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Preface

This thesis presents an investigation into the association of Federated learning and artificial

neural networks, including a literature about their origins and their potential application in

prediction of remaining useful life of industrial equipment. These studies were conducted dur-

ing the spring semester of 2023 as a required component of the RAMS1 Master’s Programme at

NTNU.

The motivation for this study is the need for early detection of equipment failures using

machine learning techniques distributed across plants. The author aimed to achieve this while

preserving data privacy, and minimizing network traffic by avoiding the transfer of raw data to

a central server. The machine learn parameters could be updated whenever new data becomes

available.

An example application of Federated Learning is to train models across different vessels,

such as oil production platforms or LPG, LNG carriers, located in various regions around the

world, with limited or intermittent network access. By training models locally on each ves-

sel and sharing only the training parameters, the amount of network traffic required is signif-

icantly reduced. It is also be possible for different companies to benefit from the training using

the equipment fleet from all the companies, without sharing raw data, keeping privacy. The

authors do not anticipate any significant remote processing challenges, given the computing

power available today.

To follow this project, basic knowledge of machine learning and understanding of RAMS

concepts are required. Additionally, to implement a federated learning in real-world scenarios,

programming skills and familiarity with data manipulation are necessary.

Trondheim, June 2023

Luís Flávio Loureiro dos Santos

1RAMS: Reliability, Availability, Maintainability and Safety
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Abstract

This thesis aims to study and test the federated learning approach to predict the remaining use-

ful life of operating machines. Federated learning is a method associated with a machine learn-

ing process to distribute the training across diferent devices and over time. The first application

of federated learning was the “next word prediction” feature of mobile phones’ keyboards. This

method was used to train with user’s typing data at the local device, but without sharing the orig-

inal information, keeping them private. All users benefit from the prediction, without sharing

any personal text.

Machine learning processes like artificial neural networks need significant historical data.

Remaining useful life prediction usually demands sensors’ data over time and information when

failures occur. Once the method is adequately trained, the system should be able to estimate

when the failure mode is developing and when the failure is likely to happen.

Federated Learning stands out from traditional machine learning methods by enabling the

training of machine learning models on multiple clients while keeping the original data pri-

vate. The results are then aggregated on a central server, without data sharing. One motiva-

tion for companies to ensure data privacy is the General Data Protection Regulation (https:

//ec.europa.eu/info/law/law-topic/data-protection_en), while limited or intermittent

network access of certain assets, such as ships traveling around the globe, further supports the

case for this approach.

The data available for model training is crucial for achieving accurate predictions. For in-

stance, in the case of predicting the remaining useful life of machinery, a group of companies

owning similar equipment could utilize data from each other without sharing the original data.

All companies could benefit from more precise predictions by sharing only the training param-

eters

To test the performance of the proposed Federated Learning approach, publicly available

data from turbines will be utilized. The goal is to evaluate the model’s accuracy and how differ-

ent training configurations can affect the predictions. The method could then be expanded to

train on real data across different operators of similar equipment.

https://ec.europa.eu/info/law/law-topic/data-protection_en
https://ec.europa.eu/info/law/law-topic/data-protection_en
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Chapter 1

Introduction

Federated learning is a new machine learning paradigm that empowers multiple devices to col-

laborate and learn from data while safeguarding data privacy. The use of artificial neural net-

works is becoming increasingly prevalent in machine learning because of their ability to learn

from data by mimicking the functioning and structure of an organic brain.

Advancements in technology have facilitated a significant increase in satellite bandwidth

and range. However, with this comes an increase in network usage. Previously impossible tasks,

such as video conferences, are now commonplace, even on traveling vessels. For example, an

oil production platform or LNG vessel may possess thousands of sensors spread across multiple

industrial processes. However, a centralized machine learning prediction method may need to

be more practical due to network coverage and bandwidth limitations in remote areas. This is

where federated learning comes in. It enables the learning process in the same device that holds

the data, with only the resultant parameters being shared.

Machine learning refers to a broad range of techniques to train computers to predict vari-

ables. With a plethora of applications, from healthcare (Yue et al., 2018) to leisure (Missura

and Gaertner, 2009), the opportunities are endless. However, privacy issues often constrain the

data available for machine learning. This is particularly true for healthcare data, and the Gen-

eral Data Protection Regulation (GDPR: https://commission.europa.eu/law/law-topic/

data-protection_en) and similar regulations in other countries, empower individuals to limit

the use and transmission of their data.

Federated learning offers a novel approach to training models using isolated data sets. For

instance, a company with similar equipment may need help to develop its own training models.

However, using federated learning, group companies can benefit from training with a much

larger equipment fleet while only sharing training parameters, without disclosing raw data.

2
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1.1 Background

Reliability studies enhance industrial production efficiency and safety. Predictive maintenance

and Remaining Useful Life predictions are becoming increasingly common in all industries, but

they rely on data from field sensors. Due to network coverage and bandwidth limitations, pri-

vacy and data transfer restrictions can be limiting, particularly in remote locations.

Federated learning has been implemented in predicting the next word on smartphone key-

boards, and can be repeated periodically for improved accuracy. Guo et al. (2022) present a

cloud collaboration model for predicting remaining useful life, where multiple clients extract

and send low-level features from their own data to a cloud server managing the model. Training

is completed on the server side to reduce the client workload, and the method was compared

with other methods using the same dataset.

1.1.1 Related work

Several different application are already researched, from user experience enhancements in mo-

bile phones to industrial equipment cases.

Secure aggregation protocols (Hard et al. (2018)) can protect privacy in federated learning,

enabling machine learning without sending data to a centralized processing system. Decentral-

ized training can be done directly on the devices with the data, including small gadgets such as

smartphones, and the resulting data can be exchanged without privacy issues.

Probably the most known application of federated learning is to predict the next word on

smartphone keyboards, as described by (Hard et al. (2018)). Training is done locally on the

phones to maintain user’s privacy and overcome network transfer constraints. A server aggre-

gates parameters and the final result is shared with all the devices using the application. This

process can be repeated periodically to improve prediction accuracy over time.

Bonawitz et al. (2017) implemented an application-generic approach with secure multiparty

computation (MPC). This work focuses on implementing privacy-preserving machine learning,

even with active adversaries attempting to access the data.

Few RUL prediction literature sources use federated learning, but the ones available are quite

recent. This means that this is an application still under development and research, and we can

expect to have new developments in the near future.

Guo et al. (2022) address client’s potentially weak computing capacity of clients for remain-

ing useful life prediction using federated learning. The clients participate in the training, sharing

the low-level features and parameters with the server. The server, a more powerful computer,

then completes the training aggregating information from all the clients.

During the creation of this thesis, Du et al. (2023) published about using “Trans-lighter” ar-

chitecture, which is a light-weight federated learning method for remaining useful life predic-
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tion, with the advantage of outperforming other RUL prediction methods.

1.2 Objectives

The aims of this thesis can be outlined as follows:

1. Conduct an exploration of the available literature concerning federated learning tech-

niques.

2. Research existing federated learning methods applied to reliability studies and remaining

useful life estimation.

3. Develop a simple script utilizing a federated learning method to estimate the remaining

useful life of equipment by dividing the training across multiple instances and simulating

their aggregation over time.

4. Determine which parameters can potentially enhance the outcomes of the script.

5. Gather data on equipment failures and identify the optimal parameters to be employed

for the training.

6. Evaluate the effectiveness of the script using equipment data.

7. Analyze and explore the obtained results.

8. Recommend possible avenues for future research that can be explored.

The scope of this work is to check the efficacy of a specific implementation of federated

learning in conjunction with an artificial neural network by subjecting it to an assessment in a

controlled scenario.

It is important to note that the primary focus of this study is not to implement in real-world

scenarios. Nonetheless, a more compelling avenue for future research could be to investigate

the performance of this model on actual data and implement a case that offers online feedback

to the equipment operator.

1.3 Approach

The following methodology is proposed to evaluate the effectiveness of Federated Learning in

estimating the remaining useful life. Firstly, gather the necessary data and execute a script using

a simple federated learning process with an artificial neural network to determine its capability

to predict the remaining useful life of the equipment. Then, conduct a Monte Carlo simulation
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by iterating multiple times and changing the order of the equipment used in the training pro-

cess. This step aims to evaluate the consistency of the results and the expected accuracy using

fixed parameters. Only the order of the machines used in the training is randomized during this

step. The measurement of this step involves determining the average difference between the

predicted remaining useful life and the actual measurement.

Next, repeat the above step multiple times with neural network weights and thresholds. This

step aims to simulate the parameters’ effects on the network and assess how the training and

RUL estimation would behave during the operation. The outcome of this step is a comparison

of the predicted RUL values using different parameters.

The dataset used for this study is the CMAPSS Jet Engine Simulated Data (https://data.

nasa.gov/Aerospace/CMAPSS-Jet-Engine-Simulated-Data/ff5v-kuh6/), which contains

multiple simulated datasets featuring various sensors and operational settings that affect the

engine’s performance.

1.4 Contributions

This work focuses on applying federated learning and artificial neural network to predict re-

maining useful life. The approach is different from the usual, where the machine learning tech-

nique attempts to predict the remaining time before failure. The proposal is to define health

states as labels i.e., “Healthy”, “Alert” and “Danger”, and the objective of the machine learning is

then to obtain the most likely state according to the given data. Although each particular subject

is already explored, this combination was not found on the researched literature.

1.5 Limitations

The work implements a simulation with synthetic data. It can address a real case problem with

some adaptation and access to machinery data. The main limitations of this work are related to

the data. Since no operational data was available to the author during the studies, the data used

for the training is synthetic data freely distributed at the NASA website (https://data.nasa.

gov/Aerospace/CMAPSS-Jet-Engine-Simulated-Data/ff5v-kuh6/).

The simulation does not aim to have a ready solution to any remaining useful life problem,

but hopefully it may provide guidelines for implementing it. For example, the ideal training

parameters and methods for machine learning and data filtering may be different for other ap-

plications.

Another limitation of the current work is that the simulation was run on different instances

on only one computer. Nevertheless, it is not expected to have different results running in dif-

ferent devices, apart from the processing speed of multiple machines running in parallel. As the

https://data.nasa.gov/Aerospace/CMAPSS-Jet-Engine-Simulated-Data/ff5v-kuh6/
https://data.nasa.gov/Aerospace/CMAPSS-Jet-Engine-Simulated-Data/ff5v-kuh6/
https://data.nasa.gov/Aerospace/CMAPSS-Jet-Engine-Simulated-Data/ff5v-kuh6/
https://data.nasa.gov/Aerospace/CMAPSS-Jet-Engine-Simulated-Data/ff5v-kuh6/
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volume of shared data between the instances is small (especially when compared to the data

used in training), a network should be a manageable bottleneck. Also, some transmission de-

lays would be fine.

Although data privacy is one of the functions of federated learning, this needs to be explored

in depth during the experiments. Original data is particular for all the clients during runtime,

but no encryption or other techniques was applied in this context.

1.6 Outline

The structure of this document is detailed below, showing how it is organized and what to expect

in each chapter.

• 1 - Introduction: Introduction to the addressed problems, training methods and the ob-

jectives of the work.

• 2 - Theory: Theory of the methods used to solve the federated learning for the remaining

useful live prediction problem, including the machine learning methods, and data selec-

tion and pre-processing.

• 3 - Used Dataset: Shows the details about the used dataset, what it represents, and how to

interpret it.

• 4 - Proposed Method: Presents how the solution was implemented, detailing the main

steps, the process flow and the flow results.

• 5 - Discussion and Conclusions: Shows details on the simulation process, comparison of

different parameters, and what can be concluded with the results.

• 6 - Ideas for Further Work: Suggests next steps for further study and development. It

addresses some of the limitations of the current work.

• Bibliography.

• Appendix: Lists the Python scripts used. They can be freely adapted, improved and ex-

panded for further studies.



Chapter 2

Theory

Machine learning refers to computational methods for making predictions without explicitly

programming of the system. This approach is particularly valuable when a model of the system

needs to be discovered or is more complex to be constructed. However, it does require training

data to enable the system to make predictions. Generally speaking, the more data that is used,

the better the system’s predictions become.

Perhaps the simpler prediction method to be explained is linear regression. Figure 2.1 shows

an example of a linear regression on “original data” and some predictions. If a straight line can

model a specific dataset with X and Y pairs, having a new value for X , a corresponding Y value

is expected to be in the line. Ideal gases are an example of linear relationship. A regression can

be calculated if a couple of pressures and temperatures are obtained on a closed tank containing

an ideal gas. With one temperature, it is then possible to estimate the pressure.

Figure 2.1: Dataset linear regression and predictions

Of course, a linear relationship does not represent all the cases, and different methods were

developed for other data types. In this work, the objective is to use one type of machine learning

7
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with federated learning to predict the remaining useful life of turbines based on sensors’ data.

Instead of numerical predictions, machine learning techniques can also run classification

processes. In this case, information related to the shapes and sizes of flowers may be used to

predict what is the plants’ species, for example.

2.1 Remaining Useful Life

Rausand et al. (2021) defines the remaining useful life (RUL) as “a random variable that measures

that measures the time from tj until the item is not “useful” anymore”. The RUL distribution

(equation 2.1) may be obtained if the equipment degradation model is known.

Pr
(
RU L

(
tj
)≤ t

)= FRUL(tj)(t ) (2.1)

where: RU L(tj): remaining useful life for time tj

When no degradation model is available for the equipment or the failure modes of interest,

data-driven approaches may be used. In this document, it is used Data-driven prognostics. Past

data is used to predict the remaining useful life with the use of e.g., machine learning. In this

case, sensors’ data that have some correlation with the failures are needed. Another requirement

is that the data needs to contain time-related information up to the failure.

Two approaches may be taken:

• system to predict the estimated useful life for each timestamp

• system to predict a health-related status for each timestamp

This document’s approach is to try to predict in which of three states the equipment at each

moment, as detailed below:

• Healthy: Ideally, no failure is expected in the near future. The recommendation is to con-

tinue monitoring with no special action

• Alert: Equipment has degraded, but it is still safe to operate normally. The recommen-

dation is to take action to prepare for maintenance. The difficulty of equipment acquisi-

tion/maintenance, logistics, and the importance of the equipment to safety or lost profits

should be taken into account

• Danger: Equipment is highly degraded, and it is expected to fail in the near future. The

recommendation is to program maintenance. Again, depending on the importance and

production modes, a decision may be taken to carry out maintenance to avoid failure or

to have all the resources available immediately after the failure.
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This approach offers the benefit of estimating the probability of failure in the upcoming days

following the detection of a hazardous state. This aspect will be explored in the next section.

Normally, there is a safety risk related to equipment failure. It would be desirable to perform

the maintenance as soon as possible because the failure impact may be significant. If the failure

has no safety impact nor other costs, but of the unavailability, to be prepared for maintenance

and run until failure may be a strategy.

2.1.1 Probabilities and Decisions

Any machine learning prediction is associated with uncertainty and it is important to be aware

of it to make decisions. Suppose the probabilty distribution function (PDF) of an equipment

failure is given by fT(u). In that case it is possible to obtain its reliability R(t ) (or survival proba-

bility) and failure probability F (t ) at time t , using equations 2.2 and shown in Figure 2.2.R(t ) = P (T > t )

F (t ) = P (T ≤ t )
(2.2)

The probability of failure before time t is also the area under the PDF (or the cumulative

distribution function - CDF), of the distribution, and R(t ) = 1−F (t ).

Figure 2.2: Failure Probability and Reliability at time t

If the failure probability function is unknown, a good approach is to build it based on the

histogram of failure observations. Figure 2.3 shows one theoretical example. The columns rep-

resent the histogram (percentage of failures per time t ) of the observed failures, and the line is

the estimated cumulative distribution. The failure probability at time t is given by F (t ).
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Figure 2.3: Failure Probability and Reliability for observed failure times

With this information, decisions can be made by comparing the failure probability with the

accepted chance of failure. The optimization of total costs may define this accepted chance.

2.1.2 Costs

The classic approach to calculating the total life cycle estimated cost, based on a preventive

strategy, can be modeled by equation 2.3 and is a function of the failure probability and the

costs related to the failure and the predictive repair.

C (τ) = P MCost

τ
+C MCost ·λ(τ) (2.3)

where:



τ: preventive maintenance interval

λ: failure rate

P MCost: preventive maintenance costs

C MCost: cost of equipment repair

The preventive maintenance cost (P MCost) accounts basically the following:

• acquisition and transport of spare parts,

• mobilization and time of the maintenance team,

• loss of profit for the period.

The equipment repair cost (C MCost) adds the following costs to (P MCost):

• additional loss of profit due to the time to unscheduled repair,

• logistic costs due to urgency,
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• safety costs, depending on the function of the equipment and its failure consequences,

• additional repair parts depending on the consequences of the failure

Depending on the specific case, different costs may be involved. Often, doing anything dif-

ferent than waiting to fail does not make sense. Usually, that is the lighting systems case. In

this case spare parts are cheap, the maintenance is quick, and normally the failure is of little

consequence.

But for other types of equipment, the losses, and consequences may be relevant, therefore,

therefore beneficial to avoid failures. If it is somehow possible to predict the failure probabili-

ties in the near future of one piece of equipment, it would be possible to replace τ and λ(τ) by

probabilities function of time before failure, or after prediction. The probability of not failing

could replace τ, while the probability of failure could replace λ(τ). The costs C MCost can remain

unaltered but to reduce the failure probability, P MCost could increase specially due to logistics

time pressure. The ideal time to perform the predictive maintenance after a failure prediction

or the probabilities may be calculated by optimizing equation 2.4.

C (tprd) = (P MCost +LC (tprd)) · (1−P (tprd))+C MCost ·P (tprd) (2.4)

where:


tprd: time to planned maintenance after prediction of failure

LC (tprd): logistics cost, function of tprd

P (tprd): probability of failure, function of tprd

2.2 Artificial Neural Networks

The artificial neural network is a machine learning method inspired by natural neural networks

found in animals. In natural systems, Lettvin et al. (1959) explains that these networks propagate

signals through neuronal cells. In simpler organic forms as frogs, it allows the animal to directly

perceive the environment and react to get food or to escape a predator. In more complex ani-

mals, such as superior mammals, including humans, the networks can carry and join informa-

tion from the different sensorial systems, such as images, sounds, and smells, and information

previously learned and memorized to consider alternatives and make decisions through a cen-

tral system. Information transmission, storage, and processing are based on simple elements

(neurons) that can propagate signals to the next elements.

An early attempt to model the natural networks in logical systems was developed by McCul-

loch and Pitts (1943), where equations could be established to explain simple networks with a

few neurons. The neuronal transmissions were modeled as being “all-or-none”, or boolean lev-

els. If the sum of inputs of an element reaches a threshold, this element is activated, and the
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signal continues to be transmitted to the ones connected to its output. The objective then was

not to model an artificial system but to try to understand and explain the behavior of biological

ones. Some years later, Rosenblatt (1958) expanded the model, adding weights to the inputs of

each neuronal element, as shown in Figure 2.4, and was able to program an artificial network

that could respond to images. Each perceptron (the digital analog of the neuron, as it was called

by Roseblatt) can be understood as a simple logic gate that is activated if the sum of the weighted

inputs reaches a given threshold. The weights represent the importance of each input activating

the elements. Inputs and outputs are modeled as Boolean values.

Figure 2.4: Neuron diagram (perceptron). Adapted from Nielsen (2019)

Equation 2.5 shows the basic model for each element.

output:


0 : if

n∑
i=1

Iiwi <= thr eshol d

1 : if
n∑

i=1
Iiwi > thr eshol d

(2.5)

where:


Ii: elements’ inputs, boolean values

wi: inputs’ weights, real values

thr eshol d : activation threshold for the output of each element

Figure 2.5 represents a network for vision processing. It contains an input layer (projection

area) receiving information from the retina, and its connections to an intermediate layer (asso-

ciation area), up to the output layer with the response elements.

Figure 2.6 shows a generic neural network. It may contain any number of layers with any

number of elements each. While the decisions made by a single element are very simple, more

elements and layers can create extremely complex decision flows.
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Figure 2.5: Vision Neural Network model. Adapted from Rosenblatt (1958)

Figure 2.6: Generic Neural Network diagram

With Boolean levels (step function), one small change in weight, for example, may create

a big shift in the output of an element and also in the results of a neural network. As Nielsen

(2019) explained, activation functions were later introduced instead of boolean levels as outputs

to make changes more subtle. One of the most intuitive activation functions is the sigmoid

function. It acts as a smooth step function. Figure 2.7 shows a plot comparing the step (equation

2.5) and sigmoid (equation 2.6) functions.
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Figure 2.7: Comparison Step and Sigmoid functions

σ(z) = 1

1+e−z
(2.6)

where:

σ: sigma function

z: activation stimulus

Other functions are in use for this project, ReLU (rectified linear unit) and Softmax. The

benefits of ReLU are similar to the sigmoid, but its simplicity provides a better performance.

Figure 2.8 compares it with the step function and it is modeled by equation 2.7.

Figure 2.8: Comparison Step and ReLU functions
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z for z > 0

0 for z ≤ 0
(2.7)

The softmax function is often used as the last layer in classification problems. It behaves

similarly to sigmoid functions, but with it, each neuron responds for a classification label, and

it will output a value from zer o to one being the probabilities of that label. Its function is given

by equation 2.8, and the sum of all the neurons outputs in that layer yields one.

so f tmax(zj) = ezj

K∑
k=1

ezk

for j = 1, ...,K (2.8)

2.3 Federated Learning

Federated learning trains a machine learning method distributed across several data sources

(clients). The objective is that several clients process each training with their own data. Each

then shares the training parameters with a server that merges them. Original data is never

shared between the training computers and the server. The merged parameters contain train-

ing information from all the clients’ datasets without sharing the original data. The aggregation

of the training parameters from the server is then shared with all the clients. They then benefit

from better predictions results based on their own data, and the whole group of clients’.

2.3.1 The Need for Federated Learning

Users’ personal data restrictions imposed by laws over the last years added some challenges to

all industries. The European General Data Protection Regulation (GDPR - https://commission.

europa.eu/law/law-topic/data-protection_en states that no personal data may be shared

across different entities without their express consent. As a member of the European Economic

Area, GDPR is also applicable to Norway. Datatilsynet (https://www.datatilsynet.no/), the

Norwegian Data Protection Authority is a body that supervises any holder of other persons’ in-

formation to make sure that the legislation is followed. Other countries have similar legislation

about data protection.

Several data-breaching scandals go public every couple of months. Social networks, email

providers, retail companies, and banks had their leaks at some level. Probably most, if not all,

types of industries suffered from this. Even if the consequences of the GDPR laws are not con-

sidered, a company’s image may be severely affected by such events. Centralizing all the per-

sonal data is a risk, as it would be one point of access for a hacker to access and collect all the

information. Accessing multiples user’s data is much harder if the information is in the users’

https://commission.europa.eu/law/law-topic/data-protection_en
https://commission.europa.eu/law/law-topic/data-protection_en
https://www.datatilsynet.no/
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possession.

Also, bandwidth limitation, especially in remote devices, such as mobile phones or vessels

traveling around the world, impose some restrictions. The sharing of training data may create

the need to transfer extremely big files. On the other hand, sharing only the training parameters

would need small files. Also, bringing the benefit of improvement of predictions and updating

the training parameters over time. Transfering several gigabytes of sensors data from multiple

vessels across the globe may take some time. To transfer a few kilobytes of training data from or

to them, would probably require less then a minute.

2.3.2 Federated Learning Method

Hard et al. (2018) proposed a way to training user data to avoid data exposure. This was the start

of federated learning and is used to train the next-word prediction on mobile phones keyboard

apps. Probably most of the users would not want to have their typed texts shared over networks,

but they certainly take advantage of the next-word prediction feature. The training is processed

using the users’ data on their own devices. The training parameters are shared, so it would be

impossible to recover the original messages. These parameters from multiple users are then

shared with a server that joins them all and shares them with the users periodically, improving

the predictions.

Figure 2.9 presents the generic flow of federated learning. The flow includes a cloud server,

and three client devices. As the training is carried out across several devices with their own

(small) data set, most devices nowadays can process it, from computers to mobile phones.

Figure 2.9: Federated learning basic diagram (adapted from Zhang et al. (2021))
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2.3.3 Federated Learning Steps

1. The model is initialized with previous training from the (cloud) server and its parameters

(W ′) are shared with all the clients.

2. The clients (any device) uses the last shared parameters on their predictions and train

the model with its own data. Each client then has different training results (weights and

thresholds in case of a neural network) (W1, W2, Wn), and they send them to the server.

3. The server aggregates all the training parameters and shares them back again with the

clients restarting the cycle.

2.4 Sensors Signals

Sensor signals are essential for remaining useful life predictions. Having sensors that have poor

or no correlation to the failure mode analyzed, as they bring no or nearly no information about

the development of the faulty condition. Then a selection of useful sensors is usually needed.

Also, very noisy signals need to be avoided, as they may also disturb more than help in the

predictions. This is true because it’s impossible to be sure how much of a measurement is due

to noise. As sensors’ information usually are transmitted analogically with electric signals, they

are subject of interference between several sources and other electric transmissions. There are

several methods to minimize the noise, but they cannot be completely removed. The use of

some digital filters may be needed. Noise usually adds a high frequency, but not sometimes, so

each case must be understood to be addressed.

2.4.1 Sensors Selection

One machine may have several different sensors. But it is expected that not all of them will carry

useful information about the life of the equipment, and it is usually needed to select the best

sensors for the desired prediction. With this objective, there some correlation tests are available

that can be used. For machine learning purposes, the sensors with a higher correlation with the

desired predictions should be used.

Pearson correlation coefficient

The Pearson coefficient is measures how two series of values are linearly correlated. Its value

ranges from −1 and 1. Z er o is a total lack of correlation, and the extreme values, perfect corre-

lations. Negative values mean that the correlation is inverse. Equation 2.9 is used to compute

this correlation measure.
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ρ(x, y) = E [x y]

σxσy
(2.9)

where:

E [x y]: cross correlation between x and y

σ2
x,σ2

y: variances of the signals

This method is particularly useful if it is known that the expected correlation is to be linear.

Spearman’s rank coefficient

Spearman’s rank coefficient calculation is essentially the same as the Pearson correlation, using

equation 2.9. The difference is that it uses the values ranks of the series instead of directly using

the series’ values. The result is that it is actually a measurement of how the series ranks are

correlated. It is then useful for both linear and non-linear relations.

The values at the equation are then replaced by E [R(x),R(y)],σR(x) andσR(y), where R(x) and

R(y) are the ranks of the values of x and y series. The ranks can be understood as the indexes of

the ordered series of values.

2.4.2 Signal Filtering

Depending on the measured signal, it may have many different predominant frequencies. Sig-

nals related to temperatures usually have a slow behavior, as normally, this variable is subject

to heat capacitance. High-speed machines may have very fast vibration measurements, while a

discharge pressure of an alternative compressor will usually be between the previous variables.

Figure 2.10 shows a plot with signals of three different frequencies and their composition.

• If the measured signal represents a temperature, a low frequency signal would probably be

expected, and high frequency would be related to noise. In this case, the high frequency

would need to be filtered out to recover the variable of interest. Using a low pass filter.

• If the measured signal represents a vibration on a high-speed machine, a high-frequency

signal would probably be expected, and low frequency would be related to noise. In this

case, the low frequency would need to be filtered out to recover the variable of interest.

Using a high pass filter.

• If the measured signal represents pressure on a reciprocating compressor, a medium fre-

quency signal would probably be expected, and there could be lower and higher noise

related frequencies. In this case, the low and high frequencies would need to be filtered

out to recover the variable of interest. Using a band pass filter.
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This is a theoretical example, and each case needs to be evaluated. As the noise comes from

several sources, different frequencies may be involved needing help to model. But knowing how

the variable of interest is expected to behave, it should be possible to filter out the undesired

ones. There may be extreme cases where the noise is so important to the composed signal, that

the recovery of the measurement may not be feasible.

Figure 2.10: Frequency Signals and their composition

Moving average

The moving average is one simple way of smoothing or removing higher frequencies from a sig-

nal. The method tends to remove the high frequency by sequentially calculating the average

of a number of subsequent data points on the series. Equation 2.10 may be used to calculate

the moving average. The equation is generic for the Savitztky-Golay filter (explained in the se-

quence), where the moving average is a particular case.

Y ∗
j =

m∑
i=−m

CiYj+i

N
(2.10)

where:



Y ∗
i : j -th filtered element

Ci: i -th weight on the rolling window

Yi: j -th original element

N : divisor (denominator)

Consider one sequence of values from a measurement. The filtered value (Y ∗
i ) at the i -th

of the sequence is the average of the value at i -th and its m nearest neighbors. In the moving
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average, for equation 2.10, Ci always equals 1 and N always equals the window width (2m +1).

From the composition of signals from figure 2.10, applying the moving average with different

widths, it is possible to remove the higher frequency, or recover the lower one signal as shown in

figure 2.11, depending on the size of the window.

Figure 2.11: Filtering by moving average. 5, 9, 13 and 15 window width

Savitzky-Golay Filter

The Savitzky-Golay filter is a digital filter for a sequence of samples Savitzky and Golay (1964).

It uses the same equation 2.10, but in this case, the values for Ci and N are to be changed by

different parameters. These parameters fit polynomials and its derivatives to the samples at the

moving (convoluting) window. The filtered Y ∗
j is then the middle point of the fitting polynomi-

als. Figure 2.12 shows examples of filtering the same composed signal from figure 2.10, filtered

by different parameters, recovering specific frequencies. Table 2.1 shows the parameters Ci and

N for four different polynomials and cases.

Equation 2.11 shows the example of a Savitzky-Golay filter with a quadratic polynomial fit-

ting the five elements on the moving window (Yj−2 to Yj+2).

Y ∗
j = −3Yj−2 +12Yj−1 +17Yj +12Yj+1 +−3Yj+2

35
(2.11)
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Figure 2.12: Filtering with Savitzky-Golay filter, different parameters

Table 2.1: Parameters for some Savitzky-Golay Filters (Savitzky and Golay (1964))

Polynomial: quadratic/cubic
cubic/quartic

1st derivative

Window size 5 7 5 7

i Ci Ci Ci Ci

-3 -2 22

-2 -3 3 1 -67

-1 12 6 -8 -58

0 17 7 0 0

1 12 6 8 58

2 -3 3 -1 67

3 -2 -22

Normalisation (N ): 35 21 12 252

2.4.3 Signal Normalization

It is usual to have multiple types of sensors measuring several physical variables such as tem-

perature, pressure, speed, vibration, and more. They may assume very different values from

each other and have diverse variances that can affect the training and predictions. Usually, a

normalization is applied, and probably the simplest one is defined by equation 2.12
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Sni = Si −µtrain

σtrain
(2.12)

where:



i : sample index

Sni: normalized sensor sample

Si: raw sensor data

µtrain: training data average

σtrain: training standard deviation
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Used Dataset

The prediction of remaining useful life needs two types of data. Sensor data over time is nor-

mally used, to get information on the degradation of the equipment and also information on

when the failure occurred is needed.

In some industries such as offshore Oil and Gas a data collection and storage system is usu-

ally implemented during the project. The data is usually collected from the sensors measur-

ing physical variables such as temperatures, pressures and vibrations. As the degradation pro-

gresses, these sensors’ measurements are expected to change.

Failure information also needs to be collected, which normally needs to be done manually.

Although failures may be automatically detected, the failure mode definition is usually discov-

ered during the maintenance procedure. As it depends on people, this is, perhaps, the most

difficult information to be reliably obtained. The responsible team needs minimal training and

motivation is needed. The development of different failure modes manifests in different ways

and sensors types.

To have a useful developing failure detection, it must also detect which failure is being de-

veloped, and for this to happen the data for machine learning needs to contain this information

on historical data. Different options exist for training a machine learning process to detect dif-

ferent failure modes. It is possible to have one training for each failure mode, and this can be

done using different sensors for the cases. It is also possible to train the system to classify what

type of failure is currently being developed.

The data used in the experiments is a publicly available training dataset at Nasa’s website

(https://data.nasa.gov/Aerospace/CMAPSS-Jet-Engine-Simulated-Data/ff5v-kuh6/).

It comprises a simulated dataset containing several jet engines (turbines) sensor data. The in-

formation on the types of sensors is not shown, but it is possible to verify that they differ, as the

sensors’ ranges are very different.

There are eight files containing data. Four train files (train_FD0001 /0002 /0003 /0004.txt)

and four tests (test_FD0001 /0002/ 0003/ 0004.txt). Table 3.1 shows how the data looks on sup-

23

https://data.nasa.gov/Aerospace/CMAPSS-Jet-Engine-Simulated-Data/ff5v-kuh6/
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plied files. The raw files are text-type files containing several rows and 26 unlabeled columns

separated by spaces. The data was truncated here for the sake of visualization simplicity.

Table 3.1: Extract of the dataset raw file

1 1 −0.0007 −0.0004 100.0 518.67 641.82 1589.70 1400.60 14.62 21.61

1 2 0.0019 −0.0003 100.0 518.67 642.15 1591.82 1403.14 14.62 21.61

1 3 −0.0043 0.0003 100.0 518.67 642.35 1587.99 1404.20 14.62 21.61

1 4 0.0007 0.0000 100.0 518.67 642.35 1582.79 1401.87 14.62 21.61

1 5 −0.0019 −0.0002 100.0 518.67 642.37 1582.85 1406.22 14.62 21.61

1 6 −0.0043 −0.0001 100.0 518.67 642.10 1584.47 1398.37 14.62 21.61

1 7 0.0010 0.0001 100.0 518.67 642.48 1592.32 1397.77 14.62 21.61

The raw datasets contain the turbine identification number (first column) the number of

running cycles for each row (second column) and three operational settings (third to fifth columns).

The remaining 21 columns contain the data for each sensor.

At the train files, the machines are considered to be operating normally in the first cycle, and

at some unknown cycle for each equipment, the failure starts developing, until it fails, at the last

cycle. In the test files, the series ends some time prior the failure. As in the current work, the

idea is to check how machine learning would predict the actual state of the machine (between

three health levels) until it fails. The test files were not used.

The files with indexes 0001 and 0002, contain only one fault modes, while the 0003 and 0004

contain two fault modes. The developed fault modes are not identified per machine in the sec-

ond case. As the training methods required labels to identify different failure modes, only single

failure mode data was used.
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Proposed Method

To assess the usage of federated learning for remaining useful life predictions, two Pyhton scripts

were created. The first one implements the server for the FL method, and the second one the

clients. The simulations were run using only one computer using five Python parallel instances.

In a “production” implementation, multiple computers would be used, one being the server and

the others being the clients. Each of the clients only access to its own data and exchange training

parameters to and from the server. Figure 4.1 shows the Python instances structure.

Figure 4.1: Federated Learning schema

Multiple simulations are run just by changing the configuration of the neural networks. The

number of layers and elements per layer may be changed. These parameters are changed on the

file params.json. One example of the file can be found in Appendix A.1.

25
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4.1 Data Intake

The original data is available in different text files containing a list of values separated by space.

The data consists of the following:

• Machine id: identification of each piece of equipment.

• Cycle: running cycle from one to the last cycle before failure.

• Settings: Three operational setting parameters.

• Sensors: Twenty-one sensors.

There is no given information of the types of sensors. Also there is no given information on

their relevance to the failure mode of the equipment. The cycle order was changed on the origi-

nal files for convenience. Instead of representing the number of running cycles, they represent

Cycles to failure. Cycle zero is then the cycle where the equipment fails. There is data for a total

number of one hundred turbines. Table 4.1 shows how the data is organized on the given files

and how the cycles to failure were obtained from the original running cycles.

Table 4.1: Extract of the dataset, showing “Cycles” to “Cycles to failure” change.

Machine id Original Cycles Cycles to failure Setting 1 Setting 2 Sensor 1 Sensor 2

1 1 191 -0.0007 -0.0004 641.82 1589.7

1 2 190 0.0019 -0.0003 642.15 1591.82

1 3 189 -0.0043 0.0003 642.35 1587.99

1 ... ... ... ... ... ...

1 ... ... ... ... ... ...

1 190 2 -0.0019 -0.0001 643.64 1599.22

1 191 1 0.0009 0.0001 643.34 1602.36

1 192 0 -0.0018 0.0003 643.54 1601.41

4.2 Health status

During runtime, the cycles to failure are converted to health statuses to be used as a reference

for the training. They are converted to three columns of data containing values zero or one.
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Table 4.2: Cycle to failures conversion to health states

Condition Healthy Alert Danger

C F > 50 1 0 0

15 <C F ≤ 50 0 1 0

C F ≤ 15 0 0 1

Table 4.2 shows the conditions to define each of the columns of the states, where C F is each

data row cycle to failure. Figure 4.2 is a representation of the life cycle of the equipment. Each

machine may contain any number of “Healthy” rows, but always the last fifty rows are consid-

ered “Alert” or “Danger”.

Figure 4.2: Plot representation of the possible health states

The objective of this change from “cycles to failure” to “health status” is to turn the problem

into a classification one instead of trying to predict the cycles to failure in a kind of regression

method. This conversion brought some benefits.

• Regression in not necessarily monotonous. Results may oscillate, meaning the number of

cycles to failure may increase instead of decrease.

• The classification outputs three values of the probabilities of the machine to be in each of

the three states.

• The classification was found to be more stable, although there are cases where the equip-

ment may go from “Alert” back to “Healthy”. It happened rarely.

• It is possible to have an estimate of the failure distribution once in the “Danger” state

based on the historical data, as shown in Figure 2.3
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4.3 Sensors Filtering

As the sensors’ original data is very noisy, the Savitzky-Golay filter was applied to smooth the

signals. It is possible to apply the filter a predefined number of times to achieve more noise

removal. The script used for the filtering is the function sg_filter shown in Appendix A.2.

Figures 4.3 and 4.4 show Sensor 3 data before and after filtering. The filter was applied three

times to obtain this filtered data. The different colors refer to different machines’ data. As it

is possible to observe on the plots, the noise was filtered out, but the main trends, which are

important for the predictions, were kept. The filter is applied before training and running the

predictions.

The best-obtained filtration parameters were found to be:

• window_lenght = 19 and polyorder = 1, which is actually a moving average;

• window_lenght = 35 and polyorder = 2;

Figure 4.3: Sensor 3 data plots before filtering
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Figure 4.4: Sensor 3 data plots after filtering

4.4 Sensors Selection

The selection of sensors in use in the machine learning process was made using the Spearman’s

rank coefficient. This was the chosen method because it does not assume that the correlations

are linear. The script used for the calculations and plots can be found in Appendix A.2.

Figure 4.5: Sensors Spearman’s correlations
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Figure 4.5 shows the results of the correlations between each sensor and the machines’ cycles

to failure. The colors of the bars show the ones with direct (positive) and inverse (negative)

correlations.

The sensors which correlate above 0.8 were selected for machine learning. These sensors

are marked with an asterisk on the plot. The remaining sensors were ignored in the machine

learning process.

4.5 Server

The server script defines all the procedures associated with it. The basic functions are detailed:

• Randomically sort the machines to be used on each client.

• Save one file per client containing each dataset.

• Start the server and wait for clients to connect.

• Run the federated learning routine by receiving training results from clients and sharing

the combined parameters with the clients.

• Stop the server.

• Collect the client output files containing the results of the predictions for this run and join

them for report.

This cycle is repeated for the defined repetitions variable and also repeated for the amount

of different neural network parameters. After all the cycles, plots are created for further analysis.

The server script is presented in Appendix A.3. The number of clients should be set as a clients

variable at the script. The server waits for all clients to connect before starting the training ses-

sions.

4.6 Client

The client script defines all the procedures associated with it. This is the same script for all the

clients. The variable client holds an integer number defining the instance it should be. The basic

functions are detailed:

• Read the data.

• Connect to the server.
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• Execute preliminary training for initial weights and thresholds.

• Run the federated routine: Testing the received parameters with the next dataset; Train on

this dataset; Share parameters back to the server.

• Create the output files containing the results of the predictions for this run.

• Disconnect from the server and wait for it to prepare new datasets.

Appendix A.4 contains the code for the clients’ script. All the clients use identical scripts. The

only difference between them is the variable client that needs to be set for each case. This project

used four clients, so the values used for each client were 0, 1, 2, 3. This is needed because the

server stores files with different indexes addressed to each client during the preparation phase.

And at the end of each cycle, each client stores its results back to a file to be read by the server.

The main part of the client script is the definition of the Client class. It defines how the client

will cyclically train and test the obtained parameters. The package Flower (https://flower.

dev/) controls the federated learning process. It handles the connections between the clients

and the server and the parameters sharing between them. The package Tensorflow (https:

//www.tensorflow.org/) is used for machine learning-related processes. It handles training

and predictions.

4.7 Process Flow

The process was split into four basic steps, as shown in Figure 4.6. At flow preparation, the neural

network (NN) parameters are read. They define the number of layers and a number of elements

in each layer. As there are actually three outputs, being the probabilities of the machine being in

each status (“Healthy”, “Alert” and “Danger”), the last layer necessarily contains three elements.

A total of three and four layers was tested. For each layer, the number of elements was changed

from the values in the group [4, 16, 32, 64]. These parameters are set on the file params.json; one

example can be seen in Appendix A.1.

The flow contains two main loops to process all the simulations. Loop 1 is repeated a number

of times with the same NN parameters. The objective of this loop is to have more samples and to

get a better estimate of the number of cycles each status contains, as a Monte Carlo simulation.

The repetitions variable defines the number of times it will run, and it should set the same value

for the server’s and clients’ scripts. The function of Loop 2 is to cycle through all the defined NN

parameters.

Ultimately, the scripts should run “the total number of NN parameters” times “the defined

running repetitions”. This means that the number of times to run can easily reach the order of

hundreds, and the scripts may take a long time to complete. Also the computer’s memory may

https://flower.dev/
https://flower.dev/
https://www.tensorflow.org/
https://www.tensorflow.org/
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also impose a limitation on the number of cycles as its usage increases after each repetition. In

this case, the number of parameters and repetitions should be controlled.

Figure 4.6: Process flow for the simulations

4.8 Simulations Results

Every remaining useful life prediction (as any machine learning prediction) has an uncertainty

associated to it. Suppose there is an estimate of the probability of a remaining useful life pre-

diction being correct and the costs related to either the failure or maintenance. In that case, it

is possible to decide based on them. Figure 4.7 shows the results of several simulations of a sys-

tem trained to predict a failure 15 cycles before they happen (Danger state). The interpretation

of the plot follows. Given that a prediction of 15 cycles to failure was made, the probability of

the equipment surviving the exact number of cycles is given by the blue bars. Given the same

prediction, orange curve gives the probability of it surviving the exact number of cycles or less.

Cycles in this case mean an operation cycle or “run” of a machine, for example, an airplane

flight.
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Figure 4.7: Probabilities of failure in the next cycles

The histogram plot shows, for example, that having 15 cycles RUL prediction:

• There is a probability of 8,5% of exactly 15 cycles to failure.

• There is a probability of 1% of having actually 8 cycles before failure.

Usually the cumulative probability brings more relevant data about ranges, and this may be

useful for decisions on how to act as for example:

• There is a probability of 80% of the equipment failing with less than 23 cycles.

• Or 90% probability of failure in the next 26 cycles.

• There is nearly 99% chance of the failure not happening in the next 6 cycles.

If it is considered important to build a system to detect future failures, this equipment has a

relevant failure cost. This cost may be directly related to its unavailability (i.e. production loss),

or the maintenance cost may be higher in case of failure, safety risks.

If a chance of failure of 20% is accepted, (or to avoid 80% of them), ideally the maintenance

or a replacement should be done before 12 cycles after the danger state detection.



Chapter 5

Discussion and Conclusions

This Chapter contains the discussions about the simulations and their results. Some dificulties

in running the simulations are included to avoid repetitions in case of further work.

5.1 Simulation Process

The simulations were run on a “home” computer with limited resources. Although it was able

to run all the simulations, the simulations took a long time to complete with occasional crashes

forcing the simulations to be restarted.

A “lightweight” Linux distribution was used to run the simulations because the operational

system consumes significantly less memory and processing power than other systems.

5.1.1 Running Times

The training was run using four clients and the server instances in parallel. This means that the

computer resources were split between them. The server running in parallel with the clients

is not expected to cause delays since its processing (mainly the merging of all the training pa-

rameters) is run while the clients “wait” between two training sessions on the clients’ side. The

clients running in parallel share all processing power between them, and it is expected to slow

down the process, when compared with single-script training.

There is the possibility to run training using a GPU (graphics processing unit) instead of the

computer’s main processing unit. The calculations are expected to be much faster, but as this

requires specific hardware, it was not tried during this work. Of course, in a real-life federated

learning each client only needs to process its data. So no parallel processing would be needed

having its own isolated device.

34
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5.1.2 Memory Crashes

It was observed that after each training cycle, memory usage increases. If too many cycles are

programmed to be tested, the memory reaches its limits and the system crashes. This issue was

solved by limiting the number of neural networks to test at each session, making params.json

with fewer parameters set and adjusting the number of repetitions per parameter. Appendix A.1

shows one example of three parameters, but eight parameters should run safely for ten repeti-

tions at an 8Gb memory machine running a “lightweight” operational system.

5.2 Comparison of Neural Networks Parameters

Neural networks have some parameters that need to be provided for the machine learning method.

They are the number of layers, the number of neurons, and their types per layer.

The type of neurons used was ReLU (rectified linear unit) for all layers but the last one. As

the output is expected to be the probabilities of each of the three health states, three softmax

elements were used as the last layer for all the cases. Each neuron in this layer outputs the

probability of the equipment being at one of the possible states.

All the combinations of 4, 8, 16, 32 and 64 elements per layer were tested with a total of three

and four layers (including the output) with five simulations per combination. The combinations

with the best results were used again with ten simulations.

Figures 5.1 and 5.2 show two considered “bad” results compared to figures 5.3 and 5.4. All

the figures showed the histogram of the remaining useful life when the equipment was predicted

to be in the “Dangerous” state. Ideally, this should happen 15 cycles before the failure. As a con-

sequence, a well-trained neural network should present a peak around 15 cycles and low dis-

persion around it. Figure 5.1 shows an important dispersion, having some “Danger” predictions

above 60 cycles before failure. Figure 5.2 shows a slightly lower dispersion, but an increased peak

at zer o to 2 buckets. This means that many machines could have no warning before failure.

Figures 5.3 and 5.4 present results of much better neural network configurations. The dis-

persion is much lower than the other cases, with no cases above 45 cycles to failure on “Danger”

detection, and a probability smaller than 0,1% of no warning before failure.

Normally neural networks require these testing steps. Different applications and data may

have different sets of “best” parameters. Not necessarily a higher number of neurons obtain

better results.
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Figure 5.1: Histogram of a considered “bad” NN combination [4, 32, 32, 3] layers

Figure 5.2: Histogram of a considered “bad” NN combination [4, 32, 3] layers
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Figure 5.3: Histogram of a considered “good” NN combination [64, 64, 3] layers

Figure 5.4: Histogram of a considered ”good” NN combination [32, 64, 64, 3] layers
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5.3 Results

One set of plots was generated for each used neural network parameter containing one plot per

machine. The plot in Figure 5.5 is an example of a desirable result. The blue line represents the

observed cycles to failure. The yellow and red dots pinpoint the start of the desired alert and

danger detections. The shaded areas display the most likely state the machine learning model

predicted. In a perfect prediction, the dots should coincide with the start of the area with the

same color.

Figure 5.5: Desirable prediction

The plots in Figure 5.6 show results for some selected machines that presented different out-

comes, which are worth mentioning. Figure 5.6a show late predictions while figure 5.6b shows

early predictions. In rare cases (0.1% of them) there was no “danger” prediction before the fail-

ure occurred for these parameters. Figure 5.6e shows one case where some cycles were detected

as “alert” states with posterior return to “healthy” ones. This kind of event events was not very

frequent (around 3% of the cases). No similar case involving a “danger” detection was found.

One concern during the tests was how the predictions would behave in the case of machines

with longer or shorter lives compared to the average life duration. Figures 5.6c and 5.6d show a

very long life with more than 350 cycles to failure, and a very short life, with less than 150. Al-

though the predictions were a bit early and late for the long and the short life-lasting machines,

respectively, they similar to the ones closer to the average cycles to failure.

The plots shown in Figure 5.6 are from a particular run for the artificial neural network pa-

rameters [32, 64, 64, 3]. As the sequence of machines was changed at each run, the results dif-



CHAPTER 5. DISCUSSION AND CONCLUSIONS 39

fered at each time. The trained detection of the “alert” state was 50 and the “danger” was 15

cycles to failure.

(a) Late predictions (x-axis zoomed) (b) Early predictions

(c) Long life machine (d) Short life machine

(e) Alternating states (f) Early “alert” state detection

Figure 5.6: Results examples [32, 64, 64, 3]. x-axis: running cycles; y-axis: cycles to failure
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The plots in Figure 5.7 show the histogram and cumulative plots of the results of two neural

networks ([64, 64, 3] and [32, 64, 64, 3]). The results show that if, according to cost calculations

shown in the Section 2.1.2, it is acceptable to have an 80% chance of repairing before the equip-

ment fails, it would be necessary to make a maintenance or component replacement 12 cycles

after the “danger” detection. Making the maintenance 10 cycles after the detection would result

in a probability of around 90% of the equipment not failing before it.

(a) Neural network parameters [64, 64, 3]

(b) Neural network parameters [32, 64, 64, 3]

Figure 5.7: Histogram and cumulative plots for different neural networks
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5.4 Predictive and Age-Based Maintenance Comparison

Similarly to the previous ones, figure 5.8 shows a histogram and cumulative probability, but now

for the total life of all the machines. The width of the bars corresponds to buckets of 12 cycles

and their height represents the number of machines that failed in that cycles period. With this

kind of information, if 20% were to be considered as the maximum probability of an equipment

failure, it would be expected to conclude that preventive maintenance should be done after

around 160 cycles (age-based time tAB). This is a simple approach to age-based maintenance.

Figure 5.8: Histogram and cumulative plot for total cycles to failure

Considering the cumulative probability shown in Figure 5.7b, it may be concluded that es-

timating the last cycle to make maintenance is possible given a “danger” detection and a maxi-

mum failure probability allowed. Also considering that the maximum chance of failure should

be 20%, a maintenance should be done at most around 12 cycles after the prediction (predictive

time tPD).

Making age-based decisions instead of using a machine learning approach would be equiv-

alent to considering that all the machines are expected to fail at 172 cycles (tAB+ tPD = 160+12).

At the same time, nearly 50% of them could survive between 200 and 300 cycles. The mainte-

nance could then be delayed, saving both repair and lost profits due to unavailability. As would

be expected, the uncertainty decreases when using a machine learning approach.

These results are not exactly due to federated learning, but the machine learning-based pre-

dictive maintenance. But since a big pool of similar equipment is needed to improve the results,

a small industry could only have data for reliable predictions with FL. Small industries could

then benefit from partnering with other companies without sharing raw data. The results pro-

vided indicate that this approach is possible.
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5.5 Conclusions

The results of the simulations have demonstrated that the proposed method is viable for a pre-

dictive maintenance strategy based on remaining useful life estimation using federated learning

and artificial neural networks. By using distributed computing and machine learning, failure

prediction models can be trained using data from multiple locations. This allows different com-

panies to cooperate, building a better training for more accurate predictions without sharing

original data.

In an industrial system, predictive maintenance improves reliability by reducing the down-

time and increasing overall efficiency while decreasing the costs.

Although the ability of artificial neural networks to learn how to predict complex problems

is remarkable, other machine learning methods may be advantageous and further testing may

bring valuable information. Certainly there is space for further studies, improvements and tests

with online plant data. Specific techniques for enhancing privacy in federated learning systems

are available in the literature that could be expanded for this application.

Federated learning has significant potential due to the possibility of aggregating information

on the volume of data needed for acceptable training and its ability to deal with data privacy

concerns, GDPR and other regulations.



Chapter 6

Ideas for Further Work

In summary, this project aims to conduct a rigorous evaluation of a specific implementation

of federated learning in conjunction with an artificial neural network in a controlled setting to

determine its viability. Although it is not this study’s central objective, investigating this model’s

performance in real-world scenarios and implementing online feedback for the equipment op-

erator would be a fascinating avenue for future research.

• Simulation with real data instead of synthetic data

• Real federated learning running on multiple devices with real and live data

• Asynchronous training (only one device adding information to training instead of the

whole group)

• Multiple identified failure modes

• Try diverse machine learning methods

Hoping for further work, the codes are made available in the appendix section.
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Appendix A

Scripts

Here the scripts are shared for replication of the method, and hopefully further improvement.

Comments are included in the hope of making it easier to understand.

A.1 Parameters file example (params.json)

[ [ 6 4 , 64 , 3 ] ,

[16 , 64 , 4 , 3 ] ,

[32 , 32 , 32 , 3 ] ]

A.2 Sensor check script

# −*− coding : utf −8 −*−

" " "

Created on Sat Mar 18 11:41:13 2023

@author : l f l s a

" " "

import pandas as pd

import json

import scipy . s ignal as ss

import p l o t l y . express as px

def s g _ f i l t e r ( df , times ) :

for i in range ( times ) :

46
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sensors = df . columns . t o _ l i s t ( ) [ 2 : ]

for unit in df [ "Machine" ] . unique ( ) :

for sensor in sensors :

df . loc [ df [ "Machine" ] == unit , sensor ] = ss . s a v g o l _ f i l t e r (

df . loc [ df [ "Machine" ] == unit , sensor ] ,

window_length=35 ,

polyorder =2 ,

deriv =0 ,

mode=" interp " ,

)

return df

f i l e _ t r a i n = "FD001/ train_FD001 cycle to f a i l u r e . t x t "

column_names = [ "Machine" , " Cycles " , " Sett ing 1" , " Sett ing 2" , " Sett ing 3" ]

for i in range ( 2 1 ) :

column_names . append( "Sensor " + s t r ( i + 1 ) )

f u l l _ t r a i n _ d a t a = pd . read_csv ( f i l e _ t r a i n , names=column_names , del imiter=" \ t " )

data = s g _ f i l t e r ( f u l l _ t r a i n _ d a t a , 3)

data = data [ data [ " Cycles " ] <= 100]

correlat ions = [ ]

sensors = [ ]

pos_neg = [ ]

for column in column_names :

i f "Sensor" in column :

print (

" Correlation "

+ column

+ " : "

+ s t r ( data [ " Cycles " ] . corr ( data [ column ] , method="spearman" ) )

)

corre lat ions . append( abs ( data [ " Cycles " ] . corr ( data [ column ] , method="spearman" ) ) )

pos_neg . append( data [ " Cycles " ] . corr ( data [ column ] , method="spearman" ) )

i f correlat ions [ −1] >= 0 . 8 :

sensors . append(column + " * " )
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else :

sensors . append(column)

sensors_ordered = [ x for _ , x in sorted ( zip ( correlations , sensors ) ) ]

correlations_ordered = correlat ions . copy ( )

correlations_ordered . sort ( )

pos_neg_ordered = [

" Inverse Correlation " i f x < 0 else " Direct Correlation " for x in pos_neg

]

f i g = px . bar (

x=correlations_ordered ,

y=sensors_ordered ,

color=pos_neg_ordered ,

orientation="h" ,

text_auto=False ,

)

f i g . update_layout (

x a x i s _ t i t l e ="Spearman correlat ion between Sensors and Cycles to Fai lure " ,

y a x i s _ t i t l e =" Sensors " ,

)

f i g . write_html ( " correlat ions . html" )

A.3 Server Script

" " "

@author : l f l s a

" " "

import time

import pandas as pd

import f lwr as f l

import p l o t l y . graph_objects as go

import numpy as np

from datetime import datetime

import json

import os

from s t a t i s t i c s import mean, stdev
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import random

import p l o t l y . express as px

from p l o t l y . subplots import make_subplots

b1 = 50 # Threshold f o r a l e r t l e v e l

b0 = 15 # Threshold f o r danger l e v e l

r e p e t i t i o n s = 10 # Number of times to t e s t each parameter

c l i e n t s = 4 # Minimum number of c l i e n t s

####

# Implements Flower s e r v e r

####

def s t a r t S e r v e r ( rounds ) :

s tr a te g y = f l . server . s t r at e gy . FedAvg (

min_available_clients= c l i e n t s ,

)

f l . server . s t a r t _ s e r v e r (

server_address=" 0 . 0 . 0 . 0 : 8 0 8 0 " ,

config= f l . server . ServerConfig (num_rounds=rounds ) ,

s tr a te gy =strategy ,

)

####

# Reads the Neural Netork parameters to be t e s t e d

####

def read_params ( ) :

i f os . path . i s f i l e ( "params . json " ) :

with open( "params . json " ) as t a r g e t :

params = json . load ( t a r g e t )

return params
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####

# Reads the data as a dataframe , adding the columns names

####

def read_data ( ) :

removetags = [

" Sett ing 1" ,

" Sett ing 2" ,

" Sett ing 3" ,

"Sensor 1" ,

"Sensor 5" ,

"Sensor 6" ,

"Sensor 8" ,

"Sensor 9" ,

"Sensor 10" ,

"Sensor 13" ,

"Sensor 14" ,

"Sensor 16" ,

"Sensor 18" ,

"Sensor 19" ,

] # Remove information that i s not useful

f i l e _ t r a i n = "FD001/ train_FD001 cycle to f a i l u r e . t x t "

f i l e _ t e s t = "FD001/ train_FD001 cycle to f a i l u r e . t x t "

column_names = [ "Machine" , " Cycles " , " Sett ing 1" , " Sett ing 2" , " Sett ing 3" ]

for i in range ( 2 1 ) :

column_names . append( "Sensor " + s t r ( i + 1 ) )

f u l l _ t r a i n _ d a t a = pd . read_csv ( f i l e _ t r a i n , names=column_names , del imiter=" \ t " )

f u l l _ t r a i n _ d a t a = f u l l _ t r a i n _ d a t a . drop ( removetags , axis =1)

num_train_machines = max( f u l l _ t r a i n _ d a t a [ "Machine" ] )

f u l l _ t e s t _ d a t a = pd . read_csv ( f i l e _ t e s t , names=column_names , del imiter=" \ t " )

f u l l _ t e s t _ d a t a = f u l l _ t e s t _ d a t a . drop ( removetags , axis =1)

return f u l l _ t e s t _ d a t a , num_train_machines , f u l l _ t r a i n _ d a t a , f u l l _ t e s t _ d a t a
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f u l l _ t e s t _ d a t a , num_train_machines , f u l l _ t r a i n _ d a t a , f u l l _ t e s t _ d a t a = read_data ( )

params = read_params ( )

machines_list = f u l l _ t e s t _ d a t a [ "Machine" ] . unique ( )

machines_lists = [ ]

for r e p e t i t i o n in range ( r e p e t i t i o n s ) :

random . s h u f f l e ( machines_list )

machines_lists . append( machines_list . copy ( ) )

num_test_machines = max( f u l l _ t e s t _ d a t a [ "Machine" ] )

r e s u l t s = { }

f i l e _ c l i e n t = " r e s u l t s / c l i e n t "

# repeats once per parameter in params . json f i l e

for param in params :

param_txt = json .dumps(param)

r e s u l t s [ param_txt ] = {

" A l e r t average " : [ ] ,

" A l e r t max" : [ ] ,

" A l e r t min" : [ ] ,

" A l e r t sd" : [ ] ,

"Danger average " : [ ] ,

"Danger max" : [ ] ,

"Danger min" : [ ] ,

"Danger sd" : [ ] ,

" Correct A l e r t average " : [ ] ,

" Correct Danger average " : [ ] ,

" Correct A l e r t sd" : [ ] ,

" Correct Danger sd" : [ ] ,

" A l e r t Cycles " : [ ] ,

"Danger Cycles " : [ ] ,

}

# repeats the number of defined r e p e t i t i o n s

for r e p e t i t i o n in range ( r e p e t i t i o n s ) :



APPENDIX A. SCRIPTS 52

length = int ( num_train_machines / c l i e n t s )

for i in range ( c l i e n t s ) :

templist = machines_lists [ r e p e t i t i o n ] [ i * length : ( i + 1) * length ]

f u l l _ t r a i n _ d a t a [ f u l l _ t r a i n _ d a t a [ "Machine" ] . i s i n ( templist ) ] . to_csv (

f i l e _ c l i e n t + " t r a i n " + s t r ( i ) + " . csv " , index=False

)

f u l l _ t e s t _ d a t a [ f u l l _ t e s t _ d a t a [ "Machine" ] . i s i n ( templist ) ] . to_csv (

f i l e _ c l i e n t + " t r a i n " + s t r ( i ) + " . csv " , index=False

)

print ( " data shuff led " )

s t a r t S e r v e r ( 5 ) #argument def ines number of rounds per experiment

time . sleep (10) # g i v e s time to the c l i e n t s to f i n i s h

outputs = pd . DataFrame ( )

for c l i e n t in range ( c l i e n t s ) :

outputs = pd . concat (

[ outputs , pd . read_csv ( "output" + s t r ( c l i e n t ) + " . csv " , sep=" , " ) ]

)

#####

# here f i n i s h e s the main functions . the code that fol lows i s f o r reporting purposes .

#####

a l e r t = [ ]

danger = [ ]

c o r r e c t _ a l e r t = [ ]

correct_danger = [ ]

for machine in outputs [ "Machine" ] . unique ( ) :

c o r r e c t _ a l e r t . append(

outputs [ outputs [ "Machine" ] == machine ] [ " Correct A l e r t " ] . sum( )

)

correct_danger . append(

outputs [ outputs [ "Machine" ] == machine ] [ " Correct Danger" ] . sum( )

)

a l e r t . append( outputs [ outputs [ "Machine" ] == machine ] [ " A l e r t " ] . sum( ) )

danger . append( outputs [ outputs [ "Machine" ] == machine ] [ "Danger" ] .sum( ) )
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r e s u l t s [ param_txt ] [ " Correct A l e r t average " ] . append(mean( c o r r e c t _ a l e r t ) )

r e s u l t s [ param_txt ] [ " Correct Danger average " ] . append(mean( correct_danger ) )

r e s u l t s [ param_txt ] [ " Correct A l e r t sd" ] . append( stdev ( correct_danger ) )

r e s u l t s [ param_txt ] [ " Correct Danger sd" ] . append( stdev ( correct_danger ) )

r e s u l t s [ param_txt ] [ " A l e r t average " ] . append(mean( a l e r t ) )

r e s u l t s [ param_txt ] [ "Danger average " ] . append(mean( danger ) )

r e s u l t s [ param_txt ] [ " A l e r t sd" ] . append( stdev ( a l e r t ) )

r e s u l t s [ param_txt ] [ "Danger sd" ] . append( stdev ( danger ) )

r e s u l t s [ param_txt ] [ " A l e r t max" ] . append(max( a l e r t ) )

r e s u l t s [ param_txt ] [ "Danger max" ] . append(max( danger ) )

r e s u l t s [ param_txt ] [ " A l e r t min" ] . append(min( a l e r t ) )

r e s u l t s [ param_txt ] [ "Danger min" ] . append(min( danger ) )

r e s u l t s [ param_txt ] [ " A l e r t Cycles " ] . extend ( a l e r t )

r e s u l t s [ param_txt ] [ "Danger Cycles " ] . extend ( danger )

outputs [ "b0" ] = np . where (

outputs [ " Cycles " ] . reset_index ( drop=True ) == b0 , b0 , None

)

outputs [ "b1" ] = np . where (

outputs [ " Cycles " ] . reset_index ( drop=True ) == b1 , b1 , None

)

outputs [ "Danger" ] = outputs [ "Danger" ] * 500

outputs [ " A l e r t " ] = outputs [ " A l e r t " ] * 500

outputs [ " Healthy " ] = outputs [ " Healthy " ] * 500

data = [ ]

for step in np . arange ( 1 , 101) :

data . append(

go . Scatter (

x=outputs [ outputs [ "Machine" ] == step ] [ " Cycles " ] [ : : − 1 ] ,

y=outputs [ outputs [ "Machine" ] == step ] [ " Healthy " ] ,

f i l l =" tozeroy " ,

f i l l c o l o r ="rgba (128 ,255 ,128 ,0.4) " ,
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l ine_color ="rgba (255 ,255 ,255 ,0) " ,

name=" Healthy " ,

l i n e ={ "shape" : "hvh" } ,

showlegend=True ,

v i s i b l e =False ,

)

)

data . append(

go . Scatter (

x=outputs [ outputs [ "Machine" ] == step ] [ " Cycles " ] [ : : − 1 ] ,

y=outputs [ outputs [ "Machine" ] == step ] [ " A l e r t " ] ,

f i l l =" tozeroy " ,

f i l l c o l o r ="rgba (255 ,255 ,128 ,0.4) " ,

l ine_color ="rgba (255 ,255 ,255 ,0) " ,

name=" A l e r t " ,

l i n e ={ "shape" : "hvh" } ,

showlegend=True ,

v i s i b l e =False ,

)

)

data . append(

go . Scatter (

x=outputs [ outputs [ "Machine" ] == step ] [ " Cycles " ] [ : : − 1 ] ,

y=outputs [ outputs [ "Machine" ] == step ] [ "Danger" ] ,

f i l l =" tozeroy " ,

f i l l c o l o r ="rgba (255 ,128 ,128 ,0.4) " ,

l ine_color ="rgba (255 ,255 ,255 ,0) " ,

name="Danger" ,

l i n e ={ "shape" : "hvh" } ,

showlegend=True ,

v i s i b l e =False ,

)

)

data . append(

go . Scatter (

y=outputs [ outputs [ "Machine" ] == step ] [ " Cycles " ] ,
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v i s i b l e =False ,

name="Observed l i f e " ,

l ine_color ="rgba (0 ,0 ,255 ,1) " ,

)

)

data . append(

go . Scatter (

x=outputs [ outputs [ "Machine" ] == step ] [ " Cycles " ] [ : : − 1 ] ,

y=outputs [ outputs [ "Machine" ] == step ] [ "b1" ] ,

name=" Desired A l e r t " ,

mode="markers" ,

marker=dict ( color="Gold" , s i z e =7 , l i n e =dict ( color=" Black " , width = 1 ) ) ,

showlegend=True ,

v i s i b l e =False ,

)

)

data . append(

go . Scatter (

x=outputs [ outputs [ "Machine" ] == step ] [ " Cycles " ] [ : : − 1 ] ,

y=outputs [ outputs [ "Machine" ] == step ] [ "b0" ] ,

name=" Desired Danger" ,

mode="markers" ,

marker=dict ( color="Red" , s i z e =7 , l i n e =dict ( color=" Black " , width = 1 ) ) ,

showlegend=True ,

v i s i b l e =False ,

)

)

f i g = go . Figure ( data )

f i g . data [ 0 ] . v i s i b l e = True

f i g . data [ 1 ] . v i s i b l e = True

f i g . data [ 2 ] . v i s i b l e = True

f i g . data [ 3 ] . v i s i b l e = True

f i g . data [ 4 ] . v i s i b l e = True

f i g . data [ 5 ] . v i s i b l e = True

# f i g . data [ 1 0 0 ] . v i s i b l e = True
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# f i g . data [ 2 0 0 ] . v i s i b l e = True

# Create and add s l i d e r

steps = [ ]

for i in range ( len ( f i g . data ) ) :

step = dict (

method="update" ,

args =[

{ " v i s i b l e " : [ False ] * 6 * len ( f i g . data ) } ,

{ " t i t l e " : "Turbine : " + s t r ( i + 1 ) } ,

] , # layout a t t r i b u t e

)

step [ " args " ] [ 0 ] [ " v i s i b l e " ] [

6 * ( i + 1) − 6

] = True # Toggle i ’ th trace to " v i s i b l e "

step [ " args " ] [ 0 ] [ " v i s i b l e " ] [

6 * ( i + 1) − 5

] = True # Toggle i ’ th trace to " v i s i b l e "

step [ " args " ] [ 0 ] [ " v i s i b l e " ] [

6 * ( i + 1) − 4

] = True # Toggle i ’ th trace to " v i s i b l e "

step [ " args " ] [ 0 ] [ " v i s i b l e " ] [

6 * ( i + 1) − 3

] = True # Toggle i ’ th trace to " v i s i b l e "

step [ " args " ] [ 0 ] [ " v i s i b l e " ] [

6 * ( i + 1) − 2

] = True # Toggle i ’ th trace to " v i s i b l e "

step [ " args " ] [ 0 ] [ " v i s i b l e " ] [

6 * ( i + 1) − 1

] = True # Toggle i ’ th trace to " v i s i b l e "

steps . append( step )

s l i d e r s = [

dict (

act ive =0 ,

currentvalue ={ " p r e f i x " : "Turbine : " } ,

pad={ " t " : 50} ,
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steps=steps [ 0 : 1 0 0 ] ,

)

]

f i g . update_layout ( s l i d e r s = s l i d e r s )

f i g . update_xaxes ( range =[0 , 400] , showgrid=False )

f i g . update_yaxes ( range =[0 , 360] , showgrid=False )

t s = datetime .now ( ) . s t r f t i m e ( "%Y%m%d%H%M%S" )

f i g . write_html ( " r e s u l t s / outputhealth " + t s + " " + s t r (param) + " . html" )

with open( " r e s u l t s / r e s u l t s " + t s + " . json " , "w" ) as j s o n _ f i l e :

json .dump( r es u l ts , j s o n _ f i l e , indent =4)

for item in r e s u l t s :

f i g = make_subplots ( rows=2 , cols =1)

f i g . add_trace (

go . Histogram (

x= r e s u l t s [ item ] [ "Danger Cycles " ] ,

histnorm=" percent " ,

xbins ={ " s i z e " : 10} ,

name="Grouped 10 Cycles " ,

) ,

row=1 ,

col =1 ,

)

f i g . add_trace (

go . Histogram (

x= r e s u l t s [ item ] [ "Danger Cycles " ] ,

histnorm=" percent " ,

xbins ={ " s i z e " : 1 } ,

name="Grouped 2 Cycles " ,

) ,

row=2 ,

col =1 ,

)

f i g . update_layout (
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t i t l e ={ " t e x t " : "Number of Danger Cycles . NN l a y e r s : " + s t r ( item ) , "x" : 0 . 5 }

)

f i g . update_layout (barmode=" overlay " )

f i g . update_yaxes ( t i t l e _ t e x t =" Percent of Grouped 10 Cycles " , row=1 , col =1)

f i g . update_yaxes ( t i t l e _ t e x t =" Percent of Cycles " , row=2 , col =1)

f i g . update_xaxes ( t i t l e _ t e x t ="Number of Danger Cycles " )

f i g . write_html ( " r e s u l t s / histogram Danger " + s t r ( item ) + " . html" )

f i g = make_subplots ( rows=2 , cols =1)

f i g . add_trace (

go . Histogram (

x= r e s u l t s [ item ] [ " A l e r t Cycles " ] ,

histnorm=" percent " ,

xbins ={ " s i z e " : 20} ,

name="Grouped 20 Cycles " ,

) ,

row=1 ,

col =1 ,

)

f i g . add_trace (

go . Histogram (

x= r e s u l t s [ item ] [ " A l e r t Cycles " ] ,

histnorm=" percent " ,

xbins ={ " s i z e " : 2 } ,

name="Grouped 4 Cycles " ,

) ,

row=2 ,

col =1 ,

)

f i g . update_layout (

t i t l e ={ " t e x t " : "Number of A l e r t Cycles . NN l a y e r s : " + s t r ( item ) , "x" : 0 . 5 }

)

f i g . update_layout (barmode=" overlay " )

f i g . update_yaxes ( t i t l e _ t e x t =" Percent of Grouped 20 Cycles " , row=1 , col =1)

f i g . update_yaxes ( t i t l e _ t e x t =" Percent of Grouped 2 Cycles " , row=2 , col =1)

f i g . update_xaxes ( t i t l e _ t e x t ="Number of A l e r t Cycles " )

f i g . write_html ( " r e s u l t s / histogram A l e r t " + s t r ( item ) + " . html" )
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A.4 Clients script

# −*− coding : utf −8 −*−

" " "

@author : l f l s a

" " "

import f lwr as f l

import tensorflow as t f

import pandas as pd

import numpy as np

import p l o t l y . express as px

from datetime import datetime

import json

import time

import os

import scipy . s ignal as ss

c l i e n t = 0 #one f i l e per c l i e n t changing t h i s parameter

r e p e t i t i o n s = 10

rounds = 5

def s g _ f i l t e r ( df , times ) :

f i g = px . l i n e ( x=df [ " Cycles " ] , y=df [ "Sensor 3" ] , color=df [ "Machine" ] )

f i g . write_html ( "Sensor 3 before f i l t e r . html" )

for i in range ( times ) :

sensors = df . columns . t o _ l i s t ( ) [ 2 : ]

for unit in df [ "Machine" ] . unique ( ) :

for sensor in sensors :

df . loc [ df [ "Machine" ] == unit , sensor ] = ss . s a v g o l _ f i l t e r (

df . loc [ df [ "Machine" ] == unit , sensor ] ,

window_length=35 ,

polyorder =2 ,

deriv =0 ,

mode=" interp " ,
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)

f i g = px . l i n e ( x=df [ " Cycles " ] , y=df [ "Sensor 3" ] , color=df [ "Machine" ] )

f i g . write_html ( "Sensor 3 a f t e r f i l t e r . html" )

return df

def getData ( filename , max_number_cycles , mu=None, sigma=None, Ymax=None ) :

training_range = 1

data_raw = pd . read_csv ( filename + " t r a i n " + s t r ( c l i e n t ) + " . csv " , sep=" , " )

data = data_raw . copy ( )

machines = data [ "Machine" ] . unique ( )

Xtags = data . columns

Xtags = [ e for e in Xtags i f e not in [ "Machine" , " Cycles " ] ]

data = s g _ f i l t e r ( data , 5)

data = data [ data [ " Cycles " ] <= max_number_cycles ]

data . reset_index ( drop=True )

cycles = pd . DataFrame ( ) # define the three l e v e l s to be trained

cycles [ "Danger" ] = np . where (

data [ " Cycles " ] . reset_index ( drop=True ) <= b0 , 1 , 0

)

cycles [ " A l e r t " ] = np . where (

data [ " Cycles " ] . reset_index ( drop=True ) . between ( b0 + 1 , b1 ) , 1 , 0

)

cycles [ " Healthy " ] = np . where (

data [ " Cycles " ] . reset_index ( drop=True ) > b1 , 1 , 0

)

machines = data [ "Machine" ]
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originalY = data [ " Cycles " ] . reset_index ( drop=True )

data . drop ( "Machine" , inplace=True , axis =1)

data . drop ( " Cycles " , inplace=True , axis =1)

new_params = False

#read average and stdev of each sensor from f i l e , so c l i e n t s use the same

# s e t of parameters .

i f mu i s None :

new_params = True

avg_stdev = pd . read_csv ( " r e s u l t s / avg_stdev . csv " , sep=" , " , index_col=" index " )

mu = avg_stdev [ "mu" ]

sigma = avg_stdev [ "sigma" ]

X = ( data − mu) / sigma

i f Ymax i s None :

Ymax = training_range

Y = cycles

X = X . reset_index ( drop=True )

Y = Y . reset_index ( drop=True )

machines = machines . reset_index ( drop=True )

i f new_params :

return X , Y , mu, sigma , Ymax, machines , or iginalY

else :

return X , Y , machines , or iginalY

# Define Flower c l i e n t

class Client ( f l . c l i e n t . NumPyClient ) :

def get_parameters ( s e l f , config ) :

print ( "GET PARAMS ! ! ! " )
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return model . get_weights ( )

def f i t ( s e l f , parameters , config ) :

global i

print (

" \n\nFIT MACHINES { } ! ! ! \ n\n" . format (

machines [ i * MachinesPerTrain : ( i + 1) * MachinesPerTrain ]

)

)

x_train = x _ t r a i n _ t o t a l [

train_machines_total . i s i n (

machines [ i * MachinesPerTrain : ( i + 1) * MachinesPerTrain ]

)

]

y_train = y _ t r a i n _ t o t a l [

train_machines_total . i s i n (

machines [ i * MachinesPerTrain : ( i + 1) * MachinesPerTrain ]

)

]

model . set_weights ( parameters )

model . f i t ( x_train , y_train , epochs=100 , batch_size =8 , verbose =0)

return model . get_weights ( ) , len ( x_train ) , { }

def evaluate ( s e l f , parameters , config ) :

def predict ( x ) : #run prediction

print ( "PREDICT ! ! ! " )

predictions = model . predict ( x )

return predictions

global i , predictions

x _ t e s t = x _ t e s t _ t o t a l [

test_machines_total . i s i n (

machines [ i * MachinesPerTrain : ( i + 1) * MachinesPerTrain ]

)
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]

y _ t e s t = y _ t e s t _ t o t a l [

test_machines_total . i s i n (

machines [ i * MachinesPerTrain : ( i + 1) * MachinesPerTrain ]

)

]

model . set_weights ( parameters )

loss , accuracy , precision , r e c a l l = model . evaluate ( x_test , y _ t e s t )

length = len ( x _ t e s t )

i f i == 0 :

new_pred = model . predict ( x _ t e s t )

predictions = np . vstack ( ( predictions , new_pred ) )

i += 1

try :

x _ t e s t = x _ t e s t _ t o t a l [

test_machines_total . i s i n (

machines [ i * MachinesPerTrain : ( i + 1) * MachinesPerTrain ]

)

]

new_pred = model . predict ( x _ t e s t )

predictions = np . vstack ( ( predictions , new_pred ) )

except :

x _ t e s t = x _ t e s t _ t o t a l [

test_machines_total . i s i n (

machines [

( i − 1) * MachinesPerTrain : ( i + 1 − 1) * MachinesPerTrain

]

)

]

y _ t e s t = y _ t e s t _ t o t a l [

test_machines_total . i s i n (

machines [

( i − 1) * MachinesPerTrain : ( i + 1 − 1) * MachinesPerTrain

]
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)

]

pass

return loss , length , { " accuracy " : accuracy }

i f os . path . i s f i l e ( "params . json " ) :

with open( "params . json " ) as t a r g e t :

params = json . load ( t a r g e t )

for param in params : # f o r every parameters in params . json f i l e

for r e p e t i t i o n in range ( r e p e t i t i o n s ) : # repeat f o r r e p e t i t i o n number of times

MachinesPerTrain = int (25 / rounds )

b1 = 50

b0 = 15

l a y e r s = [ 4 , 16 , 3]

l _ r a t e = 0.002

model_params = [ ]

for item in param :

i f item != 3 :

model_params . append( t f . keras . l a y e r s . Dense ( item , act ivat ion =" relu " ) )

else :

model_params . append( t f . keras . l a y e r s . Dense ( item , act ivat ion ="softmax" ) )

model = t f . keras . Sequential ( model_params )

model . compile (

l o s s = t f . keras . losses . binary_crossentropy ,

optimizer= t f . keras . optimizers .Adam( learning_rate= l _ r a t e ) ,

metrics =[

t f . keras . metrics . BinaryAccuracy (name=" accuracy " ) ,

t f . keras . metrics . Precision (name=" precision " ) ,

t f . keras . metrics . Recal l (name=" r e c a l l " ) ,

] ,
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)

Ytag = [ " Cycles " ]

av g _s tde v _ f i l e = " r e s u l t s / avg_stdev . csv "

t r a i n _ f i l e = " r e s u l t s / c l i e n t "

t e s t _ f i l e = " r e s u l t s / c l i e n t "

(

x _ t r a i n _ t o t a l ,

y _ t r a i n _ t o t a l ,

mu,

sigma ,

Ymax,

train_machines_total ,

originalY ,

) = getData ( t r a i n _ f i l e , 999)

machines = l i s t ( set ( train_machines_total ) )

x_train = x _ t r a i n _ t o t a l [ train_machines_total == machines [ 0 ] ]

y_train = y _ t r a i n _ t o t a l [ train_machines_total == machines [ 0 ] ]

model . f i t ( x_train , y_train , epochs=100 , verbose =0)

x_train = x _ t r a i n _ t o t a l [ train_machines_total == machines [ 1 ] ]

y_train = y _ t r a i n _ t o t a l [ train_machines_total == machines [ 1 ] ]

i = 0

predictions = [ [ None, None, None ] ]

x _ t e s t _ t o t a l , y _ t e s t _ t o t a l , test_machines_total , testY = getData (

t e s t _ f i l e , 999 , mu, sigma , Ymax

)

y _ t r a i n _ t o t a l = y _ t r a i n _ t o t a l

y _ t e s t _ t o t a l = y _ t e s t _ t o t a l

# S t a r t Flower c l i e n t
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try :

f l . c l i e n t . start_numpy_client (

server_address=" 127.0 .0 .1 :8080 " , c l i e n t =Client ( )

)

except Exception as e :

print ( e )

predictions = np . delete ( predictions , 0 , 0)

predictions = predictions . astype ( f l o a t ) . round ( 0 )

t s = datetime .now ( ) . s t r f t i m e ( "%Y%m%d%H%M%S" )

predictions = pd . DataFrame ( predictions , columns=[ "Danger" , " A l e r t " , " Healthy " ] )

correct_predictions = y _ t r a i n _ t o t a l * predictions

i f len ( correct_predictions [ "Danger" ] . value_counts ( ) ) > 0 :

good_danger = (

correct_predictions [ "Danger" ] . value_counts ( ) [ 1 ]

/ predictions [ "Danger" ] . value_counts ( ) [ 1 ]

)

else :

good_danger = 0

i f len ( correct_predictions [ " Healthy " ] . value_counts ( ) ) > 0 :

good_healthy = (

correct_predictions [ " Healthy " ] . value_counts ( ) [ 1 ]

/ predictions [ " Healthy " ] . value_counts ( ) [ 1 ]

)

else :

good_healthy = 0

i f len ( correct_predictions [ " A l e r t " ] . value_counts ( ) ) > 0 :

good_alert = (

correct_predictions [ " A l e r t " ] . value_counts ( ) [ 1 ]

/ predictions [ " A l e r t " ] . value_counts ( ) [ 1 ]

)

else :

good_alert = 0

print (
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"Good Predictions : \ n−−−−−−−−−−−−−−" ,

" \nHealthy : " ,

good_healthy ,

" \ nAlert : " ,

good_alert ,

" \nDanger : " ,

good_danger ,

" \nParam : " ,

param ,

" \ nRepetition : " ,

r e p e t i t i o n + 1 ,

" of " ,

repeti t ions ,

)

output = predictions . copy ( )

output [ "Machine" ] = test_machines_total

output [ " Cycles " ] = testY

output [ " Correct Danger" ] = correct_predictions [ "Danger" ] . copy ( )

output [ " Correct A l e r t " ] = correct_predictions [ " A l e r t " ] . copy ( )

output [ " Correct Healthy " ] = correct_predictions [ " Healthy " ] . copy ( )

output . to_csv ( "output" + s t r ( c l i e n t ) + " . csv " , index=False )

time . sleep (15)
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