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Sammendrag

I de senere årene har fokuset på energieffektive prosessorkjerner ført til forskning på
metoder for å maksimere ytelsen til mikrobrikker innenfor gitte energibudsjetter. I out-
of-order-prosessorer er fleksibel instruksjonsplanlegging avgjørende for å oppnå optimal
ytelse. Tradisjonelt har dette blitt oppnådd ved hjelp av en Issue Queue (IQ) basert på
et Content-Addressable Memory (CAM), som gir frihet til å velge klare instruksjoner for
utførelse. Imidlertid fører denne tilnærmingen til betydelig energiforbruk når operandene
i køen vekkes ved å kringkaste destinasjonoperanden til fullførte instruksjoner for å identi-
fisere ventende instruksjoner. Antallet sammenliginger og ledninger som kreves for denne
oppgaven øker superlineært med IQ-dybden, noe som resulterer i betydelig energiforbruk.

Denne avhandlingen presenterer Mosaikk IQ-mikroarkitekturen, en ny tilnærming som
tar sikte på å forenkle oppvåkningsprosessen i instruksjonsplanleggingen ved å redusere
antall sammenligninger som utføres av CAM-strukturen i IQ-en. Mosaikk IQ-mikroarkitekturen
oppnår dette ved å redesigne den fullt assosiative IQ-en til en sett-assosiativ struktur, som
muliggjør selektiv kringkasting av operandene indeksert gjennom en tabell.

For å evaluere effektiviteten til Mosaikk IQ-mikroarkitekturen, ble det gjennomført en
analyse med en tradisjonell referanse-implementering av IQ-en, med fokus på strømforbruk
og ytelse. Spesielt ble det lagt vekt på analysen av strømforbruket knyttet til sammen-
ligning av operander, som er en betydelig kilde til strømforbruk i moderne mikropros-
essorer. Resultatene viser at Mosaikk IQ-mikroarkitekturen betydelig reduserer antallet
unødvendige sammenligninger, og oppnår en imponerende reduksjon på 70% sammen-
lignet med referanse-implementeringen. Dette resulterer i betydelige strømbesparelser i
oppvåkningsprosessen til IQ-en.

Videre undersøker studien Instruksjoner Per Syklus (IPC), som er en viktig indikator
for ytelse. Selv om Mosaikk IQ-mikroarkitekturen oppnår en noe lavere IPC sammenlignet
med den beste konfigurasjonen av referense-implementasjonen, begrenses reduksjon til
3%. Derimot bruker Mosaikk IQ-mikroarkitekturen det samme antallet ledninger som
den enkleste referansekonfigurasjonen, denne implementasjonen opplever derimot en IPC-
reduksjon på 42%.
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Abstract

In recent years, the shift in processor design focus towards energy-efficient cores has
prompted the exploration of methods to maximize chip performance within given power
budgets. In out-of-order processors, achieving optimal performance relies on flexible in-
struction scheduling. Traditionally, this flexibility is attained through the utilization of
Content-Addressable Memory (CAM) based Issue Queues (IQs), which offer freedom in
selecting ready instructions for execution. However, this approach comes at a notable
energy cost when waking up operands inside the queue by broadcasting the destination
register of completing instructions to identify which operands are awaiting the result. The
number of comparators and wires required for this task grows super-linearly with the IQ
depth, leading to significant energy consumption.

This thesis introduces the Mosaic IQ Microarchitecture, a novel approach aimed at
simplifying the wake-up process in instruction scheduling by reducing the number of com-
parisons performed by the CAM structure within the IQ. The Mosaic IQ achieves this
objective by redesigning the fully associative IQ into a set-associative structure, enabling
selective broadcasting of operands indexed through a map table.

To assess the effectiveness of the Mosaic IQ Microarchitecture, a comparative analy-
sis is conducted against a state-of-the-art baseline IQ implementation, focusing on power
consumption and throughput. Notably, power consumption analysis places particular em-
phasis on operand tag comparisons, a significant contributor to power usage in instruction
scheduling. Results demonstrate that the Mosaic IQ Microarchitecture substantially re-
duces wasted tag comparisons resulting in an impressive 70% decrease in wasteful com-
parisons when compared to the baseline. Consequently, this reduction translates into sub-
stantial power savings in the wake-up process of the IQ.

Moreover, the study examines the Instructions Per Cycle (IPC) metric, a key indicator
of throughput. The Mosaic IQ Microarchitecture maintains a comparable number of av-
erage broadcast ports to that of the simplest baseline configuration. However, in contrast
to this baseline configuration which experiences a substantial 42% reduction in IPC when
compared to an aggressive baseline with four broadcast ports, the Mosaic IQ Microarchi-
tecture exhibits only a marginal 3% decrease in performance.
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Chapter 1
Introduction

Microprocessors have become ubiquitous in modern computing systems, ranging from
personal computers and smartphones to embedded devices and large-scale servers. The
demand for high-performance microprocessors continues to grow as applications become
increasingly complex and require faster and more efficient processing capabilities. Achiev-
ing high performance in microprocessor design is a multidimensional challenge involving
factors such as clock frequency, instruction throughput, power consumption, and area uti-
lization.

The need for high-performance computing has driven rapid advancements in micro-
processor architectures. These tiny powerhouses serve as the brains of modern computing
systems, enabling the execution of complex instructions and processing massive amounts
of data. To ensure optimal system performance, the effectiveness and performance of
microprocessors are of utmost importance.

Microprocessor architectures have experienced significant modifications to reach out-
standing performance. These improvements include, among other things, boosting the
number of processing cores, adding sophisticated caching systems, and enhancing branch
prediction algorithms. Microprocessor advancements have substantially elevated the com-
plexity of processors and individual cores, leading to a notable rise in power consumption.
However, with the continued reduction in transistor sizes and the shifting power density,
power considerations have become increasingly critical and require greater attention.

It is important to acknowledge the significant role played by Moore’s law and Dennard
scaling in enhancing processor performance in previous years. Dennard scaling refers to
the scaling law governing the reduction of transistor sizes. As transistors become smaller,
both current and voltage scale downward with length, resulting in a constant power den-
sity (1). Consequently, more logic can be integrated into a single die without substantial
drawbacks. Moore’s law postulates that the number of transistors on a chip approximately
doubles every two years (2). This has enabled computer architects to drastically scale up
their design for high area utilization and increased throughput. With this progression in-
creased performance has been achieved at the cost of increased complexity. in most cases,
increased complexity leads to higher power consumption.
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Chapter 1. Introduction

Now Dennard scaling is no longer applicable, as it was an approximation that no longer
holds true, commonly referred to as the end of Dennard scaling (3). Taking the same
approach for designing a microprocessor is now not feasible and the focus has shifted
towards improving efficiency rather than solely pursuing performance.

Power constraints are now a crucial factor in modern processor design (4), render-
ing the pursuit of maximum performance without regard for power consumption obsolete.
Several factors contribute to this shift. Firstly, higher temperatures impede processor func-
tionality, and increased power consumption leads to elevated power dissipation within the
core, resulting in rising temperatures. As temperature rises, failure mechanisms such as
silicon interconnections fatigue, electrical-parameter shift, gate dielectric, junction fatigue,
thermal runaway, and electro-migration diffusion worsen significantly (5). The processor
may eventually sustain irreparable damage. Therefore, power consumption must in many
cases be limited to reduce heating, even if it means decreasing core performance. Con-
sequently, running high-performance processors at maximum performance for prolonged
periods is often unfeasible. Instead, performance is restricted to intermittent bursts before
being reduced, typically achieved by lowering the clock frequency, a practice known as
thermal throttling (6)(7). Substantial resources are allocated to cooling systems in terms
of cost and space, but there are limits to effective cooling (8).

Power consumption is a significant concern across various systems, from embedded
to server systems. Embedded systems, reliant on limited wireless power sources, benefit
from energy-efficient designs, sometimes prioritizing power considerations over perfor-
mance requirements (9). In server applications, enormous power consumption occurs, and
reducing power usage would lower costs and improve server sustainability. By eliminating
the need for extensive cooling systems and reducing overall energy consumption, servers
can become more environmentally friendly and sustainable (10).

To maximize power savings in future systems constrained by energy limitations, ef-
ficiency has become synonymous with performance. This has led to the development of
energy-efficient cores that significantly reduce architecture power consumption. In this
pursuit, it is crucial to identify the power-hungry components, as this knowledge is key to
achieving the desired power savings.

In modern high-performance processor cores, known as Out-of-Order (OoO) execu-
tion, the continuous instruction stream is buffered for analysis and reordering to achieve
optimal execution order. However, this approach introduces additional complexity and
latency, necessitating the use of extra structures and mechanisms. These components are
employed to track instruction interdependencies and ensure correctness in execution, ul-
timately facilitating the efficient operation of the processor cores while maintaining high
performance.

To maintain high clock frequencies, the core divides its pipeline into distinct stages
with different tasks. These stages include:

1. Instruction Fetch: This stage retrieves instructions from memory.

2. Decode: Complex instructions are decoded, and relevant information is extracted.

3. Dispatch: Resources are allocated, and instructions are dispatched to the appropri-
ate structures.

2
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4. Issue: This stage handles instruction scheduling by reordering instructions for opti-
mal execution order.

5. Execution: Instructions are executed in this stage.

6. Writeback: The results of the executed instructions are written back to memory.

By dividing the core into these pipeline stages, the processor can efficiently handle the
various tasks involved in executing instructions while maintaining high clock frequencies.

Instruction scheduling carried out in the issue stage of a processor core is one of the
more complex mechanisms, thereby one of the most power-consuming possesses. Inside
the processor core, instruction scheduling involves rearranging instructions before execut-
ing them to best utilize resources and maximize throughput. Having a pool of instructions
to select and reorder is critical to get the most benefits from instructions scheduling. Most
high-performance cores, therefore, implement a queue to hold instructions before execut-
ing them, called the Issue Queue (IQ). This queue is the most power-hungry structure
inside the processor core consuming as much as 18-40% of core power(11)(12)(13)(14).
This is mostly due to the Content-Addressable Memory (CAM) structure for the purpose
of the wake-up logic. The wake-up notifies instructions inside the queue if their operands
are produced by broadcasting the result tag (or ID) of an executed instruction to all entries
in the IQ. This process is carried out in parallel, checking all operand tags for all entries in
each cycle. These comparisons are quite consuming in terms of power consumption and
do not scale well with increased IQ sizes as the CAM-based wake-up would need to check
more operands. If all operands of an instruction are produced, it could be selected for
execution. Reducing the scope of the CAM parallel lookup, and developing a more scal-
able and efficient wake-up logic would contribute to creating more efficient and therefore
performant future processor cores.

The objective of this thesis is to develop a novel method to simplify the wake-up pro-
cess by reducing the number of tag comparisons performed by the CAM structure, all
while having minimal influence on the performance of the processor core. The design
should aim to be customizable, scalable, and agile to adapt to current and especially future
architectures.

To that end, this thesis presents The Mosaic IQ Microarchitecture. This design split the
fully associative CAM structure into distinct sets, making the IQ set-associative. However,
while it still relies on the CAM structure for wake-up, it no longer requires simultaneous
operations on the entire queue. Through an instruction steering heuristic instructions are
steered into appropriate sets and use a map table to index the sets for the CAM structure
to more selectively check operands.

To showcase the effectiveness of The Mosaic IQ Microarchitecture, one promising
composition of the design is implemented, explained, discussed, and benchmarked through
simulations.

1.1 Contributions
Overall, the contributions of this thesis to the field of microprocessor core microarchitec-
ture can be summarized as follows:

3



Chapter 1. Introduction

1. State-of-the-art instructions scheduling: Examines state-of-the-art instructions
scheduling approaches and their implications on the wake-up logic, understanding
how these novel approaches try to solve the problem with excessive tag compar-
isons.

2. Comprehensive analysis of the wake-up through simulation data: Provides valu-
able insight into key metrics inside the issue stage that has significance for the wake-
up process.

3. The Mosaic IQ Microarchitecture: Presents a new way of designing the IQ struc-
ture for increased efficiency.

4. Implementation and evaluation of a Mosaic IQ: Presenting a Mosaic IQ im-
plementation, considering key performance metrics and comparing it to a baseline
implementation, enabling an understanding of its effectiveness.

1.2 Outline
This thesis is organized into seven chapters. The thesis begins with Chapter 1, the intro-
duction, which provides an overview of the project, the context in which the study takes
place, the objective, and the contributions. Chapter 2, the background chapter, lay the
foundation required to fully understand the research, implementation, and results. It cov-
ers the basic information of important concepts in computer architecture, mostly related to
the Issue stage. Chapter 3 focuses on the state of the art, examining existing approaches
and techniques developed to address efficiency in instruction scheduling, and how it in-
fluenced the wake-up logic. This chapter offers insights into the current state of the field,
setting the stage for the introduction of the novel solution proposed in this research. Chap-
ter 4 presents the Mosaic IQ Microarchitecture, which is the central focus of this research.
This chapter describes the proposed design, its implementation, and the underlying moti-
vation driving its development. In Chapter 5, the focus shifts to the practical aspects of
the research. This chapter provides a description of the experimental setup used for the
study and the framework employed to conduct the experiments. It ensures transparency
and reproducibility of the research. Chapter 6 presents the results and discussion of the
simulations conducted as part of the research project. It showcases the findings and en-
gages in a discussion of their implications. Additionally, this chapter suggests potential
avenues for future research. Finally, Chapter 7 serves as the conclusion. It summarizes the
research findings, reiterates the significance of the study, and offers recommendations for
further research in the field.
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Chapter 2
Background

2.1 Computer Architecture and Microprocessors
Computer system design consists of multiple components such as a memory system, in-
terconnects, and the internal processor or microprocessor. The design of such a system is
commonly referred to as computer architecture. Computer architecture is a broader term
that encompasses fundamental aspects such as Instruction Set Architecture (ISA), hard-
ware, and microarchitecture.

The term hardware covers the specifications or specific details of the computer system,
such as the packaging technology or the frequency of the microprocessor. The ISA of a
computer system is the set of instructions that the processor of the computer is designed
to process. ISA determines the software that can be executed by the computer and is what
bridges the gap between software and hardware.

Microarchitecture defines the design and implementation of the various computer com-
ponents, such as the processor and memory of the computer system. The organization of
the computer components and microarchitecture are used interchangeably.

A microprocessor is the central component of a computer system, functioning as its
core control unit and performing essential processing tasks. It serves as the ”brain” of the
system, executing software programs or instructions that drive its operations.

As technology advances, microprocessors commonly consist of multiple processors,
making the term Central Processing Unit (CPU) gradually diminish. Furthermore, it has
given rise to the term core to define these processors. As a result, ”multicore microproces-
sors” has been replaced by the term multicore, now widely adopted(15).

2.1.1 x86 Instruction Set Architecture
The x86 architecture is a widely used ISA that has significantly impacted the computer
industry. It originated from the Intel 8086 processor (hence the name) introduced in 1978,
and its descendants have become the foundation for many personal computers and servers
today(16).
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The x86 architecture supports a broad range of operating systems and applications,
making it a versatile choice for various computing needs. It has been utilized in desktop
computers, laptops, servers, and embedded systems. The x86 architecture has also been
adapted for use in mobile devices, although reduced instruction set architectures (RISC)
such as ARM have gained dominance in that space.

The x86 ISA is defined as a Complex Instruction Set Computer (CISC) ISA. Meaning
the x86 ISA are rather complex instructions. x86 supports variable instruction lengths that
could involve multiple operations. An example is the enter instruction used to create a
stack frame for a procedure. E.g., enter B, N where B is the size of the dynamic storage
in the stack frame (that is, the number of bytes dynamically allocated on the stack for the
procedure), and N gives the lexical nesting level of the procedure. If the lexical nesting
level is 0, the instruction would be comprised of the micro-operations push , mov , and

sub . The frame pointer is pushed onto the stack, then the current stack is copied from the
stack pointer register to the Base pointer register, and then updates the stack pointer with
the current stack pointer value minus the value of the first operand (the size operand) (17).

CISC has its advantages and disadvantages. It can simplify the compiler design, and
provide high-level abstraction for programmers (as illustrated with the enter instruc-
tion). It can also reduce code density and improve memory usage. The downside of more
complex instructions is that they often also lead to complex microarchitectures. x86 is a
prime example of this(18).

Furthermore, x86 also is known for its backward compatibility, allowing newer pro-
cessors to execute software written for older x86 processors. This compatibility has con-
tributed to the longevity and widespread adoption of the x86 ISA(19). However, as a result,
the number of supported instructions has reached an exceptionally large number(20). This
further adds to the complexity of the ISA.

Despite competition from alternative architectures, the x86 architecture remains promi-
nent and continues to evolve, with ongoing advancements in performance, power effi-
ciency, and feature sets. Its widespread availability, software compatibility, and continuous
innovation contribute to its continued relevance in the modern computing landscape.

2.1.2 Out-of-Order execution
The high performance of modern microprocessors would not be possible if it weren’t for
OoO execution. Scheduling instructions sequentially result in stalls in the processor core.
E.g. when a load instruction is issued to load data from memory, this can be a very tedious
process and can take multiple cycles. For in-order execution, all following instructions
wait for the load to finish before continuing. This stall limits the performance of the
processor.

For OoO cores, the processor would not need to stall, rather it could just execute an-
other instruction instead. This would undoubtedly require that another instruction is, in
fact, ready and that the core is able to quickly find and select another instruction without
severely increasing the latency. Moreover, in many cases, instructions will need to be exe-
cuted speculatively not knowing the outcome of branch instructions. If wrong, this has to
be detected and fixed in a timely manner. This is a complex task requiring sophisticated
mechanisms and designs to ensure precise control and correct program execution.

6
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Nevertheless, OoO executions are undoubtedly one of the key techniques of modern
high-performance cores and microprocessors today. It hides the latency of certain instruc-
tions, reduces resource stalls, and improves the utilization of the core to such an extent
that the throughput is far beyond that of an in-order core.

2.1.3 Instruction scheduling
Instruction scheduling is the process of determining the scheduling of instructions in OoO
cores and is a highly complex and power-consuming task. It involves determining the
optimal order of executing instructions to maximize performance while considering de-
pendencies and available resources, achieveing high Instruction-Level Parallelism (ILP).
The term ILP describes a processor’s ability to carry out several instructions simultane-
ously, exploiting independent operations within a program to enhance performance.

This process requires intricate algorithms and mechanisms to analyze the interdepen-
dencies among instructions, balance the workload across functional units, and minimize
costly pipeline stalls. The complexity of instruction scheduling arises from the need to ef-
ficiently utilize resources, such as registers and execution units while ensuring data depen-
dencies are correctly managed. The power consumption is amplified due to the increased
circuitry and control logic required to manage the intricate scheduling decisions, making
it a crucial aspect to optimize for power-efficient processor designs.

2.1.4 Dependencies
Dependencies refer to the relationship between instructions that impact the order in which
they need to be executed. If dependencies occurring inside the processor core are not
respected it would result in hazards, (undesired or incorrect behavior) that would need to
be handled as an exception by the core, negatively affecting performance. If the hazards
are not handled it would result in erroneous behavior.

1. Write-After-Write (WAW) dependency occurs when two instructions write to the
same location and the order in which they are executed determines which value that
is ultimately saved. It implies the order in which two instructions execute needs
to be respected for the correct value to reside in the destination address after the
execution is finished.

2. Write-After-Read (WAR) dependency arises when an instruction is to read from
a location that is subsequently written to by a separate instruction. For the WAR
dependency to be respected, the writing instruction needs to wait for the completion
of the read instruction.

3. Read-After-Write (RAW) dependency is a data dependency, where the read in-
struction is dependent on the data produced by the write instruction.

Data dependencies are the only true dependencies, and the only dependencies it is
impossible to avoid (except for some speculation techniques). WAW and WAR are not
dependent on the data of the other instruction and are therefore also called false dependen-
cies or name dependencies as they only depend on each other due to the use of the same
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memory address or register. These dependencies are possible to eliminate using techniques
such as register renaming.

2.1.5 Register Renaming

Register renaming is a technique used to mitigate false dependencies caused by register
usage in a processor. This process only eliminates register dependencies, not memory
dependencies. The occurrence of register dependencies is however much more frequent,
and therefore also much more critical.

Register renaming is performed at runtime by the processor core. This avoids unnec-
essary complexity for the programmer or the compiler. Moreover, the processor core will
know more about the execution flow of the program compared to the static information
obtained by the programmer or compiler. This makes the optimizations done by the core
more effective and provides greater flexibility.

For the register rename to work, two separate definitions of registers exist. One is
typically referred to as an architectural register which is visible to the programmer, and
the other is a physical register. The physical registers are storage locations within the
processor.

Register renaming logic maps the architectural register designators into physical des-
ignators. This is done for instructions operating on the same architectural register, creating
a name dependency. In that case, they will be assigned two separate physical registers, and
the named dependency will cease to exist. This is why the core typically requires more
physical registers. Renaming will undoubtedly not work for true dependencies, as they are
dependent on the actual data(21)(22).

2.1.6 Pipeline Stages

In high-performance microprocessor cores, the execution of instructions typically involves
a series of well-defined stages that collectively form the processor’s pipeline. These stages,
such as instruction fetch, decode, rename/dispatch, issue, execution, and writeback work in
tandem to ensure efficient instruction execution and maximize the utilization of available
resources. Each stage has important responsibilities, all of which contribute to the overall
performance of the microprocessor. This next section will delve into the intricacies of the
issue stage, which is highly critical for instruction scheduling. Figure 2.1 (created as part
of a project from a previous semester,) draw a simplified and generic block diagram of an
OoO pipeline processor core.

2.2 The Issue Stage in Microprocessors

The issue stage is the most complex stage inside a typical microprocessor core. A micro-
processor’s issue stage is crucial for managing dependencies and scheduling instructions,
which significantly impacts how well the processor can use parallelism and execute in-
structions efficiently, which is essential to the overall execution of instructions. It accepts
decoded and renamed instructions and determines their readiness for execution based on
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Figure 2.1: Generic pipeline.

various dependencies and resource availability. It acts as a buffer between the frontend of
the processor core and the instruction execution.

The issue stage is intended to take advantage of ILP in modern microprocessors’ com-
plicated and highly parallel architecture by selecting and allocating independent instruc-
tions for concurrent execution. This parallelism enables multiple instructions to run con-
currently, boosting throughput and performance overall.

Examining interdependencies between instructions and allocating the resources re-
quired for their execution are the primary duties of the issue stage. Dependencies de-
velop when one instruction depends on the outcomes of another, resulting in a data flow
dependency. Control dependencies can also happen when the execution of an instruction
depends on how a branch instruction turns out. By allowing independent instructions to
be scheduled for concurrent execution, this method decreases dependencies and boosts
parallelism.

Resource usage is a crucial part of the issue stage. Resources include memory units
like load/store units and cache hierarchies and functional units like Arithmetic Logic Unit
(ALU)s and Floating Point Unit (FPU)s. The issue stage ensures that instructions that need
particular resources are given access to the functional units and memory locations required
to run effectively.

Maximizing the available resources and attaining high-performance execution depend
on effective management of the issue stage. Because it directly affects the processor’s
capacity to take advantage of parallelism and carry out instructions in a timely and effective
manner, the design and optimization of the issue stage significantly impact the overall
performance of a microprocessor.
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2.2.1 The Issue Queue

The issue stage frequently uses a queue-based structure known as the IQ which acts as a
temporary buffer for instructions waiting to be executed, making it possible to schedule
tasks effectively, keeping track of dependencies while hiding stalls and enabling OoO exe-
cutions of instructions for the most efficient program order. Typically, instructions are kept
in the IQ along with pertinent metadata, such as resource requirements and dependency
information.

The primary function of the IQ is to provide instructions with dependencies a place
to reside until their dependent operands become available. Tracking the operand avail-
ability makes the IQ one of the most power-hungry structures within a microprocessor
core(23)(24).

The IQ consumes significant power due to its size and the activities it performs. It
requires a substantial amount of storage resources to hold multiple instructions and their
associated data. Additionally, the operations carried out by the IQ, such as tag compar-
isons, further contribute to its power consumption.

As most high-performance processors operate OoO, the issue stage directs instructions
for execution as soon as their source operands become available, optimizing processor ef-
ficiency. The IQ maintains a record of instructions awaiting their operands by implement-
ing an entry in the IQ buffer for each pending instruction. Figure 2.2 (created as part of
a project from a previous semester) illustrates a standard entry in the IQ for instructions
with a maximum of two source operands.

Figure 2.2: IQ entry.

The IQ contains essential decoded information about instructions and their operands.
This includes the operand tag, the valid bit, and the ready bit for each operand. The tag
uniquely identifies each operand, while the valid and ready bits indicate the status of the
operand. The valid bit determines whether the instruction utilizes the operand, as not all
instructions require one or two source operands. The ready bit signifies if the operand
possesses the necessary data and is prepared for issuance. This data is stored in the data
field of the IQ entry for each operand.

Besides storing operand information, the IQ typically retains control signals associated
with the corresponding instruction. These control signals aid in managing the instruction’s
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execution by specifying the operation to be performed and the destination for the result.
Control signals may encompass details about the operation (e.g., opcode or mnemonic)
and other relevant control information.

All of the eligible entries in the IQ are in each cycle considered for issue by the select
logic. The select logic’s primary function is to determine which instructions from the issue
queue will be executed in a particular cycle. To be eligible for selection, an instruction
must meet at least two criteria: its source operands must be ready, and the necessary
execution resources must be available. For instance, if a processor has only one divider, it
cannot simultaneously execute two divide instructions even if it has two divide instructions
ready.

2.2.2 Wake-Up Logic
One of the main tasks of the IQ is to wake up instructions when their dependencies are
resolved. To achieve this, the unique tag serves as an identifier for tracking dependencies.
The tags are typically based on the register renaming ID. When an instruction enters the
IQ, it is accompanied by the tags of the operands it depends on. These tags are compared
against the destination tags of completing instructions. If the tags match, indicating that
the operands are now available, the instruction is woken up and can proceed to the next
stage of execution.

Figure 2.3 (created as part of a project from a previous semester inspired by (21))
visualizes the wake-up logic and its functions as follows:

• When an instruction’s result is generated, the associated tag (the ID of that instruc-
tion’s destination operand) is broadcasted to all waiting source operands residing in
the IQ.

• The number of unique tags broadcasted could, at most, correspond to the maximum
number of instructions issued per cycle, also known as the Issue Width (IW).

• The Wake-up logic broadcasts a tag only when an operand value is produced. Con-
sequently, the number of tags broadcasted varies dynamically, and on average, it is
less than the IW as not all instructions produce a value for the destination operand
(e.g. branch and store). Furthermore, the core often encounters limitations in con-
sistently issuing the maximum number of instructions each cycle (IW).

• Each instruction within the IQ compares its source operand tags, Opd tag L and
Opd tag R, with the broadcasted tags. If a match is found, the operand is marked as
available by setting the ready flag, rdyL or rdyR.

The IQ is typically implemented as a CAM array. Each entry in the IQ holds one
instruction and contains comparators to match the result tags against the operand tags of
the instruction in that entry. The outputs of the comparators are combined using OR logic
to set the flags accordingly. Once an instruction’s operands are all available, it becomes
ready for execution and can be considered by the selection logic.

The register file, the IQ, and other elements in the issue stage all function in combina-
tion with the wake-up logic. Typically non-speculative values of architectural registers are
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Figure 2.3: Wake-up logic.

kept in the register file, while the instructions and the operands they are connected with
are held in the IQ until all dependencies are met. The Issue stage ensures these parts are
coordinated and synchronized, enabling effective instruction execution.

Minimizing the processing overhead involved with tag comparisons is one of the main
difficulties in wake-up logic. The number of instructions in the IQ increase along with
the complexity and depth of the microprocessors instruction window, resulting in a sub-
stantial increase in the number of tag comparisons during the wake-up process. These tag
comparisons may affect the performance of the entire microprocessor.

Moreover, developing microprocessor designs and technologies is intimately related
to optimizing wake-up logic. The necessity for effective wake-up techniques intensifies as
microprocessors continue to develop, getting a higher IW, bigger IQs, and greater com-
plexity. Wake-up logic is vital for advancement since high-performance microprocessors
sometimes struggle with issues, including lengthy critical pathways, resource competition,
and dependencies between instructions.
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State of the Art

The state-of-the-art methods for addressing energy concerns in instruction scheduling are
closely connected to the costly CAM-based IQ. This section investigates different ap-
proaches and their impact on the IQ. Initially, it explores techniques that eliminate the
CAM structures from the IQ. Next, it examines methods to decrease the number of en-
tries required for the CAM-based wake-up mechanism. Finally, it summarizes the main
findings derived from the analysis.

3.1 Strategies for Eliminating Wake-Up Logic
The following approaches address the power-expensive wake-up by creating designs that
eliminate the need for it entirely.

3.1.1 Complexity-Effective Superscalar Processors
The paper titled ”Complexity-Effective Superscalar Processors” by Palacharla et al.(21)
represents an early exploration into the challenges arising from growing complexity in
high-performance microprocessor core architectures. The research presented in this paper
is motivated by the recognition of increased latency resulting from heightened complexity.
The study’s primary objective aligns with this thesis’s goal, which is to mitigate complex-
ity. Specifically, the authors aim to address the complexity associated with the critical
issue stage by streamlining the wake-up process. To achieve this, they propose a novel mi-
croarchitecture termed ”Dependence-Based Microarchitecture (DBMA),” which simplifies
the wake-up logic by employing First-in, First-Out (FIFO) structures to group dependent
instructions.

Key insight

The discovery that instructions inside a program frequently display interdependencies, re-
sulting in the construction of dependency chains, serves as the foundation for the DBMA.
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The execution of each instruction in a dependency chain depends on its predecessor. The
output of one instruction in a dependency chain acts as the input for the subsequent instruc-
tion in the chain. Due to the nature of dependency chains, a chain of multiple instructions
needs to be executed in-order, such that each instruction can produce the source for its
descendant instructions. Having this knowledge, many instructions can be excluded from
the wake-up logic, as we know only the head of a dependency chain can awaken. All
subsequent instructions in the same chain could then be excluded.

FIFO IQ

Having established that only the head of a dependency chain needs to be considered, it
now becomes a question of how to utilize this information best for tracking the chains and
effectively mitigate tag comparisons.

By placing the different dependency chains in separate FIFOs, the nature of how FIFOs
function naturally accommodates the tracking of a chain, always keeping them in order by
using minimal resources. Consequently, only the head of each FIFO must be examined for
wake-up purposes. Furthermore, the select logic is simplified as it just needs to consider
the FIFOs head for selection.

Instruction Steering

A table similar to the map table used for register renaming is accessed to steer dispatched
instructions to FIFOs within the same dependency chain. It is indexed using the local
register identifier of the source operand(s) where the entry accessed holds the appropriate
FIFO. If the value is already produced, the entry is deemed invalid. If an instruction
dispatched is not part of any dependency chain or is the head of a new chain, it is steered
into an empty FIFO. If multiple source operands remain to be produced, the instruction
is steered into the first FIFO found in the table from indexing with the leftmost source
operand.

DBMA Limitations

Although the use of dependencies information to guide the wake-up process is an effective
approach, using a collection FIFOs to act as the IQ introduces performance limitations to
DBMA. To extract a considerable amount of ILP, an increasing number of instructions
must be examined for issue (25). As only the head of the FIFOs could be considered
by the select logic, an increasing number of FIFOs would be required, making DBMA
redundant. The steering mechanism also relies heavily on the number of FIFOs, limiting it
in parallelism detection. When no FIFOs are available, the mechanism experiences stalling
until some FIFOs become vacant, restricting the exploitation of ILP to its full potential and
prohibiting DBMA from reaching high levels of performance.

3.1.2 The Load Slice Core Microarchitecture
The Load Slice Core microarchitecture, introduced by Carlson et al.(26), offers an innova-
tive solution to address the pressing issue of energy efficiency in contemporary processor
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cores. This approach entails identifying and tracking Memory-Level Parallelism (MLP)
critical instructions Address-Generating Instructions (AGI)s and executing them OoO rel-
ative to the remaining instructions, which continue to execute in-order. As a result of the
limited implementation of OoO execution, this microarchitecture incurs only a fraction
of the energy cost associated with full-fledged OoO execution, providing a more efficient
alternative to OoO cores.

Address Generation for Load Prioritization

In-order cores are known for their energy efficiency from not relying on costly power-
hungry mechanisms such as the Wake-up logic and select logic. Nevertheless, they often
fall short in terms of performance compared to OoO cores. One significant bottleneck in
in-order cores is the waiting time for long latency load instructions to complete, leading
to stalls that can last for multiple cycles. To maximize MLP, it is crucial to issue load
instructions ahead of others, allowing them to execute while waiting for the loads to finish.
However, this requires the readiness of the memory address from which to load. This
address is produced by preceding instructions in the same dependency chain, known as
AGIs. Prioritizing AGIs and loads while maintaining the in-order execution paradigm is
achieved by utilizing two separate queues: a bypass queue for executing AGIs and loads
and a main queue for other instructions.

To ensure memory dependency correctness, load instructions that precede store in-
structions must check the store address for potential conflicts. Therefore, the AGIs of store
instructions are also included in the bypass queue to facilitate this dependency tracking.

By prioritizing AGIs and loads through separate queues and carefully managing mem-
ory dependencies, the microarchitecture of the partially in-order core aims to strike a bal-
ance between MLP extraction and energy efficiency. Only the head of the queues needs to
be considered for wake-up and issue, therefore, eliminating the need for complex wake-up
and select logic while still gaining favorable properties of a fully OoO core.

AGI Detection

The Load Slice Core detects AGIs by leveraging the inherent loop behavior in software
using Iterative Backward Dependency Analysis (IBDA). It does this by analyzing loops
in a program and gradually finding the backward slice of producer instructions for AGI
chain in each loop iteration. This information is stored in two hardware structures: the
Instruction Slice Table (IST) and the Register Dependency Table (RDT). The IST keeps
track of address-generating instructions, while the RDT maps registers to the instructions
that last wrote to them, enabling IBDA to locate one producer slice further back in the
chain for each iteration. IBDA works on the in-order instruction stream and does not
require recompilation or software modifications, providing benefits without altering the
original application code. In case of branch mispredictions or exceptions, the Load Slice
Core utilizes a recovery log to rewind and recover register mappings.
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Limitations

The Load Slice Core suffers from the same limitations as the DBMA due to the use of
FIFOs, severely restricting the select logic’s ability to extract high levels of ILP. It also
struggles with extracting sufficient MLP in certain memory-heavy workloads. If a load
depends on another load, the dependent load blocks the bypass queue which hurts perfor-
mance.

3.1.3 Freeway: Maximizing MLP for Slice-Out-of-Order Execution

Freeway by Kumar et al.(27) builds on the microarchitecture from the Load Slice Core.
It further improves the MLP capabilities of The Load Slice Core microarchitecture by
identifying interdependencies between loads. Moving them to an additional FIFO lets the
independent loads execute without stalling. This does improve the design, but still, it is
not able to reach performance equal to that of a fully OoO core.

3.2 Effective Strategies for Shrinking the IQ

The following design addresses the wake-up complexity by shrinking the IQ having the
wake-up logic operated on fewer operands, effectively mitigating some of the overhead
from instruction wake-up.

3.2.1 A Front-end Execution Architecture for High Energy Efficiency

The Front-end Execution Architecture (FXA) by Shioya et al.(28) is designed to enhance
energy efficiency and performance for single-threaded tasks. It introduces a novel ap-
proach by employing two execution units: the Out-of-Order Execution Unit (OXU) and
the In-Order Execution Unit (IXU). The FXA leverages both the energy-efficient prop-
erties of an in-order core and the performance properties of an OoO core. The front-end
IXU tries to execute as many instructions as possible effectively, while the backend OXU
ensures that the performance does not drop significantly when the IXU otherwise would
stall.

Architecture Overview

The FXA follows a specific execution flow where all instructions are initially fed to the
IXU for execution due to its lower power consumption. Instructions that are not ready
within the resolution of their dependencies are sent through theIXU as a NOP (No-Operation)
and scheduled for execution by the OXU. The IXU effectively filters instructions for the
OXU and removes executed instructions from the pipeline. The IXU executes instructions
without the need for wake-up and select logic, and in addition, it reduces the stress on the
OXU, allowing the OXU to reduce the complexity and size of structures as the IQ.
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FXA Limitations

Despite its advantages, the FXA may have limitations that warrant further investigation.
These include potential scalability challenges when handling highly parallel workloads
or complex instructions. The FXA relies on a bypass network for the IXU to forward
data and execute ready instructions in-order. However, the bypass network may become
a bottleneck as the number of functional units or pipeline stages increases, making it less
adaptable due to increased wire delay and energy consumption.

The FXA requires additional hardware components to support the two execution units.
These components may increase the area and complexity of the processor design and in-
troduce additional challenges for verification and testing.

3.2.2 Long term parking: criticality-aware resource allocation in OOO
processors

Long Term Parking by Sembrant et al.(29) make the observation that some instructions
reside in the IQ for extended periods at a time. These non-critical instructions usually
rely on time-consuming operations and tend to spend a significant amount of time in the
IQ before becoming ready, thereby increasing the pressure on the IQ. By delaying the
inclusion of non-critical slow instructions in the IQ the pressure is reduced, and it becomes
possible to reduce IQ dept. The non-critical instructions are delayed by placing them in a
cheaper in-order FIFO.

3.2.3 Delay and Bypass: Ready and Criticality Aware Instruction
Scheduling in Out-of-Order Processors

Alipour et al.(30) first proposed an architecture that leveraged ready instructions to sim-
plify the instruction scheduling. Delay and Bypass by Alipour et al.(31) build on this, us-
ing both the observations made by the FXA and the Long Term Parking microarchitecture.
FXA exploit instructions readiness by immediate execution in the IXU, conversely the
Long Term Parking microarchitecture park non-ready instructions. As these approaches
are somewhat orthogonal they can be combined. The Delay and Bypass microarchitecture
delays non-ready and non-critical instructions while it let critical ready instructions bypass
the IQ for immediate execution.

3.3 Key takeaway
The use of FIFOs, such as in the DBMA and the Load Slice Core, can lead to significant
energy savings. However, relying solely on FIFOs tends to result in greater performance
loss. On the other hand, reducing the size of the IQ and retaining the CAM structure
offers relatively less energy savings but incurs minimal performance degradation. The
trade-off between energy efficiency and performance should be carefully considered when
designing microarchitectures.
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Chapter 4
Mosaic IQ Microarchitecture

The term ”mosaic” captures the concept of various elements harmoniously combining to
create a cohesive entity. In the context of the Mosaic IQ Microarchitecture, this concept is
applied to the division of the IQ into distinct sets, forming a mosaic-like structure where
these sets collaborate to handle instruction scheduling. This chapter provides insights into
the rationale behind the development of this innovative design. Subsequently, a compre-
hensive description of the microarchitecture and its operational principles is presented.
Finally, an in-depth exploration of the microarchitecture’s configuration and implementa-
tion is provided.

4.1 Motivation

The motivation for the proposed design in this thesis stems from three key findings ob-
served in the context of microprocessor architecture. Firstly, by reducing the number of
broadcast ports, it has been observed that the impact of excessive tag broadcasts on per-
formance manifests in a significant drop in throughput only when the number of ports
is limited to one. Secondly, an analysis of tag comparisons reveals that the number of
matches represents a mere 5% of the total comparisons performed, illustrating a substan-
tial gap between actual matches and the overall number of comparisons. Lastly, a notable
proportion of instructions exhibit a remarkably limited number of dependencies, with over
one-third of instructions having zero dependencies upon dispatch. These findings provide
a strong rationale for exploring novel solutions to optimize the wake-up logic in the issue
stage of high-performance microprocessors.

4.1.1 Broadcast Port Reduction

Varying the number of broadcast ports available for wake-up each cycle shed light on
the impact of excessive broadcasts on performance. Tag broadcasts play a crucial role in
coordinating the wake-up of dependent instructions and ensuring the timely availability
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of operands. However, an excessive number of broadcasts can lead to increased power
consumption, decreased bandwidth utilization, and a potential increase in latency.

Figure 4.1 illustrates the change in Instructions Per Cycle (IPC) as the number of ports
available for broadcasting the tag changes. The IW is constant for all configurations.
Instructions that cannot broadcast due to the limited amount of broadcast ports are placed
in an in-order buffer and allowed to broadcast as soon as a port becomes available. There
is no limit on the buffer. The bottleneck then only becomes the number of broadcast ports
and how this limits the ability to extract ILP and finding ready instructions to execute.
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Figure 4.1: Broadcast ports configurations IPC across all workloads.

Figure 4.2 plot the average IPC across all workloads. From 4 to 3 ports there is virtually
no IPC drop. Then drop to 2 ports are noticeable but still not significant. The reduction in
IPC is suddenly very apparent when reducing the ports to 1, only allowing one instruction
to broadcast the tag of its destination operand each cycle. This is likely the threshold
for which the benefits from reduced overhead from the reduction in ports arguably no
longer could outweigh the reductions in performance, as a performance drop of 42 percent
compared to 4 ports are not acceptable when on the contrary, 2 ports only drop less than
5% in IPC.
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Figure 4.2: Broadcast ports configurations average IPC.

4.1.2 Tag Comparisons

The normalized distribution of instructions broadcasting their result tag by different tag
comparisons frequency averaged across all workloads is plotted in figure 4.3. This plot
excludes all store and branch operations as they do not produce any result for a destination
operand. Hence, they have no result tag to broadcast. The comparisons are counted for
every valid and unready source operand for each instruction inside the IQ. If any operand
is ready or not valid (as not all operations require the same amount of source register), the
operand is considered gated off such that it does not waste a comparison, and it is therefore
also not counted in the experimental data used to make the plot.

The plot 4.3 visualize how the number of comparisons varies vastly. With the high
number of instructions simulated, the plot exhibits traits of that of a unimodal probability
distribution. It rises quickly to a peak of 9 tag comparisons, being the mode at about
5 percent of all instructions. This is followed by an exponential decay until the highest
recorded value of 197 tag comparisons.
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Instructions Distribution by Tag Comparisons Frequency. (Excluding stores and branches)
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Figure 4.3: Instructions per Tag comparisons

The number of useful tag comparisons resulting in a tag match and an awakened
operand is plotted in figure 4.4. The number of operands that are woken up each cy-
cle also varies greatly; as many as 67 tag matches are observed during simulations. The
distribution of instructions by tag matches follows similar traits as that of the plot 4.3.
However, it peaks at 1 tag comparison per instruction, accounting for more than 70 per-
cent of all instructions, before decaying. The sum of instructions for all different values
of the number of tag matches of 4 or above is well below 5%. This indicates that when
instructions broadcasting their tag have a high number of comparisons, usually, most of
them are mismatched.
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Instructions Distribution by Tag Matches Frequency. (Excluding stores and branches)
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Figure 4.4: Awakened operands

To further establish the potential for tag comparison reduction and get more precise
values, the average number of tags comparisons per instruction broadcasting its result tag
can be calculated using the formula 4.1.

Average =
Total Tag Comparisons

Total Producer Instructions
(4.1)

From this, it can be expanded to formula 4.2, whereas ”T” is a set of distinct tag
comparison values, each value representing a unique number of tag comparisons. The
symbol ”t” represents each element or tag comparisons value from the set T.

Average =
∑
t∈T

(Tag Comparisonst × Normalized Instructionst) (4.2)

Using the data from figure 4.3 and 4.4, the average number of tag comparisons and
matches performed per instruction broadcasting its result tag could be derived by adding
the values of each bar multiplied by its corresponding number of tag matches for each of
the two averages. Lastly, the average for wasted or mismatched tag comparisons could be
calculated with the formula 4.3, giving the results listed in table 4.1.

AverageMismatches = AverageComparisons − AverageMatches (4.3)
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Table 4.1: Average tag comparisons performed per instruction broadcasting its result tag.

Average: Tag Comparisons per Instruction
Comparisons 23.035
Matches (Useful) 1.161
Mismatches (Wasted) 21.874

Based on the values in 4.1, most tag comparisons are futile and prove that there is
considerable room for improvement. Out of all comparisons, 95 percent are mismatches,
draining a considerable amount of current. Since high-performance processors today can
typically perform in the range of billions to tens of billions of instructions per second,
these wasted mismatches are quite substantial.

4.1.3 Dependencies

Each complex x86 instruction is decoded into separate simpler instructions, commonly
referred to as micro-operations. The instructions in the Reorder Buffer (ROB) and the IQ
are only micro-operations. This reduces some complexity and makes it easier to manage
dependencies. After the instructions are decoded, the instruction residing in the IQ has at
most 3 source operands. This would infer that micro-instructions could, at most have three
dependencies. However, there is also one other origin of source operands. These are the
control flag registers. These registers contain important information, such as whether or
not a branch should be taken based on the result of a previous instruction executed. These
rarely produce dependencies, but nevertheless, they still need to be considered. At most,
these control flags comprise 11 possible source operands and, therefore, 11 additional
potential dependencies. The total then adds up to a total of 14 possible dependencies for a
micro-operation in the IQ.

A dependency analysis of micro-instructions entering the IQ challenges the assumption
that a substantial number of instructions possess numerous dependencies. By scrutinizing
figure 4.5 it becomes apparent that a significant proportion of instructions dispatched ac-
tually exhibit a limited number of dependencies.

Figure 4.6 plots the average across all the workloads, and it becomes visible that nearly
half of all micro-operations entering the IQ demonstrate only one dependency, indicating a
relatively low interdependence among instructions. Furthermore, more than a third of dis-
patched micro-operations do not have any dependencies whatsoever. This finding remains
consistent across multiple workloads, where more than five dependencies are virtually
non-existent. Similarly, the presence of three or more dependencies is relatively rare.
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4.1 Motivation

Figure 4.5: Dependencies across all workloads
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Figure 4.6: Dependencies averaged across all workloads

The identification of a limited number of dependencies presents a promising prospect
for mitigating the complexity and overhead associated with wake-up logic. By adopting
a strategic resource allocation approach that prioritizes instructions with a higher depen-
dency count, the elimination of redundant tag comparisons becomes feasible for instruc-
tions with fewer dependencies.

In particular, the broadcasting process, which entails propagating the results of an
instruction to its dependent instructions, can be optimized based on the dependency char-
acteristics. Considering that instructions with a high number of dependencies necessitate
more frequent broadcasting, they should be assigned more broadcast ports. Meanwhile,
reducing the ports for low-dependencies instructions would offer energy saving while hav-
ing a minimal impact on performance.

4.2 Design

The proposed design centers around the optimization of wake-up logic within the issue
stage of the microprocessor core. This optimization is achieved by dividing the IQ into
a set-associative structure. This is mabe possible by implementing an instruction steering
heuristic and a map table. The microarchitecture aims to reduce comparisons and the
amount of wiring (broadcast ports) while maintaining high performance. This section
offers deeper insights into its mechanics and functionality.
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4.2.1 Dependency Tracking for Minimizing Wasteful Tag Compar-
isons

A crucial goal is to minimize the number of tag matches that do not contribute to mean-
ingful operations and, as a result, consume power unnecessarily. Various approaches have
been proposed to address this issue. One approach involves tracking all dependents’ place-
ment in the IQ and their entire dependency chains. This method has proven to be highly
effective in reducing the number of futile tag comparisons. Ideally, if we had complete
knowledge of the placement of all dependencies, we could selectively access operands,
making the CAM-based wake-up redundant. However, achieving such a level of certainty
is not a straightforward task. It would require constant tracking and updating of all these
dependencies, which introduces additional complexity and increases power consumption.
Otherwise, FIFO implementations for tracking are shown to be possible, but these would
never be able to reach substantial performance.

The primary objective is, therefore, to minimize the amount of effort expended and
the number of tag comparisons required while ensuring that any potential decrease in per-
formance remains minimal or non-existent. This objective can be effectively achieved by
adopting a strategy of broadcasting to a narrower subset of instructions within the IQ.
However, it is crucial to ensure that each entry in the IQ contains all the relevant tags that
would potentially match the broadcasted tag. Failure to include all matching operands
within the broadcasted tag could lead to the occurrence of exceptions, potentially com-
promising system performance or even introducing the possibility of errors. To mitigate
this risk, it becomes imperative to employ a tracking mechanism that prevents such excep-
tions from arising. Consequently, a trade-off emerges between the intricacy of the tracking
mechanism and the benefits derived from the resultant reduction in tag comparisons. The
ultimate aim lies in identifying an efficient methodology for tracking dependencies that
effectively optimizes the reduction of tag comparisons without compromising system per-
formance.

4.2.2 Set-assosiative IQ

The wake-up process utilizes the operand’s tags rather than their addresses by incorporat-
ing CAM within the IQ. This approach offers significant advantages by enabling high-
speed associative searches without the need for explicit address knowledge. However,
as previously established, the CAM structure accesses vast amounts of entries leading to
excessive power consumption.

To address this challenge, an alternative approach is proposed in this research. Instead
of relying on the conventional fully associative tag lookup, the proposal suggests employ-
ing a set-associative tag lookup mechanism with a dedicated CAM for each set. This
approach involves dividing the IQ into distinct sets, allowing the provision of addresses
for tag comparisons without requiring greater precision than, at most, the number of sets.

Adopting a set-associative design avoids the complexities associated with intricate
tracking mechanisms that determine the exact address of each operand while limiting the
scope of CAM accesses to specific sets rather than the entire IQ.
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4.2.3 Table-Based Broadcasting

After the register renaming process, instruction operands are assigned a physical register
that differs from the architectural registers visible to programmers. This ensures that only
true data dependencies remain, meaning only one instruction can write to a particular reg-
ister (as there are no WAW or WAR dependencies). The instructions with their destination
operand mapped to the same physical register as the source operands of the upcoming
instruction are known as producer instructions or dependencies. Once an instruction is
dispatched into the IQ, it is placed in a set, its dependencies need to know which set to
broadcast their result tag. Some instructions will have to broadcast to multiple sets, as they
are to wake up more operands. Others may not need to broadcast at all.

To effectively keep track of which set to broadcast, this thesis proposes the inclusion
of a map table, similar to that used for register renaming. The map table is to be indexed
using the local register designator and contains a bit for each set. A value of 1 is assigned
to sets intended to be broadcasted, while 0 is assigned to those not. During dispatch, in-
structions access the map table and enable the bit of the set to which they are dispatched.
When instructions leave the IQ and broadcast its tag, the map table is accessed to deter-
mine which sets to broadcast. The map table can be implemented as a Random Access
Memory (RAM) scheme, where the map table is a register file where the physical registers
designator directly accesses an entry that contains the set bits. The number of entries in
the map table is equal to the number of physical registers.

4.2.4 Instructions Steering Heuristic and Broadcast Ports

Multiple heuristics can classify and steer instructions into different sets within the IQ. This
thesis proposes a simple yet efficient heuristic that employs the count of dependencies. The
primary purpose of this categorization is to exploit the fact that a substantial proportion of
the instructions that enter the IQ possess a small number of dependencies. Consequently,
they have fewer operands to be transmitted to. Any instruction that lacks dependencies
will not receive the tag broadcast, whereas those with multiple dependencies will require
more broadcasting.

This steering mechanism exploits this observation to adapt the number of ports to dif-
ferent sets. Figure 4.2 illustrated the ports needed to maintain different levels of IPC.
When categorizing instructions based on the number of non-ready operands, it is possible
to focus the ports on the instructions that require them while reducing ports for instructions
with fewer dependencies and removing them entirely from instructions with no dependen-
cies.

4.3 Implementation
This thesis implements a specific design to showcase the potential of a set-associative IQ
with dependency-based steering. The IQ is divided into three sets, each accommodating
instructions with a different number of dependencies. The proposed design is depicted
in figure 4.7. Instructions are steered into the appropriate set based on the number of
non-ready operands. The number of ports allocated to each set is based on the number
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4.3 Implementation

of non-ready operands (dependencies) of the instructions residing in the set. The first set
is assigned zero ports and holds instructions with zero dependencies. The second set is
allocated one port and holds instructions with one dependency. Lastly, the third set is
assigned two ports and holds all instructions with more than one dependency.

IW

Result Tag

Tag Delegation

Set 1 Set 2 Set 3

Tag

Tag

1

2

Broadcast Buffer

Ports (3) 

Figure 4.7: Broadcasting tags with 3-set associative IQ.

4.3.1 Broadcast Buffer
The Broadcast Buffer holds tags that are not broadcastable due to limited broadcast ports.
If the buffer fills up, the processor would need to stall. The buffer receives at most as
many tags as the IW of the processor each cycle. The rate at which the buffer fills up then
depends on the processor’s IW, while the rate at which the buffer empties depends on the
number of ports available for broadcast. The IW of the processor will be higher than the
number of ports for tag broadcasting. Otherwise, there would be no need for a broadcast
buffer.

The buffer does not need to store many entries. If the buffer fills with many pending
tags, instructions in the IQ would not be awakened, quickly influencing the processor’s
performance. If the broadcast buffer is unreasonably large and never stalls, the processor
would naturally come to a halt anyways, as instructions will not be awakened, and the
processor would have to wait for operands to become ready and available for issue. One
could then easily argue that there is a threshold for which the size increase would not sig-
nificantly influence the performance. This implementation uses a 32 entries FIFO, storing
up to 32 instruction result tags. This is a sufficient size such that the processor never stalls
due to the buffer being full, exceeding the suggested threshold.
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4.3.2 Tag Delegation
The tag delegation functions as follows.

1. Check the FIFO for what tag is next.

2. Look up the tag-to-set mapped table.

3. Check if the required port is available.

4. If available, broadcast tag and advance the FIFO.

5. Repeat until 3. fails.

4.3.3 Set 1: Zero Dependency Instructions
The first section of the IQ is allocated zero broadcast ports. This section accommodates
instructions with zero dependencies when entering the IQ. These instructions are typically
ready for execution and do not require to be awakened. Placing them in a separate section
eliminates the need for tag comparisons and broadcasts to this section, reducing some
overhead.

4.3.4 Set 2: Single Dependency Instructions
The second section of the IQ is equipped with a single broadcast port for tag broadcast-
ing. Instructions in this section possess only one dependency when entering the IQ. Based
on observations, it has been noted that a substantial portion of instructions fall into this
category. Placing them in a separate section with a dedicated broadcast port allows for
efficient wake-up by broadcasting the tag to the specific dependent instruction. This ap-
proach reduces the number of tag comparisons and minimizes unnecessary broadcasts for
instructions with only one dependency.

4.3.5 Set 3: Multiple Dependency Instructions
The third and final section of the IQ is designed to accommodate instructions having two
or more dependencies when dispatched. This section is assigned two broadcast ports for
tag broadcasting. Instructions in this category typically require more extensive wake-up
coordination due to their multiple dependencies. By providing two dedicated broadcast
ports, the design facilitates efficient wake-up by simultaneously broadcasting the tag of
two issued instructions, minimizing delays and ensuring timely availability of operands.
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Chapter 5
Framework and Experimental Setup

5.1 SniperSim
To evaluate and develop the Mosaic IQ architecture, the microarchitectural simulator Sniper-
Sim was used(32)(33).

SniperSim is a cycle-level simulator designed to accurately model the behavior and
performance of modern microarchitectures. It provides a flexible and extensible frame-
work for studying various microarchitectural designs and exploring their impact on system
performance.

At its core, SniperSim simulates the execution of instructions, memory accesses, and
interactions among various microarchitectural components, such as the core, caches, mem-
ory subsystem, and interconnects. It takes into account architectural details, timing con-
straints, and dependencies to provide an accurate representation of the underlying hard-
ware behavior.

One of the notable features of SniperSim is its ability to simulate OoO execution,
allowing for realistic modeling of modern processor architectures. It supports a wide range
of configuration options, enabling researchers to explore different architectural parameters
and trade-offs(34)(33).

5.1.1 Core configuration
Table 5.1 lists the most critical configuration settings for SniperSim. These settings define
various parameters that influence the behavior and performance of the simulated system.

The core is configured with the Intel Nehalem architecture(35). The Nehalem mi-
croarchitecture, introduced by Intel, is known for its advanced features and performance
optimizations. With SniperSim, the core is set to operate OoO, enhancing instruction
scheduling and allowing for better utilization of available resources.

The commit width and dispatch width parameters are both set to 4, enabling
the core to handle up to four instructions per cycle. The IW (issue width) of the
core is limited by the number of functional units, generic ports, and load/store ports. It
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Table 5.1: SniperSim Configuration

Parameter Value
core model Nehalem
in order false
commit width 4
dispatch width 4
issue width 4
issue contention true
rs entries 180
issue memops at issue true
address disambiguation true
outstanding loads 48
outstanding stores 32
store to load forwarding true

is not limited by the configurations parameter; rather, it ends up not being able to is-
sue more than 4 instructions each cycle at most. This is due to the configuration of the
issue contention, respecting the architectural limitations for issue, such as the num-
ber of ports.

The size of the IQ is configured to 180 entries set by the rs entries. Reservation
Station (RS) is just another word used for the IQ.

Additional parameters such as issue memops at issue, address disambiguation,
outstanding loads, outstanding stores, and store to load forwarding
are set to appropriate values to optimize memory accesses realistically.

Note: The provided configuration is a subset of the full SniperSim configuration file
and focuses on the most relevant parameters for this research.

5.2 SPEC CPU 2017

Trace files are primarily used for simulation and analysis purposes. Simulators like Sniper-
Sim use trace files as inputs to recreate the execution behavior of the benchmark appli-
cations. By replaying the recorded events and instructions, simulators can emulate the
program’s execution and analyze various aspects of system performance.

Tracefiles typically include information such as the instructions executed, memory
accesses, branches, or other additional events or statistics.

SPEC CPU 2017 is a benchmark suite developed by the Standard Performance Eval-
uation Corporation (SPEC) to assess the performance of computer systems, specifically
the central processing unit (CPU) and memory subsystem. It consists of a collection of
real-world applications compiled with standardized settings to ensure fair and comparable
measurements across different systems.

The benchmark suite is designed to simulate a diverse range of computing workloads
that represent typical usage scenarios. It includes a variety of applications from different
domains such as scientific computing, media processing, financial analysis, and more.
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Some of the included benchmarks are popular programs like GCC, Python, Perl, and
MATLAB(36).

5.3 IDUN
The SniperSim is a relatively accurate simulator that can run cycle-level simulations. As
each workload comprises about 1 billion instructions and there are well over 30 workloads,
the computing workloads are very heavy. To efficiently simulate these workloads, IDUN
was used to reduce the computation time of the simulations significantly.

IDUN is a High Performance Computing (HPC) cluster of multiple high-performance
computer nodes. The IDUN cluster is a collaborative project between various faculties and
the IT division at Norwegian University of Science and Technology (NTNU). Its primary
goal is to create a professionally managed and highly available computing platform for
the university. It facilitates efficient benchmarking and development, making it possible to
schedule multiple jobs in parallel with high simulation speeds relative to regular personal
computers. It can be easily accessed remotely through an Secure Socket Shell (SSH)
connection. IDUN provides a framework for users to submit their computational jobs to
the cluster, and it allocates resources such as CPU cores, memory, and GPUs to these
jobs based on specified requirements and availability(37). This framework is open-source
software called SLURM.

5.3.1 SLURM
SLURM is a highly popular workload manager and job scheduler utilized within HPC
clusters. Its primary function is to distribute computational tasks across the nodes of an
HPC cluster, ensuring optimal resource utilization and job execution. SLURM is widely
used in academic, research, and scientific computing centers, as well as in commercial and
industrial settings that require efficient resource management and job scheduling(38).

With its powerful script-based capabilities, SLURM enables users to effectively man-
age a large number of workloads within an HPC environment. In this study, jobs were
submitted per benchmark for simulation purposes. By utilizing multiple SLURM scripts,
jobs were easily submitted, monitored, and data was managed for each individual work-
load simulation.
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Chapter 6
Results and Discussion

6.1 Power consumption

6.1.1 Tag Matches
Tag Comparisons are highly correlated with the power consumption in microprocessors.
This is especially true for caches and the IQ. The Wake-up process can be quite power-
hungry, accounting for up to 63% of the IQ’s power consumption in certain architectures(39).
This is mostly due to the high number of unnecessary checking of entries from the CAM
structure. As the wake-up almost exclusively consumes power due to the tag comparisons,
reducing the number of comparisons would inevitably reduce the power consumed by the
wake-up activity, ultimately decreasing the total power consumption of the IQ.

Figure 6.1 illustrates the decrease in tag comparisons achieved by the wake-up logic
in the Mosaic IQ Microarchitecture compared to the baseline. It plots the average total tag
comparisons across all workloads.

The average comparisons per producer instruction are listed in the table 6.1, compar-
ing the baseline to the Mosaic IQ microarchitecture. The matched tag comparisons are
assumed to be practically identical. The wasted comparisons, on the other hand, are far
from it. An astonishing decrease from around 22 mismatches per instruction down to less
than 7, showing that the Mosaic architecture provides around 70% reduction in wasted tag
comparisons compared to the baseline. This will certainly significantly reduce the power
consumed by both the wake-up process as well as the IQ and issue stage as a whole.

Figure 6.2 plots the tag comparison distribution in the Mosaic IQ microarchitecture.
The plot is visibly different from the baseline presented in chapter 4. The mode is now at
one comparison with far fewer instructions checking more than 40 operand tags.

6.2 Throughput
To determine the throughput of a microprocessor, two key metrics are considered. This
would be the number of instructions that can be executed and committed each cycle; the
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Table 6.1: Average tag comparisons performed per instruction broadcasting its result tag, Mosaic vs
Baseline.

Average Tag Comparisons per Instruction
Mosaic

Comparisons 7.851
Mismatches 6.69

Baseline
Comparisons 23.035
Mismatches 21.874

IPC , and how many cycles the processor performs each second; the processor’s clock
frequency. By multiplying the processor’s clock frequency with the IPC, we derive the
number of instructions that a particular core can perform each second.

This work uses the cycle-accurate SniperSim simulator, so the latency of the different
pipeline stages is very hard to estimate. This ultimately means that it is difficult to estimate
the frequency of the processor core. However, the goal of this thesis is not to improve the
latency, and it is estimated to be more or less equivalent to that of the baseline implemen-
tation. The basis for this claim comes from the fact that an increase in complexity and
wiring generally contributes to increased latency. As this work focuses on decreasing the
complexity, the latency is rather likely to decrease with it.

6.2.1 IPC

With the assumption that the clock frequency at which both processors operate is equal, the
IPC becomes the determining factor for the throughput of the processor core. Figure 6.3
show the IPC across all workloads, followed by figure 6.4 plotting the average across all
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Instructions Distribution by Tag Comparisons Frequency. (Excluding stores and branches)
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Figure 6.2: Tag comparisons distribution

the workloads. These plots show the IPC of the Mosaic IQ architecture compared to four
baseline configurations. These configurations are the number of available ports to the IQ
on which the wake-up can operate. The plot shows that the Mosaic IQ Microarchitecture
has a slightly lower IPC than the best-performing baseline configuration. However, the
throughput drop is not high at around 3 %. On the other hand, the number of broadcast
ports and comparators it requires is close to the amount used for the baseline configuration
with one port for each entry in the IQ. The baseline configuration experience an IPC drop
of above 40%. The Mosaic IQ architecture improves the IPC by 66% compared to the
baseline model with a similar amount of wiring and comparators.
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The number of ports used for broadcast does not necessarily influence the total number
of tag comparisons. More wires do, however, increase complexity and power consumption.
More broadcast wires would also implicate more OR gates for tag comparisons, increasing
power consumption and an increased area. Furthermore, wires do not scale well, as broad-
cast wires are long wires that can be critical for the latency of the issue stage. Reducing
the amount of wiring could also prove critical for future technologies.
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6.3 Future Work
The Mosaic IQ Microarchitecture requires further investigation to explore alternative con-
figurations. Several aspects can be explored, such as:

• Varying the number of broadcast ports to different sets: Experimenting with
different numbers of broadcast ports allocated to various instruction sets can provide
insights into the impact on overall performance. By adjusting the allocation, it may
be possible to optimize the ports usage further.

• Changing the number of sets: Examining the effects of altering the number of
instruction sets within the Mosaic IQ Microarchitecture can help determine the op-
timal configuration. Increasing the number of sets could potentially reduce tag
comparisons and contention, leading to improved performance. However, careful
consideration should be given to the associated overhead that may arise from the
increased complexity.

• Varying the size of the broadcast buffer: Investigating the impact of different
sizes for the broadcast buffer can shed light on its relationship with throughput.

• Trying out different instructions steering heuristics: Exploring alternative heuris-
tics for assigning instructions to different sets can provide valuable insights. One
simple approach could involve implementing a counter to randomly and fairly dis-
tribute instructions across sets. This counter could increment from 1 to 6 (one for
each set), for example, to determine the set placement of instructions.

To further enhance the evaluation of the proposed design, the following steps can be
taken:

• RTL design implementation: Creating a Register Transfer Level (RTL) design
of the Mosaic IQ Microarchitecture can enable more accurate measurements and
analysis. This detailed implementation will allow for a better understanding of the
design’s performance characteristics, power consumption, latency, and IPC.

• Investigation of map table and tag delegation overhead: Examining the over-
head introduced by the map table and tag delegation is crucial to understand their
impact on overall performance. By quantifying this overhead, it will be possible
to assess the trade-offs associated with these components and make any necessary
adjustments or optimizations.

39



Chapter 6. Results and Discussion

40



Chapter 7
Conclusion

In conclusion, the Mosaic IQ Microarchitecture presents a promising approach to address
the power consumption challenges associated with instruction scheduling in OoO proces-
sors cores. By introducing a set-associative structure in the IQ and implementing selective
broadcasting of operand tag information, the Mosaic IQ successfully reduces the number
of wasteful tag comparisons, resulting in substantial power savings during the wake-up
process.

The evaluation of the Mosaic IQ against a baseline IQ implementation demonstrates
its efficacy in terms of power consumption and throughput. The significant reduction of
wasted tag comparisons by 70% showcases the potential for power optimization in micro-
processors. Additionally, while the Mosaic IQ achieves a slightly lower IPC compared
to the best-performing baseline configuration, it maintains a minor 3% drop. This per-
formance retention, coupled with the preservation of the same number of ports as the
simplest baseline implementation highlights the Mosaic IQ’s ability to achieve competi-
tive throughput without sacrificing efficiency in the instruction scheduling. The findings
of this study emphasize the effectiveness of the Mosaic IQ Microarchitecture in striking a
balance between power consumption and performance in instruction scheduling.

To further advance the Mosaic IQ Microarchitecture, future investigation into alterna-
tive configurations is crucial. Several aspects can be explored, such as varying the number
of broadcast ports allocated to different sets, changing the number of instruction sets,
adjusting the size of the broadcast buffer, and experimenting with different instruction
steering heuristics. These explorations can provide valuable insights into optimizing per-
formance and resource utilization within the Mosaic IQ.

Ultimately, the Mosaic IQ Microarchitecture contributes to the ongoing efforts in de-
veloping energy-efficient processor cores while maintaining satisfactory performance lev-
els. The insights gained from this study pave the way for future research and advancements
in microarchitecture design, fostering the development of more power-efficient and high-
performance computing systems.
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