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Abstract

This thesis addresses the challenge of predicting vessel trajectories in confined waters,
where the multi-dimensionality of the interaction scene introduces non-linearity in ship
paths. The proposed approach utilizes machine learning models trained on processed Au-
tomatic Identification System (AIS) data to forecast future vessel trajectories based on
observed states.

Until now, latitude, longitude, and other AIS features such as speed over ground
(SOG), course over ground (COG) have often been used to train models for target latitude
and longitude predictions. However, these models often struggle to capture the inherent
non-linearity present in confined water scenarios. To overcome this limitation, the thesis
proposes a novel data representation to better capture motion patterns.

The methodology starts with, processing the AIS data using a multi-step framework,
maximizing data trueness, retaining valuable information, and minimizing noise. Addi-
tionally, learnable features are engineered to improved the mapping of data to target trajec-
tories. Three types of recurrent neural network (RNN) architectures, including Long-Short
Term Memory (LSTM), Gated recurrent unit (GRU), and Convolutional Neural Network-
Long short term memory (CNN-LSTM), are employed in the study. Two distinct ap-
proaches are used for training the models. The first approach uses traditional features such
as latitude, longitude, COG, SOG, along with engineered features, mapping them to target
latitude longitude coordinates, all in standardized form. The second approach, trains the
models to predict relative distance and angle based on observed latitude, longitude and
other features. The performance of different approaches and models is evaluated using the
accuracy of median target predictions as the key performance indicator.

The results demonstrate that the second approach, which incorporates the novel Rel-
ative Displacement and Angle (RDA) data representation, significantly outperforms con-
ventional data representation techniques. Across all models, the RDA approach exhibits
approximately 65% improvement in accuracy compared to standard representation meth-
ods. The CNN-LSTM model achieves the lowest median deviation error of 0.021 nm for
each time-step over a 5 minutes prediction horizon.

Though the RDA approach provides us with a better learnable representation, the mod-
els used in this thesis are conventional in nature, with LSTM and GRU being utilized in
previous works. Incorporating the RDA approach with more sophisticated models has the
potential to further enhance accuracy. Additionally, the thesis acknowledges the limita-
tion of not considering encounter data, which can impact the accurate estimation of vessel
intent/trajectories in encounter scenarios.
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Chapter 1
Introduction

This chapter starts with the motivation behind undertaking this thesis. Subsequently, an
overview of existing literature with their theories and findings is discussed. Furthermore,
a summary of the contributions made by this thesis is presented, emphasising the signifi-
cance of the approach. Finally an outline is presented to give a preview of the subsequent
sections.

1.1 Motivation
The motivation for this thesis stems from the works of Thyri et al. (2020) and the recent
technological advancements that are facilitating the emergence of a new era characterized
by automation. This automation in many scenarios, demands the integration of existing
sensors with advanced data analytics, rather than a sole reliance on advanced censor tech-
nologies. As we strive towards achieving the objectives of industry 4.0, our focus extends
beyond the scope for increased productivity and profitability, to enhancing the human and
environmental safety, Rosin et al. (2022).

For the maritime transport sector this increased safety can be achieved with systems
that enable the implementation of safety-critical decisions in real-time. Among thesis
decisions navigation plays a crucial role. This is evident in a report issued by EMSA
(European Maritime Safety Agency), where it was fount that "More than half of the casu-
alties with a ship (54.2%) were related to issues of a navigational nature, such as contacts,
grounding/ stranding, and collisions ", European Maritime Safety Agency. Furthermore,
65.8% of the total 4104 reported maritime accidents for 2011-2018 were attributed to hu-
man action. Similarly on land, road crashes account for about 1.3 million deaths and
20-50 million non-fatal injuries each year, NHTSA. The adoption of autonomy in land
navigation has gained widespread acceptance as it aims to improve the safety on roads.
Implementation of a similar model in the maritime domain offers several advantages. The
European Environmental Agency, in one of its publications stated out that “rail and water-
borne transport are much more greenhouse gas efficient than road transport and aviation,
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Chapter 1. Introduction

both for passengers and freight” , European Environmental Agency. Thus, the adoption
of maritime autonomy around urban areas can help decongest cities, improve human and
environmental safety, increase efficiency, provide round-the-clock accessibility, and gen-
erate cost savings in terms of both manning and operation.

In order to implement safe navigational autonomy in the maritime space, it is crucial
to consider the cognitive aspect of human decision-making. This consideration becomes
particularly important in confined waters, where the multi-dimensionality significantly in-
creases. This dimensionality is bought in by factors such as distance to the coastline, depth
along the intended course, interactions with multiple agents, and other relevant scenes.
More recently, many trajectory and path prediction models are being developed, with many
proving efficient for open sea operations, where linear movement patterns are prevalent,
as opposed to coastal/confined waters.

1.2 Literature Review
With the advent of GPU and parallel computational technologies advanced machine learn-
ing techniques are being developed around data driven models. A similar trend can be seen
in the maritime space, and also in the context of trajectory prediction. Figure 1.1 illustrates
that, in recent times deep neural networks have been gaining greater acceptance compared
to traditional statistical and numerical models.

Figure 1.1: Timeline- Trajectory prediction algorithms

As highlighted in previous section 1.1, the multi-dimensionality significantly increases
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1.2 Literature Review

around coastal regions, leading to a notable impact on vessel behaviour. Consequently this
leads to a large part of trajectories around coastal regions being non-linear. While large
vessels typically adhere to traffic separation scheme (TSS), following certain combina-
tions of speed and heading, smaller vessels have lesser privileges with-respect-to the right
of way and have to be more flexible in path planning, accounting for traffic and ensuring
collision avoidance. In a statistical model approach, Perera and Guedes Soares (2010) use
Extended Kalman filter (EKF), capturing the non-linearity in trajectory motions which the
conventional kalman filter cannot. The non-linear continuous-time target motion model
and the discrete-time linear measurement model are initialized with simulated trajectory
states, followed by iterative projection and updates to state estimates, errors and, gain.
Though in the stated work the model is able to effectively capture non-linearity and gain
convergence to velocity and acceleration states, accuracy reliability can still be a challenge.
This is attributed to, heavy reliance on the initial state estimate for convergence, the re-
quirement for accurate modeling of complex equations to represent motion models, and the
assumption that the target motion and measurement models follow a gaussian distribution.
In another statistical approach, Krishanth et al. (2012) present work addressing a particular
use cases involving transit within shipping lanes. The proposed Variable Structure- Inter-
acting Multiple Model (VS-IMM) combines multiple models, each representing a different
motion behaviour. The models are switched dynamically based on the target’s movement
across different segments. In cases involving multiple junctions or complex scenarios, the
authors suggest utilizing a segment hypothesis tree to retrodict and trace back the target’s
location. However, the algorithm’s effectiveness is limited to junction segment probability
estimation and not intended for non-linear trajectory prediction. "SVR seaway", a model
proposed by Joo-Sung Kim (2017), is statistical in nature and suited towards a particu-
lar use case. The support vector regression (SVR), an extension of the commonly used
support vector machines for classification, is employed in this model. SVR maps input
features onto a kernel function and seeks to identify the optimal hyperplane by maximiz-
ing the margin around support vectors. The author uses position, speed and course data
to train the model and extract non-linear hyper-planes for both the Closest Point of Ap-
proach (CPA) and Time to Closest point of Approach (TCPA) predictions. The reliance
on the need to store support vectors, makes the model memory intensive and impractical
for large datasets. With a similar algorithm, Liu et al. (2019) uses the SVR with adaptive
chaos differential equation optimizer for faster convergence. The SVR for this case shows
good convergence over next single step prediction using the current and the three previous
time-steps. However, as before the SVR’s dependence on support vectors makes it sensi-
tive to changes in the distribution of vector positions, and may introduce significant errors
when encountering previously unseen scenarios, including multi-step predictions.

Another, single step prediction model is proposed by Guo et al. (2018), however
specifically for ocean spaces. The algorithm consists of a k-order multivariate markov
chain, modeling the trajectory prediction task as an event-outcome model. The 3 step pro-
cess for prediction involves, first dividing the sea area into non-overlapping grids, then
choosing vessel location, direction and speed as key seen states, and finally calculating
the transition probability matrix and, predicting the next probable grid cell representing
the unseen position state. From analysis results and a comparison between the 1st, 2nd
and 3rd order markov chain, as the chain length increases ie. number of past seen events,

3



Chapter 1. Introduction

the prediction accuracy improves, giving the highest for 3-order model. However, it shall
be noted that while capturing more past states enhances memory, it also significantly in-
creases the computational complexity, particularly for time-dependent probabilities. Even
with the growing available compute, the markov chains heavily reliance on transition prob-
abilities and current states, makes them weak at discovering complex long term dependen-
cies as well as performance on undiscovered and dynamic coastal data.Mao et al. (2018)
propose a fast learning neural network algorithm, Extreme learning machines. It consists
of a simple 3 layers architecture - input, hidden and output layers, and use a single pass
learning approach. The algorithm analytically calculates the output weights using simple
linear regression, which is based on randomly generated weights in the hidden layer. This
simplicity in both, the architecture and learning process, contribute to the model’s quick
training time and satisfactory generalization performance. However, these attributes in-
troduce drawbacks such as, absence of iterative fine-tuning and, the inability to capture
complex feature and pattern correlations.

In a probabilistic approach to trajectory prediction, Gaussian mixture models (GMM)
is proposed by Dalsnes et al. (2018). First, the neighbour course distribution method is
used to construct a tree of states, which represents multiple trajectories. Subsequently an
expectation maximization algorithm is employed to fit a GMM to these points, resulting in
a probabilistic model that predicts the future positions. This model offers several advan-
tageous features, including the ability to associate uncertainty with predictions. However,
GMM are inefficient in capturing feature correlations that do not exhibit a normal distribu-
tion. This can be to disadvantage in coastal areas where the trajectories are often skewed,
as seen for our data represented in figures 1.2 and 1.3. Moreover, the results by the authors
indicate that the model suffers in areas with sparse data density, leading to overconfident
yet inaccurate predictions. This drawback can be attributed to the model’s heavy reliance
on mapped covariance matrix.

Figure 1.2: Gaussian distributions of standardized position coordinates a)Latitude b)Longitude
(Processed march’19 AIS data)
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1.2 Literature Review

Figure 1.3: a)Standardized geo-coordinates frequency plot b)Gaussian distribution of standardized
SOG (Processed march’19 AIS data)

In recent years neural networks have gained popular attention, with some of these ar-
chitectures being applied to the problem of sequential trajectory prediction. Tang et al.
(2019) use a 2 layer LSTM architecture model to observe 10 steps spanning a duration of
10 minutes, and output a single step prediction of position after 10 minutes. From author’s
results the LSTM model outperformed both the EKF and the back propagation neural
networks in terms of prediction accuracy. This can be attributed to the LSTM’s ability
to effectively capture long-term dependencies in sequential data, making it an attractive
choice for solving sequential problems. Murray and Perera (2020) also use a neural net-
work model, dual linear auto-encoder. The authors use a gaussian mixture model to cluster
trajectories and assigned the relevant vessels to specific clusters. Then the state informa-
tion of the vessel is fed to the trained auto-encoders corresponding to that cluster. With
this the model is capable of generating possible future trajectories. Due to the compression
and latent space projection, the encoders can effectively cut down on noise, helping the de-
coders extract the important features and their inter-dependencies. Though, the linearity
in the proposed model makes it computationally efficient, it may fail at capturing complex
and non-linear data. On similar principles, but with an RNN approach, Capobianco et al.
(2021) propose a LSTM encoder-decoder architecture. They trained their model on both
unlabeled and labeled (with destination intent) trajectory sets.A performance comparison
is made against Linear and Multi-layer perceptron models, with Encoder-decoder model
performing the best. Taking on a recurrent neural network approach, Suo et al. (2020) use
a GRU based framework. A Density-Based Spatial Clustering of Applications with Noise
algorithm is used to identify high density trajectories. These identified trajectories are then
used to optimize the coordinates of the incoming dataset, using symmetric segment path
distance. This optimized set of coordinates is fed to the GRU model, which recursively
generates the next step predictions for the trajectories. From results, the authors conclude
that the GRU gives accuracy near similar and in some cases slightly better than the LSTM,
and significantly better than EKF. However it is worth noting that the evaluation solely
relies on the mean squared error, which is an incomplete representation of distance errors.
A more practical measure of a trajectory model’s performance could be average displace-
ment error (ADE), which have commonly been used for land based scenariosAlahi et al.
(2016). Also, the author uses similarity measurement as a part of valid data selection pro-
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cess, which could make the data too refined and though improve accuracy, can lead to
loss of generalization and limited adaptability over real-world trajectories. Murray and
Perera (2021), in another one of their works, use a deep learning framework based on
RNNs. First, Hierarchical Density-Based Spatial Clustering of Applications with Noise is
used towards generating trajectory clusters. Then, the trajectory steps are passed through
a GRU based Variational auto-encoder and a soft-max classifier, outputting a set of prob-
able trajectories, ie. assigning it one of the cluster classes. It is noted that, representing
global ship behaviour with multiple local models trained on multiple small clusters is able
to better capture step features, giving better performance compared to global models with
and without attention. However, the architecture is sensitive to input number of clusters,
making it difficult to capture complex behaviours and patterns. Volkova et al. propose
a artificial neural network model for a specific use case, reconstructing missing AIS co-
ordinate trajectory. Two of the key limitations that authors note are, the possibility to make
trajectory predictions only one coordinate ahead and, inability to predict non-linear cases.

LSTM architecture has been a popular choice in sequence modelling, and been used
in recent trajectory prediction works as well. Some of these using the framework include,
Genetic Algorithm optimized LSTM by Qian et al. (2022), encoder-decoder model by
Capobianco et al. (2022), SFM-LSTM by Liu et al. (2022). The model by Capobianco
et al. is able to take uncertainty into account using Monte Carlo dropout, improving the
real world representation as open waters offer multiple possible maneuvers and trajecto-
ries. However, the model is executed over a long term horizon and a with a sampling
frequency of 15 minutes, which gives a global path prediction and would be less rele-
vant for local and encounter scenarios. In works by Liu et al., each vessel is modeled as
a LSTM block, training them over a collision-free social pooling layer, thus having en-
counters considered towards predictions, though its performance in such scenarios has not
been measured. The authors note that the changes in sailing course, introduce difficulty
in generating satisfactory prediction. From the comparison made, the model is shown to
perform better than clustering and RNN only models. Taking a classification approach,
Syed and Ahmed (2023) use a CNN-LSTM model for marine vessel track association,
by having each mmsi as a unique vessel id and then training the model to predict the the
unique vessel id based on the trajectory inputs. The CNN with use of convolutional layer
is able to extract local features and thus capture spatial co-relations, while the LSTM helps
capture the long-term dependencies of these key features. Though a classification model
itself has limited applicability in ship trajectory prediction, replacing the softmax with a
linear/ non-linear activation functions can make the CNN-LSTM relevant for the use case
of regression modelling.

Attention based models which have proven to be the state-of-the-art in natural language
processing and computer vision applications, are also looked at in recent works. Bao
et al. (2022) propose a Multi-head attention-BiGRU model, with take advantage of the
computationally efficient GRU combined with attention mechanism to attend to part of
sequence and learn more complex dependencies. A long term trajectory prediction model
by Nguyen and Fablet (2023) uses a Decoder only transformer architecture, which takes
advantage of self-attention mechanism to attend to part of input sequences and weigh their
significance when making predictions. Also, the authors use voyages with a minimum
duration of 4 hours as a part of the dataset and re-frame the prediction as a classification
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problem. Though the model uses a recursive step prediction method and thus experiences
error propagation with steps, the authors note that the model is able to perform efficiently,
with an error of less than 10 nautical miles for a 10 hour duration. As, the proposed model
uses a recursive prediction method, the error is shown to increase over time. It shall be
noted, that long term trajectories often involve global routes while short term trajectories
have a higher dependence on the immediate states and interactions. Also, handling of
numerical values and state vectors can be challenging for transformers, as future state
vectors (latitude, longitude, COG, SOG combinations) can often be unmapped in available
datasets, making it difficulty to map and train over the complete possible set of vocabulary.

1.3 Objective and Scope
The purpose of this work is to investigate, develop, and evaluate algorithms for trajectory
prediction in confined waters. Existing studies have predominantly focused on implement-
ing various architectures, often derived from sequence modeling techniques employed in
other application domains, many with origins in natural language and image processing.
While this evolution process of architectures has led to improved prediction accuracies and
enhanced suitability for confined scenarios, less attention has been given to the character-
istic representation of the dataset used and its impact on model training.

The objective of this thesis is to propose a method to predict the trajectory of a ship.
Based on this objective, the following research questions will be addressed:

1. How can AIS datasets be effectively processed to extract relevant information for
the ship trajectory prediction?

2. Is it possible to engineer features from AIS data in conjunction with open available
resources?

3. Can machine learning methods predict the ship motion based on available AIS data,
and how do they compare in terms of performance?

4. How can trajectory predictions account for observed changes in course for vessels
navigating in confined waters?

5. What is an effective dataset representation that can better capture confined water
trajectories?

The scope of the work are as follows:

• Perform a literature review of existing trajectory prediction algorithms, and present
their advantages and limitations.

• Pre-process the raw AIS dataset to ensure its suitability for machine learning algo-
rithms.

• Develop and implement machine learning algorithms capable of learning long term
dependencies in ship trajectories.
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• Model the system for application of trajectory prediction in confined waters, con-
sidering the non-linearity in motion patterns.

• Configure the developed model to make short-term predictions based on a time win-
dow, where the duration of seen states is 5 minutes and the futre is is 5 minutes as
well.

• Identify potential areas for improvement and future work.

By working on these objectives and scope, the work aims to contribute to the improved
performance of trajectory prediction methods in confined waters, facilitating safer and
more efficient navigation.

1.4 Contributions

Some of the contributions of this thesis include:

• Multi-step Data Processing Framework: A data preprocessing framework is devel-
oped, which incorporates a multi-step approach to maximize the retention of useful
information while filtering out noise and irrelevant data. This framework ensures
that the input data for trajectory prediction models is properly prepared, leading to
improved accuracy and reliability of the models.

• Novel RDA Approach: This thesis introduces a novel Relative Displacement Angle
(RDA) approach for data representation in short-term trajectory prediction models.
The RDA approach reduces vocabulary and improves the mapping of relative an-
gle information, enabling better learning of state inter-dependencies and capturing
non-linear trajectory patterns more effectively.Novel RDA Approach: This thesis
introduces a novel Relative Displacement Angle (RDA) approach for data repre-
sentation in short-term trajectory prediction models. The RDA approach reduces
the vocabulary and enhances the mapping of relative angle information, enabling
the models to learn state inter-dependencies more effectively and capture non-linear
trajectory patterns more accurately. The RDA approach significantly improves the
performance of the prediction models.

• Insights into Model Selection and Parameter Tuning: Through the evaluation and
comparison of multiple models, this thesis provides insights into the process of
model selection and parameter tuning for short-term trajectory prediction in con-
fined waters. By analyzing the architectures, performance metrics, and learning
capabilities of different models, informed decision can be made regarding the kind
of model and optimal parameter settings.

• Evaluation and Comparison of RNN Models: The thesis conducts a comprehen-
sive evaluation and comparison of three popular Recurrent Neural Network (RNN)
models - LSTM, GRU, and CNN-LSTM - for short-term trajectory prediction in
confined waters.
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• Identification of Future Research Directions: The thesis identifies several promising
research directions to advance the field of trajectory prediction in confined waters.
These include the consideration of encounter scenes, exploration of advanced mod-
elling approaches, incorporation of physics-based models such as spline functions,
and enhancement of feature engineering techniques. Lastly, the thesis highlights the
need for the development of an open-source trajectory dataset specific to confined
waters, which can serve as a standardized benchmark for future research in this area.

1.5 Outline
The rest of the thesis is structures as follows: Chapter 2 provides a comprehensive review
of the theoretical foundations underlying machine learning models and hyperparameter
tuning techniques. Chapter 3, presents the exploration and preprocessing of the data. The
methodology employed for the RDA approach and the implementation of machine learn-
ing models are detailed in Chapter 4. Chapter 5 presents the results obtained from our
research. The discussions are further presented in Chapter 6. The concluding remarks and
avenues for future research are presented in the final chapter.
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Chapter 2
Theory

This chapter begins by identifying the problem type associated with ship path prediction in
confined waters. An overview of existing trajectory prediction algorithms in the maritime
domain is then provided, along with a discussion on their types and the objective properties
used to assess their effectiveness. Subsequently, the theoretical foundations of the models
selected for this thesis are examined.

2.1 Trajectory prediction problem

Figure 2.1: Trajectory prediction model-input and target state representation

The first step to using a ML model, is to frame the ML problem. As our scope of study
does not involve evaluating the impact of such a trajectory prediction model in the real
world, thus we use a modified version of “Framing a ML problem” , Google. The 3 tasks
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involve:

• Defining the outcome and the model’s goal- As shown in figure 2.1, the trajectory
prediction model’s goal shall be to take in n number of previous time-step AIS data
and predict the next n time-step positions.

In this case, n takes the value of 10 steps with the time-interval between each being
30 seconds. An ideal outcome, would be minimal deviation between the predicted
and the true future positions of the vessel.

• Identify the model’s output- A model’s output shall be aimed towards achieving
the ideal outcome. In this case it is aimed at case making accurate multi-step
sequence predictions, i.e. future position co-ordinates - latitudes and longitudes.
These predictions would be of type, floating point values. Additionally, as shown in
Figure 2.1, multiple AIS features are considered in the prediction process. There-
fore, a multivariate multi-step regression model is deemed the most suitable choice.
Considering the above two requirements a multivariate multi-step regression model
would be the most appropriate choice.

• Define success metrics- To measure the model’s performance and conduct a com-
parative analysis, three metrics are adopted to quantify the deviation between the
predicted and actual future trajectory coordinates. The employed metrics are as fol-
lows:

– Average/Mean displacement error: As shown in equations 2.1 , it gives a mean
of the distance error between the predicted and true trajectory coordinates.
A lower value of average displacement error demonstrates a higher level of
prediction accuracy, however the same may be sensitive to outliers.

ADE =
1

T

T∑
i=1

√(
xPred.
i − xGT

i

)2
+

(
yPred.
i − yGT

i

)2
(2.1)

where,
T constitutes total number of trajectory prediction indices
with, (xPred.

i , yPred.
i ) as the predicted (latitude, longitude) values and

(xGT
i , yGT

i ) being the ground truth values for the corresponding index.

– Median displacement error: It measures the median distance between the pre-
dicted and true trajectory coordinates. Similar to clustering, taking advantage
of populating values, the metrics is less susceptible to outliers and gives a bet-
ter general estimate of prediction errors.

– Final displacement error: It measures the offset distance between the final
prediction step and the ground truth coordinates. As discussed in section in a
recursive step prediction method the error can often propagate over time-steps
leading to final displacement error as the largest offset distance from ground
truth, relative to previous prediction steps.
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2.2 RNN based neural network models

A neural network in its basic form, replicates the information flow architecture in a human
brain, consisting of neurons and their inter-connections. The neurons acts as computational
blocks that perform a function over given input(s) and generate an output, as shown in
figure 2.2. The output then flows thought weighted connections, inputting information
to another neuron in the network. The weight associated to a connection determines the
importance of information that flows thought it.

Figure 2.2: Feed forward neuron architecture

Stacking these neurons together and having multiple layer of inter-connected neurons
makes the multi-layer perceptron (MLP), which is capable of learning more complex rep-
resentations and features in the training data. A simple MLP learning procedure involves
a 3 step process, Mayank Banoula:

1. Forward propagation: Pass the data along the information flow channel, and across
layers, finally to the output layer.

2. Gradient calculation: The predicted output is then compared against the ground
truth, to calculate the error.

3. Back propagation: The error is then back-propagated to update the weights of the
channels. This weight optimization is carried out using algorithms such as gradient
descent, stochastic gradient descent, adaptive learning rate methods etc. A gradient
descent update step can be given by equation 2.2:

∆Φ(t) = −ϵ
∂E

∂Φ(t)
+ α∆w(t−1) (2.2)
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where, ∆Φ(t) is the current gradient, ϵ is the bias, ∂E
∂Φ(t)

is the change in error with
respect to change in weight vector, α is the learning rate, and ∆w(t−1) is the previous
iteration gradient.

These step are then iterated over, to optimize the weights towards minimizing the cost
function/error. While MLPs might perform well on some classification tasks involving
sentiment analysis, image classification, and regression such as ship performance/ water
resistance prediction, they however are constrained to fixed-size inputs and with input vec-
tors having temporal independence. Thus, for our spatiotemporal problem it has limited
applicability.

2.2.1 Standard RNN
An important development that came up later in the field of NN was the RNN, introducing
the concept of memory. This concept enables the learning of sequential dependencies in
data. Compared to traditional NN, standard RNNs use a looping mechanism as shown
in figure 2.3, transferring information from previous steps to the current step, helping the
model capture temporal relationships.

Figure 2.3: Feed-forward NN vs RNN

This recurrence however also means that gradients are propagated back also in time,
causing exponential decline of gradient magnitude over previous time-step due to weight
multiplication. This makes the RNN suffer from vanishing gradient problem, limiting the
learning of long-term dependencies, thus making it unsuitable for cases where the context
lies not near the current time-step but extends over significant temporal span.

2.2.2 LSTM
Overcoming the limitations of standard RNN are a special kind of RNN, LSTM introduced
by Hochreiter and Schmidhuber (1997). Shown in figure 2.4, two key innovation in the
LSTM are the memory cell and the cell state channel architectures, helping the model

14



2.2 RNN based neural network models

preserve long-term dependencies by allowing the flow of gradients without significant
decay.

Figure 2.4: LSTM cell, adapted from Christopher Olah

The flow of information is controlled by gate structures in the cell. Each of the 3 gates
consist of a sigmoid and point multiplication operators.The sigmoid outputs values be-
tween 0 and 1, with 0 indicating complete non-relevance of information and 1 indicating
some degree of relevance, with respect to the previous cell state. The point multiplication
operators control the weights and thus the importance of the input information. This com-
bined operation ensures information flow control by scaling gate inputs as per relevance.

The three gates in this architecture are:

• Forget gate- As the relevance of states close to current moment increases, it becomes
important to forget the information from distant temporal span, to ensure better cap-
ture of dependencies that are more relevant and closer in time. This is executed
using the forget gate, selectively suppressing the information from the previous cell
state by multiplying it with output from the sigmoid function, shown in equation
2.3, Greff et al. (2017):

ft = σ(Wf ∗Xt +Rf ∗Ht−1 + bf ) (2.3)

where, ft is the activation output of forget gate, Wf and Rf the input and recurrent
weights respectively, Xt the current input, Ht−1 the previous hidden state, and bf is
the forget gate bias.

• Input gate- Next step involves calculating the new information for updating the cell
state. A part of the step is given by equations 2.4 and 2.5, which involves using
the sigmoid (σ) function and hyperbolic tangent (tanh) activation block to help
calculate the relevance of current input and previous output. The new relevant infor-
mation, given by equation 2.6 is used to update the cell state.
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it = σ(Wi ∗Xt +Ri ∗Ht−1 + bi) (2.4)

Nt = tanh(Wc ∗Xt +Rc ∗Ht−1 + bc) (2.5)

It = it ⊙Nt (2.6)

Shown in equation 2.7, the cell state is now updated with the new information.

Ct = ft ⊙ Ct−1 + It (2.7)

Where, Ct is the cell state after update, ft the forget value, Ct−1 the previous cell
state, and It is the new information value.

• Output gate- This gate executes the final step in an LSTM cell, determining the part
of information from the updated cell state that shall be outputted. Similar to input
gate, it consists of the sigmoid (σ) and the hyperbolic tangent (tanh) activation
functions. The filtered output from the σ block is applied over the derived cell
state from the tanh activation function. Equations 2.8 and 2.9 represent this output
generation process.

ot = σ(Wo ∗Xt +Ro ∗Ht−1 + bo) (2.8)

Ht = ot ⊙ tanh(Ct) (2.9)

where, ot and Ht represent the outputs from the gate’s sigmoid block and the LSTM
cell respectively. Wo and Ro are respectively the weights of the input and recurrent
connections of output gate, and bo is the output gate bias.

2.2.3 GRU

Another variant of specialized and learnable RNN is the GRU, introduced by Cho et al.
(2014).
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Figure 2.5: GRU cell, adapted from Daoulas et al. (2021)

Similar to LSTM, it uses a gated architecture which is more simpler while also giving
comparable performance. As shown in figure 2.5, the GRU cell consists of 2 gates:

• Update gate- Similar to the input gate in the LSTM block, the update gate helps the
model to measure the relevance of information from the previous cell state and the
current input, and accordingly pass it to the future. This helps the model prevent
vanishing gradient problem, by enabling it to selectively retain the information from
previous hidden states. The update step can be given by equation 2.10:

zt = σ(Wz ∗Xt +Rz ∗Ht−1 + bz) (2.10)

where, rt represents the update gate, Xt and Ht−1 are the current input and previous
hidden state respectively with, Wr and Rr being their corresponding weights. br is
the bias term for the reset gate.

• Reset gate- Similar to forget gate in the LSTM block, the reset gate in GRU is
used to determine the extent of diminishing the influence of past output. Thought
the formula as shown in equation 2.11 looks similar to the GRU-update gate, the
difference in gate arises from the difference in weights and thus their outputs, and
ultimately their effects within the GRU architecture.

rt = σ(Wr ∗Xt +Rr ∗Ht−1 + br) (2.11)

where, rt represents the reset gate, Wr and Rr being weights applied to input and
previous hidden states for the particular section. Further, br is the bias term for the
reset gate.

The sigmoid (σ) functions from both the gates size the information and output values
between 0 and 1. As shown by equation 2.12, the reset gate output is multiplied element-
wise with the previous hidden state, to filter out non-relevant information from the past
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time steps. The remaining useful past information is then added to the current input, and a
hyperbolic tangent (tanh) activation function applied over it to capture the information in
a new hidden state (h

′

t).

h
′

t = tanh(Wh′ ∗Xt + rt ⊙Rh′ ∗Ht−1) (2.12)

To generate the final hidden state of the cell (Ht), the update gate output is used to select
the relevant information from both, the new hidden state (h

′

t) and the hidden state from
previous time-steps (Ht−1). Equation 2.13 demonstrates this hidden state calculation.

Ht = zt ⊙Ht−1 + (1− zt)⊙ h
′

t (2.13)

2.2.4 CNN
The key foundation behind CNNs can be found in a paper by Fukushima (1980), with
the proposal of a neocognitron model which mimics the brain process when subject to
visual information, making use of receptive field and layer hierarchy towards pattern in-
formation capture. The term CNN was however used for the first time by Lecun et al.
(1998), proposing a model consisting of convolution, pooling and fully connected layers,
for handwritten character recognition. However, the model’s lack of performance was then
subject to limited availability of dataset and depth of architecture. The major breakthrough
in CNN architecture came with the availability of ImageNet dataset; Deng et al. (2009),
GPUs, and the development of AlexNet; Krizhevsky et al. (2012), which took advantage
of parallel compute to process a deep architecture, consisting of 5 convolutional layers and
3 fully connected layers.
With its primary use case in computer vision, the CNNs performance over the years has
significantly improved, driven by growing depth, and the use of techniques such as residual
blocks to handle vanishing gradient problems, He et al. (2016). The availability of greater
computational power has also allowed for training of models over larger datasets, ensuring
better generalization and improved accuracy.

A CNN only model consists of 3 basic layers:

• Convolution- The convolutional layer performs a dot product between the learn-
able kernel matrix and a portion of the receptive field. This kernel slides across
the input data to generate an activation map. Further, within the activation map
bounds, the convolution carries shared parameters, ensuring that the learned infor-
mation/weights remain transferable to changes in input.

• Pooling- It reduces the spatial size of the features while retaining the essential in-
formation. This is accomplished by dividing the feature map into multiple uniform
non-overlapping regions. Each region is assigned a score, calculated commonly as
average of that region or maximum value among the features in the region.

• Fully connected- Towards the end of the CNN architecture, the fully connected layer
is used to map each of the extracted features form the previous layer to all vectors
of the desired output. This helps the model learn output representation based on
collective information of features.
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While, CNN models are good at capturing spatial dependencies, LSTMs as discussed
in section 2.2.2, are good at capturing temporal. Taking advantage of these strengths,
a combined architecture CNN-LSTM, first proposed by Sainath et al. (2015), can help
model the spatiotemporal dependencies in sequential data.

2.3 Hyperparameters

Hyperparameters are a key towards making a useful machine learning model. Unlike
parameters that are internal to the model and learned from the training data, hyper param-
eters are set prior to the training process and are not a part of the trained model itself. By
controlling them the learning behaviour of the model can be adjusted, enabling it to find
optimal configuration of parameters that best fit the training data and generalize well over
unseen data.

Some of the common hyper-parameters include:

• Train-validation-test split ratio- It determines the portion of data allocated for train-
ing, validation and testing purpose. The training set is utilized to learn the model
parameters. During the training process, the validation set is employed to assess
the performance of the model over unseen data. The results obtained from the val-
idation set guide decisions regarding model architecture, including the selection of
hyper-parameter values. Finally, after the training and validation steps, the test set is
employed to provide an unbiased evaluation of the model’s performance, serving as
an indicator of its real-world effectiveness. The test set performance is also utilized
as a metric for comparing the efficacy of different model architectures.

• Number of hidden layers- It affects the model’s capacity to learn complex patterns.
Deepening the network by adding more hidden layers, the potential to capture in-
tricate relationships in the data increases. However, this comes at a trade-off of
increased time complexity. Moreover, beyond a certain limit, increasing the depth
can lead to overfitting, where the model becomes too specialized over training data
and fails to generalize over unseen data. Determining the optimal number of hid-
den layers requires empirical experimentation and careful consideration of various
factors, including the size and complexity of the dataset, as well as the availabil-
ity of computational resources. While there are no definitive rules for selecting the
number of hidden layers, some guidelines have been suggested by Jeffheaton, which
include:

• Number of neurons in each hidden layer- Similar to number of hidden layers, the
number of neurons is a critical factor that impacts the model’s learning capacity.
Neurons in the hidden layers are responsible for transforming the input data into
higher-level representations and extracting complex patters. However as the num-
ber of neurons increase, the number of learnable parameters in the architecture also
increases, leading to higher time complexity. This increase can also lead to memo-
rization of noise in the training data, leading to overfitting and poor generalization.
The selection of optimal number of neurons is influenced by similar factors as choos-
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Table 2.1: Determining the number of hidden layers- Rules of thumb

Number of Hidden Layers Result

none
Only capable of representing linear separable functions or
decisions.

1
Can approximate any function that contains a continuous map-
ping from one finite space to another.

2
Can represent an arbitrary decision boundary to arbitrary ac-
curacy with rational activation functions and can approximate
any smooth mapping to any accuracy.

ing the optimal number of hidden layers. One of the rules of thumb for determine
this number is proposed by Jeffheaton.

Table 2.2: Determining the number of neurons in hidden layers- Rules of thumb

Sr no. Result
1 Should be between the size of the input layer and the size of the output layer.
2 Should be 2/3 the size of the input layer, plus the size of the output layer.
3 Should be less than twice the size of the input layer.

• Dropout rate- Dropout, first proposed by Srivastava et al. (2014), is a regularization
technique used to prevent overfitting during the training process. The training of
a dropout neural network is about similar to a standard neural network. The only
difference being, for each mini-batch in the training epoch a thinned network is
sampled by dropping out units. The percentage dropout of units corresponds to the
dropout rate. This form of model averaging helps learn more robust representation
of weights, making the model predictions less susceptible to individual neurons.
However beyond thresholds, an increased dropout can potentially reduce the net-
work’s capability to learn complex patterns, while a reduced dropout could provide
insufficient regularization and risk the model into overfitting. The optimal dropout
rate depends on various factors, including the size and complexity of the dataset, the
model architecture etc.

• Number of epochs- It is the number of times the entire dataset will pass through the
learning algorithm during the training process. A single epoch flow consists of a
three step process:

– Step 1- Forward pass to compute the output.

– Step 2- Calculation of gradients by comparing predicted output from the pre-
vious step against true target value.

– Step 3- Backward pass to update the model’s parameters according to the cal-
culated gradients from the previous step.

With this update process, epochs help the model learn through an iterative process.
Like other hyper-parameters, optimal number of epochs is dependent on multiple
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data and model architecture related factors. An insufficient number of epochs can
lead to under-fitting while an excess can lead to overfitting. To address this chal-
lenge, a common approach involves the use of best model search. In this process, an
the model is run over an excessive number of epochs, and the epoch for which the
model parameters yield the lowest error/ loss are saved as the optimal configuration.
This iterative search helps strike a balance between underfitting and overfitting, en-
abling selection of an appropriate number of epochs for optimal model performance.

• Loss function- It is also known as object or cost function, and it outputs an evalua-
tion of the model’s prediction accuracy. The loss correlates to the deviation between
predicted and true target values. When the deviation is smaller then the loss func-
tion will yield a smaller value, indicating a better prediction accuracy. Conversely,
when the deviation is larger, a larger value is outputted as the loss, indicating higher
prediction error. This quantitative evaluation is used as a factor in calculating the
update step size for updating the model’s parameters during back propagation. It
aligns with the training objective of reducing the output value of loss function. Two
of the most popular loss functions include:

– Mean Square Error (MSE)- As shown in equation 2.14, its implementation
involves taking the difference between the predictions and the ground truth,
squaring it, and then averaging across the entire dataset.

MSE =
1

n

n∑
i=1

(Yi − Ŷi)
2 (2.14)

where, n is the total number of samples, Yi and Ŷi represent the true and the
predicted target values respectively for the ith sample. MSE loss function is
commonly employed in regression problems.

– Cross Entropy - It is also called logarithmic or log loss. As shown in equation
2.15, a log function is fitted over predicted probabilities of the target classes,
making a similarity measure between the predicted and the true probability
distribution. The loss function outputs a very large score when the dissimilarity
approaches the maximum deviation of 1, and a small score for values close to
0.

CE = − 1

n

n∑
i=1

Yi log(Ŷi) (2.15)

where, n is the total number of samples, Yi and Ŷi represent the true class
and the predicted probability value respectively for the ith sample. CE loss
function is commonly employed in classification problems.

• Learning rate- A model’s learning process occurs during the backpropagation step,
where the model’s weights are updated. One popular algorithm used for optimiza-
tion is stochastic gradient descent, as shown in equation 2.2. In this algorithm and
others, the learning rate is a critical hyperparameter that controls the magnitude
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of weight updates based on the estimated error. The learning rate determines how
quickly or slowly the model adapts to the training data. A too small value may
increase the time complexity, requiring greater number of epochs and longer train-
ing time. This can pose challenges when working with large datasets and complex
models. Conversely, too large learning rate may result in unstable training process
with oscillations, and potential convergence to sub-optimal solutions. To address
these issues, variable learning rate methods such as adaptive learning rate gradient
descent and learning schedule are employed.These approaches aim to strike a bal-
ance between convergence speed and quality, by dynamically adjusting the learning
rate during training.

• Activation function It is also known as transfer function and is used to compute the
model node outputs. As shown in figure 2.2 a node takes a weighted summation
of inputs, adds bias to it, and passes through the activation function, producing the
output. One of the key reasons of introducing an activation function in the flow
process, is to allow for non-linear transformations, enabling the model to learn and
predict complex non-linear patterns. Some of the other advantages offered are the
ability to normalize and scale the output values, facilitating the output to lie in a cer-
tain range, thus ensuring a suitable representation of data for learning by subsequent
layers. Some of the popular activation functions include:

– Sigmoid- It takes a real value as input and outputs a value in the range 0 to 1.
Equation 2.16 gives the mathematical representation of the function:

σ(x) =
1

1 + e−x
(2.16)

where, σ is the sigmoid function mapped over the input x, and e is the Euler’s
constant with the value 2.781. We can see that as the value of x → −∞ the
function output → 0 , and when x → +∞ the function output → 1. It is
commonly used for modelling prediction probabilities.

– Tanh (Hyperbolic tangent)- It follows a S-shape, similar to the sigmoid activa-
tion function, however outputting values in the range of -1 to 1. The function
can be represented as in equation 2.17.

tanh(x) =
ex − e−x

ex + e−x
(2.17)

where, tanh is the hyperbolic tangent applied over the function input x, and e
is the Euler’s constant. We can observe that, as x → −∞ the output → −1 ,
and as x → +∞ the output → 1. As the output is zero centered, it exhibits
symmetry around the origin, proving beneficial in capturing data that carries
negative and positive values. Additionally, the steeper gradient of the function
compared to sigmoid can lead to faster convergence.

– Rectified linear unit- As a computationally efficient function, it uses a multi-
step linear functions to handle non-linearity. The function output can be rep-
resented by the equation 2.18:

f(x) = max(0, x) (2.18)
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where, x is the input to the rectified linear unit function f . From equation
2.18 we also observe that the input is sent through as output for values more
than zero and 0 for values less than or equal to zero. This introduces a key
limitation, the functions’ inability to handle and learn the representation for
negative values.

– Softmax- It is a combination of multiple sigmoid functions, and converts the
input real numbers into a probability distribution. The function can be repre-
sented by equation 2.19:

softmax(xi) =
exp(xi)∑n
j=1 exp(xj)

(2.19)

where, xi represents the input value for the ith element of the vector, n is the
number of possible classes as outcome, exp(xi) denotes the standard exponen-
tial function applied to xi, and

∑n
j=1 exp(xj) represents the summation of the

exponential values over all elements in the vector. By using this formulation,
the softmax function normalizes the values and output a probability distribu-
tion for the n possible classes. Do its ability to handle multiple classes, it has
been a popular choice in classification problems.

• Optimization algorithm- It is a method used during the training process, to iteratively
adjust the attributes of the neural network such as weights and learning rate. The al-
gorithm type defines the calculation towards updating the weights and learning rate,
in response to loss function output value. Some popular optimization algorithms
include:

– Gradient descent- It is one of the most basic but widely used optimization al-
gorithms. It uses the first-order derivative of the loss function to measure the
slope of the function at a given point. The slope is then used to guide the itera-
tive update process of the attributes in the direction of the steepest descent. The
gradient descent updates aim to minimize the loss function, and thus enhance
the model’s performance. Equation 2.20 gives the algorithm implementation.

θt+1 = θt − α∇J(θt) (2.20)

where, θt are the parameter values at iteration step t, α is the learning rate,
and ∇J(θt) is the gradient of the loss function J with respect to θ. Since for
a single update step, gradients for the entire dataset need to be calculated, the
algorithm can be computationally expensive for large datasets.

– Stochastic gradient descent (SGD)- It is a computationally efficient variant
of standard gradient descent. SGD, represented by equation 2.21, model’s
parameters are updated more frequently with the computation of loss on each
randomly selected training example xi and label yi. The stochastic nature,
coupled with frequent update steps, facilitates faster convergence of the model
while avoiding the issue of getting stuck in local minima.

θt+1 = θt − α∇J(θt;xi, yi) (2.21)
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However, due to frequent updates with high variance in parameter values, the
objective function can experience heavy fluctuations. To overcome this chal-
lenge, one can either reduce the learning rate or utilize the mini-batch variant
of SGD, where updates are performed on randomly selected subsets of the
training data.

– Adaptive moment estimation (Adam)- Proposed by Kingma and Ba (2014),
Adam has been a popular choice as an optimization algorithm for regression
problems. It uses the first and second-order moments to maintain two moving
averages, represented by equations 2.22 and 2.23.

m̂t =
mt

1− βt
1

(2.22)

v̂t =
vt

1− βt
2

(2.23)

where, the first moment m̂t is the mean, and the second moment v̂t is the
uncentered variance of the gradients respectively. β1 and β2 represent their
respective decay rates, and hold constant values. The update step can then be
represented by equation 2.24 :

θt+1 = θt −
α√
v̂t + ϵ

m̂t (2.24)

In practice, the constant values of β1 = 0.9, β2 = 0.999, and ϵ = 10−8 have
been found to work well.

The internal parameters, commonly referred to as parameters, are initialized at the be-
ginning of the training and undergo continuous update during the process. The continuous
updates are influenced by a set of external parameters known as "hyperparameters". Two
of the key learnable, internal parameters include:

• Weights- As also discussed in Section 2.2 and shown in in figure2.2, weight are
parameters associated with the connections between different neurons in the neural
network. Using a multiplicative function, they determine the importance assigned to
the input signals that propagate through these connections, and thus the importance
of input received by the neurons. During training the weights are adjusted to reduce
the cost function, minimizing the deviation between the predicted and the target
output.

• Biases- Shown also in figure 2.2, these are added to the weighted inputs of the
neural network. They map the offset between the predicted and intended outputs
of the neurons, helping shift the activation function towards the positive or negative
side, along the X-axis.
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AIS data

This chapter provides a brief overview of the automatic identification system (AIS), the
data provided by the Norwegian coastal administration for this thesis and the pre-processing
steps undertaken towards generating the required data-structure.

3.1 AIS
The AIS, is a tracking and navigation assistance system that allows vessels to share their
static and dynamic information via a transponder. The transponder receives data from
vessels in vicinity while also transmitting own vessel data embedded in VHF based radio
signals. The history of AIS can be dated back to March 24, 1989, with the oil tanker Exxon
Valdez running aground in Alaska’s Prince William Sound, spilling 11 million gallons of
crude oil, leading to one of the largest ship sources oil-spill incidents and environmental
disasters. The AIS was then developed as a means to improve situational awareness of
vessels by providing tracking capabilities for shore based Vessel Traffic Services (VTS),
Kimbra Cutlip

Then in 2000, as part of revised SOLAS regulation V/19 - Carriage requirements for
ship-borne navigational systems and equipment, AIS was made mandatory by IMO for all
passenger ships, international voyage vessels more than 300 gross-tonnage and territorial
cargo vessels more than 500 gross-tonnage.IMO; Towards enhanced navigational safety
and exemptions of pilotage when operating in coastal waters; Ministry of Transport, AIS
has also been widely adopted by many smaller crafts.

3.2 AIS Dataset
For the scenario described, the AIS data was provided by Norwegian Coastal Administra-
tion and for the Olso fjord region (Latitude Minimum/Maximum: 60◦/58.6◦; Longitude
Minimum/Maximum: 11.5◦/9.4◦), as also show in figure 3.1. The identified relevant fea-
tures of our data-frame are presented in Table 3.1.
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Figure 3.1: AIS dataset region (outlined in red)

Features Description Unit
MMSI Maritime Mobile Service Identity number.

- 9 digit number, unique for all vessels.

- First 3 digits represent the vessel’s flag of registration.

unitless

Unixtime Timestamp of AIS message

- Unix format represents number of seconds that have elapsed since January
1, 1970.

seconds

Latitude Geographic coordinate (WGS84 format)

- Measured in decimal degrees [-90◦, 90◦]

degrees

Longitude Geographic coordinate (WGS84 format)

- Measured in decimal degrees [-180◦, 180◦]

degrees

Speed over ground
(SOG)

Vessel’s speed relative to the earth’s surface.

- Measured in knots (nautical miles/hour)

knots

Course over ground
(COG)

Vessel’s course over the earth’s surface, measured clockwise relative to true
north.

- Expressed in degrees (0◦to 360◦)

degrees

Table 3.1: AIS dataset features under consideration

3.3 Raw dataset
Some of the specifics of the raw dataset are provided in Table 3.2. It’s worth noting that
the dataset for the year 2019 contains about 305 million data-points, making it compu-
tationally heavy to handle as a single file. So, for ease the datasets were split according
to months. Figure 3.4 visualizes the unique MMSI counts for each month, showing peaks
during the tourism seasons. The AIS message time intervals for the given data are explored
using plots as shown in figures 3.2 and 3.3. From the former we can see that majority of
the vessels have an average AIS transmission frequency in the range of 0 to 120 seconds.
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Further in the later plots, we see that the majority of the AIS messages carry a transmis-
sion frequency in a similar range, 0 to 120 seconds. The month of January shows a similar
trend. This time interval trend has further been used as a basis for "voyage identification"
in the data processing stage.

Figure 3.2: a)Average time difference vs unique MMSI count. b)Time difference vs AIS message
count (Year 2019 AIS messages)

Figure 3.3: a)Average time difference vs unique MMSI count. b)Time difference vs AIS message
count (Jan‘19 AIS message)
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Figure 3.4: Number of unique vessels per month distribution (Year 2019)

Raw Dataset
Properties Details

Location Oslo fjord region

- Latitude max/min: 60◦/58.6◦

- Longitude max/min: 11.5◦/9.4◦

Time period 2019

(1st January 2019 - 31st December 2019)
Shape

(without duplicate rows)

304892534 x 10

- (∼304 million rows and 10 columns)
Duplicate rows 1350083

Key Features Unique counts
MMSI 2273
Unixtime 22936229
Latitude 792662
Longitude 1205199
Speed over ground (SOG) 913
Course over ground (COG) 3624

Table 3.2: Raw AIS Dataset specifics

The raw data-structure can be represented as:

dfraw = [r1, r2, r3, ...., rn] (3.1)

where r represents each row of the AIS message, given as:

rindex = [MMSIi, tj , Pij , hij , vij ] (3.2)

where MMSIi is the MMSI number of a vessel, tj is the time stamp, and Pij , hij and vij
are the position vector, COG and SOG respectively for the ith vessel at jth timestamp.
The position vector can further be written as:
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Pij = [ϕij , λij ] (3.3)

where ϕij and λij are respectively the latitude and longitude coordinates in degrees,
WGS84 format.

3.4 Data preprocessing
The effective processing of the raw data is a key towards improving the performance of
any Machine Learning model. Towards same, a multi-step data processing framework was
implemented as illustrated in figure 3.5 and later discussed in Section 4.1.

Figure 3.5: Multi-step data processing framework

3.4.1 Libraries for data processing
The libraries used as part of the data processing in python were:

29



Chapter 3. AIS data

• pandas; Wes McKinney (2010) for data handling

• NumPy; Harris et al. (2020) for array creation and manipulation

• Matplotlib; Hunter (2007) for data plotting and visualization

• math; Van Rossum (2020) and SciPy; Virtanen et al. (2020) for mathematical calcu-
lations and interpolation

• datetime for handling date-time stamps

• GeoPandas; Jordahl et al. (2020), haversineBalthazar Rouberol and vincenty; Mau-
rycy Pietrzak for handling latitude, longitude data and performing geospatial calcu-
lations

3.4.2 Data processing steps

Showing in figure 3.5, the sequential steps involved in the processing of data are:

• Step 1- Data split
As discussed in section 3.3, the 2019 year raw data was split by months to allow for
ease of handling files. With this partitioning, 2GB of memory was occupied against
a month’s dataset, compared to the earlier 24 GB requirement for the entire year.

• Step 2- Removing duplicates
This involved dropping duplicates from the dataset to ensure only unique AIS mes-
sages were present.

• Step 3- Filtering by navigation status
Next, towards having only movement trajectories as a part of modeling problem,
we filter out AIS messages by navigation status, where 70◦of the vessels average
SOG is either less than 2 knots or is intended to be zero. 1(anchored), 5(moored),
6(aground), 7(fishing) and 13 were identified for filtering.

From figure 3.6 and 3.7, it is observed that while the threshold line for anchored and
fishing vessels is at less than 2 knots, moored vessel have the 70◦threshold line above
5 knots. This indicates a wide disparity between the recorded navigation status and
SOG of a large number of vessels, suggesting potential non-updated/incorrect state
information in the AIS. With its 50◦threshold line at around 2 knots, the navigation
class type was taken into preference and AIS messages belonging to 5(moored)
class were removed. Figure ?? shows AIS messaged relative distribution prior and
post filtering, with state 0 (Underway using engine) accounting for more than three-
quarter of the messages post filtering.
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Figure 3.6: Average SOG vs Unique MMSI number for navigation status a)1-Anchored (Left),
b)7-Fishing (Right)

Figure 3.7: Average SOG vs Unique MMSI number for navigation status a) 5-Moored (Left), b)
0-Underway using engine(Right)

• Step 4- Voyage identification As seen from figures 3.2 and 3.3 (in section 3.3), the
average frequency of AIS messages transmission falls within 120 seconds for ma-
jority of the vessels. Taking a factor of five, we consider 10 minutes as our threshold
for voyage identification. Consequently, we assign a unique voyage id to a vessel
if the time difference between consecutive signals exceeds the threshold. Figure
3.8 illustrates that the majority of the vessels executed between 0 to 20 voyages in
January’19.
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Figure 3.8: Number of voyages identified vs corresponding MMSI frequency a) entire range of
number of voyages b)number of voyages in the range 0 to 100

• Step 5- Homogenizing data
To ensure equal intervals between timestamps in the dataset, a combination of up-
sampling and down-sampling techniques is utilized. This homogenization process
is crucial for multi-step prediction problems as it helps the model learn temporal
patterns and enhances prediction reliability. As a part of up-sampling interpolation
techniques combining bearing and haversine distance, given in equations 3.4 to 3.9
are used for geographic co-ordinate estimation (latitude-longitude) and linear inter-
polation, given in equation 3.10 for COG. The dataset is then down-sampled at a
30 second message frequency. SOG estimations are then carried out for each of the
down-sampled timestamps using the haversine distance between consecutive mes-
sage and the elapsed time-interval. Other than for training, the SOG feature plays
an important role in the subsequent data processing step.

a = sin2
(
∆ϕ

2

)
+ cos(ϕ1) · cos(ϕ2) · sin2

(
∆λ

2

)
(3.4)

c = 2 · atan2
(√

a,
√
1− a

)
(3.5)

d = R · c (3.6)

X = cosϕ2 · sin∆λ (3.7)

Y = cosϕ1 · sinϕ2 − sinϕ1 · cosϕ2 · cos∆λ (3.8)
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β = atan2(X,Y ) (3.9)

where,
for two co-ordinates in radians (ϕ1, λ1) and (ϕ2, λ2), ∆ϕ is the difference in latitude
radians, ∆λ is the difference in longitude radians, a is the haversine of angular
distance between two points on a sphere, c is the central angle in radians, R is the
radius of the sphere (earth; 6371 km), and d is the distance computed between two
points, and β is the bearing angle in radians.

H = h1 +

(
h2 − h1

t2 − t1

)
· (T − t1) (3.10)

where h1 and h2 are the given values of COG at timestamps t1 and t2 respectively,
T is interpolation target timestamp and H is the the corresponding COG to be inter-
polated.

• Step 6- Refining voyage identification
Bar plot in figure 3.9(a) shows the distribution of MMSI values and their percentage
AIS messages that carry the SOG value as 0 knots (pink), 0 or 1 knots (grey), and
0,1 or 2 knots (yellow). It can be observed that in a significant portion of the dataset
constituting many MMSIs have a majority as stationary vessel states. This makes
the dataset complex for learning trajectory motion predictions, as the lack of vessel
movement introduces noise into the sets of trajectory patterns and thus the modeling
problem.

Figure 3.9: Percentage of SOG way-points vs MMSI count- January’19 a) without SOG based
processing b) after handling voyage start and end points

Towards overcoming this constraint in the dataset, SOG based processing steps are
applied:
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– Step 1- Refining voyage start and end points
In this step, the SOG information is used to determine the beginning and the
end of each voyage. In case of multiple zero SOG points at the beginning
or/and end of a voyage, only a single zero SOG point is appended to allow for
a zero-SOG-start or/and zero-SOG-end. The output of this step is reflected in
figure 3.9(b), where it can be observed that the MMSI counts carrying lower
SOG values has significantly reduced.

– Step 2- Refining voyage identification
As a part of its implementation a two step process is carrid out. First, consecu-
tive zero SOGs are used to split voyages into sub-voyage sets. Next, these sets
are processed to filter out sub-voyages that contain all values of SOG as zero.
Figure 3.10 (b) shows the output of this step, reflecting a further increase in
MMSI counts that carry lower percentages of zero SOG values.

– Step 3- Voyage selection
As a final step in the SOG based data processing, voyage selection is carried
out based on voyage duration threshold. To align with our modeling problem,
a threshold of 20 timestamps (equivalent to 10 minutes) is used to identify
suitable voyages for the dataset.

Figure 3.10: Percentage of SOG way-points vs MMSI count- January’19 a) after handling voyages
b) After keeping voyages that last at least 20 timestamps (i.e. 10 minutes)

• Step 7- Feature engineering In a maritime use case of coastal waters, the trajectory
of a vessel often depends on vessel-specific characteristics, such as length, draft, dis-
tance to coast, propulsion power, maneuverability, rule-base restrictions, and many
other factors. In order to accommodate some aspects of these additional charac-
teristics into our dataset, feature engineering was performed. The created features
were:
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Figure 3.11: NDC vs SOG distribution a) NDC in range (0 to 1) nm b) NDC in range (0 to 10) nm

– Nearest distance to coast (NDC):
It was incorporated to provide a generalized geographic feature. While latitude
and longitude provide location specific characteristics, the NDC allows for
capturing generic dynamic properties of a vessel in relation to its proximity to
coastline. One such dependence can be seen from figure 3.11(a), where the
SOG values tend to increase with an increase in NDC. However from Figure
3.11(b) it is also observed that, as the distance from coast increases beyond a
range, slower vessels dominate movement patterns. This is attributed to the
fact that majority of the smaller and more dynamic vessels execute voyages
near coastal boundaries.NDC was engineered using two datasets, one from
the upstream data processing, and other was the Norwegian coastline dataset,
available open source by National Oceanic and Atmospheric Administration
(NOAA).

Table 3.3: Bounding Box: Oslo region dataset coastline

Direction Coordinates (Latitude, Longitude)
Northwest (59.93, 9.4)
Northeast (59.93, 11.45)
Southeast (58.6, 11.45)
Southwest (58.6, 9.4)

First the coastline data for the Oslo fjord region is extracted by defining a
bounding box, with limits as shown in table 3.3. This bound box encompasses
the region of interest as per the available AIS data. Subsequently, R-trees
are constructed to make the nearest search computationally simple. Finally, a
nearest neighbour search is performed using the R-tree index, and the nearest
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distance to coast calculated. The haversine distance is used as a measure to
both, compare and calculate the nearest distance to coast, distance between the
vessel co-ordinate and the closest coastline co-ordinate.

– Vessel belonging to Traffic separation scheme (TSS_Vessel) and Vessel in
Traffic separation scheme (In_TSS):
In confined waters the concept of TSS is used to establish safe and efficient
vessel movement. The dataset used in this thesis belongs to the Oslo fjord re-
gion, where all vessels longer than 24 meters have to apply the TSS established
in the region. The TSS is divided into northbound and southbound lanes, and
is about one nautical mile in width.

Figure 3.12: TSS map for the Oslo fjord region (highlighted in green)

Figure 3.12 presents the TSS map for the Oslo fjord region, sourced from
AS (Year). The designated TSS area is highlighted in green, and is used in
conjunction with the AIS dataset to determine whether a vessel is situated
within the TSS region (i.e. In_TSS is True) or is outside (i.e. In_TSS is False).
Additionally, the length of a vessel is a key property as it often co-relates with
the size of of a vessel and thus influences various trajectory related operational
constraints, such as speed limitations, allowable draft, maneuverability etc. It
also determines the eligibility of a vessel to use the TSS, making it a crucial
property with implications on its trajectory. To address this, we identify vessels
which traverse the entire TSS passage, categorizing them as vessels belonging
to TSS (i.e. TSS_Vessel is True). In a real-world scenario AIS messages can
often hide/ be misinformative about vessel properties such as length; United
States Coast Guard, consequently, the use of visual aids such as cameras and
computer vision techniques can be employed to determine the vessel length;
Imber et al. (2019), enabling the classification of a vessel as belonging to TSS
or not.

36



3.4 Data preprocessing

Figure 3.13: Trajectory plot: Vessel TSS characteristics

Figure 3.14: SOG distribution: Vessel TSS characteristics
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Visual illustrations capturing the properties In_TSS and TSS_Vessel are shown
in figure 3.13. In this representation, blue lines represent vessels located out-
side the TSS, red lines signify vessels belonging to TSS, and yellow lines
denote the vessel trajectory section situated within the TSS. From the visual
analysis, it is evident that TSS_Vessels in red, tend to follow more linear tra-
jectories with minimal deviations. Further, figure 3.14 also reveals a wider
span of velocities for vessels that do not belonging to TSS.

• Step 8- Normalizing data As discussed in section 2.2, machine learning algorithms
like neural network often use gradient descent as an optimization technique to gain
convergence. From the back propagation equation 2.2, it can be seen that the size of
gradient descent is affected by the error size, and thus by the size of feature value.
In our specific scenario, the feature magnitudes can exhibit substantial variation.
For instance the cog values ranges from 0 to 360 degrees, while the geographic
co-ordinates span over a mear 2 degree range. To prevent a bias towards singular
feature, and ensure smooth convergence towards minima, normalization becomes a
necessity.

Normalization is a scaling method, which involves re-scaling feature values to a
common scale, ranging [0,1]. This Min-Max scaling is implemented using equation
3.11.

Xnorm =
X −Xmin

Xmax −Xmin
(3.11)

Key features for training the model were identified and selected, as listed in table 3.4
With the exception of cog, all other features were normalized to the scale of [0,1].
To preserve the angular information contained in COG and prevent the discontinuity
that occurs at 360 ◦in a circular scale, the COG values were converted into sine and
cosine components, spanning a range of [-1,1]. This enables the effective utilization
of the cog feature in the model training process.

Table 3.4: Key features and their value range

Sr no. Key features Non-normalized values (Min / Max)
1 Latitude 58.6 / 59.3 degrees
2 Longitude 9.4 / 11.4 degrees
3 SOG 0 / 40 knots
4 COG 0 / 360 degrees
5 NDC 0 / 30 nm
6 In_TSS 0 or 1
7 TSS_Vessel 0 or 1

• Step 9- Dataset creation As a final step in data processing and generation phase,
train, test and validation sets were created for the machine learning models. First,
the normalized data was grouped based on voyage IDs to isolate each voyage. Then,
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to enable prediction of 5 minutes into the future based on 5 minutes of seen trajec-
tory states, the data was indexed to generate arrays. Each array representing a sub-
voyage consisted of 20 timestamps, the first set from index [0,20], and consequently
incrementing both the start and end indices by 1, until the end index reaches the last
index of the voyage. By structuring the data in this manner, each sub voyage array
set represents a trajectory of total 10 minutes duration.

To enhance the realism of predictions to a real-world problem, and prevent over-
fitting, a temporal criteria based on months is adopted when creating distinct train,
validation and test datasets. A ten-month period from January’19 to October’19 is
allocated for training the models. The 11th month, November’19 was assigned as
the validation set, and lastly the 12th month, December’19 served as the test set.
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Chapter 4
Methodology

This chapter is divided into two sections. The first section addresses the necessity for
improved representation techniques and introduces the fundamental principle underlying
the developed Relative Dependency Analysis (RDA) approach. The second section pro-
vides an overview of the architectures employed for the prediction scenario, detailing the
Machine Learning (ML) models utilized.

4.1 The RDA approach

As discussed in the literature review section 2.1, most of the existing AIS-based ship trajec-
tory prediction models employ latitude-longitude coordinates as the target outputs, learned
over position and other key features.Figure 1.3 in Section 2.1 illustrates the frequency plot
of standardized geo-coordinates. It is evident that even in a standardized form, latitude-
longitude coordinates exhibit a large but sparse vocabulary.

Figure 4.1: Similar trajectory set (Case 1)
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Figure 4.2: Similar trajectory set (Case 2)

In the context of presented figures 4.1 and 4.2, it can be noted that two vessels located
at different latitude and longitude positions may exhibit similar movement patterns if their
corresponding Speed Over Ground (SOG) and relative Course Over Ground (COG) values
remain relatively constant. In such scenarios, when the model’s representations are trained
to predict latitude-longitude coordinates as key state information, the learned represen-
tation for the two cases becomes independent of each other. Consequently, it becomes
challenging for the model to learn from similarity and effectively capture the relationship
between future position states and observed SOG and COG values. It is important to
emphasize that this observed similarity does not imply the lack of usefulness of latitude-
longitude position coordinates. The usefulness of geo-coordinates to learn dependence
can be observed from figure 4.3, where non-linearity in confined waters would also be a
function of geo-coordinates in many cases. Therefore, it becomes crucial to learn the de-
pendence of future positions based on latitude-longitude locations while also considering
the high co-relation of future states based on observed COG and SOG states.

Figure 4.3: Non-linear trajectory set
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Figure 4.4: Step displacement histogram (Jan’19 processed dataset)

Figure 4.5: Average target step displacement vs average observed state SOG (Jan’19 processed
dataset)

To address these challenges, a novel approach called Relative Displacement Angle
(RDA) is developed. The underlying concept of this approach is to create a learnable
dense representation of data that minimizes the required vocabulary while maximizing
accuracy. The histogram in Figure 4.4 indicates that vessel position displacement falls
within a specific range, and follows a density pattern. Moreover from plot in figure 4.5 we
can observe a high correlation between displacement in future/target states to the SOG in
past/observed states. These attributes indicate that displacement can serve as a favorable
target feature for accurately mapping vessel positions, given past states.

The implementation of the RDA approach involves a mulit-step preprocessing frame-
work, encompassing steps 1 to 7, as illustrated in Figure 3.5. In step regression analysis
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there can broadly be two prediction methodologies: Recursive and Direct. A direct ap-
proach is adopted to avoid error propagation as the prediction steps progress. With this,
the objective of the model is to perform multi-step predictions, where all future trajectory
steps are predicted simultaneously and independently. In order to achieve this objective
while making use of displacement dynamics, the last input step is used to map the relation
between observed state data and the target steps

Figure 4.6: RDA relation maps

Furthermore, figure 4.6 provides a visual understanding of the mapped relations in the
data, showcasing the patterns that emerges from the link between the last observed state
and all future states. Earlier used as a part of data processing and discussed in Section ,
haversine equations 3.4, 3.5 and 3.6 can be used for calculating the relative displacement
between the respective co-ordinates. Additionally,the relative angle is calculated as the
difference between the COG of the last observed state and the bearing of the target state,
given by equation 4.1.

∆Hk = h9 − βk (4.1)

where, ∆Hk represents the relative angle, h9 is the last observed SOG and βk is bear-
ing of the vector joining the 9th to kth position. The bearing is further calculated using
the equations 3.7, 3.8 and 3.9 discussed in section 4.1. The two calculated attributes now
serve as the target features for the ML model. The relative displacement and angle pre-
dictions can be mapped back to the target geo-coordinates using the reverse haversine
analysis. This reverse mapping process involves incorporating the predicted displacement
and angle, along with the reference geo-point, in order to obtain the final predicted geo-
coordinates for the vessel’s position.
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4.2 ML Models

This section gives an overview of the employed trajectory prediction models. The architec-
tures used for these models is guided by the theory discussed in section 2.3. Python based
libraries like tensorflow have been used for modelling, and numpy, pandas and matplotlib
for handling and visualizing datasets and outputs. The 3 models used are:

4.2.1 LSTM

Figure 4.7: LSTM architecture based model

The LSTM cells serve as the primary components of the architecture, supplemented by
a dense layer, transforming the LSTM outputs into desired target feature values. Figure
4.7 illustrates the LSTM based model employed with the RDA approach. It uses an input
sequence set of dimensions (10x8). Here 10 is the number of time steps and 8 represents
the number of features. These sequences are fed to the LSTM layer, consisting of 74 units.
The initial LSTM layer processes the input and produces outputs for the second LSTM
layer, again consisting of 74 units. These then undergo processing via the dense layer,
generating target feature predictions.

To train the model, “MSE” is employed as the loss function. Additionally, as a part of
the training process, which includes back-propagating and updating, the “Adam” optimizer
is utilized towards optimizing the model parameters, with a learning rate of 1e-3.
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4.2.2 GRU
An architecture similar to the LSTM-based model illustrated in Figure 4.7 is developed for
the GRU-based model. Instead of LSTM cells, GRU cells are used while maintaining the
same number of units and layers at 74 and 2, respectively. As discussed in section 2.2.3,
the theory behind GRU, the utilization of GRU cells results in a reduction of approximately
25% in the total number of parameters compared to the LSTM model. This reduction is
attributed to the simpler gate structure and consequently fewer parameters associated with
the GRU cell. Again, to train the model, “MSE” is employed as the loss function, with
“Adam” as the optimizer, and a learning rate of 1e-3.

4.2.3 CNN-LSTM
CNN-LSTM architecture consists of convolution layer, followed by the LSTM architecture
consisting of two LSTM layers and one dense layer. The activation function used in this
architecture are “ReLU” for the convolution layers and “tanh” for the LSTM layers. In
order to generate a comprehensive performance comparison, the training hyper-parameters
are kept consistent with those of the LSTM and GRU models, taking “MSE” as the loss
function, “Adam” as the optimizer and the learning rate as 1e-3.

Figure 4.8: CNN-LSTM architecture based model
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Results

This chapter presents the findings derived from prediction tests conducted on the devel-
oped models for short-term trajectory prediction in confined waters. The chapter is orga-
nized into four main sections, of which three of them focus on the different RNN models.
The evaluation and comparison of these models are based on the type of data representa-
tion approach utilized. The last section establishes cumulative model comparison, helping
understand the strengths and limitations of each model.

5.1 LSTM

The comparative analysis of the LSTM models is presented in table 5.1, which highlights
the architecture and accuracy scores achieved using two different data representation ap-
proaches. As can be observed that the architectures and hence the number of learnable
parameters are very much similar, except for the LSTM-RDA(a) which has fewer param-
eters due to more compact dense layer with 150 learnable connections compared to 750
in the other layers. Further, it can be observed that the optimal epoch for all four models
remains at 20 epochs, the maximum limit, thus indicating and striking a balance between
continuous learning and avoiding overfitting. Increasing the number of epoch may lead to
further learning but has been capped at 20 for computational efficiency.

When considering the mean squared error (MSE) on the test set, it is important to note
that the comparison between models may not be accurate due to the differences in target
features and their distribution. Instead, a more reliable measure for comparative analysis is
the deviation between the true and predicted geographical coordinates, which is a function
of distance. By assessing the deviation in prediction positions, we can gain insights into
the effectiveness of the models in capturing the complexities of ship trajectory prediction.
This measure takes into account the differences in learned features for the different models
and provides a more meaningful basis for comparison.
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Table 5.1: LSTM model performance comparison

LSTM architecture

Models LSTM-lat LSTM-lon
LSTM-
RDA(d)

LSTM-
RDA(a)

Number of hidden layers 2 2 2 2
Size of input layer 10*8 10*8 10*8 10*8
Size of output layer 10*1 10*1 10*1 10*2
Ideal number of neurons ** ROT[2.2] 73.3 73.3 73.3 73.3
Number of neurons (1st layer) 74 74 74 74
Number of neurons (2st layer) 74 74 74 74
Number of parameters 69,422 69,422 69,422 68,822
Number of epochs 20 20 20 20
Learning rate 0.0001 0.0001 0.0001 0.0001
Lowest error epoch 20 19 20 19
Test set error (MSE) 2.62E-06 3.38E-06 0.000385 0.0398
Mean Displacement Error (nm) 0.094 0.054
Median Displacement Error (nm) 0.066 0.022
Final Displacement Error (nm) 0.094 0.054

When analyzing the median displacement error, LSTM-RDA exhibits a significantly
lower error compared to LSTM-lat and LSTM-lon. The median displacement error of
LSTM-RDA is approximately 66% lower than that of the conventional approach. This
indicates that LSTM-RDA is more capable of capturing trajectory patterns effectively,
leading to superior performance over the conventional LSTM models.

It is also worth noting that when considering multi-step prediction, the deviation errors
remain consistent across the prediction steps. This consistency is reflected in the final
displacement error and mean displacement error, and is a result of the absence of error
propagation over the steps. The alignment between these measures further reinforces the
reliability and accuracy of LSTM-RDA in short-term ship trajectory prediction.

In conclusion, the comparative analysis of LSTM models reveals that the architecture
and choice of target features significantly impact the accuracy of short-term ship trajectory
prediction in confined waters. The LSTM-RDA(d) model, which incorporates relative
displacement and angle information, demonstrates superior performance in terms of lower
displacement errors. This highlights the importance of considering the spatial relationships
between ship positions when predicting future trajectories.

5.2 GRU
The GRU models are evaluated and compared based on their architecture and performance
metrics, as presented in Table ??. The architectures of the GRU models are similar to the
LSTM models, with the replacement of LSTM cells with GRU units. The GRU units have
a simpler gate structure compared to LSTM, which leads to a lower number of parameters
in the GRU models. In fact, the number of parameters in the GRU models is approximately
25% lower than that of the LSTM models. This reduction in the number of parameters
implies that the GRU models have significantly lower computational complexity compared
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to the LSTM models. This makes the GRU models more computationally efficient and
suitable for applications where computational resources are limited.

Similar to the LSTM models, the optimal epoch for the GRU models is observed to be
around 20. This indicates that the models have reached a stable state of learning and strike
a balance between continuous learning and avoiding overfitting.

Comparing the models within table 5.2, it can be observed that GRU-RDA model
achieves a significantly lower error compared to GRU-lat lon. The median displacement
error of GRU-RDA is approximately 65% lower than that of the conventional approach.
This indicates that GRU-RDA is more effective at capturing trajectory patterns and exhibits
superior performance in short-term trajectory predictions.

Table 5.2: GRU model performance comparison

GRU architecture

Models GRU-lat GRU-lon
GRU-
RDA(d)

GRU-
RDA(a)

Number of hidden layers 2 2 2 2
Size of input layer 10*8 10*8 10*8 10*8
Size of output layer 10*1 10*1 10*1 10*2
Ideal number of neurons ** ROT[2.2] 73.3 73.3 73.3 73.3
Number of neurons (1st layer) 74 74 74 74
Number of neurons (2st layer) 74 74 74 74
Number of parameters 52,698 52,698 52,698 52,098
Number of epochs 20 20 20 20
Learning rate 0.0001 0.0001 0.0001 0.0001
Lowest error epoch 20 19 20 19
Test set error (MSE) 2.09E-06 2.82E-06 0.000384 0.0405
Mean Displacement Error (nm) 0.092 0.056
Median Displacement Error (nm) 0.063 0.022
Final Displacement Error (nm) 0.092 0.056

5.3 CNN LSTM

Table ?? presents the architecture and performance metrics of the differrent CNN-LSTM
model, including CNN-LSTM lat, CNN-LSTM lon, CNN-LSTM-RDA(d), and CNN-
LSTM-RDA(a). The CNN-LSTM models incorporate both convolutional and LSTM lay-
ers to capture spatial and temporal dependencies in the data. The number of convolutional
layers is set to 1, with a kernel size of 3 and a filter size of 32. The number of hidden
LSTM layers is 2.

Comparing the performance metrics within Table ??, it can be observed that the CNN-
LSTM-RDA model achieves a significantly lower median displacement error compared
to the conventional approach. The median displacement error of CNN-LSTM-RDA is
approximately 64% lower than that of the conventional approach. This indicates that CNN-
LSTM-RDA effectively captures trajectory patterns and outperforms the other models in
short-term trajectory predictions.
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It is also worth noting that the CNN-LSTM models have a higher number of parameters
compared to the LSTM and GRU models, indicating a higher model complexity. This
increased complexity allows the CNN-LSTM models to capture more intricate spatial and
temporal relationships in the data.

Table 5.3: CNN LSTM model performance comparison

CNN-LSTM architecture
Models CNN-

LSTM -
lat

CNN-
LSTM -
lon

CNN-
LSTM -
RDA(d)

CNN-
LSTM -
RDA(a)

Number of convolutional layers 1 1 1 1
Kernel size (in convolutional layer) 3 3 3 1
Filter size (in convolutional layer) 32 32 32 32
Number of hidden layers 2 2 2 2
Size of input layer 10*8 10*8 10*8 10*8
Size of output layer 10*1 10*1 10*1 10*2
Ideal number of neurons ** ROT[2.2] 73.3 73.3 73.3 73.3
Number of neurons (LSTM 1st layer) 74 74 74 74
Number of neurons (LSTM 2st layer) 74 74 74 74
Number of parameters 76,726 76,726 76,726 76,214
Number of epochs 18 12 20 20
Learning rate 0.0001 0.0001 0.0001 0.0001
Lowest error epoch 20 19 20 19
Test set error (MSE) 1.96E-06 2.69E-06 0.000385 0.0388
Mean Displacement Error (nm) 0.091 0.052
Median Displacement Error (nm) 0.059 0.021
Final Displacement Error (nm) 0.091 0.052

5.4 Cumulative comparison

This section presents a comprehensive analysis of the model performance comparison,
focusing on three different models: LSTM, GRU, and CNN-LSTM. Tables 5.1, 5.2, and
?? provide the detailed performance metrics for each model. Some of the keys from results
are:

• The RDA approch on averge helps reduce the median error by 65%.

• GRU models carry the least amount of parameters.

• Descending Performance order for the RDA dataset: CNN LSTM > LSTM > GRU

• CNN-LSTM model demonstrates the best performance when applied to the RDA
dataset, with a median displacement error of 0.021 nm (equivalent to 38 meters).
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Figure 5.1: Trajectory prediction plot- Non linear trajectory

Figure 5.2: Trajectory prediction plot- Linear trajectory
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Chapter 6
Discussion

The results demonstrate that the RDA approach reduces the prediction errors significantly.
The median displacement error is approximately 65% lower for all models, indicating their
improved performance in capturing trajectory patterns and making accurate predictions.
By incorporating relative angle mapping, the models are able to capture non-linear patterns
more effectively, as also observed from the trajectory plots in figures 5.1 and 5.2. This
allows for a more accurate representation of ship trajectories in confined waters.

Furthermore, it is noteworthy that the GRU models exhibit a 25% lower number of
parameters compared to LSTM models, making them computationally efficient while still
delivering comparable accuracy. This makes GRU models a favorable choice when com-
putational resources are limited. Among all the models, the CNN-LSTM model stands out
as the best performer when applied to the RDA dataset. It achieves a median displacement
error of 0.021 nm (equivalent to 38 meters), demonstrating its capability to capture spatial
and temporal dependencies effectively.

Overall, the RDA approach, combined with GRU or CNN-LSTM models, proves to
be advantageous in short-term trajectory prediction in confined waters. By incorporating
the approach with appropriate models, the accuracy of predictions can be significantly
enhanced, contributing to safer navigation and decision-making in maritime operations.

53



Chapter 6. Discussion

54



Chapter 7
Conclusion and Further work

The findings of this thesis highlight the effectiveness of the RDA approach in improving
the accuracy of short-term trajectory prediction in confined waters. By reducing the vo-
cabulary and enhancing the relation mapping, the RDA approach enables better learning
of state inter-dependencies, resulting in more accurate predictions.

To ensure real-world applicability, the proposed approach was implemented and eval-
uated using 10 months of training data, with 1 month for validation and the final month
(December’19) as the test set. This approach allows for a comprehensive analysis of the
model’s performance and its ability to generalize to unseen data, promoting real world
repeatability.

Additionally, a multi-step framework was developed and employed for effective data
processing prior to training the models. This framework takes into account the tempo-
ral dependencies in ship trajectories, enabling a more comprehensive prediction of future
positions.

Moving forward, there are several avenues for further research. Some of these are:

1. Consideration encounter scenes: The current modelling approaches and datasets
do not explicitly cover encounter scenes, which can have a significant impact on
ship trajectories, especially in confined waters. Exploring alternative representation
techniques or incorporating additional contextual information specific to encounter
scenarios can improve the models’ ability to predict trajectory patterns accurately in
such situations.

2. Advanced modelling approaches: While the RDA approach has shown promising
results when combined with standard models, further exploration of advanced mod-
elling approaches can help enhance prediction accuracies. Techniques such as en-
semble learning, hybrid models combining different architectures, or the integration
of domain-specific knowledge into the models can potentially lead to improved per-
formance.

3. Incorporation of physics-based models: The use of spline functions and hybrid mod-
elling approaches can be explored to make the prediction process more physics-
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based and realistic. By incorporating physical laws and constraints that govern ship
movements, the models can better capture the underlying dynamics and interactions
in confined waters, resulting in more accurate trajectory predictions.

4. Enhanced feature engineering: More comprehensive feature engineering techniques
can be employed to generate spatial features and establish better correlations be-
tween different aspects of ship trajectories. This may involve considering additional
input variables, such as vessel characteristics, environmental factors, or navigational
constraints, and incorporating them into the models to capture a wider range of in-
fluencing factors.

5. Open source Trajectory Dataset: A significant limitation in the field of trajectory
prediction is the lack of a standardized and openly accessible dataset for evaluation
and comparison purposes. There is a need for an open source trajectory dataset that
covers diverse scenarios and encompasses various navigation conditions in maritime
settings. By creating such a dataset and making it available to the research commu-
nity, researchers can ensure consistent evaluation and facilitate advancements in the
field. The availability of an open source dataset would foster collaboration, enable
benchmarking, and contribute to the development of more reliable and generalizable
prediction models.

By pursuing these research directions, it is possible to enhance the prediction accuracy
and robustness of short-term trajectory models in confined waters. These advancements
would contribute to the development of more reliable and effective tools for maritime
navigation, collision avoidance systems, route planning, and maritime traffic management,
ultimately improving safety and efficiency in maritime operations.
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Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J.,
Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro,
A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors, 2020. SciPy 1.0: Funda-
mental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272.
doi:10.1038/s41592-019-0686-2.

60

https://www.mdpi.com/2071-1050/14/1/461
https://www.mdpi.com/2071-1050/14/1/461
http://dx.doi.org/10.3390/su14010461
http://dx.doi.org/10.1109/ICASSP.2015.7178838
http://dx.doi.org/10.1109/ICASSP.2015.7178838
https://www.mdpi.com/1424-8220/20/18/5133
https://www.mdpi.com/1424-8220/20/18/5133
http://dx.doi.org/10.3390/s20185133
https://doi.org/10.1080/20464177.2019.1665258
https://doi.org/10.1080/20464177.2019.1665258
http://dx.doi.org/10.1080/20464177.2019.1665258
http://arxiv.org/abs/https://doi.org/10.1080/20464177.2019.1665258
https://www.sciencedirect.com/science/article/pii/S240589632031884X
https://www.sciencedirect.com/science/article/pii/S240589632031884X
http://dx.doi.org/https://doi.org/10.1016/j.ifacol.2020.12.1472
https://www.dco.uscg.mil/Portals/9/DCO%20Documents/5p/CG-5PC/INV/Alerts/USCGSA_0420.pdf?ver=2020-05-13-090105-050
https://www.dco.uscg.mil/Portals/9/DCO%20Documents/5p/CG-5PC/INV/Alerts/USCGSA_0420.pdf?ver=2020-05-13-090105-050
https://www.dco.uscg.mil/Portals/9/DCO%20Documents/5p/CG-5PC/INV/Alerts/USCGSA_0420.pdf?ver=2020-05-13-090105-050
http://dx.doi.org/10.1038/s41592-019-0686-2


Appendix

GitHub repository with code files:
https://github.com/NeerajMehta04/TMR-4930-Ship-trajectory-prediction-in-confined-waters.git
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