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Abstract

The advancement of computationally efficient and precise inflow dynamics, coupled with the growth
in computational power, paves the way for exploring the relatively unexplored approach of state
estimation for deriving the yaw error estimate.

This thesis provides the groundwork needed for implementing simulations fit for state estimation
to obtain an estimate of the yaw error. This necessitates the development of a nonlinear process
model that encompasses structural dynamics, inflow dynamics, torque control, a wind model, and
the computation of forces and torques on the blades. Alongside the specifications of the wind
turbine, these elements constitute a comprehensive nonlinear process model, which is subsequently
linearized for state estimation using the Kalman filter and Extended Kalman filter.

The simulations conducted in this study demonstrate the Extended Kalman filter’s ability to
produce accurate yaw error estimates. These estimates are subsequently utilized in yaw control,
highlighting the potential benefits of possessing a precise yaw error estimate.



Sammendrag

Utviklingen av beregningseffektive og nøyaktige inflow-dynamikker, sammen med økende beregn-
ingskapasitet, muliggjør undersøkelse av den relativt uutforskede tilnærmingen til tilstandsestimer-
ing for å finne et feilestimat for yaw.

Denne avhandlingen gir grunnlaget som trengs for å implementere simuleringer egnet for tilstand-
sestimering av yaw-feil. Dette krever utvikling av en ikke-lineær prosessmodell som omfatter
strukturell dynamikk, inflow-dynamikk, momentkontroll, en vindmodell, og beregning av krefter
og moment p̊a bladene. Sammen med vindturbinens spesifikasjoner utgjør disse elementene en om-
fattende ikke-lineær prosessmodell, som deretter blir linearisert for tilstandsestimering ved bruk
av b̊ade Kalman-filter og Extended Kalman-filter.

Simuleringene som er utført i denne oppgaven demonstrerer Extended Kalman-filterets evne til å
produsere nøyaktige estimater av yaw-feilen. Disse estimatene blir deretter brukt i yaw-kontroll,
for å understreke de potensielle fordelene ved å ha et nøyaktig estimat av yaw-feilen.
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Chapter 1

Motivation

1.1 Introduction

Renewable energy, encompassing resources like wind and solar power, has gained significant rele-
vance due to its potential to reduce greenhouse gas emissions by providing alternatives to burning
fossil fuels. While the conscious use of renewable energy has been a relatively recent development,
the utilization of natural resources for energy has been around since early humans discovered fire.
According to the Global Wind Energy Council’s Global Wind Report 2022, the total global wind
power capacity in 2021 reached 837 GW. This capacity is ”helping the world avoid over 1.2 billion
tonnes of CO2 annually; equivalent to the annual carbon emissions of South America” [4]. This
statistic underscores the significant impact of renewable energy sources in mitigating the effects of
climate change.

In 2021, the total global wind power capacity increased by 93.6 GW, and GWEC aims for further
increase in the coming years with a projected total capacity illustrated below.

Figure 1.1: Trend wind energy. From [4]
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CHAPTER 1. MOTIVATION

With the increased capacity the importance of efficiency grows. The more efficiently the kinetic
energy of the wind can be converted into electrical energy, the greater the benefit from the total
power capacity. The kinetic energy of the wind can be expressed by the following equation:

E =
1

2
ρAU3

∞ (1.1)

where ρ is the air density, A is the swept area and U∞ is the free-stream flow of the wind. 100%
efficiency would imply zero final velocity of the wind after passing the turbine which is not realistic.
Betz’s law [5] suggests that no turbine1 can capture more than 16/27 (59.3%) of the kinetic energy
in wind. This assumes constant linear velocity consequently neglecting rotational forces such
as vortex shedding, wake rotation and turbulence caused by drag which will further reduce the
maximum efficiency [6].

A plethora of research in the wind energy field has been and is ongoing to increase the efficiency,
the approaches range from advanced control schemes[7] to structural changes[8]. Yaw control is
an essential control system for proper wind turbine operation [9]. The goal of this control system
is generally to align the nacelle, which is the housing at the top of the wind turbine that contains
the generator and other mechanical components, with the wind to maximize power capture.

Yaw error is the misalignment between the nacelle of the wind turbine and the wind direction.
For a single wind turbine, yaw error during operation leads to sub-optimal power extraction. This
becomes clear in the steady state case, where the generator shaft torque is equal to the respective
aerodynamic torque such that the generator shaft power can be expressed as:

E(Ω) =
1

2
ρAC∗

pU
3
∞ cos(ψ) (1.2)

where C∗
p is the optimal power coefficient, U∞ is the free-stream flow of the wind, Ω is the angular

velocity of the rotor and ψ is the yaw angle of the wind. It is evident that ψ = 0 leads to maximum
power extraction, however controlling the angle of the wind is not feasible. The objective of the
yaw control is then to yaw the wind turbine such that the angle between the yaw of the turbine θ
and the yaw of the wind ψ, that is the yaw error, is zero. Note that θ is the direction the nacelle is
facing, Figure 3.2 illustrates the wind turbine in a NED reference frame with angles θ and ψ defined
in relation to the BODY frame. Thus, by minimizing the yaw error maximum power extraction
can be achieved.

In the case of a wind farm this might not be the case as downstream flow might benefit from a non-
zero yaw error for wake deflection [10, 11]. Whichever the case, the yaw error must be controlled
to get optimal power extraction, either to zero or a set value.

Proper yaw control, which relies on good yaw error estimates, is also crucial for keeping the wind
turbine within its operating range. Operation outside of the operating range can lead to forced shut
downs and unnecessary stress on the wind turbine. Downtime due to failures in the yaw system
comprised 13.3% of the total downtime of wind turbines in Swedish power plants in 2000-2004 [12],
which motivates proper yaw control.

To be able to control the yaw error to a desired value, information about the yaw error must be
obtained. The wind-vane is a common tool for yaw error measurements, however, as the blades
of the turbine rotate it can create a wake disrupting the incoming flow to the wind-vane, which is
typically mounted on the nacelle [13, 14]. As an alternative light detection and ranging(LIDAR)
based yaw measurements has seen some traction in the last few years [15, 13, 11, 16, 17]. The usage
of LIDAR and wind-vanes often comes with comprehensive correction schemes. As an example [18]
stated that measurements using a spinner-based LIDAR along with correction for wind shear and
temporal averaging produced yaw error estimates within a few degrees of the true value. However,
it is mentioned as a shortcoming that the estimates only consider situations with varying magnitude
of wind shear.

The challenges and limitations of yaw error estimation using wind-vane and LIDAR are further
discussed in Section 1.3. From this, it is evident that there is a need for a more reliable and

1Betz limit is based on an open-disk actuator i.e the limit applies to the cross-section of the structure.
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CHAPTER 1. MOTIVATION

accurate method for obtaining information on the yaw error. This thesis aims to address this gap
by exploring state estimation as a potential solution for inaccurate yaw error estimation in wind
turbines. Specifically, we will investigate the usage of Extended Kalman filtering for yaw error
estimation. The objectives of the thesis will be further elaborated in the next section.

1.2 Objective

The main objectives in this thesis can be segmented into the following parts:

• Explore the usage of the Extended Kalman filter for yaw error estimation.

• Explore available wind models.

• Develop a nonlinear process model of the wind turbine.

• Implement the nonlinear process model in a simulation.

• Linearize the process model.

• Make sure that the resulting linear system is observable with chosen measurments.

• Implement the Kalman filter for initial state estimation.

• Implement the Extended Kalman filter for state estimation.

• Utilize the yaw error estimate for yaw control.

• Compare the results.

These objectives will be reached by using Julia [19] for simulations and measurements from NREL
Flatirons Campus (M2) [20].

The learning objectives related to this thesis are:

• Learn how Blade element theory(BET) can be used to approximate the aerodynamical forces
and torques on a wind turbine.

• Learn how the BET method can be numerically linearized with respect to the dynamics
involved in the linear and angular velocities.

• Get a first look at model identification of a stochastic process using data based optimization
on a Gauss-Markov style model.

• Learn how model augmentation can be implemented to penalize statistically unlikely changes
in the state estimate.

11
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1.3 Background

This section presents a review of the literature relevant to the first two objectives of this thesis:
exploring the usage of the Extended Kalman filter for yaw error estimation and investigating
available wind models. The aim of this review is to provide an overview of the current state of the
field and identify gaps in the existing research.

1.3.1 Yaw error estimation

This section delves into the yaw error estimation schemes found in the literature. As mentioned in
the introduction, yaw error estimation is a critical aspect of wind turbine operation. Commonly,
these estimations are based on measurements obtained using a wind-vane or LIDAR, often cou-
pled with a correction scheme to account for various factors that may affect the accuracy of the
measurements. The following discussion will explore some yaw error estimation schemes.

• [14] proposed a compensation scheme of the wind-vane measurements based on data-mining
using 10-minute averages of data from Wind turbine supervisory control and data acquisi-
tion(WT SCADA) and removing outliers.

• [21] introduced rotor speed dependent yaw control, applying corrections to the wind-vane
measurements depending on the rotor speed. The correction scheme was derived by compar-
ing data from a meteorological(met) mast with the wind-vane measurements. The correction
scheme is highly dependent on the wind turbine and wind conditions in question. [15] Sug-
gested that LIDAR could be used if a met mast is not available, to find the rotor speed
dependent correction.

• Similar to [14], [22] and [23] both utilized SCADA data to obtain correction schemes for the
wind-vane measurements.

• [24] suggested estimating the yaw error by looking at the error between the rotor speed
and expected rotor speed according to MPPT, see Subsection 2.5.3. This strategy relies on
accurate wind measurements and it also requires rotation of the nacelle to obtain the sign of
the yaw error.

These are some examples of yaw error estimation schemes found in the literature. A common
theme among these approaches is the focus on reducing the yaw error, with less emphasis on
quantifying it. Despite this, these studies reported a reduction in yaw error as a result of their
proposed methods, underscoring the potential of these approaches to improve yaw error estimation.
Interestingly, no usage of the Kalman filter was found for yaw error estimation in the literature,
suggesting that this approach represents new territory in this field.

1.3.2 Wind models

This section summarizes common methods for generating a wind signal for wind turbine simulation.

• Von Karman Turbulent Power Spectral Density: Introduced by [25], this model is
widely used in turbulence studies. It provides a mathematical description of how energy is
distributed over different frequencies in a turbulent flow.

• Spectral Factorization: [26] shows how spectral factorization can be utilized to obtain a
shaping filter, which can be used for artificial turbulence generation. This method allows for
the creation of a wind signal that has a specific power spectral density.

The wind models found primarily describe turbulent flow fluctuating around a mean value. As
seen in the measurements [20], real wind exhibits largely varying yaw. This highlights a gap in
the current wind modelling approaches, as no model was found that appropriately describes the
changes in the yaw of the wind.

12
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1.4 Outline of thesis

The thesis is structured into the following chapters.

I - Motivation

This chapter introduces the importance of yaw error estimation in wind turbines for maximizing
power extraction and ensuring efficient operation. It highlights the current methods for yaw error
estimation, such as wind-vane and LIDAR measurements, and their limitations. The chapter also
explores the potential of using Extended Kalman filtering for more accurate yaw error estimation,
suggesting that there exists a research gap in the field. The chapter concludes by outlining the
main objectives of the thesis, which include exploring the usage of the Extended Kalman filter,
developing and implementing process models, and comparing the results. The chapter also sets
the stage for the subsequent chapters that delve deeper into these topics.

II - Modelling

Chapter 2 introduces the necessary dynamics for modelling a wind turbine generator. This includes
detailing the relevant structural and inflow dynamics, and presenting a method for calculating the
forces and torques acting on the blades. The specifications of the wind turbine and the control
systems in use are also considered in this chapter.

III - Wind modelling

In this chapter, two distinct methods for wind modelling are introduced. The first method, here
referred to as the Cartesian wind model, incorporates turbulent flow on top of a mean component
in two directions, resulting in a wind model with varying free-stream velocity and yaw. The second
method presents a novel approach, employing a Gauss-Markov style identification strategy based
on measurements. This model characterizes the changes in yaw and free-stream flow of the wind,
hence it is referred to as the Yaw-Velocity wind model.

IV - Process model

The dynamics presented in chapter II and III are condensed into two different process models. The
first model makes use of the Cartesian wind model, while the second makes use of the Yaw-Velocity
model. Initially, a nonlinear process model is derived. Following this, the necessary linearization
is carried out to yield a linearized process model.

V - State estimation

This chapter will introduce different levels of state estimation from using a constant scaling between
two states to an Extended Kalman filter. It provides an overview of the principles behind these
methods and their implementation. The chapter also discusses how these different estimation
techniques can be applied to the process models developed in the previous chapter.

VI - Results

In this chapter, the simulation results are presented and thoroughly discussed. The chapter begins
with the application of the Kalman filter to the Cartesian wind model, followed by the implemen-
tation of the Extended Kalman filter on both wind models. Additionally, a simple yaw control is
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implemented to illustrate the practical utility of the yaw error estimate. The results are analyzed
in the context of their implications for wind turbine control and performance.

VII - Conclusion

The final chapter concludes the thesis, summarizing key findings and results. The chapter concludes
with a discussion of potential avenues for future research and improvements to the current work.
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Chapter 2

Modelling

This chapter is dedicated to the comprehensive modelling of a wind turbine generator, a task that
requires insight into various dynamic modes. The first section outlines the system structure of a
wind turbine generator, which is divided into three basic modes: Structural Dynamics, Airloads,
and Inflow Dynamics. Each mode represents an essential element in the operation of the wind
turbine and is consequently separated for a more straightforward analysis of the dynamics. Fol-
lowing this overview, the dynamics of the respective modes are presented in individual sections.
Subsequent to these sections, the control systems involved in a full-scale wind turbine are pre-
sented, enabling the incorporation of appropriate dynamic adjustments. The concluding section
introduces the National Renewable Energy Laboratory 5MW (NREL) wind turbine, which is used
for simulations in this thesis.

2.1 System structure

In [27], a well-known representation of aeroelastic dynamics is introduced, which suggests using
three different modes in a feedback form similar to the one shown in Figure 2.1. This allows for
separate modelling of the modes, which can then be analyzed independently.

The first mode, Airloads, uses Blade Element Theory (BET) to calculate the generalized force-
torque vector τ in R6, hereinafter termed as airloads, driven by the relative flow ν.

The second mode, Inflow dynamics, is based on the works presented in [28]. This model uses a
novel approach to approximate the induction factor of inflow while guaranteeing correct steady-
state behavior.

Lastly, the Structural dynamics mode describes how the airloads affect the physical system. This
includes the dynamic responses of the wind turbine’s components to the airloads. However, in this
mode, only the inertial properties of the rotor are considered.

Together, these three modes provide a comprehensive representation of the aeroelastic dynamics
of a wind turbine, allowing for a detailed analysis of its operation and performance.
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Figure 2.1: In this figure, τ represents the airloads, while Ub denotes the linear velocities of the
wind in the wind turbine’s BODY frame. The induced inflow is represented by Ui, and Ω is the
angular velocity of the rotor. Lastly, ν symbolizes the relative velocities. The terms used in this
figure will be explained in more detail in the following sections.

2.2 Structural dynamics

The structural dynamics of a wind turbine involve the dynamic responses of its components to
various loading conditions. These conditions arise from factors such as wind, gravity, and oper-
ational processes, which generate dynamic loads capable of causing vibrations, deflections, and
fatigue in the components. Such effects can lead to component wear and, consequently, reduce
the overall lifetime of the wind turbine [29]. Generally, wind turbine systems comprise five main
physical components: the rotor, transmission, generator, support structure, and control system
[30]. These components exhibit significant structural dynamics, which have to be accounted for
in the design process. In Subsection 2.5.3 torque control and its effect on structural dynamics is
briefly discussed. In this section, we examine the rotor dynamics and what information it can
provide us to be useful in the process model.

2.2.1 Rotor dynamics

The dynamics of the rotor play a crucial role in the overall stability and performance of a wind
turbine. These dynamics are significantly influenced by the aerodynamic forces and moments
acting on the rotor. For a detailed explanation of these forces and moments, refer to Section 2.4.
Furthermore, the inertial properties of the rotor are fundamental to its dynamic behavior [27].

One of the key principles governing rotor dynamics is Newton’s second law for rotational motion.
It relates the aerodynamic torque experienced by the rotor to its moment of inertia and angular
acceleration as shown:

−Mz = JΩ̇ (2.1)
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where Mz
1 represents the aerodynamic torque acting on the rotor in z, J is the rotor’s moment of

inertia and Ω̇ is the angular acceleration of the rotor. This equation illustrates how changes in the
aerodynamic torque can lead to changes in the rotor’s angular velocity. However, as the purpose
of a wind turbine is to convert aerodynamical power into electrical power this will affect the net
torque as shown in Subsection 2.5.3.

2.3 Inflow dynamics

The performance and efficiency of a wind turbine are linked to the characteristics of the wind it
encounters. The relative flow, commonly referred to as airflow, is the relative velocity of the linear
and angular velocities of the wind as perceived by the rotor system.

The incoming wind as perceived by the rotor is different from the free-stream wind as the wind
turbine itself will cause distortions of the incoming wind. These distortions, commonly described
as induced inflow, change or develop over time, a process captured by inflow dynamics.

The linear induced inflow is subtracted from the linear velocities of the incoming wind and the
angular induced inflow is subtracted from the angular velocity of the rotor, as defined in Definition
2.3, to yield the relative flow.

To formalize these concepts, we introduce the following definition:

Definition 2.1. Let the vector of linear, rotational and generalized velocities in R6 be denoted
by:

v ≜

vxvy
vz

 , ω ≜

ωxωy
ωz

 , ν ≜

[
v
ω

]
(2.2)

In the context of wind turbine dynamics, this vector ν will be referred to as the relative velocities.

The literature on inflow dynamics modelling is extensive, with several models proposed over the
years. One of the early models for calculating induced inflow is the Rankine-Froude momentum
theory [31]. More recent models include the Actuator Disk Vortex Theory (ADVT), which uses
wake vorticity to compute the inflow at the rotor disk [32], and Computational Fluid Dynamics
(CFD) models [33]. Other notable models are cited as well [34, 35, 36, 37, 38], please refer to
[39] for a comprehensive summary of nonuniform inflow model developments in the time period
1926-1988.

The work by Matras and Pedersen, currently under review for publication [28], introduces a novel
approach for dynamic inflow modelling in R6. This dynamic inflow model, which forms one of the
fundamental components of our analysis in this thesis, is further detailed in Subsection 2.3.1.

2.3.1 Inflow as feedback

The following provides a concise overview of the dynamic inflow model utilized in this thesis, as
detailed in [28].

The research objective of this paper is ”to present a method for modelling the averaged induced
inflow on one or multiple coplanar rotors in a manner that is feasible for real-time Model Predictive
Control (MPC) and simulation.”[28]. The resulting model is concluded to have a simple state-space
form that has excellent computational efficiency while also begin validated against well-established
theories in the applicable regions [35, 38].

Based on actuator plane vortex theory(APVT), presented in [37], the findings suggest that the
inflow dynamics can be condensed into a fluid memory prefilter by assuming quasi-static behavior.

1The negative sign comes from how the torque is defined in Section 2.4.
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This approach offers the advantage of a computationally light model that guarantees correct steady-
state behavior while providing a reasonable approximation of the inflow dynamics. The implication
of this is that this novel approach has led to a more versatile inflow model suitable for simulation.

Fluid memory prefilter: Single rotor system

Going into detail on the derivation of the dynamic inflow model is beyond the scope of this thesis.
Instead the results can be condensed into the following system of equations:

Key Result 1.
Q−1P (χ)σ̇ = τ̂ − σ,

η = L(χ)σ +D(χ)τ̄ ,
(2.3)

In these equations, σ ∈ R5 is an internal variable that represents the force corresponding to a
given inflow at steady state, due to the quasi-static assumption. The matrices Q, P , L, and D
define the system structure. Among them, P , L and D are dependent on the yaw error (χ), while
Q remains independent of it. The aerodynamic force-torque vector, or airloads, is represented by
τ , which is discussed in more detail in Section 2.4.

The normalized form of τ is given by

τ̄ =
τ

1
2ρπR

2U2∞
∈ R6, (2.4)

where ρ represents the air density, R is the rotor radius and U∞ is the free-stream flow of the wind.

The reduced form of τ̄ , represented by τ̂ , comprises the first five elements of τ̄ :

τ̂ = [τ̄ 1, τ̄ 2, τ̄ 3, τ̄ 4, τ̄ 5]
⊺. (2.5)

The matrices Q, P , L, and D are defined as:

P =



− 8 cos(χ)
3π2R2(cos(χ)+1) 0

8 tan(χ
2 )

3π2R2 0 − cos(χ)
πR3(cos(χ)+1) 0

0 − 8
3π2R2(cos(χ)+1) 0 1

πR3(cos(χ)+1) 0 0

8 tan(χ
2 )

3π2R2 0 8
3π2R2 0

tan(χ
2 )

πR3 0

0 − 1
πR3(cos(χ)+1) 0

64 sec2(χ
2 )

15π2R4 0 0

1
πR3(sec(χ)+1) 0 − tan(χ

2 )

πR3 0
64 cos(χ) sec2(χ

2 )

15π2R4 0

0 0 0 0 0 0



Q =



− 1
2πR2 0 0 0 − 8

3π2R3 0

0 − 1
2πR2 0 8

3π2R3 0 0

0 0 1
πR2 0 0 0

0 − 8
3π2R3 0 4

πR4 0 0

8
3π2R3 0 0 0 4

πR4 0

0 0 0 0 0 0



18



CHAPTER 2. MODELLING

L′ =



1
−4 sec(χ)−4 0 1

4 tan(
χ
2 ) 0 − 4 cos(χ)

3πR cos(χ)+3πR 0

0 1
−4 cos(χ)−4 0 4

3πR cos(χ)+3πR 0 0

1
4 tan(

χ
2 ) 0 1

4 0
4 tan(χ

2 )

3πR 0

0 − 4
3πR cos(χ)+3πR 0

sec2(χ
2 )

R2 0 0

4 cos(χ)
3πR cos(χ)+3πR 0 − 4 tan(χ

2 )

3πR 0
cos(χ) sec2(χ

2 )

R2 0

0 0 0 0 0 0



D =



sec(χ)
4 0 0 0 0 0

0 sec(χ)
4 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 sec(χ)
2R2


The resulting output η is the induction factor of inflow which is used to find the induced in-
flow:

Definition 2.2 (Induced inflow).
Ui ≜ ηU∞ (2.6)

The definition of induced inflow along with Key Result 1 concludes the summary of the dynamic
inflow model. What remains is to define the relative flow.

Definition 2.3 (Relative flow).

ν =


Ub

0
0
Ω

−Ui, Ub =

Us0
Un

 (2.7)

In this definition, Ub represents the linear wind velocity in the BODY reference frame of the wind
turbine. The BODY reference frame is aligned such that Us corresponds to the side wind along
the x-axis and Un corresponds to the normal wind along the z-axis. The specific orientation and
details of these reference frames will be further discussed in Section 3.1. The term ν represents
the relative flow as described in the intro of Section 2.3.

2.4 Blade Element Theory:Airloads

The aerodynamic forces and torques over the blades of a wind turbine can be approximated using
Blade element theory(BET) [40, 41]. This method breaks down the complex analysis of calculating
the forces and torques acting on the individual blades into an integral of the forces and torques
in each blade element. The blade elements, hence the name BET, are segments of the blade as
depicted in Figure 2.2. Each blade element is treated as a two-dimensional airfoil, hence airfoil
theory is applicable. The lift and drag of each blade element are then calculated using the relative
velocities local to the blade element. The forces and torques on each blade element are then
mapped to a stationary frame2 defined in Figure 3.1 before being integrated to obtain the total

2Note this frame is in BODY as defined in Section 3.1.
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force-torque vector τ . As the parameters are introduced a key realization is that the BET method
can be described as a function of the linear and angular relative velocities, i.e. the relative flow.
Lastly, the relation between BET and BEMT is briefly discussed.

2.4.1 Notation

Initially, let’s establish the necessary notation to facilitate a complex derivation of the Blade
element theory method.

Definition 2.4. Let the vector of forces, torques and airloads be denoted by:

F ≜

FxFy
Fz

 , M ≜

Mx

My

Mz

 , τ ≜

[
F
M

]
(2.8)

Figure 2.2: Blade element theory terms. Ω and R is the angular velocity and rotor radius, re-
spectively. The blade elements chord is denoted by c and width dr. r is the radial station, i.e the
distance from a blade element to the hub. This figure is a modification of two figures found in [40]
and [41].

Figure 2.3: Notations used in derivation of BET, described below. From [2]

Here the notation is:
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• ′′ denotes the blade element frame ′′ ≜

x′′ = y′′ × z′′
y′′

z′′

.
• v′′ ≜

v′′xv′′y
v′′z

 is the relative velocity in ′′.

• L′′, D′′ is the lift and drag, respectively.

• ϕ ≜ tan−1(
v′′z
v′′y

) is the angle of the incoming relative velocity.

• θ is the sum of blade twist Θ and collective pitch deflection β

• α ≜ θ − β is the angle of attack and c is still the chord.

2.4.2 Blade element forces

Starting off, the lift and drag can be calculated using airfoil theory:

Definition 2.5 (Lift and drag). The lift and drag in the blade element coordinate system is
given as:

L′′ =
1

2
ρ|v′′|cCl(α)dr v′′ × x′′

D′′ =
1

2
ρ|v′′|cCd(α)dr x′′ × v′′ × x′′

(2.9)

where Cl and Cd are the lift and drag coefficients.

The total generated force in the blade element frame then becomes:

dF ′′ = L′′ +D′′ (2.10)

2.4.3 Acquiring the fluid flow on the blade cross section.

The forces on a single blade element has been established, however it depends on the fluid flow on
the given blade cross section. A relation between the relative flow ν and the fluid flow on a specific
blade cross-section v′′ has to be established. To find this relationship three coordinate systems
has to be established. A stationary frame at the root of the blade, a rotating frame with an origin
coinciding with the stationary frame ′, and a frame that is translated by the radial station from
the rotating frame ′′3. This allows us to obtain the fluid flow on a specific blade cross section at
any point of the blade rotation and at any given radial station. This is further explained in [2],
however it can be summarized as:

Definition 2.6 (Fluid flow on the blade cross section). The v′′ can be found as:

v′′ = Tv ν (2.11)

where ν is the relative flow and Tv is the mapping from the stationary frame to the rotated
and translated frame ′′.

Tv =
[
Rz(−Φ) S(−r′)Rz(−Φ)

]
(2.12)

Rz(−Φ) is the rotation matrix around z, Φ is the angle between stationary frame and ′. S(r′)
is a skew-symmetric matrix representation of the cross product: r′×.

3Note that this is the frame of the specific blade element.
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2.4.4 Total forces and torques

The forces are described in the blade element frame, and must therefore also be mapped to a
stationary frame. Force in the blade element is applied at the radial station r, this results in a
torque in ′:

dM′ = r′ × dF ′′ (2.13)

and the force-torque vector for the blade element:

dτ ′ =

[
dF ′′

r′ × dF ′′

]
(2.14)

What remains then is rotating the force-torque vector into a stationary frame:

dτ =

[
Rz(Φ)

Rz(Φ)S(r′)

]
F ′′ (2.15)

where S(r′) is the skew symmetric representation of the cross product, that is S(r′)dF ′′ = r′×dF ′′.

The forces and torques of the blade elements can now be integrated over the rotor radius R and over
one full rotation to obtain the total forces and torques in the stationary frame, viz.

Definition 2.7 (Airloads).

τ =

∫ 2π

0

∫ R

0

dτdrdΦ (2.16)

2.4.5 Parameters

There are a number of parameters involved in the calculation of aerodynamic forces and torques.
The NREL 5MW wind turbines blade aerodynamical properties can be found in [1]. This includes
tabular information about the chord c(r), twist Θ(r) and, the lift and drag coefficients of the
different airfoil types with respect to the angle of attack α. Since pitch control is not explored in
this thesis, the collective pitch deflection is assumed to be zero.

What remains is then the relative velocities ν consisting of the linear and angular velocities denoted
as v and ω, respectively. Since BET is a method rather than an analytical expression, it is
convenient to denote it as a function of linear and angular velocities, viz.

Key Result 2 (Airloads function).
τ = a(v,ω) (2.17)

2.4.6 Blade Element Momentum Theory

When calculating inflow in the context of the Blade Element Theory (BET), one approach in-
volves using the Rankine-Froude momentum theory [31]. In this approach, the inflow model solely
considers linear momentum.

Conversely, Blade Element Momentum Theory (BEMT) offers a more comprehensive modelling
approach, incorporating both linear and angular momentum components within its inflow model
[42].

Essentially, one can view BEMT as an extension of BET that incorporates an inflow model which
takes into account both the linear and angular momentum in each blade element. BEMT essentially
treats each blade element as an independent entity, calculating the 2-DOF inflow at each element.
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This results in a model with 2× the number of integration points-DOF. However, the assumption
of independence between blade elements is a simplification. In reality relative flow of one blade
element can be influenced by another. Various corrections, such as tip-loss correction, are often
applied when using BEMT to improve its accuracy and make it practically feasible [43].

It can therefore be argued that using an averaged inflow model in conjunction with BET is not
necessarily a downgrade from BEMT. This is because the averaged inflow model, as presented in
Section 2.3, incorporates both linear and angular momentum in an averaged sense across the entire
rotor, providing a 6-DOF representation of the inflow.
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2.5 Wind turbine control systems

A wind turbine is a sophisticated system characterized by numerous moving parts and highly
nonlinear dynamics. Balancing power extraction and the lifespan of the system necessitates the
implementation of several control systems. In this section, the control systems needed in a full-scale
wind turbine are presented.

2.5.1 Definition of required control systems.

[9] stated that as a minimum, the normal operating range of a wind turbine should be characterized
by the following set of properties and requirements:

• a maximum 10-minute mean wind speed at hub height Vmax i.e. the stop wind speed below
which the wind turbine may be in operation

• a maximum long-term mean nominal power Pnom, interpreted as the highest power on the
power curve of the wind turbine in the wind speed interval [Vmin;Vmax], where Vmin denotes
the start wind speed for the turbine

• a maximum nominal power Pmax, which on average over 10 minutes may not be exceeded
for a wind speed at a hub height of V10min,hub < Vmax

• a maximum operating frequency of rotation nr,max for the wind turbine

• a maximum transient frequency of rotation nmax for the wind turbine

• a wind speed below which the wind turbine may be stopped

To keep the wind turbine within this operating range the following control systems are incorporated:

Yaw-Control aligns the wind turbine with the wind.

Pitch-Control manages power capture. In high wind speeds, the pitch can be adjusted to reduce
power capture instead of shutting down. This is achieved through either constant torque or constant
power strategies, with the former offering better stability [34].

Brake control system slows down or stops the rotor for maintenance or when the turbine is outside
of its operating range.

Power Control System manages the electrical output of the turbine to ensure compatibility with
the power grid. This includes controlling voltage, frequency, and phase.

Additionally, the following systems are incorporated:

Torque control system manages the torque applied to the generator to control the rotor’s angular
velocity.

Protection Control system monitors the turbine’s status, detects faults, and ensures that the system
is shut down and staff is alerted when problems occur.

The control systems directly relevant to the dynamics of the wind turbine are the Yaw and Torque
control systems, which are further elaborated upon in 2.5.2 and 2.5.3, respectively.

2.5.2 Role and impact of yaw control

Yaw control refers to the system that adjusts the orientation of the wind turbine’s nacelle. The
main purpose of yaw control is to ensure that the turbine is facing into the wind to capture the
maximum amount of energy. However, both [10] and [11] introduce a deliberate yaw error to
alter the wake trajectory to generate potentially more favourable inflow conditions for downstream
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turbines increasing the power extraction. The yaw error χ, is the angle difference between the wind
direction ψ and the wind turbine yaw θ, which is the direction the nacelle is facing, as defined in
Figure 3.2. This relationship is expressed as:

Definition 2.8 (Yaw error).

χ ≜ ψ − θ

Yaw control systems can be categorized into two types: active and passive. Active systems use
sensors and motors to align the turbine with the wind, while passive systems use the force of the
wind itself to align the turbine. The wind turbine used for simulations presented in Section 2.6 is
an upwind turbine which exclusively uses active yaw control.

The main challenges associated with yaw control include accurately determining the wind direction
ψ and balancing the mechanical stress imposed on the turbine from frequent reorientation against
the need for optimal power capture.

2.5.3 Maximum power point tracking - Torque control

The process of converting the aerodynamical power into electrical power is not as simple as letting
the wind spin the blades. Generator shaft torque ME is the torque exerted on the wind turbine
shaft by the generator. This torque plays a crucial role in power extraction as it influences the
rotor’s angular velocity. If the torque is too high it can cause the wind turbine to slow down or
stop. Conversely, too low torque means that the wind source is under-utilized. These scenarios lead
to suboptimal power extraction, therefore a control law governing the relation between rotational
speed and torque is introduced.

Maximum power point tracking (MPPT) facilitates ”optimal” power extraction by adjusting the
rotor’s angular velocity such that it maintains optimal tip-speed ratio(TSR) λ∗ ≜ ΩR

U . The power
coefficient has a unique optimum C∗

P (λ
∗) at the optimal tip-speed ratio, hence by following the

optimal tip-speed ratio we get optimal power extraction.

Under steady state assumption we can express the generator shaft power as:

E =
1

2
ρπR2C∗

PU
3 (2.18)

inserting the rearranged tip-speed ratio U = ΩR
λ∗ into (2.18) we arrive at the following:

Definition 2.9 (MPPT control law).

E(Ω) = b|Ω|Ω2, b ≜ 1
2ρπR

2C∗
P

(
R
λ∗

)3
where ρ is the air density, R is the rotor radius, C∗

P and λ∗ is the optimal power coefficient and
tip-speed ratio respectively. This control law exhibits local asymptotic stability around the optimal
TSR [44]. The numerical values of these are given in Table 2.2.

Incorporating MPPT into Rotor Dynamics:

The rotational motion of the wind turbine is now dependent on both aerodynamic torque and
generator shaft torque. The generator shaft torque ME can be found from Definition 2.9 using the
relationship between torque and power and is defined as:
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Definition 2.10.
ME ≜ b|Ω|Ω (2.19)

with this (2.1) now becomes:

Key Result 3.
JΩ̇ = −Mz −ME (2.20)

This equation covers the relevant rotor dynamics taking into account both aerodynamic and gen-
erator shaft torque by describing how the rotor’s angular velocity changes with the net torque.

2.6 NREL offshore 5-MW baseline wind turbine

”To support concept studies aimed at assessing offshore wind technology, we developed
the specifications of a representative utility-scale multimegawatt turbine now known as
the “NREL offshore 5-MW baseline wind turbine.”” [1]

In 2009 The National Renewable Energy Laboratory (NREL) published the paper [1] describing a
virtual wind turbine known as the NREL offshore 5-MW baseline wind turbine. While this wind
turbine does not exist physically, it is widely used as a standard for performance evaluation of wind
technology such as different control strategies. In this, the design and technical specifications of
the aforementioned wind turbine is presented along with examples of it being used as a benchmark
for research and development.

2.6.1 Design and specifications

The NREL offshore 5-MW baseline wind turbine is an upwind, three-bladed turbine with a rotor
diameter of 126 meters and a hub height of 90 meters. It utilizes variable speed, collective pitch
control(VSCP), hence it is not relying on passive stall as in fixed speed fixed pitch(FSFP) to
avoid that the 5MW maximum power rating is not exceeded. Collective pitch, often referred to as
variable pitch, allows for a less conservatively dimensioned4 wind turbine as the system does not
solely rely on passive stall regulation. Variable speed allows for control of the angular velocity, the
benefit of this was explored in Subsection 2.5.3.

4Conservatively dimensioned e.g lower Cut-Out Wind speed.
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Rating 5 MW
Rotor Orientation, Configuration Upwind, 3 Blades
Control Variable Speed, Collective Pitch
Drivetrain High Speed, Multiple-Stage Gearbox
Rotor, Hub Diameter 126 m, 3 m
Hub Height 90 m
Cut-In, Rated, Cut-Out Wind Speed 3 m/s, 11.4 m/s, 25 m/s
Cut-In, Rated Rotor Speed 6.9 rpm, 12.1 rpm
Rated Tip Speed 80 m/s
Overhang, Shaft Tilt, Precone 5 m, 5º, 2.5º
Rotor Mass 110,000 kg
Nacelle Mass 240,000 kg
Tower Mass 347,460 kg
Coordinate Location of Overall CM (-0.2 m, 0.0 m, 64.0 m)
Generator efficiency 94.4%
Maximum Yaw rate 0.3 deg/s

Table 2.1: Specifications of the NREL 5-MW Baseline Wind Turbine [1].

Variables such as the tip-speed ratio λ, peak power coefficient Cp and rotor moment of inertia J
along with air density ρ5 and rotor radius R are utilized in the process model Chapter 4.

Notation Value
J 11776047
R 63
ρ 1.225
C∗
p 0.482

λ∗ 7.55

Table 2.2: Numerical values used for simulation [1].

The remaining variables such as chord c(r), twist Θ(r) and the lift and drag coefficients utilized in
Subsection 2.4.5 can be found in [1] in comprehensive data sets.

Applications

As the quote in the start of this section suggests, this wind turbine is a representative utility-scale
5MW wind turbine suitable for assessing offshore wind technology. The over 5800 citations of the
paper [1] show that they have succeeded. For instance [10] used two NREL 5MW wind turbines
to explore optimal wind layout with and without active yaw control. The yaw control introduced
intentional yaw misalignment for optimal wake redirection. [45] used NREL 5MW wind turbines
in a wind farm to compute the power production and rotor loads for a given yaw, enabling the
conclusion that intentional yaw misalignment’s benefits are highly dependent on the topology and
wind directions. [8] performed a stress and vibration analysis under steady state of the NREL
5MW blade using different materials for the blade. It was then found that Carbon fiber reinforced
plastic performed better than E-glass fiber and Kevlar in terms of stress on the blades under similar
load conditions.

In conclusion, the NREL offshore 5MW baseline wind turbine is a widely used tool in the wind
energy research field. The comprehensive specifications encapsulate the key characteristics of a
representative utility-scale wind turbine, making it an ideal benchmark. A benefit of using these
widely adopted specifications is that comparison of data across different studies becomes easier.
Given these factors, the NREL offshore 5MW baseline wind turbine becomes a clear choice as the
set of specifications to base our turbine model on in this thesis.

5ρ is not unique for NREL, however it is included in the table for easier reference.
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Chapter 3

Wind modelling for simulation

Accurate modelling of wind behavior is crucial for generating realistic and comparable results.
There exists several different methods for generating a wind signal [46]. This chapter introduces
two reference frames: the Geographic and Body-fixed reference frames. These frames are defined
to accurately establish relative quantities. Subsequently, two approaches for wind modelling are
presented. The first approach employs a traditional method for generating a wind signal for wind
turbine simulations, using Volume forces to impose an artificially generated turbulence inflow.
The second approach introduces a new model based on data from [20], treating the wind’s yaw
ψ and velocity U∞ as a Gauss-Markov Process. This method involves the approximating the
autocorrelation function using an exponential form. The resulting approximation is then used to
identify a shaping filter, which is crucial for the generation of the model.

3.1 Reference frame

To accurately describe the dynamical properties of a wind turbine, two reference frames must
be established. This section is dedicated to defining the reference frames for the wind turbine
under consideration. The specific configuration of the BODY reference frame is illustrated in the
following figure.

z

x

y

Figure 3.1: BODY fixed reference frame of the wind turbine. This figure is a slight modification
of the original presented in [47].
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As can be seen, the z-axis is defined along the nacelle, the x-axis is defined horizontally with
respect to the ground and the y-axis is defined along the wind turbine tower. This coordinate
system is situated within a reference frame. The North-East-Down(NED) Geographic reference
frame seems appropriate as the wind turbine is stationary, as done in [48, 49]. BODY reference
frame, as defined here, is by default aligned with NED such that the z-axis coincides with the
North axis and the x-axis coincides with the East axis whilst the y-axis coincides with the Down
axis. The BODY reference frame inserted into the NED reference frame is depicted below.

Figure 3.2: BODY inserted into NED with defined angles.

The figure illustrates the orientation of the North and East axes in relation to the wind turbine’s
coordinate system and the incoming free-stream flow, which is denoted as U∞. As defined in
Definition 2.8, θ represents the yaw angle of the wind turbine, ψ denotes the wind direction and χ
is the yaw error.

3.1.1 Free-stream flow in BODY frame

As explained in Section 2.4, the forces and torques on the rotor can be calculated using the relative
velocities in the BODY frame. Consequently, this necessitates decomposing the free-stream flow
into the BODY reference frame. To facilitate this, the free-stream flow is initially decomposed into
NED coordinates.

The free-stream flow can be decomposed into NED coordinates as follows:

[
UE
UN

]
=

[
sin(ψ)
cos(ψ)

]
U∞ (3.1)

Subsequently, the wind is rotated into the BODY frame using the standard rotation matrix:
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R(θ) =

[
cos(θ) − sin(θ)
sin(θ) cos(θ)

]
(3.2)

Finally, the free-stream flow, now defined in the BODY frame, can be obtained as follows:

[
Us
Un

]
= R(θ)

[
UE
UN

]
(3.3)

where Us represents the side wind and Un denotes the wind normal to the wind turbine, i.e., the
free-stream flow as experienced by the rotor.

3.1.2 White noise generation

White noise is defined as a stationary random process, characterized by its constant Power Spectral
Density (PSD) function. Theoretically, this requires infinite variance for the PSD to remain con-
stant across all frequencies [50]. However, generating a signal with infinite variance is not feasible
in practice.

Therefore, to generate a white noise signal, it has to be limited to a constant PSD over a range
of frequencies, generating a signal that has constant PSD in these frequencies. Since all generated
white noise signals are bandlimited in some sense it is often referred to as white noise.

In applications like Kalman filtering and wind signal generation, unity white noise is often em-
ployed. Unity white noise is a zero-mean white noise signal with a Gaussian distribution and a
variance of one [51]. It can be characterized by the following PSD:

Sw(jω) = 1 (3.4)

In this equation, Sw(jω) denotes the PSD of the unity white noise, which remains constant at 1
for all frequencies within the selected band. In Julia this can be done using the randn function.

3.2 Cartesian wind model using Von karman

A common approach for modelling a generic wind signal assumes that the wind signal can be
described as:

U = Ū + ξ (3.5)

where Ū is the slowly varying mean component of the wind signal and ξ is the turbulent component
of the wind signal. This approach, known as the Volume forces method [46], is used for imposing
inflow turbulence to obtain a turbulent wind signal.

3.2.1 Artificial turbulence generation

The Von Karman spectrum is a commonly used turbulence Power Spectral Density(PSD) function
[3]. This spectrum describes the frequency content of the wind-speed variations, which can be
used to generate an artificial turbulent flow. An overview of artificial turbulence generation can
be found in [52]. Through spectral factorization, the Von Karman spectrum can be expressed as:

SK = H(jω)H(−jω)Sw(jω), H(jω) =
σK
√

19L
40Ū∞(

1 + jωL
Ū∞

) 5
6

(3.6)
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In this equation, σK is the turbulence intensity, L is the length scale and Ū∞ is the mean free-stream
flow. The shaping filter, H(jω), is used to shape white noise into colored noise that represents the
turbulent flow.

Given that H(jω) is a fractional filter, it can be beneficial to approximate it to a first-order
shaping filter using a Padè approximant. This approximation can enhance performance and simplify
implementation.

Definition 3.1. Let H(s) be the fractional transfer function in (3.6) of order 5/6. The [0, 1]a

order Pade approximant of H(s) is approximately given by:

HP(s) =
K

1 + Ts
(3.7)

where K is σK
√

19L
40Ū∞

and T is 5L
6Ū∞

aThis means that the approximant will have a constant in the numerator and a first order term in the
denominator.

In[863]:= SetOptions[EvaluationNotebook[], CellContext  Notebook]

In[1]:= Rationalize[0.475]

Out[1]=

19

40

In[2]:= G[s_] :=
σ *

19*L
40*w0

1 +
s*L
w0


5/6

;

In[10]:= PadeApproximant[G[s], {s, 0, {0, 1}}]

Out[10]=
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In[11]:= Ga[s_] :=
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L
w0

σ

2 1 +
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;

In[19]:= pl = {Abs[G[ * ω]]^2, Abs[Ga[ * ω]]^2} /. {L  1, σ  1, w0  10};

In[23]:= Plot[pl, {ω, -100, 100}, PlotRange  All,
PlotLegends  {"Exact", "First-order Padé"}]

Out[23]=
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Figure 3.3: The [0, 1] order Padé approximant is an adequate approximation of the fractional filter.

HP(s) describes the dynamic behaviour of the turbulent component ξ when subjected to a ban-
dlimited white noise input w. The turbulent component’s dynamics can then simply be expressed
as:

Definition 3.2 (Artificial turbulence).

T ξ̇ = −ξ +Kw

This describes the turbulent component in one direction. To create a two-dimensional wind model,
we simply use two different white noise signals to shape the turbulent components in two directions,
thus using a ”Cartesian” approach as shown:
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Figure 3.4: Turbulent flow ξ1 and ξ2 as experienced by the wind turbine. Note that the turbulent
flow in the generated wind signal is imposed on the North and East axis instead of z and x axis,
respectively.

This leads to to the Cartesian wind model:

Key Result 4 (Cartesian wind).[
T1 0
0 T2

] [
ξ̇1
ξ̇2

]
= −

[
ξ1
ξ2

]
+

[
K1 0
0 K2

]
w (3.8)

3.2.2 Length scaling and turbulence intensity

In order to utilize the above results, it is necessary to appropriately set the turbulence intensity,
denoted as σK, and the length scaling, represented by L. According to both [3] and [53], the
Danish standard (DS472,1992) and the IEC standard(1999) are commonly referred to guidelines
for determining these parameters.

The relationship between the Length scaling of the Kaimal spectrum and the Length scaling of the
Von Karman spectrum is described by the following equation [3]:

LKaimal = 2.329L (3.9)

This equation is particularly relevant when considering the Danish standard, which specifies the
length scaling of the Kaimal spectrum for tower height above 30m. According to this standard:

Assumption 1 (Length scaling).

LKaimal = 150 =⇒ L = 64.4

This assumption implies that for a tower height above 30m, the length scale of the Von Karman
spectrum is approximately 64.4, as derived from the relationship between the Kaimal and Von
Karman length scales.
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The turbulence intensities for different mean wind speeds according to various standards are de-
picted in the following figure.

Figure 3.5: Turbulence intensities [3]

Using DS472-high it can be seen that:

Assumption 2 (Turbulence intensity).

σK ≈ 19

This indicates that at high wind speeds, the turbulence intensity is relatively high, which can have
significant implications for the operation and performance of the wind turbine.

With the length scaling and turbulence intensity set, K and T can be found for any nonzero
free-stream flow.

3.2.3 Wind generated using the Cartesian model.

When employing the Cartesian wind model, it’s important to generate a wind signal set in the
NED frame. This is crucial because if the wind signal was set in the BODY frame, it would follow
the wind turbine as it yaws. The turbulent components, ξ1 and ξ2, are therefore added to the East
and North directions respectively.

In a later section it can be seen that the Kalman filter is linearized around steady-state conditions
with χ = 0 and U∞ = 4m/s. To examine the performance of the Kalman filter around this
linearization the mean component is chosen as:

Ū =

[
ŪE
ŪN

]
=

[
0
4

]
, |Ū | = Ū∞ = 4 (3.10)

This implies that the mean component is purely from the North direction, which gives zero yaw
error when the yaw angle of the wind turbine is zero, i.e, χ = 0 when θ = 0.

The turbulent components can then be found from:
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K = σK

√
19L

40Ū∞
= 52.54

T =
5L

6Ū∞
= 13.42[

T 0
0 T

] [
ξ̇1
ξ̇2

]
= −

[
ξ1
ξ2

]
+

[
K 0
0 K

] [
w1

w2

] (3.11)

The mean component and different white noise signals are the only differences between the North
and East wind components. The resulting North wind, East wind, free-stream flow, and yaw are
depicted in the figures below.
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Figure 3.6: Generated wind North UN = U0 + ξ2.
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Figure 3.7: Generated wind East UE = ξ1.
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Figure 3.8: Resulting free-stream flow velocity.
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Figure 3.9: Resulting yaw of the wind.
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3.3 Yaw-Velocity wind modelling based on data.

The Cartesian model assumes a constant mean wind, with artificial turbulence leading to pertur-
bations in the mean directions, as illustrated in Section 3.2. However, in reality, wind conditions
can change significantly over relatively short periods of time. Therefore, it is desirable to have a
model that allows for realistic variations in the wind speed and yaw. This would allow for a more
accurate representation of the dynamic nature of wind, capturing its fluctuations and variations
over time.

To better understand how the wind varies in direction and speed, wind roses are often used. A wind
rose is used to visualize how wind speed and direction is distributed over a time period. Figure 3.10
presents a wind rose for the NREL Flatirons Campus (M2) wind turbine at an 80m height, based
on data from December 16, 2022 [20]. The wind rose provides a clear visual representation of the
wind conditions, strengthening the argument of needing a new wind model.

In the following sections, we will explore a wind modelling approach that takes into account the
dynamic nature of wind, as depicted by the wind rose, to provide a more realistic representation
of wind conditions for wind turbine simulations.

Figure 3.10: Wind rose for December 16,2022 at 80m. NREL Flatirons Campus(M2) wind turbine
[20].
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3.3.1 Gauss-Markov process

The wind field experienced by a wind turbine can be modelled as a stochastic process X(t). Data
from [20] provides wind speed and yaw angle measurements at 60-second intervals. By treating
the obtained data as a stationary Gaussian process, which implies wide-sense stationarity (WSS),
the autocorrelation can be modeled using an exponential function of the form:

R(τ) = E[X(t)X(t+ τ)] = σ2e−β|τ | (3.12)

This assumption of a stationary Gaussian process with an exponential autocorrelation function, as
shown in (3.12), is the basis for defining a Gauss-Markov process [50].

Autocorrelation and autocovariance are terms often interchangeably used. Therefore to remove
confusion:

Definition 3.3 (Autocorrelation). The mean from the data [20] is removed such that:

E[X(t)X(t+ τ)] = E{[X(t)− µ][X(t+ τ)− µ]} (3.13)

this is valid if and only if µ = 0

The first step towards finding a wind model involves calculating the data’s autocorrelation. Subse-
quently, the model parameters are optimized to fit the exponential autocorrelation function (3.12).

Upon obtaining an approximate autocorrelation function, the Wiener-Khinchine relation can be
used to derive the Power Spectral Density function:

Theorem 3.3.1 (Wiener-Khinchine relation).

S(jω) = F [R(τ)] =
∫ ∞

−∞
R(τ)e−j2πωτdτ (3.14)

This theorem is applicable to stationary processes, such as the stationary Gaussian process consid-
ered here. Essentially, it states that the PSD function can be obtained by performing the Fourier
transform F of the autocorrelation function. Applied to the autocorrelation in (3.12) the following
power spectral density function can be found [50]:

Sx(jω) = F [R(τ)] =
2σ2β

ω2 + β2
(3.15)

(3.15) is then subjected to spectral factorization to derive a shaping filter.

Sx(s) =
2σ2β

−s2 + β2
Sw(s) =

K

Ts+ 1

K

−Ts+ 1
· 1 (3.16)

where Swn = 1 is the white noise spectral amplitude for a zero mean bandlimited white noise signal
with a standard deviation of 1.

Solving (3.16) for σ and β, we get:

β =
1

T
, σ2 =

K2

2T
(3.17)

Inserting (3.17) into (3.12) we get the following autocorrelation function:
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R(τ) =
K2

2T
e−

|τ|
T (3.18)

The parameters K and T are found numerically by minimizing the squared error between the
autocorrelation of the measured data, Ai, and the autocorrelation function in (3.18), viz.

min
K,T

n∑
i=0

(
Ai −

K2

2T
e−

|τi|
T

)2

(3.19)

In this equation, i ∈ [0, 1 · · · , 50] is the specified lags where the autocorrelation is fitted. This
implies that the autocorrelation is modelled up to 50 minutes of the data.

The optimization is performed in Julia [19] using the JuMP package [54] with the Ipopt solver
[55]. Values of K and T that minimize the sum of the squared differences are then found.

This model identification approach is used for both yaw and speed modelling, resulting in the
shaping filters:

Key Result 5 (Yaw-Velocity wind model).

ψ

w
=

Kψ

Tψs+ 1
=⇒ Tψψ̇ = −ψ +Kψw (3.20)

U ′

w
=

KU

TUs+ 1
=⇒ TU U̇

′ = −U ′ +KUw (3.21)

U = U ′ + Ū (3.22)

where K and T are the filter gain and time constant, respectively. Ū is the mean of measured
data.

The inclusion of the mean of ψ is not critical for the functioning of the model. This is because the
fluctuations of ψ around e.g. North or East are largely a matter of definition and do not impact
the model’s performance or results.

3.4 Validation of the new wind model

While utilizing the Von Karman spectra is well-established in the field, the new wind model
proposed requires validation. For this purpose, we utilized wind yaw and velocity measurements
[20].

Data from December 16, 2022, at an altitude of 80m was selected to illustrate the significant
fluctuations in wind speed and direction that can occur over short time periods. This data provides
a robust test for the new model, challenging its ability to accurately represent these rapid changes
in wind conditions.

The measured wind yaw and speed from the data are presented in Figures 3.11 and 3.12, respec-
tively. It can be seen that the wind speed fluctuates quite heavily, ranging from below 1m/s to
15m/s. Similarly, the wind yaw also exhibits large fluctuations when compared to the Cartesian
wind simulation.
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Figure 3.11: 24-hour measured Wind yaw data.

0 20000 40000 60000 80000

t [s]

2

4

6

8

10

12

14

U
[m

/
s]

U measured

Figure 3.12: 24-hour measured Wind speed data. The mean wind speed is 9.1 m/s.
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3.4.1 Model results

Based on these datasets K and T were found by solving the optimization problem (3.19). The
resulting gain and time constants are shown in Table 3.1.

K T
ψ 9.0 1209
U 128 1901

Table 3.1: Model parameters

These parameters yield the following dynamics for yaw and speed:

1209ψ̇ = −ψ + 9.0w1

1901U̇ ′ = −U ′ + 128w2

U = U ′ + 9.1

(3.23)

Here w1 and w2 represent two zero-mean bandlimited white noise signals with standard deviation
of 1.

The wind yaw and speed generated by the new model are depicted in Figures 3.13 and 3.14,
respectively.
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Figure 3.13: 24-hour Wind yaw simulation model.
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Figure 3.14: 24-hour Wind speed simulation model.

Model fit

The autocorrelation functions, derived by substituting the values from Table 3.1 into equation
(3.18), are as follows:

Rψ(τ) =
92

2418
e−

|τ|
1209

RU (τ) =
1282

3802
e−

|τ|
1901

(3.24)

The fit of these autocorrelation functions to the autocorrelation of the data is shown in Figures
3.15 and 3.16.
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Figure 3.15: Autocorrelation fit of ψ.
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Figure 3.16: Autocorrelation fit of U .
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Simulation fit

The autocorrelation of the simulated wind yaw and speed are compared to the measurements in
Figures 3.17 and 3.18.
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Figure 3.17: Autocorrelation of the yaw model vs measurements.
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Figure 3.18: Autocorrelation of the speed model vs measurements.

From these figures it can be seen that the autocorrelations of the simulated yaw and speed fit the
measured autocorrelations adequately in both cases.
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Power spectral density fit

The power spectral density of the simulated wind yaw and speed are compared to the measurements
in Figures 3.19 and 3.20.
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Figure 3.19: Power spectral density function of the yaw model vs measurements.
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Figure 3.20: Power spectral density function of the speed model vs measurements.

These figures suggest that the power spectral density of the simulated wind yaw and speed aligns
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adequately with the measured power spectral density. This alignment further validates the accuracy
of the new wind model.

3.4.2 Validation summary

The results presented in this section demonstrate that the fitted models provide good estimation of
the autocorrelations. Furthermore, the simulations based on these models generate autocorrelations
and power spectral densities that align adequately with the observed data. This agreement validates
the Yaw-Velocity model, demonstrating its capacity to appropriately reflect the dynamics of wind
speed and yaw.

Although the model was fitted using the first 50 lags, its performance was evaluated over the first
100 lags. The model still provides a good fit when extended to 100 lags, indicating that it has not
overfitted to the initial 50 lags. Overfitting is a common problem in statistical modelling in which
a model fits the training data too closely and fails to generalize well to previously unseen data [56].
In this case, the model’s ability to accurately represent data beyond the first 50 lags demonstrates
its robustness. This suggests that limiting the simulations to 50 minutes is a conservative approach.
However, in the context of this thesis, a conservative approach seems appropriate to assure the
results’ robustness and reliability.
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Process model

The previously introduced dynamics in Chapter 2 and Chapter 3 cover all the dynamics needed in
the different modules in the system structure making up the wind turbine in a simulation. Joining
these dynamics in a process model makes it more clear how the process of a wind turbine works.
This insight allows for a better overview of the system along with its main use, which is providing
dynamics of the system for state estimation, this is further discussed in Chapter 5.

4.1 Overview of dynamic models used

The dynamic models employed are essential for creating a functional and realistic simulation of the
actual system. These same equations, or in the case of the airloads method, are also used in state
estimation to depict the expected dynamics, thereby enhancing the accuracy of state estimation.
An alternative approach might be to treat unmodelled dynamics as white noise. While this could
be acceptable for dynamics that are not significantly noticeable or are computationally intensive
and/or complex to model, the use of dynamic models provides a more accurate representation of
the system’s behavior. The dynamics used in this chapter are highlighted throughout the text as
Key Results. Firstly the inflow dynamics, highlighted in Key Result 1, is reiterated here:

Q−1P (χ)σ̇ = τ̂ − σ, (4.1)

Following this is Key Result 2, which provides a method for calculating the airloads τ needed to
calculate the inflow dynamics.

τ = a(v,ω) (4.2)

where v and ω are the linear and angular relative velocities, respectively.

Then Key-Result 3 presents the rotor dynamics essential in calculating relative velocities and
thereby also essential for calculating airloads.

JΩ̇ = −Mz −ME (4.3)

where Mz is the aerodynamical torque in z and ME is the Generator shaft torque as introduced
in Definition 2.10.

Lastly the wind models presented in Key-Result 4 and Key-Result 5 determines the random stochas-
tic wind, to which the wind turbine is subjected to. These two models also serve the purpose of
providing information on the shaping filter rather than treating it as white noise. The models are
reiterated:
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Cartesian wind model:

[
T1 0
0 T2

] [
ξ̇1
ξ̇2

]
= −

[
ξ1
ξ2

]
+

[
K1 0
0 K2

]
w (4.4)

Yaw-Velocity:

ψ(s)

w
=

Kψ

Tψs+ 1
=⇒ Tψψ̇ = −ψ +Kψw (4.5)

U ′(s)
w

=
KU

TUs+ 1
=⇒ TU U̇

′ = −U ′ +KUw (4.6)

U = U ′ + Ū (4.7)

These dynamics constitute all the modes in the system structure as well as the two versions of
wind dynamics. This allows for realistic simulations.

4.1.1 Nonlinear process models

Gathering these dynamics results in two nonlinear process models:

Cartesian wind model:


Q-1P (χ) 0 0 0

0 J 0 0
0 0 T1 0
0 0 0 T2



σ̇

Ω̇

ξ̇1
ξ̇2

 =


τ̂ − σ

−Mz −ME

−ξ1
−ξ2

+


0 0
0 0
K1 0
0 K2

w (4.8)

Yaw-Velocity:


Q-1P (χ) 0 0 0

0 J 0 0
0 0 TU 0
0 0 0 Tψ



σ̇

Ω̇

U̇ ′

ψ̇

 =


τ̂ − σ

−Mz −ME

−U ′

−ψ

+


0 0
0 0
KU 0
0 Kψ

w (4.9)

These nonlinear process models delineate the dynamics of the internal variable σ, the angular
velocity, wind speed and yaw.

4.2 Linearization of the process models

The use of Kalman filter or Extended Kalman filter requires a linearized process model, as these
rely on a linear process model.

The nonlinearities to be addressed in the nonlinear process model are:

• ME

• Q−1P (χ)

• τ
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The linearization for ME is straightforward using the first-order Taylor series expansion:

ME ≈ b|Ω0|Ω0 + 2b|Ω0|(Ω− Ω0) (4.10)

Similarly, the matrix Q−1P (χ) can be linearized using a zeroth-order approximation:

Q−1P (χ) ≈ Q−1P (χ0) (4.11)

Here χ0 is the yaw error linearized about.

What is left is the linearization of τ , which is more comprehensive on its own, but it also depends
on the wind model used. The following sections will explore the details of this linearization.

4.2.1 Relative velocities

The linearization of (4.2) depends on the definition of the relative linear and angular velocities.
For a clearer derivation, the following definitions are introduced:

Definition 4.1 (Induction factor). The induction factor of inflow η can be expressed as:

η = L(χ)σ +D(χ)τ̄ =


ηx
ηy
ηz
ηϕ
ηθ
ηψ

 , η1 ≜

ηxηy
ηz

 , η2 ≜

ηϕηθ
ηψ

 (4.12)

Ui = ηU∞ (4.13)

Definition 4.2 (Relative velocities).

v =

Us0
Un

− η1U∞, ω =

00
Ω

− η2U∞ (4.14)

τ = a(v,ω) (4.15)

Us and Un will depend on the wind model:::

Definition 4.3 (Rotor wind).

Cartesian:

[
Us
Un

]
=

[
ξ1
ξ2

]
+ Ū (4.16)

Yaw-Velocity:

[
Us
Un

]
=

[
sin(ψ − θ)
cos(ψ − θ)

]
U∞ (4.17)

where θ is the wind turbine yaw as defined in Figure 3.2.

This sets the groundwork for the linearization of τ . The process of linearizing τ differs based on
the wind model used. The two linearizations are presented in the following sections.
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4.2.2 Linearization I- Cartesian

The linearization of τ can now be performed. As τ is not an analytical function, but rather a
nonlinear mathematical methodology, numerical linearization is required. The relative linear and
angular velocities as defined in 4.2, along with Us and Un using the Cartesian approach (4.16) fully
define the relative velocities. This allows for comprehensive numerical linearization. The mean
component of the wind signal is assumed to be defined as:

Ū =

[
0
1

]
U0 (4.18)

where U0 is the free-stream flow of the wind where the model is linearized about. It makes sense
to define this such that the mean component is assumed to be purely in Un, i.e. that χ = 0. This
also simplifies notation for the following derivation.

With the linear and angular velocities defined, they can be reiterated as the following functions:

v(ξ1, ξ2,σ, τ , χ, θ), ω(ξ1, ξ2,σ, τ , χ, θ,Ω) (4.19)

note that U∞ =
√
U2
s + U2

n =
√
ξ21 + (ξ2 + U0)2

1 and U0 is a constant. θ is slowly varying and
will not be considered.

Linearization requires the Jacobian matrix of τ , which is the partial derivatives of τ with respect
to the variables involving the linear and angular velocities (4.19). The partial derivatives can be
found numerically by utilizing the definition of the derivative:

∂a(v,ω)

∂x
= lim
h→0

a(v(x+ h),ω(x+ h))− a(v(x),ω(x))

h
(4.20)

this simplified notation’s purpose is to clarify that the perturbation of a variable e.g. σ1 will affect
both linear and angular velocities and then implicitly τ .

The linearized τ can then be put in the compact notation:

∆τ ≈ ∂a

∂V
∆V (4.21)

∂a

∂V
=
[
∂a
∂σ

∂a
∂Ω

∂a
∂ξ1

∂a
∂ξ2

∂a
∂τ

∂a
∂χ

]
, ∆V =


∆σ
∆Ω
∆ξ1
∆ξ2
∆τ
∆χ

 (4.22)

where ∂a
∂V is the Jacobian matrix of τ and ∆V are the variables involved in the linear and angular

velocities.

Note that this involves ∂a
∂τ meaning that a is implicit. In the process of linearizing the implicit

function, it is assumed that τ has a negligible impact on the linearization. This allows for a
simplification of the linearization by making it explicit. Another challenge arises from the fact that
the linearization depends on the yaw error χ, i.e the quantity to be estimated. This can be resolved
by approximating χ. Doing so decouples it from the linearization. The linear approximation of χ
is given by:

χ = tan−1
(Us
Un

)
≈ χ(0) + ∂χ

∂ξ1
∆ξ1 +

∂χ

∂ξ2
∆ξ2 = χ̂ (4.23)

1This is emphasized because U∞ is used to calculate the induced inflow Ui
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this approximation leads to:

∂a

∂χ
∆χ ≈ ∂a

∂χ

∂χ

∂ξ1
∆ξ1 +

∂a

∂χ

∂χ

∂ξ2
∆ξ2 (4.24)

Thus justifying the following modification in the partial derivatives:

∂a′

∂ξ1
≜

∂a

∂ξ1
+
∂a

∂χ

∂χ

∂ξ1
,

∂a′

∂ξ2
≜

∂a

∂ξ2
+
∂a

∂χ

∂χ

∂ξ2
(4.25)

The linearization then becomes:

∆τ ≈
[
∂a
∂σ

∂a
∂Ω

∂a′

∂ξ1
∂a′

∂ξ2

]
∆σ
∆Ω
∆ξ1
∆ξ2

 (4.26)

Normalization

It can be seen in (4.1) that τ is normalized in the inflow dynamics, leading to nonlinearities needing
to be addressed. Recall that τ is normalized as follows:

τ̄ =
a(v,ω)

1
2ρπR

2U2∞
, U∞ =

√
ξ21 + (ξ2 + U0)2 (4.27)

τ̄ must therefore be linearized, which can be done in the straightforward manner:

∆τ̄ ≈ 1
1
2ρπR

2

(
∆τ

U∞(ξ1(0), ξ2(0))2
− 2τ 0

U∞(ξ1(0), ξ2(0))3
∆U∞(ξ1, ξ2)

)

≈ ∆τ
1
2ρπR

2U∞(ξ1(0), ξ2(0))2

(4.28)

This approximation is valid under the assumption that the second term is negligible.

The normalizing variable then becomes:

normI =
1

1
2ρπR

2U∞(ξ1(0), ξ2(0))2
=

1
1
2ρπR

2
(
ξ1(0)2 + (ξ2(0) + U0)2

)
)

(4.29)

This concludes the linearization of τ using the Cartesian wind model. The following section will
introduce the linearization of τ using the Yaw-Velocity model.

4.2.3 Linearization II- Yaw-Velocity

The linearization of τ in the case of using the Yaw-Velocity model is quite similar to the lineariza-
tion in 4.2.2, therefore only the essentials will be reiterated. τ is still assumed to have negligible
impact on the performance of the linearization as a simplification. θ is slowly varying and will not
be considered in the linearization.

The variables can be identified by representing the linear and angular velocities as:

v(ψ,U∞,σ, τ , χ, θ), ω(ψ,U∞,σ, τ , χ, θ,Ω) (4.30)
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The yaw error, χ, is defined as:

χ = tan−1
(Us
Un

)
= ψ − θ (4.31)

as previously stated. ∆χ can then be expressed as:

∆χ = ∆ψ −∆θ (4.32)

This linearization will be utilized in the Extended Kalman filter, which implies that the linearization
will be updated in each iteration. Given that θ is slowly varying, it is reasonable to assume that
∆θ will be very small2. Therefore, the following approximation is considered to be adequate:

∆χ ≈ ∆ψ (4.33)

This leads to the following partial derivative:

∂a′

∂ψ
≜
∂a

∂ψ
+
∂a

∂χ
(4.34)

which in turn results in the following linearization:

∆τ ≈
[
∂a
∂σ

∂a
∂Ω

∂a
∂U

∂a′

∂ψ

]
∆σ
∆Ω
∆U
∆ψ

 (4.35)

Note that ∆U = ∆U ′.

Normalization

The normalization appears here aswell.

τ̄ =
a(v,ω)

1
2ρπR

2U2∞
(4.36)

which is linearized:

∆τ̄ ≈ 1
1
2ρπR

2

(
∆τ

U∞(0)2
− 2τ 0

U∞(0)3
∆U∞

)
≈ ∆τ

1
2ρπR

2U∞(0)2
(4.37)

The normalizing variable then becomes:

normII =
1

1
2ρπR

2U∞(0)2
(4.38)

This concludes the linearization of τ using the Yaw-Velocity model.

2In the implementation of the Extended Kalman filter on the Yaw-Velocity model, the time step is 100ms. With
a maximum yaw rate of 0.3 deg/s, this amounts to a maximum delta error of 0.03 degrees from this simplification.
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4.3 Linear process model

With the linearization of ME , Q
−1P (χ), and both versions of τ now complete, the linear process

model can be constructed. The linearization process introduces delta variables, which necessitates
the transformation of the state derivatives, such as Ω̇, into their delta counterparts, such as ∆Ω̇

From (4.10), the change in Ω̇ can be expressed as:

Ω̇− Ω̇0 = −∆Mz − |Ω|Ωb+ |Ω0|Ω0b ≈ −∆Mz − 2b|Ω0|∆Ω (4.39)

The changes in ∆σ̇, ∆ξ̇1, ∆ξ̇2, ∆U̇ and ∆ψ̇ are found in a similar straightforward manner. The
linearized process models for the two wind models can then be presented in the following sections.

4.3.1 Cartesian wind model

The process model utilizing Cartesian approach can now be pieced together. Firstly, to simplify
notation the Jacobian is defined.

Definition 4.4 (Jacobian matrix). Let the Jacobian matrix found in (4.26) be denoted by:

J1 =


∂a1
∂σ1

· · · ∂a1
∂σ5

∂a1
∂Ω

∂a′1
∂ξ1

∂a′1
∂ξ2

...
. . .

...
...

...
...

∂a5
∂σ1

· · · ∂a5
∂σ5

∂a5
∂Ω

∂a′5
∂ξ1

∂a′5
∂ξ2

 1

normI
, J2 =

[
∂a6
∂σ1

· · · ∂a6
∂σ5

∂a6
∂Ω

∂a′6
∂ξ1

∂a′6
∂ξ2

]
(4.40)

Jξ =

[
J1

J2

]
(4.41)

Then the linearized process model takes the form: 3


Q-1P (χ̂) 0 0 0

0 J 0 0
0 0 T1 0
0 0 0 T2



∆σ̇

∆Ω̇

∆ξ̇1
∆ξ̇2

 =




J1

J2

01x8
01x8

−

I(5) 05x1 05x1 05x1
01x5 2b|Ω0| 0 0
02x5 0 −1 0
02x5 0 0 −1




∆σ
∆Ω
∆ξ1
∆ξ2

+


0 0
0 0
K1 0
0 K2

w

(4.42)
This results in the compact form notation:

T ẋ =M1x+M2w (4.43)

where x is the 8x1 state vector and w is the 2x1 white noise signal. The linearized process model
on standard form is then defined.

Key Result 6 (Linearized process model utilizing the Cartesian wind model).

A ≜ T −1M1, G ≜ T −1M2 (4.44)

ẋ = Ax+Gw (4.45)

3Note that Q-1P (χ̂) is the 0-th order approximation of Q-1P (χ) in χ̂.
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4.3.2 Yaw-Velocity

Definition 4.5 (Jacobian matrix). Let the Jacobian matrix found in (4.35) be denoted by:

J1 =


∂a1
∂σ1

· · · ∂a1
∂σ5

∂a1
∂Ω

∂a′1
∂U

∂a′1
∂ψ

...
. . .

...
...

...
...

∂a5
∂σ1

· · · ∂a5
∂σ5

∂a5
∂Ω

∂a′5
∂U

∂a′5
∂ψ

 1

normII
, J2 =

[
∂a6
∂σ1

· · · ∂a6
∂σ5

∂a6
∂Ω

∂a′6
∂ξ1

∂a′6
∂ξ2

]
(4.46)

Jψ =

[
J1

J2

]
(4.47)

The linearized process model takes the form 4:


Q-1P (ψ − θ) 0 0 0

0 J 0 0
0 0 TU 0
0 0 0 Tψ



∆σ̇

∆Ω̇

∆U̇ ′

∆ψ̇

 =




J1

J2

01x8
01x8

−

I(5) 05x1 05x1 05x1
01x5 2b|Ω0| 0 0
02x5 0 −1 0
02x5 0 0 −1




∆σ
∆Ω
∆U ′

∆ψ

+


0 0
0 0
KU 0
0 Kψ

w

(4.48)

This results in the compact form notation:

T ẋ =M1x+M2w (4.49)

where x is the 8x1 state vector and w is the 2x1 white noise signal. The linearized process model
on the standard form is then defined.

Key Result 7 (Linearized process model Yaw-Velocity).

A ≜ T −1M1, G ≜ T −1M2 (4.50)

ẋ = Ax+Gw (4.51)

4Q-1P (ψ − θ) is the 0-th order approximation of Q-1P (χ).
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Chapter 5

State estimation

State estimation plays a crucial role in systems where direct measurements are either impractical,
prohibitively expensive, or impossible. It is particularly relevant in the case of yaw error, where
measurements can be significantly influenced by the system’s own dynamics. For instance, a wind-
vane’s readings can be heavily affected by flow distortions, thereby compromising the accuracy of
the measurements. Another approach to measuring yaw error involves the use of Lidar, a technology
that, while effective, can be costly and prone to failure. Furthermore, Lidar measurements can
still be influenced by external factors, which may lead to inaccuracies.

As mentioned in Subsection 1.3.1, the author did not find examples of this being done before. This
work aims to fill this gap, demonstrating the feasibility and effectiveness of state estimation for
yaw error in wind turbines.

Before getting into state estimation techniques, this chapter begins with a discussion on measure-
ments and their role in ensuring that the system is observable. The fundamental idea behind state
estimation is to use a set of measurements to provide an estimate of the states. This can be done
utilizing the systems dynamics and/or properties with the measurements serving as feedback for
the estimates.

Subsequently, the chapter explores several state estimation schemes, beginning with a simple con-
stant estimate for yaw error. The principles of the Kalman filter are then discussed, followed by
a detailed presentation of the algorithm. The chapter then concludes by modifying the Kalman
filter algorithm to obtain the Extended Kalman filter.

5.1 Measurements

Many measurements are built-in or easily available for a wind turbine. Looking at the process model
we can see that measuring all the variables in the state vector would be ideal. However, some of
these variables can not be measured such as σ which is an internal state and not a measurable
quantity. We can, however, measure the angular velocity of the rotor Ω and the airloads τ . If τ is
not directly available, it can potentially be determined using appropriate measurement techniques,
such as the application of strain gauges.

In the context of a wind turbine, numerous measurements are inherently available or can be easily
obtained. A review of the process model reveals that ideally, all state variables should be measured
to ensure comprehensive understanding and control of the system. However, certain variables, such
as σ, represent internal states and are not directly measurable.

Despite this, there are key variables that can be effectively measured. For instance, the angular
velocity of the rotor Ω and the airloads τ , can be relatively accurately captured. These measure-
ments provide valuable insights into the operational state of the wind turbine and serve as crucial
inputs for state estimation techniques.
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Definition 5.1 (Measurments).

y =

[
Ω
τ

]
(5.1)

5.1.1 Observability

A prerequisite of state estimation is the observability of the system, which studies the possibility of
estimating the state from the measurements[57]. To make sure that the chosen set of measurements
is adequate for state estimation we can check the system’s observability.

Definition 5.2 (Observability). The continuous-time LTI system:

ẋ = Ax+Bu, y = Cx+Du (5.2)

is said to be observable if x(0) can be determined uniquely by the knowledge of the input u and
output y for t ∈ [0, t1].

To check whether a specific linearized system is observable the solution of the state space equation
can be examined:

x(t) = eAtx(0) +

∫ t1

0

eA(t1−τ)Bu(τ) dτ

y(t) = Cx(t) +Du(t)

(5.3)

eAtx(0) is the solution of ẋ in the case of u(t) = 0 often referred to as the natural response or
unforced response.

ỹ = y(t)− C
∫ t1

0

eA(t1−τ)Bu(τ) dτ −Du(t) = CeAtx(0) (5.4)

y(t) and u(t) is known, and therefore ỹ is also known. To determine x(0) uniquely in the general
case, i.e. not limited to the case of zero nullity, the information over a time interval must be used.
This means that the unique solution if it exists, can be found by the following steps:

• Premultiplying ỹ by (CeAt)⊺ and integrating over the interval [0, t1] gives:∫ t1

0

eA
⊺τC⊺ỹ(τ) dτ =

∫ t1

0

eA
⊺τC⊺CeAτ dτ x(0)

W−1
0

∫ t1

0

eA
⊺τC⊺ỹ(τ) dτ = Inx(0)

(5.5)

where In is the nxn identity matrix and W0 as defined:

Definition 5.3 (Observability Gramian).

W0 ≜
∫ t1

0

eA
⊺τC⊺CeAτ dτ (5.6)

Following Definition 5.2 it can be seen that (5.2) is observable if and only if W0 is nonsingular for
any t > 0 [58].
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Duality

Now that an understanding of observability is established, another property of an observable system
is presented. A related concept is Controllability, in fact the controllability Gramian Wc of the
system:

ż = A⊺z + C⊺u (5.7)

given u, A and C being the same as in (5.2) is defined as:

Definition 5.4 (Duality).
Wz
c =W0 (5.8)

This means that if (5.2) is observable then (5.7) is controllable, and vice versa. This reveals another
property:

Theorem 5.1.1 (Eigenvalues). Consider the pair (A,C). All eigenvalues of (A −KC) can
be placed arbitrarily by selecting a real constant vector K if and only if (A,C) is observable.

Theorem 5.1.1 is proven to be a useful intuition of the importance of observability in closed-loop
state estimation.

5.2 Constant estimate

A straightforward method for state estimation involves examining the relationship between two
states that appear to be linked by a scaling factor. This factor is used to approximate one variable
based on the other. For instance, consider the connection between the yaw error χ and the
aerodynamic torque Mz. A rise in yaw error generally leads to a decrease in Mz, indicating a
strong coupling.

From a steady-state simulation with a constant yaw error of χ(0) = 0.2914 radians and a free-
stream flow of U∞(0) =

√
42 + 1.22, a scaling factor between χ and Mz can be deduced as:

χ(0)

Mz(0)
= −4.51× 10−7 (5.9)

This scaling factor can be used to approximate χ as follows:

χ ≈ −4.51× 10−7 ·Mz (5.10)

This kind of constant estimate can be effective in steady-state conditions, where the system’s
behavior remains relatively constant over time. However, this approach has the drawback of not
having feedback, and contrary to an open-loop estimator it does not utilize system knowledge.
Without feedback and system knowledge, this constant estimate will fall short quickly once the
system leaves the operating point. This is a key difference between this simple constant estimate
approach and more sophisticated state estimation techniques like the Kalman filter and Extended
Kalman filter, which incorporate feedback and system information to continuously update and
refine their estimates.

To demonstrate the fallacy of the constant estimate the following wind signal was imposed on the
wind turbine:
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Figure 5.1: Generated North wind.
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Figure 5.2: Generated East wind.

These figures illustrate that the initial 10 seconds of the simulation remain in a steady-state,
consistent with the conditions where the scaling factor was identified. However, after this initial
period, turbulent flow is introduced into the wind signal, pushing the system beyond its operating
point.
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Figure 5.3: Constant estimate of the yaw error χ.

It can be seen from the figure that the constant estimate strays from the real value as soon as it
leaves steady state. While the constant estimation method provides a simple and computationally
efficient way to predict system behavior in steady-state conditions, its practical applicability is very
limited. This emphasizes the significance of incorporating feedback and detailed system knowledge
into the estimation process.
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5.3 Kalman filter

42212, is the number of citations of the paper introduced by Rudolf E. Kalman in 1960 [59]. The
Kalman filter is widely used in sensor and navigation systems [60], object tracking [61], and more.
This simple, yet efficient algorithm has passed the test of time. Several variations of the Kalman
filter have been derived over the years, such as The Ensemble Kalman filter, The Unscented Kalman
filter, the Extended Kalman filter, the Multiplicative Extended Kalman filter, and more [50, 60].
This section covers the ordinary Kalman filter.

5.3.1 Assumptions

It is assumed that the random process can be modelled on the form:

xk+1 = Akxk +wk (5.11)

Here xk is the state vector of the random process, Ak is the state transition matrix and wk is the
input white noise.

The measurements vector is assumed to be discrete with the linear relationship:

yk = Ckxk + vk (5.12)

where yk is the measurement vector, Ck is the output matrix and vk is the white noise measurement
error.

Assumption 3 (Covariance of uncorrelated white noise). wk and vk have the known covari-
ance matrices:

E[wkw
⊺
i ] =

{
Qk for i = k

0 for i ̸= k
(5.13)

E[vkv
⊺
i ] =

{
Rk for i = k

0 for i ̸= k
(5.14)

Assumption 4 (Uncorrelated wk and vk). The input white noise and measurement error are
assumed to be uncorrelated:

E[wkv
⊺
i ] = 0 ∀ k, i (5.15)

Assumption 5 (Observability). The pair (Ak, Ck) is observable.

Building upon Theorem 5.1.1, this assumption permits the adjustment of the Kalman gain, as
shown in (5.20), to arbitrarily manipulate the eigenvalues of the term (Ak −KkCk).

5.3.2 Model augmentation

Unlike deterministic approaches, the Kalman filter has the advantage of being able to account
for colored noise. This process can be seen in Chapter 3, where the shaping filter is identified.
The shaping filter, which transforms white noise into colored noise, contains information about the
frequency distribution. This information can be incorporated into the Kalman filter by augmenting
the state space. The implication of this is that the information about the frequency distribution
can be used to penalize unlikely changes, thereby improving the estimate.
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Example 1 (Augmented state-space). Consider the system:

ẋ = x+ Γ, Γ ≜ H(s)w (5.16)

where w is white noise and H(s) is the shaping filter:

H(s) =
K

Ts+ 1
=

Γ

w
(5.17)

The following augmentation can be done:[
ẋ

Γ̇

]
=

[
1 1
0 − 1

T

] [
x
Γ

]
+

[
0
K
T

]
w (5.18)

The example shows that information about Γ can be extracted instead of treating it as white
noise.

5.3.3 Kalman filter algorithm

An overview of the notation used in the Kalman filter is presented:

Symbol Definition
xk State vector
yk measurements

x̄k+1 = Akx̂k a priori estimate of xk
x̂k = x̄k +Kk(yk − Ckx̄k) a posteriori estimate of xk

ēk = xk − x̄k a priori estimation error
êk = xk − x̂k a posteriori estimation error
P̄k = E[ēkē

⊺
k] a priori error covariance matrix

P̂k = E[êkê
⊺
k] a posteriori covariance matrix

Kk Kalman gain

Table 5.1: Notations used in the the Kalman filter.

It can be seen from Table 5.1 that the wording a priori and a posteriori is used. This notation
describes the flow of the algorithm, where a prior estimate x̄k is used to obtain a new estimate x̂k.
The initial iteration of the Kalman filter algorithm utilizes initial estimates of x̄0 and P̄0, where x̄0
is usually set in the operating point and P̄0 is usually set to identity. An alternative initialization
method for the error covariance matrix involves using the final value from a preceding simulation.
This technique is commonly referred to as a warm start, which can give reduced initial transients
in the estimate.

Following this initialization, the Kalman gain Kk can be calculated by minimizing the trace of
the error covariance matrix, i.e the variances of the state estimate error. This can be done by

differentiating the trace of P̂k with respect to Kk and solving for d(tr)
dKk

= 0:

d(tr)

dKk
= −2(CkP̄k)⊺ + 2Kk(CkP̄kC

⊺
k +Rk) = 0 (5.19)

The Kalman gain is then found to be:

Kk = P̄kC
⊺(CkP̄kC

⊺
k +Rk)

−1 (5.20)

The a priori and a posteriori error covariance matrices can now be found as:

P̂k = (I −KkCk)P̄
−
k (I −KkCk)

⊺ +KkRkK
⊺
k

P̄k+1 = AkP̂kA
⊺
k +Qk

(5.21)
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note that P̂k takes on many forms, however, the presented form is valid for any Kk.

The notations used in Table 5.1 along with (5.20) and (5.21) constitutes the Kalman filter, sum-
marized in the following algorithm.

Algorithm 1 Kalman filter

1: Kk = P̄kC
⊺
k (CkP̄kC

⊺
k +Rk)

−1

2: x̂k = x̄k +Kk(yk − Ckx̄k)
3: P̂k = (I −KkCk)P̄

−
k (I −KkCk)

⊺ +KkRk
4: x̂−k+1 = Akx̂k

5: P̄k+1 = AkP̂kA
⊺
k +Qk

6: return x̂k

5.3.4 Linearized Kalman filter yaw error estimation using the Cartesian
wind model.

Using the preceding formulation of the Kalman filter, and the linearized Cartesian process model
in Key Result 6, a way of estimating the yaw error has been established. The linearized process
model is repeated formulated on standard form:

ẋ = Ax+Gw, x =


∆σ
∆Ω
∆ξ1
∆ξ2

 , x ∈ R8 (5.22)

notice that the linearized process model is time-dependent, therefore discretization is required.
Before doing so the covariance matrices must be introduced.

Covariance matrices

The covariance matrices Q and R are tuning variables. An interpretation of the significance of the
covariance matrix is made in [58]: ”A large Q corresponds to little measurement noise and leads
to state estimators that respond fast to changes in the measured output. A large R corresponds
to small disturbances and leads to state estimates that respond cautiously (slowly) to unexpected
changes in the measured output.” Note that ”large” in this sense is relative to the other variable,
Q is said to be ”large” if it is large relative to the corresponding R. In other words the pair Q and
R will produce the same state estimate as the pair 10Q and 10R. The dimensional size of Q and
R depends on the system. In this case, Q will be a 2x2 matrix because there is white noise in two
states, i.e the white noise vector is:

w =

[
w1

w2

]
(5.23)

R stems from the white noise measurement error vk and is therefore 7x7 assuming that Ω and τ
is measured. With this established, the continuous time system can be discretized.

P̄k and P̂k are both nxn matrices, where P̄k can be initialized as the 8x8 identity matrix I(8).

Van Loan’s method

The continuous to discrete conversion for a given sampling time dt can be found using Van Loan’s
method:

exp

([
A GQG⊺

0 −A⊺

]
dt

)
=

[
M11 M12

0 M22

]
, Ad =M11, Qd =M12M

⊺
11 (5.24)
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Here1 Ad is the discretized version of A, which is the same as Ak used in derivation of the Kalman
filter. Qd is Q discretized and corresponds to Qk. R can be discretized through an averaging
convention:

Rd =
R

dt
(5.25)

The discretization can then be summarized with the following definition:

Definition 5.5 (Discrete matrices). The matrices used in Algorithm 1 are defined as:

Qk ≜ Qd, Rd ≜ Rk, Ad ≜ Ak (5.26)

Output matrix

The definition of the output matrix yk is still to be determined. Firstly it is assumed that the
airloads and the angular velocity measurements are obtainable, giving the measurements:

y =

[
Ω
τ

]
(5.27)

the linear output matrix Ck can then be constructed using the results from Subsection 4.2.2:

Definition 5.6 (Linear output matrix). The linear output matrix is defined as:

Ck =

[
01x5 1 0 0
∂a
∂σ

∂a
∂Ω

∂a′

∂ξ1
∂a′

∂ξ2

]
(5.28)

Notice that Ckx̄k ≈ ∆τ , this means that yk must be defined as follows:

Definition 5.7.

yk ≜ y − y0, y0 ≜

[
Ω0

τ 0

]
(5.29)

Here Ω0 and τ 0 is the angular velocity and aerodynamic forces and torques at the operating point.

This concludes the section, where the Kalman filter has been introduced along with all the defini-
tions needed for implementation.

1Note that exp is used for the exponential function for readability.
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5.4 Extended Kalman filter

This section presents the Extended Kalman filter as a modification of the Linearized Kalman filter
introduced in the previous section. EKF has a wide range of uses from pose tracking [62] to wind
speed estimation [63, 64, 65].

The Extended Kalman filter(EKF) is different from the Kalman filter in the sense that it updates
the estimated trajectory in each step. This means that the linearization and discretization of A and
C happen in each step k. As a result, it is more convenient to keep track of the total estimates, e.g.
σ instead of ∆σ. Conversely, if incremental estimates are used, then the linearization points have
to be saved to reconstruct the estimates, rather than one stationary linearization point in the case
of the Kalman filter. This modification necessitates yk, x̂k and x̄k+1 to be redefined. Conversely,
Kk, P̂k and P̄k+1 retain the same equation2, see Algorithm 1 step 1, 3 and 5, respectively.

Before elaborating further, the state vectors for the two cases are presented:

Definition 5.8 (State vectors).

Cartesian wind model: x =


σ
Ω
ξ1
ξ2

 (5.30)

Yaw-Velocity: x =


σ
Ω
U ′

ψ

 (5.31)

It can be observed that the two cases share notation. When consulting a specific case, the corre-
sponding state vector x and linearization process in Subsection 4.3.1 or Subsection 4.3.2 may be
referred to. The notation of the remaining derivation is therefore general.

5.4.1 Linearization in each step

The linearization process described in Chapter 4 takes place after x̂k is updated in each iteration
of the Extended Kalman filter. This leads to the linearization being conducted around x̂k instead
of x(0). As the point of linearization is moved, yk must be updated:

Definition 5.9 (Measurement update).

y′k ≜

[
Ω̂k

a(v(x̂k, τ , θ),ω(x̂k, τ , θ))

]
(5.32)

yk = y − y′k (5.33)

Please note that Ck, Ak and yk are updated after x̂k. Consequently, Ck−1 and yk−1 are used in
the first two steps of Algorithm 1.

5.4.2 Total estimates

The linearized matrices Ak and Ck are designed to interact with an incremental state, a feature
stemming from the linearization process. The incremental state can be obtained by subtracting
x̂k from the total estimate, viz.

2The changes in the other steps will of course implicitly affect these, however, the equations are not changed.
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x̄k+1 = Ak(x̂k − x̂k) (5.34)

As stated earlier, it can be seen that x̄k+1 has a trivial solution. This issue is resolved in the
following definition:

Definition 5.10 (Non trivial projection).

x̄k+1 =

{
Solution of the nonlinear process model at t = tk+1

subject to the initial condition x = x̂k
(5.35)

The last modification needed is in updating x̂k, where incremental states must be used as follows:

x̂k = x̄k +Kk

(
yk − Ck−1(x̄k − x̂k−1)

)
(5.36)

5.4.3 Summary

The Extended Kalman filter can be summarized by an augmented Algorithm:

Algorithm 2 Extended Kalman filter

1: Kk = P̄kC
⊺
k−1(Ck−1P̄kC

⊺
k−1 +Rk)

−1

2: x̂k = x̄k +Kk(yk−1 − Ck−1(x̄k − x̂k−1))
3: Find A, Ck and yk
4: Discretize A and Q to obtain Ak and Qk
5: P̂k = (I −KkCk)P̄

−
k (I −KkCk)

⊺ +KkRk
6: x̂−k+1 = Solution of nonlinear process model at x = x̂k

7: P̄k+1 = AkP̂kA
⊺
k +Qk

8: return x̂k
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Chapter 6

Results

This chapter is dedicated to presenting the results obtained from the methodologies and models
discussed in the previous chapters. The results are divided into two main sections. The first section
explores yaw error estimation utilizing the Cartesian wind model in its process model. Firstly, the
results from using the Kalman filter for state estimation are presented. Then the effectiveness of the
Extended Kalman filter is demonstrated by utilizing the yaw error estimate for yaw control. The
second section employs the Yaw-Velocity wind model in the process model for yaw error estimation
with the Extended Kalman filter. Here, yaw control using the yaw error estimate is implemented
and compared to moving average yaw control meant to represent yaw control methods currently
in use.

6.1 Cartesian wind

This section presents yaw error estimation using the Kalman filter and the Extended Kalman filter
utilizing the Cartesian wind model.

6.1.1 Kalman Filter

The Kalman filter is linearized around zero yaw error and a free-stream flow of 4 m/s. Contrary
to the Extended Kalman filter, it was explained in Section 5.3 that the linearized Kalman filter
does not update the state and output matrices A and C. This means that once the system strays
further from the linearization point it is expected to diverge from the nonlinear process model.
Furthermore, the Kalman filter operates in incremental states, which means that the states for
which the Kalman filter was linearized about, need to be added to the incremental estimates to
obtain the resulting estimate.

The resulting Observability Gramian is invertible when measuring the angular velocity of the rotor
Ω and the torques M, meaning that only four measurements are needed for the system to be
observable.

The Kalman filter is simulated using the resulting wind shown in Subsection 3.2.3. This wind
signal has a mean component that agrees with the linearization, however, highly turbulent flow
is imposed on it. The main results from this simulation will be presented and discussed in the
subsequent sections.

Resulting Estimates.

The estimates presented in this section are compared to the real values of the simulation. Figures
6.1 and 6.2 show that the estimates of ξ1 and ξ2 stray from the real values when the system moves
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further from the linearization point. At 40 seconds this is best showcased, where both ξ1 and ξ2 are
noticeably different from the real values. The yaw error depicted in Figure 6.3 shows the impact
of this. This close to the operating point the Kalman filter produces a rough estimate. However,
there is a noticeable difference already when the side wind is at 2 m/s and the normal wind is
at 5 m/s, which does not bode well as real wind conditions can vary alot. The angular velocity
suffers from the same nonlinearity. The internal variables σ suffer the most, as it can be seen that
nonlinearities in the real system lead to inadequate estimates.
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Figure 6.1: Kalman filter estimate of ξ1.
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Figure 6.2: Kalman filter estimate of ξ2 + U0 with U0 = 4 m/s.
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Figure 6.3: Kalman filter estimate of the yaw error χ.
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Figure 6.4: Kalman filter estimate of the angular velocity of the rotor Ω.
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Figure 6.5: Kalman filter estimate of σ1.
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Figure 6.6: Kalman filter estimate of σ2.
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Figure 6.7: Kalman filter estimate of σ3.
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Figure 6.8: Kalman filter estimate of σ4.
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Figure 6.9: Kalman filter estimate of σ5.
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6.1.2 Extended Kalman Filter with Yaw Control

The Kalman filter did not produce satisfactory estimates. A Cartesian wind signal with a mean
wind from the North of 4m/s and 1.2m/s from East is employed to demonstrate that the Extended
Kalman filter captures the nonlinearities of the model better than the Kalman filter even when it is
further from the initial linearization point. The turbulent flow of this wind can then be described
by:

K = σK

√
19L

40Ū∞
= 51.42

T =
L

Ū∞
= 15.42[

T 0
0 T

] [
ξ̇1
ξ̇2

]
= −

[
ξ1
ξ2

]
+

[
K 0
0 K

] [
w1

w2

] (6.1)

The resulting North and East wind, free-stream flow, and Yaw of the wind is presented in the
following figures:
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Figure 6.10: North wind generated.
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Figure 6.11: East wind generated.
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Figure 6.12: Free-stream flow U∞
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Figure 6.13: Resulting Yaw ψ.

This generated wind is employed on the Extended Kalman filter to demonstrate its effectiveness.

Implementing Yaw control

Yaw control utilizing the yaw error estimate is introduced to show an application of the yaw error
estimate. The yaw control is implemented as a simple P-regulator, to exemplify that a good yaw
error estimate does not require advanced schemes to work initially.

θ̇ = 0.1 χ̂ (6.2)

As it can be seen from the equation, a simple P-regulator with a constant gain is implemented to
make the wind turbine yaw such that it aligns with the wind. As mentioned in Section 2.6, the
maximum yaw rate of the wind turbine is 0.3 degrees/s. This value is also set as the rate limit in
the simulation.

Resulting Estimates.

The estimates presented in this section are compared to the real values of the simulation. Contrary
to the Kalman filter, it can be seen that accurate estimates are produced even if the state is far
from the initial linearization point.
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Figure 6.14: Estimate of ξ2, where Ûn = ξ̂2 + 4.
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Figure 6.15: Estimate of ξ1, where Ûs = ξ̂1 + 1.2
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Figure 6.16: Estimate of yaw error.
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Figure 6.17: Estimated angular velocity.
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Figure 6.18: Estimate of σ1.
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Figure 6.19: Estimate of σ2.
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Figure 6.20: Estimate of σ3.
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Figure 6.21: Estimate of σ4.
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Figure 6.22: Estimate of σ5.

Evaluating the Effects of Introducing Yaw Control.

The yaw control shown in (6.2) is implemented to align the wind turbine with the wind. The
effects of introducing yaw control are shown in Figures 6.14, 6.15, 6.16, and 6.17. The green plot
shows the values of a simulation without yaw control exposed to the same conditions. It can be
observed that the yaw controller reduces the yaw error and, as a side effect, increases the angular
velocity and normal wind while decreasing the side wind.

Ideally, for zero yaw error, the normal wind will be the same as the free-stream flow. Figure 6.23
shows how the yaw controls ”lift” the normal wind of the wind turbine towards the free-stream
flow. This is achieved by yawing the wind turbine into the wind, the resulting yaw of the wind
turbine is shown in Figure 6.24.

The implication of a smaller yaw error is that more power can be extracted from the same condi-
tions. This is evident in the Maximum Power Point Tracking (MPPT) control law from Definition
2.9, which shows that the rotor’s angular velocity is cubically related to the power extracted. Gain-
ing extra angular velocity under the same conditions and control law can therefore significantly
improve power extraction. This is reflected in Figure 6.25, where the generated power in both
cases is shown. The resulting power gained from yaw control under these conditions is shown in
Figures 6.26 and 6.27.
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Figure 6.23: Free-stream flow compared to wind normal to the wind turbine.

0 10 20 30 40 50 60

t[s]

0.0

0.1

0.2

0.3

0.4

0.5

θ
[r
ad
]

Yaw of wind turbine, θ

Figure 6.24: Yaw of the wind turbine from yaw control.
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Figure 6.25: Power extraction yaw control vs no yaw control.
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Figure 6.26: Power extraction gain W.
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Figure 6.27: Power extraction gain, where 1.0 represents 100% of the power extracted without yaw
control.

6.2 Yaw-Velocity

In this section, the Extended Kalman filter is employed on the system utilizing the Yaw-Velocity
model to estimate yaw error. Similar to the previous section, this estimate is used in yaw control
to steer the wind turbine into the wind. In addition to this, the following section provides a
comparison between this yaw control and presentable strategies employed in a real wind turbine.

The resulting Observability Gramian is invertible when measuring the angular velocity of the rotor
θ and the torques M, however, the full force-torque vector τ is utilized in the simulations in this
section. Note that no measurement noise was added to the measurements, however, introducing
measurements can be resolved by re-tuning the measurement noise covariance matrix R.

Yaw control in wind turbines is commonly implemented using a threshold-based algorithm, where
the turbine yaws whenever the moving average yaw error over a certain time period reaches a
defined threshold [66]. The threshold can typically range from 7 to 15 degrees yaw error and
the time period is often 10 minutes[15, 67]. This approach is partly adopted because yaw error
measurements, usually obtained through wind vanes, are often heavily filtered over a given time
period [68].

It’s worth noting that frequent yaw adjustments can cause unnecessary wear and tear on the turbine
[9]. On the other hand, infrequent yaw can lead to forced shutdowns and unnecessary loads on the
blades, also leading to wear and tear [69]. However, finding this balance is beyond the scope of
this thesis.

The yaw control in this thesis utilizes a simple P-regulator driven by the yaw error estimate as
in (6.2). This approach is compared to a generous representation of the existing yaw controllers.
Two separate yaw controllers representing existing approaches are employed, they utilize perfect
yaw error measurements to correct for the moving average yaw error. The two scenarios are 5
and 10 minute control intervals. The 5 minute control interval corrects for the 5 minute moving
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average yaw error every 5 minutes, whereas the 10 minute control does the same with 10 minute
intervals and a 10 minute moving average. This is provided to demonstrate the effectiveness of the
yaw error estimation, with further applications left for future work.

The moving average yaw control is then:

Algorithm 3 Moving average yaw control

1: if t mod 300 == 0 then
2: θref5 ← 5 minute moving average of χ
3: end if
4: θ̇5m = θref5 − θ5m
5: if t mod 600 == 0 then
6: θref10 ← 10 minute moving average of χ
7: end if
8: θ̇10m = θref1 − θ10m

Here θ5m and θ10m is the yaw of the wind turbine with the 5 and 10 minute moving average
controls, while θ is the yaw of the wind turbine using the P-regulator in (6.2).

The first 30 minutes of the wind yaw and speed from Subsection 3.4.1 was used in the simulation
to demonstrate the different yaw controls. The wind yaw and speed used in the simulation are
reiterated below.
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Figure 6.28: Generated yaw of the wind.
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Figure 6.29: Generated wind speed.

6.2.1 Resulting Estimates.

The estimates presented in this section are compared to the real values of the simulation. It can
be seen from the figures below that the Extended Kalman filter produces estimates that follow the
real value very closely. This also leads to a good estimate of the yaw error.
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Figure 6.30: Estimated yaw angle of the wind ψ.
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Figure 6.31: Estimated free-stream flow.
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Figure 6.32: Estimated Yaw error.
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Figure 6.33: Estimated angular velocity.
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Figure 6.34: Estimate of σ1.
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Figure 6.35: Estimate of σ2.
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Figure 6.36: Estimate of σ3.
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Figure 6.37: Estimate of σ4.
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Figure 6.38: Estimate of σ5.

6.2.2 Evaluating the Performance of Different Yaw Control Methods.

In order to compare the different yaw controls, three separate wind turbines were set up. Each
turbine was subjected to the same initial conditions and wind signal, as shown in Figures 6.28 and
6.29. The P-regulator used the estimated yaw error χ̂ from Figure 6.32, while the 5 and 10 minute
moving average controls used the actual yaw error χ. The estimated yaw error χ̂ was found to
closely follow the actual yaw error χ, making the difference between them negligible.

The P-regulator performed near-continuous yaw actuation, while the moving average controls made
one yaw correction every 5 and 10 minutes, respectively.

Figure 6.39 illustrates the yaw error for the three cases, as well as for an unactuated case where
ψ = χ. Figure 6.40 shows the wind turbine yaw for the three cases. Given the definition of yaw
error as χ = ψ − θ, the ideal scenario would be θ = ψ. As seen in Figure 6.39, the P-regulator
achieves close to zero yaw error. This is reflected in Figure 6.40, where θ closely resembles ψ. The
5 and 10 minute yaw controls, on the other hand, struggled to keep up with the changes in wind
conditions.
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Figure 6.39: Comparison of yaw error across three cases, including the unactuated scenario where
χ = ψ.
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Figure 6.40: Comparison of wind turbine yaw.

89



CHAPTER 6. RESULTS

To compare the yaw control methods a simulation with no yaw control is used as a reference.

Figures 6.41 and 6.42 illustrate the difference in angular velocity across the three yaw control
methods. It’s clear that the difference is substantial, particularly when the yaw error is large.

The power gained from using yaw control is shown in Watts and percentages in Figures 6.43 and
6.44, respectively.

To better understand the impact of these differences, Figure 6.45 presents the total energy produced
in kWh for each control method, while Figure 6.46 shows the average energy gain in percentage.
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Figure 6.41: Angular velocity in the different yaw controls.
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Figure 6.42: Gained angular velocity from yaw control.

0 250 500 750 1000 1250 1500 1750

t[s]

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

W

×106 Power gained, W

W P-regulator - No Yaw

W 5 minute Yaw control - No Yaw

W 10 minute Yaw control - No Yaw
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Chapter 7

Conclusion

7.1 Yaw-Velocity wind model

A new type of wind model was derived from measurement data using a Gauss-Markov style model
identification strategy. The results in Subsection 3.4.1 validate the Yaw-Velocity model’s ability
to accurately estimate autocorrelations and generate simulations that align with observed data.
The model’s performance remains robust even when extended beyond the initial fitting range,
indicating it has not overfitted the data. This suggests that limiting the simulations to 50 minutes
is a conservative approach, which is deemed appropriate for ensuring the robustness and reliability
of the results.

7.2 Simulation Results

In the previous chapter the simulation results were presented. This section discusses the results.

Kalman Filter on the Cartesian Wind Model

The Kalman filter, while able to provide a basic estimate of the yaw error, falls short in accurately
capturing the system’s nonlinearities, especially when conditions deviate from the point of lineariza-
tion. Given the dynamic nature of wind conditions, which can change significantly over short time
periods, this limitation is particularly problematic for yaw error estimation. Consequently, the
Kalman filter is deemed unsuitable for this specific application.

Extended Kalman Filter on the Cartesian Wind Model

The Extended Kalman filter was tested on a wind signal that deviated significantly from the
initial linearization point, demonstrating its ability to accurately capture the system’s nonlinear
dynamics. Unlike the Kalman filter, the Extended Kalman filter was able to produce precise state
estimates even when conditions strayed from the initial linearization. To emphasize the importance
of accurate yaw error estimation, a simple P-regulator was implemented to align the wind turbine
with the wind. The power gain from this yaw control was then compared to a similar setup
without yaw control. The results showed a substantial increase in power under these conditions.
The potential power gain is quite dramatic in these conditions, however, this does not come as a
surprise as it is not really a fair comparison.
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Extended Kalman Filter on the Yaw-Velocity Wind Model

The Extended Kalman filter showcases its strength particularly well when employed on the Yaw-
Velocity wind model. It demonstrates its ability to produce good state estimates when exposed
to varying conditions. An attempt at reproducing yaw control employed on real wind turbines
was then made by making two yaw controllers correcting a moving average yaw error based on
exact measurements. There obviously exists ways of improving these yaw controls, however they
resemble yaw controllers used in the literature as stated in Section 6.2. The results exemplify
that there is a significant amount of power that can be gained through effective yaw control. In
conditions where pitch control has to be activated to not exceed the rated maximum power, this
sees less benefit. It’s also worth noting that while the P-regulator was implemented to highlight
potential gains, continuous yawing of the wind turbine may cause more harm than good in the
long run.

Yaw error estimation

The findings in Chapter 6 can be condensed into the conclusion that accurate yaw error estimation
can be achieved by utilizing the Extended Kalman filter on either wind model.

7.3 Future work

The scope of this thesis is inherently limited and several areas for improvement have been identified.
These areas present opportunities for further research. The following list outlines potential paths
for a continuation of this work:

• Explore the potential usage of yaw error estimation, for instance, accurate wake deflection
or to obtain data for machine learning approaches.

• In terms of yaw control there is potential for utilizing these measurements, however, the
balance between power optimization and equipment longevity must be considered when de-
veloping the yaw control.

• Explore the effect of measurement noise on the estimates.

• Implement the Extended Kalman filter on a real wind turbine. The results shown here, while
efficient in simulations, might not be in a practical setting.
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toren. Die Naturwissenschaften, 7(23):561–564, 1919.

[6] Peter J. Schubel and Richard J. Crossley. Wind turbine blade design. Energies, 5(9):3425–
3449, 2012.

[7] Justin Creaby, Yaoyu Li, and John E. Seem. Maximizing wind turbine energy capture using
multivariable extremum seeking control. Wind Engineering, 33(4):361–387, 2009.

[8] Sura Zuheir, Oday Ibraheem Abdullah, and Mustafa Al-Maliki. Stress and vibration analyses
of the wind turbine blade (a nrel 5mw). Journal of mechanical engineering research and
developments, 42(4):14–19, 2019.

[9] Det Norske Veritas, Forskningscenter Risø, Risø National Laboratory (Copenhague), and
Risø National Lab. (DK). Wind Energy Department. Guidelines for design of wind turbines.
Contract ENS-51171/98-0036. Det Norske Veritas : Wind Energy Department, Risø National
Laboratory, 2001.

[10] Paul A. Fleming, Andrew Ning, Pieter M. O. Gebraad, and Katherine Dykes. Wind plant
system engineering through optimization of layout and yaw control. Wind Energy, 19(2):329–
344, 2016.

[11] Marc Bromm, Andreas Rott, Hauke Beck, Lukas Vollmer, Gerald Steinfeld, and Martin Kühn.
Field investigation on the influence of yaw misalignment on the propagation of wind turbine
wakes. Wind Energy, 21(11):1011–1028, 2018.

[12] J. Ribrant and L. Bertling. Survey of failures in wind power systems with focus on swedish wind
power plants during 1997-2005. In 2007 IEEE Power Engineering Society General Meeting,
pages 1–8, 2007.

[13] T. Mikkelsen, N. Angelou, K. Hansen, M. Sjöholm, M. Harris, C. Slinger, P. Hadley, R. Scul-
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