DNN
usually has a small curvature when in close proximity to a data point. Meho et al.
[24], the creators of SurFree, found that they could create a more efficient attack
on tight query budgets when disallowing any queries to estimate the gradient,
and instead investigate more directions for descent at the decision border. Query-
efficient boundary-based attack [25] and NonLinear-BA [26] are two attacks that
have improved by exploiting prior knowledge about how information is structured
in images to reduce the search domain.

2.1.1.1 PAR

Patch-wise Adversarial Removal (PAR) is a dense attack created by Shi et al.
[27]. They investigate how different regions of an image are affected by noise.
PAR operates by deviding the image into patches, and gradually removing noise
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while maintaining the adversarial nature of the image. This reduction process
starts with larger patches and iteratively progresses to smaller patches, prioritiz-
ing patches with higher noise magnitude. The modified image is queried against
the target model. If the image remains misclassified, the corresponding patch is
discarded. This process is repeated for all the patches. Once all patches have
been processed, the remaining ones are halved in size, and the loop is repeated.
The final result is an adversarial example that retains only the "essential" noise
required to deceive the classifier.

The PAR algorithm starts by first initializing a noise sensitivity mask MS and a
noise magnitude mask MN . The masks are set to the same size as the image but
without the color channels. The full algorithm from the PAR-paper is given in
algorithm 1 [27].

Algorithm 1 Patch-wise Adversarial Removal
1: Input: Target model F (x), noise magnitude limit τ , original image x and

label y
Max querying number T , initial variance of gaussian distribution var
Identity matrix I of the same dimension as x, initial and minimum patch size
PS0 and PSmin

2: Output: Adversarial example x∗ with compressed noise
3: while F (xinit) = y do
4: ξinit ∼ N (0 , var 2I) , xinit ← Clipx,τ

{
x+ ξGau

0

}
, var← var ∗2, T ←

T − 1
5: end while
6: Initialize MN and MS, PS ← PS0,x∗ ← xinit

7: while T > 0 do
8: MQ ←MN ⊙MS

9: if
∑

MQ = 0 then
10: PS ← PS/2, initialize MN and MS

11: end if
12: if PS ≤ PSmin then
13: break
14: end if
15: row∗, col∗ ← argmax(MQ)
16: zquery ← x∗ − x, zquery

row ∗∗PS+1:( row ∗+1)∗PS,col∗∗PS+1:(col∗ +1)∗PS ← 0

17:
xquery ← Clipx,τ {zquery + x}

18: if F (xquery) ̸= y then
19: x∗ ← xquery, update MN

20: else
21: MSrow∗,col∗ ← 0
22: end if
23: T ← T − 1
24: end while

Shi et al. [27] evaluate the algorithm by comparing it to other SOTA dense attacks
on three datasets, including ImageNet. The attacks are measured by the final L2
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distances on query budgets. PAR performs better than several algorithms but is
beaten by the newest of the decision-based attacks SurFree [24] and CAB [28] for
some experiments. However, Shi et al. found that PAR can be used in combination
with the other attacks, which improved every single attack tested, on all datasets
and against every model in their experiments.

2.1.2 Sparse Attacks

Sparse attacks are measured by the L0 distance, which is given by the number
of changed elements. In the context of images, this translates to the number of
changed pixels in an adversarial example. Unlike the dense attacks, measuring
by the L0-norm leads to an NP-hard problem where a global minimum cannot be
guaranteed to be found [29, 16, 30].

Most related work measuring by the L0 distance are not decision-based attacks,
relying on other information about the target model than just the output label.
To the best of our knowledge, there exist only two previous decision-based sparse
attacks, PointWise [17] and SparseEvo [16]. In the following sections, we present
these two attacks in more detail.

2.1.2.1 PointWise

Schott et al. used an algorithm they call Pointwise in their paper on testing the
robustness of CNNs [17]. They employ a simple search algorithm to minimize
the L0 distance, making it the first available sparse decision-based attack we have
found.

PointWise works by adding salt-and-pepper noise (see Chapter 4.4) until the im-
age is misclassified by the target model. Following this, every single perturbed
pixel is tested one by one, resetting its value to the original colors, and checking if
the image is misclassified. If the adversarial example still fools the classifier, the
pixel is removed. The attack is complete when every perturbed pixel is checked.
In a general sense, PointWise can be seen as a very simple version of PAR, but
without grouping the perturbed pixels into patches and without any prioritization
of which regions should be explored before others.

In their experiments, Schott et al. [17] find that the accuracy of an unspecified
CNN trained on the MNIST dataset is reduced from 99.1% to 19.9% when at-
tacked. The primary objective of PointWise seems to test the resilience of CNNs,
not necessarily to create an efficient sparse attack.

2.1.2.2 SparseEvo

SparseEvo is a decision-based sparse attack that uses a modified evolution strategy-
based (ES) algorithm to create query-efficient attacks [16]. SparseEvo works as a
black-box optimization algorithm, which makes it well-suited for addressing the
NP-hard problem inherent to sparse attacks.



CHAPTER 2. RELATED WORK 7

Exploring a large image with three color channels is both expensive and ineffi-
cient. To address this, Vo et al. disregard colors and treat the pixels as image
coordinates that are either perturbed or original. This reduction transforms the
search domain from RC×W×H to 0, 1WxH . They modify the evolution algorithm
to evolve binary representation of images and find this simplification to be very
efficient at creating sparse attacks, significantly outperforming the previous SOTA
PointWise.

The evolution algorithm works by initializing a population, and then through re-
combination and mutation, evolving new candidates closer to a desired solution.
In the SparseEvo algorithm, this is done with binary vectors where each bit rep-
resents a pixel in the adversarial example. For each pixel, if the bit is set to one,
the pixel is gathered from some noise. If the bit is set to zero, the pixel is the
same as in the original starting image.

Figure 2.1.2: Overview of the algorithm from the SparseEvo paper
[16].

In the following sections, we will explain the individual parts of the binary evolu-
tion process, and then give an overview of the total algorithm as presented in [16].

Recombination and Mutation. Vo et al. found that recombination worked
best in their empirical results by combining the best v(kb), and two other random
v(j), v(q), candidates. The two random candidates form a new temporary recom-
bination by uniform crossover, where each bit is chosen from each candidate with
equal probability. The best candidate is then altered by setting all its 1-bits to 0
if they are set to 0 in the offspring from the other two candidates. This creates
the new recombined candidate v(r). Equation 2.3 shows the recombination process
to generate the new candidate.

v(r) ← v(kb) ⊙ UniformCrossover
(
v(j), v(q)

)
(2.3)

v(r) is then mutated by setting a random fraction µ of all 1-bits to 0.

Fitness Computation and Selection. The candidates are sorted and evaluated
by giving them a fitness score set to their L2 distance from the starting image if
they are adversarial, and ∞ if they are not. If the offspring created by recombi-
nation and mutation is better than the worst candidate in the previous iteration,
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it takes its place in the population, and the old candidate is discarded.

Algorithm. Algorithm 2 gives an overview of the entire SparseEvo evolution
process. The algorithm is almost identical to the listed algorithm in the SparseEvo
source paper [16].

Algorithm 2 SparseEvo
1: Input: Source image x, starting image x′, source label y, target label y∗,

model f , population size p, initialization rate α mutation rate µ, query limit
T

2: t← 0;V, G← InitialisePopulation(x, x′, f, p, α)
3: kw ← argmax(G), kb ← argmin(G)
4: for t = 1, 2, ..., T do
5: Uniformly select v(j), v(q) ∈ V\vkb at random
6: Yield v(r) using equation 2.3 and vkb , v

(j), v(q)

7: Yield v(m) by uniformly altering a fraction µ of all 1-bits of v(r) at random
8: Construct x̃ with x, x′ and v(m)

9: Calculate g(x̃) to compute fitnesses
10: if g(x̃0) < Gkw then
11: Gkw ← g(x̃)
12: vkw ← v(m)
13: end if
14: kw ← argmax(G), kb ← argmin(G)
15: end for
16: Construct x̃ with x, x′ and v(kb)

17: return x̃

Vo et al. evaluate SparseEvo on the two datasets CIFAR10 and ImageNet. On
the ImageNet dataset, PointWise struggles to produce efficient attacks with a
20k query budget, whereas SparseEvo generates very sparse adversarial exam-
ples. SparseEvo is also compared to the white-box attack PGD0 [31]. SparseEvo
matches the ideal white-box attack in attack success rate on limited query budgets
of 200 and 500 queries, especially as the sparsity threshold nears L∞ = 0.1. While
better than the previous state-of-the-art PontWise, the SparseEvo algorithm suf-
fers from low query efficiency and slow convergence in the earlier stage of the
evolution process.

2.2 Defenses
There exists an extensive set of published studies on defending against adversarial
attacks. Most focus on defenses against white-box attacks, but several of the
defenses are also applicable to black-box attacks. Based on the survey papers [32,
19, 33, 20], we can group defensive techniques into the following categories:

• Restricted Model Access

• Input Transformation
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• Adversarial Training

• Adversarial Detection

2.2.1 Restricted Model Access

Restricted model access includes masking or obfuscation of model gradients and
restricted query access. Other than the obvious method of restricting the avail-
able information of the target classifier, there have been a set of other proposed
techniques. Some techniques that aim to obfuscate the gradients include random-
ization of gradients [34], gradient regularization [35, 36], adding masking layers
that mask features sensitive to adversarial manipulation before the final classifi-
cation [37], and feature squeezing [38].

Hinton et al. propose defensive distillation where a smaller network is trained on
the softened outputs of the original model [39]. The works by [40, 41] demonstrate
how this technique can be used to train a model that is more robust to the small
perturbations introduced by adversarial attacks. Chen et al. tested their dense
attack HSJA against a defensive distilled model on the MNIST dataset. They
found that their algorithm performed on par with the white-box attack C&W [41]
given enough queries (10k - 50k) [18].

In their survey paper, Xu et al. argue that gradient masking/obfuscation methods
are not safe, as they can only confuse or mislead adversaries, not eliminate the
existence of adversarial examples [20]. This is backed by the works of Athalye et
al. who find that defenses relying on these techniques can be circumvented and
instead suggests adversarial training as a more robust defense [42].

2.2.2 Input Transformation

Input transformation is a defensive method that lies between the input and the
model, modifying the input image to prevent or decrease the effect of adversarial
attacks.

Dziugaite et al. [43] and Das et al. [44] have found JPEG compression to be an
effective way to increase robustness against some white-box attacks. Xie et al.
used random resizing of images to increase robustness [45]. Others try to reduce
the precision of the input data to minimize the effect of small perturbation, with
techniques like median blur [46] or median filtering [38]. In a competition orga-
nized by Google Brain aimed to accelerate research on adversarial examples and
robustness of classifiers, several of the best-performing submissions used median
filtering as part of their defensive techniques [47].

Samangouei et al. propose a more complex approach to input transformation
called Defense-GAN [48]. This method uses a generative adversarial network
(GAN) [49] that learns the data distribution of the clean dataset, and by map-
ping the input back to this distribution as a reconstructed input, becomes more
resistant to adversarial perturbations.
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2.2.3 Adversarial Training

Adversarial training is a defensive method where adversarial examples are intro-
duced to the training data to create models that learn robustness to perturbations.
It is perhaps seen as the most robust defensive technique available [42, 50].

Szegedy et al. introduced adversarial examples to their training data under a new
label to enhance the resilience of their model [7]. Goodfellow et al. improved the
accuracy of their model from 18% to 89% on perturbed MNIST images using an
adversarially trained model [8]. These models were trained on adversarial exam-
ples generated by non-iterative attacks. To address this limitation, Madry et al.
suggest training models using the iterative attack PGD [32], showing state-of-the-
art robustness on MNIST and CIFAR-10 datasets [51].

Vo et al. [16] tested their sparse attack, SparseEvo, against an adversarially trained
ResNet-18 on the CIFAR10 dataset. They found that their algorithm obtains a
comparable performance to the white-box attack PGD on query budgets under
500. They did not include any results from datasets with larger images.

2.2.4 Adversarial Detection

Adversarial detection is another effective way of protecting classifiers. In this de-
fensive method, the input is firstly considered as either benign or adversarial. If
the input is considered adversarial, the model can refuse to predict the class, or
give some random output to mislead the attacker.

Grosse et al. included an extra label for adversarial examples when training the
classifier. In another experiment, they use statistical analysis to check if two
datasets are drawn from the same distribution in order to detect adversarial ex-
amples [52]. Gong et al. train a separate binary classifier to filter adversarial
examples before they reach the main classifier [53]. Metzen et al. also used an
external detection classifier but gives it the input of the hidden layers of the main
classifier instead of the input image [54]. Other addon-networks attempt to detect
adversarial examples with a trained GAN [55, 56], or complete frameworks like
MagNet [57] and SafetyNet [58].

Some researchers have changed the input or the model parameters slightly to check
the consistency of the model’s predictions [38, 59, 46]. The idea is that the model
will predict benign examples consistently, but not adversarial.
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METHODOLOGY

In this chapter, our methodology will be explained along with our motivation for
our experiments. We propose some research questions based on this discussion.

3.1 Motivation

As discussed in Chapter 2.1.2, sparse attacks present a difficult optimization prob-
lem, and there is a lack of research that focuses on sparse attacks. This has led to
sparse attacks, at their current stage, performing worse and requiring more queries
than the SOTA dense attacks. While more research on sparse attacks may not
necessarily lead to attacks that can outperform the dense attacks, their separation
from the focus on the decision border and unique ways of generating adversarial
solutions may give the family of attacks an advantage against defenses that focus
on the techniques currently used for generating dense attacks. We believe this
warrants further investigation into developing query-efficient sparse attacks and
evaluation of their response to different defensive techniques.

A current constraint for sparse decision-based attack methods is the need to query
the target model with many queries to create sparse attacks. Previous state-of-
the-art methods Pointwise [17] and SparseEvo [16] need thousands of queries to
create sparse targeted attacks that are hard to detect with the human eye. This
is especially true in the targeted setting where SparseEvo requires around ten
thousand queries to create images that are visually indistinguishable from the
starting image [16].

3.2 Research Questions

Based on the research motivation, we decide to answer the following three research
questions:

• RQ1: How can we create more query-efficient and sparse decision-based
black box attacks?

11
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• RQ2: How effective are existing defensive techniques against sparse decision-
based attacks for mitigating or detecting the threat of the attacks?

• RQ3: Given the attacks can be defended by the defensive methods properly,
are there other possibilities to enhance the sparse decision-based attacks
further?

In the next chapters, we aim to answer these research questions through experi-
ments.
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FOUR

DESIGN AND IMPLEMENTATION TO ANSWER RQ1:
QUERY-EFFICIENT ATTACKS

In this chapter, we propose an answer to our first research question: how can
we create more query-efficient and sparse decision-based attacks? Based on the
results by Shi et al. [27], we believe exploring their greedy initialization technique
PAR, can significantly reduce the number of queries needed to create sparse at-
tacks on a query budget. Shi et al. only test their algorithm in the dense attack
setting. As opposed to dense attacks, when creating sparse attacks the distortions
are measured directly by the number of adversarial pixels we can remove. PAR
is a noise removal algorithm, and because of this, we believe PAR is even more
suited to improve attacks in the sparse setting.

We start by presenting PAR as an initialization technique and then propose in-
creasing the dimensionality of the problem to improve sparsity. Following this, we
define experiments and improvements for targeted- and untargeted attacks. We
want the attack to be applicable to both targeted and untargeted settings as they
provide distinct perspectives on the vulnerabilities of image classifiers. Targeted
attacks will tell us how an attacker with specific goals or targets can exploit our
classifier. Untargeted attacks give an indication of the system’s overall resilience
against manipulation. Finally, we explain the experiment setup and the evaluation
criteria.

4.1 Initialization by PAR

We use the PAR algorithm by Shi et al.[27] presented in Chapter 2.1.1.1 in order to
quickly decrease the grid of adversarial pixels to reduce in the subsequent binary
evolution method used in the SparseEvo algorithm [16]. This can be seen as a
greedy initialization as all patches considered, in a coarse to fine search, that can
be removed while the image is still adversarial are removed and the pixels in those
patches are never considered again. This might quickly decrease the number of
adversarial pixels fast, and thus the sparsity, but might discard solutions that
would be closer to an optimal distribution of adversarial pixels. Figure 4.1.1 gives
two random examples in the targeted setting from the ImageNet dataset. The

13
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algorithm removes patches from a starting adversarial image, and in the process
reveals the original image behind it. The top row of each example shows the
created adversarial example. The bottom row is a visualization of the patches,
black squares are areas that are seen as unnecessary to keep the image adversarial
by the algorithm.

Figure 4.1.1: Two random examples of the PAR algorithm [27] on
the ImageNet dataset in the targeted setting. The top row of each
example shows the created adversarial example. The bottom row
is a visualization of the patches, black squares are areas that are
seen as unnecessary to keep the image adversarial by the algorithm.
The algorithm starts with larger patches and decreases the patch size
during later queries.

4.2 Increased Dimensionality
In SparseEvo [16], Vo et al. ignore the color intensity of pixels entirely to reduce
the search domain to either on/off (perturbed/original) for an individual pixel. We
hypothesize that if we can utilize PAR to sufficiently reduce the original image to
a smaller subgrid of adversarial pixels, we could open for evolving a sparse image
using the images’ colors in three dimensions instead of the binary restrictions in
the original SparseEvo algorithm, and in turn, find even better solutions.

Disregarding the binary optimizations made by Vo et al. we are no longer limited
to just the ES algorithm. We evaluate the performance of ES along with other
more recent gradient-free optimization algorithms:

• sep-CMA-ES (Separable Covariance Matrix Adaptation Evolution Strategy),
a variant of a newer ES algorithm, CMA-ES. The distribution in CMA-ES
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contains a mean vector and a covariance matrix. In sep-CMA-ES, the ob-
jective function is decomposed into independent or weakly dependent com-
ponents, allowing for enhanced optimization speed and scalability to higher
dimensions (like color images in the ImageNet dataset) [60].

• Nevergrad, a powerful framework by Facebook AI that contains a variety of
algorithms for black-box optimization and hyperparameter tuning [61].

• LaMCTS, a lightweight variant of the Monte Carlo Tree Search (MCTS)
algorithm. It is a fast and efficient search algorithm that employs a combi-
nation of random simulations and tree exploration to find optimal solutions
in large black-box optimization problems [62].

4.3 Targeted Attacks
Figure 4.3.1 shows the targeted attack pipeline using PAR as the initialization
method. Starting from the original image, a random image from the target class
is used as an overlay. After that, we remove patches in iterations while still keeping
the image adversarial. When the initialization algorithm is unable to remove any
more patches, we continue with binary ES as in SparseEvo on the reduced subgrid.
All three images to the right of the original image of a hyena are classified as a
honeycomb by the target model.

Figure 4.3.1: Targeted attack pipeline, using PAR as the initializa-
tion method to reduce the noise overlay.

We found it necessary to use different hyperparameters than in SparseEvo to cre-
ate viable targeted attacks. As PAR reduced the problem to a smaller subgrid,
the resulting areas were a lot more sensitive to the removal of pixels than when
using the entire starting image. This meant that the old mutation rate led mostly
to examples that were not adversarial. We did some experiments to find mutation
rates that would lead to fast and efficient convergence after PAR and found that
limiting the mutation rate to one pixel for the first 300 queries, and three pixels
for the following 200 queries gave great results. After the first 500 queries, we
continued with a mutation rate of 0.001 as in the original algorithm. We also
tested different values for population size and initialization rate but found that
they had a small impact on the performance of the attack. In Figure 4.3.2 we give
a comparison of various tested values for initialization rate and population sizes.
After 300 queries there is little difference in sparsity for the tested hyperparam-
eters, and the differences might be attributed to the small test size of 50 images
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per hyperparameter setting. In our experiments, we used an initialization rate of
0.0004 and a population size of 10. Our hyperparameter settings are summarized
in Table 4.3.1.

(a) (b)

Figure 4.3.2: To the left: Testing different values for initialization
rate in the SparseEvo+PAR targeted attack. The initialization rate
is the number of pixels that will be randomly set to 0 when initializing
a population candidate. To the right: Comparing the performance of
different population sizes for the same attack. The lines are given as
the average across 50 runs with random images.

Parameters Value
Population size (p) 10

Initialization rate (α) 0.0004

Mutation rate (µ)


1

num_pixels if t < 200
3

num_pixels if 200 ≤ t < 500

0.001, otherwise

Table 4.3.1: Hyperparameters for the experiments in the targeted
setting.

4.4 Untargeted Attacks
For the untargeted attacks, some initial noise needs to be added to the image to
make it adversarial. PointWise was developed using salt-and-pepper noise [17].
Vo et al. tested both Gaussian and salt-and-pepper noise in their untargeted ver-
sion of the SparseEvo algorithm and found that the salt-and-pepper noise was the
most effective [16].

Gaussian noise is added by sampling from a normal distribution and adding the
values to the original image. The standard deviation can be modified to alter the
spread or intensity of the noise.

Salt and pepper noise is a black-and-white type of noise that sometimes appear
in digital images [63]. It is a form of impulse interference that happens during the
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taking and processing of a digital image, typically over polluting the pixels (white
pixels/salt) or introducing zero values (black pixels/pepper) [64]. This noise is ef-
ficient at fooling classifiers and can occur naturally in input images, which makes
it a relevant source of noise for our studies. We can artificially create this noise
by setting random pixels of our input image to 0 or 1 until the image is adversarial.

We test both Gaussian and salt-and-pepper noise in our new attack. Figure 4.3.1
shows the untargeted attack pipeline. Starting from the original image, random
noise is added as an overlay. After that, we do as in the targeted attack, remove
patches during initialization, and continue from a smaller subgrid with binary ES.
All three images to the right of the original image are misclassified by the target
model.

Figure 4.4.1: Untargeted attack pipeline, using PAR as the initial-
ization method to reduce the noise overlay.

Unlike the targeted setting, the hyperparameters used in SparseEvo worked just
as well in the untargeted setting when introducing PAR. These are given in Table
4.4.1.

Parameters Value
Population size (p) 10

Initialization rate (α) 0.004
Mutation rate (µ) 0.004

Table 4.4.1: Hyperparameters for the experiments in the untargeted
setting.

4.5 Target Image Selection

In the targeted attacks, including SparseEvo, selecting an overlay image as the
starting noise in the targeted setting is done by selecting a random image from
the target class. However, there might be a benefit in analyzing the target images
available first, before creating the adversarial example. As a final experiment, we
analyze the relationship between the initial L2 distance of the original image and
the overlay image, and the L0 distance after initialization by PAR. An analysis of
the initial L2 distances does not require any model queries, and our hypothesis is
that selecting target images based on this distance can lead to better attacks.
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4.6 Experiment Setup and Evaluation
We use the renowned computer vision dataset ImageNet to evaluate our exper-
iments [65]. This was chosen as we believe larger images to be closer to real-
world classification applications. Other common computer vision datasets such as
MNIST [66], CIFAR-10 and CIFAR-100 [67], contain too small images to give an
accurate indication of the attack’s efficiency in images with some detail. A poten-
tial downside to ImageNet is a large amount of label classes, and label classes that
are similar to each other that are meant to teach the model fine-grained classifi-
cation. Especially in the untargeted setting, this makes it very easy to obfuscate
small parts of an image, and have the model guessing wildly between a set of sim-
ilar images. As an example, there are 118 classes (11.8%) of different dog breeds
in the dataset

As the target classifier, we use the state-of-the-art ResNet architecture [68]. Specif-
ically, we use a version created for ImageNet called ResNet-50 that has a 76.15%
accuracy in predicting the label of unperturbed images in the dataset. The model
is provided for download by torchvision [69]. The full architecture is shown in
Appendix A. In total 3.8 ∗ 109 floating point operations (FLOPS) are needed to
perform a single forward pass through this network.

The model takes inputs of size 224 x 224 x 3. To achieve this and ensure the
images are in the same format as during the training of ResNet-50, every image
in the dataset is preprocessed before being passed to the network. This is done
by [70]:

• Resizing image to 256 (smallest edge will be 256) using bilinear interpolation
mode

• Center crop to size 224

• Rescale values to [0.0, 1.0]

• Normalize values using mean=[0.485, 0.456, 0.406] and std=[0.229, 0.224,
0.225]

We evaluate PAR as an initialization technique by measuring how much of the
original adversarial noise can be removed while keeping the image adversarial and
how many queries are needed to do so. This is tested for both the untargeted
and the targeted setting. We then evaluate the combined SparseEvo+PAR at-
tack measuring the ASR and query efficiency at selected thresholds. We compare
these results to the original SparseEvo algorithm for both targeted and untargeted
attacks.
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5.1 Initialization by PAR

In the SparseEvo algorithm, once a bit is flipped from 1 to 0, it is never flipped
back for that offspring. In our experiments, we tested allowing the evolution pro-
cess of the method access to the whole image, not just the reduced grid after
PAR initialization. To utilize this space, it would require the algorithm to be
able to flip pixels from the original pixel, back to the adversarial pixel. Just like
the authors of SparseEvo [16], we found that allowing flipping off-pixels back to
on-pixels reduces the performance of the overall method, even when starting from
a subsection of the whole image. This means that for all following experiments,
adversarial distortions are limited to only the reduced grid after initialization, and
pixels outside this area are untouched by the evolution process.

Figure 5.1.1 gives an illustration of PAR working to reduce the noise in a targeted
setting. The first two columns are the original image and the target image. The
next columns are the results after a selected number of iterations of PAR. Under
each image is the predicted label by the target model, and a percentage indicating
how much of the original image is present in the current image. Figure 5.1.2 shows
the same in the untargeted setting. The second column in this figure is the images
after salt-and-pepper initialization.

19
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Figure 5.1.1: Examples of how the PAR algorithm reduces the noise
in the targeted setting. Under each image is the predicted label and
a percentage of how much of the original image is present.
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Figure 5.1.2: Examples of how the PAR algorithm reduces the noise
in the untargeted setting. Under each image is the predicted label
and a percentage of how much of the original image is present.

Inialization in the targeted setting: To see how much the PAR initialization
help reduce the perturbation size, we test on 1000 randomly drawn images from
ImageNet. In the targeted setting, the initialization reduces the adversarial per-
turbation to 18.5% of the original image size on average. Figure 5.1.3 shows the
relationship between the queries used in initialization and the resulting pertur-
bation size. For most of the runs, the algorithm creates quite sparse adversarial
examples in 200 to 400 queries. As can be seen in the figure, there is a linear
relationship between queries used for initialization and the resulting L0 distance,
with less sparse examples requiring fewer queries.
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Figure 5.1.3: The reduced sizes after initializations using PAR, and
the queries used to do so for 1000 different images in the targeted
setting. The image to the right is a zoomed-in version of the left
image.

Initalization in the untargeted setting: In the untargeted setting, the ini-
tialization includes salt-and-pepper to create an initial adversarial example, as in
SparseEvo, before doing PAR. The PAR initialization reduces the original pertur-
bation to around 0.05% on average. Figure 5.1.4 shows the relationship between
the queries used and the final perturbation size in untargeted initialization. As
in the targeted setting, the algorithm uses less than 400 queries for most runs,
and there is a seemingly linear relationship between queries spent and the final L0
distance.

Figure 5.1.4: The reduced sizes after initializations using PAR, and
the queries used to do so for 1000 different images in the untargeted
setting. The image to the right is a zoomed-in version of the left
image.

In Table 5.1.1 we summarize the final L0 distance and queries spent after initial-
ization for targeted and untargeted attacks. In the untargeted setting, we have
included results after using both salt-and-pepper and Gaussian noise to create
the initial adversarial example before PAR. The distortions of the images in the
targeted setting are about three times greater than in the untargeted setting. The
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salt-and-pepper initialization led to better results in our experiments, and we con-
tinue using this method of creating initial adversarial examples for all following
untargeted experiments.

Method Avg. Adv.
Pixels

Avg.
L0

Median
L0

Avg.
Queries

Median
Queries

PAR
Targeted Attack 9282 0.185 0.168 365 348

PAR + S&P
Untargeted Attack 2558 0.051 0.038 277 256

PAR + Gauss
Untargeted Attack 2759 0.055 0.043 281 260

Table 5.1.1: Comparison of final L0-distances and queries used for
initialization in the targeted and untargeted setting. The data is
sampled from 1000 runs.

5.2 Testing increased dimensionality to improve
sparsity

In Chapter 4.2, we hypothesized that with the reduced domain we could open for
evolving sparse images using the images’ colors in three dimensions instead of the
binary restrictions posed by Vo et al. [16] This increase the dimensionality from
{0, 1}WxH to R3×P , where W ×H is the original image size and P is the number
of perturbed pixels after initialization. We then tested several gradient-free opti-
mization methods that are more recent and efficient than ES for a lot of different
problems, including optimizations in problems of higher dimensions. Amongst the
techniques tested were sep-CMA-ES [60], Nevergrad [61], and LaMCTS [62].

In our experiments, the increased dimensionality made the sparsity worse for all
tested examples, even though the search grid was greatly reduced. Since we are
measuring L0-distance, there is no gain to tweaking the color variance of the
adversarial pixels if they do not contribute to higher sparsity overall. Since this was
not the case, and because we adhere to strict query budgets, we found the restricted
binary domain to be the preferred domain for further experiments. We continue
the other experiments using the SparseEvo algorithm after PAR initialization.

5.3 Targeted attacks

In Chapter 5.1 we found that PAR can be used to remove about 80% of the adver-
sarial perturbations in the targeted setting. For the next experiment, we combine
the initialization with the SparseEvo algorithm to see if the combination can create
a more query-efficient attack. In Figure 5.3.1, we see how adding the initialization
greatly improves the performance of the method in the targeted setting. The im-
proved method reduces the L0 distance very fast in the first few hundred queries
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during the initialization, then converges steadily by reducing the reduced grid for
the next thousand queries. The results are created as an average of 200 runs. The
graph lines represent the average L0-distance for a given query. The line’s shadow
shows the standard deviation from the average, this goes for all similar graphs in
the following chapters.

The SparseEvo method surpasses the version with PAR at around 8500/9000
queries on average. This is expected to happen at some point as the version
without PAR will work on the entire image, while the new version with PAR is
restricted to a smaller sub-image which will most likely discard the most optimal
solutions that the other might find given enough time.

Figure 5.3.1: Comparison of the SparseEvo algorithm with and
without PAR initialization. The lines mark the L0-distances at
queries up to 10k in the targeted setting. The lines are given as
the average of 200 runs.

Table 5.3.1 gives a comparison of the average L0 distance of the adversarial exam-
ple produced by SparseEvo and SparseEvo with PAR, on different query budgets.

q:50 q:250 q:500 q:1500 q:3000 q:5000 q:9000
SparseEvo 0.96 0.84 0.75 0.53 0.34 0.19 0.06
SparseEvo + PAR 0.31 0.22 0.19 0.17 0.14 0.11 0.07

Table 5.3.1: The average L0-distance after different query budgets
with and without initialization in the targeted setting. Using PAR
initialization improves the query efficiency up to around 9k queries.

Table 5.3.2 shows the attack success rate (ASR) at different sparsity thresholds.
The methods are compared at four query budgets: 1k, 2k, 5k, and 10k queries.
The added initialization greatly improves the ASR at lower query budgets. At a
budget of 1k queries, the version without PAR has no successful attacks, while the
version with PAR is successful in 89% of the samples with a sparsity threshold of
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0.3. As previously shown, the plain SparseEvo method surpasses the ASR of the
combined method at higher query budgets.

Method \Sparsity 0.05 0.10 0.15 0.20 0.30
SparseEvo - 1k 0 0 0 0 0

SparseEvo+PAR - 1k 5 20 41 65 89
SparseEvo - 2k 0 0 0 0 11

SparseEvo+PAR - 2k 10 31 52 72 92
SparseEvo - 5k 3 21 44 63 82

SparseEvo+PAR - 5k 32 58 74 85 96
SparseEvo - 10k 69 89 95 98 99

SparseEvo+PAR - 10k 64 78 86 91 98

Table 5.3.2: The ASR of SparseEvo with and without initialization
using PAR. The algorithm with initialization has higher success rates
at all sparsity thresholds on query budgets 1k, 2k, 5k and 10k.

5.4 Untargeted attacks

The PAR algorithm was able to greatly reduce perturbed noise in the untargeted
setting. As with the targeted attacks, we see if the initialization method can be
combined with SparseEvo to produce more query-efficient attacks in the untar-
geted setting. Figure 5.4.1 shows that initialization greatly improves the attack
efficiency in the untargeted setting. Both versions with and without PAR first
initialize noise using salt-and-pepper, which is typically done in about 50 queries
as can be seen in the graph. The version with PAR then further reduces the size
of the perturbation before the evolution part of the process. As with the targeted
attack, it is expected that the plain SparseEvo algorithm will surpass the new
method given enough queries. In our experiments, that does not happen on aver-
age during the first 500 queries, which is enough to produce very sparse adversarial
attacks.
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Figure 5.4.1: Performance of the SparseEvo algorithm with and
without PAR initialization. The lines mark the L0-distances at
queries up to 500 in the untargeted setting. The lines are given as
the average of 200 runs.

Table 5.4.1 gives a comparison of the average L0-distance of the adversarial ex-
ample produced by SparseEvo and the version with improved initialization, on
different query budgets. The version with PAR is better on average for all queries
up to 500 after the salt-and-pepper process.

q:50 q:100 q:200 q:300 q:500
SparseEvo 0.024 0.023 0.018 0.015 0.009
New 0.024 0.019 0.007 0.005 0.003

Table 5.4.1: The average L0-distance after different query budgets
with and without initialization in the untargeted setting. Using ini-
tialization improves the query efficiency for query budgets between
50 and 500.

Table 5.4.2 shows the attack success rate (ASR) at different sparsity thresholds.
The versions with and without PAR are compared at four query budgets: 100,
300, and 500 queries.
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Method \Epsilon 0.001 0.002 0.005 0.010 0.020
SparseEvo - 100 28 34 49 65 76

SparseEvo+PAR - 100 35 48 63 75 83
SparseEvo - 300 40 46 58 73 83

SparseEvo+PAR - 300 48 62 80 91 96
SparseEvo - 500 47 55 68 81 88

SparseEvo+PAR - 500 53 69 86 95 97

Table 5.4.2: The ASR of SparseEvo with and without initialization
using PAR. The algorithm with initialization has higher success rates
at all sparsity thresholds on query budgets 100, 300, and 500.

5.5 Target Image Selection
We did an experiment to see if there is any relationship between the performance
of the PAR initialization and the initial L2 distance of the original image and the
overlay image used for targeted attacks. Figure 5.5.1 shows that, on average, there
is a slight improvement in the queries needed and the resulting L0-distance after
PAR when selecting an image from the target class with a lower L2-distance from
the original image. Picking this image as the noise for targeted attacks can be a
great way to improve the chance of a successful attack on query budgets, as the
attacker does not have to query the target model to check the initial L2 distance.

(a) (b)

Figure 5.5.1: The relationship between the L2-distance before PAR
and the (a) L0 distance after perturbation, and (b) queries used for
the perturbation. The graphs are created from 10 runs of PAR, where
each run has a random original image and label, a random target
label, and 50 potential target images from the target class to use as
initial noise (500 total samples). The red line marks the regression
line with a confidence interval of 95%.

We did not use this selection for any other experiments as it was not directly
relevant to comparing SparseEvo with or without PAR, or to evaluate defensive
techniques.
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CHAPTER

SIX

DESIGN AND IMPLEMENTATION TO ANSWER RQ2:
DEFENSES

To answer our second research question and evaluate how effective existing defen-
sive techniques are against sparse attacks, we first discuss some relevant defensive
techniques. There has been a magnitude of proposed defenses against adversarial
attacks. As discussed in Chapter 2.2, we can divide them into four main categories:

• Restricted Model Access

• Input Transformation

• Adversarial Training

• Adversarial Detection

Restricted model access is not relevant to the black-box attack setting as we al-
ready assume the gradients to be unavailable and that we have unrestricted query
access. However, the possibility of query access restrictions as a defensive method
is a good argument for the importance of query-efficient attacks.

Input transformation includes techniques such as rotation/shifts, compression,
clipping, and filtering. Clipping, resizing, and normalizing the input data is al-
ready part of the pipeline when using the ResNet-50 model in our experiments.
Attacks centered around these properties, e.g. exploding values or unnatural image
sizes, would therefore not work as they will be neutralized by the input pipeline.

In the next sections, we present some defensive techniques that we think are most
promising based on the SparseEvo+PAR algorithms and previous evaluations of
defenses presented in chapter 2.2.

6.1 Adversarial Training

The final sparse adversarial examples created by the attacks are often reduced
to a very small set of scattered pixels that throw off the model. This is espe-
cially true in the untargeted setting. The first defensive technique we test is an
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adversarially trained model, that might give increased robustness for these small,
but effective, distortions. The adversarially trained model might not be able to
completely stop the attack, but can hopefully reduce the query efficiency and the
ASR of the attacks. Adversarial training is, as a general defense, seen as the most
robust defensive technique available [42, 50].

Instead of the vanilla ResNet-50 model provided by torchvision [69], we use an
adversarially trained ResNet-50 model provided by Engstrom et al. [71]. Their
model has a 57.90% accuracy on clean images, down from the 76.13% accuracy of
the model used in previous chapters, but shows impressive robustness to distor-
tions created by the white-box attack PGD [51].

We compare the robustness of the adversarially trained model to the normally
trained model on ASR and query efficiency for untargeted and targeted attacks
produced by SparseEvo with improved initialization using PAR.

6.2 Median Filter

The second defense we consider is a type of input transformation using a median
filter. In the untargeted setting, random noise is added to the input image to cre-
ate an adversarial attack before reducing the noise as much as possible to create a
sparse attack. The effect of this noise can be reduced by running the input through
a median filter before it is labeled by the target model. This filter is especially
effective against salt-and-pepper noise [72, 73, 74], which is the initialization used
in SparseEvo, as they found it to be the most effective way of initializing noise in
their experiments [16].

Figure 6.2.1 illustrates the effect of the median filter on an image distorted with
salt-and-pepper noise. The image after being put through the filter is very similar
to the original image.
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Figure 6.2.1: To the left: An image from the ImageNet dataset
distorted with salt and pepper noise. To the right: The same image
after a median filter has been applied. The image to the right is
visually less distorted to the human eye but slightly blurred.

Firstly, we test the effect this filter has on the model on clean images, to
ensure this filtering will not considerably reduce the overall accuracy of the model.
In the following experiments, we test the efficiency of the median filter input
transformation in untargeted attacks by measuring the sparsity after 500 queries,
and the ASR with sparsity thresholds. We compare the results to the earlier
results of untargeted attacks without any input transformations.

6.3 Adversarial Training + Median Filter
Motivated by the results of the previous two experiments we introduce another
experiment to see if the two defensive techniques can be combined to create even
more effective robustness to sparse attacks without decreasing the overall accuracy
of the model on clean images.

We first evaluate the adversarially trained model’s performance on clean images
when the images are run through a median filter. We then compare the ASR and
query efficiency using these defenses to the results of the previous chapters.

6.4 Adversarial Detection
A downside to using PAR as an initialization technique is that the algorithm leaves
very distinct and recognizable traces in the adversarial examples when querying
the model during initialization.

As seen in the previous example Figure 4.1.1, during PAR, the image is divided
between the original image and the target image with straight and sharp edges of
squares. In this experiment, we see if this property can be exploited by training a
model to detect if an image has been perturbed by PAR.
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In Chapter 2.2, we discuss several methods of adversarial detection. Among
the most promising techniques are frameworks SafetyNet [58] and Magnet [57],
defense-GAN [55, 56] and specific homemade detection classifiers [53, 54]. We
consider developing a separate GAN for adversarial detection too extensive for this
scope. The two frameworks were developed and tested for much smaller datasets,
so their efficiency and training time on the ImageNet dataset is uncertain [57, 58].
While it might be worthwhile to investigate, we instead opt to create a separate
ResNet-50 model tailored to our experiments on the ImageNet dataset. We use a
pre-trained ResNet-50 model, the same as in previous experiments, as a base for
transfer learning. This is a well-suited choice as the architecture has been shown
to be both fast and efficient in classification tasks on ImageNet. The new dataset
for training the model consists of 2500 images total, divided into two classes: clean
images and images distorted by PAR, with the same number of images for each
class. The images distorted by PAR are created from random pairs of original and
target images sampled from the dataset, and saved after 10, 30, and 50 queries of
PAR, evenly distributed. For training and testing, we split the new dataset into
80% training data and 20% test data. 20% of the training data is set aside as a
validation set to be used during training.

We evaluate the trained model on overall accuracy on our newly created dataset
to see if it can reliably detect the adversarial images. To act as a robust defense,
the model should have a high detection accuracy while maintaining a low false
negative rate. To achieve this we can analyze the model’s output predictions and
experiment with different detection thresholds to find the best balance of true- and
false negatives. We evaluate the model on its f1-score, a measure that combines
precision and recall to determine the overall accuracy of a classification model. It
ranges from 0 to 1, where 1 is the best possible score. Precision is the number of
true positive results divided by the number of all positive results, including the
false positives. Recall is the number of true positive results divided by the number
of all results that should have been identified as positive.

Precision =
TP

TP + FP
(6.1)

Recall =
TP

TP + FN
(6.2)

The f1-score is then calculated as:

F1 = 2 · Precision · Recall
Precision + Recall

(6.3)

A balance of 50/50 adversarial- and benign images is probably not a represen-
tative balance for a real-world scenario. Because of this, and since the f1-score
heavily penalizes the false negative rate, we also evaluate the model’s score on a
distribution of 10k benign and 1k adversarial examples.

We will also consider a case where an attack is unsuccessful if one or more of
the first 50 queries of initialization is prevented, the reasoning being that not all
queries made during initialization need to be detected to render the attack power-
less. While a few detected PAR queries might not mean that the PAR algorithm
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will completely fail, it might be enough to effectively cripple the improvements it
has shown as an initialization technique.
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CHAPTER

SEVEN

RQ2: RESULTS

In this chapter, we present the results from our experiments to evaluate adver-
sarial training, median filtering, and adversarial detection as defenses against the
SparseEvo+PAR attack.

7.1 Adversarial Training

The adversarially trained ResNet-50 model got an accuracy of 53.55% in our ex-
periments on clean images (ImageNet validation set, 50k images). The normally
trained ResNet-50 provided by PyTorch has an accuracy of 76.13% [70]. Figure
7.1.1 shows the efficiency of SparseEvo and SparseEvo+PAR in the targeted set-
ting against the normal ResNet-50 model and against the adversarially trained
version. The adversarially trained model lowers the efficiency of SparseEvo with
and without PAR. SparseEvo alone is unable to generate any adversarial images
with sparsity lower than 0.6 against the adversarially trained model on a query
budget of 2k queries. The versions with initialization are more similar, but the
adversarial model lowers the sparsity by about 0.1 on average for the first 2k
queries.
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Figure 7.1.1: The SparseEvo algorithm with and without PAR
initialization against an adversarially trained model and a normally
trained model. The lines mark the L0-distances at queries up to 2k in
the targeted setting. The lines are given as the average of 200 runs.

Figure 7.1.2 shows the efficiency of the two SparseEvo versions with and with-
out PAR in the untargeted setting against the normal ResNet-50 model and the
adversarially trained model. The adversarially trained model reduces the query
efficiency of both versions. In the attack with PAR, it reduces the sparsity by
about 0.02, and by around 0.035 in the attack without PAR. The salt-and-pepper
initialization still manages to reach a pretty good sparsity of 0.05, and PAR is
effective at increasing this sparsity in the next hundred queries. The evolution
process, however, is very slow at improving the sparsity against the adversarially
trained target model.
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Figure 7.1.2: The SparseEvo algorithm with and without PAR
initialization against an adversarially trained model and a normally
trained model. The lines mark the L0-distances at queries up to 500
in the untargeted setting. The lines are given as the average of 200
runs.

Table 7.1.1 shows the ASR of the two methods against normal and adversar-
ially trained models in the untargeted setting. The ASR is measured at different
sparsity thresholds with a query budget of 500 queries. The ASR is heavily re-
duced for SparseEvo and SparseEvo with PAR. At a sparsity threshold of 0.001,
the ASR is about 16 times less without PAR and 6 times less with PAR. At a
sparsity threshold of 0.020 where the version with PAR was almost 97% effective
against the normally trained model, the adversarially trained model reduce the
success rate to 58%. The sparsity threshold needs to be increased to 2000 per-
turbed pixels on a query budget of 500 queries before the version with PAR is
above 90% ASR. This shows how the adversarially trained defense reduces the
query efficiency of the attacks, but the defense is not able to completely defeat
the ASR at larger sparsity thresholds.

Method \Sparsity 0.001 0.005 0.010 0.020 0.040
SparseEvo - Not Adv. Trained 0.47 0.68 0.81 0.88 0.93
SparseEvo - Adv. Trained 0.03 0.14 0.25 0.39 0.63
SparseEvo+PAR - Not Adv. Trained 0.52 0.86 0.95 0.97 0.98
SparseEvo+PAR - Adv. Trained 0.08 0.24 0.39 0.58 0.91

Table 7.1.1: Comparison of the ASR of SparseEvo with and with-
out initialization against the normal- and the adversarially trained
model. The ASR is measured on a query budget of 500 queries in the
untargeted setting.
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7.2 Median Filter

In Figure 7.2.1 we show examples to illustrate how the sparsity is weakened by
adding the median filter before the target model. For this example run, the L0
distance is 83.6 times bigger with the filter applied after salt-and-pepper is added,
and 65.2 times bigger after evolution.

Figure 7.2.1: The SparseEvo process for a random example with
and without a median filter applied. The first column shows the
original image, the second column shows the perturbed image after
salt and pepper initialization and the third column shows the final
image after SparseEvo evolution with 500 queries. The first row shows
the adversarial examples without a median filter applied, and the
second row shows the examples when the model contains a filter.
The third row contains the same images as in the second row but
shows how the model receives the image after the filter is applied.

Overall, adding the median filtering drops the accuracy of the model on benign
images from 76.13% to 71.59% (ImageNet validation set, 50k images). Figure
7.2.2 compares the models with and without the filter on a query budget of 500
queries in the untargeted setting. The filter significantly worsens the performance
of the attack. These results show that median filtering is an effective measure to
reduce the effect of salt-and-pepper distortions, at the cost of around a 5% drop
in prediction accuracy.
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Figure 7.2.2: The SparseEvo+PAR algorithm with and without
running the output through a median filter before the target model
prediction. The lines mark the L0-distances at queries up to 500,
given as the average of 200 runs.

7.3 Median Filter + Adversarial Training

In the next experiment, we combine the adversarially trained model with the me-
dian filter technique to further increase the robustness of the untargeted attack.
The adversarially trained model with the median filter applied gives a 52.72%
accuracy on clean images (ImageNet validation set, 50k images). This is very
similar to the accuracy of the adversarially trained model without the filter, only
0.83% worse. In Figure 7.3.1a we compare the combined techniques of adversarial
training and median filter to three other results from previous chapters: only me-
dian filter defense, only adversarial training defense, and a normal attack without
any defenses. The graph shows a significant improvement in robustness for the
combined defenses. Adding median filtering to the adversarially trained model
increased the robustness of the model from around 0.03 sparsity to around 0.35
sparsity on a query budget of 500 queries. The robustness of the combined de-
fenses is also persistent on larger query budgets, as shown in 7.3.1b. The average
sparsity after 5000 queries is no better than about 0.2.
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(a) (b)

Figure 7.3.1: (a): The SparseEvo+PAR algorithm with and with-
out running the output through a median filter before passing to an
adversarially trained model and a normal model. (b): The adversar-
ially trained model + median filter defense, left to run for 5k queries.
The lines mark the average L0-distances across 200 runs.

7.4 Adversarial detection

As a final defensive experiment, we trained a model to classify images as either
benign or perturbed by PAR in the targeted setting. The trained model got an
accuracy of 81.89% on our dataset after 50 epochs.

In Figure 7.4.1 we have analyzed the model’s predictions of 1000 benign images,
and 1000 adversarial images after every iteration of PAR up to 50 queries (about
50000 images total). For each run with PAR, the model is given up to 50 dif-
ferent images, and we then select the single highest confidence value that any of
these images are adversarial to represent that run. We then compare this to the
confidence predictions of the benign images. We do this assuming that we do not
care if some adversarial examples are allowed through the model, as long as every
single run of PAR is stopped somewhere along its 50 first queries.
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(a) (b)

Figure 7.4.1: The output predictions of a model trained to detect
images perturbed by the PAR algorithm. The figure shows the pre-
diction confidences of 1000 adversarial- (red) and 1000 benign images
(blue). (a): The model’s confidence that the images are benign. (b):
The model’s confidence that the images are adversarial.

We can see that by selecting the "worst" offenders out of the 50 queries in the
1000 PAR-generated adversarial runs, there are not a lot of misclassified examples.
For this dataset, we can adjust the threshold for what we consider an adversarial
example to find a balance between false positives and false negatives. For instance,
by saying all model predictions that are above zero for the adversarial confidence,
we misclassify 4.0% (40) benign images and correctly identify 97.5% (975) PAR
runs. If we adjust this threshold to 1.6 (cherrypicked value for example purposes),
zero benign images are misclassified, and we identify 83.1% of the par runs. If
we use a combination of both prediction confidences, for benign and adversarial,
we can get even better predictions. By saying images with adversarial confidence
above 1 and benign confidence below 0 are adversarial, only five benign images are
misclassified, and 914 PAR runs are identified. We give an overview of prediction
accuracies at selected thresholds along with f1-scores in Table 7.4.1.

The assumption that only detecting one of the adversarial examples in a single run
of PAR is enough to stop the threat of the attack is not very strong. However, we
observe that when one image is detected, usually many are detected in the same
run. For instance, if we set the adversarial confidence threshold to 1, an average
of 60.0% of the adversarial images created during the first 50 PAR queries are
detected (69.23% median) in all the runs where at least one image was detected.
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Adv.
Thresh.

Benign
Thresh.

True
Positive

True
Negative Recall Precision F1

Score
0 - 960 975 0.97 0.96 0.97

1.6 - 1000 831 0.86 1.00 0.92
- 0 980 952 0.95 0.98 0.97
- -0.5 990 908 0.91 0.99 0.95
- -1.0 995 840 0.86 1.00 0.92
1 0 995 914 0.92 1.00 0.96

1.6 0 1000 831 0.86 1.00 0.92

Table 7.4.1: Overview of the f1-scores of the PAR detection model,
when setting different confidence thresholds to determine if an image
is adversarial or benign.

In a real-world scenario, the adversarial examples are most likely not 50% of
the input a model receives. This distribution greatly affects the resulting f1-score.
To give a more realistic example, we run the same numbers for 10k random benign
examples from the ImageNet dataset, and the same PAR runs as before. It should
be noted that 10% is still probably a very high estimate of adversarial input.
Figure 7.4.2 shows the new distribution for adversarial and benign predictions
done by the model, and Table 7.4.2 summarizes the performance of the classifier
at different confidence thresholds. With the right thresholds, we achieve a very
high f1-score of 0.99, however, it is important to note that the imbalance between
benign and adversarial images favors setting a prediction threshold with a bias
towards predicting an image as benign. With these thresholds around 10% of the
PAR runs are not detected.

(a) (b)

Figure 7.4.2: The output predictions of a model trained to detect
images perturbed by the PAR algorithm. The figure shows the predic-
tion confidences of 10000 adversarial- (red) and 1000 benign images
(blue). (a): The model’s confidence that the images are benign. (b):
The model’s confidence that the images are adversarial.
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Adv.
Thresh.

Benign
Thresh.

True
Positive

True
Negative Recall Precision F1

Score
0.5 0 9837 945 0.99 0.98 0.99
1.0 0 9903 914 0.99 0.99 0.99
1.5 0 9944 851 0.99 0.99 0.99
2 0 9974 774 0.98 1.00 0.99

Table 7.4.2: Overview of the f1-scores of the PAR detection model,
when setting different confidence thresholds to determine if an image
is adversarial or benign.
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CHAPTER

EIGHT

DESIGN AND IMPLEMENTATION TO ANSWER RQ3:
ENHANCED ATTACK

In Chapter 7.4, the model trained to detect the adversarial examples generated
by PAR was highly effective on our created dataset. Unlike the other defenses,
that worsened the sparsity on query budgets, we consider the adversarially trained
detector to nearly remove the threat of attacks using PAR. Motivated by these
results, and to answer research question three, we investigate ways to enhance the
SparseEvo+PAR attack method to mitigate the threat of adversarial detection.

We hypothesized that the distinct edges in the adversarial examples created by
the PAR algorithm would be easy to detect for a trained classifier in Chapter 6.4.
To make these edges less distinct, we propose a change to the PAR algorithm that
blurs the adversarial patches together with the original image along the edges of
the patches, to make the PAR perturbations harder to detect. We give an example
of an adversarial example created by the modified PAR algorithm in Figure 8.0.1.
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Figure 8.0.1: Example of an adversarial example created by the
modified version of PAR that blurs the images together along the
edges.

The modified PAR algorithm works similarly to before, querying the target model
with patches to check if they are necessary to keep the image adversarial, and
keeping track of a mask of the adversarial patches. In addition to this mask, the
modified version of PAR also tracks all edges the mask share with the original
image. Before passing the image to the target model, the target image and the
original image are blurred together along these edges. The blurring is performed
by gradually shifting from the original image to the target image along the edge
of the mask, and thus the pixels in between will be a blend of the two images. We
chose to blur six pixels on either side of the edge, as a balance between visually
good-looking blends and keeping the distortions to a minimum.

We first evaluate the altered algorithm by checking how the blurring affects the
distortion reduction compared to the normal PAR algorithm. Secondly, to test if
the new algorithm is harder to detect by a trained model, we perform the same
experiment setup and evaluation as done in Chapter 6.4, using the same base
ResNet-50 model and dataset distribution.
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Figure 9.0.1 shows how effective the blurred version of the PAR algorithm is at
reducing the size of the overlay adversarial target image in the targeted setting.
If we measure the final L0 distance by the mask (the patches necessary to keep
the image adversarial) tracked by PAR, the images are reduced to 16.7% of the
original on average. This is, however, not a fair measure as the edges on the mask
are blurred when given to the model, and thus more pixels are distorted than just
the mask. Counting the blurred edges, the images are 26.6% reduced on average.

Figure 9.0.1: The reduced sizes after initializations using a blurred
version of the PAR algorithm, and the queries used to do so for
1000 different images in the targeted setting. The red dots mark the
number of perturbed pixels when counting the blurred edges between
the adversarial patches. The blue dots mark the number of perturbed
pixels when only counting the adversarial patches, disregarding the
blurred edges. The image to the right is a zoomed-in version of the
left image.

A new classifier is trained on the blurred PAR images to determine if an image is
benign or adversarial, using the same setup as the adversarial detection model in
Chapter 7.4. This model got an overall accuracy of 89.3% on the test set.

We run the same experiment as in Chapter 7.4 by combining the model’s pre-

47



48 CHAPTER 9. RQ3: RESULTS

dictions of 1000 PAR runs, selecting the maximum confidence that a single image
is adversarial across the 50 queries in the same run. We compare this to 1000 be-
nign images. As we can see in Figure 9.0.2 there is more overlap in the prediction
confidences of the model between the two classes than in Figure 7.4.1.

(a) (b)

Figure 9.0.2: The output predictions of a model trained to detect
images perturbed by the blurred PAR algorithm. The figure shows
the prediction confidences of 1000 adversarial- (red) and 1000 benign
images (blue). (a): The model’s confidence that the images are be-
nign. (b): The model’s confidence that the images are adversarial.

With the new detection model, there are no thresholds that can be set to sig-
nificantly boost the f1-score of the model. The best configuration we found was
setting the benign threshold at 0 and the adversarial threshold at -1. With this
setting, we misclassify 8.3% (83) benign images and correctly identify 84.8% (848)
PAR runs. This gives an f1-score of 88.64%, significantly worse than the f1-scores
of 97% of the model that trained on non-blurred pictures.

Our results show that for this experiment, adversarial examples created from the
blurred version of the PAR algorithm are harder to separate from benign images.
It should be noted that this does not necessarily mean that it is true for all scenar-
ios, a larger dataset, other classifier architectures, and larger training time may
yield different results.
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DISCUSSION

The PAR algorithm has shown promising results when combined with state-of-
the-art dense attacks. Our results in Chapter 5 demonstrated that we can use the
PAR algorithm as an initialization method to improve the query efficiency of the
best sparse attack SparseEvo. The introduction of PAR significantly improved the
image sparsity and attack success rate of the attack on query budgets for both
targeted and untargeted attacks. The implications of our findings are not just
important for future research but also for the current state of the security of de-
ployed systems. We have established that sparse attacks have the ability to create
barely noticeable adversarial examples using less than a thousand queries. Im-
proving the query efficiency of the attacks significantly complicates the challenge
of distinguishing between benign inputs and attacks, which could have serious
repercussions for safety-critical classification models.

In a minor experiment, we saw that analyzing the images used to create the initial
adversarial example in the targeted setting can improve the query efficiency and
the sparsity after PAR. Choosing the right target image is especially important in
the current sparse attacks as the initial noise is never modified, only reduced. To
the best of our knowledge, there exists no other research that has compared the
target images to the original images to create more efficient attacks. A direction
for future work includes further analysis of the relationship between the target
image and the final perturbation size, especially in sparse attacks. There might
also be benefits to an initial modification to the target image, such as mapping
the original image’s colors onto the target image.

An adversarially trained ResNet-50 model reduced the sparsity in the examples
created by the attacks, and it seems to be an effective defensive option for re-
ducing the attack success rate on query budgets. A drawback of this defense is
the around 20% drop in accuracy on benign images, but the extra security this
training provides might outweigh this downside. This is also the only defense
we have tested that is general, meaning it is not specifically targeting any single
technique used in SparseEvo or PAR. Given that it has been used effectively as a
countermeasure in dense attacks and white-box attacks as well, this defense seems
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to be the most promising to provide some general robustness to the classifier.
Adding a median filter to the adversarially trained model, a defense targeting the
salt-and-pepper perturbations, only decreased the accuracy on benign images by
a small amount, and in turn, lowered the efficiency of the sparse attack in the
untargeted setting considerably. The median filter as a single defense was not as
effective as the adversarially trained model. There exist several newer and more
advanced implementations based on the concept of median filters to more effec-
tively remove salt-and-pepper distortions and produce less blurry images [72, 74,
75, 76]. These implementations might be an interesting direction for future work
if salt-and-pepper continues to be used as an initialization method. Overall, the
best defensive techniques we tested provide a significant boost to the robustness
of the tested models but are not able to completely mitigate the threat of the
attacks. It seems that if the attacker is allowed thousands of queries they will
be able to create very sparse attacks, even with defensive countermeasures, and
then it might be worth considering skipping the defenses entirely to improve the
accuracy of the classifier. However, if decreasing the query efficiency of the attack
from a few hundred queries to thousands is enough to deter or detect attackers,
we can consider the defenses successful.

The results of the adversarial detection are promising and are the only tested de-
fense that can be said to stop the attack. With the right prediction thresholds,
the trained classifier is capable of detecting a high proportion of the adversar-
ial examples created by the PAR algorithm, while keeping the false positive rate
low. This suggests that adversarial detection can be a viable defensive option
against techniques similar to PAR. However, the results are highly dependent on
the balance between benign and adversarial examples, and the thresholds used
for the limited dataset in our experiment may not necessarily transfer to other
distributions. There exists a large number of attacks that do not use PAR in their
algorithm, so it might be hard to justify creating a defensive layer that only targets
this specific attack, especially if the false negative rate is large enough to trouble
the end users of the classifiers. We also demonstrated that the attack algorithm
can be modified to decrease the effectiveness of this defense, and possibly make
the false negative rate of the detector too high. However, other or more powerful
types of detectors may be able to detect these harder-to-detect versions and can
be considered a possible path for future work.

As previously discussed, sparse attacks are harder to optimize than dense attacks.
From a security standpoint, sparse attacks can be just as severe as dense attacks
in theory. However, we have not seen any direct comparisons between the perfor-
mance of SparseEvo and the best dense attacks, since we can’t use the L0- L2-,
or L∞-metric interchangeably if we want a fair comparison. This also makes it
hard to directly compare the efficiency of defenses. Future work should focus on
comparing the query efficiency and robustness of sparse attacks compared to other
decision-based black-box attacks, to evaluate if sparse attacks are worthwhile to
investigate despite their harder optimization problem.
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There are some threats to the validity of our thesis that should be discussed.
Firstly, we only included one dataset and one target model architecture for our
experiments. While we argue that they were the most fitting selections for our
problem, this may limit the generalizability of our findings. To save time, we
also had to limit the number of included examples for each experiment, which
may also have affected the overall accuracy and generalizability. Secondly, there
exist only two sparse attacks, and we only compared improvements and defenses
to the SparseEvo algorithm. We excluded the other sparse attack PointWise
from our experiments, as its performance in comparison to SparseEvo has been
previously evaluated in the paper by Vo et al. [16] and we consider the techniques
of PointWise to be included in the untargeted version of SparseEvo, only done
more effectively. The limitation of only one sparse attack has made our defensive
experiments more of an evaluation of SparseEvo as a single attack, rather than an
evaluation of the field of sparse attacks.
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CHAPTER

ELEVEN

CONCLUSION

The work presented in this thesis provides improvements and evaluations in the
field of sparse decision-based black-box attacks. We demonstrated the potential of
using the patch adversarial removal (PAR) algorithm as initialization to the state-
of-the-art sparse attack SparseEvo. Their combination significantly improved the
query efficiency and attack success rate for both targeted and untargeted attacks.

Moreover, we evaluated various defensive techniques against PAR and SparseEvo.
An adversarially trained ResNet-50 model was as an effective countermeasure, de-
spite a reduction in the model’s prediction accuracy. In the untargeted setting,
adding a median filter to the input proved to be an effective and robust addition
to the adversarially trained model, almost without further reducing the prediction
accuracy of benign images. In the targeted setting, adversarial detection demon-
strated great promise in our study, with a trained classifier detecting a significant
portion of perturbed images created by the PAR algorithm. In an attempt to
make PAR harder to detect, we created a new version of the algorithm where the
adversarial patches were blurred together with the original image. This resulted
in adversarial examples that were significantly harder to detect but at the cost of
a slight reduction in sparsity.

Our study underlines the potential security threat posed by sparse attacks. Given
some hundred queries to a target classifier, an attacker can create visually unper-
turbed adversarial examples. We have demonstrated the effect of several defensive
countermeasures, and how they can help reduce the query efficiency of sparse at-
tacks.

Future work should focus on improving the proposed sparse attack enhancements,
especially by exploring other methods for noise reduction. Input transformation
and adversarial detection showed promise in our results, future work should work
on confirming their efficiency on other sparse attack algorithms, datasets, and
model architectures. We also believe research should focus on the comparative
study of the query efficiency and robustness of sparse attacks to dense attacks,
evaluating the practicality of pursuing sparse attacks despite their more complex
optimization problem.
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A - RESNET-50 ARCHITECTURE

Figure .0.1: The ResNet-50 architecture’s 50 layers. The layers are
represented as nodes downwards from the input at the top to the
output at the end. The convolution layers are named to the node’s
left, and the output size after the layer is listed in parentheses below
the name. Some of the convolution nodes are repeated, indicated to
the node’s right. After the fully connected layer, we get 1000 outputs,
one for each class in the ImageNet dataset. The output gives the label
of the class with the highest probability.
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