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Problem description

Introduction: This project aims to develop a method for multi-agent control of
Autonomous Underwater Vehicles (AUVs) by combining the 3D hand position concept
with a selected multi-agent control algorithm. The goal is to enable accurate formation
control, path following, and collision avoidance for AUVs in a multi-agent system.

Objective:

• Perform a literature study on control methods for multi-agent systems with
double integrator dynamics, including relevant papers on the 3D hand position
concept and multi-agent control algorithms.

• Select a suitable multi-agent control algorithm and integrate it with the 3D hand
position concept to develop a control strategy for multi-agent control of AUVs.

• Develop the theory for the combined control method, including stability analysis.

• Conduct simulation studies to validate the effectiveness and performance of the
developed control method in formation control, path following, and collision
avoidance tasks.

Expected Outcome: The expected outcome of this project is an advanced control
method that combines the 3D hand position concept with a selected multi-agent
control algorithm to achieve accurate and robust multi-agent control of AUVs. The
developed control method will be validated through simulation studies, demonstrating
its effectiveness in various scenarios.
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Conclusion: By combining the 3D hand position concept with a selected multi-
agent control algorithm, this project aims to provide a novel control method for AUVs
in a multi-agent system. The proposed method has the potential to significantly
enhance the formation control, path following, and collision avoidance capabilities of
AUVs, contributing to advancements in autonomous underwater robotics.
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Abstract

This thesis presents a novel control law for formation path following with autonomous
underwater vehicles (AUVs) using a second-order null-space-based behavioral (NSB)
method. AUVs pose unique challenges in formation control due to their nonlinear and
underactuated nature. This thesis aims to leverage the input-output linearizing hand-
position controller to enable the application of formation control methods designed
for double-integrator systems, that would otherwise not be applicable to AUVs.

The main contribution of this work is the extension of the NSB method to directly
handle the inherent second-order dynamics of AUVs, addressing the double-integrator
nature of the system. By directly accounting for these dynamics, the method eliminates
the presence of hidden dynamics from low-level control, encountered in first-order
methods. The control algorithm utilizes a hand-position controller that transforms the
underactuated six-degrees-of-freedom AUV model into a double-integrator system.
The NSB method is a behavioral control algorithm that enables the creation of a
hierarchy of prioritized tasks. To solve the formation-path-following problem, we
create three tasks: collision avoidance, formation keeping, and path following. The
second-order formulation enables the expression of all dynamics directly in task space.

The method is initially developed centralized, closely linked to the first-order NSB
methods in the literature. However, due to practical limitations in real-world applica-
tions, a novel distributed version of the NSB algorithm is proposed. This distributed
method reformulates the formation-keeping task as a consensus problem, enabling
different communication topologies without requiring each vehicle to communicate
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with all others. The control law leverages techniques from sliding mode control to
eliminate errors resulting from non-complete communication graphs.

The closed-loop formation-control and path-following systems are analyzed using
Lyapunov theory. The centralized method is shown to give a uniformly semi-globally
exponentially stable (USGES) system while the decentralized method is shown to
provide trajectories that are ultimately bounded to an arbitrarily small set depending
on the approximation of the switching term in the sliding mode controller. With an
ideal switching controller, the system is shown to be asymptotically stable.

The method’s effectiveness is then demonstrated through extensive MATLAB
simulation studies. Both the centralized and distributed methods are tested under a
range of different scenarios, and the distributed method is compared with existing
methods from the literature. The second-order NSB method is demonstrated to have
lower steady-state errors compared to other methods. The results demonstrate the
potential of the second-order NSB method for achieving accurate formation control
and path following with AUVs.
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Sammendrag

Denne oppgaven presenterer en ny styringsmetode for formasjonsbanefølging med au-
tonome undervannsfartøy ved hjelp av en andreordens nullromsbasert atferdsmetode.
Autonome undervannsfartøy byr på unike utfordringer innen formasjonsbaneføl-
ging på grunn av deres ulineære og underaktuerte natur. Målet med oppgaven er å
utnytte inngang-utgang-linearisering ved hjelp av håndposisjonskonseptet for å mulig-
gjøre anvendelse av formasjonsstyringsmetoder som er utviklet for dobbelt-integrator-
systemer, som ellers ikke ville vært anvendelige for autonome undervannsfartøy.

Det viktigste bidraget i dette arbeidet er utvidelsen av den nullromsbaserte meto-
den til å direkte håndtere den iboende andreordens dynamikken til undervannsfartøy
gjennom det inngang-utgang lineariserte dobbelt-integrator systemet. Ved å ta hen-
syn til all dynamikken i oppgaverommet, eliminerer metoden tilstedeværelsen av
skjulte dynamikker fra lavnivåkontroll, som man støter på i førsteordens metoder.
Styringsmetoden bruker håndposisjonskonseptet for å tranformere den underaktuerte
seks-graders-frihet fartøymodellen til et dobbelt-integrator-system. Den nullroms-
baserte atferdsmetoden muliggjør opprettelsen av et hierarki av prioriterte oppgaver.
For å løse formasjonsbanefølgingsproblemet definerer vi tre oppgaver: kollisjon-
sungåelse, formasjonsvedlikehold og banefølging. Den andreordens formuleringen av
den nullromsbaserte atferdsmetoden muliggjør å uttrykke all dynamikken til systemet
direkte i oppgaverommet.

Først utvikles en sentralisert metode som likner mye på de førsteordens nullroms-
baserte metodene som allerede finnes i litteraturen. Deretter, på grunn av praktiske

v



begrensninger i virkelige anvendelser, presenterer vi en ny distribuert versjon av meto-
den. Denne distribuerte metoden omformulerer formasjonsvedlikeholdsoppgaven som
et konsensusproblem, og muliggjør ulike kommunikasjonstopologier uten krav om at
hvert fartøy må kommunisere med alle andre. Styringsloven utnytter teknikker fra
"sliding mode" regulatorer for å eliminere feil grunnet ukomplett kommunikasjons
graf.

Lukket-sløyfe-systemet for formasjonsvedlikehold og banefølging analyseres ved
hjelp av Lyapunov-teori. Vi viser at den sentraliserte metoden gir et uniformt semi-
globalt asymptotisk stabilt system, mens løsningene til systemet under den desen-
traliserte metoden er til slutt avgrenset til et vilkårlig lite område avhengig av valg av
approksimasjon av det diskontinuerlige leddet i "sliding mode" regulatoren. Med en
ideell diskontinuerlig regulator er systemet asymptotisk stabilt.

Metodens effektivitet demonstreres gjennom omfattende simuleringsstudier i MAT-
LAB. Både den sentraliserte og distribuerte metoden testes under ulike scenarioer, og
den distribuerte metoden sammenliknes med eksisterende metoder fra litteraturen.
Det demonstreres at den andreordens nullromsbaserte atferdsmetoden har lavere feil
i likevekt sammenliknet med andre metoder. Resultatene viser potensialet til den
andreordens nullromsbaserte metoden for å oppnå nøyaktig formasjonsbanefølging
for autonome undervannsfartøy.
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Chapter 1

Introduction

This introductory chapter motivates the work by discussing the various applications of
cooperating autonomous underwater vehicles (AUVs). The formation path-following
problem is motivated, and limitations posed on existing methods by the nonlinear
equations of motion are discussed. The thesis problem is further motivated by briefly
discussing the features of the hand-position controller and its possible applications.
Then, a literature study on formation control methods for double-integrator systems is
presented. These methods are viable candidates to be combined with the hand-position
controller. The main contributions are listed and the chapter is concluded with an
outline of the rest of the thesis.

1.1 Motivation

AUVs have become increasingly important for ocean research and exploration. AUVs
are able to perform tasks in harsh and remote environments that may be too dangerous
or difficult for human divers, such as collecting data on ocean temperatures, salinity,
and currents, mapping the ocean floor, and conducting underwater inspections for
the oil and gas industry. They have also been used for studying marine biology and
geosciences (Das et al.; 2015; Wynn et al.; 2014). The use of AUVs has the potential to
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2 CHAPTER 1. INTRODUCTION

significantly improve our understanding of the ocean and its processes, as well as aid
in the development of sustainable ocean practices. Unlike remotely operated vehicles
(ROVs), AUVs are not tethered to the research vessel they are deployed from, which
enables opportunities for explorations in areas that were previously inaccessible, such
as beneath the ice in polar regions (Dowdeswell et al.; 2008).

The cooperation of multiple AUVs can enhance their capabilities and enable them
to perform tasks that are difficult or impossible for a single AUV to accomplish. Co-
operation among AUVs can increase mission efficiency, allows the exploration of
larger areas, and provide redundancy in case of system failures. One example is the
use of fleets of AUVs for oceanographic studies as mobile sensor networks (Leonard
et al.; 2007). Other applications include the use of multiple AUVs for the inspection
of underwater structures or pipelines, in which each vehicle can be equipped with
sensors and work together to cover a larger area more quickly.

Our work concerns the multi-agent formation path-following problem. The vehi-
cles are controlled to follow a desired path while keeping a predefined formation. The
path can be preplanned or it can be provided by a higher-level control layer. Formation
path following can be achieved using numerous different control strategies, including
leader-follower approaches, where one AUV acts as a leader and the others follow
its trajectory (Soorki et al.; 2011; Cui et al.; 2010; Wang et al.; 2009), distributed path-
following approaches using consensus algorithms (Skjetne et al.; 2002; Ghabcheloo
et al.; 2006; Borhaug and Pettersen; 2006), and behavioral approaches that define the
behaviors each AUV should exhibit to achieve a desired formation (Monteiro and
Bicho; 2002; Balch and Arkin; 1998).

What makes formation path following with AUVs especially complex compared to
ground vehicles are the nonlinear underactuated dynamics. The dynamic constraints
must be taken into account when designing formation-control algorithms for the
systems to remain stable. The nonlinear and underactuated dynamics make many
existing formation-control algorithms developed for other types of vehicles impossible
or difficult to apply to AUVs. A promising approach is to use a hand-position input-
output linearizing controller to transform the nonlinear equations into kinematic
double-integrator systems (Matouš, Paliotta, Pettersen and Varagnolo; 2023; Paliotta
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et al.; 2019), which may enable the application of a varied number of control strategies
that could otherwise not be applied directly to AUVs. Restrepo et al. (2022) successfully
applied an edge-agreement-based distributed formation control law to 3-degrees-
of-freedom (DOF) autonomous surface vehicles (ASVs), using the hand-position to
transfer the ASV models into linear double-integrator dynamics. In this thesis, we
will further explore formation control algorithms for multi-agent systems with double-
integrator dynamics. We first present a literature study of control methods and then
develop a formation control algorithm for double-integrator systems based on the
null-space-based behavioral (NSB) control method.

1.2 Literature review

This section presents a literature study on control methods formulti-agent systemswith
double-integrator dynamics. The methods can be grouped into three main categories:
consensus-based methods, rigidity-based methods, and NSB methods.

Various consensus algorithms have been proposed to solve the formation-keeping
problem in double-integrator systems. The consensus problem is a problem in which
multiple agents must coordinate to reach a common value in some information state.
The information state can be for instance position, velocity, or a path-progress param-
eter. The formation path-following problem can be considered a special case of the
consensus problem with the following objective:

lim
𝑡→∞

p𝑖 (𝑡) − p𝑗 (𝑡) − d𝑖 𝑗 = 0, lim
𝑡→∞

v𝑖 (𝑡) − v𝑗 (𝑡) = 0, (1.1)

where p𝑖 and v𝑖 are the position and velocity vectors for vehicle 𝑖 and 𝑑𝑖 𝑗 is the desired
relative displacement between vehicle 𝑖 and 𝑗 . For double-integrator systems, the
general consensus controller will take the form

¤p𝑖 = v𝑖 , (1.2a)

¤v𝑖 = 𝝁𝑖 (1.2b)

𝝁𝑖 = −𝑘1
∑︁
𝑗∈N𝑖

(p𝑖 − p𝑗 − d𝑖 𝑗 ) − 𝑘2
∑︁
𝑗∈N𝑖

(v𝑖 − v𝑗 ), (1.2c)
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where 𝑘1 and 𝑘2 are constant controller gains and N𝑖 is the set of all neighboring
agents of agent 𝑖 . Specific consensus algorithms can typically take slightly different
forms depending on the goal, but will generally keep terms based on the difference
in position and velocity with neighboring vehicles. A review of general consensus
problems is found in Ren et al. (2005).

Restrepo et al. (2022) developed a consensus control law that works directly with
ASVs and AUVs equipped with the hand-position controller moving in the horizon-
tal plane. It combines techniques from integrator backstepping, barrier Lyapunov
functions (BLFs), and sliding-mode-like switching control. While the paper primar-
ily addresses the tracking of an external target vehicle, it can easily be adapted to
track a predefined trajectory using a virtual target. The method can be applied to
path following by employing a leader-follower scheme, where the leader controls the
progress along the path while the other vehicles act as followers. Moreover, in addition
to addressing formation keeping and target tracking, the method explicitly tackles
collision avoidance and the maintenance of a maximum communication range. The
communication between neighboring agents is assumed to be undirected, allowing
bidirectional information flow.

Other consensus algorithms for control of multi-agent systems subject to double-
integrator dynamics share many commonalities with each other. For instance, in Miao
and Wang (2019), a consensus algorithm is proposed in which a controller utilizes the
gradient of a potential field to maintain communication radius, resembling the concept
of BLFs in Restrepo et al. (2022). Despite using different notations, the control methods
in both papers exhibit clear similarities. Furthermore, in Montañez-Molina et al. (2022),
a consensus algorithm is presented for formations with directed communication,
employing a backstepping-like controller. Additionally, Girejko and Malinowska (2019)
introduces a leader-follower tracking consensus controller with a virtual leader. In
Mohammadi et al. (2021), a leader-follower tracking controller is proposed, where
positions and velocities of the leader and other agents are estimated instead of being
precisely known. Similar to Restrepo et al. (2022), a switching controller is applied to
handle estimate uncertainties.

A different category of formation control methods is rigidity-based methods. Cai
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and Queiroz (2015) proposed a graph rigidity-based adaptive formation control law for
vehicles moving in the plane. The robots’ dynamics are modeled using Euler-Lagrange-
like equations of motion and simplified using the hand position as the system output.
The backstepping-based control law with inter-agent distances as controlled variables
ensures asymptotic convergence to the desired formation without global position
measurements. The rigid graph theory ensures the uniqueness of the formation shape
under distance constraints. Because the method is adaptive, it allows for parametric
uncertainty. Li et al. (2021) formulate a similar method, but based on a bearing-rigid
graph instead of a distance-rigid graph. They argue that bearing-only-based control
methods have strong appeal due to the natural connection with vision-based control
problems.

A third category of formation-control methods is the NSB method. The method has
so far been developed for multi-agent control of vehicles following single-integrator
dynamics, but, as will be shown throughout this thesis, the method can be modified to
work with double-integrator dynamics instead. The method was developed for 3-DOF
ASVs in Arrichiello et al. (2006), and has been applied in various other works (Pereda
et al.; 2011; Arrichiello et al.; 2010; Eek et al.; 2021). It was extended for AUVs moving
in 6-DOF in Matouš, Pettersen, Varagnolo and Paliotta (2023b). The main idea is to
formulate a prioritized hierarchy of tasks the vehicle should follow in order to exhibit
the desired behavior. The desired velocities generated by the lower-priority tasks are
projected into the null space of the higher-priority tasks so that they are only satisfied
within the subspace where they do not conflict.

1.3 Contributions

This thesis presents a novel control method for the formation path-following problem
with AUVs. The main contributions can be summarized as follows:

• A literature review onmulti-agent control methods for systems following double-
integrator dynamics.

• An extended second-order NSB control method that works directly with double-
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integrator dynamics.

• An extension to the specific behavioral tasks developed in Matouš, Pettersen,
Varagnolo and Paliotta (2023b) to work at the acceleration level to be compatible
with the second-order NSB method.

• A closed-loop stability analysis of the joint formation-control and path-following
system with the extended NSB controller.

• A novel approach to reformulating the NSB algorithm into a distributed method.

• A closed-loop stability analysis of the proposed distributed NSB method.

• An extensive MATLAB simulation study of the centralized and decentralized
second-order NSB method.

• A submitted conference paper to the 62nd IEEE Conference on Decision and
Control with the initial results of the centralized second-order NSB method (Lie
et al.; 2023).

In this work, we develop an extended NSB method for vehicles with double-
integrator dynamics and propose an algorithm that uses a second-order closed-loop
inverse kinematics (SOCLIK) equation to control the task variables through accelera-
tion inputs. The procedure is inspired by robotic manipulators, where second-order
methods are more common, due to the inherent second-order dynamics of mechanical
systems (Siciliano et al.; 2009; Chiaverini et al.; 2008). Although existing NSB methods
are developed for first-order systems, AUV dynamics are inherently second-order.
Therefore, any first-order solution is necessarily perturbed by the dynamics of the ma-
neuvering controller. In contrast, our formulation handles the second-order dynamics
directly in the task space as interpretable spring-damper systems.

We apply the 3D hand position method proposed in Matouš, Paliotta, Pettersen
and Varagnolo (2023), which transforms the underactuated six-degrees-of-freedom
AUV model into a double-integrator system. The transformation enables us to de-
velop the formation-control algorithm for simple kinematic point systems. Sub-
sequently, through the design of specific path-following, formation-keeping, and
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collision-avoidance tasks, the fleet is controlled to follow a preplanned path in for-
mation while avoiding collisions both within the fleet and with external obstacles.
Because our reformulated NSB method works directly with the second-order system
given by the hand position controller, there is no need to transform desired velocities
or accelerations into surge and orientation references, as has been done in previous
works. Thus, the complexity level of the control design is reduced.

We review two different methods for compensating for unknown ocean currents.
The stability of the system under both ocean current compensation methods is studied
when the collision avoidance task is inactive. Two methods for external obstacle
avoidance are developed for the double-integrator formulation. The first enables the
fleet to avoid obstacles as one unit, keeping formation throughout the avoidance
maneuver. In the second method, the vehicles are allowed to break formation in order
to avoid collisions.

The NSB method is inherently centralized, meaning there must be a central node
that communicates and coordinates with all the vehicles in the fleet. We develop
a novel decentralized reformulation of the NSB algorithm. The key insight lies in
reformulating the formation-keeping task as a consensus algorithm. Our resulting
distributed method requires inter-vehicle communication of a path progress parameter
as well as measurements of relative positions and velocities with neighboring vehicles.
The proposed control law uses a sliding mode term in the formation-keeping sub-
controller to eliminate formation-keeping errors introduced by the path-following
task under non-complete communication graphs.

The closed-loop system is analyzed under both the centralized and the decentral-
ized control law. We demonstrate that the formation-keeping and path-following
subsystems can be analyzed independently, and analyze the stability for each of them
using Lyapunov theory. The system is shown to be uniformly semi-globally expo-
nentially stable (USGES) under the centralized controller, whereas the decentralized
controller ensures that the trajectories of the system remain bounded when the sliding-
mode controller is approximated with a saturation function. With the ideal switching
controller, the system is shown to be asymptotically stable.

We provide an extensive set of MATLAB simulation studies, in which both the
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centralized and decentralized NSB methods are tested under different scenarios. The
centralized method is tested with two different obstacle avoidance approaches. The
decentralized method is first simulated in a general scenario and then compared to two
other existing formation path-following methods from the literature. The MATLAB
code for one of the external works was handed to us, while we implemented the other
controller ourselves following details in the paper.

1.4 Outline

The report is organized as follows. In Chapter 2, the mathematical AUV model is
presented, as well as all necessary assumptions. Chapter 3 presents the 3D hand-
position input-output linearization method which transforms the highly non-linear
equations of motion of the underactuated vehicles into a double-integrator system
in position. Chapter 4 introduces notation, assumptions, and mathematical tools for
formation path following of fleets of AUVs. The chapter introduces the mathematical
description of a path as a continuous, differentiable parametric function, and it defines
the fleet formation as a set of reference vectors relative to the barycenter of the fleet.
The chapter also introduces some simple graph theory, which serves as a basis for
the development of the distributed NSB method. In Chapter 5, background theory
for the NSB algorithm is presented before the general NSB method for second-order
systems is developed as a natural extension of the first-order NSB method. Chapter 6
presents the centralized NSB method. Collision-avoidance, formation-keeping, and
path-following tasks are developed for the second-order formulation so that the task
solution provides desired accelerations. Then, modifications to the tasks that enable
the fleet to compensate for unknown ocean currents and avoid external obstacles are
presented. In Chapter 7, the closed loop properties of the centralized control algorithm
presented in Chapter 6 are studied. In Chapter 8, the NSB method is modified to work
in a distributed setting. The closed-loop stability analysis for this method is provided in
Chapter 9. Both the centralized and decentralized control algorithms are simulated in
various configurations in MATLAB (The MathWorks Inc.; 2022) in Chapter 10. Finally,
Chapter 11 presents conclusions and future work.



Chapter 2

Vehicle Model

This chapter presents the notation and assumptions for the vehicle models in this work.
Because the high-level goal of the thesis is to study multi-agent control algorithms
suitable to combine with the 3D hand-position method presented in Chapter 3, the
assumptions on the vehicle models will be similar to those of the original 3D hand-
position paper (Matouš, Paliotta, Pettersen and Varagnolo; 2023).

We consider a standard six-degrees-of-freedom AUV model with an unknown irro-
tational current. The position of the vehicle in the north-east-down (NED) coordinate
frame is denoted by 𝜼 ∈ R3, the attitude is parameterized using a rotation matrix
R ∈ 𝑆𝑂 (3), and the translational and rotational velocities in the vehicle’s body-fixed
coordinate frame are denoted by 𝝂 ∈ R3 and 𝝎 ∈ R3, respectively.

The AUV is affected by an unknown constant irrotational ocean current v𝑐 ∈ R3.
We define the relative velocity between the AUV and the current as 𝝂𝑟 = 𝝂 − 𝑅Tv𝑐 ,
and the concatenated velocity vector as 𝜻T

𝑟 = [𝝂T
𝑟 ,𝝎

T]. The AUV is subject to external
forces and moments due to hydrodynamic forces, gravitational forces, and control
inputs. We assume that we can control the surge thrust and torque around all three
axes, and denote the control input vector f = [𝑇𝑢,𝑇𝑝 ,𝑇𝑞,𝑇𝑟 ]T, where 𝑇𝑢 is the surge
thrust and 𝑇𝑝 , 𝑇𝑞, 𝑇𝑟 denote the torques produced by the fins. The AUV dynamics can

9
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be written as follows (Fossen; 2021):

¤𝜼 = R𝝂𝑟 + v𝑐 , (2.1a)
¤R = RS(𝝎), (2.1b)

M ¤𝜻𝑟 + C(𝜻𝑟 )𝜻𝑟 + D(𝜻𝑟 )𝜻𝑟 + g(R) = Bf, (2.1c)

where M ∈ R6×6 is the mass and inertia matrix, C(𝜻𝑟 ) ∈ R6×6 is the Coriolis and
centripetal matrix, D(𝜻𝑟 ) ∈ R6×6 is the hydrodynamic damping matrix, g(R) ∈ R6

represents the gravitational and buoyancy forces, B ∈ R4×6 is the control allocation
matrix, and S : R3 ↦→ 𝔰𝔬(3) is the skew-symmetric matrix operator. Note that for any
two vectors a, b ∈ R3, it follows that S(a)b = a× b, where × is the vector cross product.

Next, we present the modeling assumptions.

Assumption 2.1. The vehicle is slender, torpedo-shaped with port-starboard and top-
bottom symmetry.

Assumption 2.2. The vehicle is neutrally buoyant, with the center of gravity (CG) and
center of buoyancy (CB) on the same vertical axis. The distance from CB to CG is given
by the positive constant 𝑧𝑏𝑔, meaning the center of gravity is located below the center of
buoyancy.

Assumption 2.3. The origin of the body-fixed coordinate frame is located at neutral
point (also commonly referred to as pivot point (PP)) which has relative position [𝑥𝑜 , 0, 0]𝑇

from the center of gravity, with 𝑥𝑜 such that the actuators produce no sway or heave
acceleration. Then, there exist 𝑓𝑢, 𝑡𝑝 , 𝑡𝑞 , and 𝑡𝑟 such that

M−1Bf = [𝑓𝑢, 0, 0, 𝑡𝑝 , 𝑡𝑞, 𝑡𝑟 ]𝑇 . (2.2)

It was shown in Borhaug et al. (2007) that there exists a coordinate transformation
that satisfies (2.2) for a 5-DOF model satisfying Assumption 2.1. The result is trivially
extended to 6-DOF because roll is decoupled from the other degrees of freedom under
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Assumption 2.1. The coefficients 𝜖1 and 𝜖2 are defined as

𝜖1 ≜ −𝑚55𝑏23 −𝑚25𝑏53

𝑚22𝑏53 −𝑚25𝑏23
, 𝜖2 ≜ −𝑚44𝑏32 −𝑚34𝑏42

𝑚33𝑏42 −𝑚34𝑏32
, (2.3)

where𝑚𝑖 𝑗 and 𝑏𝑖 𝑗 are the elements on row i, column j of M and B, respectively. The
coordinate transformation matrix to the pivot point from the existing coordinate origin
(CO) is then given by the matrix H𝑃𝑃 such that 𝜻𝑃𝑃

𝑟 = H𝑃𝑃𝜻𝐶𝑂𝑟 :

H𝑃𝑃 =



1 0 0 0 0 0

0 1 0 0 0 −𝜖1

0 0 1 0 −𝜖2 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1


. (2.4)

We note that for most cylindrical-shaped AUVs, 𝜖1 = −𝜖2. Then H𝑃𝑃 corresponds to a
physical translation of the coordinate origin along the 𝑥-axis of the ship as detailed in
(Fossen; 2021, Appendix C). The points of interest from Assumption 2.2 and 2.3 are
illustrated in Figure 2.1.

Assumption 2.4. The AUV is operating at sufficiently fast ocean-current relative speeds
so that it remains fully controllable.

Because the torques are produced by fins attached to the AUV, the vehicle must
maintain a minimum ocean current-relative velocity to remain controllable.

Assumption 2.5. The AUV is operating at sufficiently slow speeds so that the hydrody-
namic damping can be considered linear.
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𝑥

𝑧

𝑃𝑃

𝐶𝐵

𝐶𝐺

Figure 2.1: Illustration of the AUV with different points of interest. The marked
points are the center of gravity (CG), the center of buoyancy (CB), and the pivot point
(PP). The coordinate axes show the orientation of the body-fixed coordinate system,
however, the origin would be at the pivot point according to Assumption 2.3.

The structure of the matrices M, B, and D under Assumptions 2.1, 2.3, and 2.5 are

M =



𝑚11 0 0 0 0 0

0 𝑚22 0 0 0 𝑚26

0 0 𝑚33 0 𝑚35 0

0 0 0 𝑚44 0 0

0 0 𝑚35 0 𝑚55 0

0 𝑚26 0 0 0 𝑚66


, (2.5a)

B =



𝑏11 0 0 0

0 0 0 𝑏24

0 0 𝑏33 0

0 𝑏42 0 0

0 0 𝑏53 0

0 0 0 𝑏64


, (2.5b)
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D =



𝑑11 0 0 0 0 0

0 𝑑22 0 0 0 𝑑26

0 0 𝑑33 0 𝑑35 0

0 0 0 𝑑44 0 0

0 0 𝑑53 0 𝑑55 0

0 𝑑62 0 0 0 𝑑66


. (2.5c)

Assumption 2.6. The effect of gravity and buoyancy on the linear velocities is negligible.

Therefore, under Assumptions 2.2 and 2.6, the following approximation

M−1g(R) ≈


03

M′
22 (𝑊𝑧𝑏𝑔e3 × 𝑅𝑇 e3)

 (2.6)

can be used to simplify dynamics, where M′
22 is the lower right part of 𝑀−1, and

e3 = [0, 0, 1]𝑇 is the third axis unit vector.

Assumption 2.7. The full state {𝜼, R, 𝜻𝑟 } is available for feedback.

We do not consider the state estimation problem and assume that the full state is
available for feedback.
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Chapter 3

Hand Position Transformation

This chapter details the hand-position input-output feedback linearization transfor-
mation used herein to transform the non-linear underactuated AUV model (2.1) to a
double-integrator with a constant ocean-current velocity disturbance.

The hand position concept was first introduced in Pomet et al. (1992) to stabilize
nonholonomic vehicles with unicycle dynamics. The method was extended to marine
vehicles moving in the horizontal plane by Paliotta et al. (2019), which was then used
as the basis for a formation control method in Restrepo et al. (2022). The method was
further extended to 6-DOF underwater vehicles in Matouš, Paliotta, Pettersen and
Varagnolo (2023). In this chapter, we will present the method as derived for AUVs.

The linearization involves choosing the hand-position point as the system’s output.
The hand-position point is located a given distance from the vehicle’s pivot point along
the 𝑥-axis. Figure 3.1 illustrates an AUV with the center of gravity, pivot point, and
hand-position point marked. With reference to the AUV equations of motion (2.1), the
hand-position point is defined in terms of the following change of coordinates:

p = 𝜼 + RL, (3.1a)

v = R𝝂𝑟 + R(𝝎 × L), (3.1b)

where L = [ℎ, 0, 0]T and ℎ > 0 is the hand length.

15
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L

𝑃𝑃

𝐻𝑃

𝐶𝐺

Figure 3.1: Illustration of the AUV with different points of interest. The marked
points are the center of gravity (CG), pivot point (PP), and hand-position point (HP).
Additionally, the hand length L is marked. The dashed line illustrates the vehicle’s
center line, which contains all the points of interest.

To derive the feedback linearized equations of motion, we first introduce some
notation. Let

M−1 =


M′

11 M′
12

M′
21 M′

22,

 (3.2)

and 
D𝝂

D𝝎

 = M−1D(𝜻𝑟 )𝜻𝑟 ,

C𝝂

C𝝎

 = M−1C(𝜻𝑟 )𝜻𝑟 . (3.3)

Then, we can rewrite (2.1c) in the following form

¤𝝂𝑟 = [𝑓𝑢, 0, 0]T − D𝝂 (𝜻𝑟 ) − C𝝂 (𝜻𝑟 ), (3.4a)

¤𝝎 = [𝑡𝑝 , 𝑡𝑞, 𝑡𝑟 ]T − D𝝎 (𝜻𝑟 ) − C𝝎 (𝜻𝑟 ) − M′
22

(
𝑊𝑧𝑏𝑔e3 × 𝑅T𝑒3

)
. (3.4b)
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Differentiating (3.1) with respect to time and inserting for (3.4) yields:

¤p = v + v𝑐 , (3.5a)

¤v = R ( ¤𝝂𝑟 + 𝝎 × 𝝂𝑟 + ¤𝝎 × L + 𝝎 × (𝝎 × L)) ,

= R
(
[𝑓𝑢, ℎ𝑡𝑟 ,−ℎ𝑡𝑞]T − D𝝂 (𝜻𝑟 ) − C𝝂 (𝜻𝑟 ) + 𝝎 × 𝝂𝑟

+ L ×
(
D𝝎 (𝜻𝑟 ) + C𝝎 (𝜻𝑟 ) + M′

22

(
𝑊𝑧𝑏𝑔e3 × 𝑅T𝑒3

))
+ 𝝎 × (𝝎 × L)

)
.

(3.5b)

We note that ¤v is independent of the roll torque 𝑡𝑝 . Therefore, 𝑡𝑝 is used independently
to stabilize the roll dynamics by canceling the Coriolis effect

𝑡𝑝 = eT
1 C𝝎 (𝜻𝑟 ). (3.6)

The following change of input linearizes the output dynamics (3.5):
𝑓𝑢

𝑡𝑞

𝑡𝑟


=


1 0 0

0 0 − 1
ℎ

0 1
ℎ

0


(
RT𝝁 + D𝝂 (𝜻𝑟 ) + C𝝂 (𝜻𝑟 ) − 𝝎 × 𝝂𝑟

− L ×
(
D𝝎 (𝜻𝑟 ) + C𝝎 (𝜻𝑟 ) + M′

22

(
𝑊𝑧𝑏𝑔e3 × RTe3

))
− 𝝎 × (𝝎 × L)

)
,

(3.7)

where 𝝁 ∈ R3 is the new control input. The resulting output feedback linearized
system is given by:

¤p = v + v𝑐 , (3.8a)

¤v = 𝝁, (3.8b)
¤R = RS(𝝎), (3.8c)

¤𝝎 = f0 (𝝁,𝝎,R, v)

= L ×
(
R𝑇 𝝁 + D𝝂 (𝜻𝑟 ) + C𝝂 (𝜻𝑟 ) − 𝝎 × R𝑇 v

)
−

(
LL

𝑇
) (

D𝝎 (𝜻𝑟 ) + M′
22 (𝑊 z𝑔𝑏e3 × R𝑇 e3)

)
,

(3.8d)
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where L = [1/ℎ, 0, 0]𝑇 , [p, v]T is the external part of the system and [R, 𝝎]T is the
internal part. The dynamics of the external part of the system are linear, with the
ocean current as an unknown disturbance. Because the internal dynamics (3.8d) are
affected by the input 𝝁, the internal stability properties of R and 𝝎 must be verified
for the specific choice of control law for 𝝁.



Chapter 4

Formation Path-Following

The main objective of this work is to study control methods for multi-agent systems.
Specifically, the work herein aims to examine existing methods and develop new
methods for the formation path following of fleets of AUVs. This chapter will introduce
the necessary assumptions for the paths, the relevant coordinate frames, and the
notation used herein to describe fleets of AUVs.

4.1 Equations of motion and coordinate frames

We consider a fleet of 𝑛 AUVs equipped with output-feedback-linearization hand-
position controllers. Each vehicle follows the equations of motion (3.8). We define
the stacked position, velocity, and control input vectors of the fleet p = [pT

1 , . . . , pT
𝑛]T,

v = [vT
1 , . . . , vT

𝑛]T, and 𝝁 = [𝝁T
1 , . . . , 𝝁

T
𝑛 ]T, respectively. We also define the stacked

ocean current vector V𝑐 = 1𝑛,1 ⊗ v𝑐 , where 1𝑛,1 is an 𝑛-dimensional vector of ones, and
⊗ is the Kronecker product. The translational motion of the whole fleet can then be
described in terms of the stacked variables

¤p = v + V𝑐 , (4.1a)

¤v = 𝝁 . (4.1b)

19
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The formation path-following objective will involve controlling the barycenter p𝑏
of the fleet to follow a predetermined path. The barycenter is defined as follows:

p𝑏 =
1
𝑛

𝑛∑︁
𝑖=1

p𝑖 . (4.2)

We let the path be given by a continuous parametric function p𝑝 (𝜉) : R ↦→ R3. The
path is assumed to be smooth and regular, meaning that it is infinitely differentiable
and the partial derivative with respect to 𝜉 satisfies




 𝜕p𝑝 (𝜉 )
𝜕𝜉




 ≠ 0.

For every point p𝑝 (𝜉), there exists a path-tangential coordinate frame with a
corresponding rotation matrix R𝑝 . The path-following error p𝑝

𝑏
is defined in terms of

the barycenter of the fleet in the path-tangential coordinate frame:

p𝑝
𝑏
= RT

𝑝

(
p𝑏 − p𝑝 (𝜉)

)
. (4.3)

The formation is defined in the formation-centered coordinate frame, centered at
p𝑏 with the same orientation as the path-tangential frame. The position of a vehicle in
the formation-centered frame is given by

p𝑓

𝑖
= RT

𝑝 (p𝑖 − p𝑏) , (4.4)

and the desired positions are given by p𝑓

𝑓 ,1, . . . , p
𝑓

𝑓 ,𝑛
. By definition of p𝑏 , the following

constraint always holds
𝑛∑︁
𝑖=1

p𝑓

𝑖
= 0. (4.5)

Consequently, 𝑛 − 1 desired barycenter-relative positions p𝑓

𝑓 ,𝑖
are sufficient to uniquely

specify the formation, because the final vehicle’s position is implied by (4.5). The
formation is illustrated in Figure 4.1.
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p𝑝 (𝜉) ≡ O𝑝

p𝑏 ≡ O𝑓

p𝑓

𝑓 ,1

p𝑓

𝑓 ,2

p𝑓

𝑓 ,3

p1

p2

p3

O𝑁𝐸𝐷

Figure 4.1: Definition of the formation. O𝑓 denotes the origin of the formation-centered
coordinate frame, O𝑝 denotes the origin of the path-tangential frame andO𝑁𝐸𝐷 denotes
the origin of the inertial NED frame, p𝑖 denotes vehicle 𝑖 , and p𝑓

𝑓 ,𝑖
denotes the desired

position of vehicle 𝑖 relative to p𝑏 . Figure inspired by Matouš, Pettersen, Varagnolo
and Paliotta (2023b).
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4.2 Communication and graph theory

In this work, both centralized and decentralized methods are presented. Centralized
methods require that each vehicle communicates with every other vehicle and the full
state of every vehicle is needed for calculation of controller outputs. These methods
are typically infeasible to implement in practice because of communication limitations,
but they provide interesting theoretical results and may serve as a basis for developing
decentralized controllers.

In decentralized methods, each vehicle calculates its own controller output, often
with limited knowledge of the state of other vehicles. Each agent may have access
to information from only a limited number of local neighbors. This communication
topology is represented by a graph, G = (V, E), where the set of vertices V B

{1, 2, . . . , 𝑁 } corresponds to the agents and the set of edges E ⊆ V2 represents the
communication between pairs of agents. Let 𝑀 be the cardinality of E. The set E
is then given by {𝑒𝑘 |𝑘 = 1, . . . , 𝑀}, where each edge 𝑒𝑘 is an ordered pair (𝑖, 𝑗) ∈ E
indicating that agent 𝑗 has access to information from agent 𝑖 . If the graph is undirected,
information flows in both directions meaning that if a vertex pair (𝑖, 𝑗) ∈ E then so is
( 𝑗, 𝑖). The graph is connected if there exists a path connecting every agent to every
other agent, and it is complete (fully connected) if there exists an edge between every
pair of agents. We let the set of neighbors of a vertex 𝑖 be denoted by the set

N𝑖 = { 𝑗 ∈ V : (𝑖, 𝑗) ∈ E} . (4.6)

The Laplacian matrix of the graph is a matrix L ∈ R𝑁×𝑁 such that

L𝑖 𝑗 =


𝑁∑
𝑗=1

𝑎𝑖 𝑗 , 𝑖 = 𝑗 .

−𝑎𝑖 𝑗 , 𝑖 ≠ 𝑗,

, 𝑎𝑖 𝑗 =


1, if ( 𝑗, 𝑖) ∈ E,

0, otherwise.
(4.7)

It is useful in multiple formation-control methods, particularly consensus methods such
as the formation-keeping task in our distributed NSB method as presented in Chapter 8.
For an undirected graph, the Laplacian matrix is symmetric positive-semidefinite. It
has an eigenvalue 𝜆0 = 0 corresponding to the eigenvector v0 = [1, . . . , 1]T.



Chapter 5

Null-Space-Projection

An important prerequisite to understanding the NSB method is to understand the
null-space-projection method for task priority control of robot manipulators. The main
concepts in the NSB method were first developed for robot manipulators and then
applied to coordination tasks in fleets of autonomous mobile robots. Our extended NSB
method for double integrator systems is also inspired by similar, existing second-order
methods in robot manipulators.

The chapter is organized as follows. Sections 5.1-5.3 are background theory sec-
tions. Sections 5.1 and 5.2 present task priority control with null-space-projection
as developed for robot-manipulators (Siciliano et al.; 2009; Chiaverini et al.; 2008).
Section 5.3 details and discusses the first-order NSB algorithm for coordinated path-
following control as presented in existing literature (Arrichiello et al.; 2006; Antonelli
and Chiaverini; 2006; Matouš, Pettersen, Varagnolo and Paliotta; 2023b). Section 5.4
presents our novel method for NSB control with double-integrator systems.

5.1 Null-space-projection for first-order systems

The null-space-projection method was derived for redundant robot manipulators. The
method enables the creation of additional objectives that are followed aswell as possible,
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without conflicting with the main objective. Because the manipulators are redundant,
there will always be a null space of joint velocities that only affect the internal motion
of the robot arm without affecting the end-effector motion. Additional tasks can be
constructed in this null space such as obstacle- or singularity-avoidance. This section
introduces the null-space-projection method as derived for robot manipulators. We
refer to Siciliano et al. (2009) and Chiaverini et al. (2008) for further reading. The
notation differs from the sources to remain consistent with the rest of our work.

We consider single-integrator (first-order) systems on the form

¤x = v, (5.1)

where x are the generalized coordinates of the system. We define task variables
𝝈𝑖 = 𝑓𝑖 (x), with the desired values 𝝈𝑑,𝑖 . A typical choice of task variable for robot
manipulators would be the end-effector position. Using the chain rule, the time
derivative of the task variables is given by

¤𝝈𝑖 = J𝑖v, (5.2)

where J𝑖 = 𝜕𝝈𝑖/𝜕x is the task Jacobian. Because the system is redundant, there exists a
vector space of feasible velocities that satisfy the task given by a desired task-space
velocity ¤𝝈∗

1 :
v = J†1 ¤𝝈

∗
1 + N1v0, (5.3)

where J†
𝑖
is the Moore-Penrose pseudo-inverse, and N𝑖 = (I − J†

𝑖
J𝑖 ) is a null-space

projection matrix of J𝑖 so that J𝑖N𝑖 = 0. Because the additional velocities v0 are
projected into the null space of the first task, they will not conflict with the fulfillment
of that task.

Given an additional task defined by the task variable 𝝈2, the optimal value of the
additional velocity v0 is derived. First, to not violate the first objective, it must hold
that:

¤𝝈2 = J2v = J2
(
J†1 ¤𝝈1 + N1v0

)
. (5.4)
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Solving for v0 gives
v0 = (J2N1)†

(
¤𝝈∗

2 − J2J†1 ¤𝝈
∗
1
)
. (5.5)

The term −J2J†1 ¤𝝈∗
1 can be interpreted as subtracting the parts of the second task that

are already satisfied by the first task. The pseudo-inverse term (J2N1)† optimizes the
velocity v0 to satisfy the second task as well as possible within the null space of the
first task.

Back-substituting (5.5) into (5.3) gives

v = J†1𝝈
∗
1 + N1 (J2N1)†

(
¤𝝈∗

2 − J2J†1 ¤𝝈
∗
1
)
. (5.6)

If there are more than two tasks, the lower-priority tasks must be projected into the
joint null space spanned by the stacked Jacobian of all higher-priority tasks. That leads
to the following recursive solution:

v =

𝑛𝑡∑︁
𝑖=1

N̄𝑖−1v𝑖 , with v𝑖 =
(
JiN̄𝑖−1

)† (
¤𝝈∗
𝑖 − J𝑖

𝑖−1∑︁
𝑘=1

N̄𝑘−1v𝑘

)
, (5.7)

with N̄𝑖 being the null-space projection of the stacked Jacobian J̄𝑖 = [JT
1 . . . JT

𝑖 ]T.

5.2 Null-space-projection for second-order systems

All mechanical systems that obey Newton’s second law are inherently second-order,
meaning they follow double-integrator dynamics. The first-order method derived in
the previous section works well because there often exist controllers that enable us to
accurately track desired velocities. Nevertheless, modeling the second-order dynamics
enables us to interpretably express the dynamic motion in task space.

We consider a double-integrator (second-order) system on the form

¤x = v, (5.8)

¤v = a. (5.9)
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With the definition of task variables 𝝈𝑖 from Section 5.1 the following differential
relation holds

¥𝝈𝑖 = J𝑖 ¤v + ¤J𝑖v. (5.10)

With a similar derivation as for the single-integrator case, the desired accelerations
given two tasks are

¤v = J†1 ( ¥𝝈
∗
1 − ¤J1v) + N1 (J2N1)†

(
¥𝝈∗

2 − ¤J2v − J2J†1 ( ¥𝝈
∗
1 − ¤J1v)

)
. (5.11)

For multiple tasks, the recursive formulation is similar to the one derived for
single-integrator systems (5.7):

¤v =

𝑛𝑡∑︁
𝑖=1

N̄𝑖−1 ¤v𝑖 , with ¤v𝑖 =
(
JiN̄𝑖−1

)† (
¥𝝈∗
𝑖 − ¤J𝑖v − J𝑖

𝑖−1∑︁
𝑘=1

N̄𝑘−1 ¤v𝑘

)
. (5.12)

5.3 NSB method for first-order systems

In the formation control literature, a slightly different method called the NSB method
is commonly applied for formation control. The general method is presented and
motivated in Chiaverini (1997) as a way to eliminate the problems resulting from
algorithmic singularities in (5.6). An algorithmic singularity occurs when J2N1 looses
rank despite J1 and J2 being full rank. This loss of rank happens if the task Jacobians
are linearly dependent.

The NSB formulation which solves the algorithmic singularity problem is given by

v = v1 + N1v2, with v𝑖 = J†
𝑖
¤𝝈∗
𝑖 . (5.13)

This formulation has a slightly different interpretation. The optimal velocity for the
second task is first calculated globally, v2 = J†2𝝈

∗
2 , and then projected into the null

space of the first task, which is in contrast to the method (5.6), in which the second
task velocity is optimized directly within the null space of the first task. Consequently,
method (5.13) leads to larger task errors for the second task but avoids the problems
of algorithmic singularities.
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To recover the errors, the method is used with a closed-loop inverse kinematics
(CLIK) implementation, which enables the recovery of the tracking errors. The CLIK
solution is defined by choosing 𝝈∗

𝑖 as follows:

𝝈∗
𝑖 = ¤𝝈𝑑,𝑖 − 𝚲𝑖 𝝈̃𝑖 , (5.14)

where 𝚲𝑖 is a positive definite gain matrix and 𝝈̃𝑖 = 𝝈𝑖 − 𝝈𝑑,𝑖 . We can interpret the
CLIK as a linear feedback law in task space.

Most formation control literature concerning the NSB algorithm presents the
following recursive formulation for more than two tasks (Arrichiello et al.; 2006;
Antonelli and Chiaverini; 2006; Matouš, Pettersen, Varagnolo and Paliotta; 2023b):

v = v1 + N1 (v2 + N2v3) . (5.15)

The formulation has a nice geometrical interpretation, in which the velocity of each
task is projected into the null space of the immediate higher-priority task to remove
those velocity components that would conflict with it. A problem with this formulation
is that it does not behave fully as one might expect. The expected behavior is that
the third task produces velocities that neither conflict with the first nor the second
task. However, the null-space projection of N2v3 into the null space of the first task,
N1N2v3, might produce motions that are no longer in the null space of the second task
and therefore conflict with it. Antonelli et al. (2008) remark that the correct projection
is given by:

v = v1 + N1v2 + N̄2v3, (5.16)

with N̄2 being the null-space projection of the stacked Jacobian J̄2 = [JT
1 JT

2 ]T. Unlike
the former formulation, this formulation projects the velocity from the third task
into the joint null space of the two first tasks so that it does not conflict with either
of them. Furthermore, Antonelli et al. (2008) argue that the former approach only
is stable whenever two out of the three tasks are orthogonal, however, in that case,
the two formulations are equivalent. Also, Antonelli et al. (2008) presented general
stability conclusions of the formulation (5.16) when extended to 𝑁 tasks and argued



28 CHAPTER 5. NULL-SPACE-PROJECTION

that similar general stability conclusions cannot be made for the formulation (5.15).
The formulation (5.16) is preferable when there are non-orthogonal tasks, and will
be used herein, but we note that in most formation control applications, the two
formulations are equivalent due to orthogonality in task definitions.

In summary, the general NSB method for 𝑛𝑡 tasks is given by

v =

𝑛𝑡∑︁
𝑖=1

N̄𝑖−1v𝑖 , with v𝑖 = J†
𝑖
¤𝝈∗
𝑖 . (5.17)

5.4 NSB method for second-order systems

We develop the NSB method for double-integrator systems (5.8) by applying a similar
solution to the algorithmic singularity problem as presented in Section 5.3 to the
second-order method from Section 5.2. The general method is given by

¤v =

𝑛𝑡∑︁
𝑖=1

N̄𝑖−1 ¤v𝑖 , with ¤v𝑖 = J†
𝑖

(
¥𝝈∗
𝑖 − ¤J𝑖v

)
. (5.18)

Similarly to Section 5.3, we introduce feedback in task space to recover tracking
errors. Since the underlying system (5.8) is second-order, we define a second-order
linear controller

¥𝝈∗
𝑖 = ¥𝝈𝑑,𝑖 − 𝚲𝑝,𝑖 𝝈̃𝑖 − 𝚲𝑑,𝑖

¤̃𝝈𝑖 . (5.19)

The resulting SOCLIK solution is given by:

¤v𝑖 = J†
𝑖

(
¥𝝈𝑑,𝑖 − 𝚲𝑝,𝑖 𝝈̃𝑖 − 𝚲𝑑,𝑖

¤̃𝝈𝑖 − ¤J𝑖v
)
. (5.20)

where 𝚲𝑝,𝑖 and 𝚲𝑑,𝑖 are positive definite gain matrices. As with other second-order
systems, 𝚲𝑝,𝑖 and 𝚲𝑑,𝑖 can be selected to specify closed-loop natural frequencies and
relative damping ratios:

𝚲𝑝,𝑖 = 𝛀
2
𝑛,𝑖 , 𝚲𝑑,𝑖 = 2Z𝛀𝑛,𝑖 , (5.21)
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with

𝛀𝑛,𝑖 = diag{𝜔𝑛𝑖,1 . . . 𝜔𝑛𝑖,𝑡𝑖
}, (5.22)

Z = diag{𝜁𝑖,1 . . . 𝜁𝑖,𝑡𝑖 }, (5.23)

where 𝜔𝑛𝑖,𝑗 and 𝜁𝑖, 𝑗 are the natural frequency and damping ratio for the 𝑗-th state
of task 𝑖 , and 𝑡𝑖 is the dimension of task 𝑖 . Because mechanical systems described
by Newton-Euler equations are second-order, the entire error dynamics of the task
are interpretably specified as spring-damper systems in task space. In contrast, the
first-order method given by (5.17) gives a first-order error system in task space which
will have additional error dynamics from the low-level velocity controller.
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Chapter 6

The Centralized NSB Method

This chapter introduces the tasks considered in our implementation of the NSB algo-
rithm for multi-vehicle formation control. These tasks represent the main objectives
that the vehicles in the fleet must achieve to operate safely and efficiently. The tasks are
similar to those presented by Matouš, Pettersen, Varagnolo and Paliotta (2023b), but we
modify them to work with SOCLIK methods in double-integrator systems instead of
CLIK methods in single-integrator systems. Most of the results from this chapter have
been submitted to the 62nd IEEE Conference on Decision and Control (Lie et al.; 2023).

Three tasks are considered in decreasing order of priority: inter-vehicle collision
avoidance, formation keeping, and path following. Inter-vehicle collision avoidance
ensures that the fleet avoids dangerous collisions, which can result in severe damage
to the involved vehicles and nearby property. The second task, formation keeping, is
essential for maintaining a cohesive and stable fleet that can move as a single entity
and achieve common goals. Path following requires the vehicles to track a desired
trajectory while mitigating disturbances and external effects such as wind and currents,
which is important for tasks such as search and rescue missions or environmental
monitoring where the vehicles need to follow a pre-determined path. By incorporating
all three tasks into the NSB algorithm, we can ensure that the fleet behaves in a
coordinated and efficient manner while meeting its mission requirements.
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The fleet consists of 𝑛 AUVs following the assumptions and vehicle model from
Chapter 2. Each vehicle is equipped with an input-output linearizing hand-position
controller as described in Chapter 3, yielding double-integrator position dynamics.
This chapter considers the notation and definitions for formation path following from
Chapter 4 and the external dynamics of each vehicle in the fleet follow the model:

¤p𝑖 = v𝑖 + v𝑐 ,

¤v𝑖 = 𝝁𝑖 .
(6.1)

The chapter is organized as follows. Section 6.1 introduces the high-level combina-
tion of the three tasks, specifying the particular solution to the general NSB controller
(5.18) for this problem. Sections 6.2, 6.3, and 6.4 introduce each of the three tasks in
the NSB hierarchy. Section 6.5 introduces two different methods for estimating and
compensating for the unknown ocean current, and Section 6.6 describes two methods
for modifying the NSB method to include external obstacle avoidance.

6.1 Combined NSB controller

The three tasks inter-vehicle collision avoidance, formation keeping, and path following
are combined using the NSB algorithm for second-order systems (5.18). We let the
commanded acceleration from each task be given by ¤v1, ¤v2 and ¤v3 in order. These
accelerations are generally given by SOCLIK (5.20) solutions and are defined in later
sections. Note that ¤v𝑗 is a stacked vector of accelerations for the whole fleet, and the
commanded acceleration for a single vehicle will be denoted by double subscripts: ¤v𝑗,𝑖 .
The combined commanded acceleration is given by

¤v𝑁𝑆𝐵 = ¤v1 + N1 ¤v2 + N̄2 ¤v3, (6.2)

where we recall that N1 = (I − J†1J1) is the null-space projector of task 1 and N̄2 =

(I− [JT
1 JT

2 ]T† [JT
1 JT

2 ]T) is the null-space projector of the space spanned by the Jacobians
the first and second tasks. In this particular setup, the third task is orthogonal to the
first two tasks since they deal with the relative motion within the fleet, while the last
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task addresses the collective motion of the entire fleet. Consequently, the combined
commanded acceleration (6.2) can be simplified, and the stacked resulting control
action 𝝁 is given by

𝝁 = ¤v𝑁𝑆𝐵 = ¤v1 + N1 ¤v2 + ¤v3 . (6.3)

We note that the equations of motion for the barycenter p𝑏 defined by (4.2) is
dependent only on the third task acceleration because the within-fleet accelerations
from the first two tasks cancel out when summing over the fleet. Differentiation (4.2)
with respect to time, we get

¤p𝑏 =
1
𝑛

𝑛∑︁
𝑖=1

¤p𝑖 =
1
𝑛

𝑛∑︁
𝑖=1

v𝑖 + v𝑐 ≜ v𝑏 + v𝑐 , (6.4a)

¥p𝑏 = ¤v𝑏 =
1
𝑛

𝑛∑︁
𝑖=1

𝝁𝑖 =
1
𝑛

𝑛∑︁
𝑖=1

¤v3,𝑖 ≜ 𝝁𝑏 . (6.4b)

6.2 Inter-vehicle collision avoidance task

The highest-priority task is the inter-vehicle collision avoidance (COLAV) task. The
task ensures that the minimum distance between two vehicles in the fleet remains
larger than a predefined threshold 𝑑𝐶𝑂𝐿𝐴𝑉 , eliminating the chance of collisions.

The task is defined by its task variable 𝝈1 = [𝜎T
1,1, . . . , 𝜎

T
1,𝑙 ]

T, which is a stacked
vector of relative distances between vehicles closer than the threshold 𝑑𝐶𝑂𝐿𝐴𝑉 :

𝜎1,𝑘 = ∥p𝑖 − p𝑗 ∥, ∀𝑖, 𝑗 ∈ 1, . . . , 𝑛 : 𝑗 > 𝑖, ∥p𝑖 − p𝑗 ∥ < 𝑑𝐶𝑂𝐿𝐴𝑉 . (6.5)

The task size varies depending on the number of vehicles within the activation
distance. It is empty when all vehicles are further than 𝑑𝐶𝑂𝐿𝐴𝑉 apart from each other.
The desired values of the task are given by

𝝈𝑑,1 = 𝑑𝐶𝑂𝐿𝐴𝑉 1𝑙 , (6.6)

and we note that ¥𝝈𝑑,1 = ¤𝝈𝑑,1 = 0. Because the task only activates when the distance is
below the threshold, the distance may temporarily violate the threshold due to the
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system’s response time before a safe distance is recovered. Therefore, the threshold
should be chosen larger than the minimum safe distance by a small margin.

The stacked partial derivatives for each active collision make up the task Jacobian,
which can be expressed as

J1 =

[(
𝜕𝜎1,1

𝜕p

)T
, . . . ,

(
𝜕𝜎1,𝑙

𝜕p

)T
]T

, (6.7a)

𝜕𝜎1,𝑘

𝜕p𝑖
=

(
p𝑖 − p𝑗

)T

∥p𝑖 − p𝑗 ∥
,
𝜕𝜎1,𝑘

𝜕p𝑗

= −
(
p𝑖 − p𝑗

)T

∥p𝑖 − p𝑗 ∥
. (6.7b)

The partial derivative of each task variable with respect to vehicles that are not involved
in the collision is zero. The derivative of the task Jacobian is similarly given by a stack
of time-differentiated partial derivatives

¤J1 =

[(
d
d𝑡

𝜕𝜎1,1

𝜕p

)T
, . . . ,

(
d
d𝑡

𝜕𝜎1,𝑙

𝜕p

)T
]T

, (6.8a)

d
d𝑡

𝜕𝜎1,𝑘

𝜕p𝑖
=

(
I3

∥p𝑖 − p𝑗 ∥
−

(
p𝑖 − p𝑗

) (
p𝑖 − p𝑗

)T

∥p𝑖 − p𝑗 ∥3

) (
v𝑖 − v𝑗

)
, (6.8b)

d
d𝑡

𝜕𝜎1,𝑘

𝜕p𝑗

= −
(

I3
∥p𝑖 − p𝑗 ∥

−
(
p𝑖 − p𝑗

) (
p𝑖 − p𝑗

)T

∥p𝑖 − p𝑗 ∥3

) (
v𝑖 − v𝑗

)
. (6.8c)

The resulting SOCLIK equation for the task is

¤v1 = −J†1
(
Λ𝑝,1𝝈̃1 + Λ𝑑,1 ¤𝝈1 + ¤J1 (v + V𝑐 )

)
, (6.9)

with ¤𝝈1 = J1 (v + V𝑐 ). Note that because 𝜕𝜎1,𝑘/𝜕p𝑖 = −𝜕𝜎1,𝑘/𝜕p𝑗 , it follows that
J1V𝑐 = ¤J1V𝑐 = 0. Consequently, ¤v1 is independent of the ocean current velocity and
given by

¤v1 = −J†1
(
Λ𝑝,1𝝈̃1 + Λ𝑑,1 ¤𝝈1 + ¤J1v

)
, (6.10)

with ¤𝝈1 = J1v.
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6.3 Formation-keeping task

The formation-keeping task is designed to move the vehicles into a predefined geomet-
ric configuration in the formation-centered frame. The task ensures initial convergence
to the desired formation. After convergence, the vehicle velocities are adjusted to
account for the curvature of the path. The velocities of vehicles in the outer turns are
increased, while those in the inner turns are decreased, to ensure that the formation
remains orthogonal to the path-tangential coordinate frame.

The task variable is given by the stacked vector of barycenter relative positions:

𝝈2 =
[
𝝈T

2,1, ...,𝝈
T
2,𝑛−1

]T
, 𝝈2,𝑖 = p𝑖 − p𝑏, (6.11)

and the desired values are given by the predefined formation vectors, rotated from the
formation frame to the inertial frame:

𝝈𝑑,2 = [
(
R𝑝p𝑓

𝑓 ,1
)T
, ...,

(
R𝑝p𝑓

𝑓 ,𝑛−1
)T]T. (6.12)

The desired positions in the formation-centered frame are constant, but the rotation
matrix is time-varying, so the desired first and second derivatives of the task variable
are given by

¤𝝈𝑑,2 = [
( ¤R𝑝p𝑓

𝑓 ,1
)T
, ...,

( ¤R𝑝p𝑓

𝑓 ,𝑛−1
)T]T, (6.13)

¥𝝈𝑑,2 = [
( ¥R𝑝p𝑓

𝑓 ,1
)T
, ...,

( ¥R𝑝p𝑓

𝑓 ,𝑛−1
)T]T. (6.14)

There is one fewer task than AUVs to avoid singularities, as the last AUV’s position
is implied by the constraint

∑𝑛
𝑖=1 p𝑓

𝑓 ,𝑖
= 0, which comes as a result of the formation-

keeping frame having the origin at the barycenter.

The Jacobian is constant and given by

J2 =

( [
I𝑛−1 0𝑛−1,1

]
− 1𝑛−1,𝑛

𝑁

)
⊗ I3. (6.15)

Because the Jacobian is constant, its derivative is zero. Then, the SOCLIK equation
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reduces to
¤v2 = J†2

(
¥𝝈𝑑,2 − Λ𝑝,2𝝈̃2 − Λ𝑑,2 ¤̃𝝈2

)
. (6.16)

Like the inter-vehicle collision avoidance task, this task is independent of the ocean
current because J2V𝑐 = 0.

The nominal task acceleration (6.16) may become arbitrarily large depending on
the formation-keeping error, which may saturate the actuators. When combined
with the other tasks, the full NSB controller may also lead to a loss of controllability
if the formation-keeping velocities exactly cancel out the path-following velocities.
Therefore, we introduce the saturated task acceleration

¤v2 = J†2
(
¥𝝈𝑑,2 − 𝑣2max sat

(
Λ𝑝,2𝝈̃2

)
− Λ𝑑,2 ¤̃𝝈2

)
, (6.17)

where 𝑣2max is a positive constant and sat is a saturation function given by

sat
(
x
)
= x

tanh ∥x∥
∥x∥ . (6.18)

With the saturated task acceleration, we further require that the product of the gain
matrices Λ𝑝,2Λ𝑑,2 is symmetric positive definite. The reason for this requirement will
become clear in the stability proof in Section 7.1.

The control action due to the task error is limited by the saturated task acceler-
ation, reducing the chance of actuator saturation. Furthermore, the saturated task
acceleration leads to a bounded task velocity which can be chosen sufficiently small so
that it cannot exactly cancel out the path-following velocity, hence eliminating the
problem of controllability loss.

6.4 Path-following task

The path-following task involves controlling the barycenter of the vehicle fleet to
follow a given path. The task is designed to ensure that the vehicles remain on the
desired trajectory while accounting for external disturbances such as ocean currents.
The AUVs move in three dimensions and we apply the coupled line-of-sight (LOS)
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method from Matouš, Pettersen, Varagnolo and Paliotta (2023b). Wheras decoupled
LOS methods utilize two distinct guidance schemes to steer the vehicle separately in
the horizontal and vertical planes (Caharija et al.; 2012), coupled LOS methods employ
a single guidance scheme to steer the vehicle simultaneously in all three dimensions
(Breivik and Fossen; 2005). LOS methods are generally defined at the first-order
kinematic level, with velocity or orientation references as output. We differentiate the
LOS method and introduce feedback so that it can work directly with double-integrator
systems. The method views the entire fleet as one entity and provides a common
path-following acceleration to every vehicle in the fleet. An advantage of using a LOS
method for path following compared to a simpler alternative, like a PID controller
in the path error, is that the LOS method provides a constant-speed approach to the
path, which ensures that the vehicles remain at controllable velocities and furthermore
mitigates actuator saturation at large path errors.

We let the path-following error be defined by the barycenter position in the path-
tangential frame p𝑝

𝑏
and let its components be denoted by 𝑥𝑝

𝑏
, 𝑦𝑝

𝑏
and 𝑧𝑝

𝑏
. Inspired by

Belleter et al. (2019), the error-dependent look-ahead distance is given by

Δ(p𝑝
𝑏
) =

√︃
Δ2

0 + (𝑥𝑝
𝑏
)2 + (𝑦𝑝

𝑏
)2 + (𝑧𝑝

𝑏
)2, (6.19)

where Δ0 is a positive constant. The LOS velocity is given by

v𝐿𝑂𝑆,𝑑 = R𝑝

[
Δ(p𝑝

𝑏
),−𝑦𝑝

𝑏
,−𝑧𝑝

𝑏

]T 𝑈𝐿𝑂𝑆

𝐷
, (6.20)

where𝑈𝐿𝑂𝑆 > 0 is the desired path-following speed, and

𝐷 =

√︃
Δ(·)2 + (𝑦𝑝

𝑏
)2 + (𝑧𝑝

𝑏
)2 (6.21)

is a normalization term.

Our method differs from that of Matouš, Pettersen, Varagnolo and Paliotta (2023b)
in that we differentiate the desired LOS velocity (6.20) once to derive the desired LOS
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acceleration

¤v𝐿𝑂𝑆,𝑑 = ¤R𝑝

[
Δ(p𝑝

𝑏
),−𝑦𝑝

𝑏
,−𝑧𝑝

𝑏

]T 𝑈𝐿𝑂𝑆

𝐷

+ R𝑝

[ ¤Δ(p𝑝
𝑏
, ¤p𝑝

𝑏
),−¤𝑦𝑝

𝑏
,−¤𝑧𝑝

𝑏

]T 𝑈𝐿𝑂𝑆

𝐷

− R𝑝

[
Δ(p𝑝

𝑏
),−𝑦𝑝

𝑏
,−𝑧𝑝

𝑏

]T 𝑈𝐿𝑂𝑆

𝐷2
¤𝐷.

(6.22)

To mitigate drift from numerical integration, and because the initial velocity of the
fleet can differ from the desired LOS velocity, we let the task acceleration be given by
the following linear relation

¤v𝐿𝑂𝑆 = ¤v𝐿𝑂𝑆,𝑑 + Λ𝐿𝑂𝑆 (v𝐿𝑂𝑆,𝑑 − v𝑏 − v𝑐 ), (6.23)

where v𝑏 = 1
𝑁

∑𝑁
𝑖=1 v𝑖 is the barycenter velocity and Λ𝐿𝑂𝑆 is a positive definite gain ma-

trix. The same acceleration is applied to each vehicle, so the resulting task acceleration
is given by a simple Kronecker product

¤v3 = 1𝑛,1 ⊗ ¤v𝐿𝑂𝑆 . (6.24)

Lemma 6.1. Let Λ𝐿𝑂𝑆 be a positive definite gain matrix. The ocean-current relative
barycenter velocity v𝑏 converges to the relative LOS desired velocity v𝐿𝑂𝑆,𝑑 − v𝑐 under
the controller defined by the three equations (6.3), (6.23), and (6.24).

Proof. The closed-loop dynamics of the barycenter velocity v𝑏 under the controller
(6.3) are given by (6.4). In (6.24), ¤v3 is defined as a stack of ¤v𝐿𝑂𝑆 repeated 𝑛 times.
Consequently,

𝝁𝑏 =
1
𝑛

𝑛∑︁
𝑖=1

¤v3,𝑖 = ¤v𝐿𝑂𝑆 . (6.25)

Inserting for (6.23), the closed-loop dynamics of the error ṽ𝑏 = v𝑏 + v𝑐 − v𝐿𝑂𝑆,𝑑 are
given by

¤̃v𝑏 = −Λ𝐿𝑂𝑆 ṽ𝑏, (6.26)

which is a linear system with a positive definite gain matrix. Then the system is
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exponentially stable. □

The proof only holds if we know the ocean current v𝑐 , which is generally unknown.
Section 6.5 will present approaches to overcome this shortcoming.

Like in Matouš, Pettersen, Varagnolo and Paliotta (2023b), the update of the path-
parameter 𝜉 is used as an extra degree of freedom to guarantee along-track stability:

¤𝜉 = 𝑈𝐿𝑂𝑆





 𝜕p𝑝 (𝜉)
𝜕𝜉





−1 ©­­«
Δ(p𝑝

𝑏
)

𝐷
+ 𝑘𝜉

𝑥
𝑝

𝑏√︃
1 + (𝑥𝑝

𝑏
)2

ª®®¬ . (6.27)

This choice ensures that the desired LOS velocity (6.20) guarantees USGES of the path-
following task, which we will rely on in the stability proof presented in Section 7.2.

6.5 Compensating unknown ocean currents

The AUV is subject to unknown ocean currents. The ocean currents are assumed
constant and irrotational, which is often a reasonable assumption because the ocean
current dynamics are much slower than the AUV dynamics. These currents can
significantly affect the AUV’s motion and make it difficult to achieve precise control
and accurate navigation. To address this challenge, we propose two methods to
estimate and compensate for the effect of ocean currents on AUV motion: integral
action and ocean-current observer. Both methods require accurate measurement of
the vehicle position. Because the ocean current is assumed to be equal for all vehicles,
it is sufficient to compensate for it in the path-following task as it has no effect on the
two tasks that concern the relative motion of vehicles within the fleet.

6.5.1 Integral action

Integral action is a common method in control theory to compensate for constant
disturbances. The error between the desired fleet trajectory and the actual trajectory
is continuously measured and used to update the control inputs in a way that accounts
for the cumulative effect of past errors. As will be shown, the integral-error state will



40 CHAPTER 6. THE CENTRALIZED NSB METHOD

grow until it exactly cancels out the ocean current resulting in the fleet following the
desired absolute velocity.

We recall the feedback-linearized model (6.1):

¤p𝑖 = v𝑖 + v𝑐 ,

¤v𝑖 = 𝝁𝑖 .

We introduce the virtual integral state p𝑣 defined by

¤p𝑣 = v𝐿𝑂𝑆,𝑑 , (6.28)

and define the new input ¤v𝐿𝑂𝑆,𝐼

¤v𝐿𝑂𝑆,𝐼 = ¤v𝐿𝑂𝑆,𝑑 + Λ𝑝,3 (v𝐿𝑂𝑆,𝑑 − v𝑏) + Λ𝑖,3 (p𝑣 − p𝑏), (6.29)

which replaces the previosly defined path-following task acceleration ¤v𝐿𝑂𝑆 given by
(6.23). The gain matrices Λ𝑝,3 and Λ𝑖,3 are positive definite.

Let the error variables be given by

p̃𝑏 = p𝑏 − p𝑣 − 𝚲
−1
𝑖,3𝚲𝑝,3v𝑐 , (6.30a)

ṽ𝑏 = v𝑏 + v𝑐 − v𝐿𝑂𝑆,𝑑 . (6.30b)

After applying the controller (6.3) with the path-following task-acceleration given by
(6.24) and (6.29) to the fleet system (6.1), the barycenter equations of motion are given
by (6.4) with control action 𝝁𝑏 = ¤v𝐿𝑂𝑆,𝐼 . The resulting closed-loop error dynamics are

¤̃p
¤̃v

 =


0 I

−Λ𝑖,3 −Λ𝑝,3



p̃

ṽ

 . (6.31)

For symmetric positive definite gain matrices 𝚲𝑝,3 and 𝚲𝑖,3 the system matrix
is Hurwitz and the origin [p̃T

𝑏
ṽT
𝑏
]T = 0 is a globally exponentially stable (GES)

equillibrium.
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The position does not converge to the virtual integral state, however, that is not
a problem. As long as the absolute velocity converges to the LOS velocity, the LOS
method should ensure convergence to the path.

6.5.2 Ocean current observer

An alternative approach is to define an estimator of the ocean current v𝑐 and insert it
directly into equation (6.23). An advantage of this approach is that we can compensate
for the ocean current in all tasks of the NSB algorithm if we were to define additional
tasks that are dependent on the current.

We extend the observer by Aguiar and Pascoal (2002) to three dimensions. Addi-
tionally, we modify it to work with the hand-position feedback-linearized dynamics
where the velocity is described in the NED coordinate frame. The observer gives
estimates of the position p̂ and the ocean-current velocity v̂𝑐 . We let the velocity and
position of the observer be given by the barycenter of the fleet, and get the following
observer

¤̂p𝑏 = v𝑏 + v̂𝑐 + K1p̃𝑏, (6.32a)
¤̂v𝑐 = K2p̃𝑏, (6.32b)

where K1 and K2 are observer gains, p̃𝑏 = p𝑏 − p̂𝑏 is the estimation error of the position,
and we let ṽ𝑐 = v𝑐 − v̂𝑐 be the estimation error of the ocean-current velocity.

Inserting for the observer (6.32) and the barycenter system equations (6.4), the
estimation-error dynamics are given by

¤̃p𝑏
¤̃v𝑐

 =


−K1 I

−K2 0



p̃𝑏

ṽ𝑐

 , (6.33)

which is a GES linear system if the gain matrices K1 and K2 are chosen positive definite.
To apply the observer, we insert the estimate v̂𝑐 for the ocean current v𝑐 in (6.23):

¤v𝐿𝑂𝑆 = ¤v𝐿𝑂𝑆,𝑑 + Λ𝐿𝑂𝑆 (v𝐿𝑂𝑆,𝑑 − v𝑏 − v̂𝑐 ). (6.34)
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The full closed-loop error system consists of the control error ṽ𝑏 = v𝑏 + v𝑐 − v𝐿𝑂𝑆,𝑑

and the observer errors p̃T
𝑏
and ṽ𝑐 . First, the path-following task acceleration (6.24)

with (6.34) is applied to barycenter system (6.4), which yields

¤̃v𝑏 = −Λ𝐿𝑂𝑆 ṽ𝑏 + Λ𝐿𝑂𝑆 ṽ𝑐 . (6.35)

Letting the ocean-current estimate v̂𝑐 be given by (6.32). The full system follows:
¤̃v𝑏
¤̃p𝑏
¤̃v𝑐


=


−Λ𝐿𝑂𝑆 0 Λ𝐿𝑂𝑆

0 −K1 I

0 −K2 0



ṽ𝑏

p̃𝑏

ṽ𝑐


, (6.36)

Lemma 6.2. Let 𝚲𝐿𝑂𝑆 , K1 and K2 be positive definite matrices. Then, the origin
[ṽT

𝑏
p̃T
𝑏

ṽT
𝑐 ]T = 0 is a uniformly globally exponentially stable (UGES) equilibrium

of the closed-loop error system (6.36).

Proof. The proof follows from the separation principle.
The full closed-loop system (6.36) is block-triangular with blocks

−Λ𝐿𝑂𝑆 and

−K1 I

−K2 0

 .
The union of the eigenvalues of the controller given by the three equations (6.3), (6.24),
and (6.23) and the observer (6.32) gives the eigenvalues of the full error system. Hence,
the full system is stable because the controller and the observer are separately stable
under the positive definite gain matrix assumptions. □

6.6 Obstacle avoidance

We propose two different methods for obstacle avoidance. The first method is directly
adapted from Matouš, Pettersen, Varagnolo and Paliotta (2023b) and involves using
a planar collision cones method at the path-following stage of the NSB method. An
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advantage of this method is that the fleet keeps its formation throughout the avoidance
maneuver and the method works well with moving obstacles. A possible disadvantage
is that the method only works in the horizontal (𝑥𝑦)-plane, and may lead to excessive
avoidance maneuvers in cases where the obstacles could be easier avoided in the
𝑧-direction.

The second method is directly adapted from Arrichiello et al. (2006). It involves
merging the inter-vehicle collision task from Section 6.2 and obstacle avoidance into
one task. In this approach, the joint inter-vehicle and external obstacle collision
avoidance tasks are now treated as distributed individual tasks for each vehicle instead
of one centralized task. Some advantages are that obstacle avoidance now is the highest
priority task, the formulation inherently allows for multiple obstacles and obstacle
avoidance can now be conducted in all three directions rather than only the plane.

The second approach prioritizes obstacle avoidance over formation keeping, allow-
ing the fleet to split up in order to avoid obstacles. While this approach may increase
the safety of the fleet, it comes with both advantages and disadvantages. On the one
hand, only the vehicle in danger of collision needs to make an avoidance maneuver,
enabling a quicker return to the desired path, as each individual vehicle can avoid
the obstacle with a smaller margin than the fleet would need if it were to avoid the
obstacle in formation. On the other hand, splitting up the formation during an obstacle
avoidance maneuver may lead to vehicles being out of communication range from
each other, making it difficult to return to formation.

Both approaches have advantages and disadvantages, and different behaviors when
encountering obstacles. The choice of collision avoidance method will depend on the
application and desired behavior.

6.6.1 Collision cones

The first obstacle avoidance method is based on the collision cones concept and enables
the fleet to avoid external obstacles while keeping the formation. The approach
mitigates the issue of vehicles straying out of communication range during avoidance
maneuvers. We modify the collision cones method from Matouš, Pettersen, Varagnolo
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𝑟𝑜

p𝑏

p𝑜

𝑟 𝑓

p1

p2

p𝑛 ∥p𝑟𝑒𝑙 ∥

(a) Illustration of the obstacle avoidance
constraint (6.37).

𝑟𝑜 + 𝑟 𝑓

𝛼

p𝑏

p𝑜

v𝑟𝑒𝑙

(b) Illustration of the conflict condi-
tion (6.38).

Figure 6.1: Illustrations of obstacle avoidance. From Lie et al. (2023), adapted from
Matouš, Pettersen, Varagnolo and Paliotta (2023b).

and Paliotta (2023b) to be compatible with double integrator dynamics and focus on
obstacle avoidance in the 𝑥𝑦-plane.

We assume a constant velocity model for the obstacle. Its position and velocity
vectors are denoted by p𝑜 = [𝑥𝑜 , 𝑦𝑜 , 𝑧𝑜 ]T and v𝑜 = [ ¤𝑥𝑜 , ¤𝑦𝑜 , ¤𝑧𝑜 ]T. We define an obstacle
avoidance radius 𝑟𝑜 that is large enough to account for both the size of the obstacle
and the AUV. In addition, we define the formation radius 𝑟 𝑓 as the maximum distance
between any vehicle in the fleet and the formation center, and it is assumed to be
constant. We further define p𝑟𝑒𝑙 = [𝑥𝑏 −𝑥𝑜 , 𝑦𝑏 −𝑦𝑜 ]T, v𝑟𝑒𝑙 = [ ¤𝑥𝐿𝑂𝑆,𝑑 − ¤𝑥𝑜 , ¤𝑦𝐿𝑂𝑆,𝑑 − ¤𝑦𝑜 ]T,
and ¤v𝑟𝑒𝑙 =

[
¥𝑥𝐿𝑂𝑆,𝑑 , ¥𝑦𝐿𝑂𝑆,𝑑

]T. Note that v𝑟𝑒𝑙 is defined in terms of the LOS desired
velocity (6.20), so ¤p𝑟𝑒𝑙 ≠ v𝑟𝑒𝑙 .

Collision is avoided if we ensure

| |p𝑟𝑒𝑙 | | ≥ 𝑟𝑜 + 𝑟 𝑓 (6.37)

throughout the avoidance maneuver (see Fig. 6.1a). The formation is on a collision
course (see Fig. 6.1b), if

|∠(−p𝑟𝑒𝑙 , v𝑟𝑒𝑙 ) | ≤ 𝛼, 𝛼 = arcsin
(𝑟𝑜 + 𝑟 𝑓
| |p𝑟𝑒𝑙 | |

)
. (6.38)
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From (6.38), we see that for a given formation radius, the cone angle 𝛼 increases as
the distance decreases. The obstacle avoidance task is activated if the fleet is close
enough so that 𝛼 > 𝛼min. When the task is active, the 𝑥- and 𝑦-components of v𝐿𝑂𝑆,𝑑

and ¤v𝐿𝑂𝑆,𝑑 given by (6.20) and (6.22) are replaced with v𝑂𝐴,𝑑 and ¤v𝑂𝐴,𝑑 , given by

v𝑂𝐴,𝑑 = | |v𝑟𝑒𝑙 | | [cos (𝜓𝑂𝐴), sin (𝜓𝑂𝐴)]T+[ ¤𝑥𝑜 , ¤𝑦𝑜 ]T , (6.39)

¤v𝑂𝐴,𝑑 = ¤| |v𝑟𝑒𝑙 | | [cos (𝜓𝑂𝐴), sin (𝜓𝑂𝐴)]T

+||v𝑟𝑒𝑙 | |
[
− sin (𝜓𝑂𝐴) ¤𝜓𝑂𝐴, cos (𝜓𝑂𝐴) ¤𝜓𝑂𝐴

]T,
(6.40)

where

𝜓𝑂𝐴 = atan2 (𝑦𝑜 − 𝑦𝑏, 𝑥𝑜 − 𝑥𝑏) ± 𝛼, (6.41)

¤𝜓𝑂𝐴 =
det

(
[p𝑟𝑒𝑙 ¤p𝑟𝑒𝑙 ]

)
| |p𝑟𝑒𝑙 | |2

± ¤𝛼, (6.42)

¤𝛼 =
𝑟𝑜 + 𝑟 𝑓

| |p𝑟𝑒𝑙 | |2
√︁
| |p𝑟𝑒𝑙 | |2 − (𝑟𝑜 + 𝑟 𝑓 )2

pT
𝑟𝑒𝑙

¤p𝑟𝑒𝑙 , (6.43)

before entering into (6.23) or (6.28) and (6.29).

6.6.2 Individual vehicle collision avoidance

Our second obstacle avoidance approach is adapted from Arrichiello et al. (2006), but
tailored to work with double-integrator dynamics. Instead of a centralized approach,
the method builds the avoidance task individually for each vehicle, treating the other
vehicles in the fleet as external obstacles. The task variables are similar to those
defined in Section 6.2 but the controlled position p𝑖 and velocity v𝑖 are now those of
one individual vehicle and not the entire fleet.

Let the set of obstacles O include all vehicles in the fleet and any external obstacles.
Let the task variable be given by 𝜎1,𝑣,𝑖 , where the first subscript denotes that it is the
first task, the second subscript denotes the controlled vehicle, and the third subscript
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is the obstacle index. The task and task Jacobians are given by

𝜎1,𝑣,𝑖 = ∥p𝑣 − p𝑖 ∥, ∀𝑖 ∈ O : ∥p𝑣 − p𝑖 ∥ < 𝑑𝐶𝑂𝐿𝐴𝑉 , (6.44a)

𝜎1,𝑣,𝑖,𝑑 = 𝑑𝐶𝑂𝐿𝐴𝑉 , (6.44b)

J1,𝑣,𝑖 = r̂T
𝑣,𝑖 , (6.44c)

¤J1,𝑣,𝑖 = ¤̂rT
𝑣,𝑖 , (6.44d)

where

r̂𝑣,𝑖 =
p𝑣 − p𝑖
∥p𝑣 − p𝑖 ∥

, (6.45a)

¤̂r𝑣,𝑖 =
1

∥p𝑣 − p𝑖 ∥

(
I3 − r̂𝑣,𝑖 r̂T

𝑣,𝑖

)
(v𝑣 + v𝑐 − ¤p𝑖 ) . (6.45b)

The obstacle absolute velocity is denoted by ¤p𝑖 , to not confuse it with the ocean-
current relative velocity v𝑖 . We note that the pseudo-inverse of the Jacobian is given
by J†1,𝑣,𝑖 = JT

1,𝑣,𝑖 = r̂𝑣,𝑖 .
We now observe that the second derivative of the task variable is given by

¥𝜎1,𝑣,𝑖 = [J1,𝑣,𝑖 − J1,𝑣,𝑖 ]

¤v𝑣

¤v𝑖

 + [¤J1,𝑣,𝑖 − ¤J1,𝑣,𝑖 ]

v𝑣 + v𝑐

¤p𝑖

 , (6.46)

which, given a desired second derivative of the task error ¥̃𝜎∗
1,𝑣,𝑖 , can be rearranged to

find desired avoidance accelerations for each vehicle involved in the collision
¤v1,𝑣,𝑖

¤v1,𝑖,𝑣

 =
1
2


J†1,𝑣,𝑖
−J†1,𝑣,𝑖

 ©­« ¥̃𝜎∗
1,𝑣,𝑖 − [¤J1,𝑣,𝑖 − ¤J1,𝑣,𝑖 ]


v𝑣 + v𝑐

¤p𝑖

ª®¬ . (6.47)

Here, we applied the following relation

[J1,𝑣,𝑖 − J1,𝑣,𝑖 ]† =
1
2


J†1,𝑣,𝑖
−J†1,𝑣,𝑖

 . (6.48)

The one-half constant comes from the fact that both vehicles involved in a collision
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contribute to the avoidance maneuver, and consequently, each vehicle only applies half
the control effort. Simulations showed that this scaling is essential for the method’s
success. If p𝑖 is an external obstacle we do not apply the one-half scaling. After
applying the SOCLIK solution, the desired COLAV acceleration is

¤v1,𝑣,𝑖 = −𝑘𝑠𝑐𝑎𝑙𝑒 r̂𝑣,𝑖
(
𝜆𝑝,1𝜎̃1,𝑣,𝑖 + r̂T

𝑣,𝑖𝜆𝑑,1
(
v𝑣 + v𝑐 − ¤p𝑖

)
+ ¤̂rT

𝑣,𝑖

(
v𝑣 + v𝑐 − ¤p𝑖

) )
, (6.49)

where

𝑘𝑠𝑐𝑎𝑙𝑒 =


1
2 , Vehicle 𝑖 is part of fleet,

1, otherwise.
(6.50)

The ocean-current velocity appears in this equation, but only in terms that describe
the relative velocity between the vehicle and obstacle

(
v𝑣 + v𝑐 − ¤p𝑖

)
. If the relative

velocity can be measured directly, an estimate of the ocean current is not necessary.
Otherwise, the ocean-current observer from Section 6.5.2 can be applied.

In the case of multiple obstacles acting simultaneously, the closest obstacle is
prioritized. We apply the iterative null-space projection for each obstacle ordered by
distance, with the closest obstacle first so that it has the highest priority. For instance,
in the case of two obstacles in collision range, the final commanded acceleration for a
vehicle 𝑣 is

𝝁𝑣 = ¤v𝑁𝑆𝐵,𝑣 = ¤v1,𝑣,1 + N1,𝑣,1 ¤v1,𝑣,2 + N̄1,𝑣,2
(
¤v2,𝑣 + ¤v3,𝑣

)
. (6.51)

In this formulation, the third task acceleration is no longer orthogonal to the first
task and must be projected into its null space, which results from external obstacles
inducing collision avoidance maneuvers that move the barycenter of the fleet.

As discussed in both Arrichiello et al. (2006) and Antonelli and Chiaverini (2006)
the null space projection of this task constrains the lower priority tasks to only produce
motion tangent to the unit sphere of radius 𝑑𝐶𝑂𝐿𝐴𝑉 centered at the obstacle. There-
fore, singular configurations exist where the desired direction from the other tasks is
parallel to r̂. The vehicle will get stuck in these configurations with zero commanded
acceleration. This problem is discussed in detail in Antonelli and Chiaverini (2006),
and in particular, they note that the singular configuration is an unstable stationary
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point, and any measurement errors or intentional actuator noise may pull the system
away.



Chapter 7

Closed-Loop Analysis of the
Centralized NSB Method

The closed-loop stability analysis is an essential step in the design of control systems.
In this chapter, we will analyze the stability properties of the proposed formation
control system for a fleet of autonomous vehicles. Specifically, we will study the
stability of the formation-keeping and path-following task and also the boundedness
of the internal states of the hand-position feedback-linearization model. The stability
analysis will be conducted using Lyapunov theory, a powerful tool for the analysis of
nonlinear systems. Most of the results from this chapter have been submitted to the
62nd IEEE Conference on Decision and Control (Lie et al.; 2023).

For the analysis, we assume that the vehicle is operating under safe conditions, that
is, no collision avoidance task is active. As established in Section 6.1, the formation-
keeping and path-following tasks are orthogonal because they produce common
accelerations for the entire fleet and relative accelerations within the fleet. Since
the collision avoidance task is inactive, the control action 𝝁 defined in (6.3) can be
simplified to

𝝁 = ¤v𝑁𝑆𝐵 = ¤v2 + ¤v3, (7.1)

49
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where ¤v2 and ¤v3 are the task accelerations given by (6.17) and (6.24). As a result of the
orthogonality, there exist the following independence relations

¥𝝈2 = J2 ¤v2 + J2 ¤v3 = J2 ¤v2, (7.2)

¤v𝑏 =
1
𝑛

𝑛∑︁
𝑖=1

( ¤v2 + ¤v3) =
1
𝑛

𝑛∑︁
𝑖=1

¤v3 = ¤v𝐿𝑂𝑆 . (7.3)

Consequently, the stability properties of each task can be studied independently.
The chapter is organized as follows. Section 7.1 investigates the closed-loop sta-

bility properties of the formation-keeping task using Lyapunov theory and LaSalle’s
invariance principle. Section 7.2 investigates the closed-loop stability properties of the
path-following task using cascaded system theory. Finally, Section 7.3 analyzes the
boundedness of the internal states of the hand-position feedback linearized system
under the NSB controller.

7.1 Stability of the formation-keeping task

We recall the formation-keeping task variable 𝝈2 defined in (6.11) and its desired value
𝝈𝑑,2 defined in (6.12). This section analyses the stability properties of the task error
𝝈̃2 = 𝝈2 − 𝝈𝑑,2 using Lyapunov theory.

The closed-loop dynamics of the formation-task error are found by inserting
the task acceleration (6.17) into the second derivative of the task variable (7.2). The
resulting closed-loop system is given by

¥̃𝝈2 = −𝑣2max sat
(
Λ𝑝,2𝝈̃2

)
− Λ𝑑,2 ¤̃𝝈2. (7.4)

We note the following relation which will be used to find a suitable Lyapunov
function

𝜕

𝜕x
log (cosh ∥x∥) = x

tanh ∥x∥
∥x∥ = sat

(
x
)
. (7.5)

Theorem 7.1. Let Λ𝑝,2, Λ𝑑,2 be two symmetric positive definite matrices so that the
product Λ𝑝,2Λ𝑑,2 is symmetric positive definite. Then,

[ ¤̃𝝈T
2 , 𝝈̃

T
2
]T

= 0 is a uniformly
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globally asymptotically stable (UGAS) equilibrium of the closed-loop system (7.4).

Proof. Consider the Lyapunov function

𝑉 (𝝈̃2, ¤̃𝝈2) = 𝑣2,max log
(
cosh ∥Λ𝑝,2𝝈̃2∥

)
+ 1

2
¤̃𝝈T

2 Λ𝑝,2 ¤̃𝝈2. (7.6)

The time derivative of 𝑉 along the trajectories of (7.4) is given by

¤𝑉 = 𝑣2,maxsat
(
Λ𝑝,2𝝈̃2

)T Λ𝑝,2 ¤̃𝝈2

− ¤̃𝝈T
2 Λ𝑝,2

(
𝑣2,maxsat

(
Λ𝑝,2𝝈̃2

)
+ Λ𝑑,2 ¤̃𝝈2)

)
,

= − ¤̃𝝈T
2 Λ𝑝,2Λ𝑑,2 ¤̃𝝈2.

(7.7)

Let 𝑆 = {
[ ¤̃𝝈T

2 , 𝝈̃
T
2
]T ∈ R6(𝑛−1) : ¤𝑉 = 0}. Because of the dynamics (7.4), no other

solution can stay identically in 𝑆 , other than the trivial solution
[ ¤̃𝝈T

2 , 𝝈̃
T
2
]T ≡ 0. Thus,

the origin is globally asymptotically stable according to (Khalil; 2002, Corollary 4.2).
Furthermore, because (7.4) is time-invariant, the equilibrium is UGAS. □

7.2 Stability of the path-following task

This section studies the stability of the path-following error p𝑝
𝑏
defined in (4.3). The

section will use cascaded-system theory and rely on results from Matouš, Pettersen,
Varagnolo and Paliotta (2023b).

First, we define the error system. Let the derivative of the path-following error be
given by

¤p𝑝
𝑏
= 𝑓 (·) + 𝑔(·)ṽ𝑏,

= RT
𝑝 (v𝑏+v𝑐− ¤p𝑝 ) +

(
S(𝜔𝑝

¤𝜉)
)TRT

𝑝 (p𝑏 − p𝑝 ),

= RT
𝑝 (v𝐿𝑂𝑆,𝑑 − ¤p𝑝 ) − S(𝜔𝑝

¤𝜉)p𝑝
𝑏
+ RT

𝑝 ṽ𝑏,

(7.8a)

¤̃v𝑏 = ℎ(ṽ𝑏, ·), (7.8b)

where ṽ𝑏 = v𝑏 + v𝑐 − v𝐿𝑂𝑆,𝑑 is the barycenter-velocity error. We recall that v𝐿𝑂𝑆,𝑑 is
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given by (8.15). The dynamics (7.8b) of ṽ𝑏 differ depending on the choice of ocean-
current compensation method. They are given by (6.31) or (6.36) for the choice of
integral compensation or ocean-current observer, respectively. For both choices, the
origin ṽ𝑏 = 0 is an exponentially stable equilibrium as proved in Section 6.5.1 and 6.5.2.

Theorem 7.2. Let ṽ𝑏 = 0 be a uniformly globally exponentially stable (UGES) equi-
librium of (7.8b). Then, [ṽT

𝑏
, (p𝑝

𝑏
)T]T is a USGES and UGAS equilibrium of the system

(7.8).

Proof. The system (7.8) is in a cascaded form where the velocity error ṽ from (7.8b)
perturbs the system (7.8a). By assumption, the dynamics of (7.8b) are UGES. The
nominal system (7.8a) with ṽ𝑏 = 0 and path-parameter update ¤𝜉 given by (6.27) was
proved to be USGES in Matouš, Pettersen, Varagnolo and Paliotta (2023b) using the
Lyapunov function

𝑉 (p𝑝
𝑏
) = 1

2

(
p𝑝
𝑏

)T
p𝑝
𝑏
. (7.9)

For completeness, we present the proof here. The time derivative of 𝑉 is given by

¤𝑉 = (p𝑝
𝑏
)𝑇

(
R𝑇
𝑝 (v𝐿𝑂𝑆,𝑑 − ¤p𝑝 ) − S(𝜔𝑝

¤𝜉)p𝑝
𝑏

)
,

= (p𝑝
𝑏
)𝑇 R𝑇

𝑝 (v𝐿𝑂𝑆,𝑑 − ¤p𝑝 ).
(7.10)

We note that R𝑇
𝑝 ¤p𝑝 is the derivative of the origin of the path-tangential coordinate

frame expressed in path-tangential coordinates. By the definition of the frame, the
direction of the derivative is the x-direction. Thus, the following holds

R𝑇
𝑝 ¤p𝑝 =





 𝜕p𝑝
𝜕𝜉





 ¤𝜉 [1, 0, 0]T . (7.11)

Furthermore, inserting for ¤𝜉 from (6.27) we get

R𝑇
𝑝 ¤p𝑝 = 𝑈𝐿𝑂𝑆

©­­«
Δ(p𝑝

𝑏
)

𝐷
+ 𝑘𝜉

𝑥
𝑝

𝑏√︃
1 + (𝑥𝑝

𝑏
)2

ª®®¬ [1, 0, 0]T . (7.12)
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We recall the LOS velocity

v𝐿𝑂𝑆,𝑑 = R𝑝

[
Δ(p𝑝

𝑏
),−𝑦𝑝

𝑏
,−𝑧𝑝

𝑏

]T 𝑈𝐿𝑂𝑆

𝐷
. (7.13)

After cancellations in the x-coordinate, the derivative of the Lyapunov function be-
comes

¤𝑉 = −𝑈𝐿𝑂𝑆

©­­«𝑘𝜉
(𝑥𝑝

𝑏
)2√︃

1 + (𝑥𝑝
𝑏
)2

+
(𝑦𝑝

𝑏
)2

𝐷
+
(𝑧𝑝

𝑏
)2

𝐷

ª®®¬ . (7.14)

For any p𝑝
𝑏
∈ {p𝑝

𝑏
∈ R3 : ∥p𝑝

𝑏
∥ ≤ 𝑟 } we have

¤𝑉 ≤ −𝑈𝐿𝑂𝑆𝑘𝑟 ∥p𝑝
𝑏
∥2, (7.15)

where 𝑘𝑟 = min
{
𝑘𝜉

1√
1+𝑟 2 ,

1√
Δ0+2𝑟 2

}
. All assumptions of (Pettersen; 2017, Theorem 5)

are thus satisfied, and the origin of the nominal system is USGES.
Therefore, according to (Pettersen; 2017, Proposition 9) the cascaded system is

USGES and UGAS if the following two assumptions hold

1. There exist constants 𝑐1, 𝑐2, 𝜂 > 0 such that




 𝜕𝑉

𝜕p𝑝
𝑏






 

p𝑝
𝑏



 ≤ 𝑐1𝑉 (p𝑝
𝑏
), ∀∥p𝑝

𝑏
∥ ≥ 𝜂, (7.16)




 𝜕𝑉

𝜕p𝑝
𝑏






 ≤ 𝑐2, ∀∥p𝑝
𝑏
∥ ≤ 𝜂. (7.17)

2. There exist two continuous functions 𝛼1, 𝛼2 : R≥0 → R≥0, such that g(·) satisfies

∥𝑔(·)∥ ≤ 𝛼1 (∥ṽ∥) + 𝛼2 (∥ṽ∥)∥p𝑝
𝑏
∥ . (7.18)

Because ∥𝜕𝑉 /𝜕p𝑝
𝑏
∥ = ∥p𝑝

𝑏
∥, 1) holds with 𝑐1 = 2, 𝑐2 = 𝜂 for any 𝜂 ∈ R≥0.

Equation (7.18) is satisfied with 𝛼1 (∥ṽ∥) = 1, 𝛼2 (∥ṽ∥) = 0, because ∥𝑔(·)∥ = ∥RT
𝑝 ∥ =
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1. As a result, all assumptions of (Pettersen; 2017, Proposition 9) are satisfied, and the
origin of the closed-loop path-following system (7.8) is USGES and UGAS. □

7.3 Boundedness of the internal states

This section will investigate the boundedness of the internal states of the hand-position
feedback linearization controller (3.8). The internal states are R and 𝝎, however only
𝝎 can grow unbounded because R is defined on the closed space SO(3). The proof
will closely follow (Matouš, Paliotta, Pettersen and Varagnolo; 2023, Proposition 2 and
3), but we include all steps for completeness. This entire section considers a single
vehicle so subscripts will be omitted for simplicity.

First, Proposition 2 from Matouš, Paliotta, Pettersen and Varagnolo (2023) holds for
our NSB controller without modification, so we simply restate it here. By the choice
of the control law (3.6), the dynamics of the roll rate no longer depend on the other
angular velocities. From (3.8d), we get

¤𝑝 = −eT
1

(
D𝝎 (𝜻 ) + M′

22

(
𝑊𝑧𝑔𝑏e3 × RTe3

))
= − 𝑑44

𝑚44
𝑝 − 1

𝑚44
eT

1

(
𝑊𝑧𝑔𝑏e3 × RTe3

)
.

(7.19)

We define
𝑎𝑥 =

𝑑44

𝑚44
, 𝑏𝑥 =

𝑊𝑧𝑔𝑏

𝑚44
, (7.20)

and restate the following proposition:

Proposition 7.3 (Proposition 2, Matouš, Paliotta, Pettersen and Varagnolo (2023)).
The roll rate dynamics are bounded if 𝑎𝑥 > 0. Specifically, the trajectory 𝑝 (𝑡) satisfies

|𝑝 (𝑡) | ≤ |𝑝 (0) |e−𝑎𝑥 𝑡 + 𝑏𝑥

𝑎𝑥

(
1 − e−𝑎𝑥 𝑡

)
. (7.21)
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Proof. Consider the following two functions

𝑉𝑝 =
1
2
𝑝2, 𝑊𝑝 =

√︁
2𝑉𝑝 . (7.22)

The following inequality holds for the derivative of𝑊𝑝 along the trajectories of 𝑝

¤𝑊𝑝 ≤ −𝑎𝑥𝑊𝑝 + 𝑏𝑥 . (7.23)

By applying the comparison lemma, we get

𝑊𝑝 (𝑡) = |𝑝 (𝑡) | ≤ |𝑝 (0) | e−𝑎𝑥 𝑡 + 𝑏𝑥

𝑎𝑥

(
1 − e−𝑎𝑥 𝑡

)
, (7.24)

which concludes the proof. □

Now, we investigate the boundedness of 𝑞 and 𝑟 . The proof closely follows Propo-
sition 3 from Matouš, Paliotta, Pettersen and Varagnolo (2023), but we include some of
the omitted steps and modify the proof to work with our NSB controller (6.3).

The dynamics for 𝑞 and 𝑟 are obtained from (3.8d):
¤𝑞

¤𝑟

 =


0 0 − 1

ℎ

0 1
ℎ

0


(
RT𝝁 + D𝝂 (𝜻𝑟 ) + C𝝂 (𝜻𝑟 ) − 𝝎 × RTv

)
. (7.25)

The linear velocities can be expressed in terms of the external states

𝝂𝑟 = 𝝂𝑒 − 𝝎 × L, (7.26)

with the external part of the linear velocities given by

𝝂𝑒 = RTv. (7.27)

The norm of 𝝂𝑒 can be bounded by

∥𝝂𝑒 ∥ ≤ ∥𝝂̃𝑒 ∥ + ∥ ¤p𝑑 − v𝑐 ∥, (7.28)
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where ¤p𝑑 is the derivative of the desired position p𝑑 = p𝑝 (𝜉) +R𝑝p𝑓

𝑓
and 𝝂̃𝑒 is a velocity

error term due to transients in the path-following and formation-keeping tasks. Under
the controller (6.3) with the formation-keeping acceleration (6.17) and path-following
acceleration (6.24) the external dynamics are UGAS following Theorems 7.1 and 7.2.
Consequently, ∥𝝂̃𝑒 ∥ will asymptotically converge to zero.

Note that because the path function is continuous and infinitely differentiable and
thanks to the choice of the path parameter update law (6.27), the time-derivatives of
p𝑑 are bounded

∥ ¤p𝑑 (𝑡)∥ ≤ ¤̄p𝑑 , ∥ ¥p𝑑 (𝑡)∥ ≤ ¥̄p𝑑 . (7.29)

Consider the Lyapunov function candidate

𝑉𝜔 =
1
2
(𝑞2 + 𝑟 2). (7.30)

We let 𝝎̂ = [𝑞, 𝑟 ]𝑇 . The derivative is given by

¤𝑉𝜔 = − 𝑎𝑦𝑞
2 − 𝑎𝑧𝑟

2 + 𝑎𝑥𝑦𝑧𝑝𝑞𝑟

+ 𝑎𝑦𝑒𝝂𝑒1𝑞
2 + 𝑎𝑥𝑦𝝂𝑒2𝑝𝑞 + 𝑎𝑥𝑧𝝂𝑒3𝑝𝑟 + 𝑎𝑧𝑒𝝂𝑒1𝑟

2

+ 𝑎𝑒𝑦𝝂𝑒1𝝂𝑒3𝑞 + 𝑎𝑙𝑒𝑦𝝂𝑒3𝑞 + 𝑎𝑒𝑧𝝂𝑒1𝝂𝑒2𝑟 + 𝑎𝑙𝑒𝑧𝝂𝑒2𝑟

+
[
0 − 𝑟

ℎ
+𝑞

ℎ

]
(𝝎 × 𝝂𝑒 ) +

[
0 𝑟

ℎ
−𝑞

ℎ

]
R𝑇 𝝁 .

(7.31)

The coefficient definitions are found in Appendix A. We bound the derivative by the
following inequality

¤𝑉𝜔 ≤ − 𝑎𝑦𝑞
2 − 𝑎𝑧𝑟

2 + 𝑎𝑥𝑦𝑧𝑝𝑞𝑟

+ 𝑎𝑦𝑒𝝂𝑒1𝑞
2 + 𝑎𝑥𝑦𝝂𝑒2𝑝𝑞 + 𝑎𝑥𝑧𝝂𝑒3𝑝𝑟 + 𝑎𝑧𝑒𝝂𝑒1𝑟

2

+ 𝑎𝑒𝑦𝝂𝑒1𝝂𝑒3𝑞 + 𝑎𝑒𝑧𝝂𝑒1𝜈𝑒2𝑟

+ ∥𝝂𝑒 ∥∥𝝎̂∥
(
∥𝝎∥
ℎ

+ 𝑎𝑒

)
+ ∥𝝎̂∥ ∥𝜇∥

ℎ
,

(7.32)

with 𝑎𝑒 = max{𝑎𝑙𝑒𝑦, 𝑎𝑙𝑒𝑧}.



7.3. BOUNDEDNESS OF THE INTERNAL STATES 57

Theorem 7.4. Let us define

𝑝 = 𝑏𝑥/𝑎𝑥 , v̄ = max
𝑡 ∈R≥0



¤pd,𝑖 (𝑡) − v𝑐


 , (7.33a)

𝛼𝑦 = 𝑎𝑦 −
(

1
ℎ

v̄ + 1
2
��𝑎𝑥𝑦𝑧𝑝 �� + ��𝑎𝑦𝑒 v̄

��) , (7.33b)

𝛼𝑧 = 𝑎𝑧 −
(

1
ℎ

v̄ + 1
2
��𝑎𝑥𝑦𝑧𝑝 �� + |𝑎𝑧𝑒 v̄|

)
. (7.33c)

The angular rate dynamics are ultimately bounded if 𝑎𝑥 , 𝛼𝑦, 𝛼𝑧 > 0.

Proof. Consider the Lyapunov function 𝑉𝜔 and the bound on its derivative in (7.32).
We apply the following identities

∥𝝎∥∥𝝎̂∥ ≤ (|𝑝 | + ∥𝝎̂∥)∥𝝎̂∥, (7.34a)

|𝑝𝑞𝑟 | ≤ 1
2
|𝑝 | (𝑞2 + 𝑟 2), (7.34b)

to derive the following (looser) upper bound on ¤𝑉𝜔

¤𝑉𝜔 ≤ −𝛼𝑦𝑞
2 − 𝛼𝑧𝑟

2 +𝐺 (𝝂𝑒 ,𝝎, 𝝁) . (7.35)

The coefficients 𝛼𝑦 and 𝛼𝑧 are given by

𝛼𝑦 = 𝑎𝑦 −
(

1
ℎ
∥𝝂𝑒 ∥ +

1
2
|𝑎𝑥𝑦𝑧 | |𝑝 | + |𝑎𝑦𝑒 |∥𝝂𝑒 ∥

)
, (7.36a)

𝛼𝑧 = 𝑎𝑧 −
(

1
ℎ
∥𝝂𝑒 ∥ +

1
2
|𝑎𝑥𝑦𝑧 | |𝑝 | + |𝑎𝑧𝑒 |∥𝝂𝑒 ∥

)
, (7.36b)

and 𝐺 (·) represents the terms that grow at most linearly with 𝑞 and 𝑟

𝐺 (𝝂𝑒 ,𝝎, 𝜇) =
((

|𝑝 |
ℎ

+ 𝑎𝑒

)
∥𝝂𝑒 ∥ +

∥𝜇∥
ℎ

)
∥𝝎̂∥

+
(
𝑎𝑒𝑦𝝂𝑒1𝝂𝑒3 + 𝑎𝑥𝑦𝝂𝑒2𝑝

)
𝑞 +

(
𝑎𝑒𝑧𝝂𝑒1𝝂𝑒2 + 𝑎𝑥𝑧𝝂𝑒3𝑝

)
𝑟 .

(7.37)
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From Proposition 7.3, we can conclude that if 𝑎𝑥 > 0, then

lim
𝑡→∞

|𝑝 (𝑡) | ≤ 𝑝. (7.38)

The limit converges exponentially. As a result, in the limit, 𝛼𝑦 and 𝛼𝑧 from (7.33) form
lower bounds on 𝛼𝑦 and 𝛼𝑧 from (7.36)

lim
𝑡→∞

𝛼𝑦 ≥ 𝛼𝑦, lim
𝑡→∞

𝛼𝑧 ≥ 𝛼𝑧 . (7.39)

Therefore, if 𝛼𝑦, 𝛼𝑧 > 0, then there exists a finite time 𝑇 after which 𝛼𝑦, 𝛼𝑧 > 0.

We examine the linear term 𝐺 (·). We note that the control action 𝝁 is bounded by

∥𝝁 (𝑡)∥ ≤ 𝛽 (p𝑏 (0), 𝝈̃2 (0), 𝑡) + ∥ ¥p𝑑 ∥, (7.40)

where 𝛽 (·, 𝑡) is a class KL function (Khalil; 2002, definition 4.3) such that

lim
𝑡→∞

𝛽 (p𝑏 (0), 𝝈̃2 (0), 𝑡) = 0. (7.41)

Inserting for this bound as well as (7.29), 𝐺 (·) is bounded as follows

𝐺 (𝝂𝑒 ,𝝎, 𝜇) ≤ 𝐺 (𝝎) B
((
𝑝

ℎ
+ 𝑎𝑒

)
𝝂𝑒 +

𝛽 (·, 0) + ¥̄p𝑑
ℎ

)
∥𝝎̂∥

+
(
𝑎𝑒𝑦𝝂

2
𝑒 + 𝑎𝑥𝑦𝝂𝑒𝑝

)
𝑞 +

(
𝑎𝑒𝑧𝝂

2
𝑒 + 𝑎𝑥𝑧𝝂𝑒𝑝

)
𝑟

≤ 𝑎𝐺 ∥𝝎̂∥,

(7.42)

where 𝝂𝑒 = 𝝂𝑒 + ∥𝝂𝑒 (0)∥ is an upper bound on ∥𝝂𝑒 ∥ and 𝑝 = 𝑝 + |𝑝 (0) | is an upper
bound on |𝑝 | and

𝑎𝐺 =

����(𝑝ℎ + 𝑎𝑒

)
𝝂𝑒 +

𝛽 (·, 0) + ¥̄p𝑑
ℎ

���� + max
{��𝑎𝑒𝑦𝝂2

𝑒 + 𝑎𝑥𝑦𝝂𝑒𝑝
�� , ��𝑎𝑒𝑧𝝂2

𝑒 + 𝑎𝑥𝑧𝝂𝑒𝑝
��} . (7.43)

We investigate the candidate Lyapunov function for 𝑡 < 𝑇 . Since 𝛼𝑦 and 𝛼𝑧 may
be negative, we cannot prove boundedness. However, we note that the derivative of
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the Lyapunov function (7.35) has the following form

¤𝑉𝜔 ≤ 𝑘1∥𝝎̂∥2 + 𝑎𝐺 ∥𝝎̂∥, (7.44)

where 𝑘1 is a positive constant. We can therefore conclude that the dynamics of 𝑞 and
𝑟 are forward complete (Angeli and Sontag; 1999), which means that there exists a
solution globally, for positive time.

For 𝑡 ≥ 𝑇 , ¤𝑉𝜔 has the following form

¤𝑉𝜔 ≤ −𝛼𝑦𝑞
2 − 𝛼𝑧𝑟

2 + 𝑎𝐺 ∥𝝎̂∥. (7.45)

For sufficiently large angular velocities, the quadratic term will dominate the linear
term 𝑎𝐺 ∥𝝎̂∥, and 𝑞 and 𝑟 will remain bounded. □
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Chapter 8

The Distributed NSB Method

The second-order NSB method as presented so far is a centralized method. Conse-
quently, it might be difficult to implement the control law in practice because it would
require perfect and continuous communication. In this chapter, we propose a novel
distributed version of the controller. Other distributed versions of the algorithm have
been developed, and in particular, Matouš, Pettersen, Varagnolo and Paliotta (2023a)
formulated a distributed version of the first-order NSB method. For comparison, we
also extend this method to work in the second-order setting.

In the novel distributed formulation, the key insight is recognizing that the formation-
keeping task can be treated as a consensus algorithm on a fully-connected graph.
Consensus methods, discussed in Section 1.2, are widely used in distributed control
laws for formation control. Leveraging this concept, the proposed distributed version
of the NSB method for AUVs presented herein offers a notable advantage. It only
necessitates the communication of the path-progress variable 𝜉 with neighboring vehi-
cles, along with measurements of their relative positions and velocities. This approach
significantly reduces the communication requirements while still achieving effective
formation control.

The subsequent sections detail each of the tasks collision avoidance, formation
keeping, and path following for the novel distributed method. The combined control
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law for vehicle 𝑖 is given by

𝝁𝑖 = ¤v1,𝑖 + N1,𝑖 ( ¤v2,𝑖 + N2,𝑖 ¤v3,{𝑖,N𝑖 }), (8.1)

where each of the task accelerations ¤v𝑘,𝑖 , 𝑘 ∈ {1, 2, 3} will be detailed in the following
sections. ¤v3,{𝑖,N𝑖 } are the LOS accelerations from vehicle 𝑖 and all its neighbors.

In the final section, we demonstrate how the distributed first-order method can be
extended to work with the second-order NSB algorithm. This extension provides an
alternative approach to transitioning from a centralized to a distributed controller and
demonstrates the main ideas of how it has been done in earlier works.

8.1 Collision-avoidance task

For the collision avoidance task, we leverage that the collision avoidance task from
Arrichiello et al. (2006), which was rewritten for our second-order NSB method in Sec-
tion 6.6.2, is inherently distributed. The task can be applied without any modifications
and ensures collision safety from other vehicles within the fleet and external obstacles.
A drawback of the task formulation that is even more critical in a distributed setting is
that vehicles may leave communication range when avoiding external obstacles. This
drawback could be amended by modifying the task to also activate when the distance
between two neighboring vehicles increases above a communication range threshold
𝑑𝐶𝑂𝑀 .

8.2 Formation-keeping task

In this section, we show that the formation-keeping task is in fact a consensus law.
Consensus laws are known to be inherently distributed.

We restate the nominal formation-keeping acceleration (6.16)

¤v2 = J†2
(
¥𝝈𝑑,2 − Λ𝑝,2𝝈̃2 − Λ𝑑,2 ¤̃𝝈2

)
. (8.2)
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The key insight lies in the following relationship: J†2J2 = 1
𝑛
(L𝐹 ⊗ I3), where L𝐹 is

the Laplacian matrix of the fully connected graph consisting of all agents. The task
variables can be written as

𝜎2 = J2p, ¤𝜎2 = J2v, ¥𝜎2 = J2 ¤v. (8.3)

Then, if the gain matrices are chosen as multiples of the identity matrix 𝚲 = 𝜆I, the
SOCLIK equation (6.16) can be rewritten as

¤v2 =
1
𝑛
(L𝐹 ⊗ I3)

(
¤v𝑑 − 𝜆𝑝,2 (p − p𝑑 ) − 𝜆𝑑,2 (v − v𝑑 )

)
, (8.4)

where

p𝑑,𝑖 = p𝑝 + R𝑝 (𝜉)p𝑓

𝑓 ,𝑖
, v𝑑,𝑖 = v𝑝 + ¤R𝑝 (𝜉)p𝑓

𝑓 ,𝑖
, ¤v𝑑,𝑖 = ¤v𝑝 + ¥R𝑝 (𝜉)p𝑓

𝑓 ,𝑖
. (8.5)

For complete graphs, the following holds for the terms representing the desired forma-
tion acceleration:

1
𝑛
(L𝐹,𝑖 ⊗ I3) ¤v𝑑 = ¥R𝑝

©­«𝑛 − 1
𝑛

p𝑓

𝑓 ,𝑖
− 1
𝑛

∑︁
𝑗∈N𝑖

p𝑓

𝑓 , 𝑗

ª®¬ = ¥R𝑝p𝑓

𝑓 ,𝑖
B ¤̃v𝑑,𝑖 , (8.6)

where L𝐹,𝑖 denotes the 𝑖-th row of L𝐹 . Thus, we can simplify (8.4) to the following
form:

¤v2 = ¤̃v𝑑 − 1
𝑛
(L𝐹 ⊗ I3)

(
𝜆𝑝,2 (p − p𝑑 ) + 𝜆𝑑,2 (v − v𝑑 )

)
. (8.7)

For non-complete graphs, we let the normalized Laplacian be given by

L̂ B diag
(

1
|N1 | + 1

, . . . ,
1

|N𝑛 | + 1

)
L, (8.8)

and rewrite (8.7):

¤v2 = ¤̃v𝑑 − (L̂ ⊗ I3)
(
𝜆𝑝,2 (p − p𝑑 ) + 𝜆𝑑,2 (v − v𝑑 )

)
, (8.9)
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The rewritten SOCLIK equation (8.9) can be recognized as a consensus algorithm
similar to the general form (1.2), and is equivalently written

¤v2,𝑖 = ¤̃v𝑑 − 𝜆𝑝,2
1

|N𝑖 | + 1

∑︁
𝑗∈N𝑖

(p𝑖 − p𝑗 − p𝑑,𝑖 + p𝑑,𝑗 )

− 𝜆𝑑,2
1

|N𝑖 | + 1

∑︁
𝑗∈N𝑖

(v𝑖 − v𝑗 − v𝑑,𝑖 + v𝑑,𝑗 ).
(8.10)

The null-space projector of the task in terms of the graph Laplacian is given by:

N2 = I3𝑛 − L̂ ⊗ I3 . (8.11)

Multiplying with this matrix is equivalent to taking the mean LOS accelerations of
an AUV and its neighbors. It only projects into the null space of the local formation-
keeping task consisting of a vehicle and its neighbors, and some formation errors
may result from the path-following task in spite of the null-space projection. Due to
the nature of the LOS task, this error is bounded. It can therefore be eliminated by
introducing a sliding-mode-like switching term to the formation-keeping acceleration
(8.9):

¤v2 = ¤̃v𝑑 − (L̂ ⊗ I3)
(
𝜆𝑝,2 (p − p𝑑 ) + 𝜆𝑑,2 (v − v𝑑 )

)
− 𝛾sign

(
(L̂ ⊗ I3) (𝜆𝑝,2 (p − p𝑑 ) + 𝜆𝑑,2 (v − v𝑑 ))

)
.

(8.12)

Furthermore, we add the saturation term from the centralized version of the controller
following the same arguments as in the centralized case:

¤v2 = ¤̃v𝑑 − 𝑣2,maxsat(𝜆𝑝,2 (L̂ ⊗ I3) (p − p𝑑 )) − 𝜆𝑑,2 (L̂ ⊗ I3) (v − v𝑑 )

− 𝛾sign
(
𝑣2,maxsat(𝜆𝑝,2 (L̂ ⊗ I3) (p − p𝑑 )) + 𝜆𝑑,2 (L̂ ⊗ I3) (v − v𝑑 )

)
.

(8.13)
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8.3 Path-following task

In the distributed path-following approach, each vehicle utilizes the LOS law with
ocean-current observer (6.34) derived for the centralized algorithm. We apply a con-
stant look ahead distance Δ = Δ0 for simplicity. In the LOS-law, we shall replace p𝑝

𝑏

with
p̃𝑝
𝑖
= RT

𝑝 (𝜉𝑖 ) (p𝑖 − p𝑝 (𝜉𝑖 )) − p𝑓

𝑓 ,𝑖
. (8.14)

With this choice, p̃𝑝
𝑖
= p𝑝

𝑏
when the fleet has reached the desired formation.

The desired LOS velocity is then given by

v𝐿𝑂𝑆,𝑑,𝑖 = R𝑝 [Δ, −𝑦𝑝𝑏,𝑖 ,−𝑧
𝑝

𝑏,𝑖
]T𝑈𝐿𝑂𝑆

𝐷𝑖

, (8.15)

and the commanded acceleration is given by

¤v3,𝑖 = ¤v𝐿𝑂𝑆,𝑑,𝑖 + 𝚲𝐿𝑂𝑆

(
v𝐿𝑂𝑆,𝑑,𝑖 − ṽ𝑝

𝑖
− v̂𝑐,𝑖

)
. (8.16)

The path-progress parameters 𝜉𝑖 for each vehicle are synchronized using the
following consensus law from Matouš, Pettersen, Varagnolo and Paliotta (2023a):

¤𝜉𝑖 = 𝑈𝐿𝑂𝑆





 𝜕p𝑝 (𝜉𝑖 )
𝜕𝜉





−1 ©­­«
Δ

𝐷𝑖

+ 𝑘𝜉
𝑥
𝑝

𝑖√︃
1 + (𝑥𝑝

𝑖
)2

ª®®¬ + 𝑐𝜉
∑︁
𝑗∈N𝑖

(𝜉 𝑗 − 𝜉𝑖 ). (8.17)

The consensus law ensures that the along-path progress remains synchronized for all
vehicles.

In simulations, we experienced better results using the following sliding-mode con-
troller to make the path-following velocity converge to v𝐿𝑂𝑆 compared to analytically
differentiating v𝐿𝑂𝑆 like in (8.16):

¤v3,𝑖 = 𝚲𝐿𝑂𝑆 (v𝐿𝑂𝑆,𝑑,𝑖 − v𝑖 − ¤R𝑝p𝑓

𝑓 ,𝑖
) − 𝛾3sign(v𝐿𝑂𝑆,𝑑,𝑖 − v𝑖 − ¤R𝑝p𝑓

𝑓 ,𝑖
). (8.18)

The rationale behind this choice is that when the formation task is at steady state, the
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total velocity can be decomposed into formation-keeping and path-following velocity:

v𝑖 = v𝑓 ,𝑖 + v𝑝,𝑖 = ¤R𝑝p𝑓

𝑓 ,𝑖
+ v𝑝,𝑖 . (8.19)

Using this equation we calculate the desired steady-state path-following velocity v𝑝,𝑖
which we insert in (8.18). When the path-following velocity converges to v𝐿𝑂𝑆,𝑑 for
all vehicles, the fleet should eventually approach the desired path.

8.4 Alternative distributed NSB

In this section, we present a different approach to making the second-order NSB
method distributed. Unlike our previously presented novel approach, this alternative
method utilizes consensus laws to update estimates of the barycenter position and
velocity, rather than employing a direct consensus control law. The approach follows
directly by extending the first-order solution from Matouš, Pettersen, Varagnolo and
Paliotta (2023a) to work with our second-order NSB algorithm. While we only consider
formation-keeping and path-following tasks, it is worth noting that the collision avoid-
ance task can also be adapted in a similar manner as described in Matouš, Pettersen,
Varagnolo and Paliotta (2023a). This section first presents the most important details of
the first-order method and then shows how we extend it to work in the second-order
context.

In the first-order method, only an estimate for the barycenter position is needed,
and its consensus-based update law is given by

¤p𝑏,𝑖 = v𝐿𝑂𝑆,𝑖 + 𝑘𝑏 (p𝑖 − R𝑝p𝑓

𝑓 ,𝑖
− p𝑏,𝑖 ) + 𝑐𝑏

∑︁
𝑗∈N𝑖

(p𝑏,𝑗 − p𝑏,𝑖 ). (8.20)

For the path-following task, this estimate is inserted directly into the line-of-sight
velocity equation (6.20) to obtain v𝐿𝑂𝑆,𝑖 . The formation-keeping velocity is chosen as

v2,𝑖 =
¤̂𝝈2,𝑖,𝑑 − 𝚲2 (𝝈2,𝑖 − 𝝈2,𝑖,𝑑 ), (8.21)
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where

𝝈2,𝑖 = p𝑖 − p𝑏,𝑖 , 𝝈2,𝑖,𝑑 = R𝑝p𝑓

𝑓 ,𝑖
. (8.22)

The output of the controller is the total desired velocity of the vehicle, which is
forwarded to the low-level control

v𝑖 = v𝐿𝑂𝑆,𝑖 + v2,𝑖 . (8.23)

We modify this approach to work with the second-order method by extending the
estimator for the barycenter position to also estimate the barycenter velocity. The
update law is given by

¤p𝑏,𝑖 = v𝑏,𝑖 + 𝑘𝑏,11 (p𝑖 − R𝑝p𝑓

𝑓 ,𝑖
− p𝑏,𝑖 ) + 𝑘𝑏,12 (v𝑖 − ¤R𝑝p𝑓

𝑓 ,𝑖
− v𝑏,𝑖 )

𝑐𝑏,11
∑︁
𝑗∈N𝑖

(p𝑏,𝑗 − p𝑏,𝑖 ) + 𝑐𝑏,12
∑︁
𝑗∈N𝑖

(v𝑏,𝑗 − v𝑏,𝑖 ),
(8.24)

¤v𝑏,𝑖 = ¤v𝐿𝑂𝑆,𝑖 + 𝑘𝑏,21 (p𝑖 − R𝑝p𝑓

𝑓 ,𝑖
− p𝑏,𝑖 ) + 𝑘𝑏,22 (v𝑖 − ¤R𝑝p𝑓

𝑓 ,𝑖
− v𝑏,𝑖 )

𝑐𝑏,21
∑︁
𝑗∈N𝑖

(p𝑏,𝑗 − p𝑏,𝑖 ) + 𝑐𝑏,22
∑︁
𝑗∈N𝑖

(v𝑏,𝑗 − v𝑏,𝑖 ),
(8.25)

where𝑘𝑏,𝑖 𝑗 and 𝑐𝑏,𝑖 𝑗 are positive gains. The intuition for the update law is that p𝑖−R𝑝p𝑓

𝑓 ,𝑖

and v𝑖 − ¤R𝑝p𝑓

𝑓 ,𝑖
serve as estimates of the barycenter position and velocity for each

individual vehicle. This concept aligns with the idea presented in the barycenter
estimate from our novel approach (8.14). Thus, the terms associated with controller
gain 𝑘𝑏,𝑖 𝑗 serve as feedback from the vehicle’s position and velocity. On the other hand,
the terms with gain 𝑐𝑏, 𝑖 𝑗 act as consensus terms, ensuring that all vehicles eventually
converge to the same estimate of the barycenter.

Given the barycenter estimates, the formation-keeping acceleration is given by

¤v2,𝑖 =
¥̂𝝈2,𝑖,𝑑 − 𝚲𝑑,2 ( ¤̂𝝈2,𝑖 − ¤̂𝝈2,𝑖,𝑑 ) − 𝑣2,maxsat(𝚲𝑝,2 (𝝈2,𝑖 − 𝝈2,𝑖,𝑑 )) . (8.26)

The path-following acceleration is given by directly inserting the barycenter position
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and velocity estimates p𝑏,𝑖 and v𝑏,𝑖 into the equations of the centralized method (6.20),
(6.22), and (6.23). The path-parameter update law is given by (8.17).

Similarly to the centralized method, the final commanded acceleration is the sum
of the path-following and formation-keeping accelerations

𝝁𝑖 = ¤v2,𝑖 + ¤v𝐿𝑂𝑆,𝑖 , (8.27)

which concludes the definition of the controller.



Chapter 9

Closed-Loop Analysis of the
Distributed NSB Method

This chapter studies the stability properties of the novel distributed NSB control law.
We show that the formation-keeping task and path-following tasks are asymptotically
stable. We do not consider the alternative distributed formulation from Section 8.4, as
it is very similar to the method presented in Matouš, Pettersen, Varagnolo and Paliotta
(2023a), and the stability analysis should follow directly from combining their results
with our results from the centralized method in Chapter 7.

We consider nominal operation in which no collision avoidance task is active. The
control input is given by

𝝁𝑖 = 𝝁 𝑓 ,𝑖 + 𝝁𝑝,𝑖 , (9.1)

where 𝝁 𝑓 ,𝑖 and 𝝁𝑝,𝑖 are defined by:

𝝁 𝑓 ,𝑖 B ¤v2,𝑖 , 𝝁𝑝,𝑖 B
1

|N𝑖 | + 1
©­«¤v3,𝑖 +

∑︁
𝑗∈N𝑖

¤v3, 𝑗
ª®¬ . (9.2)

We note that by the definition of the LOS path-following task, ∥𝝁𝑝,𝑖 ∥ is bounded and
we denote the upper bound by 𝜇𝑝 .

69
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9.1 Formation-keeping task
In this section, we analyze the stability of the formation-keeping task. Following ideas
from Restrepo et al. (2022) we analyze the stability of the edges in the communication
graph. The fleet has achieved the desired formation if and only if the edge errors are
zero. We simplify the analysis by considering a piecewise linear saturation function
instead of the tanh-based function (6.18):

sat(x) =


x, ∥x∥ < 1,
x
∥x∥ , ∥x∥ ≥ 1.

(9.3)

We also replace the discontinuous sign(𝑥) function in (8.13) by element-wise applying
sat( 𝑥

𝜀
) as is a common practice to reduce chattering (Khalil; 2002).

The formation-keeping acceleration is then given by

¤v2 = ¤̃v𝑑 − 𝑣2,maxsat(𝜆𝑝,2 (L̂ ⊗ I3) (p − p𝑑 )) − 𝜆𝑑,2 (L̂ ⊗ I3) (v − v𝑑 )

− 𝛾sat
(

1
𝜀
(𝑣2,maxsat(𝜆𝑝,2 (L̂ ⊗ I3) (p − p𝑑 )) + 𝜆𝑑,2 (L̂ ⊗ I3) (v − v𝑑 ))

)
.

(9.4)

Although the same saturation function is used to approximate two different functions,
we note that 1

𝜀
≫ 𝜆𝑝,2. In the first use case, the function is used to saturate the

control effort at high errors, whereas, in the second use case, the saturation function
approximates the sign(𝑥) function and approaches it in the limit 𝜀 → 0.

9.1.1 Closed-loop dynamics

For this analysis, we introduce the incidence matrix E ∈ R𝑛×𝑚 of the communication
graph G, where 𝑛 and 𝑚 represent the number of nodes and edges in the graph,
respectively. The elements of E are defined as follows:

E𝑖 𝑗 =


−1, if node 𝑖 is the terminal node of edge 𝑒 𝑗 ,

1, if node 𝑖 is the initial node of edge 𝑒 𝑗 ,

0, otherwise.

(9.5)



9.1. FORMATION-KEEPING TASK 71

The edge states of the communication graph are then given by

z1 = (ET ⊗ I3)p, (9.6a)

z2 = (ET ⊗ I3)v, (9.6b)

furthermore, the graph Laplacian is given by

L = EET. (9.7)

In line with the insights from Restrepo et al. (2022), our goal is to derive a reduced
system that is easier to analyze with Lyapunov theory. Building upon the findings
of Zelazo et al. (2007), it is possible to reorganize the edge labels, resulting in an
expression of the incidence matrix as

E = [E𝑡 E𝑐 ], (9.8)

where E𝑡 ∈ R𝑛×𝑛−1 denotes the full-column-rank incidence matrix corresponding
to a spanning tree G𝑡 ⊆ G and E𝑐 ∈ R𝑛×(𝑚−𝑛+1) represent the incidence matrix of
the remaining edges. Furthermore, an alternative representation of the full incidence
matrix is given by

E = E𝑡R, (9.9)

R B [I𝑛−1 T], T B (Et
TE𝑡 )−1ET

𝑡 E𝑐 . (9.10)

Consequently, the Laplacian of the full communication graph can be written as

L = E𝑡RRTET
𝑡 . (9.11)

We let the reduced system error states be given by the edges of an arbitrary
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spanning tree of G:

z̃𝑡,1 = (ET
𝑡 ⊗ I3) (p − p𝑑 ), (9.12a)

z̃𝑡,2 = (ET
𝑡 ⊗ I3) (v − v𝑑 ), (9.12b)

where p𝑑 and v𝑑 are given by (8.5). We rewrite the formation acceleration (8.13) in
terms of the error states:

𝝁 𝑓 = ¤̃v𝑑 − 𝑣2,maxsat
(
𝜆𝑝,2 (DE𝑡RRT ⊗ I3)z̃1

)
− 𝜆𝑑,2 (DE𝑡RRT ⊗ I3)z̃2

− 𝛾sat
(

1
𝜀
(𝑣2,maxsat

(
𝜆𝑝,2 (DE𝑡RRT ⊗ I3)z̃1

)
+ 𝜆𝑑,2 (DE𝑡RRT ⊗ I3)z̃2)

)
,

(9.13)

where D is the scaling matrix

D B diag
(

1
|N1 | + 1

, . . . ,
1

|N𝑛 | + 1

)
. (9.14)

The error-system dynamics are given by

¤̃z𝑡,1 = z̃𝑡,2, (9.15a)
¤̃z𝑡,2 = (E𝑡 ⊗ I3)T (𝝁 𝑓 + 𝝁𝑝 − ¤̃v𝑑 ). (9.15b)

9.1.2 Closed-loop stability

We analyze the system using techniques from sliding-mode control. Parts of the proof
closely follow insights from the proof of (Khalil; 2002, Theorem 14.1).

Let the sliding surface s be given by

s = 𝜆𝑑,2z̃𝑡,2 + 𝑣2,max


𝜆𝑝,2z̃𝑡,1, ∥𝜆𝑝,2 (DEtRRT ⊗ I3)z𝑡,1∥ < 1,

z̃𝑡,1
∥ (DEtRRT⊗I3 ) z̃𝑡,1 ∥ , otherwise.

(9.16)
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On the sliding surface, the dynamics of the error subsystem (9.15a) are given by

¤̃z𝑡,1 = −𝑣2,max

𝜆𝑑,2


𝜆𝑝,2z̃𝑡,1, ∥𝜆𝑝,2 (DEtRRT ⊗ I3)z𝑡,1∥ < 1,

z̃𝑡,1
∥ (DEtRRT⊗I3 ) z̃𝑡,1 ∥ , otherwise,

(9.17)

which is USGES. When z̃𝑡,1 is inside the ball B1 B {z̃𝑡,1 : ∥z̃𝑡,1∥ < 1
𝜆𝑝,2𝜎

2
max

}, where 𝜎max

is the largest singular value of (DEtRRT ⊗ I3), the system is exponentially stable due to
the negative linear feedback. Outside the ball B1, the system is asymptotically stable
which we show with the Lyapunov candidate function

𝑉𝑧 (z̃𝑡,1) =
1
2

z̃T
𝑡,1z̃𝑡,1. (9.18)

The time derivative of 𝑉𝑧 along the trajectories of (9.17) when the system is outside
the linear region is bounded by

¤𝑉𝑧 ≤ − 𝑣2,𝑚𝑎𝑥

𝜆𝑑,2𝜎
2
𝑚𝑎𝑥

∥z̃𝑡,1∥, (9.19)

which results in asymptotic stability. Furthermore, it holds for any z̃𝑡,1 ∈ {z̃𝑡,1 ∈
R3𝑛−3 : ∥z̃𝑡,1∥ ≤ 𝑟 } that

¤𝑉𝑧 ≤ − 𝑣2,𝑚𝑎𝑥

𝜆𝑑,2𝜎
2
𝑚𝑎𝑥𝑟

∥z̃𝑡,1∥2. (9.20)

Thus, all requirements for (Pettersen; 2017, Theorem 5) are satisfied, and the system is
USGES. Moreover, as a result, when s is non-zero it can be shown that

¤𝑉𝑧 ≤ −𝛼3 (∥z̃𝑡,1∥), ∀∥z̃𝑡,1∥ ≥
𝜆𝑑,2

𝑣2,max𝜆𝑝,2
∥s∥, ∥s∥ ≤ 𝑣2,max

𝜎2
max

, (9.21)

for someK∞ class function 𝛼3 which implies local input-to-state stability of the system
when s is viewed as the input.

The control input 𝝁 𝑓 can be written in terms of the sliding variable as follows

𝝁 𝑓 = ¤̃𝑣𝑑 − (DEtRRT ⊗ I3)s − 𝛾sat
(

1
𝜀
(DEtRRT ⊗ I3)s

)
. (9.22)
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The time derivative of the sliding variable along the trajectories of (9.15) is given by

¤s = − 𝜆𝑑,2

(
(ET

t DEtRRT ⊗ I3)s + ET
𝑡 𝛾sat

(
1
𝜀
(DEtRRT ⊗ I3)s

)
− (ET

𝑡 ⊗ I3)𝝁𝑝
)
+ 𝑣2,max


𝜆𝑝,2z̃2, ∥𝜆𝑝,2 (DEtRRT ⊗ I3)z̃𝑡,1∥ < 1,

0, otherwise.

(9.23)

Consider the following Lyapunov function

𝑉𝑠 (s) =
1
2

sT (RRT ⊗ I3)s. (9.24)

The matrix RRT evaluates to the following:

RRT = I𝑛−1 +
(
(Et

TE𝑡 )−1ET
𝑡 E𝑐

) (
(Et

TE𝑡 )−1ET
𝑡 E𝑐

)T
. (9.25)

The product of a matrix with its transpose is always at least positive semi-definite, and
the sum of a positive definite matrix and a positive semi-definite matrix is positive
definite. Therefore RRT is positive definite and 𝑉 is a valid Lyapunov function.

The time derivative of 𝑉 is given by

¤𝑉𝑠 = − 𝜆𝑑,2sT (RRTET
t DEtRRT ⊗ I3)s

− 𝜆𝑑,2sT (RRTET
𝑡 ⊗ I3)𝛾sat

(
1
𝜀
(DEtRRT ⊗ I3)s

)
+ sT (RRTET

𝑡 ⊗ I3)
(
𝜆𝑑,2𝝁𝑝

+ 𝑣2,max


𝜆𝑝,2 (v − v𝑑 ), ∥𝜆𝑝,2 (DEtRRT ⊗ I3)z̃𝑡,1∥ < 1,

0, otherwise

)
.

(9.26)

From (Zelazo et al.; 2007, Theorem 3.3), the null-space of E𝑡 is empty, and the null-space
of RRT is empty because it is a positive definite matrix. Then, RRTET

𝑡 DE𝑡RRT is positive
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definite:

xTRRTET
𝑡 DE𝑡RRTx = ∥D1/2E𝑡RRTx∥2

2 > 0, ∀x ≠ 0. (9.27)

We now introduce the following change of variables

ŝ B (EtRRT ⊗ I3)s, (9.28)

and note the following bound

𝝁𝑝,𝑖 +
𝑣2,max𝜆𝑝,2

𝜆𝑑,2
(v𝑖 − v𝑑,𝑖 ) ≤ 𝜇𝑝 +

𝑣2,max𝜆𝑝,2

𝜆𝑑,2
|v𝑖 − v𝑑,𝑖 | B 𝜌 (v𝑖 ). (9.29)

We let 𝛾 be a function of the velocity so that 𝛾𝑖 = 𝜌 (v𝑖 ) + 𝛽0 for some constant 𝛽0 > 0.
Now, (9.26) can be bounded by

¤𝑉𝑠 ≤ 𝜆𝑑,2

3𝑛∑︁
𝑖=1

−𝛾𝑖 ŝ𝑖sat(
√

D𝑖𝑖

𝜀
ŝ𝑖 ) + |ŝ𝑖 |𝜌 (v𝑖 ). (9.30)

Consider every element of the sum separately. In the region |ŝ𝑖 | ≥ 𝜀√
D𝑖𝑖

, we have

¤𝑉𝑠,𝑖 ≤ 𝜆𝑑,2 (−𝛾𝑖 + 𝜌 (v𝑖 )) |ŝ𝑖 | ≤ −𝜆𝑑,2𝛽0 |ŝ𝑖 |. (9.31)

This bound shows that whenever |ŝ𝑖 (0) | > 𝜀√
D𝑖𝑖

, |ŝ𝑖 (𝑡) | will decrease until it reaches
the set {ŝ𝑖 : |ŝ𝑖 | ≤ 𝜀√

D𝑖𝑖
} in finite time and remains inside thereafter. We note that in

practice, the velocity is upper bounded by the vehicle’s maximum operating speed and
𝛾𝑖 can therefore be chosen as a constant.

Wewill now show that the system is bounded and, in the limit 𝜀 → 0, asymptotically
stable. This part of the analysis closely follows (Khalil; 2002, Theorem 14.1). Consider
a positive constant 𝑐 and the following chain of implications

|ŝ𝑖 | ≤ 𝑐 ∀ 𝑖 ∈ {1, . . . , 𝑛} =⇒ ∥ŝ∥ ≤ 𝑘1𝑐 =⇒ ∥s∥ ≤ 𝑘1𝑐

𝜎2
min

, (9.32)
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where 𝑘1 is some positive constant and 𝜎min is the smallest singular value of EtRRT.
Following (9.21), if we choose 𝑐 ≤ 𝑣2,max𝜎

2
min

𝑘1𝜎
2
max

, then,

𝑉𝑧 (z̃𝑡,1) ≥
1
2

(
𝜆𝑑,2𝑘1𝑐

𝑣2,max𝜆𝑝,2𝜎
2
min

)2

=⇒ ∥z̃𝑡,1∥ ≥
𝜆𝑑,2𝑘1𝑐

𝑣2,max𝜆𝑝,2𝜎
2
min

≥
𝜆𝑑,2∥s∥
𝑣2,max𝜆𝑝,2

=⇒ ¤𝑉𝑧 ≤ −𝛼3 (∥z̃𝑡,1∥) ≤ −𝛼3

(
𝜆𝑑,2𝑘1𝑐

𝑣2,max𝜆𝑝,2

)
,

(9.33)

which shows that the set {z̃𝑡,1 : 𝑉𝑧 (z̃𝑡,1) ≤ 𝑐0} with 𝑐0 ≥ 1
2

(
𝜆𝑑,2𝑘1𝑐

𝑣2,max𝜆𝑝,2𝜎
2
min

)2
is positively

invariant because ¤𝑉 is negative on the boundary𝑉𝑧 (z̃𝑡,1) = 𝑐0. Consequently, it follows
that the set

Ω =
{
z̃𝑡,1 : 𝑉𝑧 (z̃𝑡,1) ≤ 𝑐0

}
× {s : |ŝ𝑖 | ≤ 𝑐 ∀ 1 ≤ 𝑖 ≤ 𝑛} , (9.34)

is positively invariant when 𝑐 ≥ 𝜀√
D𝑖𝑖

. It serves as an estimate of the control law’s
region of attraction. After some finite time, we have |ŝ𝑖 | ≤ 𝜀√

D𝑖𝑖
. It follows from (9.18)

and (9.21) that ¤𝑉𝑧 ≤ −𝛼3

(
𝜆𝑑,2𝑘1𝜀

𝑣2,max𝜆𝑝,2𝜎
2
min

)
for all 𝑉𝑧 (z̃𝑡,1) ≥ 1

2

(
𝜆𝑑,2𝑘1𝜀

𝑣2,max𝜆𝑝,2𝜎
2
min

)2
. Therefore,

the trajectories will eventually reach the positive invariant set

Ω𝜀 =

z̃𝑡,1 : 𝑉𝑧 (z̃𝑡,1) ≤
1
2

(
𝜆𝑑,2𝑘1𝜀

𝑣2,max𝜆𝑝,2𝜎
2
min

)2 ×
{
s : |ŝ𝑖 | ≤

𝜖
√

D𝑖𝑖

∀ 1 ≤ 𝑖 ≤ 𝑛

}
. (9.35)

The set Ω𝜀 can be made arbitrarily small by choosing 𝜀 small enough. In the limit, Ω𝜀

shrinks to the origin and the system is asymptotically stable.

Lemma 9.1. Let the fleet communication graph G be connected, and let 𝜆𝑝,2, 𝜆𝑑,2, 𝑣2,max,
𝛽0, and 𝜀 be positive constants and choose 𝛾𝑖 so that

𝛾𝑖 ≥ 𝛽0 + 𝜇𝑝 +
𝑣2,max𝜆𝑝,2

𝜆𝑑,2
|v𝑖 − v𝑑,𝑖 |. (9.36)

Then, for all z̃𝑡 (0) ∈ Ω, defined by (9.34), the system (9.15) subject to controller (9.13)
reaches the positively invariant set Ω𝜀 , defined by (9.35), in finite time. In the limit 𝜀 → 0
the set Ω𝜀 reduces to the origin and the system is asymptotically stable.
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We further note that the sliding-variable subsystem is globally asymptotically
stable because ¤𝑉𝑠,𝑖 for all 𝑖 , given by (9.31), is globally negative. Therefore, when the
system starts outside of Ω the states z̃𝑡,1 may initially grow as ¤𝑉𝑧 ≥ 0, but there exists
a time 𝑇 > 0 after which ∥s∥ ≤ 𝑣2,max

𝜎2
max

and thus ¤𝑉𝑧 ≤ −𝛼3 (∥z̃𝑡,1∥). We can therefore
conclude that the system is globally ultimately bounded. Furthermore, because the
sliding variables are saturated in position, any initial configuration with zero initial
velocity will be within the set Ω.

9.2 Path-following task

In this section, we will analyze the stability of the path-following task. Similarly to the
analysis of the centralized control law we will use cascaded system theory to analyze
the perturbed LOS dynamics. The following analysis largely follows insights from
Matouš, Pettersen, Varagnolo and Paliotta (2023a). To simplify analysis we assume
that the desired path is a straight line. Consequently, the rotation matrix R𝑝 is constant
and independent of 𝜉 , and the path function is given by

p𝑝 (𝜉) = p0 + R𝑝 [𝜉, 0, 0]T. (9.37)

We also assume that there is no ocean current.

9.2.1 Closed-loop dynamics

In this section, we derive the closed-loop equations for the error variables.

In the case of straight-line paths, the path-following task acceleration can be
simplified to

¤v3,𝑖 = ¤v𝐿𝑂𝑆,𝑑,𝑖 + Λ𝐿𝑂𝑆 (v𝐿𝑂𝑆,𝑑,𝑖 − v𝑖 ), (9.38)
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where the desired LOS acceleration is given by

¤v𝐿𝑂𝑆,𝑑 = R𝑝

[
0,−¤𝑦𝑝

𝑏
,−¤𝑧𝑝

𝑏

]T 𝑈𝐿𝑂𝑆

𝐷

− R𝑝

[
Δ,−𝑦𝑝

𝑏
,−𝑧𝑝

𝑏

]T 𝑈𝐿𝑂𝑆

𝐷2
¤𝐷.

(9.39)

The actually applied acceleration is given by 𝝁𝑝,𝑖 from (9.2), however, because the
communication graph is undirected, the following holds

𝑛∑︁
𝑖=1

𝝁𝑝,𝑖 =
𝑛∑︁
𝑖=1

1
|N𝑖 | + 1

©­«¤v3,𝑖 +
∑︁
𝑗∈N𝑖

¤v3, 𝑗
ª®¬ =

𝑛∑︁
𝑖=1

¤v3,𝑖 . (9.40)

The local averaging can therefore be disregarded in the following analysis.

Also following the straight-line simplification, the barycenter kinematics are given
by

¤p𝑝
𝑏
= RT

𝑝

(
1
𝑛

𝑛∑︁
𝑖=1

v𝑖 − ¤p𝑝 (𝑠)
)
,

=
1
𝑛

𝑁∑︁
𝑖=1

RT
𝑝

(
v𝐿𝑂𝑆,𝑑,𝑖 + ṽ𝑖

)
− [ ¤𝜉, 0, 0]T .

(9.41)

The velocity error ṽ𝑖 is defined as

ṽ𝑖 = v𝑖 − v𝐿𝑂𝑆,𝑑,𝑖 , (9.42)

and we analyze the dynamics of the sum
∑𝑛

𝑖=1 ṽ𝑖 :

𝑛∑︁
𝑖=1

¤̃v𝑖 =
𝑛∑︁
𝑖=1

¤v3,𝑖 + 𝝁 𝑓 ,𝑖 − ¤v𝐿𝑂𝑆,𝑑,𝑖 ,

= −
𝑛∑︁
𝑖=1

Λ𝐿𝑂𝑆 ṽ𝑖 .

(9.43)

This system is linear and exponentially stable. The consensus-based formation-keeping
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accelerations cancel out in the sum due to the undirected communication graph.

Each individual vehicle’s estimate of the barycenter is given by

p̃𝑝
𝑖
= RT

𝑝 (p𝑖 − p𝑝 (𝜉𝑖 ) − R𝑝p𝑓

𝑓 ,𝑖
). (9.44)

The barycenter error is then defined as

p̃𝑝
𝑏,𝑖

= p̃𝑝
𝑖
− p𝑝

𝑏
. (9.45)

The barycenter error is directly dependent on the formation-keeping error z̃𝑡,1, which
is bounded or asymptotically stable according to Lemma 9.1. To show this, we first
define the "true" path-progress parameter 𝜉 as the mean of the individual estimates:

𝜉 B
1
𝑛

𝑛∑︁
𝑖=1

𝜉𝑖 . (9.46)

Then, we rewrite the barycenter equation:

p𝑝
𝑏
= RT

𝑝 (
1
𝑛

𝑛∑︁
𝑖=0

p𝑖 − p𝑝 ),

= R𝑇
𝑝 (

1
𝑛

𝑛∑︁
𝑖=0

p𝑖 −
1
𝑛

𝑛∑︁
𝑖=1

(p𝑝,0 + R𝑝 [𝜉𝑖 , 0, 0]T + R𝑝p𝑓

𝑓 ,𝑖
)),

= RT
𝑝 (

1
𝑛

1T
𝑛,1 ⊗ I3) (p − p𝑑 ).

(9.47)

Here, we used the straight-line assumption and the fact that the formation vectors p𝑓

𝑓 ,𝑖

sum to zero. We furthermore rewrite (9.44) in the simplified form

p̃𝑝
𝑖
= RT

𝑝 (p𝑖 − p𝑑,𝑖 ). (9.48)

Now, the barycenter error P̃𝑝

𝑏
B [p̃𝑝

𝑏,1, . . . , p̃
𝑝

𝑏,𝑛
]T can be written in the following form

P̃𝑝

𝑏
= (I𝑛 ⊗ RT

𝑝 ) (I𝑛 − 1
𝑛

1𝑛,𝑛 ⊗ I3) (p − p𝑑 ), (9.49)
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where I𝑛 − 1
𝑛

1𝑛,𝑛 can be recognized as the scaled Laplacian matrix of a fully connected
graph with 𝑛 nodes. Consequently, following (9.11) and (9.12a), (9.49) can be rewritten
in the following way:

P̃𝑝

𝑏
= (I𝑛 ⊗ RT

𝑝 ) (
1
𝑛

L𝐹 ⊗ I3) (p − p𝑑 ),

= (I𝑛 ⊗ RT
𝑝 ) (

1
𝑛

E𝑡RRTET
𝑡 ⊗ I3) (p − p𝑑 ),

= (I𝑛 ⊗ RT
𝑝 ) (

1
𝑛

E𝑡RRT ⊗ I3)z̃𝑡,1.

(9.50)

Thus, the barycenter norm of the barycenter error can be bounded by the following
inequality 


P̃𝑝

𝑏




 ≤ 1
𝑛



E𝑡RRT

 ∥z̃𝑡,1∥ . (9.51)

The desired LOS velocity calculated by vehicle 𝑖 can be expressed as

v𝐿𝑂𝑆,𝑑,𝑖 = v𝐿𝑂𝑆,𝑑 + ṽ𝐿𝑂𝑆,𝑑,𝑖 , (9.52)

where
ṽ𝐿𝑂𝑆,𝑑,𝑖 = R𝑝 [Δ, −𝑦𝑝𝑖 ,−𝑧

𝑝

𝑖
]T𝑈𝐿𝑂𝑆

𝐷𝑖

− R𝑝 [Δ, −𝑦𝑝𝑏 ,−𝑧
𝑝

𝑏
]T𝑈𝐿𝑂𝑆

𝐷
. (9.53)

It follows that ṽ𝐿𝑂𝑆,𝑑,𝑖 = 0 if p̃𝑏,𝑖 = 0. Furthermore, it can be shown that the norm of
the LOS velocity error satisfies the following inequality

∥ṽ𝐿𝑂𝑆,𝑑,𝑖 ∥ ≤ 𝑈𝐿𝑂𝑆

Δ
∥p̃𝑏,𝑖 ∥. (9.54)

We will now derive the closed-loop expression for the path-parameter error 𝜉𝑖 =
𝜉𝑖 − 𝜉 . First, a closed-loop expression for ¤𝜉 is given by

¤𝜉 =
1
𝑛

𝑛∑︁
𝑖=1

¤𝜉𝑖 =
1
𝑛

𝑛∑︁
𝑖=1

𝑈𝐿𝑂𝑆

©­­«
Δ

𝐷𝑖

+ 𝑘𝜉
𝑥
𝑝

𝑖√︃
1 + (𝑥𝑝

𝑖
)2

ª®®¬ . (9.55)

The consensus terms cancel out because the vehicles communicate over an undirected
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graph, and from the definition of a straight-line path in (9.37), it follows that ∥ 𝜕p𝑝 (𝜉 )
𝜕𝜉

∥ =
1.

We define the path parameter update errors, 𝑔1, . . . , 𝑔𝑁 , as

𝑔𝑖 = 𝑈𝐿𝑂𝑆

©­­«
Δ

𝐷𝑖

− Δ

𝐷
+ 𝑘𝜉

©­­«
𝑥
𝑝

𝑖√︃
1 + (𝑥𝑝

𝑖
)2

−
𝑥
𝑝

𝑏√︃
1 + (𝑥𝑝

𝑏
)2

ª®®¬
ª®®¬ . (9.56)

It can be shown that 𝑔𝑖 satisfies the following inequality

|𝑔𝑖 | ≤ 𝑈𝐿𝑂𝑆

(
1
Δ
+ 𝑘𝜉

)
∥p̃𝑏,𝑖 ∥ +𝑈𝐿𝑂𝑆𝑘𝜉 |𝜉𝑖 |. (9.57)

Inserting for (9.56) in (9.55) results in

¤𝜉 = 𝑈𝐿𝑂𝑆

©­­«
Δ

𝐷
+ 𝑘𝜉

𝑥
𝑝

𝑏√︃
1 + (𝑥𝑝

𝑏
)2

ª®®¬ +
1
𝑛

𝑁∑︁
𝑖=1

𝑔𝑖 . (9.58)

The time derivative of 𝜉𝑖 is given by

¤̃
𝜉𝑖 = 𝑐𝜉

∑︁
𝑖∈N𝑖

(𝜉 𝑗 − 𝜉𝑖 ) + 𝑔𝑖 −
1
𝑛

𝑛∑︁
𝑗=1

𝑔 𝑗 , (9.59)

which can be written in matrix form

¤̃
𝚵 = −𝑐𝜉L𝚵̃ + 1

𝑛
L𝐹G, (9.60)

where 𝚵̃ = [𝜉1, . . . , 𝜉𝑛]T, G = [𝑔1, . . . , 𝑔𝑛]T.
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Finally, substituting (9.52), (9.58), the barycenter dynamics (9.41) can be written as

¤p𝑝
𝑏
= −𝑈𝐿𝑂𝑆

𝑘𝜉
𝑥
𝑝

𝑏√︃
1 + (𝑥𝑝

𝑏
)2
,
𝑦
𝑝

𝑏

𝐷
,
𝑧
𝑝

𝑏

𝐷


T

+ 1
𝑛

𝑛∑︁
𝑖=1

(
R𝑇
𝑝 (ṽ𝐿𝑂𝑆,𝑑,𝑖 + ṽ𝑖 ) + 𝑔𝑖

)
.

(9.61)

9.2.2 Closed-loop stability

In this section, we will analyze the stability of the error variables 𝜉𝑖 , ṽ𝑖 , and finally
p𝑝
𝑏
. Our aim is to show uniform global asymptotic stability. We will therefore use

(Loría and Panteley; 2005, Theorem 2.1) to analyze the cascaded systems, which is
similar to (Pettersen; 2017, Proposition 9), but provides weaker stability properties
under weaker assumptions on the perturbing and perturbed systems. For convenience,
we summarize the theorem here.

Consider a cascaded system

¤x1 = 𝑓1 (𝑡, x1) + 𝑔(𝑡, x)x2, (9.62a)

¤x2 = 𝑓2 (𝑡, x2). (9.62b)

The theorem (Loría and Panteley; 2005, Theorem 2.1) states that if the nominal system

¤x1 = 𝑓1 (𝑡, x1) (9.63)

is UGAS, the trajectories of (9.62b) are uniformly globally bounded, and the following
three assumptions below are satisfied, then the solutions of system (9.62) are uniformly
globally bounded. Moreover, if the origin of system (9.62b) is UGAS, then so is the
origin of the cascade (9.62).

1. There exist constants 𝑐1, 𝑐2, 𝜂 > 0 and a Lyapunov function𝑉 (𝑡, x1) for (9.63) such
that 𝑉 : R≥0 × R𝑛 → R≥0 is positive definite, radially unbounded, ¤𝑉 (𝑡, x1) ≤ 0
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and 



 𝜕𝑉𝜕x1





 ∥x1∥ ≤ 𝑐1𝑉 , ∀ ∥x1∥ ≥ 𝜂, (9.64a)



 𝜕𝑉𝜕x1





 ≤ 𝑐2, ∀ ∥x1∥ ≤ 𝜂. (9.64b)

2. There exist two continuous functions 𝜃1, 𝜃2 : R≥0 → R≥0 such that

∥𝑔(𝑡, x)∥ ≤ 𝜃1 (∥x2∥) + 𝜃2 (∥x2∥) ∥x1∥ . (9.65)

3. There exists a class K function 𝛼 (·) such that, for all 𝑡0 ≥ 0, the trajectories of
the system (9.62b) satisfy∫ ∞

𝑡0

∥x2 (𝑡 ; 𝑡0, x2 (𝑡0))∥𝑑𝑡 ≤ 𝛼 (∥x2 (𝑡0)∥). (9.66)

Lemma 9.2. If the formation-keeping subsystem (9.15) satisfies the initial condition and
all parameter conditions of Lemma 9.1, and the consensus gain 𝑐𝜉 is chosen such that
𝑐𝜉𝜆2 > 2𝑈𝐿𝑂𝑆𝑘𝜉 , where 𝜆2 is the Fiedler eigenvalue of L, then the solutions of system
(9.60) are uniformly globally bounded. Furthermore, if 𝜀 → 0 so that the origin of the
formation-keeping subsystem (9.15) is asymptotically stable, then 𝚵̃ = 0 is a UGAS
equilibrium of (9.60).

Proof. We analyze system (9.60) as a cascade where P̃𝑝

𝑏
perturbs the dynamics of 𝚵̃

through G.

Substituting P̃𝑏 = 0 into G we get the following nominal dynamics of 𝚵̃

¤̃
𝚵 = −𝑐𝜉L𝚵̃ + 1

𝑛
L𝐹G𝜉 . (9.67)

From (9.57) the following inequality holds true for G𝜉

∥G𝜉 ∥ ≤ 𝑈𝐿𝑂𝑆𝑘𝜉 ∥𝚵̃∥ . (9.68)
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Consider the following Lyapunov function candidate

𝑉𝜉 (𝝃 ) =
1
2
𝚵̃

T
𝚵̃. (9.69)

The derivative of 𝑉𝜉 along the trajectories of (9.67) is

¤𝑉𝜉 = −𝑐𝜉 𝚵̃
T
L𝚵̃ + 1

𝑛
𝚵̃

T
L𝐹G𝜉 ≤

(
−𝑐𝜉𝜆2 + 2𝑈𝐿𝑂𝑆𝑘𝜉

)
∥𝚵̃∥2. (9.70)

We conclude that ¤𝑉𝜉 is negative definite, and the nominal system is GES, if 𝑐𝜉𝜆2 >

2𝑈𝐿𝑂𝑆𝑘𝜉 . The barycenter error P̃𝑝

𝑏
is bounded by the formation-keeping error z̃𝑡,1

which is asymptotically stable following Lemma 9.1 when 𝜀 → ∞.

We now analyze the stability of the cascaded system under the assumption that the
formation-keeping system is asymptotically stable. Consider the Lyapunov function
candidate 𝑉𝜉 . The first assumption in (Loría and Panteley; 2005, Theorem 2.1) is
satisfied with 𝑐1 = 1

2 , 𝜂 > 0, and 𝑐2 = 𝜂. The second assumption is satisfied with
𝜃1 (P̃𝑝

𝑏
) = 𝑈𝐿𝑂𝑆 ( 1

Δ + 𝑘𝜉 )∥P̃𝑝

𝑏
∥ and 𝜃2 (P̃𝑝

𝑏
) = 0.

The third assumption is shown in (Pettersen; 2017, Remark 11) to be satisfied for
systems with the properties UGAS + uniformly locally exponentially stable (ULES).
Our formation-keeping system is locally and not globally asymptotically stable, but
the results hold locally.

Since the system is ULES there exist positive constants 𝑐 , 𝑘 , 𝜆 independent on 𝑡0,
such that ∀P̃𝑝

𝑏
∈ {P̃𝑝

𝑏
: z̃𝑡,1 ∈ B1}

∥P̃𝑝

𝑏
(𝑡 ; 𝑡0, P̃𝑝

𝑏
(𝑡0))∥ ≤ 𝑘 ∥P̃𝑝

𝑏
(𝑡0)∥e−𝜆 (𝑡−𝑡0 ) ∀𝑡 ≥ 𝑡0 ≥ 0. (9.71)

Since the system is asymptotically stable there exists a class KL function 𝛽 such
that∀P̃𝑝

𝑏
∈ Ω𝑝 , where Ω𝑝 is the set of barycenter errors such that z̃𝑡,1 ∈ Ω, the following

holds:
∥P̃𝑝

𝑏
(𝑡 ; 𝑡0, P̃𝑝

𝑏
(𝑡0))∥ ≤ 𝛽 (∥P̃𝑝

𝑏
(𝑡0)∥, 𝑡 − 𝑡0) ∀𝑡 ≥ 𝑡0 ≥ 0. (9.72)

By the asymptotic stability property, we know that ∃𝑇 > 0 such that at that
𝑡 = 𝑡0 +𝑇 the solution enters the neighborhood of the origin where the convergence is
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exponential. Consequently,∫ ∞

𝑡0

∥P̃𝑝

𝑏
(𝑡 ; 𝑡0, P̃𝑝

𝑏
(𝑡0))∥𝑑𝑡 ≤

∫ 𝑡0+𝑇

𝑡0

𝛽 (∥P̃𝑝

𝑏
(𝑡0)∥, 𝑡 − 𝑡0)𝑑𝑡

+
∫ ∞

𝑡0+𝑇
𝑘 ∥P̃𝑝

𝑏
(𝑡0)∥e−𝜆 (𝑡−𝑡0 )𝑑𝑡

≤ 𝑇𝛽 (∥P̃𝑝

𝑏
(𝑡0)∥, 0) +

𝑘

𝜆
𝛽 (∥P̃𝑝

𝑏
(𝑡0)∥,𝑇 ).

(9.73)

The right hand side is a class K function 𝛼 (∥P̃𝑝

𝑏
(𝑡0)∥), and the third assumption is

satisfied.
All assumptions of (Loría and Panteley; 2005, Theorem 2.1) are satisfied, thus the

origin of the cascaded system is UGAS.
If the formation-keeping subsystem is only uniformly globally bounded, we can

instead show uniformly globally boundedness of the path-parameter error system
(9.60). The derivative of 𝑉𝜉 along the trajectories of (9.60) are bounded by

¤𝑉𝜉 ≤
(
−𝑐𝜉𝜆2 + 2𝑈𝐿𝑂𝑆𝑘𝜉

)
∥𝚵̃∥2 + 2𝑈𝐿𝑂𝑆 (

1
Δ
+ 𝑘𝜉 )

(
sup
𝑡

∥P̃𝑝

𝑏
(𝑡)∥

)
∥𝚵̃∥ . (9.74)

Which is negative outside the ball

B2 B

{
∥𝚵̃∥ : ∥𝚵̃∥ ≥

2𝑈𝐿𝑂𝑆 ( 1
Δ + 𝑘𝜉 )(

2𝑈𝐿𝑂𝑆𝑘𝜉 − 𝑐𝜉𝜆2
) (

sup
𝑡

∥P̃𝑝

𝑏
(𝑡)∥

)}
. (9.75)

Therefore, the solutions to the system (9.60) will remain bounded if the formation-
keeping errors remain bounded.

□

Now, we analyze the path-following subsystem (9.61)

Lemma 9.3. The origin p𝑝
𝑏
is a UGAS equilibrium of the subsystem (9.61) if the formation-

keeping task satisfies the asymptotic stability conditions of Lemma 9.1 and the positive
parameters 𝑐𝜉 , 𝑘𝜉 ,𝑈𝐿𝑂𝑆 are chosen such that 𝑐𝜉𝜆2 > 2𝑈𝐿𝑂𝑆𝑘𝜉 . Moreover, if the formation-
keeping task is not asymptotically stable but ultimately bounded, then the trajectories of
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subsystem (9.61) are ultimately bounded as well.

Proof. Similarly to the previous lemma and the proof of Theorem 7.2 we analyze the
system as a cascade where 𝚵̃, P̃𝑝

𝑏
and Ṽ = [ṽ1, . . . , ṽ𝑛]T perturbs the dynamics of p𝑝

𝑏

through Ṽ𝐿𝑂𝑆,𝑑 , Ṽ and G. The nominal system

¤p𝑝
𝑏
= −𝑈𝐿𝑂𝑆

𝑘𝜉
𝑥
𝑝

𝑏√︃
1 + (𝑥𝑝

𝑏
)2
,
𝑦
𝑝

𝑏

𝐷
,
𝑧
𝑝

𝑏

𝐷


T

, (9.76)

was proved USGES in Matouš, Pettersen, Varagnolo and Paliotta (2023b) and we
restated the proof in our proof of Theorem 7.2.

Consider the Lyapunov function candidate

𝑉𝑏 (p𝑝𝑏 ) =
1
2
(p𝑝

𝑏
)Tp𝑝

𝑏
. (9.77)

Similarly to the previous lemma, Assumption 3 in (Loría and Panteley; 2005, Theorem
2.1) is satisfied with 𝑐1 =

1
2 , an arbitrary 𝜂 > 0, and 𝑐2 = 𝜂.

Let h denote the perturbing term in (9.61):

h =
1
𝑛

𝑛∑︁
𝑖=1

(
R𝑇
𝑝 (ṽ𝐿𝑂𝑆,𝑑,𝑖 + ṽ𝑖 ) + 𝑔𝑖

)
. (9.78)

From (9.54) and (9.57), we arrive at the following upper bound on the norm of h

∥h∥ ≤
(
2
𝑈𝐿𝑂𝑆

Δ
+𝑈𝐿𝑂𝑆𝑘𝜉

)
∥P̃𝑏 ∥ +𝑈𝐿𝑂𝑆𝑘𝜉 ∥𝚵̃∥ + ∥Ṽ∥,

≤
(
2
𝑈𝐿𝑂𝑆

Δ
+𝑈𝐿𝑂𝑆𝑘𝜉 + 1

) 


[P̃𝑏, 𝚵̃, Ṽ
]


 . (9.79)

Consequently, Assumption 4 in (Loría and Panteley; 2005, Theorem 2.1) is satisfied
with 𝜃1 = (2𝑈𝐿𝑂𝑆

Δ +𝑈𝐿𝑂𝑆𝑘𝜉 + 1) and 𝜃2 = 0.
Assumption 5 in (Loría and Panteley; 2005, Theorem 2.1) is trivially satisfied for Ṽ

because of exponential stability. It was shown to be satisfied for P̃𝑏 in the previous
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lemma, and it is satisfied for 𝚵̃ because the dynamics of 𝚵̃ are UGAS and there exists a
time 𝑇 after which it is USGES when the formation-keeping subsystem has entered
the locally-exponentially-stable neighborhood.

All necessary assumptions of (Loría and Panteley; 2005, Theorem 2.1) are satisfied,
and the path-following subsystem (9.61) is UGAS.

In the case when the formation-keeping subsystem is not asymptotically stable, but
ultimately bounded, it can be shown similarly to the previous lemma that the solution
to (9.61) remains bounded. The boundedness comes as a result of the perturbations
entering the cascade linearly, i.e. 𝜃2 = 0, and the nominal system being USGES. □

9.3 Stability of the full system

By combining the three previous lemmas we present the following theorem on the
stability of the full system.

Theorem 9.4. Let the fleet communication graph G be connected, and let 𝜆𝑝,2, 𝜆𝑑,2,
𝑣2,max, 𝛽0, and 𝜀 be positive constants and choose 𝛾𝑖 so that

𝛾𝑖 ≥ 𝛽0 + 𝜇𝑝 +
𝑣2,max𝜆𝑝,2

𝜆𝑑,2
|v𝑖 − v𝑑,𝑖 |. (9.80)

Furthermore, let the consensus gain 𝑐𝜉 be chosen so that 𝑐𝜉𝜆2 > 2𝑈𝐿𝑂𝑆𝑘𝜉 , where 𝜆2 is the
Fiedler eigenvalue of L, and let 𝑘𝜉 , Δ, and 𝑈𝐿𝑂𝑆 be positive constants. Then, for all initial
conditions [p(0)T, v(0)T]T ∈ R6𝑛 such that z̃𝑡 (0) ∈ Ω, defined by (9.34), the trajectories
of (9.15) and (9.61) remain ultimately bounded. Furthermore, when 𝜀 → 0 the origin of
the system is asymptotically stable.
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Chapter 10

Simulations in MATLAB

Simulations are a powerful tool for evaluating the performance of multi-agent systems
in various scenarios. In this chapter, we present the simulation of the system in
MATLAB (The MathWorks Inc.; 2022), a widely-used platform for scientific computing
and engineering applications. We develop a simulation framework that integrates
the various components of the system, including path following, formation control,
and obstacle avoidance, and demonstrate its effectiveness in a range of scenarios. The
simulations provide insights into the system’s behavior under different conditions and
enable us to test and refine our control algorithms.

The chapter is organized as follows. Section 10.1 details the numerical model used
in the simulations. Section 10.2 demonstrates the effectiveness of the centralized NSB
algorithm through three different simulation scenarios. Section 10.3 demonstrates
the effectiveness of the distributed NSB algorithm, first through a general experiment
with collision avoidance, formation keeping, and path following, and then through
three comparison studies with the first-order distributed method from Matouš, Pet-
tersen, Varagnolo and Paliotta (2023a), the hand-position-based consensus method
from Restrepo et al. (2022), and the alternative distributed formulation from Section 8.4.

89
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10.1 Numerical AUV model

We chose the light autonomous underwater vehicle (LAUV), shown in Figure 10.1, as
the vehicle model for simulation (Sousa et al.; 2012). The plant model in our simulation
environment is set up to exactly match our ideal model (2.1). That means there are no
modeling errors, and the fleet should behave as expected from theory. This section
details the derivation of the numerical model used in the simulation.

Figure 10.1: The LAUV modeled in this simulation study. Image is taken from Ocean-
Scan website (OceanScan - MST; 2023).

A model for the LAUV with the origin of the coordinate frame at the center of
buoyancy is developed in Estrela da Silva et al. (2007). The modeling closely follows
that of (Fossen; 2021, Section 8.4). Following Assumption 2.3 from Chapter 2 we will
develop the model around the pivot point (PP). We will first present a model with the
origin at the center of buoyancy (CB) and then transform the model to the pivot point
using the pivot point transformation (2.4). Following Estrela da Silva et al. (2007) we
consider a LAUV with a length 𝐿 = 104 cm, a diameter 𝐷 = 15 cm, a mass of 18 kg and
distance between CB and center of gravity (CG) 𝑧𝑔 = 1 cm.

The mass matrix M = M𝑅𝐵 + M𝐴 consists of the rigid body mass matrix and the
added mass matrix. The rigid body mass matrix is derived as a diagonal matrix in CG
and transformed to CB

M𝐶𝐵
𝑅𝐵 = HT ( [0 0 𝑧𝑔]T)diag( [𝑚𝑚𝑚 𝐼𝑥 𝐼𝑦 𝐼𝑧])H( [0 0 𝑧𝑔]T), (10.1)

where H is a coordinate transformation matrix given in (Fossen; 2021, Appendix C),
𝐼𝑥 = 1

10𝑚𝐷2 and 𝐼𝑦 = 𝐼𝑧 = 1
20𝑚(𝐿2 + 𝐷2). The added mass matrix is diagonal in CB
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because of symmetry, and the numerical calculation can be found in (Fossen; 2021,
Section 8.4). The resulting mass matrix with numerical values is given by

M𝐶𝐵 =



19 0 0 0 0.18 0

0 34 0 −0.18 0 0

0 0 34 0 0 0

0 −0.18 0 0.04 0 0

0.18 0 0 0 1.8 0

0 0 0 0 0 1.8


. (10.2)

The corresponding damping matrix is taken from Estrela da Silva et al. (2007), and the
non-linear part is neglected according to Assumption 2.5:

D𝐶𝐵 (𝜻𝑟 ) =



2.4 0 0 0 0 0

0 23 0 0 0 −11.5

0 0 23 0 11.5 0

0 0 0 0.3 0 0

0 0 −3.1 0 9.7 0

0 3.1 0 0 0 9.7


. (10.3)

To derive the control-input matrix we consider fins with an 𝑥-position of −0.455,m
relative to the vehicle’s mass center. Then, each newton meter of torque produced
corresponds to 2.2 N produced force, which results in the following control-input
matrix:

B𝐶𝐵 =



1.0 0 0 0

0 0 0 −2.2

0 0 2.2 0

0 1.0 0 0

0 0 1.0 0

0 0 0 1.0


. (10.4)
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At this point, we note that, as a result of non-zero 𝑧𝑔 implicitly violating the top-
bottom symmetry assumption (Assumption 2.1), M𝐶𝐵 from (10.2) violates the structure
from (Borhaug et al.; 2007, Equation 4). Therefore, it will not be possible to find a
transformation that exactly satisfies Assumption 2.3. A common modeling approach is
to neglect the off-diagonal elements of M𝐶𝐵 as they are dominated by the other modes
of the system. The resulting model matrices are then given by

M = HT
𝑃𝑃diag(M𝐶𝐵)H𝑃𝑃 , (10.5a)

D(𝜻𝑟 ) = HT
𝑃𝑃D𝐶𝐵 (𝜻𝑟 )H𝑃𝑃 , (10.5b)

B = HT
𝑃𝑃B𝐶𝐵, (10.5c)

where H𝑃𝑃 is the pivot-point transformation matrix given by (2.4).
The Coriolis and centripetal matrix C(𝜻𝑟 ) = C𝑅𝐵 (𝜻𝑟 ) + C𝐴 (𝜻𝑟 ) consists of a rigid

body term and an added mass term. Following (Fossen; 2021, Section 10.3), we carefully
model the rigid-body Coriolis matrix independently of linear velocities so that the
model correctly handles irrotational constant ocean currents. The resulting Coriolis
matrices are given by

C𝑅𝐵 (𝜻𝑟 ) = HT
𝑃𝑃


S(𝑚𝝎) 03×3

03×3 S( [𝐼𝑥𝑝 𝐼𝑦𝑞 𝐼𝑧𝑟 ]T)

 H𝑃𝑃 , (10.6)

C𝐴 (𝜻𝑟 ) =


03×3 −S(A11𝝂𝑟 + A12𝝎)

−S(A11𝝂𝑟 + A12𝝎) −S(A21𝝂𝑟 + A22𝝎)

 , (10.7)

where

HT
𝑃𝑃M𝐴H𝑃𝑃 B


A11 A12

A21 A22

 . (10.8)

10.2 Centralized NSB algorithm simulation results

This section presents three different simulation experiments with the centralized
second-order NSB method from Chapter 6. Section 10.2.1 details a simulation experi-
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ment with three AUVs equipped with the centralized NSB controller with the collision
cones obstacle avoidance method detailed in Section 6.6.1. Section 10.2.2 details a
similar experiment but with obstacle avoidance implemented as an individual high-
priority task for each vehicle as detailed in Section 6.6.2. Section 10.2.3 demonstrates
through simulation how the second-order NSB algorithm enables us to specify the
formation-keeping task as an interpretable spring-damper system.

10.2.1 General three-agent mission

This section presents a general simulation scenario that demonstrates the effectiveness
of the complete system. The fleet consists of three vehicles equipped with the NSB
controller (6.3), with the choice of integral action (Section 6.5.1) to compensate for
the unknown ocean current and the collision cones method (Section 6.6.1) to avoid
obstacles. The fleet should follow a continuous spiral-shaped path while avoiding
collision with a cylindrical-shaped obstacle with radius 10 m and base circle in the
𝑥𝑦−plane and origin [𝑥, 𝑦] = [100, −10]. In the rest of this section, all distances will
be given in meters, and units are omitted for simplicity.

The prescribed path is given by the following spiral-equation

p𝑝 (𝜉) = p𝑝,0 +
[
𝜉,−40 cos( 𝜋

100𝜉), 20 sin( 𝜋
100𝜉)

]T
, (10.9)

where
p𝑝,0 =

[
0,−40, 35

]T
. (10.10)

The barycenter relative formation is given by

p𝑓

𝑓 ,1:3 =


0 0 0

10 −10 0

5 5 −10


, (10.11)

and the collision avoidance task is configured to ensure a safe distance of 10 m both
between vehicles in the fleet and external obstacles. Because the cylinder radius is
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10 m, its avoidance radius, 𝑟𝑜 , is 20 m. The activation angle 𝛼min is chosen as 15◦. The
vehicles are subject to an unknown ocean current

v𝑐 =
[
0 0.25 0.05

]T
m/s. (10.12)

The controller gain matrices 𝚲𝑝,1, 𝚲𝑑,1, 𝚲𝑝,2, 𝚲𝑑,2, 𝚲𝑝,3, and 𝚲𝑖,3 from (6.10), (6.17),
and (6.29) are chosen as scaled identity matrices 𝑘𝑖 I. The gains, as well as controller
parameters 𝑣2max , Δ0,𝑈𝐿𝑂𝑆 , and 𝑘𝜉 from (6.17) , (6.19), (6.20), and (6.27), and the hand
length ℎ are given by Table 10.1. The hand length is chosen as 5 m following Matouš,
Paliotta, Pettersen and Varagnolo (2023) where the same AUV was simulated.

Table 10.1: Controller parameters used in simulation

Parameter Value
𝑘𝑝,1 1
𝑘𝑑,1 0.2
𝑘𝑝,2 0.5
𝑘𝑑,2 1
𝑘𝑝,3 1
𝑘𝑖,3 1
𝑈𝐿𝑂𝑆 1.5 m/s
Δ0 5 m
𝑘𝜉 0.2
𝑣2max 0.75 m/s
ℎ 5 m

We initialize the fleet with barycenter p𝑏 = [−5, −100, 18]T and relative positions

𝝈2,1:3 =


0 0 0

−15 15 0

−7 −7 14


. (10.13)

The resulting North-East trajectory of the mission is shown in Figure 10.2. The
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Figure 10.2: The trajectory of the vehicles. The markers represent the vehicle positions
every 50 seconds.

vehicles avoid the obstacle with a margin and return to the desired path. The fleet
deviates from the desired path right away, because the path is inside the obstacle’s
collision cone as illustrated in Figure 6.1b. The avoidance maneuver is further detailed
in Figure 10.3a. The collision cones avoidance task is active from the beginning of the
mission until the obstacle is passed. In other words, the fleet proactively changes its
path early in order to avoid the obstacle. The minimum distance between the fleet and
the obstacle is 10 m as expected when the obstacle avoidance radius 𝑟𝑜 is chosen 10 m
larger than the obstacle radius. The distance is at its minimum at the 100-second mark.
Then, it can be seen from the third set of markers in Figure 10.2 that the fleet path is
tangent to the obstacle, which is the expected behavior of the collision cones avoidance
method. Figure 10.3a further shows that the inter-vehicle COLAV task activates when
the distance between vehicles is below 𝑑𝐶𝑂𝐿𝐴𝑉 = 10 m. The distance slightly oscillates
below the threshold. The oscillation can be expected because 𝑘𝑝,1 and 𝑘𝑑,1 are chosen so
that the system is underdamped. The distance can reduce slightly below the threshold
because the task does not activate before the threshold is violated.
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(c) The path-following error of the barycenter.

Figure 10.3: Error variables from the simulated mission. The full, dashed, and dotted
lines correspond to the three different vehicles. The green and red rectangles represent
when obstacle avoidance or inter-vehicle COLAV is active.
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Figure 10.3b shows that the fleet converges to the desired formation during the
obstacle avoidance maneuver. The obstacle avoidance task specifies common accelera-
tions to all vehicles and does therefore not interfere with the formation-keeping task.
Except for during the inter-vehicle collision avoidance, the convergence seems linear,
which can be expected because the task velocity is saturated by 𝑣2,max. The formation-
keeping errors asymptotically converge to zero in accordance with Theorem 7.1.

Figure 10.3c shows that the path-following error initially increases as the fleet
avoids the obstacle because the 𝑥- and 𝑦-components of v𝐿𝑂𝑆,𝑑 and ¤v𝐿𝑂𝑆,𝑑 are replaced
with v𝑂𝐴,𝑑 and ¤v𝑂𝐴,𝑑 given by (6.39), (6.40). As expected from Theorem 7.2, the error
converges to zero after the obstacle is passed when the LOS task is activated again.
The constant ocean current is accurately compensated for by the integral action, and
the path-following error remains at zero for the rest of the mission.

Figure 10.4a shows that the angular velocities remain bounded, in accordance
with Theorem 7.4. Figure 10.4b shows that the surge velocities of all vehicles remain
between 1 m/s and 2 m/s, which is expected, as the velocity should remain in the
interval𝑈𝐿𝑂𝑆 ± 𝑣2max = [0.75, 2.25], except for during inter-vehicle collision avoidance
maneuvers. Furthermore, this range includes the expected operating surge velocity of
the vehicle the simulation is modeled after.

10.2.2 Individual obstacle avoidance

In this section, we examine a simulation study of the NSB formation path-following
problem with the obstacle avoidance method from Section 6.6.2 adapted from Ar-
richiello et al. (2006). A key difference from the collision cones method simulated in
the previous section is that this method enables the fleet to break formation in order to
avoid collisions. Furthermore, this method enables the vehicles to conduct avoidance
maneuvers in all three dimensions and not only in the 𝑥𝑦 plane.

The simulation setup is similar to the previous section, with the same desired path,
external obstacle, constant ocean current, and initial states. Furthermore, all controller
gains and parameters are also the same, given by Table 10.1.

The resulting trajectory in the NED coordinate frame is shown in Figure 10.5. The
fleet splits up the formation to pass the obstacle and converges back to the formation
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Figure 10.4: Angular and surge velocities for the vehicles in the first simulated mission.
The green rectangle represents the time when the collision avoidance task was active.



10.2. CENTRALIZED NSB ALGORITHM SIMULATION RESULTS 99

Figure 10.5: The trajectory of the vehicles. The markers represent the vehicle positions
every 50 seconds.

after the obstacle is passed. Compared to the collision cones avoidance method, the
fleet deviates late from the path in order to avoid the obstacle, which is further shown
in Figure 10.6a, where the green rectangle represents when the external collision
avoidance task is active. As also seen in Figure 10.6a, the inter-vehicle collision
avoidance still works well, despite now being defined as individual tasks for each
vehicle, which is expected because the formulation with individual tasks should be
equivalent to the joint formulation, as long as only two vehicles are within the collision
threshold of each other.

Figure 10.6c shows that the fleet converges earlier to the correct path and deviates
minimally from it during the avoidance maneuver. The limited deviation is possible
because the path error is defined in terms of the barycenter, and as long as some
vehicles of the fleet are on each side of the obstacle, it is possible for the barycenter
to remain on the path. Instead, the formation-keeping error increases during the
avoidance maneuver, as seen in Figure 10.6b. With the collision cones avoidance
method from the previous section, the formation was kept during obstacle avoidance.
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(b) The formation keeping errors.
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(c) The path-following error of the barycenter.

Figure 10.6: Error variables from the second simulated mission. The full, dashed, and
dotted lines correspond to the three different vehicles. The green and red rectangles
represent when obstacle avoidance or inter-vehicle COLAV is active.
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(b) The surge velocities of the vehicles.

Figure 10.7: Angular and surge velocities for the vehicles in the second simulated
mission. The green rectangle represents the time when the collision avoidance task
was active.
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Figure 10.7b shows that the surge velocities of the vehicles rise above 3 m/s and
sink below 0.5 m/s. Velocities above 3 m/s are unexpected, as it is above the maximum
operating velocity of the physical vehicles that the simulation models. There are two
possible explanations for such a high velocity. First, the controller might command
generalized forces that are larger than the limits of the physical systems actuators.
Actuator saturation was not modeled, and such forces would be applied directly to
the plant in our simulator. In a real system with actuation limits, the control action
going into saturation might impose a stability problem. A second explanation for the
large surge velocities is that the simulation does not model non-linear damping. In
a more realistic simulator, the non-linear damping would become significant when
the velocities increase above the nominal operating range. It is also problematic that
the velocity of a vehicle sinks below 0.5 m/s. Then, a real, physical vehicle would lose
controllability because water does not flow sufficiently fast past the fins.

Figure 10.8: Illustration of obstacle avoidance in all three dimensions. The obstacle is
chosen as a sphere.

Another feature that distinguishes this obstacle avoidance method from the col-
lision cones method is that it enables obstacle avoidance in all three dimensions. In
the collision cones method, the avoidance maneuver was limited to the 𝑥𝑦-plane.
As demonstrated in Figure 10.8, the obstacle avoidance method as described in Sec-
tion 6.6.2 enables each individual vehicle to independently avoid the obstacle in all
dimensions. The spherical obstacle in this experiment was chosen larger than the
cylindrical obstacle in the previous experiments for illustrative purposes.
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10.2.3 Formation error as damped harmonic motion

Part of the motivation for developing the second-order NSB controller is that there
are no hidden dynamics abstracted away in the low-level control layer. Consequently,
the collision-avoidance and formation-keeping error systems are expected to behave
exactly as second-order systems defined by the gain matrices. In turn, the gain matrices
can be chosen by specifying natural frequencies and damping ratios as described in
Section 5.4. In this section, we will observe the transient of the formation-keeping
error under different controller gains. Although we demonstrate the concept with the
formation-keeping error, the same behavior is expected for the collision-avoidance
task as well.

We design a simple simulation experiment in which everything except for the
formation-keeping task is simplified as much as possible. The fleet is made to follow a
straight line in the north direction. It is initialized with the barycenter on the path, and
there is no external obstacle or ocean current. The desired formation is given by (10.11)
as in the previous simulation experiments, and the initial relative positions are given
by 𝝈2,𝑖 = 2p𝑓

𝑓 ,𝑖
. All controller gains and parameters except for 𝑘𝑝,2 and 𝑘𝑑,2 are given

by Table 10.1. We simulate three different choices of formation-keeping controller
gains given by Table 10.2. The natural frequency is kept fixed at 𝜔𝑛,2 = 0.5 which is
low enough so that the effects of the saturation in the controller are minimal, and the
damping ratio is chosen so that the system is underdamped, critically damped, and
overdamped for the respective three experiments. The total simulation time is 50 s.

Table 10.2: Controller parameters for the three experiments.

Parameter Experiment 1 Experiment 2 Experiment 3
𝜔𝑛,2 0.5 0.5 0.5
𝜉2 0.3 1 2
𝑘𝑝,2 0.25 0.25 0.25
𝑘𝑑,2 0.3 1 2

Figure 10.9 shows the north-east trajectory for the vehicles with different damping
ratios. The corresponding formation-keeping errors are shown in Figure 10.10. As
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(c) The overdamped system.
Figure 10.9: The north-east trajectories of the vehicles with different formation-keeping
controller gains.
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(b) The critically damped system.
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(c) The overdamped system.

Figure 10.10: The formation-keeping errors for the vehicles with different formation-
keeping controller gains. The full, dashed, and dotted lines illustrate the different
vehicles.
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expected, the formation-keeping error in the underdamped system exhibits an oscilla-
tory motion. The error in the critically damped system converges quickly to the origin
without oscillations, and the overdamped system converges more slowly. Despite the
saturation term in the formation-keeping acceleration (6.17), the task errors converge
as can be expected from the theory of damped harmonic motion.

10.3 Distributed NSB algorithm simulation results

This section presents three simulation experiments with the distributed NSB method
from Chapter 8. The method is first demonstrated on a general mission featuring
collision avoidance, formation keeping, and path following in Section 10.3.1. Then, the
method is compared to two existing methods from the literature in Sections 10.3.2 and
10.3.3, and the alternative distributed implementation in Section 10.3.4. The method is
configured with the sliding-mode path-following acceleration given by (8.18).

10.3.1 General five-agent mission

This section presents a simulation experiment of the distributed NSB control law
presented in Chapter 8. The experiment involves a fleet of five agents with a communi-
cation graph given by Figure 10.11. All controller gains and parameters are unchanged
from previous experiments and given by Table 10.1.

12
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5

𝑒1

𝑒2 𝑒3

𝑒4

𝑒5𝑒6

Figure 10.11: The communication graph of the fleet.

The barycenter relative vectors give the desired formation:

p𝑓

𝑓 ,1:5 =


0 8 8 −8 −8

0 −8 8 8 −8

8 −2 −2 −2 −2


. (10.14)
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The desired formation-relative positions of the agents 2-5 make up a square in the
𝑥𝑦-plane. The fleet is initialized so that each of the four agents starts at opposite
corners of the square. The initial positions are chosen slightly closer than the desired
formation so that the inter-vehicle collision avoidance task activates:

p1:5 (0) =


0 −5 −5 5 5

0 5 −5 −5 5

5 −1.25 −1.25 −1.25 −1.25


. (10.15)

The fleet avoids the obstacle and converges to the desired path as seen by Fig-
ure 10.12. Figure 10.13 shows more clearly that the formation-keeping and path-
following errors converge to and remain at zero. Figure 10.13a shows that the collision
avoidance task works similarly to the centralized algorithm, with only small violations
of the collision-avoidance threshold.

Figure 10.12: The trajectory of the fleet in the North-East frame.
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Figure 10.13: Error variables from the simulated distributed mission. The different line
styles correspond to the five different vehicles. The green and red rectangles represent
when obstacle avoidance or inter-vehicle COLAV is active.
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10.3.2 Comparison study with the first-order NSB method

In this section, we compare our distributed NSB method with the first-order NSB
method from Matouš, Pettersen, Varagnolo and Paliotta (2023a). The Simulink model
for the first-order method was provided by Josef Matouš. The first-order method is
implemented in a distributed manner as described in Section 8.4.

We simulate the two methods on the four-vehicle simulation experiment detailed
in Matouš, Pettersen, Varagnolo and Paliotta (2023a). We choose the experiment
without obstacles because the two methods implement obstacle avoidance differently.
Furthermore, the inter-vehicle collision avoidance threshold is chosen small enough
for the task to not activate because the provided implementation of the first-order NSB
does not include that task. The barycenter should follow an elliptic path given by

p𝑝 (𝜉) = [𝑎 cos 𝜉, 𝑏 sin 𝜉, 𝑐 sin 𝜉2]T, (10.16)

where 𝑎 = 60 m, 𝑏 = 40 m, 𝑐 = 10 m. The shape of the desired formation is given by

p𝑓

𝑓 ,1:4 =


10 −10 0 0

0 0 10 −10

0 −4 4 0


, (10.17)

and the communication graph is given by Figure 10.14.
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Figure 10.14: Communication graph for the comparison experiment.



110 CHAPTER 10. SIMULATIONS IN MATLAB

−50

0

50

−60−40−20020406080

0
10 East [m]

North [m]

D
ep
th

[m
]

Trajectory

AUV 1 AUV 2 AUV 3 AUV 4 Path

Figure 10.15: The 3D trajectory from the second-order NSB method in the comparison
experiment.

The 3D trajectory of our method is shown in Figure 10.15. The norm of the path-
following error for both methods is shown in Figure 10.16a and the norm of the
formation-keeping error is shown in Figure 10.16b. The error norm is plotted on a
semi-logarithmic plot to emphasize the ultimate error of both methods.

The plots show that with the first-order method, the error converges quicker, but to
a higher final error. The difference in convergence speed comes from the fact that our
method implements a saturated formation-keeping task whereas the first-order method
does not. As a result, the first-order method is UGES, while our method is ULES in
the formation-keeping task. In the semi-logarithmic plot in Figure 10.16b, exponential
decay will show as a linear graph. Clearly, the first-order method decays exponen-
tially from the start, whereas our second-order method starts decaying exponentially
at around 50 s, which can be interpreted as the point when the formation-keeping
subsystem enters the locally exponentially stable neighborhood.
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(a) Comparison of the path-following error.
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Figure 10.16: Comparison between the first-order NSB method from Matouš, Pettersen,
Varagnolo and Paliotta (2023a) and our second-order NSB method. Our method con-
verges slower but to a lower absolute error.
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In this ideal simulation setup, our method, benefiting from the model-based
hand-position controller’s ability to accurately compensate for system non-linearities,
achieves a smaller steady-state error. Because our second-order method has no dynam-
ics abstracted away in a lower-level control layer, the error should approach machine
precision following Lemmas 9.1 and 9.3 if a discontinuous switching sliding-mode
controller was used. However, in practice, several factors prevent this ideal behavior.

Firstly, the switching sliding-mode term in (8.13) is replaced by a continuous
saturation function in our implementation. As a result, we can only expect a bounded
formation-keeping error since the disturbance 𝝁𝑝 in (9.15) is nonvanishing at z̃𝑡,2 = 0.

Furthermore, the asymptotic stability of the formation-keeping subsystem is a
prerequisite for the stability of the path-following subsystem in Lemma 9.3. Therefore,
the path-following subsystem will not be asymptotically stable as well. Nevertheless,
a bounded formation-keeping subsystem will result in a bounded path-following
subsystem. Moreover, Lemma 9.3 was only proven for straight-line paths and this
experiment had an elliptic path.

Lastly, wemay observe some discrepancies because of numerical inaccuracies when
applying the hand-position controller on a simulated system compared to applying
the NSB method directly on a second-order integrator system.

The errors of the first-order method are not expected to vanish to zero because
of the extra dynamics from the low-level control. Despite our second-order method
resulting in lower errors in this simulation experiment, it is crucial to acknowledge that
the low-level PID controllers in the first-order method may offer greater robustness
when dealing with real systems affected by modeling errors. To the best of our
knowledge, there have not yet been developed robustness guarantees for the hand-
position controller. Nonetheless, these promising simulation results highlight the
effectiveness of our method compared to the state-of-the-art alternative.

10.3.3 Comparison study with a consensus method

This section provides a simulated experiment that compares our method with the
consensus method developed by Restrepo et al. (2022). The most important properties



10.3. DISTRIBUTED NSB ALGORITHM SIMULATION RESULTS 113

of the consensus method were presented in the literature study in Section 1.2. We
developed the Simulink model for the consensus law ourselves and trivially extended it
to 6-DOF by combining the method with the 6-DOF hand-position controller. Because
the consensus method is initially designed as a target tracking method, we choose
the following update law inspired by Paliotta et al. (2019) for the virtual target’s path
parameter to facilitate path following

¤𝜉 = U𝑑





 𝜕p𝑝 (𝜉)
𝜕𝜉





−1 (
1 − 𝑘𝜉 tanh ∥p1 − p𝑝 − z𝑝,𝑑 ∥

)
, (10.18)

where 𝑈𝑑 = 1.3 m/s is the desired path-following velocity, 𝑘𝜉 = 0.5 is a control
parameter, and z𝑝,𝑑 is the desired displacement between the leader vehicle and the path.

The two methods are tested on the same simulation scenario as described in the
previous section. Unlike in the previous section, the inter-vehicle collision avoidance
threshold is now chosen as 7 m because both methods implement some form of collision
avoidance.

There are some clear differences and similarities between the two methods. The
main similarity is that both control laws leverage the same hand-position input-output
linearizing controller to simplify the nonlinear vehicle dynamics. Furthermore, both
methods rely on a consensus law with a switching sliding-mode term for formation
keeping. An important difference that may affect the performance of the methods is
that in the consensus algorithm from Restrepo et al. (2022) only the first vehicle is
assumed to have access to the target. Because the rest of the fleet does not have access to
the target, and thus the orientation of the path-tangential coordinate frame, the desired
formation for the consensus method is with respect to the NED coordinate frame,
whereas the desired formation in our method is with respect to the path-tangential
coordinate frame.

The simulation results are presented in Figure 10.17. Note that unlike previous
plots of formation-keeping error in this thesis, Figure 10.17b shows the formation-
keeping error as the edge-consensus errors ∥z̃1∥. It can be seen from the initially linear
graphs in the semilogarithmic plots in Figures 10.17a and 10.17b that the consensus
method has exponential convergence. As discussed in the previous section, our method
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(b) The formation keeping errors. The errors are given as the edge-agreement errors
for the four edges in the communication graph.
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(c) The relative inter-vehicle distance for the four edges in the communication graph.

Figure 10.17: Error variables comparing the consensus method from Restrepo et al.
(2022) with our method. The different line styles correspond to the four edges of the
communication graph.
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converges slower because of the saturated formation-keeping acceleration and the
constant velocity line-of-sight path-following law. Further inspection of the simulation
data shows that for the consensus method, the commanded surge force peaks at ∼800 N
whereas our method peaks at ∼40 N. The force is larger than a physical system can
produce for both methods, but the consensus method violates the limits of a physical
system more severely than ours. One of the reasons why we implemented a saturated
formation-keeping acceleration and a constant velocity line-of-sight law in the first
place was to limit the control action at large errors.

Our method converges to a significantly lower error than the consensus law, which
is surprising, as both methods leverage the same hand-position controller and none
of them have hidden dynamics from low-level control. One would therefore expect
both methods to have low path-following and edge-consensus errors, only limited by
the continuous approximation of the switching control. We were not able to further
improve the results from the consensus method by modifying the approximation of
the switching function.

Figure 10.17c shows that the two methods handle collision avoidance differently.
In the consensus control law, collision avoidance is managed through a BLF. Collision
avoidance through the BLF is always active, and the control action goes to infinity as
the vehicles approach the distance threshold. As a result, no pair of vehicles ever come
close to the threshold. In our method, on the other hand, the collision avoidance task
only activates when the threshold is violated. It is therefore expected that the vehicles
will transiently violate the threshold, but quickly recover to safe distances.

In conclusion, our method performs at least as well if not better than the consensus
method from Restrepo et al. (2022). The trajectories converge slower by design, but the
ultimate error is lower, and furthermore, the error plots seem smoother. Both methods
rely on the same hand-position controller for handling the nonlinear equations of
motion. When implementing the methods on a real system, the robustness of the
hand-position controller is one of the main concerns, and since it is the same for both
methods we cannot say that one method is expected to have an advantage over the
other when going from simulation to real experiments.
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10.3.4 Comparison with the alternative distributed NSBmethod

In this section, we compare the two different distributed formulations of the second-
order NSBmethod. We refer to the firstly presented method from Chapter 8 as the novel
method and the secondly presented method as the alternative method. The simulation
setup is the same as the previous two sections. All common controller gains are chosen
to be equal and given by Table 10.2. The gains 𝑐𝑏 and 𝑘𝑏 for the barycenter estimate
updates of the alternative formulation are chosen as the LQR gain of an integrator
system with an identity input matrix and weighting matrices Q = 100I2 and R = I2.
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(a) Comparison of the path-following error.
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(b) Comparison of the formation-keeping error. The line styles represent different
vehicles.

Figure 10.18: Comparison between the two different distributed formulations of the
second-order NSB method.
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Figure 10.18 shows the simulation results. Our novel distributed method has a
lower error compared to the alternative distributed method. The sliding-mode terms
are a possible explanation. They help increase the robustness to modeling errors
such as imperfect cancellations of nonlinear dynamics in the hand-position controller.
Interestingly, the formation-error plots look very similar for the two methods, only
differing by scale. This can be attributed to both methods being fundamentally the
same control law, only with different approaches to making them distributed. Both
methods leverage the same hand-position controller and split motion control into a
path-following and a formation-keeping task.

To verify our hypothesis that the difference in error comes from the sliding-mode
terms, we conduct another simulation experiment. In this experiment, we remove the
sliding-mode term from the path-following acceleration by replacing (8.18) with (8.16).
Additionally, we eliminate the switching term from (8.13). The resulting simulation
errors are shown in Figure 10.19. Clearly, the two methods have almost identical per-
formance, with the only noticeable difference being that our novel method converges
slightly slower to the desired path. This outcome confirms our hypothesis that the
primary difference between the methods lies in the introduction of the sliding-mode
switching terms.



118 CHAPTER 10. SIMULATIONS IN MATLAB

0 50 100 150 200 250 300

10−2

100

102

Time [s]

Er
ro
r[
m
]

Path-following error norm

Novel second-order NSB without SMC
Alternative second-order NSB

(a) Comparison of the path-following error.

0 50 100 150 200 250 30010−4

10−1

102

Time [s]

Er
ro
r[
m
]

Formation-keeping error norm

Novel second-order NSB without SMC
Alternative second-order NSB

(b) Comparison of the formation-keeping error. The line styles represent different
vehicles.

Figure 10.19: Comparison between the two different distributed formulations of the
second-order NSB method where our novel formulation is stripped of all sliding-mode
controller (SMC) terms.



Chapter 11

Conclusions and Future Work

In this thesis, we have addressed the formation path-following problem with AUVs and
proposed a novel control method based on the extended second-order NSB algorithm.
Our work makes several contributions to the field of autonomous fleet coordination
and control. In particular, we have submitted a conference paper to the 62nd IEEE
Conference on Decision and Control (Lie et al.; 2023).

Building upon the existing NSB algorithm, we developed an extended second-
order NSB method that directly handles the double-integrator dynamics of AUVs. By
leveraging the hand-position input-output linearizing controller, we express the entire
fleet dynamics in task space resulting in a method without hidden low-level dynamics.
The method enables us to express the task dynamics as interpretable spring-damper
systems and eliminates the intermediate step of transforming desired velocities or
accelerations into surge and orientation references, as has been done in previous works.

To validate the performance and stability of our control method, we conducted
a thorough closed-loop stability analysis of the joint formation-control and path-
following system. The formation-keeping subsystem was shown to be UGAS and the
path-following subsystem was shown to be USGES.

One significant contribution of our research is the development of a novel approach
to reformulating the centralized NSB algorithm into a decentralized method. By treat-

119
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ing formation keeping as a consensus problem we devised a distributed NSB method
that leverages inter-vehicle communication of path progress, relative positions, and
relative velocities. Alternatively, with the right sensor set, the relative positions and
velocities can be directly measured instead of communicated. This approach enables
the application of the NSBmethod in real-world systems subject to communication con-
straints, as the need for continuous communication with a central node is eliminated.

Finally, extensive MATLAB simulation studies were conducted to evaluate the
performance of both the centralized and decentralized NSB methods. Our simulations
demonstrated the effectiveness of our approach and showcased that under ideal con-
ditions it might perform better than existing methods. We evaluated the methods
under various scenarios, including different choices for the external collision avoidance
method. Although our method seemingly performed better than the first-order NSB
method, we noted the advantages of the first-order method, in particular, that it lever-
ages robust, well-tested low-level maneuvering controllers. The hand-position con-
troller used in our method is not as well-tested and studied in real-world applications.

Future work includes testing the method on high-fidelity simulators such as Unified
Navigation Environment (DUNE) (DUNE: Unified Navigation Environment; n.d.) and
in real-world experiments. Testing the method’s robustness in more realistic and
complex underwater scenarios is a critical step before the method can be deployed
in the real world. The use of high-fidelity simulators can provide a more accurate
representation of the dynamics and environmental conditions that AUVs encounter in
real-world operations. In particular, imperfect state measurements and actuation may
significantly impact the underlying feedback-linearizing hand-position controller.

Initial attempts were made to implement the method in DUNE, but our efforts were
not successful in robustly implementing the low-level hand-position controller. As
the hand-position controller is a prerequisite for implementing the second-order NSB
method, implementation in DUNE was not pursued further. Future work may therefore
also include deeper research into the hand-position controller or alternative approaches
to transforming the nonlinear equations of motion into double-integrator systems.



Appendix A

Internal boundedness
coefficients

This appendix includes the coefficients from (7.31). The coefficients were calculated
using the symbolic toolbox from MATLAB (2022).

𝑎𝑦 =
𝑑35𝑚55 − 𝑑55𝑚35 + ℎ𝑑33𝑚55 − ℎ𝑑53𝑚35

ℎ(𝑚33𝑚55 −𝑚2
35)

, (A.1a)

𝑎𝑧 =
𝑑66𝑚26 − 𝑑26𝑚66 + ℎ𝑑22𝑚66 − ℎ𝑑62𝑚26

ℎ(𝑚22𝑚66 −𝑚2
26)

, (A.1b)

𝑎𝑥𝑦𝑧 =
𝑚35𝑚44 −𝑚26𝑚55 −𝑚35𝑚66 + ℎ𝑚26𝑚35 + ℎ𝑚22𝑚55

ℎ(𝑚33𝑚55 −𝑚2
35)

− 𝑚26𝑚55 −𝑚26𝑚44 +𝑚35𝑚66 + ℎ𝑚26𝑚35 + ℎ𝑚33𝑚66

ℎ(𝑚22𝑚66 −𝑚2
26)

, (A.1c)

𝑎𝑥𝑦 = −𝑚26𝑚35 +𝑚22𝑚55

ℎ(𝑚33𝑚55 −𝑚2
35)

, (A.1d)

𝑎𝑥𝑧 = −𝑚26𝑚35 +𝑚33𝑚66

ℎ(𝑚22𝑚66 −𝑚2
26)

, (A.1e)
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𝑎𝑦𝑒 =
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35 + ℎ𝑚11𝑚35 − ℎ𝑚33𝑚35

ℎ(𝑚33𝑚55 −𝑚2
35)

, (A.1f)

𝑎𝑧𝑒 =
𝑚11𝑚66 −𝑚2

26 − ℎ𝑚11𝑚26 + ℎ𝑚22𝑚26

ℎ(𝑚22𝑚66 −𝑚2
26)

, (A.1g)

𝑎𝑒𝑦 =
𝑚11𝑚35 −𝑚33𝑚35

ℎ(𝑚33𝑚55 −𝑚2
35)

, (A.1h)
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𝑑53𝑚35 − 𝑑33𝑚55

ℎ(𝑚33𝑚55 −𝑚2
35)

, (A.1j)

𝑎𝑙𝑒𝑧 =
𝑑22𝑚66 − 𝑑62𝑚26

ℎ(𝑚22𝑚66 −𝑚2
26)

. (A.1k)



Appendix B

Conference paper CDC 2023

This master’s thesis is accompanied by a conference paper submitted to the Conference
on Decision and Control 2023. The paper provides a concise presentation of the
preliminary findings presented in this thesis, highlighting the most important results
and conclusions for the centralized second-order NSB method. The paper is currently
under review.
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Formation Control of Underactuated AUVs Using the Hand Position
Concept

Erling S. Lie, Josef Matouš, and Kristin Y. Pettersen

Abstract— This paper presents an extended null-space-based
behavioral algorithm for the formation control of fleets of un-
deractuated autonomous underwater vehicles. The null-space-
based controller is developed to work directly with second-order
integrator systems, handling the double integrator dynamics in
task space. The method is applied to the problem of formation
path-following of a fleet of underactuated autonomous under-
water vehicles. The nonlinear six-degrees-of-freedom models
of the vehicles are transformed into second-order integrator
systems using a 3D hand position output linearizing controller.
The behavioral controller implements a hierarchy of path-
following, formation-keeping, and collision-avoidance tasks. The
closed-loop system is proven uniformly globally asymptotically
stable, and the proposed method is validated through numerical
simulations.

I. INTRODUCTION

Cooperating autonomous underwater vehicles (AUVs) has
become an important area of research due to their potential
for performing tasks that are difficult or impossible for a
single AUV to accomplish. Cooperation among AUVs can
increase mission efficiency, enable the exploration of larger
areas, and provide redundancy in case of system failures.

In many applications, it is desirable for a fleet of AUVs to
move in formation while following a desired path. Formation
path-following can be achieved using a variety of control
strategies. These include leader-follower approaches, where
one AUV acts as a leader and the others follow its tra-
jectory [1]–[3]. Coordinated path-following approaches use
distributed control methods to achieve formation control, of-
ten based on consensus algorithms [4]–[6], while behavioral
approaches focus on defining the behaviors each AUV should
exhibit in order to achieve a desired formation [7], [8]. A
comprehensive view of these strategies is provided in [9].

The null-space-based (NSB) behavioral approach is a
popular centralized method for formation path-following that
has been extensively studied in the literature [10]–[14]. This
strategy enables complex missions through a hierarchy that
combines several simpler tasks with strict priority. In [10],
a comprehensive motivation is given for the decomposition
of complex path-planning and coordination in multi-agent
systems into two blocks: NSB and maneuvering. The NSB
block takes into account the parameters of the mission, the
environment, and the state of the fleet to calculate the desired
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through project No. 302435 and the Centres of Excellence funding scheme,
project No. 223254.
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velocities for each vehicle. The desired velocities are then
tracked by the maneuvering controls.

The NSB algorithm, as presented in the existing literature,
is developed for kinematic single-integrator systems [10]–
[12]. In this work, we extend the NSB method to vehicles
with double integrator dynamics and propose an algorithm
that uses a second-order closed-loop inverse kinematics (SO-
CLIK) equation to control the task variables through desired
acceleration. The procedure is inspired by robotic manipula-
tors, where second-order methods are more common, due to
the inherent second-order dynamics of mechanical systems
[15], [16]. Although existing NSB methods are developed for
first-order systems, AUV dynamics are inherently second-
order. Therefore, any first-order solution is necessarily per-
turbed by the dynamics of the maneuvering controller. In
contrast, our formulation handles the second-order dynamics
directly in the task space as interpretable spring-damper
systems.

We apply the proposed NSB method to a fleet of AUVs.
AUVs are underactuated systems with inherently nonlinear
dynamics. What enables us to still use the proposed NSB
method, developed for vehicles with linear double integrator
dynamics, is the use of the hand position input-output
linearization method, [17]–[20], for maneuvering control.
Specifically, we apply the 3D hand position method proposed
in [20], which transforms the underactuated six-degree-
of-freedom AUV model into a double-integrator system.
Subsequently, through the design of specific path-following,
formation-keeping, and collision-avoidance tasks, the fleet
is controlled to follow a preplanned path in formation while
avoiding collisions both within the fleet and with external
obstacles. The stability of the system is proved, and its effec-
tiveness is verified in simulation. Because our reformulated
NSB method works directly with the second-order system
given by the hand position controller, there is no need to
transform desired velocities or accelerations into surge and
orientation references, as has been done in previous works.
This reduces one level of complexity in the controller design.

The paper is organized as follows. Section II presents
the extended NSB algorithm which is applicable for general
double-integrator systems. Section III presents a case study
of this NSB algorithm applied to a fleet of AUVs. Section
IV presents conclusions and future work.

II. THE NSB ALGORITHM FOR DOUBLE INTEGRATORS

The NSB method enables the creation of multiple tasks in
a hierarchical manner, ensuring that low-priority tasks do not
interfere with high-priority ones. In this section, we present



the method extended to second-order integrator systems. This
modified NSB algorithm provides the acceleration input µ
to the following double-integrator system

ṗ = v, (1a)
v̇ = µ. (1b)

For each task, we design a task variable σi ∈ Rm
i as a

function of p
σi = fi(p). (2)

The first and second time-derivatives of σi are

σ̇i = Ji(p)v, (3a)

σ̈i = Ji(p)v̇ + J̇iv, (3b)

where Ji = ∂fi/∂p is the task Jacobian. We denote the
desired value of the task variable by σd,i.

In the standard NSB algorithm, vi is obtained through the
closed-loop inverse kinematics (CLIK) equation [21]

vi = J†
i

(
σ̇d,i −Λiσ̃i

)
, (4)

where Λi is a positive definite gain matrix, σ̃i = σi − σd,i

is the task error, and J†
i is the pseudo-inverse of the task

Jacobian. To achieve second-order differential control, we
instead propose the second-order closed-loop inverse kine-
matics (SOCLIK) equation from robotic manipulators [22]

v̇i = J†
i

(
σ̈d,i −Λp,iσ̃i −Λd,i

˙̃σi − J̇iv
)
, (5)

where Λp,i and Λd,i are positive definite gain matrices.
In the standard NSB algorithm, there exists a subspace of

velocities that do not conflict with a given task. Similarly,
in second-order systems, there exists a subspace of non-
conflicting accelerations. If we denote v̇1 as the SOCLIK
solution to the highest priority task, there exists an acceler-
ation v̇NSB that also satisfies this task:

v̇NSB = v̇1 +N1v̇2, (6)

where N1 = I− J†
1J1 is the null space projector of task 1,

and v̇2 is some additional desired acceleration resulting from
other tasks. The relation can be generalized to obtain a
solution for N tasks:

v̇NSB =
N∑

i=1

N̄iv̇i, (7)

where N̄i is the null space projector of the augmented
Jacobian of all higher priority tasks J̄i = [JT

1 . . .J
T
i−1]

T.
With this choice of acceleration, the highest priority task is
always fulfilled, whereas the lower priority tasks are fulfilled
as well as possible in the subspace that does not conflict with
higher priority tasks. The commanded acceleration µ is given
by the NSB acceleration

µ = v̇NSB . (8)

A. Stability Analysis

In this section, we investigate the stability of an NSB
algorithm consisting of two tasks. The proof is based on

[23], but extended to a double integrator system. First, let us
present the concepts of task independence and orthogonality.

Definition 1: Let J1 and J2 denote the Jacobians of tasks
1 and 2. These two tasks are orthogonal if

J1J
†
2 = O, (9)

where O is a matrix of zeros. The tasks are independent if

ρ
(
JT
1

)
+ ρ

(
JT
2

)
= ρ

([
JT
1 JT

2

])
, (10)

where ρ(·) is the rank of the matrix.
Theorem 1: Consider two independent and orthogonal

tasks 1 and 2. Let X̃T =
[
σ̃T
1 , σ̃

T
2 , ˙̃σ

T
1 , ˙̃σ

T
2

]
denote the

stacked error vector.
The control input defined in (6) ensures that X̃ = 0 is a

globally exponentially stable equilibrium point.
Proof: First, let us find the closed-loop expressions for

¨̃σ1 and ¨̃σ2, from (3b), (6), and (8):

¨̃σ1 = J1v̇1 + J1N1v̇2 + J̇1v − σ̈d,1, (11a)
¨̃σ2 = J2v̇1 + J2N1v̇2 + J̇2v − σ̈d,2, (11b)

Note that thanks to the independence and orthogonality
assumptions, it follows that J2N1J

†
2 = I. Consequently,

substituting (5) into (11) and using (3), the time-derivative
of X̃ is given by

˙̃X = MX̃, (12)

where

M =




O O I O
O O O I

−Λp,1 O −Λd,1 O
O −Λp,2 O −Λd,2


 . (13)

Since the gain matrices are positive definite by design, the
matrix M is Hurwitz, and the closed-loop system is globally
exponentially stable.

III. CASE STUDY: FORMATION PATH FOLLOWING OF
AUVS

The following sections present a case study of the pro-
posed NSB algorithm applied to a fleet of underactuated
AUVs equipped with the hand-position-based controller from
[20]. The control objective of the fleet is to follow a prede-
fined path while keeping formation and avoiding obstacles.

The vehicle model under the hand position controller is
presented in Section III-A and the formation path following
problem is formulated in Section III-B. The NSB tasks are
detailed in Section III-C, Section III-D details the obsta-
cle avoidance method, Section III-E analyzes the stability
properites, and Section III-F presents a simulation study.

A. AUV model

We consider a 6-degree-of-freedom model of an AUV
exposed to an unknown constant irrotational ocean current.
The AUV’s position, attitude, translational and rotational
velocities are denoted by η ∈ R3, R ∈ SO(3), ν ∈ R3,
and ω ∈ R3, respectively. The relative velocity between the



AUV and current is νr = ν −RTvc, and the concatenated
velocity vector is ζT

r = [νT
r ,ω

T].
We apply the 3D hand position-based controller from [20]

for maneuvering control of the AUV and obtain the resulting
system model

ẋ1 = x2 + vc, (14a)
ẋ2 = µ, (14b)

Ṙ = RS(ω), (14c)

ω̇ = L̄×
(
RTµ+Dν(ζr) + Cν(ζr)− ω ×RTx2

)

−
(
L̄L

T
) (

Dω(ζr) +M′
22(Wzgbe3 ×RTe3)

)
.

(14d)

Note that through the 3D hand position concept, the underac-
tuated and highly nonlinear AUV model is now transformed
to an input-output feedback linearized form, where the ex-
ternal part of the system [x1,x2]

T denotes the hand position
and velocity given by

x1 = η +RL, (15a)
x2 = Rνr +R(ω × L). (15b)

The internal part of the system is given by [R, ω]T, and µ is
the new control input. The definitions of the vectors and ma-
trices L, L̄, M′

22 , zgb, e3, Dν , Dω and Cν are given in [20].

B. Formation Path Following

We consider a fleet of n AUVs following a path in
the inertial coordinate frame given by a smooth function
pp : R 7→ R3, and define the stacked position and velocity
vectors p = [xT

1,1, . . . , x
T
1,n]

T and v = [xT
2,1, . . . , x

T
2,n]

T,
respectively. We also define the stacked ocean current vector
Vc = 1n,1 ⊗ vc, where 1n,1 is an n-dimensional vector
of ones, and ⊗ is the Kronecker product. We will in the
following denote the position of a single AUV by pi := x1,i

and its velocity relative to the ocean current by vi := x2,i.
The path function is assumed to be C∞ and regular,

meaning that the function is continuously differentiable and
the partial derivative with respect to ξ satisfies

∥∥∥∂pp(ξ)
∂ξ

∥∥∥ ̸= 0.

For every point pp(ξ), there exists a path-tangential
coordinate-frame with a corresponding rotation matrix Rp

(see Fig. 1). The path-following error pp
b is defined in terms

of the barycenter of the fleet in the path-tangential coordinate
frame:

pp
b = RT

p (pb − pp(ξ)) , pb =
1

n

n∑

i=1

pi. (16)

The formation is defined in the formation-centered coor-
dinate frame, centered at pb with the same orientation as
the path-tangential frame (see Fig. 2). The position in the
formation-centered frame is given by

pf
i = RT

p (pi − pb) , (17)

and the desired positions are given by pf
f,1, . . . ,p

f
f,n.

y

x

z

xpRp

yp

zp

pp(ξ) ≡ Op

O

Fig. 1. Definition of the path angles and path-tangential coordinate frame.
O denotes the origin of the inertial coordinate frame, Op denotes the origin
of the path-tangential frame.

C. NSB Controller

We let the control system consist of three tasks in decreas-
ing order of priority: inter-vehicle collision avoidance, for-
mation keeping, and path following. The following sections
will detail the chosen task variables and SOCLIK solution
for each task.

1) Inter-vehicle collision avoidance: The highest priority
task is inter-vehicle collision avoidance (COLAV). This
task is active only when two vehicles are closer than an
activation distance dCOLAV . The task variable is given by
a stacked vector σ1 = [σT

1,1, . . . , σ
T
1,l]

T of relative distances
between vehicles closer than the activation distance:

σ1,k = ∥pi − pj∥, ∀i, j ∈ 1, . . . , n : j > i,

∥pi − pj∥ < dCOLAV .
(18)

The task size varies depending on the number of vehicles that
are within the activation distance, and it is empty under nor-
mal conditions. The desired values of the task are given by

σd,1 = dCOLAV 1l. (19)

We note that σ̈d,1 = σ̇d,1 = 0.
The task Jacobian is given by the stacked partial deriva-

tives for each active collision

J1 =

[(
∂σ1,1
∂p

)T

, . . . ,

(
∂σ1,l
∂p

)T
]T

, (20a)

∂σ1,k
∂pi

=
(pi − pj)

T

∥pi − pj∥
,
∂σ1,k
∂pj

= − (pi − pj)
T

∥pi − pj∥
. (20b)

The derivative of the task Jacobian is similarly given by a

pp(ξ)

pp
b ≡ Of

pf
f,1

pf
f,2

pf
f,n

p1

p2

pn

Fig. 2. Definition of the formation. Of denotes the origin of the formation-
centered coordinate frame.



stack of time-differentiated partial derivatives

J̇1 =

[(
d

dt

∂σ1,1
∂p

)T

, . . . ,

(
d

dt

∂σ1,l
∂p

)T
]T

, (21a)

d

dt

∂σ1,k
∂pi

=

(
I3

∥pi − pj∥

−
(
pi − pj

)(
pi − pj

)T

∥pi − pj∥3
)(

vi − vj

)
,

(21b)

The resulting SOCLIK equation for the task is

v̇1 = −J†
1

(
Λp,1σ̃1 +Λd,1σ̇1 + J̇1(v +Vc)

)
, (22)

with σ̇1= J1(v+Vc). Note that due to the structure of the
task Jacobian, it follows that J1Vc = J̇1Vc = 0. Conse-
quently, v̇1 is independent of the ocean current velocity.

2) Formation-Keeping Task: The formation-keeping
task moves the vehicles into a predefined formation in the
formation-centered frame. The task variable is given by

σ2 =
[
σT
2,1, ...,σ

T
2,n−1

]T
, σ2,i = pi − pb. (23)

The desired values are

σd,2 = [
(
Rpp

f
f,1

)T
, ...,

(
Rpp

f
f,n−1

)T
]T. (24)

There is one fewer task than AUVs to avoid singularities,
as the last AUV’s position is implied by

∑n
i=1 p

f
f,1 = 0.

The Jacobian is given by

J2 =

([
In−1 0n−1,1

]
− 1n−1,n

N

)
⊗ I3. (25)

Because J̇2 = 0, the SOCLIK equation reduces to

v̇2 = J†
2

(
σ̈d,2 −Λp,2σ̃2 −Λd,2

˙̃σ2

)
. (26)

The nominal task acceleration (26) may saturate the actu-
ators if the formation error is large. The NSB controller may
also lead to a loss of controllability if the formation-keeping
velocities exactly cancel out the path-following velocities.
Therefore, we introduce the saturated task acceleration

v̇2 = J†
2

(
σ̈d,2 − v2max

sat
(
Λp,2σ̃2

)
−Λd,2

˙̃σ2

)
, (27)

where v2max
is a positive constant and sat is a saturation

function given by

sat
(
x
)
= x

tanh ∥x∥
∥x∥ . (28)

With the saturated task acceleration, we further require that
the product of the gain matrices Λp,2Λd,2 is symmetric
positive definite.

Like the inter-vehicle collision avoidance task, this task is
independent of the ocean current.

3) Path Following Task: The path following task concerns
moving the barycenter along the predefined path. Moreover,
we want the formation to move at a constant, desired path-
following speed ULOS . We apply the same acceleration to
all vehicles to ensure that the barycenter moves without
changing the relative formation.

We apply the line-of-sight (LOS) algorithm from [12] and

modify it to work with double-integrator systems. We denote
the components of the path following error pp

b as xpb , ypb , and
zpb . Like in [12], we let ∆(pp

b) be the error-dependent look-
ahead distance of the LOS guidance law given by

∆(pp
b) =

√
∆2

0 + (xbp)
2 + (ybp)

2 + (zbp)
2, (29)

where ∆0 is a positive constant. The LOS velocity is then

vLOS,d = Rp [∆(pp
b),−y

p
b ,−z

p
b ]

T ULOS

D
, (30)

where ULOS > 0 is the desired path-following speed, and

D =
√

∆(·)2 + (ybp)
2 + (zbp)

2 (31)

is a normalization term.

Unlike [12], our method requires a desired acceleration.
We derive the time-derivative of the line-of-sight velocity
(30)

v̇LOS,d = Ṙp [∆(pp
b),−y

p
b ,−z

p
b ]

T ULOS

D

+Rp

[
∆̇(pp

b , ṗ
p
b),−ẏ

p
b ,−ż

p
b

]T ULOS

D

−Rp [∆(pp
b),−y

p
b ,−z

p
b ]

T ULOS

D2
Ḋ.

(32)

We want to eliminate the error caused by the constant
unknown ocean current at this stage of the control hierarchy,
as all higher-priority tasks are independent of it. To this end,
we introduce the virtual integral state pv defined by

ṗv = vLOS,d, (33)

and define the following task acceleration

v̇LOS = v̇LOS,d+Λp,3(vLOS,d−vb)+Λi,3(pv−pb), (34)

where vb =
1
N

∑N
i=1 vi.

Lemma 1: Let Λp,3 and Λi,3 be two symmetric positive
definite matrices. The relative barycenter velocity vb con-
verges exponentially to the relative LOS velocity vLOS,d −
vc under controller (7), (8) with the path-following task-
acceleration given by (34).

Proof: We define error variables

p̃ = pb − pv −Λ−1
i,3Λp,3vc, (35a)

ṽ = vb + vc − vLOS,d, (35b)

which have the following linear dynamics
[
˙̃p
˙̃v

]
=

[
0 I

−Λi,3 −Λp,3

] [
p̃
ṽ

]
. (36)

A linear system with a Hurwitz system matrix is uniformly
globally exponentially stable.

Since the desired acceleration is equal for all vehicles, we
define it by a simple Kronecker product

v̇3 = 1n,1 ⊗ v̇LOS . (37)

Like in [12], the update of the path-parameter ξ is used as



an extra degree of freedom to guarantee along-track stability

ξ̇ = ULOS

∥∥∥∥
∂pp(ξ)

∂ξ

∥∥∥∥
−1
(
∆(pp

b)

D
+ kξ

xpb√
1 + (xpb)

2

)
.

(38)
This choice ensures that the desired LOS velocity (30)
guarantees USGES of the path-following task, which we will
rely on in the stability proof presented in Section III-E.

D. Obstacle avoidance

We implement an obstacle avoidance method that enables
the fleet to avoid external obstacles while keeping the forma-
tion. This approach mitigates the issue of vehicles straying
out of communication range while evading obstacles. We
modify the collision cones method from [12] to be compat-
ible with double integrator dynamics and focus on obstacle
avoidance in the xy-plane.

We assume a constant velocity model for the obstacle.
Its position and velocity vectors are denoted by po =
[xo, yo, zo]

T and vo = [ẋo, ẏo, żo]
T. We define an obstacle

avoidance radius ro that is large enough to account for both
the size of the obstacle and the AUV. The formation radius
rf is defined as the maximum distance between any vehicle
in the fleet and the formation center, and it is assumed to be
constant. We further define prel = [xo−xb, yo−yb]T, vrel =
[ẋLOS,d− ẋo, ẏLOS,d− ẏo]T, and v̇rel = [ẍLOS,d, ÿLOS,d]

T.
Note that vrel is defined in terms of the LOS desired velocity
(30), so ṗrel ̸= vrel.

Collision is avoided if we ensure

||prel|| ≥ ro + rf (39)

throughout the avoidance maneuver (see Fig. 3(a)). The
formation is on a collision course (see Fig. 3(b)), if

|∠(prel,vrel)| ≤ α, α = sin−1
(ro + rf
||prel||

)
. (40)

Then the obstacle avoidance task is activated if the fleet is
close enough so that α > αmin. When the task is active, the
x- and y-components of vLOS,d and v̇LOS,d given by (30)
and (32) are replaced with vOA,d and v̇OA,d, given by

vOA,d = ||vrel|| [cos (ψOA), sin (ψOA)]
T
+[ẋo, ẏo]

T
, (41)

v̇OA,d = ˙||vrel|| [cos (ψOA), sin (ψOA)]
T

+||vrel||
[
− sin (ψOA)ψ̇OA, cos (ψOA)ψ̇OA

]
T,

(42)

where

ψOA = atan2 (yo − yb, xo − xb)± α, (43)

ψ̇OA =
det
(
[prel ṗrel]

)

||prel||2
± α̇, (44)

α̇ =
ro + rf

||prel||2
√

||prel||2 − (ro + rf )2
pT
relṗrel, (45)

before entering into (33) and (34).

E. Closed-Loop Analysis

In this section, we analyze the closed-loop stability of the
system’s external states and the boundedness of the internal

ro

pb

po

rf

p1

p2

pn

∥prel∥

(a) Illustration of the obstacle avoid-
ance constraint (39).

ro + rf

α

pb

po

vrel

(b) Illustration of the conflict con-
dition (40).

Fig. 3. Illustrations of obstacle avoidance.

states. We assume that the inter-vehicle collision avoidance
task is inactive for the analysis. The path-following and
formation-keeping tasks are orthogonal, because they pro-
duce common accelerations for the whole fleet and relative
accelerations within the fleet, respectively. Therefore, the
null-space projection N2 from the formation-keeping task
will not affect the path-following acceleration v3

v̇ = v̇2 + v̇3. (46)

Furthermore, because of the following independence rela-
tions

σ̈2 = J2v̇2 + J2v̇3 = J2v̇2, (47)

v̇b =
1

n

n∑

i=1

(v̇2 + v̇3) =
1

n

n∑

i=1

v̇3, (48)

the closed-loop properties of each task can be analyzed
independently.

1) Stability of the Formation-Keeping Task: The closed-
loop dynamics of the formation-task error σ̃2 under the
saturated formation-keeping acceleration, (27), are given by
the system

¨̃σ2 = −v2max
sat
(
Λp,2σ̃2

)
−Λd,2

˙̃σ2. (49)

Theorem 2: Let Λp,2, Λd,2 be two symmetric positive
definite matrices so that the product Λp,2Λd,2 is symmetric
positive definite. Then,

[
˙̃σT
2 , σ̃

T
2

]T
= 0 is a uniformly

globally asymptotically stable (UGAS) equilibrium of the
closed-loop system (49).

Proof: Consider the Lyapunov function

V (σ̃2, ˙̃σ2)=v2,max log (cosh ∥Λp,2σ̃2∥)

+
1

2
˙̃σT
2 Λp,2

˙̃σ2.
(50)

Inserting for (49), the time-derivative is given by

V̇ = v2,maxsat (Λp,2σ̃2)
T
Λp,2

˙̃σ2

− ˙̃σT
2 Λp,2

(
v2,maxsat (Λp,2σ̃2) +Λd,2

˙̃σ2)
)
,

= − ˙̃σT
2 Λp,2Λd,2

˙̃σ2.

(51)

Let S = {
[
˙̃σT
2 , σ̃

T
2

]T ∈ R6(n−1)|V̇ = 0}. Because of the
dynamics (49), no other solution can stay identically in S,



other than the trivial solution
[
˙̃σT
2 , σ̃

T
2

]T ≡ 0. Thus, the
origin is globally asymptotically stable according to [24,
Corollary 4.2]. Furthermore, because (49) is time-invariant,
the equilibrium is UGAS.

2) Stability of the Path-Following Task: Let p̃ and ṽ be
given by (35). Using the definition

pp
b = RT

p (pb − pp), (52)

we get the following error system

˙̃p = ṽ,

˙̃v = −Λp,3ṽ −Λi,3p̃,
(53a)

ṗp
b = f(·) + g(·)ṽ,
= RT

p (vb+vc−ṗp) +
(
S(ωpξ̇)

)T
RT

p (pb − pp),

= RT
p (vLOS,d − ṗp)− S(ωpξ̇)p

p
b +RT

p ṽ.

(53b)

Theorem 3: Let Λp,3, Λi,3 be positive definite matrices.
Then, [p̃T, ṽT, (pp

b)
T]T = 0 is a uniformly semiglobally

exponentially stable equilibrium (USGES) of the system
(53a)-(53b).

Proof: Note that the error system is in a cascaded
form where the velocity error ṽ from (53a) perturbs the
system (53b). The dynamics of the perturbing system (53a)
are UGES according to Lemma 1. The nominal system (53b)
with ṽ = 0 was proved to be USGES in [12] using the
Lyapunov function

V (pp
b) =

1

2
(pp

b)
T
pp
b . (54)

Therefore, according to [25, Proposition 9] the cascaded
system is USGES if the following two assumptions hold

1) There exist constants c1, c2, η > 0 such that
∥∥∥∥
∂V

∂pp
b

∥∥∥∥ ∥p
p
b∥ ≤ c1V (pp

b), ∀∥pp
b∥ ≥ η, (55)

∥∥∥∥
∂V

∂pp
b

∥∥∥∥ ≤ c2, ∀∥pp
b∥ ≤ η. (56)

2) There exist two continuous functions α1, α2 : R≥0 →
R≥0, such that g(·) satisfies

∥g(·)∥ ≤ α1(∥ṽ∥) + α2(∥ṽ∥)∥pp
b∥. (57)

Because ∥∂V/∂pp
b∥ = ∥pp

b∥, 1) holds with c1 = 2, c2 = η
for any η ∈ R≥0.

Equation (57) is satisfied with α1(∥ṽ∥) = 1, α2(∥ṽ∥) = 0,
because ∥g(·)∥ = ∥RT

p ∥ = 1. As a result, all assumptions of
[25, Proposition 9] are satisfied, and the origin of the closed-
loop path-following system (53a)-(53b) is USGES.

3) Boundedness of Internal States: The proofs in this
section are based on [20]. For brevity, we will omit those
derivations that can be directly found in [20].

We note that the only states that can grow unboundedly are
the angular velocities of the vehicles. Let pi, qi, and ri denote
the roll, pitch, and yaw rate of vehicle i (note that ωT

i =
[pi, qi, ri]). Furthermore, let pd,i = pp(ξ) +Rpp

f
f,i denote

the desired position of vehicle i. Note that because the path

function is C∞ and thanks to the choice of the path parameter
update law (38), the time-derivative of pd,i is bounded.

First, we investigate the roll rate dynamics. In [20], it
is shown that the roll rate dynamics are always bounded.
Specifically, there exist ax, bx > 0 such that

|pi(t)| ≤ |pi(0)| e−axt +
bx
ax

(
1− e−axt

)
. (58)

Now, we investigate the pitch and yaw rate dynamics. The
closed-loop expression for q̇i and ṙi is
[
q̇i
ṙi

]
=

[
0 0 − 1

h
0 1

h 0

](
RT

i µi +Dν(ζr,i) + Cν(ζr,i) (59)

− ωi ×RT
i x2,i

)
.

Note that under the NSB control law, the hand velocity x2,i

converges to ṗd,i−vc. Consider then the following Lyapunov
function candidate

Vωi(qi, ri) =
1

2

(
q2i + r2i

)
. (60)

In [20], it is shown that the following inequality holds for
the time-derivative of Vωi

V̇ωi
≤− ayq

2
i − azr

2
i + ∥x2,i∥ ∥[qi, ri]∥

(∥ωi∥
h

+ ae

)

+ axyzpiqiri + axy ∥x2,i∥ piqi + axz ∥x2,i∥ piri
+ aye ∥x2,i∥ q2i + aze ∥x2,i∥ r2i + aey ∥x2,i∥2 qi
+ aez ∥x2,i∥2 qi + ∥[qi, ri]∥ ∥µi∥ . (61)

Theorem 4: Let us define

p̄ = bx/ax, x̄2 = max
t∈R≥0

∥ṗd,i(t)− vc∥ , (62a)

ᾱy = ay −
(
1

h
x̄2 +

1

2
|axyz p̄|+ |ayex̄2|

)
, (62b)

ᾱz = az −
(
1

h
x̄2 +

1

2
|axyz p̄|+ |azex̄2|

)
. (62c)

The angular rate dynamics are ultimately bounded if
ax, ᾱy, ᾱz > 0.

Proof: Using the identities described in [20], we can
derive the following (looser) upper bound on V̇ωi

V̇ωi ≤ −αyq
2
i − αzr

2
i +G (x2,i,ωi,µi) , (63)

where

αy=

(
ay−

(
1

h
∥x2∥+

1

2
|axyz||pi|+ |aye| ∥x2∥

))
, (64a)

αz=

(
az−

(
1

h
∥x2∥+

1

2
|axyz||pi|+ |aze| ∥x2∥

))
, (64b)

and G(·) represents the terms that grow at most linearly
with qi and ri. Note that the two following limits

lim
t→∞

αy ≥ ᾱy, lim
t→∞

αz ≥ ᾱz, (65)

hold for αy and αz . Therefore, if ᾱy, ᾱz > 0, then there
exists a finite time T after which αy, αz > 0.

First, let us investigate the candidate Lyapunov function



for t < T . Since αy and αz may be negative, we cannot
prove boundedness. However, note that the derivative of the
Lyapunov function in (63) has the following form

V̇ωi ≤ k ∥ω̂i∥2 +G(·), (66)

where ω̂i := [qi, ri]
T, k is a positive constant and G(·) grows

at most linearly with ∥ω̂i∥. We can therefore conclude that
the dynamics of qi and ri are forward complete [26].

For t ≥ T , V̇ωi
has the following form

V̇ωi
≤ −αyq

2
i − αzr

2
i +G(·) (67)

For sufficiently large angular velocities, the quadratic term
will dominate the linear term G(·), and q and r will remain
bounded.

The angular rate dynamics are thus ultimately bounded.

F. Simulation results

To validate the theoretical results, we perform a simulation
where the proposed algorithm is applied to a fleet of three
LAUVs [27]. In the simulated scenario, the vehicles should
follow a continuous, differentiable spiral while avoiding
collision with a stationary cylindrical-shaped obstacle with
radius 10m, base circle in the xy-plane and origin [x, y] =
[100,−10]. All position variables are here given in meters.
The spiral is given by

pp(ξ) = pp,0 +
[
ξ,−40 cos( π

100ξ), 20 sin(
π

100ξ)
]T
, (68)

where
pp,0 =

[
0,−40, 35

]T
. (69)

The barycenter relative formation is given by

pf
f,1 =



0
10
5


 , pf

f,1 =




0
−10
5


 , pf

f,1 =




0
0

−10


 , (70)

and we want the collision avoidance task to ensure a safe
distance of 10m both between vehicles in the fleet and
external obstacles. Therefore, the avoidance radius of the
cylinder, ro, is 20m. The vehicles are subject to an unknown
ocean current

vc =
[
0 0.25 0.05

]T
m/s. (71)

We initialize the fleet with barycenter pb =
[−5, −100, 18]T and relative positions

σ2,1 =




0
−15
−7


 , σ2,2 =




0
15
−7


 , σ2,3 =



0
0
14


 . (72)

The resulting North-East trajectory of the mission is shown
in Figure 5. The vehicles avoid the obstacle with a margin
and return to the desired path. Figure 4(a) shows that the
angular velocities remain bounded, in accordance with The-
orem 4. Figure 4(b) shows that the fleet converges to the de-
sired formation while the obstacle avoidance mode is active.
Except for during the inter-vehicle collision avoidance, the
convergence seems linear, which can be expected because the

task velocity is saturated by v2,max. Figure 4(c) shows that
the inter-vehicle COLAV task activates when the distance
between vehicles is below dCOLAV , and the distance does
not decrease further. Because the obstacle avoidance radius
ro was chosen 10m wider than the obstacle, the obstacle
is avoided with a 10m margin. Figure 4(d) shows that the
path-following error initially increases as the fleet avoids
the obstacle because the x- and y-components of vLOS,d

and v̇LOS,d are replaced with vOA,d and v̇OA,d given by
(41), (42). As expected from Theorem 3, the error converges
to zero after the obstacle is passed when the LOS task is
activated again.

IV. CONCLUSIONS AND FUTURE WORK

In this paper, we proposed an extended NSB method
for double-integrator systems. The method was proved to
provide GES task error dynamics. The method was demon-
strated in a case study of formation path-following with
underactuated AUVs. We defined the second-order kinematic
tasks for collision avoidance, formation-keeping, and path-
following. To force a bounded velocity, we introduced a
saturation term to the formation-keeping acceleration. The
closed-loop formation-error system with the reformulated
formation-keeping acceleration was proved to be UGAS.
The closed-loop path-following system was proved to be
USGES. Simulation results demonstrate the effectiveness of
our approach. Possible future work includes verifying the
presented results through experiments.
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