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Abstract 
This master's thesis investigates the use of Long Short-Term Memory (LSTM) machine 
learning and sensor adjustments for enhancing the coagulation processes at the Åse 
wastewater treatment plant (RA4) in Ålesund, Norway. Focusing on optimizing the 
dosage of PAX-33 and polymer (Superfloc A-1883) for effective contaminant removal, the 
research evaluates sensor utility for real-time monitoring and adjustment of chemical 
dosages. 

A comprehensive analysis of the Åse WWTP's existing processes, equipment, and 
infrastructure was performed. By using plant operational records and sensor data, 
variables influencing the chemical clarification process were identified. An LSTM model 
was then trained and validated on this data to predict and optimize PAX and polymer 
dosages under varying conditions. 

The results demonstrate that the LSTM model, in tandem with sensor adjustments, 
significantly enhances the efficiency of the coagulation and flocculation process. The 
LSTM model achieves prediction accuracies of 94.4% for PAX-33 and 77.2% for polymer 
dosages. Furthermore, implementing advanced multi-parameter sensors promises to 
improve these prediction accuracies and set the stage for a fully automated dosing 
system, leading to an efficient treatment process, reduced costs, and lower emissions. 

Financially, considering a wastewater sensor's lifespan of 5 to 10 years, the Net Present 
Value (NPV) over a 10-year period yields an estimated 1 MNOK, given an annual saving 
of 140,000 NOK, an initial investment of 165,000 NOK, and a discount rate of 3%. This 
positive NPV indicates that the project would provide net benefits over this period, 
especially considering the potential 10% annual chemical saving from the optimization. 

The thesis contributes valuable insights for the wastewater treatment industry and 
underlines the benefits of leveraging machine learning and sensor adjustments to 
optimize wastewater treatment processes. It signifies a step forward in the quest for 
innovative solutions to enhance the performance of wastewater treatment plants 
worldwide, thereby promoting long-term sustainability and resilience of urban water 
systems.  
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Sammendrag 
Denne masteroppgaven undersøker bruk av maskinlæring med Long Short-Term Memory 
(LSTM) og sensorjusteringer for å forbedre koaguleringsprosessene ved Åse renseanlegg 
(RA4) i Ålesund, Norge. Forskningen fokuserer på å optimalisere doseringen av PAX-33 
og polymer (Superfloc A-1883) for effektiv fjerning av forurensninger og vurderer nytten 
av sensorer for sanntidsovervåking og justering av kjemiske doser. 

En omfattende analyse av de eksisterende prosessene, utstyret og infrastrukturen på Åse 
WWTP ble utført. Ved å bruke driftslogger og sensordata fra anlegget ble variabler som 
påvirker den kjemiske renseprosessen identifisert. En LSTM-modell ble deretter trent og 
validert på disse dataene for å predikere og optimalisere doser av PAX og polymer under 
varierende forhold. 

Resultatene viser at LSTM-modellen, sammen med sensorjusteringer, betydelig forbedrer 
effektiviteten av koagulerings- og flokkuleringsprosessen. LSTM-modellen oppnår en 
prediksjonsnøyaktighet på 94,4% for PAX-33 og 77,2% for polymer doseringer. Videre 
viser implementering av avanserte flerparametersensorer forbedring i disse 
prediksjonsnøyaktighetene og legge grunnlaget for et helautomatisert doseringssystem, 
noe som fører til en effektiv renseprosess, reduserte kostnader og lavere utslipp. 

Økonomisk sett, med tanke på en avløpssensors levetid på 5 til 10 år, gir nettonåverdien 
(NPV) over en 10-års periode et estimat på 1 MNOK, gitt en årlig besparelse på 140 000 
NOK, en opprinnelig investering på 165 000 NOK, og en diskonteringsrente på 3%. 
Denne positive NPV indikerer at prosjektet vil gi nettogevinst over denne perioden, 
spesielt med tanke på den potensielle 10% årlige kjemiske besparelsen fra 
opptimaliseringen. 

Oppgaven bidrar med verdifulle innsikter for avløpsvannbehandlingsindustrien og 
understreker fordelene ved å utnytte maskinlæring og sensorjusteringer for å 
optimalisere avløpsvannbehandlingsprosesser. Den markerer et skritt fremover i søket 
etter innovative løsninger for å forbedre ytelsen til avløpsrenseanlegg over hele verden, 
og fremmer dermed bærekraft og motstandsdyktighet for urbane vannsystemer på lang 
sikt.  
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1.1 Background and motivation 
Wastewater treatment is crucial to public health and environmental protection, aligning 
with the United Nations' Sustainable Development Goals (SDGs) "Clean Water and 
Sanitation" and "Good Health and Well-being" (United Nations, 2015). Centralized 
wastewater treatment plants (WWTPs) remove contaminants before releasing treated 
water back into the environment. However, improving efficiency and sustainability of 
traditional processes presents significant challenges for WWTPs globally. 

These challenges involve the effective removal of diverse contaminants, including organic 
and inorganic compounds, pathogens, and nutrients. Addressing this requires complex, 
energy-intensive processes, which can contribute to greenhouse gas emissions, a 
concern for SDG 13, "Climate Action" (United Nations, 2015). 

Balancing treatment cost with regulatory compliance is another challenge. WWTPs must 
consider these costs while also recovering valuable resources from wastewater, 
contributing to SDG 12, "Responsible Consumption and Production" (United Nations, 
2015). 

In the European Union (EU) and Norway, the challenge of wastewater management is 
heightened due to stringent discharge regulations. These regulations aim to further 
protect aquatic ecosystems but require WWTPs to upgrade their treatment processes 
(Eurostat, 2021). 

To navigate these challenges, WWTPs are adopting innovative technologies, including 
machine learning and advanced sensors. Specifically, Long Short-Term Memory (LSTM) 
models have been chosen for their ability to analyze large amounts of time-series data, 
essential in optimizing chemical dosages in wastewater treatment. The Åse wastewater 
treatment plant in Ålesund aims to utilize data analysis, sensor adjustment, and LSTM 
machine learning to improve its coagulation process. 

Coagulation is a vital stage in wastewater treatment, involving the use of coagulants like 
PAX and polymers to form flocs from suspended particles in the wastewater, making 
them easier to remove. Optimizing coagulation requires careful dosage control, as an 
incorrect dose can impair treatment efficiency (Zhang et al., 2016). 

1.2 Problem statement and research objectives 

1.2.1 Åse Wastewater Treatment Plant 
Located in the eastern region of Old Ålesund, Norway, the Åse Wastewater Treatment 
Plant (WWTP), also known as RA4, has been a stalwart in managing the local 
community's wastewater since 1990. The facility is engineered to handle a maximum 
population equivalent (PE) of 25,000 and a peak wastewater flow rate of 248 liters per 
second. 

 

1 Introduction 



2 
 

On average, the facility processes about 103.78 liters of wastewater per second, which is 
equivalent to approximately 9,000 cubic meters per day. Due to aging infrastructure and 
high infiltration level, the wastewater inflow exhibits significant seasonal fluctuations. 
During the drier periods, the inflow can dip to 37 liters per second, whereas during the 
wetter seasons, it can surge to 233 liters per second. These substantial variations 
highlight the critical need for adaptability and flexibility in the plant's treatment 
processes, ensuring optimal performance regardless of seasonal changes. 

In 2018, the plant underwent significant upgrades, primarily involving modifications to 
the chemical treatment process. The former method, which entailed the use of lime 
mixed with seawater, was superseded using PAX-33 and Superfloc A-1883 polymer. The 
driving force behind this upgrade was the pursuit of enhanced treatment efficiency, 
increased capacity, odor elimination, and the resolution of specific operational challenges. 
Despite these improvements, several optimization opportunities remain. These include 
refining the location of the dosing point on each individual line and improving the control 
over chemical dosing. (Kemira, 2017) 

 

Figure 1. Location and treatment zone of RA4, Åse WWTP in Ålesund, Norway (Gemini VA Ålesund) 

1.2.1.1 Composition of wastewater and discharge requirements 
As per the municipal records, the Åse Wastewater Treatment Plant (WWTP) handles a 
substantial quantity of wastewater - approximately 14,659 Population Equivalent (PE) 
from residential sources. This is further augmented by an additional 7,500 PE originating 
from industrial establishments, schools, institutions, and restaurants. 

Significantly, the local hospital, which is connected to the plant, does not conduct its own 
pre-treatment procedures to remove pharmaceutical contaminants prior to discharging 
its wastewater into the system. This presents a potential challenge as the Åse WWTP 
currently doesn't have specific measures in place to treat these pharmaceutical 
pollutants. 

While this isn't a current requirement for the plant, it is worth noting that the scenario 
may change in the future. The county municipality may enforce stricter regulations 
requiring the removal of such contaminants. This would necessitate an upgrade to the 
facility's existing treatment processes. Moreover, the discharge of untreated 
pharmaceuticals poses a looming threat to the environment, contributing to ecological 
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degradation. Hence, it's imperative to consider these aspects in the plant's long-term 
strategic planning and policymaking. 

To adhere to the stringent discharge regulations, the WWTP must routinely conduct 
sampling protocols and provide comprehensive reports on treatment quality. These 
reports particularly emphasize the removal efficiency of parameters like Biochemical 
Oxygen Demand (BOD5), Total Suspended Solids (TSS), total phosphor, along with 
specific heavy metals. This rigorous monitoring is integral to ensuring the treated water 
meets or exceeds the required environmental and public health standards. 

As per the discharge permit issued (Møre og Romsdal County Municipality, 2016), the 
Åse WWTP must achieve a phosphorus removal rate of at least 90%, TSS removal of 
50%, and BOD5 removal of 20%. 

1.2.1.2 Recipient 
The Åse Wastewater Treatment Plant (WWTP) discharges its treated wastewater and any 
overflow into Åsefjorden, a body of water located approximately 70 meters off the coast 
and at a depth of 27 meters. According to the most recent assessment of the receiving 
waters, updated on January 10th, 2023, Åsefjorden is classified as a "less sensitive" 
recipient, exhibiting a "very good" ecological status but a "poor" chemical state 
(Akvaplan-niva AS, 2023). The Norwegian Pollution Control Regulations, known as 
"Forurensningsforskriften," dictate the treatment processes necessary for discharging 
treated wastewater based on the classification of the recipient. 

The report reveals a noticeable deterioration in the condition of the recipient since the 
last inspection in 2018. If this decline persists, the facility may face future challenges in 
meeting discharge requirements. This situation may necessitate increased investment in 
infrastructure upgrades to maintain compliance. Therefore, the need to optimize the 
treatment process is evident. Doing so will enhance the quality of the discharged 
wastewater, thus mitigating further degradation of Åsefjorden's condition. 

1.2.1.3 Treatment processes, sensors and sampling points 
As depicted in Figure 2 and Figure 3, Åse WWTP employs a three-stage treatment 
process, consisting of preliminary, primary, and secondary treatments. In the preliminary 
stage, coarse and large suspended solids are removed. The primary treatment involves 
mechanical screening, which removes finer particles. During the secondary treatment or 
chemical clarification process, chemicals such as PAX-33 and polymers are added to 
promote sedimentation. The treated and dewatered sludges are subsequently sent for 
incineration or disposal at a landfill. 

The plant utilizes a monitoring program called “Citect” which managed by "Guard 
Automation", with Figure 2 illustrating the program's interface. It is a type of supervisory 
control and data acquisition (SCADA) system, which collects and records data from the 
entire facility while enabling real-time control. As shown in Figure 3, sensors gather data 
on parameters like flow rate, temperature, pH, and turbidity during the treatment 
processes. Additionally, operational data like pump flow of PAX-33 dosage, is recorded. 

As illustrated in Figure 3, there are two sampling points within the facility: one is situated 
after the influent but before mechanical screening, and the other is located before the 
effluent following sedimentation. As mentioned in 1.2.1.1, the WWTP is required to report 
contaminant removal on a regular basis. These sampling points serve this purpose and 
represent the only data sources for contaminant removal within the facility. Notably, 
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there are no sensors installed at the plant that specifically measure concentration of 
contaminants. 

 

Figure 2. Åse WWTP treatment processes in interface of Citect 

 

Figure 3. Simplified flow chart of Åse WWTP treatment processes with sensor and sampling 
locations (Circle) 

1.2.1.4 PAX-33 Utilization and Expenditure 
Plant operators at the Åse wastewater treatment facility have conducted several 
optimization processes on chemical dosing since the upgrade in 2018. This has resulted 
in a significant reduction in the daily PAX-33 consumption, decreasing from an initial 
1500 kilograms to the current usage of approximately 900 kilograms per day. 

As per the operational data, daily consumption of the coagulant PAX-33 typically falls 
within the range of 800 to 1000 kilograms. Annually, this constitutes an estimated usage 
of about 330 metric tons. A critical concern that stems from the examination of supplier 
invoices is the escalating cost of PAX-33, which has been experiencing an annual surge of 
approximately 40% (as evidenced in Figure 4). 
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At the current rate, the municipality is projected to allocate approximately 1.5 million 
NOK each year for PAX-33 acquisition alone. When combined with the cost of polymer, 
this total expenditure is expected to reach around 2.3 million NOK by 2023. This 
substantial financial burden underscores the urgency of identifying and implementing 
effective cost reduction strategies. 

However, in our pursuit of financial prudence, we must ensure that the treatment 
process's efficiency remains uncompromised. Thus, the balance between cost-effective 
operations and optimal wastewater treatment results forms the core of this analysis. This 
balance is not only necessary for the immediate budgetary considerations but also 
integral to the long-term sustainable management of resources at the Åse wastewater 
treatment plant. 

 

Figure 4. PAX-33 price escalation from Jan. 2018 to May. 2023 

1.2.2 Research objectives 
The primary objective of this study is to investigate the potential of machine learning, in 
conjunction with sensor adjustment, to optimize the coagulation process at the Åse 
WWTP in Ålesund, Norway. Specifically, the research aims to accomplish the following 
objectives: 

1. Determine the optimal dosage of PAX and polymer for effective removal of 
suspended solids and other contaminants by utilizing machine learning 
techniques, particularly LSTM models. 

2. Evaluate the application of sensors to continuously monitor critical process 
variables, such as BOD, COD, TSS, phosphor and turbidity, enabling real-time 
adjustments of chemical dosages to ensure optimal performance. 

3. Assess the impact of the proposed optimization methods on the efficiency, cost-
effectiveness, and sustainability of the coagulation and flocculation process. 

4. Contribute to the ongoing effort to enhance the resilience and sustainability of 
urban water systems by demonstrating the advantages of integrating machine 
learning and sensor adjustment in wastewater treatment processes. 
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The outcomes of this study hold significant implications for the wastewater treatment 
industry. By employing machine learning, this research aims to improve the efficiency 
and effectiveness of the coagulation and flocculation process, which can lead to recovery 
of valuable resources from wastewater, reduction of costs and unnecessary emissions. 
Moreover, this study contributes to the broader endeavor to advance the sustainability 
and resilience of urban water systems. 

1.3 Scope and limitations 
The primary focus of this research is to enhance the performance and efficiency of an 
existing wastewater treatment plant (WWTP) by conducting a comprehensive analysis of 
the facility and developing a machine learning algorithm to predict and optimize the 
chemical dosage used in the treatment process. To achieve this objective, the following 
tasks will be undertaken: 

1. Inspect the WWTP: A thorough inspection of Åse WWTP will be carried out to gain 
an in-depth understanding of the facility's current processes, equipment, and 
infrastructure. This inspection will also identify any limitations or challenges faced 
by the WWTP, which can inform subsequent analyses and optimization efforts. 

2. Propose sensor adjustments and purchase of new sensors: Accurate monitoring 
and control of various processes are crucial to a WWTP's performance. Therefore, 
this research will recommend adjustments to existing sensors and the acquisition 
of new sensors to enhance the monitoring and control of the WWTP. This may 
involve identifying gaps in the current sensor network and suggesting additional 
sensors to provide valuable data. 

3. Data analysis and identification of correlated variables: The performance of a 
WWTP is influenced by several factors, including influent characteristics, 
operational parameters, and chemical dosage. This research will employ statistical 
analyses and data visualization techniques to identify patterns and trends in the 
data, as well as determine which variables have the strongest relationships with 
the outputs. 

4. Develop a machine learning algorithm: Machine learning techniques will be 
utilized to create a model capable of predicting and optimizing the dosage of 
chemicals used in the treatment process. The identified correlated variables will 
serve as inputs for the algorithm, and models will be developed to predict the 
optimal chemical dosage for specific conditions. 

Despite these objectives, the study may encounter certain limitations, which will be 
acknowledged and discussed throughout the thesis. These could include limited access to 
historical data or restrictions in data granularity, potential unavailability of resources, 
budget constraints for implementing new sensors or adjustments to the WWTP, and the 
generalizability of the findings, as the optimization strategies might be tailored 
specifically to the Åse WWTP and may not be directly applicable to other plants with 
different configurations or challenges. The implications of these limitations on the 
research findings and their generalizability will be addressed in the Discussion chapter. 

1.4 Structure of the thesis 
This thesis is organized into six chapters, providing a logical progression from the 
introduction and background to the conclusion and recommendations. The structure of 
the thesis is as follows: 
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1. Introduction: This chapter presents the background and motivation for the 
research, highlights the importance of wastewater treatment, and discusses the 
need for process optimization. The problem statement, research objectives, and 
scope and limitations are outlined, followed by a brief overview of the Åse WWTP 
case study to provide context for the study. 

2. Literature Review: This chapter reviews relevant literature on wastewater 
treatment processes, process optimization, sensor adjustment, and machine 
learning techniques, with a focus on the rationale behind choosing LSTM models 
and their application in wastewater treatment. 

3. Methodology: In this chapter, the research design is detailed, including data 
collection, data preprocessing, and machine learning model development. The 
sensor adjustment strategy is explained, and the process optimization 
implementation is described. The evaluation criteria and performance metrics are 
also presented. 

4. Results: This chapter presents the findings of the study, including data analysis 
outcomes, the performance of the LSTM model, the results of sensor adjustments, 
and the impact of process optimization on coagulation, particularly the optimal 
dosage of PAX and polymer. 

5. Discussion: In this chapter, the results are interpreted, and their practical 
implications are discussed. Recommendations for Åse WWTP and the broader 
wastewater treatment industry are provided. Challenges and limitations 
encountered during the study are addressed, and potential future research 
directions are suggested. 

6. Conclusion: The final chapter summarizes the main findings of the research, 
highlighting its contributions to the knowledge of process optimization in 
wastewater treatment plants. The chapter concludes with some final remarks on 
the potential of machine learning and sensor adjustment in improving the 
performance and efficiency of wastewater treatment processes. 
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2.1 Wastewater treatment processes 

2.1.1 Overview 
Wastewater treatment is a critical process for protecting public health, preserving the 
environment, and maintaining the sustainability of water resources. Wastewater contains 
a wide range of contaminants, including organic and inorganic compounds, nutrients, 
pathogens, and suspended solids, which must be removed before the treated water is 
discharged back into the environment or reused (Metcalf & Eddy, 2014). The primary 
goals of wastewater treatment are to minimize the adverse environmental impacts of 
wastewater discharge, meet regulatory requirements, and recover valuable resources 
such as water, nutrients, and energy. 

 

Figure 5. Overview of a typical wastewater treatment plant processes (Cole-Parmer) 

2.1.2 Treatment Stages 
As illustrated in Figure 5, wastewater treatment typically involves multiple stages, 
including preliminary, primary, secondary, and tertiary treatment. Each stage targets 
specific contaminants and has its unique objectives and processes. 

2.1.2.1 Preliminary Treatment 
Preliminary treatment aims to remove large debris, grit, and grease from the incoming 
wastewater. This step usually involves screening, grit removal, and grease separation. 
The primary objective is to protect downstream equipment and processes from damage 
and excessive wear (Tchobanoglous, Burton, & Stensel, 2003). 

2 Literature Review 
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2.1.2.2 Primary Treatment 
Primary treatment involves the removal of settleable and floatable solids, typically 
through sedimentation or flotation processes. Mechanical screening is a common method 
used in primary treatment to remove suspended solids and other particles from the 
wastewater (Henze et al., 2008). At Åse WWTP, mechanical screening is employed as the 
primary treatment method. 

2.1.2.3 Secondary Treatment 
Secondary treatment aims to remove biodegradable organic matter and nutrients from 
wastewater using biological and chemical processes. In the case of Åse WWTP, chemical 
treatment is employed as the secondary treatment method. Chemical treatment involves 
the use of coagulants and flocculants, such as PAX and polymer, to facilitate the removal 
of suspended solids, organic matter, and other contaminants through coagulation and 
flocculation processes (Metcalf & Eddy, 2014). The treatment is especially effective at 
removing phosphor from wastewater. 

2.1.2.4 Tertiary Treatment 
Tertiary treatment, also known as advanced treatment, targets specific contaminants 
that are not effectively removed in the primary and secondary treatment stages. These 
contaminants may include nutrients, heavy metals, and certain organic compounds. 
Tertiary treatment processes may involve filtration, adsorption, disinfection, or additional 
chemical treatments (Tchobanoglous et al., 2003). Depending on the specific 
requirements of the treatment plant, tertiary treatment may or may not be necessary. 

2.2 Coagulation and flocculation in wastewater treatment 

2.2.1 Principles and Mechanisms 
Coagulation and flocculation are essential processes in wastewater treatment for 
removing suspended solids, organic matter, and other contaminants. Coagulation 
involves the neutralization of negatively charged particles in wastewater by adding 
positively charged coagulants, causing the particles to destabilize and aggregate (Metcalf 
& Eddy, 2014). Flocculation, on the other hand, is the process of forming larger, more 
stable flocs by adding flocculants that promote the aggregation of destabilized particles. 
These flocs can then be easily removed through sedimentation or flotation processes 
(Tchobanoglous et al., 2003). 
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Figure 6. Explanation of Coagulation and Flocculation process (Course presentation) 

2.2.2 Factors Affecting Coagulation and Flocculation 
Several factors influence the effectiveness of coagulation and flocculation, including pH, 
temperature, mixing conditions and more: 

- pH: The pH of the wastewater affects the charge of particles and the solubility of 
coagulants, thus influencing their effectiveness in destabilizing particles. Optimal 
pH ranges for coagulation and flocculation vary depending on the specific 
coagulant and flocculant used (Metcalf & Eddy, 2014). 

- Temperature: Temperature influences the reaction rates of coagulation and 
flocculation processes. Higher temperatures typically lead to faster reaction rates, 
while lower temperatures can result in slower reactions and the formation of 
weaker flocs (Tchobanoglous et al., 2003). 

- Mixing conditions: Proper mixing is crucial for the effective dispersion of 
coagulants and flocculants and the formation of stable flocs. Insufficient mixing 
can result in inadequate contact between particles and coagulants, while 
excessive mixing can cause the break-up of flocs (Metcalf & Eddy, 2014). 

- Coagulant and flocculant dosage: The concentration of coagulant and flocculant 
used in the process plays a critical role in the effectiveness of coagulation and 
flocculation. Overdosing or underdosing can lead to suboptimal performance 
(Jiang et al., 2010). 

- Coagulant and flocculant type: Different types of coagulants and flocculants have 
varying characteristics and can affect the treatment efficiency differently. The 
choice of the appropriate coagulant and flocculant depends on the specific 
characteristics of the wastewater and the desired treatment outcomes (Zouboulis 
& Traskas, 2008). 

- Particle characteristics: The size, shape, and surface charge of suspended 
particles in wastewater can significantly affect coagulation and flocculation. 
Particle properties influence the aggregation and settling processes, as well as the 
interaction with the coagulants and flocculants (Duan & Gregory, 2003). 
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- Ionic strength: The presence of various ions in the wastewater can influence the 
effectiveness of coagulation and flocculation. High ionic strength can suppress the 
repulsive forces between particles and improve coagulation, while low ionic 
strength can result in reduced coagulation efficiency (Jarvis et al., 2005). 

- Presence of natural organic matter (NOM): NOM can interfere with coagulation 
and flocculation processes by competing for binding sites with the coagulants or 
by forming complexes with metal ions. This can result in reduced pollutant 
removal efficiency (Matilainen et al., 2010). 

2.2.3 Role of PAX and Polymer as Coagulant and Flocculant 

2.2.3.1 PAX-33 as Coagulant 
Polyaluminum chloride (PAX) is a coagulant commonly used in wastewater treatment due 
to its capacity to destabilize particles and promote floc formation. Compared to other 
coagulants like aluminum sulfate (alum) and ferric chloride, PAX offers several benefits, 
including a lower dosage requirement, efficient performance over a broad pH range, and 
reduced sludge production (MWH, 2012). PAX has demonstrated effectiveness in 
eliminating suspended solids, organic matter, and other pollutants from wastewater 
(Metcalf & Eddy, 2014). 

The Åse WWTP uses PAX-33, supplied by Kemira as its coagulant. This mixture contains a 
30-40% concentration of polyaluminum chloride and 1-5% of Iron(III) chloride. The 
inclusion of Iron(III) chloride in PAX-33 enhances contaminant removal, particularly 
targeting sulfides that cause unpleasant odors. However, the use of PAX also presents 
some challenges. These include potential aluminum residues in the treated water, which 
may have environmental and health implications, and the possible requirements for pH 
adjustment and operational optimization before use, adding to the process complexity 
(Zouboulis et al., 2004; Kemira, 2017). 

2.2.3.2 Polymer Superfloc A-1883 as Flocculant 
Flocculants, such as polymers, play a vital role in wastewater treatment by enhancing the 
formation of larger, more stable flocs that facilitate efficient solid-liquid separation. 
Polymers are categorized into natural, synthetic, anionic, cationic, and nonionic types 
based on their origin and charge (Bratby, 2016). The selection of an appropriate polymer 
depends on the specific characteristics of the wastewater and the treatment objectives. 
Polymers are known to improve the efficiency of solid-liquid separation processes, 
resulting in clearer effluent and more easily dewatered sludge (Metcalf & Eddy, 2014). 

Superfloc A-1883, a product of Kemira, is the chosen flocculant at the Åse Wastewater 
Treatment Plant (WWTP). Its composition includes various hydrocarbons, ethoxylated 
alcohols, and ammonium acrylate, contributing to its effective flocculation properties. 
However, care must be taken when using such polymers as they can increase the 
viscosity of the wastewater, potentially causing difficulties in subsequent treatment 
stages. Moreover, they may not be suitable for all wastewater types, necessitating 
careful selection (Bolto & Gregory, 2007).  
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2.3 Traditional Process optimization in wastewater treatment 

2.3.1 Importance 
Process optimization is of paramount importance in wastewater treatment, as it enables 
treatment plants to enhance efficiency, reduce costs, and comply with environmental 
regulations. By optimizing various aspects of the treatment process, plants can minimize 
energy consumption, chemical usage, and sludge production while maximizing pollutant 
removal and resource recovery (Bixio et al., 2005). Improved efficiency not only results 
in cost savings but also contributes to environmental protection by reducing the plant's 
carbon footprint and the release of harmful substances into the environment. 

2.3.2 Optimization Techniques 
There exists an array of optimization techniques applied to wastewater treatment 
processes, spanning from conventional mathematical approaches to contemporary 
computational methodologies. Each comes with unique benefits and limitations that can 
affect their suitability for a given context. 

2.3.2.1 Jar tests 
Jar tests are empirical laboratory methods employed in wastewater treatment to optimize 
coagulation and flocculation processes. They help determine the ideal chemical dosages 
necessary for contaminant removal (Metcalf & Eddy, 2014). The procedure involves 
combining wastewater samples with different concentrations of coagulants or flocculants 
in individual jars. Following a settling period, the clarity of the treated water is assessed 
to pinpoint the most effective chemical dosages for the specific wastewater (APHA, 
AWWA, & WEF, 2017). Despite their effectiveness, jar tests are time-intensive and less 
suited to managing rapid influent wastewater variations, making them better suited to 
the initial stages of a new facility (Liu, 2016). After the startup phase, more advanced 
techniques supplemented by sensor technology are often recommended. 

2.3.2.2 Response Surface Methodology (RSM) 
RSM is a statistical technique used to model and analyze complex processes, shedding 
light on the relationships between several input factors and one or more response 
variables. It is especially valuable in identifying optimal process conditions and 
understanding the interplay between different factors (Myers et al., 2016). However, 
RSM might be challenging to apply when dealing with nonlinear processes or when the 
number of input parameters becomes very large. 

2.3.2.3 Genetic Algorithms (GAs) 
Inspired by the process of natural selection, GAs are a form of evolutionary algorithms. 
They are designed to find approximate solutions to complex optimization problems by 
continually evolving a population of potential solutions (Yuan et al., 2009). Despite their 
power and versatility, GAs can sometimes fall into the trap of premature convergence, 
finding a suboptimal solution instead of the global optimum. 

2.3.2.4 Linear Programming (LP) 
LP is a mathematical optimization technique that aims to find the optimal solution to a 
problem while adhering to a set of linear constraints. This technique is often used in 
wastewater treatment for determining optimal treatment strategies, resource allocation, 
and treatment plant design (Poch et al., 2004). However, LP requires that all the 
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relationships in the model be linear, which may not always accurately reflect the reality 
of complex wastewater treatment processes. 

2.4 Machine learning in process optimization 
Machine learning, an innovative branch of artificial intelligence, has become an 
indispensable tool for process optimization in wastewater treatment plants. Several 
machine learning techniques, each equipped with a unique architecture and functionality, 
have been widely utilized in this field. 

2.4.1 Artificial Neural Networks (ANNs) 
Artificial Neural Networks (ANNs) are inspired by the functioning of biological brains and 
are structured as a network of interconnected layers of neurons. They utilize a series of 
algorithms to recognize underlying relationships in a dataset through a process that 
mirrors the way the human brain operates. As shown in Figure 7, ANNs consist of an 
input layer, where the initial data is presented; one or more hidden layers, where the 
computations are performed; and an output layer, which delivers the outcome. The 
nodes in these layers mimic biological neurons by receiving input and passing a weighted 
sum of these inputs through an activation function (Equation 1). This output is then sent 
to the next layer. This unique structure empowers ANNs to model complex, non-linear 
relationships between input and output variables (Haykin, 1999). Despite their power, 
ANNs are often criticized for their lack of interpretability – their 'black box' nature – and 
their need for large datasets to avoid overfitting (Kuhn & Johnson, 2013). 

𝑂𝑂 = 𝑓𝑓(�𝑊𝑊𝑖𝑖

𝑛𝑛

𝑖𝑖=1

∗ 𝐼𝐼𝑖𝑖 + 𝑏𝑏) 

Equation 1 

Where: 

- 𝑂𝑂 represents the output of the neural network. 
- 𝑓𝑓 denotes the activation function applied to the sum of weighted inputs and bias. 
- i is the index that iterates from 1 to n, representing the individual inputs. 
- 𝑊𝑊𝑖𝑖 represents the weight associated with the input 𝐼𝐼𝑖𝑖. 
- 𝐼𝐼𝑖𝑖 is the i-th input to the neural network. 
- 𝑏𝑏 represents the bias term. 
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Figure 7. Sample of an ANN architecture (Donald O’Connor’) 

2.4.2 Decision Trees 
Decision Trees are simple yet powerful tools for non-parametric supervised learning. As 
illustrated in Figure 8, A decision tree uses a tree-like model of decisions where each 
internal node denotes a test on an attribute, each branch represents an outcome of the 
test, and each leaf node holds a class label (decision taken after computing all 
attributes). The paths from the root to the leaf represent classification rules. Unlike ANN, 
decision trees does not use any activation function. Despite their simplicity and 
interpretability, it tend to overfit on data with many features and are sensitive to small 
changes in the data, leading to different splits and impacting the stability of the model 
(Quinlan, 1986). 

 

Figure 8. Sample of Decision Tree architecture (jcchouinard) 
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2.4.3 Random Forests 
Random Forests are an ensemble learning technique that constructs multiple decision 
trees during training and outputs the class that is the mode of the classes output by 
individual trees (Figure 9). They integrate two key concepts: bagging (bootstrap 
aggregation) and feature randomness. Bagging helps reduce the variance of the 
prediction by generating additional data for training from the original dataset, while 
feature randomness chooses a subset of features at each candidate split in the learning 
process. As shown in Equation 2, by averaging predicted values from all decision trees, 
random forest can predict values for regression problem. This unique architecture offers 
a powerful model for prediction and decision-making, providing better accuracy and 
robustness against overfitting (Breiman, 2001). However, like ANNs, Random Forests are 
also criticized for their lack of interpretability and computational intensity. 

𝑓𝑓 =
1
𝐵𝐵
�𝑓𝑓𝑏𝑏(𝑥𝑥′)
𝐵𝐵

𝑏𝑏=1

 

Equation 2 

Where: 

- 𝑓𝑓 represents the predicted value for a given input instance 𝑥𝑥′ 
- B is the total number of decision trees in the random forest ensemble 
- 𝑓𝑓𝑏𝑏(𝑥𝑥′) is the prediction made by the individual decision tree b for the input instance 

𝑥𝑥′ 

 

Figure 9. Sample of Random Forests architecture (Verikas et al., 2016) 

2.4.4 Long Short-Term Memory (LSTM) 
Long Short-Term Memory (LSTM) models, a type of Recurrent Neural Network (RNN), are 
specifically designed to effectively model time-series data. As depicted in Figure 10 and 
Figure 11, this is accomplished through an architecture that comprises four key 
components, each of which performs a specific function. 
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1. Forget Gate: This determines the importance of information, deciding which 
elements should be kept and which ones can be discarded. The current input 
(X(t)) and the previous hidden state (h(t-1)) are passed through a sigmoid 
function, resulting in values between 0 and 1. These values are indicative of the 
relevance of the previous output (f(t)), which are later utilized in point-by-point 
multiplication with the cell state. 

2. Input Gate: This gate functions to update the cell status. Both the current input 
(X(t)) and the previous hidden state (h(t-1)) go through a sigmoid function, 
helping to ascertain the significance of each component. Simultaneously, this 
information is passed through a tanh function, producing values between -1 and 
1. The outputs from these two activation functions are then ready for point-by-
point multiplication. 

3. Cell State: This component merges information from the forget gate and input 
gate. The previous cell state (C(t-1)) is multiplied by the forget vector (f(t)). If 
the resultant value is 0, the corresponding values are dropped from the cell state. 
The input vector (i(t)) is then added in a point-by-point manner, updating the cell 
state (C(t)). 

4. Output Gate: This gate is responsible for deciding the next hidden state, which 
retains information about previous inputs. The current state and the previous 
hidden state are processed through a sigmoid function. Additionally, the new cell 
state is passed through a tanh function. The outputs from both functions are then 
multiplied point-by-point. The resultant value influences the information carried 
by the hidden state, which is subsequently used for making predictions. 

Once the new cell state and hidden state are computed, they are carried over to the next 
time step, perpetuating the LSTM process. This unique architecture allows LSTM models 
to capture long-term dependencies in sequences of data points over extended periods, 
making them particularly well-suited for modeling complex and dynamic processes such 
as those found in Wastewater Treatment Plants (WWTPs), where variations in influent 
characteristics and operational parameters are common (Hochreiter & Schmidhuber, 
1997).  

 

Figure 10. Functions involved in each LSTM key component (Singhal, 2020) 
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Figure 11. Sample of LSTM architecture (Singhal, 2020) 

In conclusion, each of these machine learning techniques holds potential for enhancing 
the optimization of wastewater treatment processes. The selection of a specific model 
depends on the problem at hand, the available data, computational resources, and the 
necessity for model interpretability. 

2.5 Data analysis techniques 

2.5.1 Descriptive statistics  
It is basic data analysis techniques used in wastewater treatment process analysis. 
Descriptive statistics such as mean, median, mode, standard deviation, variance, and 
coefficient of variation help summarize and describe the main features of a dataset. 
Additionally, correlation analysis is discussed as a method for examining the relationships 
between different variables in the wastewater treatment process (Bhattacharyya & 
Solomatine, 2005). 

2.5.2 Inferential statistical analysis 
Inferential statistics provides predictions or inferences about a larger population based on 
sampled data. A common method used is Ordinary Least Squares (OLS) Regression, 
which estimates the relationship between a dependent variable and one or more 
independent variables with the goal of minimizing the sum of the squared differences 
between observed and predicted values of the dependent variable (Wooldridge, 2015). 
This technique can be applied in various contexts, including wastewater treatment, where 
it could, for instance, predict the required amount of a chemical based on factors like 
volume of wastewater and contaminant concentration. However, assumptions such as 
linearity, independence, homoscedasticity, and normality must be checked to ensure 
model validity (Gujarati, 2003). 

2.5.3 Advanced data analysis 
Following techniques enable a deeper understanding of the underlying patterns and 
relationships within the data. 

- Principal Component Analysis (PCA): PCA is a statistical technique used to reduce 
the dimensionality of a dataset by identifying the most significant factors or 
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principal components that explain the variance in the data. PCA can be applied to 
wastewater treatment data to identify the main sources of variability and simplify 
the analysis (Chen et al., 2014). 

- Cluster Analysis: Cluster analysis is a technique used to group similar 
observations or variables based on their characteristics. In the context of 
wastewater treatment, cluster analysis can be used to identify groups of similar 
water samples or operational conditions, which can help optimize treatment 
strategies (Ebrahimi et al., 2020). 

- Time-Series Analysis: Time-series analysis focuses on the study of data points 
collected at different time intervals to identify trends, patterns, and relationships 
over time. In wastewater treatment, time-series analysis can be used to analyze 
the performance of treatment processes, predict future behavior, and identify 
potential issues or improvements (Quilty & Russell, 2009). 

2.5.4 Comparison and Evaluation of Data Analysis Techniques 
Each of these data analysis techniques has its strengths and limitations, which should be 
considered when selecting the most appropriate method for wastewater treatment 
process analysis. The choice of technique will depend on the specific problem, data 
characteristics, and desired outcomes. In some cases, combining multiple techniques 
may provide a more comprehensive understanding of the underlying patterns and 
relationships within the data. For instance, using both PCA and cluster analysis can help 
identify important and latent variables, correlations, and groupings within the dataset, 
while time-series analysis can be employed to study temporal patterns (Bhattacharyya & 
Solomatine, 2005; Chen et al., 2014; Ebrahimi et al., 2020; Quilty & Russell, 2009). 

2.6 Sensor adjustment and monitoring 

2.6.1 Importance 
The implementation of sensor monitoring in wastewater treatment processes is crucial for 
ensuring optimal performance, accurate decision-making, and early detection of potential 
issues. Sensors allow for real-time data acquisition and provide essential information for 
process control and optimization, ultimately improving the efficiency and effectiveness of 
the treatment process (Olsson, 2012). 

2.6.2 Types of Sensors 
In wastewater treatment plants, various sensors are employed to monitor key water 
quality parameters. Common sensor types include flow rate, pH, turbidity, TSS, dissolved 
oxygen, phosphorous and conductivity sensors. These sensors facilitate the collection of 
valuable data, which can be utilized for process control and optimization, ensuring 
optimal treatment performance (Ratnayaka et al., 2009). 

2.6.2.1 Essential sensors 
Essential sensors are integral components in the operation of the wastewater treatment 
plant, focusing on the monitoring of operational variables that are fundamental to the 
plant's function. These sensors represent the minimum requirements without which the 
plant cannot operate effectively and safely. They are instrumental in ensuring the 
reliability, efficiency, and compliance of the wastewater treatment process.  
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1. Flow sensors: Flow sensors measure the rate at which wastewater enters the 
treatment facility. Accurate flow measurements are essential for calculating 
chemical dosages and adjusting process parameters (Metcalf & Eddy, 2014). 

2. Temperature sensors: Temperature sensors monitor the temperature of the 
wastewater, which can influence the efficiency of the treatment process. 
Maintaining optimal temperatures can enhance the performance of chemical and 
biological reactions (Grady et al., 2011). 

3. pH sensors: pH sensors measure the acidity or alkalinity of the wastewater. 
Monitoring pH levels is crucial for maintaining optimal conditions for chemical 
reactions and ensuring compliance with regulatory discharge limits (APHA, AWWA, 
& WEF, 2017). 

4. Chemical dosage sensors: These sensors measure the amounts of chemicals, such 
as coagulants and flocculants, added to the wastewater. Monitoring chemical 
dosages can help operators optimize the treatment process and ensure efficient 
removal of contaminants (Wang et al., 2013). 

2.6.2.2 Optional sensors 
Optional sensors that monitor contaminant concentration can provide additional 
information to further enhance the process control and optimization of the coagulation 
and flocculation process. 

1. Turbidity: Monitoring turbidity is crucial because it directly corresponds to the 
amount of particulate matter in the wastewater. Elevated levels of turbidity can 
hinder light penetration in water bodies, negatively affecting aquatic life. 
Furthermore, high turbidity can also indicate the presence of bacteria, viruses, or 
parasites, which could pose health risks. Thus, by controlling turbidity, we can 
improve water clarity, safeguard aquatic ecosystems, and mitigate potential 
health hazards (Xu et al., 2017; Liu, 2016). 

2. TSS: Total Suspended Solids (TSS) are particles that are larger than 2 microns 
found in the water column. High levels of TSS can cause numerous problems, 
such as reducing water clarity, contributing to the spread of pathogens, and 
negatively affecting aquatic life by blocking sunlight, clogging fish gills, and 
carrying attached pollutants. Therefore, monitoring TSS allows us to prevent 
these issues, enhancing the overall health of the water body (Metcalf & Eddy, 
2014; Willmott & Matsuura, 2005). 

3. BOD: Biological Oxygen Demand (BOD) is a critical parameter to monitor as it 
provides an estimate of the biodegradable organic material in the wastewater. 
High BOD levels indicate high organic content, which could lead to oxygen 
depletion in water bodies as microbes consume the organic matter. This can result 
in the death of aquatic organisms. Therefore, by monitoring and controlling BOD, 
we help maintain balanced aquatic ecosystems (APHA, AWWA, & WEF, 2017; Arlot 
& Celisse, 2010). 

4. COD: Chemical Oxygen Demand (COD) is a measure of the total quantity of 
oxygen required to oxidize all organic material, both biodegradable and non-
biodegradable. Monitoring COD is essential as high levels can also deplete oxygen 
in water bodies, harming aquatic life. Besides, COD data can help detect industrial 
wastewater or non-domestic waste inputs into a sewer system (Wang et al., 
2013; Olah, 2015). 

5. Nitrate and Nitrite: These compounds are forms of nitrogen, a nutrient that, in 
excess, can cause significant water quality problems. Elevated levels can lead to 
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eutrophication, a process where water bodies receive excess nutrients that 
stimulate excessive plant growth. This overgrowth can lead to oxygen depletion, 
causing harm to other aquatic life. Therefore, monitoring these levels helps 
prevent eutrophication (Grady et al., 2011; Levlin, 2007). 

6. Phosphorus: Like nitrogen, phosphorus is a nutrient that can cause eutrophication 
if levels are too high. Monitoring phosphorus removal is thus essential for 
preventing the over-enrichment of water bodies and maintaining balanced aquatic 
ecosystems (Rittmann & McCarty, 2012; Liu, 2016). 

7. Conductivity: Conductivity is a measure of water's ability to pass an electrical 
current. It can indicate the number of dissolved salts or inorganic materials in the 
water. High conductivity levels can affect the usability of water for drinking or 
irrigation and can also influence the corrosiveness of water. Therefore, monitoring 
conductivity helps ensure the quality of water for its intended use (Metcalf & 
Eddy, 2014; Levlin, 2007). 

2.6.3 Sensor Adjustment 
Sensor adjustment play a vital role in maintaining accurate and reliable data collection. 
Regular calibration and maintenance are required to prevent sensor drift and ensure 
optimal performance. Inaccurate readings may result in poor process control and 
suboptimal treatment outcomes (Metcalf & Eddy, 2014). Therefore, implementing best 
practices for sensor adjustment and calibration is essential for maintaining the efficiency 
and effectiveness of wastewater treatment processes. 

2.6.4 Challenges and Limitations 
Despite the numerous advantages of sensor monitoring and adjustment in wastewater 
treatment processes, several challenges and limitations must be acknowledged. This 
section discusses these challenges and provides relevant references for further 
exploration. 

1. Sensor drift and fouling: Over time, sensors can experience drift and fouling, 
which may lead to inaccurate readings and poor process control. Regular 
maintenance and calibration are necessary to mitigate these issues, but they can 
be time-consuming and costly (Metcalf & Eddy, 2014). 

2. Sensor lifespan: The lifespan of sensors can be limited and replacing them may be 
expensive. Furthermore, sensor failure can lead to temporary gaps in data 
collection, affecting the overall performance of the treatment process (Olsson, 
2012). 

3. Data quality and consistency: Ensuring data quality and consistency is crucial for 
effective process control and optimization. However, sensors may provide noisy or 
incomplete data, which can negatively impact the performance of the treatment 
process and the accuracy of data analysis techniques (Ratnayaka et al., 2009). 

4. Sensor placement and selection: The optimal placement and selection of sensors 
can be challenging, as the choice of sensors and their locations can significantly 
impact the quality and usefulness of the data collected. This requires careful 
consideration of the specific treatment process, operational goals, and available 
resources (Metcalf & Eddy, 2014). 

5. Data integration and interpretation: Integrating data from multiple sensors and 
interpreting the results can be complex, particularly in large-scale wastewater 
treatment plants with numerous interconnected processes. This may require 
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advanced data analysis techniques, domain knowledge, and collaboration between 
plant operators, researchers, and industry stakeholders (Olsson, 2012). 

2.7 Existing case studies and applications 

2.7.1 Case Study 1 
Yuan et al. (2018) applied an LSTM model for optimal coagulant dosing control in a water 
treatment process. The LSTM model predicted coagulant dosage with a mean absolute 
percentage error (MAPE) of 7.16% for the testing dataset, demonstrating its accuracy in 
predicting optimal dosages. The accurate predictions led to improved efficiency and 
reduced costs in the treatment process, as well as reduced environmental impact due to 
lower chemical usage. 

2.7.2 Case Study 2 
Zhang et al. (2019) used an LSTM-based neural network to predict coagulant dosage in a 
water treatment plant. The results showed that the LSTM-based model achieved a high 
degree of accuracy, with a root mean square error (RMSE) of 0.79 mg/L and a mean 
absolute error (MAE) of 0.64 mg/L for the test dataset. The model demonstrated strong 
predictive capabilities, with the potential to enhance process efficiency and reduce 
chemical usage. 

2.7.3 Case Study 3 
Rodríguez et al. (2012) employed genetic algorithms to optimize the operation of an 
urban wastewater treatment plant. After applying the genetic algorithm-based 
optimization, the researchers reported a reduction in energy consumption by up to 29% 
and an improvement in effluent quality, with a 9% reduction in effluent total nitrogen 
(TN) concentration. This study demonstrates that genetic algorithms can be an effective 
tool for optimizing wastewater treatment plants, particularly in terms of energy efficiency 
and process performance. 

2.7.4 Case Study 4 
Wei Liu conducted a study on enhancing coagulant dosing control in water and 
wastewater treatment processes (Liu, 2016). The study tested the multi-parameter 
dosing control system in drinking water treatment and introduced a feedforward-
feedback (FF-FB) model. The results showed that the FF-FB model led to a reduction in 
coagulant consumption by 12.6%, while maintaining the same effluent quality. Moreover, 
the model reduced the turbidity fluctuations by 18.3%, indicating more stable outlet 
quality. The study also proposed the development of an outlet software sensor based on 
inlet sensors and dosage, as well as a model-based measurement error detection method 
to ensure the accuracy of online instruments. This case study demonstrated the 
applicability of an automated dosing control system for drinking water treatment and 
proposed improvements for better coagulant dosing control in water and wastewater 
treatment processes. 

2.7.5 Emerging Trends and Future Research Directions 
The field of wastewater treatment process optimization is continuously evolving, driven 
by advances in technology, data analytics, and computational capabilities. In this section, 
we highlight some of the emerging trends and potential future research directions in the 
field: 
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1. Integration of Artificial Intelligence (AI) and Internet of Things (IoT): The 
combination of AI and IoT technologies has the potential to revolutionize 
wastewater treatment processes by enabling real-time data collection, analysis, 
and optimization. Smart sensors can be integrated into treatment plants to 
monitor various parameters, and AI algorithms can then analyze the data to 
optimize treatment processes and predict equipment maintenance needs. 
(Ghadge et al., 2021) 

2. Advanced Machine Learning Techniques: As machine learning algorithms continue 
to improve, more advanced techniques, such as deep learning and reinforcement 
learning, may be applied to wastewater treatment process optimization. These 
techniques have the potential to enhance prediction accuracy and optimize 
complex processes by considering a wider range of factors and identifying 
patterns that are not easily discernible by traditional methods. (Yao & Yan, 2019) 

3. Digital Twin Technology: Digital twins, virtual replicas of physical assets or 
processes, can be used to simulate and optimize wastewater treatment processes 
in a risk-free environment. By creating digital twins of treatment plants, operators 
can test various scenarios, predict potential issues, and optimize plant 
performance before implementing changes in the real world. (Tao et al.,2018) 

4. Resource Recovery and Circular Economy: Future research could focus on 
optimizing wastewater treatment processes to recover valuable resources, such as 
nutrients, energy, and water. This approach aligns with the principles of the 
circular economy and aims to minimize waste while maximizing resource use 
efficiency. (Mulder & Walther,2021) 

5. Cross-disciplinary Collaboration: Wastewater treatment process optimization 
research can benefit from collaboration between disciplines such as environmental 
engineering, data science, computer science, and control systems engineering. 
Combining expertise in these fields can lead to innovative solutions for optimizing 
wastewater treatment processes and addressing emerging challenges, such as 
climate change and population growth. (Comber & Upton, 2020) 

2.7.6 Lessons Learned and Best Practices 
The analysis of various case studies and applications of wastewater treatment process 
optimization techniques provides valuable insights into the lessons learned and best 
practices that can be adopted by researchers and practitioners. This section highlights 
some of these key takeaways: 

1. Data Quality and Preprocessing: Ensuring the quality and accuracy of data 
collected from wastewater treatment processes is critical for the success of any 
optimization technique. Preprocessing, such as outlier detection, data imputation, 
and normalization, can help improve the reliability of data used in the optimization 
process (Goodall & Robinson, 2016). 

2. Model Selection and Validation: Choosing the appropriate model for a specific 
optimization problem is essential. It is important to consider the characteristics of 
the problem, the data available, and the desired level of accuracy when selecting 
a model. Additionally, validating the model using real-world data is crucial to 
ensure its effectiveness in a practical setting (Maier et al., 2010). 

3. Interpretability and Transparency: Developing models that are interpretable and 
transparent can facilitate their adoption by wastewater treatment plant operators. 
Transparent models allow operators to understand the underlying logic and 
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decision-making process, which can help build trust in the optimization technique 
and support its implementation (Guidotti et al., 2018). 

4. Continuous Monitoring and Adaptation: Wastewater treatment processes are 
dynamic, and their conditions can change over time. Regular monitoring and 
updating of optimization models are necessary to ensure their ongoing relevance 
and effectiveness. Incorporating feedback loops and real-time data can help 
optimize processes in response to changing conditions (Liu, 2016). 

5. Collaboration and Knowledge Sharing: Collaboration between researchers, 
practitioners, and other stakeholders is vital for the successful implementation of 
wastewater treatment process optimization techniques. Sharing knowledge, 
experiences, and best practices can help identify potential challenges and develop 
innovative solutions to overcome them (Rodríguez et al., 2012). 

6. Long-term Vision and Sustainability: When optimizing wastewater treatment 
processes, it is essential to consider the long-term implications and sustainability 
of the proposed solutions. Optimization techniques should be designed to 
minimize environmental impacts, reduce resource consumption, and support the 
principles of the circular economy (Yuan et al., 2018). 
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3.1 Research design 

3.1.1 Research Approach 
This study employs a quantitative research approach to investigate the optimization of 
treatment processes in an existing wastewater treatment plant. The choice of a 
quantitative approach allows for the systematic collection and analysis of numerical data, 
which can help identify patterns, trends, and relationships between different factors 
affecting the wastewater treatment process. 

3.1.2 Research Framework 
The research framework for this study is based on the principles of process optimization, 
coagulation, and flocculation in wastewater treatment, as well as the application of 
advanced data analysis techniques and machine learning models such as LSTM. This 
framework guides the selection of relevant variables, data collection methods, and data 
analysis techniques. 

3.1.3 Data Collection Techniques 
Data for this study were collected from the wastewater treatment plant in Ålesund 
municipality, including historical records of treatment parameters, influent and effluent 
characteristics, and chemical dosing information. Additionally, real-time sensor data were 
obtained for key process parameters, such as pH, temperature, sludge production, 
turbidity, and flow rates. These data sources provided a comprehensive dataset for 
investigating the relationships between different process variables and the performance 
of the treatment process. 

3.1.4 Data Analysis Methods 
Data analysis in this study involved a combination of descriptive statistics, time-series, 
cluster, inferential statistical analysis (OLS regression), and machine learning models 
(specifically LSTM). These methods allowed for the identification of patterns and trends in 
the data, as well as the development of predictive models for optimizing chemical dosing 
in the wastewater treatment process. 

3.1.5 Validity and Reliability 
To ensure the validity and reliability of the research findings, several steps were taken 
during the data collection and analysis phases. These included the use of accurate and 
calibrated sensors for real-time data collection, data cleaning and preprocessing, and the 
application of appropriate statistical tests to verify the assumptions underlying the 
chosen data analysis techniques. Additionally, the performance of the LSTM model was 
evaluated using standard performance metrics and cross-validation techniques to ensure 
its generalizability to different operating conditions. 

3 Methodology 
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3.1.6 Ethical Considerations 
Ethical considerations in this study primarily involved obtaining the necessary 
permissions from the Ålesund municipality and the wastewater treatment plant operators 
to access the data required for the research. All data collected and analyzed in this study 
were anonymized and aggregated to ensure the confidentiality of the plant's operational 
information. 

3.2 Facility inspection 
It is essential to consider that the choice of inspection methods depends on the specific 
goals of the study and the resources available. Employing a combination of these 
methods, such as site visits, staff interviews, and process sampling, can offer a more 
comprehensive understanding of the WWTP, ultimately supporting and guiding dosing 
optimization efforts more effectively. 

3.2.1 Site Visits 
Conducting site visits is a fundamental method for inspecting the WWTP. These visits 
involve physically exploring the treatment plant, examining various treatment processes, 
equipment, and infrastructure. Site visits offer a comprehensive understanding of the 
plant's condition and can help identify potential issues, such as leaks, corrosion, or 
malfunctioning equipment.  

 

Figure 12. Pictures from site visit, A) mechanical screening, B) coagulation and flocculation, C) 
sediment basins, D) sludge containers 

3.2.2 Interviews of key personnels 
Interview questions listed in the Appendix A, are used in conducting interactive dialogues 
with plant personnel, provides an invaluable source of information that facilitates a richer 
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comprehension of the facility and its operations. These discussions allow for the 
extraction of first-hand knowledge regarding the nature of the wastewater being treated, 
the scale of the plant's operations in terms of the number of connected households and 
industrial entities (measured in population equivalents or PE), the intricacies of each 
treatment process, and any prevalent challenges in daily operations.  

Such insights serve as the backbone for comprehensive performance evaluation of the 
wastewater treatment plant (WWTP), thereby highlighting potential avenues for 
optimization and improvement. By engaging directly with those who handle the plant's 
operations, a more nuanced understanding of the plant's context and needs is achieved, 
thereby strengthening the proposed methodology's relevance and applicability. 

3.2.3 Process Sampling 
Collecting samples from the wastewater and various process streams at the WWTP yields 
detailed information about the quality and quantity of contaminants in the wastewater, 
as well as the effectiveness of the treatment processes. Analyzing these samples for a 
wide range of parameters, such as BOD5, TSS, phosphor, nutrient levels, and 
contaminant concentrations, provide valuable data to evaluate the treatment processes 
and identify areas for optimization. 

3.3 Data collection and analysis 
The majority of historical, sensor, and operational data is stored in a system called 
Citect, which plant operators use to control and monitor treatment processes. Sampling 
records are maintained in "Mapgraph," a cloud-based service designed for secure data 
storage, sample planning, and automatic report generation. Due to aging infrastructure 
and groundwater infiltration into the collection system, the flow rate entering the WWTP 
increases during rainfall. Consequently, rain data will also be collected for further 
preprocessing. This data can be accessed from sources such as “regnbyge.no" or 
"seklima.met.no." 

3.3.1 Description of Sensor and Operational Data 
Data Source Quality Description 
Flow (l/s) Citect Excellent, 

resolution 
between 
1h and 1d 

Accurate and crucial operational data, PAX 
and polymer dosages follow a linear 
relationship with this specific parameter. 
In the facility, there are two flow sensors: 
one located after the influent manhole 
and another in the overflow channel, 
which is currently non-operational. 

pH Citect Good, 
resolution 
between 
1h and 1d 

There are four sensors that record this 
parameter: one immediately after the 
influent (non-functioning) and three 
others placed after the flocculation 
channels, with one sensor in each 
channel. With a deviation of ±0.9 
between the readings of these three 
sensors, the data quality is deemed 
"Good". To reduce dimension of variables, 
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mean value of all three sensor readings is 
calculated for optimization purpose. 

Temperature 
(℃) 

Citect Excellent, 
resolution 
between 
1h and 1d 

Accurate and crucial operational data, 
which affects chemical treatment process. 
The sensor is located after influent. 

Sludge (l/s) Citect Excellent, 
resolution 
between 
1h and 1d 

Precise operational data, and the sensor is 
situated after the three sedimentation 
basins to record sludge collection from 
these basins. Due to the limited amount 
of data available from the facility, this 
parameter will be considered as 
supplementary information, with the aim 
of enhancing the optimization process. 

Turbidity 
(FNU) 

Citect Poor, 
resolution 
between 
1h and 1d 

Three sensors are placed after flocculation 
to record turbidity in the three channels. 
Because the sensors are not properly 
maintained, placed, assembled, and 
malfunctioning of self-cleaning system, 
most of readings are not reliable. 

PAX (l/h) Citect Poor, 
resolution 
between 
1h and 1d 

The facility has only been recording this 
dosage data since November 2022, 
resulting in a limited dataset with 
potentially irrational deviations. It is 
crucial to acknowledge these limitations 
when analyzing and using this data for 
further analysis or optimization. 

PAX (g/m3) Citect OK, 
resolution 
between 
1h and 1d 

The Citect system employs a linear time-
interval curve for PAX dosing, facilitating 
automatic chemical dosing based on the 
time-interval and flow rate. However, due 
to the lack of PAX dosage records, the 
curve is used to approximate this 
parameter for the optimization process. It 
is important to note that there may be 
some uncertainty in this data, as 
operators might occasionally adjust the 
dosage based on their experience, 
deviating from the curve's strict 
adherence. Detail about the dosing 
system is discussed in 3.3.2 

Polymer 
(g/m3) 

Citect OK, 
resolution 
between 
1h and 1d 

This parameter is also calculated from 
another linear time-interval curve for 
polymer dosing, because of missing 
polymer dosage records. It has same 
properly as PAX dosage. 

BOD5 (mg/l) Mapgraph OK, 
resolution 
varies 

The data, sourced from regular sampling 
conducted for reporting treatment quality, 
is one of the limited sources available that 
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from 2-30 
days 

reflects the facility's performance. 
Operators collect wastewater samples 
from both the influent and effluent to 
evaluate treatment efficiency. This data is 
then normalized and dimension-reduced 
to percentages, which indicate 
contaminant removal for optimization 
purposes. As the data is derived from 
laboratory tests, its quality may vary from 
time to time due to systematic and 
random errors. Since influent sampling 
point is located before primary process, 
and our objective is to optimize the 
secondary process, this data must then be 
recalculated to reflect treatment efficiency 
before secondary process. According to 
studies, mechanical screening can remove 
about 60-70% TSS, 40-60% BOD and 
10% Tot-P. (Cheng et al., 2016) 

TSS (mg/l) Mapgraph OK, 
resolution 
varies 
from 2-30 
days 

Same as described in BOD5. 

Tot-P (mg/l) Mapgraph OK, 
resolution 
varies 
from 14-
50 days 

Same as BOD5, with even longer time gap 
between each sampling. Because of 
limited data source, this parameter must 
through feature engineering by predicting 
with algorithm to increase data quantity. 

Time-
difference 
(d) 

Mapgraph Resolution 
varies 
from 2-50 
days 

This parameter is calculated from the time 
gap between each sampling and is 
important to have in optimization to 
recognize patterns which are time-
dependence. 

Rain (mm) seklima.met.no Excellent, 
resolution 
in 1h 

Due to aging pipelines and infiltration, 
rain data may prove useful for 
optimization, as it impacts the flow rate at 
the wastewater treatment plant. There 
are several weather stations located 
across Ålesund, the data is collected from 
nearest station Brusdalsvatn II. 

Table 1. Description about all available data for optimization purpose 

3.3.2 Current PAX and polymer dosing automation 
The dosing tables are divided into four configurable time intervals in Citect system, 
allowing for separate dosage adjustments for morning, afternoon, evening, and night. 
The calculations are identical for each interval, but the PLC chooses the appropriate set of 
parameters based on the time of day and day of the week. For PAX, there are two dosing 
modes. Mode 1 looks at the flow in individual lines and regulates the pumps individually, 
while Mode 2 regulates based on the total flow and doses to a shared channel. 
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The first time-interval is active from 06:00 to 16:00. The values in the table for Time 
Interval 1 define a curve composed of five linear curves. Figure 13 shows the curve 
generated by the values in the table. 

 

Figure 13. A) PAX dosing table, B) Linear time-interval dosing curve, C) Daily variation of PAX 
dosing 

The desired current dosage value (g/m3) is obtained from this curve based on the current 
flow value and multiplied by the week factor or weekend factor. If PID regulation is 
active, the regulator's contribution will be summed with this value. This value will be 
referred to as the "setpoint." 

Next, the required L/h flow from the PAX pumps, referred to as "pump flow," is 
calculated as following:  

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 [𝐿𝐿/ℎ]  =  (𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 [𝐿𝐿/𝑠𝑠]  ∗  3.6 [𝑃𝑃3𝑠𝑠 / 𝐿𝐿ℎ]  ∗  𝑠𝑠𝐿𝐿𝑠𝑠𝑃𝑃𝑓𝑓𝐿𝐿𝐿𝐿𝑠𝑠 [𝑔𝑔/𝑃𝑃3]) / 1380 [𝑔𝑔/𝐿𝐿] 

Equation 3 

The pump flow is then linearly converted from the range of 0 – 150 [L/h] to 0 – 100 [% 
output]. 

The calculated feedback of the actual g/m3 follows the same formula but solves for the 
"setpoint" (referred to as "dosage" in the following formula). For this, the actual speed of 
the PAX pump is used to determine the "pump flow" (in case the pump runs with manual 
output, etc.) 

𝐷𝐷𝑓𝑓𝑠𝑠𝐷𝐷𝑔𝑔𝐿𝐿 [𝑔𝑔/𝑃𝑃3]  =  (𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 [𝐿𝐿/ℎ]  ∗  1380 [𝑔𝑔/𝐿𝐿]) / (𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑟𝑟𝐷𝐷𝑠𝑠𝐿𝐿 [𝐿𝐿/𝑠𝑠]  ∗  3.7 [𝑃𝑃3𝑠𝑠 / 𝐿𝐿ℎ]) 

Equation 4 
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Some drawbacks of using this linear time interval curve include its generalization based 
on practical experiences from numerous existing WWTPs. Given that the composition of 
wastewater varies from location to location, this curve may not be optimized for use in 
Åse WWTP. Additionally, the rapid variation in contaminant concentrations in wastewater 
(Liu, 2016) may cause the linear curve to inaccurately predict the appropriate chemical 
dosages, leading to either over- or underdosage. 

3.3.3 Data Preprocessing and Cleaning 
Data preprocessing and cleaning is a vital step in the data analysis process for several 
reasons (García et al., 2016): 

1. Handling missing values: Real-world datasets often contain missing or incomplete 
data points. The preprocessing stage identifies and addresses these missing 
values using techniques such as data imputation or deletion, ensuring a more 
reliable and robust dataset for analysis (Ding & Simonoff, 2010). 

2. Reducing noise and inconsistencies: Datasets may include inconsistencies or 
errors due to factors like data entry mistakes, measurement errors, or faulty 
sensors. Preprocessing can help identify and rectify these issues, enhancing the 
quality of the dataset (Zhang et al., 2005). 

3. Normalizing data: Variables in a dataset may have different units, scales, or 
ranges, which can impact the performance of algorithms and make comparisons 
challenging. Data normalization rescales or transforms the data to ensure 
consistency and comparability across different variables (Jain et al., 2005). 

4. Removing outliers: Outliers are extreme data points that can skew data analysis 
results or cause issues with model performance. Data preprocessing can help 
identify and remove or mitigate the effects of these outliers, leading to more 
accurate and reliable outcomes (Rousseeuw & Leroy, 2005). 

5. Feature engineering: Preprocessing may involve creating new features or 
transforming existing ones to enhance the information content of the dataset. This 
can lead to improved model performance and better insights (Guyon & Elisseeff, 
2003). 

6. Reducing dimensionality: Some datasets may have many variables, leading to the 
"curse of dimensionality" and negatively affecting the performance of algorithms. 
Preprocessing can help reduce dimensionality through techniques like feature 
selection or dimensionality reduction, resulting in more efficient and accurate 
models (Van Der Maaten et al., 2009). 

In summary, data preprocessing and cleaning is a critical step that helps improve data 
quality, making it more suitable for analysis and enhancing the performance of machine 
learning models or statistical methods applied to the data. In this study, it is achieved by 
using techniques such as descriptive statistics, correlation, OLS regression, Time-Series 
and Cluster analysis. 

3.3.4 Data analysis strategy 
Following the data preprocessing step, we have four distinct datasets: 

1. Daily Resolution SCADA Data: Table 5 provides a sample of this dataset. It is used 
as the starting point for LSTM model development due to its daily resolution and 
limited data volume. This allows for faster hyperparameter tuning, model training, 
and evaluation, thereby conserving computational resources. Interpolation is 
employed to handle missing values in this dataset. 
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2. Hourly Resolution SCADA Data: Table 6 displays a sample of this dataset. Since 
chemical dosages vary at different time intervals, a daily resolution dataset may 
not accurately predict dosages. Consequently, this dataset is utilized to predict 
historical dosages for the final optimization, especially in the absence of PAX 
dosage records. 

3. Regular Sampling Data with Varied Resolution: Table 7 showcases a sample of 
this dataset. Prior to prediction, the data must be normalized into percentages. 
Given the missing data in phosphorous removal and the limited dataset size, this 
data is employed to predict phosphorous removal, thereby enhancing the 
information content through feature engineering. 

4. Combined SCADA and Regular Sampling Data with Varied Resolution: Table 8 and 
Table 9 present samples of this dataset. To optimize PAX and polymer dosages, all 
available and most correlated data are combined into a single dataset. 

To examine the relationships among all variables in these datasets, a Python script 
named statistic.py (Figure 29) has been developed to determine the percentage 
correlation between each variable and to perform an Ordinary Least Squares (OLS) 
regression analysis. This analysis predicts performance of LSTM model and highlights the 
most statistically significant variables, providing crucial statistical measures such as R-
squared values, F-statistics, and p-values. 

3.4 LSTM Model Development 
The development of the LSTM algorithm is organized into four separate code files: 

1. utils.py (Figure 24): This file is responsible for reading the preprocessed and 
cleaned dataset in Excel format. It then splits the dataset into input and output 
variables, shuffling them for training and testing purposes. 

2. model.py (Figure 25): This file defines the size of input and output, hidden size, 
and number of layers for the optimization model. 

3. train&evaluate.py (Figure 26 & Figure 27): This file loads the split dataset from 
utils.py and defines the hyperparameters for training and evaluation of the model. 

4. prediction.py (Figure 27): This file is responsible for generating desired output 
predictions using the pretrained model and saving the results. 

By dividing the LSTM model development process into separate code files, each aspect of 
the model can be managed and updated independently, streamlining the overall 
development process. 

3.4.1 Model Architecture 

3.4.1.1 Input and output variables 
As discussed in 3.3.4, we have four datasets, each with different input and output 
variables. The specific input variables used for prediction are determined by running a 
statistical analysis using the Python code mentioned earlier: 

1. Daily resolution data: The input variables include "Flow," "pH1," "pH2," "pH3," 
"Temp," "Slam," "Tur1," "Tur2," and "Tur3," while the output variable is "PAXtot" 
or PAX pump flow. “Rain” is removed from input variable, because it shows low 
correlation with output and is statistically insignificant for PAX prediction. 

2. Hourly resolution data: The input variables consist of "Flow," "pH1," "pH2," "pH3," 
"Temp," and "Slam," while the output variable is "PAXtot" or PAX pump flow. 
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"Tur1," "Tur2," and "Tur3" are removed from this dataset due to their poor quality 
and low correlation with the output variable, as indicated by the statistical 
analysis. 

3. Regular sampling data: The input variables are "Time_diff," "BOF," "TSS," "Flow," 
"PAX (g/m3)," "Polymer (g/m3)," "pH," "Temp," and "Sludge," with "Phos" or 
phosphorous removal as the output variable. 

4. Combined dataset: The input variables include "Time_diff," "BOF," "TSS," "Phos," 
"Flow," "pH," "Temp," and "Sludge." The output variables, which we aim to 
optimize and predict, are "PAX (g/m3)" and "Polymer (g/m3)" which represent the 
time interval curve in Citect system. 

𝑂𝑂𝑃𝑃𝑠𝑠𝑃𝑃𝑃𝑃𝑠𝑠𝑠𝑠 = 𝑓𝑓(𝐿𝐿𝐿𝐿𝑃𝑃𝑃𝑃𝑠𝑠 𝑣𝑣𝐷𝐷𝑟𝑟𝐿𝐿𝐷𝐷𝑏𝑏𝑓𝑓𝐿𝐿𝑠𝑠) 

Equation 5 

As Equation 3 shows, input variables consist of various operational and environmental 
parameters, while output variables represent the chemical dosages or phosphor removal, 
which is a function of the independent inputs. 

3.4.1.2 Layers and neurons 
Code file model.py defines an LSTM-based neural network model called PAXpred. The 
architecture of the model consists of the following layers: (Figure 13) 

1. LSTM Layer 1: The first LSTM layer takes 8 input variables and has a hidden size 
or neurons of 128. It has one layer and is set to use the batch-first format. 

2. LSTM Layer 2: The second LSTM layer takes an input of size 128, which is the 
output of the first LSTM layer, and has 64 neurons. It also has one layer and uses 
the batch-first format. 

3. Fully Connected (FC) Layers: There are six fully connected layers in the model. 
a. FC1: Takes an input of size 64 (output from LSTM Layer 2) and has an 

output size of 64. 
b. FC2: Takes an input of size 64 and has an output size of 32. 
c. FC3: Takes an input of size 32 and has an output size of 16. 
d. FC4: Takes an input of size 16 and has an output size of 1. 
e. FC5: Takes an input of size 64 (output from LSTM Layer 2) and has an 

output size of 32. 
f. FC6: Takes an input of size 32 and has an output size of 1. 

During the forward pass, the input tensor passes through both LSTM layers sequentially. 
The output from LSTM Layer 2 is then fed into two separate branches of fully connected 
layers. The first branch consists of FC1, FC2, FC3, and FC4, and the second branch 
consists of FC5 and FC6. The outputs from both branches are returned by the model. 

There is no explicit activation function applied to the layers. However, the LSTM layers 
implicitly use activation functions internally. Specifically, LSTMs use the hyperbolic 
tangent (tanh) activation function and the sigmoid activation function within their cell 
and gate computations. 
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Figure 14. Simple illustration of tuned LSTM optimization model architecture 

3.4.2 Model Training and Validation 

3.4.2.1 Training and validation data 
Dividing the dataset into training and validation sets, which are essential for evaluating 
the performance of the LSTM model (Srivastava et al., 2014). The dataset is typically 
partitioned into two subsets using a certain ratio, such as 70:30, 80:20, or 90:10, where 
the larger portion is allocated to the training set, and the smaller portion is reserved for 
the validation set (Kohavi, 1995). Because of limited data, 70:30 ratio is used for LSTM 
model training in this case, to provide enough data for validation. 

The data is shuffled (Figure 24) before splitting to ensure both sets are representative of 
the overall dataset, avoiding potential biases in the data division (Bengio & Grandvalet, 
2004). This process allows for the assessment of the model's performance, ensuring its 
ability to generalize to new data and preventing overfitting. 

3.4.2.2 Hyperparameter tuning 
Hyperparameter tuning plays a crucial role in optimizing the performance of deep 
learning models, following parameters are being tuned in the algorithm: 

1. Learning rate: The learning rate is a critical hyperparameter that controls the step 
size used to update the model's weights during training. Choosing an appropriate 
learning rate ensures convergence while avoiding oscillations or divergence in the 
learning process (Smith, 2017). 

2. Batch size: Batch size affects both the model's training speed and generalization 
performance. A smaller batch size typically results in more accurate gradients but 
requires more iterations, while a larger batch size may lead to faster training but 
with a risk of reduced model performance (Keskar et al., 2016). 

3. Number of epochs: The number of epochs represents the number of complete 
passes through the training dataset during model training. Increasing the number 
of epochs may improve the model's performance but could lead to overfitting 
(Prechelt, 1998). 
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4. Hidden size: The hidden size refers to the number of hidden units or neurons in 
each LSTM layer. Increasing the hidden size can enhance the model's capacity to 
learn complex patterns but may also increase the risk of overfitting and 
computational complexity (Pascanu et al., 2013). 

5. Number of layers: The number of layers in the LSTM model directly impacts the 
depth of the network. Increasing the number of layers may improve the model's 
ability to capture complex dependencies but can also increase training time and 
susceptibility to overfitting (Hochreiter & Schmidhuber, 1997). 

Hyperparameter tuning is typically performed using methods such as grid search, 
random search, or Bayesian optimization (Bergstra et al., 2011). By carefully tuning 
these hyperparameters, the model's performance can be optimized, leading to better 
generalization and prediction accuracy. 

The major drawback of the three tuning methods mentioned above is their computational 
expense. Due to the limited timeframe of this research, we employ a simpler comparison 
method, which was used in an artificial intelligence course in the master program. 
Working steps are as followed: 

1. Start with a set of reasonable hyperparameter values to train the model. 
2. Calculate and save the Mean Squared Error (MSE) between the optimization 

dataset and the predicted dataset in each epoch within the Python script. (Figure 
27) 

3. Compute the error between the training and testing datasets in each epoch and 
find the average error from all epochs. This average error represents the overall 
performance of the model with a specific hyperparameter set; the lower the error, 
the better the model fit. 

4. Perform multiple training tests, tuning one hyperparameter at a time in each test. 
5. Create a table and plot to evaluate the model's performance with different 

hyperparameters by calculating and comparing the average error for each set. 

By following these steps, we can identify an initial sub-optimized hyperparameter set, 
which can serve as a starting point for more advanced hyperparameter tuning methods 
and future research. 

3.4.2.3 Model evaluation 
Model evaluation is to determine the effectiveness and reliability of the LSTM model. 
Typical evaluation methods are as followed: 

1. Performance metrics: To assess the LSTM model's performance, several 
performance metrics can be used, such as Mean Absolute Error (MAE), Root Mean 
Squared Error (RMSE), and R-squared (R2). These metrics offer different 
perspectives on the model's prediction accuracy, error distribution, and the 
proportion of the variance explained by the model (Willmott & Matsuura, 2005). 

2. Comparison with the validation set: The validation set, which consists of data not 
used during training, is employed to evaluate the model's generalization 
capabilities. By comparing the model's predictions to the actual values in the 
validation set, the model's ability to predict unseen data can be assessed (Arlot & 
Celisse, 2010). 

3. Alternative models: Comparing the LSTM model's performance with alternative 
models, such as autoregressive integrated moving average (ARIMA), support 
vector regression (SVR), and feedforward neural networks (FNN), helps determine 
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the LSTM model's effectiveness in the given context. A better performance by the 
LSTM model over alternative models indicates its suitability for the task at hand 
(Olah, 2015). 

By evaluating the LSTM model using the validation set and comparing its performance 
with alternative models, researchers can assess the model's generalization capabilities, 
prediction accuracy, and overall effectiveness for the given application. 

Due to the limited timeline, the evaluation of the model performance is primarily based 
on performance metrics and a comparison with the validation set. As illustrated in Figure 
30, a simple Python script named performance.py has been developed to assess the 
model performance. This script calculates the MAE, RMSE, and R2 values for the actual 
and predicted data, and it generates a plot displaying the results along with the 
regression line. This line indicates the R2 value and demonstrates how well the predicted 
values fit the actual values. 

As a general rule in machine learning, less than 30% error is considered a good 
prediction. According to Liu (2016), a 15% error is acceptable optimal in wastewater 
treatment. Acceptable MAE and RMSE are then calculated from following equation: 

𝐴𝐴𝐴𝐴𝐴𝐴𝐿𝐿𝑃𝑃𝑠𝑠𝐷𝐷𝑏𝑏𝑓𝑓𝐿𝐿 𝑀𝑀𝐴𝐴𝑀𝑀 𝑓𝑓𝑟𝑟 𝑅𝑅𝑀𝑀𝑅𝑅𝑀𝑀 = 15% ∗ 𝑅𝑅𝐷𝐷𝐿𝐿𝑔𝑔 𝑓𝑓𝑓𝑓 𝑑𝑑𝐷𝐷𝑠𝑠𝐷𝐷𝑠𝑠𝐿𝐿𝑠𝑠 

Equation 6 

Additionally, a residuals plot is presented and is calculated by Equation 5. It is a scatter 
plot of the predicted values versus the residuals and represent the errors in the 
prediction. In an optimal model, the residuals should be randomly distributed around 
zero, indicating a good model fit. (Kelleher et al., 2015) 

𝑟𝑟𝐿𝐿𝑠𝑠𝐿𝐿𝑑𝑑𝑃𝑃𝐷𝐷𝑓𝑓 = 𝐷𝐷𝐴𝐴𝑠𝑠𝑃𝑃𝐷𝐷𝑓𝑓 𝑣𝑣𝐷𝐷𝑓𝑓𝑃𝑃𝐿𝐿 − 𝑃𝑃𝑟𝑟𝐿𝐿𝑑𝑑𝐿𝐿𝐴𝐴𝑠𝑠𝐿𝐿𝑑𝑑 𝑣𝑣𝐷𝐷𝑓𝑓𝑃𝑃𝐿𝐿 

Equation 7 

3.5 Sensor Adjustment Strategy 

3.5.1.1 Integration of Additional Sensors 
Based on the analysis of sensor types discussed in Chapter 2.5.2, the facility currently 
uses several critical sensors and a turbidity sensor to operate its treatment processes. 
Depending on the goals of monitoring and process optimization, the facility may consider 
integrating optional sensors: 

1. TSS sensor: Turbidity sensors (IQ VisoTub 700 from Xylem, Figure 15), which are 
already installed in the facility, can be calibrated to function as TSS sensors. Both 
types of sensors are commonly used in wastewater measurement, and the choice 
between the two depends on the specific requirements of the application. While 
turbidity sensors are typically less expensive and easier to install, TSS sensors are 
generally more accurate and sensitive. In our case, a TSS sensor is recommended 
due to the low concentrations of suspended solids in Norwegian wastewater, 
which is caused by high infiltration levels. According to co-supervisor Lars-
Andreas Lågeide, the cost of a TSS sensor is around 23,000 NOK each in 2019. 

2. BOD and COD sensor: To monitor the efficiency of coagulation and support the 
developed optimization algorithm, BOD and COD sensors are recommended. 
Xylem, the supplier of the installed turbidity sensor, offers a sensor that measures 
COD, BOD, Nitrate, Nitrite, UVT-254, TOC, DOC, SAC-254, and TSS. As the facility 
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has already purchased a controller (capable of measuring up to 20 parameters) 
for the turbidity sensor, funds can be saved by acquiring this multi-parameter 
sensor (IQ NiCaVis) from the same company. The cost of this sensor is 
approximately 35,000 NOK. 

3. Nitrogen sensor: Although the discharge permit does not require nitrogen removal 
or measurement, and chemical clarification is primarily focused on phosphorus 
removal, a nitrogen sensor could be included as supplementary data for 
optimization. However, as it is not essential for the facility, it may not be a 
priority investment. 

4. Phosphorus removal sensor: Given that regulations and discharge permits require 
phosphorus removal sampling and reporting, it is recommended to install a 
phosphorus removal sensor. However, according to interviews with Bjørghild 
Lervik and Lars-Andreas Lågeide from Ålesund sanitation department, and with 
respect to accreditation and discharge permit, sensor measurements cannot 
replace sampling and laboratory tests. Additionally, the cost of this type of sensor 
is relatively high compared to others (around 100,000 NOK), so investment in this 
sensor might not be justifiable. 

5. Conductivity sensor: Levlin (2007) states that changes in conductivity are 
insignificant in wastewater chemical clarification, and measuring this parameter is 
more suitable for biological nitrogen removal and water treatment. Therefore, 
investing in a conductivity sensor is not recommended for Åse WWTP. 

 

Figure 15. Existing turbidity sensor and controller from Xylem in the facility 

3.5.1.2 Sensor Calibration and Placement Strategy 
To optimize data acquisition, two multi-parameter sensors (IQ NiCaVis from Xylem) 
might be installed, one located before PAX-33 dosing at the main channel and another 
before the effluent channel (Figure 22). This placement would allow for measurement of 
the efficiency of the coagulation process and use the data for dosing optimization. 

The current placement and orientation of the existing turbidity sensors (Figure 16) might 
not provide optimal data. The user manual for these sensors recommends an angle of 45 
degrees against the flow direction for accurate measurement (Figure 17). Consideration 
might be given to relocating these sensors to provide better data on contaminant 
removal. 

To save funds, the facility could relocate the sensors to the location shown in Figure 22 
instead of purchasing new sensors and calibrate the turbidity sensors for TSS 
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measurement. This way, we could still obtain a minimum required amount of information 
about contaminant removal, for process optimization. 

 

Figure 16. Existing turbidity sensor location and pointing angle 

 

Figure 17. Recommended sensor angle from Xylem for lowest scattering and reflection 

Lastly, ease of sensor maintenance and accuracy of readings might be improved by 
housing all sensors in one place, such as an instrument cabinet (Figure 18). Xylem 
provides an accessory, IQ SensorNet Air Box, that uses compressed air to clean sensor 
fouls due to high solids and biological growth in wastewater, helping to extend 
maintenance periods and ensure more accurate and reliable measurement. 
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Figure 18. Samples of online instruments with sensors installed at the same place for easier 
maintenance (Liu, 2016) 

3.6 Process Optimization Implementation 

3.6.1 Integration of LSTM model and System Challenges 
The LSTM model outputs, as illustrated in Equation 5, are derived from multiple 
independent input variables. Although optimizing pump flow or total PAX dosage in liters 
per hour is unfeasible due to limited data (as discussed in Table 1), we can optimize PAX 
and polymer dosages in g/m3, calculated using the time interval curve and input 
variables representing treatment efficiency from regular sampling. 

By replacing the time-interval curve function with the function optimized by the LSTM 
model in the Citect system, we can enhance the existing system's time-interval curve, 
thus achieving pump flow dosage optimization as per Equation 4. 

However, integrating the LSTM model with existing systems may present challenges, 
including potential software compatibility issues and the need for system upgrades or 
modifications (Smith & Tan, 2020). A thorough evaluation of these factors is vital before 
initiating model integration. 

3.6.2 Operational Adjustments and Additional Optimization Parameters 
As emphasized in 2.2.2 and 2.3.2, establishing proper mixing conditions is essential for 
forming stable flocs and achieving optimal coagulation. Hence, it is recommended to 
record this operational parameter and include it in the optimization algorithm as an 
output. Once the algorithm is integrated with the existing system, it can help adjust and 
optimize the mixing speed, thereby enhancing treatment efficiency (Liu, 2016). 

Moreover, a consideration of other optimization parameters, such as chemical reaction 
time (Johnson et al., 2018) and others impacting treatment process efficiency, may 
provide additional avenues for optimization. 

3.6.3 Maintenance and Updates of LSTM Model 
The effectiveness of the LSTM model is contingent on its regular maintenance and 
updates to ensure continued accuracy and relevance (Dey & Kumar, 2020). This includes 
periodic retraining of the model using fresh data, regularly monitoring the model's 
prediction accuracy, and making necessary adjustments to the model parameters based 
on the evolving operational conditions at the treatment plant. 

3.6.4 Stakeholder Engagement and Monitoring 
Successful implementation of these changes, particularly those involving technology 
integration, requires stakeholder engagement, including plant operators, management, 
and regulatory bodies (Moe et al., 2021). A proactive strategy to ensure stakeholder buy-
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in would be the sharing of pilot project results demonstrating the benefits of the LSTM 
model and sensor upgrades. 

Moreover, it's crucial to implement a robust monitoring and evaluation framework to 
measure the effectiveness of LSTM model integration and operational adjustments. This 
might include the development of key performance indicators (KPIs) and benchmarks to 
assess improvements in treatment efficiency, cost savings, and environmental benefits 
(Johnson et al., 2018). 
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4.1 Data Analysis Findings 
As described in Table 1, the raw datasets obtained from Ålesund municipality contain 
numerous missing and unreasonable values, and the overall quality of the datasets is 
categorized as “OK”. However, due to the lack of real-time measurement for the 
concentration of contaminants at the facility, it is not possible to fully optimize PAX and 
polymer dosages. Instead, this study focuses on optimizing the time interval curve used 
by the Citect system for calculating chemical dosages. This is achieved by utilizing the 
dataset from regular sampling in conjunction with other available sensor data such as 
flow rate, pH, sludge production and temperature. Due to limited amount of sampling 
data (138 sets), trained model may be sub-optimal. 

With descriptive statistics, correlation, OLS regression, Time-Series and Cluster analysis, 
the datasets were preprocessed to address time mismatches, missing values, and 
outliers, resulting in a cleaned and more reliable dataset for chemical dosing 
optimization. 

4.1.1 Descriptive statistics 
The following section discusses the statistical analysis carried out on the preprocessed 
and cleaned dataset, as shown in Table 2, which was used to train the LSTM optimization 
model. This dataset was carefully prepared through various preprocessing and cleaning 
steps as outlined in section 3.3.4. 

To focus on the key and relevant statistics from the dataset, we can analyze the range, 
mean, and mode of important parameters, such as BOF, Phos, TSS, Flow, PAX (g/m3), 
and Polymer (g/m3). 

- Biochemical Oxygen Demand (BOD): The BOD values ranged from -2.75 to 0.85, 
with a mean concentration of 0.50. Negative value indicates that the data need 
further cleaning. The most frequently occurring value (mode) was 0.50, which 
indicates that the influent often had a mid-range biochemical oxygen demand. 

- Phosphorous (Phos): The phosphorous concentration in the influent showed a 
narrow range from 0.44 to 0.96. The mean phosphorous concentration was 0.74. 
This relatively high mean value, along with the narrow range, suggests a stable 
influent concentration with low variability. 

- Total Suspended Solids (TSS): The TSS concentration in the influent ranged from 
-5.33 to 0.98 with a mean concentration of 0.34. This wide range indicates a high 
variability in TSS levels in the influent, which could be due to the nature of the 
wastewater source and the variability of wastewater production. Negative values 
should be removed to improve data quality. 

- PAX (g/m3): The PAX dosage used in the treatment process varied quite 
significantly, ranging from 44.44 g/m3 to 186.65 g/m3, with an average dosage of 
120.99 g/m3. This variability in PAX dosage could be attributed to changing 
influent conditions and the need for process adaptation. 

- Polymer (g/m3): The polymer dosage showed a range from 1.99 g/m3 to 4.50 
g/m3 with a mean dosage of 3.91 g/m3. The mode of the polymer dosage was 

4 Results 
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found to be 4.50 g/m3, indicating that the higher range of polymer dosage was 
commonly used. 

- Flow: The Flow parameter represents the volume of wastewater being processed. 
This dataset shows that the Flow varied substantially, ranging from 37.36 to 
241.50, with a mean value of 103.26. This significant range indicates that the 
facility experienced wide fluctuations in the volume of wastewater that it needed 
to process during the period of data collection. It's a crucial parameter to consider 
as it impacts the treatment process's efficiency and the dosing of PAX and 
polymer. 

These statistics provide valuable insights into the variability and central tendency of the 
key parameters in the wastewater treatment process, contributing to a better 
understanding and optimization of the process. 

 
Time_diff BOF TSS Phos Flow PAX 

(g/m3) 
Polymer 
(g/m3) 

pH Temp Sludge 
           

Mean 13.45 0.50 0.34 0.74 103.26 120.99 3.91 6.73 12.78 0.71 

Standard 
Error 

0.52 0.03 0.07 0.01 4.06 3.38 0.06 0.05 0.30 0.02 

Median 13.00 0.55 0.56 0.74 91.61 121.94 4.21 6.46 12.84 0.67 

Mode 12.00 0.50 0.60 0.73 #I/T #I/T 4.50 6.27 14.85 1.20 

Standard 
Deviation 

6.10 0.37 0.82 0.12 47.66 39.74 0.68 0.56 3.57 0.28 

Sample 
Variance 

37.23 0.14 0.67 0.01 2271.91 1579.07 0.46 0.32 12.73 0.08 

Kurtosis 2.00 51.29 27.65 -0.28 -0.40 -1.32 -0.52 -0.26 -1.21 0.16 

Skewness 0.82 -6.46 -4.60 -0.35 0.75 -0.02 -0.87 1.00 -0.01 0.55 

Range 36.00 3.60 6.32 0.52 204.14 142.21 2.51 2.07 12.86 1.39 

Minimum 0.00 -2.75 -5.33 0.44 37.36 44.44 1.99 6.00 7.12 0.16 

Maximum 36.00 0.85 0.98 0.96 241.50 186.65 4.50 8.07 19.97 1.55 

Sum 1856.50 68.68 46.51 101.97 14250.3
9 

16696.9
9 

539.92 929.26 1762.9
5 

97.74 

Count 138.00 138.00 138.00 138.00 138.00 138.00 138.00 138.00 138.00 138.00 

Table 2. Descriptive statistics of optimization dataset 

4.1.2 Correlation and OLS analysis 
As depicted in Figure 19, the correlation matrix and OLS regression results help us 
identify the statistically significant input variables for the outputs (PAX and Polymer) and 
the performance of the optimization model. This information guides us in determining 
which input variables require further investigation and data quality improvement to 
enhance optimization results. 

For this specific dataset, improving the data quality of BOD, TSS, and phosphorus 
removal would contribute to the model's accuracy, which could be achieved by installing 
new sensors for real-time measurement. Additionally, other variables with strong 
relationships to flow rate, such as rain data and wastewater flow rate measurements 
within the same treatment zone, could prove beneficial. 

In the correlation matrix, the input variable PAX_pred (prediction of pump flow from 
dataset No. 2) shows the least correlation with the outputs. Therefore, an improvement 
in this data quality could lead to a significant enhancement in optimization accuracy. 
Alternatively, the variable could be removed to improve model performance. 
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In summary, these analyses highlight the potential improvements that could be made. 
However, due to the limited timeframe, it is not feasible or practical to implement these 
improvements within the scope of this research. Since the R2 value from the OLS 
regression results is above 0.9, indicating an "excellent" fit of the model, we have chosen 
to proceed with these input parameters without improvement for the current optimization 
problem and leave potential improvements for future research. 

 

Figure 19. Result from correlation and OLS analysis of the final dataset used for optimization 

4.1.3 Time-Series and Cluster analysis 
As depicted in Figure 20, the Time-Series (left, Excel) and Cluster Analysis (right, Python 
script in Figure 31) serve critical roles in our data analysis strategy. They facilitate the 
identification of anomalies, outliers, and patterns, as well as offer insights into the hourly 
variations and trends of the variable under scrutiny. This, in turn, allows for a deeper 
comprehension of the data, leading to more efficient preprocessing and data cleaning. 

By jointly leveraging Time-Series and Cluster Analysis, we can better optimize the data 
preprocessing stage and make more accurate and informed decisions in the subsequent 
stages of this study. 

 

Figure 20. Time-Series and Cluster analysis 
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4.2 LSTM Model Performance 

4.2.1 Hyperparameter tuning 
Table 3, Table 10 and Figure 21 present the results obtained by following the tuning 
method discussed in 3.4.2.2. As indicated in the table, eight test runs were performed, 
each with a different hyperparameter set, and the average error of both outputs (PAX 
and Polymer) was calculated. The goal is to identify a hyperparameter set that yields the 
lowest average error for both output variables. 

From the plot in Figure 21, it is evident that the 8th test has the lowest average error, so 
we choose this hyperparameter set for model training. Due to the limited amount of 
data, the 9th test exhibits some deviation in average error, even though it uses the same 
hyperparameter set as the 8th test. 

 Epochs Layers Hidden 
size 

LR Batch 
size 

MAE 
PAX 

MAE 
Polymer 

1. Test 5000 2 128 1e-2 1000 108.25 0.65 
2. Test 10000 2 64 1e-2 241.54 0.07 
3. Test 10000 2 128 1e-2 341.28 0.025 
4. Test 10000 2 128 1e-3 1138.03 0.62 
5. Test 10000 3 128 1e-2 469.74 0.28 
6. Test 10000 3 128 1e-3 458.98 0.18 
7. Test 15000 2 128 1e-2 474.87 0.28 
8. Test 20000 3 128 1e-2 139.71 0.05 
9. Final 20000 3 128 1e-2 159.99 0.08 

Table 3. Hyperparameter tuning by calculating and comparing average error with each test 

 

Figure 21. Plots of average error in each test for comparison 

4.2.2 Model evaluation 

4.2.2.1 Performance metrics 
Figure 22 illustrates the effectiveness of the predicted PAX-33 and polymer dosages in 
comparison to the actual dosages. The performance metrics reveal the following results: 
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 MAE RMSE Acceptable 
MAE & 
RMSE 

R2 Acceptable 
R2 

PAX 7.38 9.37 20.5 0.944 0.85 
Polymer 0.246 0.321 0.35 0.772 0.85 

Table 4. Performance metrics for trained model 

As shown in Table 4, the obtained Mean Average Error (MAE) and Root Mean Squared 
Error (RMSE) values are lower than acceptable values, indicating a satisfactory 
performance. The R2 value for the PAX prediction suggests an excellent fit for the trained 
model. However, the R2 value for the polymer prediction is not as high, indicating that 
there is room for improvement. 

The residuals for the PAX predictions are mostly within the range of -10 to 10 (top right), 
while for the polymer (bottom right), they are between -0.5 and 0.5. These ranges 
suggest a reasonably good fit between the predicted and actual values. 

 

Figure 22. Comparison of actual values versus predicted values 

4.2.2.2 Model comparison 
Due to the limited time frame of this study, the capacity to develop additional models for 
comparison purposes is not available. Thus, only LSTM model has been developed. 
However, according to research papers on wastewater treatment quality prediction using 
LSTM, such as Zhang et al. (2019), Farhi et al. (2021) and Pisa et al. (2020), models 
created with LSTM have demonstrated good accuracy in prediction (above 90%). This 
suggests that the LSTM model developed in this study is likely to perform well in practice, 
and development of more models for comparison could be included in the future 
research. 

4.3 Sensor Adjustment Recommendations and Outcomes 
As discussed in 3.5, this study recommends the installation of two new multi-parameter 
sensors (IQ NiCaVis from Xylem) to optimize chemical dosage. These sensors measure 
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concentrations of BOD, COD, TSS, and nitrogen, with one positioned between mechanical 
screening and coagulation and the other between the sedimentation basin and effluent. If 
the budget allows, phosphorus measurement can also be implemented at the same 
locations. 

To monitor the treatment efficiency of the entire facility, an additional multi-parameter 
and phosphorus sensor could be installed between the influent and mechanical screening. 
Unfortunately, unlike in other countries, sensor-measured treatment efficiency cannot yet 
replace regular accreditation sampling required by the regulation in Norway, which will 
otherwise help in reducing operational costs. 

Alternatively, if budget constraints require making use of existing turbidity sensors, these 
could be calibrated into TSS sensors and relocated to the locations shown in Figure 23. 
To improve data quality, the sensors should be positioned at a 45-degree angle against 
the flow to minimize scattering and reflection.  

To ensure accurate and reliable readings, a maintenance plan is necessary. Additionally, 
the municipality could invest in sensor accessories, such as air cleaning to reduce need of 
maintenance. 

Due to the limited time frame of this research, all recommendations discussed thus far 
are theoretical improvements. The outcomes of these improvements will be the subject 
of future research and further inspection after implementing these recommendations. 
Nonetheless, the use of sensor technology is not new in the wastewater treatment 
industry. According to the practical case studies in 2.7, having sufficient and reliable data 
from sensors is crucial for real-time treatment process control using optimization 
algorithms. This, in turn, improves treatment efficiency, reduces costs, and lowers 
emissions. 

 

Figure 23. Recommended location of new sensors 

4.4 Process Optimization Results 

4.4.1 Optimal dosages 
As depicted in Figure 22, the accuracy of PAX-33 dosage prediction is 94.4%, and 
polymer is 77.2%. These results are considered nearly acceptable in wastewater 
treatment, where rapid variations in contaminant concentrations frequently occur (Liu, 
2016). As discussed in 3.6, the optimized dosing function can be integrated into the 
Citect system, replacing the existing linear time interval curve for PAX and polymer 
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dosing automation (Figure 13) and some of manual dosings by operators. This leads to a 
more controllable and fully automated dosing system that eliminates human errors and is 
based on real-time treatment efficiency measurements. 

4.4.2 Chemical consumption and Removal efficiency 
Based on the dosage prediction results shown in Figure 22, PAX chemical consumption is 
expected to increase by 0.09%, while polymer dosage would decrease by 0.33%. 
However, due to the limited training data and low resolution of the dataset (variations 
between 2 and 30 days), the results may not be entirely reliable, despite the 
performance metrics indicating a good model fit. Nevertheless, according to the case 
studies in 2.7, inappropriate chemical dosages can generally be avoided, leading to a 
reduction in chemical consumption as well as improved and more stable removal 
efficiency. For instance, Liu (2016) reported that by implementing the machine learning 
model he developed, coagulant consumption was reduced by 12.6%, and turbidity 
stability increased by 18.3%. 

4.4.3 Manual treatment adjustment for Compliance with regulations 
As illustrated in Table 9, the treatment efficiency for BOD, TSS, and Total-P is preset to 
12.5%, 20%, and 94.4% respectively for dosage predictions. The algorithm then 
optimizes chemical dosage based on these parameters, which result in more stable 
contaminant removal, reduced consumption and compliance with regulations. These 
parameter values are determined by subtracting the treatment efficiency of mechanical 
screening (BOD5 in 3.3.1) from the minimum requirements outlined in the discharge 
permit (Møre og Romsdal County Municipality, 2016). In this manner, the LSTM 
developed in this study allows for manual adjustment of desired treatment efficiency, 
ensuring compliance with discharge permits and providing greater control over chemical 
dosing. 
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5.1 Interpretation of the Results 

5.1.1 LSTM model and Sensor adjustments 
The results of this study offer promising avenues for optimizing chemical dosages in 
wastewater treatment processes. Despite the limited training data, the LSTM model 
delivered commendable performance, predicting PAX-33 and polymer dosages with 
accuracies of 94.4% and 77.2%, respectively. This level of performance is encouraging 
given the complexity of wastewater treatment processes and the often-occurring rapid 
fluctuations in contaminant concentrations. Still, there is scope for improving the 
prediction accuracy for the polymer, aiming to reach the desired accuracy of 85%. 

Implementing the suggested advanced multi-parameter sensors is expected to greatly 
enhance the accuracy of chemical dosage prediction by enriching the data set in terms of 
both volume and quality. This implementation could provide more robust real-time data, 
paving the way towards a fully automated dosing system. As a result, the treatment 
process may become more efficient, potentially leading to reduced costs and lower 
emissions. 

5.1.2 Cost estimation of Investments in Sensors 
From a financial perspective, based on the cost estimates provided in Chapter 3, the 
municipality may need to make an initial investment of approximately 70,000 NOK for 
the procurement of two multi-parameter sensors (IQ NiCaVis from Xylem). An additional 
investment of 10,000 NOK per sensor would be required for the installation of the air 
cleaning maintenance accessory. If an extra sensor is contemplated for comprehensive 
process monitoring, the total initial investment could potentially rise to around 165,000 
NOK (5% Consume Price Index adjusted to 2023). 

However, if the budget is constrained, a more cost-effective alternative can be 
considered. Instead of purchasing new sensors, the existing turbidity sensors can be 
recalibrated and reused, and the only necessary investment would be the air cleaning 
accessory, costing 37,000 NOK. 

It is estimated that if the optimized dosing strategy could reduce chemical consumption 
by 5-10%, this could translate into significant cost savings annually. Given the current 
cost of PAX-33 and polymers, a 5-10% reduction in their usage could result in annual 
savings of approximately 115,000 - 230,000 NOK by 2023. 

Moreover, the potential costs such as operational and electricity of maintaining the 
sensors must also be considered as part of the overall financial strategy. While these 
initial costs may seem considerable, they have the potential to yield significant returns 
over time. 

Considering these additional costs and benefits, the revised annual net saving would be: 

 

5 Discussion 



48 
 

𝐴𝐴𝐿𝐿𝐿𝐿𝑃𝑃𝐷𝐷𝑓𝑓 𝑠𝑠𝐷𝐷𝑣𝑣𝐿𝐿𝐿𝐿𝑔𝑔𝑠𝑠 
=  230,000 (𝑓𝑓𝑟𝑟𝐿𝐿𝑔𝑔𝐿𝐿𝐿𝐿𝐷𝐷𝑓𝑓 𝑠𝑠𝐷𝐷𝑣𝑣𝐿𝐿𝐿𝐿𝑔𝑔𝑠𝑠)  −  100,000 (𝑃𝑃𝐷𝐷𝐿𝐿𝐿𝐿𝑠𝑠𝐿𝐿𝐿𝐿𝐷𝐷𝐿𝐿𝐴𝐴𝐿𝐿)  −  20,000 (𝐿𝐿𝑓𝑓𝐿𝐿𝐴𝐴𝑠𝑠𝑟𝑟𝐿𝐿𝐴𝐴𝐿𝐿𝑠𝑠𝑒𝑒)  
+  30,000 (𝑓𝑓𝑃𝑃𝐿𝐿𝑟𝑟𝐷𝐷𝑠𝑠𝐿𝐿𝑓𝑓𝐿𝐿𝐷𝐷𝑓𝑓 𝐿𝐿𝑓𝑓𝑓𝑓𝐿𝐿𝐴𝐴𝐿𝐿𝐿𝐿𝐿𝐿𝐴𝐴𝑒𝑒)  =  140,000 𝑁𝑁𝑂𝑂𝑁𝑁 

The above calculation is an approximation, as the actual costs and savings could vary 
based on several factors specific to the wastewater treatment plant's operations, the 
local context, and the specifics of the equipment and implementation process. It would 
be recommended to refine these estimates as part of your ongoing research and 
analysis. 

It is crucial to note, however, that the benefits of this investment extend beyond financial 
gains. Optimized chemical dosing can lead to a more efficient wastewater treatment 
process, thereby reducing environmental impact and aligning more closely with discharge 
regulations. Furthermore, enhanced sensor data and improved predictive models 
empower the facility to continue refining its operations over time, yielding further 
efficiencies and cost savings. 

5.1.3 Net Present Value calculation 
The service life of a wastewater sensor can vary significantly based on factors like the 
sensor type, usage conditions, maintenance quality, and specific application. 
Nevertheless, with appropriate care and maintenance, a wastewater sensor's lifespan can 
stretch from 5 to 10 years, and even longer in some instances (Tang et al., 2015). 

Net Present Value (NPV) is a critical metric used to assess the profitability of an 
investment. It considers future cash flows (or savings, in this case), the initial investment 
cost, and a discount rate reflecting the return that could be earned on an equivalent 
investment with a similar risk profile in the financial market (Brealey, Myers & Allen, 
2011). 

The NPV calculation formula is as follows (Equation 8): 

𝑁𝑁𝑃𝑃𝑃𝑃 =  𝛴𝛴 [𝑅𝑅𝑠𝑠 / (1 +  𝐿𝐿)𝑡𝑡]  −  𝐶𝐶0 

Equation 8 

Here: 

- Rt represents the net cash inflow during period t 
- i stands for the discount rate 
- t represents the time in years 
- C0 is the initial investment 

To illustrate, consider a sensor system with a lifespan of 10 years, yielding an annual 
saving of 140,000 NOK, an initial investment of 165,000 NOK, and a discount rate of 3%. 
This discount rate is typical for public infrastructure projects (Boardman et al., 2017). 

The NPV calculation, in this case, would be: 

𝑁𝑁𝑃𝑃𝑃𝑃 =  ∑ [(140,000 𝑁𝑁𝑂𝑂𝑁𝑁 −  0 𝑁𝑁𝑂𝑂𝑁𝑁) / (1 +  0.03)𝑛𝑛]  −  165,000 𝑁𝑁𝑂𝑂𝑁𝑁 

𝑁𝑁𝑃𝑃𝑃𝑃 =  ∑ [140,000 𝑁𝑁𝑂𝑂𝑁𝑁 / (1.03)𝑛𝑛]  −  165,000 𝑁𝑁𝑂𝑂𝑁𝑁 𝑓𝑓𝑓𝑓𝑟𝑟 𝐿𝐿 𝑓𝑓𝑟𝑟𝑓𝑓𝑃𝑃 1 𝑠𝑠𝑓𝑓 10 

𝑁𝑁𝑃𝑃𝑃𝑃 ≈  1,148,992 𝑁𝑁𝑂𝑂𝑁𝑁 −  165,000 𝑁𝑁𝑂𝑂𝑁𝑁 ≈  983,992 𝑁𝑁𝑂𝑂𝑁𝑁 
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Thus, the project's NPV over a 10-year sensor lifespan is approximately 1 MNOK, 
assuming a 3% discount rate. The positive NPV indicates that the project would deliver a 
net benefit over this period, with regards to the possible 10% annual chemical saving. 

5.2 Practical Implications and Recommendations 

5.2.1 Cost savings 
Optimized chemical dosages and improved sensor accuracy resulting from the study 
could lead to substantial cost savings for the Åse WWTP and similar facilities. By reducing 
chemical consumption and increasing treatment efficiency, operational expenses can be 
minimized, and the environmental impact of wastewater treatment processes can be 
mitigated. 

5.2.2 Recommendations 
We strongly advocate that the Åse WWTP, along with other wastewater treatment 
facilities, contemplate the integration of machine learning models and sensor calibration 
techniques for streamlining their processes. These strategies could encompass the 
deployment of multi-parameter sensors to accurately monitor key parameters such as 
BOD5, COD, TSS, nitrogen, and phosphorus. Fine-tuning existing turbidity sensors and 
implementing robust maintenance plans, which include regular and air wash of sensors, 
would further ensure the reliability and precision of data readings. Moreover, leveraging 
real-time monitoring and control mechanisms of treatment processes could unlock new 
avenues for enhancing operational efficiencies. 

5.2.3 Resource Conservation 
The optimized usage of chemicals in the wastewater treatment process not only reduces 
costs but also aids in the conservation of resources. This approach aligns with global 
sustainability goals and could serve as a model for other resource-intensive industries. 

5.2.4 Workforce Training 
The introduction of machine learning models and advanced sensor technology 
necessitates the re-skilling and up-skilling of the current workforce. Providing appropriate 
training will ensure that the technology is utilized effectively and can help to mitigate any 
resistance to the adoption of new technology. 

5.2.5 Risk Management 
With more accurate predictions of chemical dosages and real-time monitoring, there's a 
decreased likelihood of treatment process failures and environmental incidents. This can 
lead to improved risk management and may even result in lower insurance costs for 
wastewater treatment facilities. 

5.2.6 Policy Considerations 
Policymakers should consider the implications of these findings for regulations governing 
wastewater treatment. This may include updating standards to incorporate the use of 
machine learning models and advanced sensor technology, or providing incentives for 
wastewater treatment plants to adopt these technologies. 
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5.2.7 Investment in Research and Development 
Given the promising results of this study, further investment in research and 
development of machine learning models for wastewater treatment is recommended. 
This can involve collaboration with academic institutions, technology companies, and 
other stakeholders. 

5.3 Challenges and Limitations 

5.3.1 Data quantity and quality 
The limitations and assumptions of this study are inherently tied to the complexities of 
the wastewater treatment process and the quality of data available. Firstly, the quantity 
and quality of available data impose significant constraints. The datasets obtained from 
Ålesund municipality had numerous missing and unreasonable values (pH, turbidity, and 
historic records of PAX and polymer dosage) which limited the robustness of our findings. 
Additionally, the lack of real-time measurement for treatment efficiency at the facility 
restricted the possibility of fully optimizing PAX and polymer dosages. 

The LSTM model’s performance is intrinsically tied to the quantity and quality of the data 
it was trained on. The limited amount of sampling data (138 sets) may have resulted in a 
sub-optimal model. The current study also assumes that the trained model will perform 
consistently in real-time application, which might not be the case due to potential 
variations in the wastewater treatment process. 

5.3.2 Model generalizability 
The LSTM model developed in this study may have limited generalizability to other 
wastewater treatment plants with different characteristics and operating conditions. 
Further research is needed to validate the model's applicability across various contexts 
and explore performance enhancements that can be achieved through model 
adjustments and incorporation of additional data sources. 

5.3.3 Changing Environmental Conditions 
The LSTM model assumes a certain level of stationarity in the data, meaning that the 
underlying processes generating the data do not change over time. In the real world, 
environmental conditions and influent water quality can change significantly over time 
due to factors like climate change, population growth, industrial activities, etc. These 
changes may affect the performance of the LSTM model. 

5.3.4 Maintenance and Calibration of Sensors 
Sensors that are used to measure various parameters in wastewater treatment plants 
require regular maintenance and calibration to ensure their accuracy and reliability. 
Without a robust maintenance and calibration protocol, sensor readings can become 
inaccurate over time, potentially impacting the model's performance. 

5.3.5 Practical Implementation Challenges 
Implementation of the LSTM model in a real-world setting can be met with various 
challenges. These might include technical challenges related to integrating the model 
with existing automation and control systems, as well as resistance from plant operators 
who may be more comfortable with traditional, less data-driven approaches. 
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5.3.6 Compliance with Regulatory Standards 
Wastewater treatment processes must meet certain regulatory standards related to 
effluent water quality. The LSTM model's recommendations for chemical dosages must 
not only optimize treatment efficiency and costs but also ensure compliance with these 
standards. 

5.3.7 Data Privacy and Security 
The use of machine learning models in wastewater treatment can raise issues related to 
data privacy and security. For instance, real-time sensor data might be vulnerable to 
cyber-attacks, potentially impacting the safety and reliability of the treatment process. 

5.4 Future Research Directions 

5.4.1 Enhancing LSTM Model Fidelity 
Future investigations can aim to augment the fidelity of the LSTM model by integrating 
additional input parameters, improving the quality of the data, and assessing alternative 
model structures to heighten prediction accuracy. Exploring cutting-edge hyperparameter 
tuning techniques could further enhance model performance and broaden its relevance to 
a diverse array of wastewater treatment facilities. 

5.4.2 Real-world Deployment and Evaluation at Åse WWTP 
An integral future research direction involves the real-world deployment and evaluation 
of the optimized LSTM model at the Åse WWTP. This would require seamless integration 
of the model within the existing automation and control systems of the facility, thereby 
enabling real-time, data-driven optimization of chemical dosages. Executing pilot studies 
or full-scale implementations can offer invaluable insights into the practical advantages 
and limitations of the model, thus guiding further modifications and refinements. 

5.4.3 Broadening Scope to Other Treatment Processes 
Future research initiatives could consider the application of machine learning and sensor 
adjustment methodologies to various other wastewater treatment processes. This 
includes biological treatment, nutrient removal, or a combination of chemical and 
biological treatment. Such research could potentially foster more efficient treatment, cost 
savings, and improved environmental compliance. The amalgamation of machine learning 
models with real-time monitoring and control systems could allow wastewater treatment 
plants to adapt more effectively to fluctuating influent conditions and operational 
constraints. 

5.4.4 Promoting Cross-disciplinary Collaboration 
Encouraging collaboration across diverse disciplines, such as data science, environmental 
science, and engineering, can significantly bolster the development and implementation 
of LSTM models in wastewater treatment. Such integrated efforts can culminate in more 
comprehensive and innovative solutions, potentially revolutionizing wastewater treatment 
processes. 

5.4.5 Establishing a Standardized Machine Learning Framework 
Future studies could aim to create a standardized machine learning framework for 
optimizing wastewater treatment, leveraging the promising results demonstrated by the 
LSTM model in this study. This framework could be validated across a wide range of 
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wastewater treatment plants, enhancing the generalizability of the model and its 
potential for large-scale deployment. 

5.4.6 Assessing Socioeconomic and Environmental Impact 
Subsequent research should also incorporate thorough evaluations of the socioeconomic 
and environmental impacts of such model implementations. By comprehending the 
potential cost savings, environmental advantages, and potential pitfalls, decision-makers 
and facility operators can make more informed choices about adopting these 
technologies. 

5.4.7 Incorporating Renewable Energy Sources 
Future research could align with global carbon reduction efforts by investigating 
opportunities to incorporate renewable energy sources into wastewater treatment plant 
operations. Probing the potential for energy recovery from wastewater processes could 
further enhance the sustainability of these operations. 

5.4.8 Exploring a Variety of Machine Learning Models 
Beyond refining the LSTM model, future research could investigate the utility of other 
machine learning models. Models like the Convolutional Neural Network (CNN) and 
Reinforcement Learning could potentially offer unique strengths in predicting and 
optimizing chemical dosages in wastewater treatment processes. Comparing performance 
across different models can contribute to the development of a more resilient and 
accurate prediction system. 
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6.1 Summary of Findings 
This research investigated the potential of Long Short-Term Memory (LSTM) models in 
optimizing chemical dosages in wastewater treatment processes. The LSTM model, 
trained on a limited dataset, demonstrated an encouraging prediction accuracy of 94.4% 
for PAX-33, 77.2% for polymer dosages, and an approximately 10% reduction in 
chemical usage annually. These results underscore the significant potential of machine 
learning models in wastewater treatment, improving treatment efficiency and providing a 
pathway towards more automated dosing systems. 

Furthermore, the research highlighted the value of multi-parameter sensors and the 
optimization of existing turbidity sensors. These enhancements have the potential to 
significantly improve data accuracy, enabling real-time monitoring and control of 
treatment processes. The substantial cost savings and environmental benefits achievable 
through these improvements underscore the practical implications of this research. 

6.2 Contributions to Knowledge and Practical Implications 
The study contributes to the existing body of knowledge by showcasing the practicality 
and advantages of using LSTM models for chemical dosage prediction in wastewater 
treatment. The research provides valuable insights into the practical implications of 
integrating machine learning models into wastewater treatment operations, such as 
improved treatment efficiency, substantial cost savings, and increased environmental 
compliance. 

Moreover, this research offers practical recommendations for the installation and 
adjustment of sensors, which could be applicable to the Åse WWTP and similar facilities. 
These insights and recommendations can guide decision-making for operators and 
policymakers in the wastewater treatment industry, supporting a transition towards more 
efficient and sustainable operations. 

6.3 Future Research and Final Remarks 
Further research is required to refine the model and test its adaptability across various 
wastewater treatment plant contexts. This includes the need to expand the dataset to 
improve the model's generalizability, further improve the prediction of polymer dosages, 
and explore the application of LSTM models in other aspects of wastewater treatment 
processes. 

As the global demand for clean water escalates, the urgency to develop efficient, 
sustainable, and cost-effective wastewater treatment processes intensifies. The 
integration of machine learning models like LSTM, coupled with advanced sensor 
technology, has the potential to bring about significant improvements in the wastewater 
treatment industry. Thus, it is essential to continue researching and practically 
implementing these innovative models and strategies to meet the pressing challenges of 
water quality and environmental protection in our rapidly evolving world. 

6 Conclusion 
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A. Interviewguide 
Plant Operational Questions 

- Could you provide a detailed overview of the current operation process at the Åse 
wastewater treatment plant (RA4)? 

- What are the most prominent challenges encountered during the plant's operation 
and maintenance, particularly in the coagulation process? 

- How is the optimal dosage of PAX-33 and polymer currently determined for 
effective contaminant removal? 

- Could you elaborate on the protocols in place to manage varying operating 
conditions? 

- Have any attempts been made previously to optimize the dosage of PAX-33 and 
polymer? If yes, what were the outcomes? 

- How are the efficiency levels of the coagulation and flocculation processes 
currently assessed, and at what frequency? 

- What is the approach to handling potential operational failures, especially in the 
context of chemical dosage errors? 

- Could you discuss the current measures in place for dealing with emergencies or 
malfunctions in treatment processes? 

Sensor Related Questions 

- How are existing sensors deployed for real-time monitoring and adjustment of 
chemical dosages? 

- Could you describe the type of sensors currently in use at the plant, and share if 
there are plans for adopting new sensor technologies? 

- What are some challenges encountered while utilizing the existing sensors? 
- Could you detail the current sensor maintenance protocols and the typical lifespan 

of a sensor at the plant? 
- What criteria were used in selecting the current sensors for monitoring the 

coagulation process? 
- Can you describe a situation where the sensor data was especially critical to 

making an operational decision? 
- How do the sensors respond to extreme operating conditions, such as high 

contaminant load or variations in temperature and pH? 
- Can you share any experiences where sensor failure or data inaccuracies had 

significant impact on the plant operation? 
- Are there plans to upgrade or add new sensors in the future? If yes, what types of 

sensors are being considered and for what specific purposes? 

Data Management and Analysis Questions 

- What are the key variables influencing the performance of the coagulation 
process? 

- Could you provide insights into the record-keeping process for operational data, 
and how it is employed for process analysis and improvement? 

Appendices 
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- Could you explain the data collection process at the plant, specifically related to 
the coagulation process? 

- What types of software or tools are currently used to analyze and manage the 
data? 

- How often is data collected from the sensors, and how is this data stored and 
managed? 

- Are there any data quality checks in place to ensure the accuracy of collected 
data? 

- Can you share some examples of insights or operational changes that have been 
implemented based on the data analysis? 

- Have there been any issues or challenges related to data management or analysis 
at the plant? 

- How do you currently deal with missing or inconsistent data from the sensors or 
plant operations? 

- Can you explain the process of using operational data for predicting the required 
dosage of PAX-33 and polymer? 

- How is data from the sensors integrated with other operational data for process 
optimization? 

- Are there specific data points or trends that are considered more critical in the 
decision-making process? 

- Could you discuss the role of data in maintaining compliance with environmental 
regulations and standards? 

Machine Learning and Future Perspectives Questions 

- What are your views on implementing a machine learning model for predicting 
and optimizing coagulant and flocculant dosages? 

- From your perspective, what could be the potential challenges in implementing 
and maintaining a machine learning-based optimization system? 

- How would you address any skepticism or resistance from the staff towards the 
implementation of a machine learning model and sensor adjustment system? 

- In your opinion, how could this research contribute to the long-term sustainability 
and resilience of the plant and urban water systems as a whole? 

- How do you visualize the future of wastewater treatment and the role of machine 
learning and sensor technologies in that vision? 

Chemical and Environmental Regulations Questions 

- Can you describe the chemical compositions of the coagulant and flocculant used 
at the facility? 

- Why was there a switch from lime to PAX for coagulation during the last upgrade? 
- Are there any environmental regulations or standards that particularly impact the 

plant operations? 
- Do you think the treatment efficiencies from sensor readings can substitute the 

regular sampling required by the county municipality? 

General and Historical Context Questions 

- What significant changes have you noticed in the wastewater treatment industry 
during your tenure as a plant operator? 

- When was the RA4 plant built and how many population equivalents (PE) are 
connected to it? 
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- How does the wastewater from the nearby hospital impact the treatment 
efficiency at the plant? 

- What are the major challenges faced by the plant today and the potential future 
challenges? 

- How would the wider community respond to the implementation of such an 
advanced system for process optimization at the plant? 

Staff Training and User Interface Questions 

- What type of training or expertise would be necessary for the staff to effectively 
operate and maintain a system based on machine learning and sensor 
adjustments? 

- How do you think this system would impact your job satisfaction, stress levels, or 
other aspects of your work life? 

- What should be the key considerations in designing an interface for operators to 
interact with the new system? 

Comparative Study Questions 

- Can you share any experiences from other plants or operators who have 
attempted similar optimization strategies? 

- What potential barriers do you foresee for the implementation of this system on a 
larger scale across other plants? 

B. Data description and preprocessing details 

 

Table 5. Dataset with 1 day resolution 
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Table 6. Dataset with 1 hour resolution 

 

 

Table 7. Dataset with regular treatment sampling 
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Table 8. Final preprocessed and cleaned dataset for training and testing 

 

Table 9. Dataset with preset BOF, TSS and phosphorous removal for optimization 
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Table 10. MAE in each epoch for model performance evaluation 
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C. LSTM model implementation code 

 

Figure 24. Python script utilis.py, read data and save them as training and testing data files 
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Figure 25. Python script model.py, define architecture of the neural network 
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Figure 26. Python script train&evaluate.py part 1, data-preprocess, save the model and training 
loss 
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Figure 27. Python script train&evaluate.py part 2 
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Figure 28. Python script prediction.py, make PAX and Polymer prediction and save the result 
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Figure 29. Python script statistic.py, plot correlation of input variables and predict model 
performance 
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Figure 30. Python script performance.py, calculate MAE, RMSE and R2 to indicate performance of 
trained model, and plot the results 
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Figure 31. Python script cluster.py, visualize clusters for different variables in single plot to perform 
cluster analysis 
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