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Abstract
1.	 An automatic bird sound recognition system is a useful tool for collecting data of 

different bird species for ecological analysis. Together with autonomous record-
ing units (ARUs), such a system provides a possibility to collect bird observations 
on a scale that no human observer could ever match. During the last decades, 
progress has been made in the field of automatic bird sound recognition, but 
recognizing bird species from untargeted soundscape recordings remains a 
challenge.

2.	 In this article, we demonstrate the workflow for building a global identification 
model and adjusting it to perform well on the data of autonomous recorders 
from a specific region. We show how data augmentation and a combination of 
global and local data can be used to train a convolutional neural network to clas-
sify vocalizations of 101 bird species. We construct a model and train it with a 
global data set to obtain a base model. The base model is then fine-tuned with 
local data from Southern Finland in order to adapt it to the sound environment 
of a specific location and tested with two data sets: one originating from the 
same Southern Finnish region and another originating from a different region in 
German Alps.

3.	 Our results suggest that fine-tuning with local data significantly improves the 
network performance. Classification accuracy was improved for test record-
ings from the same area as the local training data (Southern Finland) but not for 
recordings from a different region (German Alps). Data augmentation enables 
training with a limited number of training data and even with few local data 
samples significant improvement over the base model can be achieved. Our 
model outperforms the current state-of-the-art tool for automatic bird sound 
classification.
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1  |  INTRODUC TION

Birds are important indicators of the state of the environment 
(Carignan & Villard,  2002; Fraixedas et al.,  2020; O'Connell 
et al.,  2000) and one of the most well-studied groups of taxa. As 
ecosystems are suffering from ongoing global biodiversity loss, bird 
populations all over the world are also decreasing at an alarming rate 
(Burns et al., 2021; Rosenberg et al., 2019; Sanderson et al., 2006; 
Xu et al.,  2019). Collecting information about the changes in bird 
communities to efficiently target conservation measures is thus es-
pecially important at the moment.

Birds are easiest to detect by their vocalizations and passive 
acoustic monitoring has recently been applied in various studies 
(Aide et al.,  2013; Farina et al.,  2011; Frommolt,  2017; Furnas & 
Callas, 2015; Matsubayashi et al., 2017; Sethi et al., 2022; Shonfield 
& Bayne,  2017). Autonomous recording units (ARU) are a cost-
effective tool for collecting audio data and the reliability of the spe-
cies occurrence data produced by them is comparable to traditionally 
used human-made point counts (Darras et al.,  2018; Shonfield & 
Bayne, 2017). ARUs may even outperform human observers in lo-
gistically challenging terrain such as mountains, because they can 
be set-up anytime while observers need to get on site each morning. 
Another advantage of ARUs is that they can stay on site for days 
or weeks and thus provide a better coverage of bird species than 
human observers. However, even with the ARUs producing species 
level identifications for audio data often requires a human expert 
and can be a laborious task especially when the data collection pe-
riod is long. The poor scalability of human-based annotation pro-
duction motivates the demand for reliable and efficient automatic 
identification systems.

Automated bird sound identification has been studied since 
the late 1990s (Anderson et al., 1996; Kogan & Margoliash, 1998). 
Various techniques, such as multilayer perceptrons (McIlraith & 
Card,  1997), decision trees (Lasseck,  2015), support vector ma-
chines (Fagerlund, 2007), classification of singular vectors (Hansson-
Sandsten, 2015) or sinusoidal modelling (Härmä, 2003) have been 
applied and proven to work at least for a limited set of species. 
However, expanding to dozens or hundreds of species has been con-
sidered difficult (Priyadarshani et al., 2018).

Currently convolutional neural networks (CNN) are the best 
performing and most widely used method in automated bird sound 
recognition (Joly et al., 2021; Kahl et al., 2021). Typically CNNs are 
applied on spectrogram images, which are obtained from audio data 

through short-time Fourier transform. An overview of the develop-
ment of bird sound identification methods during recent years can 
be obtained by observing the results of the annual BirdCLEF chal-
lenge organized as a part of the Cross Language Evaluation Forum 
(CLEF). The BirdCLEF challenge has been organized since 2014 to 
promote the development of machine learning algorithms identify-
ing bird vocalizations. The main task in the competition was initially 
to build a model for identifying the foreground species in a recording 
that is primarily targeted at a single bird (Joly et al., 2014), but has 
afterwards been extended to identifying and localizing all bird spe-
cies from soundscapes of multiple possibly overlapping vocalizations 
from varying distances. In the early years of the BirdCLEF competi-
tion, the best performing solutions were based on calculating some 
low-level statistics from short audio segments and using these as 
input for a classifier (Joly et al., 2014, 2015). CNNs were first ap-
plied in the challenge in 2016 and have been victorious ever since 
(Joly et al., 2016, 2017, 2021). Already in the year 2017, all submitted 
solutions applied CNNs (Joly et al., 2017).

The current state-of-the-art solution for general bird species 
identification tasks covering hundreds of species is BirdNET (Kahl 
et al., 2021) by the Cornell Lab of Ornithology. The number of spe-
cies (2400 by May, 2022) included in BirdNET clearly exceeds all 
other existing methods and in terms of mean average precision and 
F0.5 score, the performance is still comparable with other appli-
cations (LeBien et al., 2020; Ruff et al., 2020). Another version of 
BirdNET, BirdNET-Lite (Kahl, 2020) achieves an even greater num-
ber of classes, covering impressive 6000 species, which is more than 
half of all bird species of the world.

Targeted single-species recordings can be accurately clas-
sified with current CNN-based solutions (Joly et al.,  2021; Kahl 
et al., 2021). However, being able to generalize to noisy soundscapes 
with overlapping vocalizations from varying distances and adapting 
to different acoustic environments remains the key challenge in au-
tomatic bird sound identification. In this work, we propose a solution 
to the problem through parameter fine-tuning.

In general, the task of constructing a well-performing classifier 
with limited amount of training data is challenging. Transfer learning 
and fine-tuning are commonly used methods to address the prob-
lem. Transfer learning often refers to re-using a model trained for 
one task for constructing another model for another task, while fine-
tuning means that a model (or part of it) is simply re-trained with 
new data to adjust the model output for better performance with 
the new target data (Chollet, 2017). However, transfer learning and 

4.	 Using local data to adjust the recognition model for the target domain leads to 
improvement over general non-tailored solutions. The process introduced in this 
article can be applied to build a fine-tuned bird sound classification model for a 
specific environment.

K E Y W O R D S
autonomous recording units, bioacoustics, bio-monitoring, bird sound recognition, 
convolutional neural networks, deep learning, model fine-tuning
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fine-tuning as such are general concepts and there are many ways to 
implement the details in practice. One of the early papers to inves-
tigate the issue is Yosinski et al. (2014). Different fine-tuning strate-
gies for CNNs have been compared by Chu et al. (2016) and Pittaras 
et al. (2017). An example of applying transfer learning for a network 
pre-trained on ImageNet (Deng et al., 2009) and fine-tuned with mel 
spectrogram images computed from the bird audio data is given by 
Lasseck (2018) and Sevilla and Glotin (2017).

In this article, we introduce a workflow for combining global data 
from existing sound libraries and local data from a specific target 
domain, to build bird sound identification models for recognizing 
bird species in a particular region with a specific set of species and a 
unique acoustic environment. We start by building an identification 
model based on global training data and show how this so-called 
global model can be fine-tuned with local data on Finnish birds to 
create a local model. Local fine-tuning is applied by freezing the 
convolutional layers of the network and retraining the parameters 
of the remaining two layers. We demonstrate the performance of 
our model and the advantage given by local fine-tuning through 
a case study of 101 bird species from Southern Finland. We also 
show that the improvement in classification accuracy only applies 
for test data from the same Southern Finnish domain and not for 
another test data set from the German Alps. Our solution can be 
applied for automatic collection of bird occurrence data in different 
locations around the world, by constructing and fine-tuning several 
site-specific recognition models. One example of this kind of scheme 
is the international LIFEPLAN Project (2022), which collects bird and 
bat vocalization data with 1000 globally distributed ARUs and has 
motivated the methodological development reported in this paper.

2  |  MATERIAL S AND METHODS

The process of training the classification model consisted of extract-
ing bird vocalizations from raw audio data, converting the sound 
data into spectrograms, and using these as inputs for a convolutional 
neural network. First we extracted 1000 example vocalizations for 
101 bird species from a global bird sound library and trained a so-
called global base model with these data. This global model was then 
fine-tuned with a local data set, which contains data originating from 
the same source as the final test data. The local data set contained 
samples of 72 bird species, on average 146 samples and up to 1089 
samples per species. For those 29 species, for which no local data 
were available, we reused the global data in the fine-tuning phase. 
To enable neural network training with a limited number of train-
ing samples, we applied data augmentation during both training and 
fine-tuning.

2.1  |  Audio data

We used two main sources of audio data: Macaulay Library (2021) 
as “global data” and Kerttu data (Lehikoinen et al., 2022), that were 

collected specifically for the purpose of this project, as “local data”. 
Macaulay Library  (2021) is the world's largest archive of animal 
sounds and contains over 30 million media files of more than 10,000 
bird species and other animals. From the Macaulay Library, we ob-
tained high quality recordings for 101 Finnish bird species (12–1186 
recordings per species). The length of the recordings ranged from a 
few seconds to several minutes and all recordings were labelled for 
one main species but could also contain other background species. 
The 101 species were selected based on their potentiality to appear 
in the Finnish test data set from Kerttu.

The Kerttu data set (Lehikoinen et al.,  2022) was collected 
in Southern Finland during the summer of 2018 with ARUs and 
contains 1.8 million minutes of audio. The data were labelled in 
the citizen science platform Kerttu producing two types of data: 
species-specific short time- and frequency-specified templates with 
binary labels (target species present or not) and longer 10 s clips la-
belled with a list of occurring species. We used the as additional local 
training data for the models and the latter as a test data set. The la-
belled data for local fine-tuning contained 13,898 samples (0–1089 
per species). The test data contained 2039 samples excluding clips 
that were flagged by data annotators to be poor quality and were 
thus rejected.

As a third data set, we used ARU recordings collected in 
Berchtesgaden National Park, Southern Germany during spring and 
summer 2021. Recordings were part of a biodiversity monitoring 
program conducted by national park staff (L. Geres, T. Richter, S. 
Seibold). To avoid unintended recording of people, notification signs 
were installed at each site. No further permissions for field work 
were required. The data contained 2318 two-minute recordings 
from 215 sites in forests and open habitats with species labels gen-
erated by expert ornithologists. The data set contained 47 species of 
the 101 species that were included in our model and was used as an 
additional test data set to evaluate the model performance.

The geographical distribution of different data sets is visualized 
in Supplement I. The species included in our model and in the differ-
ent data sets are listed in Supplement II.

2.2  |  Data preprocessing

To extract the training data from Macaulay data, we applied 
the Matlab implementation of the Animal Sound Identifier (ASI) 
(Ovaskainen et al.,  2018). Thus, we scanned through the spectro-
grams of all recordings searching for patterns that based on cross-
correlation repeat within the recordings of one species but not in 
the recordings of other species. A more detailed description of the 
process is given in Supplement III.

We used the ASI algorithm to find 1000 vocalization candidates 
for each species. These candidates were used in the training data set 
as such. In addition, we selected 10 best candidates for each spe-
cies to be verified by human experts. To do so, we used the cross-
correlation as a ranking score to the best match within the same 
file, penalized by correlation to already selected candidates. The 10 

 2041210x, 2022, 12, D
ow

nloaded from
 https://besjournals.onlinelibrary.w

iley.com
/doi/10.1111/2041-210X

.14003 by N
tnu N

orw
egian U

niversity O
f Science &

 T
echnology, W

iley O
nline L

ibrary on [06/09/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



2802  |   Methods in Ecology and Evolu
on LAUHA et al.

automatically extracted candidates were refined and verified man-
ually to ensure that they belong to the correct species and form a 
set that represents the repertoire of the specific species as well as 
possible. These 10 manually verified candidates were used as a re-
serve set to ensure that there were at least some manually curated 
samples available even for those species that were not found from 
the fine-tuning data set.

We formed the training data set by extracting 4-s clips around 
the selected vocalizations from Macaulay and Kerttu data sets. The 
training data was randomly split into a training set and a validation 
set to monitor the training process of the model. Each clip was fur-
ther split into three 3-s subclips with an overlap of 2.5 s between 
consecutive frames, in order to increase the size of the training data 
set and introduce temporal variation to the location of vocalizations 
within the final spectrogram images.

We transformed the audio data to spectrogram images using 
Python library librosa (McFee et al.,  2015). All audio files were 
resampled to 22,050 Hz and converted to logarithmic mel-scale 
spectrograms with default parameters of librosa functions librosa.
load (sr  =  22,050), librosa.feature.melspectrogram (n_fft  =  2048, 
hop_length  =  512) and librosa.power_to_db (ref  =  max). Pixel val-
ues of each individual sample were standardized to have zero mean 
and unit variance. By standardizing each sample individually, infor-
mation about the intensity differences between the samples were 
lost. However, this was not considered to be harmful, because the 
intensity of the signal depends mainly on the distance between the 
microphone and the vocalizing bird and not on the species to be 
classified.

2.3  |  Classification model

We used a simple convolutional neural network as the classification 
model. For model input, we used 128 × 129 matrices, which corre-
spond to audio clips of 3 s. The inputs can be interpreted as images, 
where each pixel value corresponds to the intensity of the certain 
frequency bin at a certain time point. The model structure follows 
the basic CNN architecture (Chollet, 2017) with four convolutional 
layers and a classification head of two fully connected layers. The 
structure of the model is described in Supplement IV.

Since any number of bird species can be present at the same time 
in a recording, we have a multilabel, multiclass classification prob-
lem. Consequently, we used sigmoid activations in the output layer. 
In hidden layers, we used rectified linear unit (ReLU) activations. 
The model was trained for 10 epochs with binary cross-entropy loss 
function and RMSprop optimizer with learning rate 0.0001 using 
batch size 64. To train the local model, the two last fully connected 
layers of the global model were fine-tuned with the local data for 
20 epochs, while other training parameters and the rest of the 
model weights remained unchanged. The number of epochs was 
selected by observing the development of validation accuracy over 
the epochs. The training was stopped when the validation accuracy 
plateaued.

2.4  |  Data augmentation

Data augmentation was applied in the training phase mainly for 
three reasons: to increase the size and diversity of the training data 
set, to avoid overfitting and to modify the training data to resem-
ble the test data in terms of background noise and signal-to-noise 
ratio. Augmentation was applied for spectrogram images before log-
transformation and standardizing. The set of selected augmenta-
tions consisted of methods that are meaningful with audio data. For 
example, rotation and flipping, which are commonly used for natural 
images, were not applied since they would result in a spectrogram 
that no longer represents the same vocalization as the original one. 
The augmentation methods applied were horizontal and vertical 
stretch, horizontal and vertical shift, raising to random power, add-
ing noise, mixup and horizontal and vertical masking. Descriptions 
and visualizations of included augmentation methods are provided 
in Supplement V. Similar methods have been used by various authors 
such as Lasseck (2018), Kahl et al. (2021) and several participants in 
the Cornell Birdcall Identification Contest (2020).

2.5  |  Model evaluation

The models were tested with the Kerttu test data set. Model pre-
dictions were produced by splitting the 10-s test files into slightly 
overlapping 3-s chunks, predicting for all of them and selecting the 
maximum prediction for each species. From these predictions, we 
calculated the area under the ROC-curve (AUC) for each species and 
compared the performance of our models with the current state-of-
the-art model BirdNET (Kahl et al., 2021). Since the prevalence of 
different species varied significantly in the test data, we selected for 
each species all samples where the species was present and an equal 
number of randomly selected samples, where the species was not 
present. Species-specific AUCs were calculated for these subsets. 
The final results were averaged over 20 runs to minimize the random 
effect regarding the selection of the evaluation set.

2.6  |  Quantifying the domain shift

To understand the difference between global and local data sets, 
we used the activations of the last convolutional layer of the global 
model to represent the data, that is each data point was represented 
by a 512-dimensional feature vector. Domain shift was quantified by 
calculating the average Euclidean distance between the local data 
and the species-specific mean of the global data.

3  |  RESULTS

Our results show that local data are very useful for training the iden-
tification model and already 50 samples per class can significantly 
improve the model performance and help outperform non-localized 
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models. Fine-tuning only improves model performance with test 
data originating from the same domain as fine-tuning data and not 
for test data from another source.

3.1  |  Performance of global and local models

We compared the performance of our models with the current 
state-of-the-art bird sound recognition model BirdNET. We used 
two versions of BirdNET, the recently published BirdNET-Analyser 
(Kahl,  2022) and the older BirdNET-Lite (Kahl,  2020). BirdNET-
Lite was included in the comparisons, since BirdNET-Analyser 
does not cover all of the species that were studied. The models 
were tested with those 43 species that occurred in the test data 
at least 15 times, to ensure the reliability of test results. When 
comparing species-specific AUCs of different models, the global 
model matches and exceeds the performance of BirdNET and 
fine-tuning with local data improves the performance even further 
(Figure  1d). The mean of the AUCs was 0.835 for BirdNET-Lite, 
0.830 for BirdNET-Analyser, 0.862 for the global model and 0.903 
for the local model. Local model produced the best results for al-
most all species (Figure 1a).

We also studied the connection between the number of fine-
tuning samples and the improvement obtained compared to the 
global model. The amount of local data needed to improve the AUC 
depends on the species. Even 50–100 fine-tuning samples can lead 
to significant improvement in model performance and help over-
come non-fine-tuned methods (Figure 1c). The same effect can be 
seen in Figure  2, which shows the results from fitting the models 
with restricted amounts of local data both with and without global 
pre-training. Even small amounts of local data increase the aver-
age of the species-specific AUCs. When the amount of local data is 
large enough, the performance of the model trained with local data 
only matches the performance of the globally pre-trained model. 
However, when there is not enough local data (for example less than 
a few hundred samples per species), pre-training with global data is 
the best solution.

To examine the reasons for improved performance of the lo-
calized model, we tested the models with the data collected 
from Berchtesgaden National Park, Southern Germany. Overall, 
Berchtesgaden data contained vocalizations of 81 species. We eval-
uated the model performance for those 37 bird species that were 
included in the Finnish models and occurred in the Berchtesgaden 
data at least 15 times.

Our results show that with German data the performance of the 
Finnish local model does not exceed the performance of the global 
model (Figure  1e). This suggests that the improvement achieved 
with the localized model is not only caused by covering the domain 
shift between targeted recordings and ARU recordings, but also due 
to adapting to a specific type of sound environment and location-
dependent vocalization types.

Species-specific AUCs are not directly comparable between 
Finnish Kerttu data and German data from Berchtesgaden, since the 

data sets differ from each other in terms of recording duration and 
quality of labels. However, different models can still be compared 
in relation to each other. Whereas with Kerttu data set our global 
model performed better than BirdNET and locally fine-tuned model 
still better than the global model, with Berchtesgaden data there 
are no differences between our models and BirdNET-Lite. BirdNET-
Analyser performs better for most species than other models, but 
for some species the performance is very poor.

Compared to truly global BirdNET, which is trained for 2400 bird 
species worldwide (BirdNET-Lite for over 6000), our “global” model 
benefits from being trained for only those species that occur in the 
Finnish data and using local data for fine-tuning further improves the 
results. When applying the models on data collected in a different 
location, these advantages vanish.

3.2  |  Inspection of model results

While selecting the set of augmentation methods, we tested differ-
ent combinations of methods with a restricted data set of four spe-
cies (Fringilla coelebs, Phylloscopus trochilus, Turdus merula and Turdus 
philomelos) to understand how individual augmentation methods af-
fect the model results. Augmentation trials revealed that none of 
the augmentation techniques were very effective by themselves, 
but when random combinations of the techniques were applied to-
gether, data augmentation improved the species-wise AUCs by 8–22 
percentage points. The most significant improvement was caused 
by adding noise and mixup. Mixup did not improve the validation 
accuracy in the validation data set originating from the same domain 
as training data, but yielded significant improvement for soundscape 
data and was therefore included. Heavy use of data augmentation 
provided two important advantages. Firstly, models could be fit and 
eligible results obtained with a very limited number of training data. 
Secondly, it helps to avoid overfitting.

We also investigated the difference between local and global 
data. Local data can be considered as a subset of the global data. We 
used t-distributed stochastic neighbour embedding (t-SNE) (Van der 
Maaten & Hinton, 2008) to project the data into 2-dimensional space. 
As an input to the t-SNE, we used 512-dimensional activations of the 
last convolutional layer of the network. In all data projections, local 
data form dense and visually distinct clusters among the broader set 
of global data, typically located at the edge of global data. We quan-
tified the magnitude of the domain shift as explained in section 2.6 
and studied how the domain shift affects the improvement achieved 
by local fine-tuning. The correlation between domain shift and AUC 
improvement was weak (0.314), but statistically significant (p = 0.026). 
Visualizations of t-SNE embeddings and the relation between domain 
shift and AUC improvement are provided in Supplement VI.

Further inspection of model predictions shows that even though 
no object detection techniques were explicitly applied, our models 
are capable of focusing on the important parts of the spectrogram. 
We studied how different parts of the test set spectrogram affect the 
prediction produced by the models with perturbation-based class 
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activation maps (Zeiler & Fergus, 2014). The class activation maps 
were created by covering different parts of the spectrogram by set-
ting all pixels of a certain area to zero and comparing the model out-
puts for the original spectrogram and modified spectrograms. The 
class activation map reveals, if masking a certain area considerably 
affects the model output, which means that this area is especially 

important for producing the original classification. Figure 3 shows 
how the local model performs on an example clip, where vocaliza-
tions of several birds temporally overlap with each other.

Overall, the models seem to perform well with most foreground 
vocalizations. Local model produces more confident predictions and 
seems to perform better with the background species than the other 

F I G U R E  1  Species-specific model comparison for test data from Southern Finland (a–d) and German Alps (e–h). Panels A and E show 
species-specific AUCs for all models ordered according to the AUCs of the locally fine-tuned model. With Finnish test data our global model 
exceeds the performance of BirdNET and fine-tuning with local data further improves the performance for almost all species. Fine-tuning 
with Finnish data does not improve the performance with German test data. Panels (b and f) show the distributions of AUCs across different 
species for all models and panels (d and h) the summary statistics for the same distributions. Panels (c and g) show how the number of local 
fine-tuning samples affects the improvement of AUCs compared to the global model. There is no obvious connection between the number 
of fine-tuning samples and improvement in local model performance. In all analysis the model performance was only evaluated for those 
species that occurred at least 15 times in the test data.

(a) (b)

(d)

(c)

(e) (f)

(h)

(g)
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models. However, predicted probabilities for background species 
are still typically quite low. Moreover, the predictions of all models 
seem to be rather conservative and the predicted probabilities are 
often too low. Comparison of model predictions with two 10 s exam-
ple recordings from the test set is shown in Figure 4.

4  |  DISCUSSION

The results of our case study demonstrate that our approach can be 
used to construct bird sound identification models with improved 
performance compared to existing non-localized solutions. The 
same steps could in principle be repeated with different data to build 
a localized model for specific type of data, such as data from another 
location or from specific type of microphones.

The number of layers and parameters in our model is small 
compared to very deep networks used for image classification, 
such as Inception (Szegedy et al., 2015) or Resnet (He et al., 2016) 

architectures. Also BirdNET (Kahl et al., 2021) has a more complex 
model architecture than our model. However, spectrograms have a 
simpler structure than natural images, and our results indicate that 
even a shallow model has enough capacity to learn a high number of 
different vocalizations.

Another notable difference between our approach and widely 
used models such as BirdNET (Kahl et al., 2021) is the processing 
and use of training data. We have used a relatively small number 
of training samples selected by either human expert (10 hand 
curated samples for each species from Macaulay data & 0–1089 
samples for each species from Kerttu data) or machine (1000 
training data samples per species from Macaulay data), whereas 
BirdNET uses enormous amounts of uncurated data for training 
(Kahl et al., 2021). Generally neural networks benefit from large 
amounts of data, but with weakly labelled bird sound data, inclu-
sive data selection might cause problems. For example, common 
species often occur in the background of the recordings labelled 
to other species. When background calls of common species are 

F I G U R E  2  The importance of local and 
global data. Red and orange curves show 
the average AUCs of the model, when 
the size of the training set was restricted 
to 5/20/100/ all available samples per 
species. The more local data are available 
for fine-tuning, the better are the results, 
but already 20 samples per species brings 
some improvement over the global model. 
The model performance was evaluated 
for those species that occurred at least 15 
times in the test data, and the AUC was 
calculated as an average of the species-
specific AUCs.

F I G U R E  3  Class activation maps for the locally fine-tuned model for an example sample extracted from a 10 s test recording. The 
sample shown on panel (a) contains vocalizations of three species highlighted with manually drawn boxes. Regulus regulus (goldcrest) sings 
on the high frequencies, ending at 1.5 s. Cuculus canorus (common cuckoo) vocalizes through the whole sample on the lower frequencies 
and Fringilla coelebs (common chaffinch) starts to sing at 1.5 s on the higher frequencies just below the goldcrest. Panels (b–d) show class 
activation heatmaps for each species given by the local model. Red areas indicate which parts of the spectrogram have yielded higher 
predictions for the given class and should roughly correspond to the boxes on panel (a). Locally fine-tuned model gives predictions 0.324 for 
goldcrest, 0.485 for common cuckoo and 0.070 for common chaffinch (0.672, 0.732 and 0.256 for the whole 10 s clip). All predictions are 
based on correct parts of the spectrogram.

(a) (b) (c) (d)
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F I G U R E  4  Two examples of model predictions for 10-s field recordings from the test data. The species occurring in the recordings are 
listed on the left panel and highlighted in the spectrogram with manually drawn coloured boxes. All species that were predicted with a 
confidence higher than 0.15 are listed for all models. In the first example, all models give fairly high predictions for both foreground species 
Cuculus canorus (common cuckoo) and Anthus trivialis (tree pipit), but the localized model is generally more confident than other models. The 
localized model is the only model to recognize also the background species Turdus philomelos (song thrush), but with a significantly lower 
confidence. In the second example, both global and local models recognize both species, but the confidence of the predictions is significantly 
higher with the local model. BirdNET fails to recognize Fringilla coelebs (common chaffinch), probably because it is a very common and 
widespread species and the model has learned to ignore it in the background of other vocalizations.
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included in training samples of different classes, the model learns 
to ignore them. Our results show that even a relatively small 
amount of data can be useful if the quality of the data and the 
labels is good enough.

The models presented in this paper are based on the idea of di-
vision between global and local data. Ideally, the global data should 
contain a comprehensive set of vocalizations for all species with a 
diverse variety of song types from different locations possibly re-
corded with different types of microphones, while local data would 
contain typical vocalizations from the target domain. The global 
data would be used to fit a reasonably good model, that would work 
as a good baseline and produce satisfactory results for all species, 
including rare species for which there are few or none fine-tuning 
samples available. However, the ideal conditions of global data were 
not fully met in our model. The geographical distribution of the 
global training data was very skewed, which means that the training 
set can not be considered as a comprehensive global set, but more as 
a restricted non-local data set instead. A more extensive global data 
set would most likely lead to improvement in both global and local 
models. Also, it is worth noting that the “global” model presented 
here is not completely global, since the noise data that is applied in 
the augmentation originates from the target domain and thus helps 
the model to adapt to local conditions even before actual local vo-
calizations are included.

While the global data are used to guarantee tolerable perfor-
mance with rarely encountered species, the local data play a key 
role with the most common species. As our results from Section 3.1 
suggest, if local data contain several hundreds of samples for each 
species, global pre-training is no longer needed. However, collect-
ing this much data is often not feasible for rare species, and global 
pre-training is thus essential for these species. For common species, 
hundreds of local vocalizations can be obtained more easily and the 
role of global pre-training becomes less important. In this case the 
local data enable adjusting the model to perform as well as possible 
with vocalization types and species that it most often encounters.

There are several possible explanations for why the local data 
seem to be so useful. One very plausible reason could be that the 
data augmentation can not fully cover the domain shift between 
targeted training data recordings and omnidirectional test data 
soundscapes, and local data are thus needed to teach the model how 
distant vocalizations sound in reality. However, the fact that the lo-
calized fine-tuning is not beneficial with test data from a different 
country suggests that the main advantage of local fine-tuning is not 
due to adapting to untargeted recordings. Therefore, a more plausi-
ble explanation could be that local data contain a lot of information 
about the local sound environment including e.g. the background 
noise. In addition, the vocalizations of some species might vary 
across different areas and local data would thus enable the model to 
learn the local “dialect” of the birds.

In our view, the most interesting questions regarding future de-
velopment concern expanding the model to an even broader set of 
species and utilizing recently invented machine learning techniques 
(Chen et al.,  2020; Locatello et al.,  2020; Wisdom et al.,  2020) to 

acquire a more developed structure for the global (and local) model. 
In terms of applicability of the model to practical wildlife monitor-
ing scenarios, an important question is, to how many classes could 
the model be extended. 101 species is enough to cover practically 
all species that can be expected to appear in a particular habitat in 
Southern Finland during the summer months, but for more biodi-
verse locations, such as rainforests, there might be a need for cov-
ering hundreds of species. In this paper our focus was mostly in 
the data and not on the variety of possible modelling approaches. 
However, the field of machine learning and neural networks is 
evolving extremely fast and there are several techniques that could 
be applied to improve the classification model itself. For example, 
self-supervised pre-training with contrastive learning (Al-Tahan & 
Mohsenzadeh, 2021; Chen et al., 2020) might enable training bet-
ter base models with unlabeled data, which is much easier to ac-
quire than labelled data. Sound source separation through mixture 
invariant training (Denton et al., 2021; Wisdom et al., 2020) or object 
detection (Locatello et al., 2020) also holds great potential, since cur-
rent methods perform very well with targeted one-class samples. 
If the raw audio data could be split to several channels according 
to the source of vocalization, the classification task would become 
substantially easier.

5  |  CONCLUSIONS

We fitted a neural network for classifying bird vocalizations with 
global data and fine-tuned it with local data to improve the model 
performance in specific conditions. The model was trained for 101 
species with 1000 automatically selected training samples per class 
and fine-tuned with 0–1089 hand-selected local samples per class.

Our results suggest that using appropriate data augmentation 
techniques while training a CNN for bird sound recognition improves 
the results of the model and enables training with a small number of 
training samples.

Using additional fine-tuning data from the same domain where 
the model will eventually be used, such as recordings from the same 
location and same type of microphones, is very useful for improving 
the model performance. Fine-tuning with just 50–100 samples per 
class can significantly improve the results.
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