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Abstract

Genome-scale metabolic models (GEMs) are mathematical models of an organisms cellu-
lar metabolism under the assumption of steady-state. They are used for computation of
metabolic capabilities and phenotype of a given organism [1, 2]. The biomass objective func-
tion (BOF) is a central function in a GEM, and consists of the precursor-components for
synthesis of cellular biomass, for example DNA, RNA, proteins and lipids [2, 3]. The compo-
sition of these precursors have been found to vary with organism, strain, and environmental
conditions [2, 4], and predictions by GEMs have proven to be sensitive to changes in the
BOF [3]. Still, it is common practice that the coefficients for the BOF are derived from ex-
periments performed with closely related organisms, rather than the one being modeled; or
from experiments with the organism in other growth conditions. Because the predictions by
GEMs are sensitive to changes in biomass composition, this utilization of data from closely
related strains or conditions could impact the validity of the predictions [2, 4].

The aim of this project is therefore to highlight the significance of implementing experimen-
tally derived coefficients in the BOF from the strain and condition being modeled. In order
to achieve this, Bacillus subtilis was cultivated by batch-fermentation in minimal media with
different carbon sources. The cells were harvested during exponential growth followed by
analysis of the biomass, demonstrating that the biomass composition of B. subtilis can be
measured experimentally, and that it changes in response to media composition. The result-
ing biomass compositions were implemented in the GEM iBsu1147 as new, condition-specific
BOFs to explore the effects on growth predictions. The results following pFBA and FVA
analyses with the new BOFs demonstrated that the growth rate predictions are quite robust
to changes in the biomass composition, but that the flux distribution is more sensitive.



Sammendrag

Genom-skala metabolske modeller (GEM) er matematiske modeller av en organismes cel-
lulære metabolisme under forutsetningen av ”steady-state”. De brukes til å beregne metabolsk
kapasitet og fenotype til en gitt organisme [1, 2]. Biomasseobjektivfunksjonen (BOF) er en
sentral funksjon i GEMs, og best̊ar av forløperkomponenter for syntese av cellulær biomasse,
for eksempel DNA, RNA, proteiner og lipider [2, 3]. Sammensetningen av disse forløperne
har vist seg å variere med organisme, stamme og miljøforhold [2, 4], og prediksjoner fra
GEMs har vist seg å være sensitive for endringer i BOF [3]. Likevel er det vanlig praksis
at koeffisientene i BOF er avledet fra eksperimenter utført med nært beslektede organismer
i stedet for den som skal modelleres; eller fra eksperimenter med organismen under andre
vekstforhold. Ettersom prediksjonene fra GEMs er følsomme for endringer i biomassekompo-
sisjonen, kan denne bruken av data fra nært beslektede stammer eller andre forhold p̊avirke
gyldigheten til prediksjonene [2, 4].

Målet med dette prosjektet er derfor å synliggjøre betydningen av å implementere eksper-
imentelt utledede koeffisienter i BOF fra stammen og tilstanden som modelleres. For å
oppn̊a dette ble Bacillus subtilis dyrket ved batch-fermentering i minimalt medie fem ganger,
tilsatt ulik karbon-kilde. Cellene ble høstet under eksponentiell vekst etterfulgt av analyse
av biomassen. Med dette ble det demonstrert at biomassekomposisjonen kan kvantifiseres
eksperimentelt, og at biomasse komposisjonen endrer seg i respons p̊a tilgjengelig karbon-
kilde. De resulterende biomassesammensetningene ble implementert i GEM iBsu1147 som
nye BOF-er spesifikke til karbonkilden som var tilgjengelig i mediet, for å undersøke effekten
av dette p̊a prediksjonene av modellen. Resultatene etter pFBA- og FVA- analyser med de
nye BOF-ene viste at veksthastighet prediksjoner er robuste for endringer i biomassesam-
mensetningen, men at fluksfordelingen er mer følsom.
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1. Introduction

Biological systems such as cells, can be described as systems within systems. Within a cell,
there is a network of multiple interacting components [5] such as proteins, genes, metabo-
lites [6] connected by associations, reactions and pathways. Each reaction and pathway have
characteristics and distinct properties. Together they combine and make up a cell with it’s
own emergent properties - properties that are not inherent to the components of the system
themselves, but exhibited by the system as a whole. Understanding how a system is assem-
bled is important, however it is also important to understand why systems are assembled the
way that they are [5]. For instance, being familiar with the mechanics of gene expression
such as translation and transcription, does not in itself explain or illustrate how this process
relies on coordinated action of several gene products at the same time [7, 8]. Thus, a biolog-
ical system can be described as hierarchical structures of subsystems and these subsystems
are linked together to make up complex networks [5] that describe how the components are
related and how they function together [9].

Since the full genome sequence of Haemophilus influenza was published in the mid 1990s, it
became possible to map all gene products involved in biological processes in an organism [7].
Further, increased availability of genomic and metabolomic data (Big Data) were enabled in
the 21st century as technological advancements enabled more cost-efficient generation of data.
There was an exponential increase in available biological data, but processing it all became a
challenge. Systems biology and machine learning approaches helped integrate and structure
this information in these datasets to understand the interactions between the components [6].

One method of structuring the available data is with Genome scale metabolic models (GEMs).
GEMs are mathematical models of an organisms cellular metabolism [1]. The models con-
tain information about the genome, enzymes and gene-protein associations, reactions and
metabolites that are linked by their interactions [6]. The information is structured by reac-
tion and metabolite stoichiometry under the assumption of steady-state. GEMs are used for
computation of the metabolic capabilities of an organism and its phenotype [1], and can be
analysed quantitatively by the addition of constraints as mathematical functions, followed
by reevaluation of feasible phenotypic states [8]. One such analysis is Flux Balance analysis
(FBA) where the flow of metabolites (flux) through the model is simulated during maximal
growth.

Central in the GEM and for analysis of the model with FBA, FVA and MOMA is the biomass
objective function (BOF). The BOF is implemented in the GEM as a reaction consisting of
macromolecules that are necessary for cell growth and proliferation. It contains the building-
blocks of the cells of the organism the GEM is modeling [10], and so the formulation of
an accurate BOF is essential reaction for quality model predictions [11]. To construct the
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BOF, information about the biomass composition of the cell and its energy requirements
are necessary [12]. As the proportions of an organisms biomass is not genetically specified,
the composition should be experimentally measured for the organism in study [2, 4]. The
compositions of biomass is known to change with environmental conditions and growth rate,
as well as between strains and organisms [2, 13]. However, the BOFs are often constructed
automatically, based on data from published research which might not correspond to the
organism the BOF is intended for, or the conditions that the organism is modeled in. There-
fore, the resulting predictions made by such models might not represent the organism [4,
2].

A precise estimation of the BOF is essential for accurate model predictions, but it is often
constructed based on published research where strain, nutrients, or overall conditions are
different from the target organism [4, 2]. For instance, iBsu1147 is a GEM of the bacterium
Bacillus subtilis that was constructed based on two older models, iBsu1103 and iYO844.
Interestingly the BOF has not changed much across these reconstructions, with iBsu1147
using the same research papers for their BOF coefficients as the two aforementioned mod-
els [14]. Using previously published research is in itself is not a problem, but the coefficients
are from experiments that are performed in different conditions, various strains and methods
of cultivation, drawing the validity of the iBsu1147 BOF into question.

As stated, it has been shown that changes in BOF coefficients affect the predictions of the
model, and that the biomass composition changes in response to environmental conditions [2,
11, 13]. The aim of this study was to perform biomass analyses of B. subtilis cultivated in
various media compositions by batch fermentation to asses whether the conditions affect the
biomass composition. Further, the measured biomass compositions were used to formulate
new, condition-specific BOFs. These were implemented in iBsu1147 to assess how this affects
the model predictions. The results from these analyses were examined to determine the
necessity of condition specific BOFs.

This project can be divided into four parts - Cultivation of B. subtilis ; biomass analyses
of the harvested cells of the bacterium; implementation of the experimentally derived data
in a genome scale metabolic model (iBsu1147); and various analyses of the model with the
experimental data. B. subtilis was cultivated by batch fermentation in bioreactors containing
minimal media supplemented with different carbon-sources. The experiments were performed
together with Linn Sandvik, another masters student. During the fermentation, various anal-
yses were performed allowing for calculation of growth-rates as well as uptake- and secretion
rates for various compounds. The cells were harvested in the exponential growth phase and
the biomass composition was quantified following the pipeline established by Simensen et
al. (2021) [2]. The measured biomass composition was used to construct a new condition-
specific BOFs for each cultivation. These were implemented in iBsu1147, and the model was
analysed by FBA, FVA and MOMA to see how the new BOFs affect the model predictions.
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2. Background

This chapter presents the theoretical foundation for understanding the project. It is initi-
ated with information about the organism of study, B. subtilis, and its metabolism. This is
important for being able to analyze how the bacterium adapts to the carbon-sources used in
the cultivation-experiments. Then, metabolic modeling is presented along with the analyses
that were performed - flux balance analysis (FBA), flux variability analysis (FVA) and min-
imization of metabolic adjustment (MOMA). The genome scale metabolic model iBsu1147,
is presented with special attention to the biomass objective function, as this is the reaction
that is updated in this project. The background chapter ends with the theory behind the
methods used to experimentally quantify the amount of DNA, RNA, proteins and lipids —
the biomass — of the bacterium.

2.1 Bacillus subtilis

The use of microorganisms in fermentation, bio-production, and -transformation continues
to develop. As B. subtilis is generally recognized as safe (GRAS), is able to metabolize a
wide range of substrates, and has well-characterized and efficient protein secretion pathways,
it can be used as a powerful cell factory [15]. It is already widely used in industrial pro-
duction of various products such as enzymes and vitamins [16]. The bacterium lacks an
outer cell membrane[15], which classifies it as Gram-positive [16]. This is a beneficial trait
in the industry, as it allows more efficient relocation of proteins into the extracellular space
(ECM) [15].

B. subtilis has been thoroughly studied over more than 40 years. Its biochemistry, physiology
and genetics are therefore well characterized [17]. Since the last annotation of its genome,
more than eight thousand new references have been uploaded to PubMed that are related
to the bacterium. Many of the publications are about the function of identified genes, or
about the potential it has in metabolic engineering. Although it is well characterised, a
better understanding of its metabolism is essential for better use of B. subtilis in industrial
applications, for example metabolite production [18].

2.1.1 B. subtilis metabolism

B. subtilis metabolizes glucose as its preferred source of energy and carbon [19, 20]. Glucose
enters glycolysis through phosphorylation and is further metabolized in the pentose phosphate
pathway (PPP), and the citric acid cycle (TCA). The sugar is oxidized to carbon dioxide
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and in the process ATP is generated [19]. However, the bacterium can metabolize a wide
range sugars and organic compounds [20]. Other sugars and sugar alcohols can be used by
B.subtilis by being phosphorylated and entering glycolysis similarly to glucose. Organic acids
are utilized by conversion to intermediates in the TCA, gluconeogenesis or PPP [19].
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FIGURE 2.1. Illustration of where various carbon sources enter the glycolysis or TCA in Bacillus subtilis.
(A) shows where in the glycolytic pathway xylose, mannitol and glycerol enter glycolysis. (B) shows where
succinate enters the citric acid cycle. Figure adapted from [21] using Biorender.com.
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Figure 2.1 illustrates various carbon sources that B. subtilis can utilize and how they enter the
metabolic pathways. Xylose is taken up via the arabinose transporter, converted to xylulose-
5-phosphate via the isomerase pathway, and metabolised through the PPP before entering
glycolysis as glyceraldehyde-3-phosphate [22]. Mannitol, a sugar alcohol [23], can also be
used as a sole source of carbon and energy for B. subtilis. It is taken up by a phosphotrans-
ferase system specific to mannitol as mannitol-1-phosphate. This is then either converted to
fructose-6-phosphate and enters the glycolytic pathway, or it is dephosphorylated and stored
inside the cell [24]. Glycerol is metabolised by glycerol kinase and GP dehydrogenase to form
dihydroxyacetone phosphate which is an intermediate in glycolysis ([25]). Succinate enters
the metabolism as an intermediate in the citric acid cycle [21] as illustrated in Figure 2.1.
However, growth on organic acids such as succinate require the cells to reverse the flux of the
glycolytic pathway to gluconeogenesis in order to produce hexose and pentose-phosphates
which are important biomass building blocks [26].

2.2 Bioreactors

The technology for cultivation of bacteria has in recent years developed rapidly [27]. Biore-
actors are one example of cultivation equipment for fermentations, developed and designed
to accommodate cellular growth in controlled environments. They are vessels containing
necessary nutrients, substrates, and microbial cells where the end goal usually is the pro-
duction of a desired product. The main objective of a bioreactor is to maintain specific
conditions needed for the organisms to grow, and generally perform a biochemical transfor-
mation. Though the bioreactor has existed in various forms throughout history, there has
recently been significant advancements in bioreactor technology due to progression in design
and an increased demand for biochemical products [28].

As the field of biochemical engineering has progressed, the cultivation process could be per-
formed with an increasing amount of control over the conditions. Solutions for measuring
and monitoring the physical and chemical environment developed, allowing adjustments to
be made during fermentation to control conditions of growth. Physical variables that can be
controlled include temperature and agitation, as well as gas and liquid flow rates. The chem-
ical environment, such as the pH and partial gas pressure can be registered using electrodes
submerged in the media. Additionally, gas concentrations can be measured with a mass
spectrometer. The ability to measure these parameters in the environment is fundamental
to controlling the cultivation [28].
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FIGURE 2.2. A bioreactor with labels on important components for controlling growth conditions when
fermenting bacteria or other microorganisms. The media is loaded into the wessel and is stirred by a motor-
powered stirrer. Air comes in at the bottom of the vessels directly into the media, and goes out through
the exhaust outlet. Media, OD and dryweight samples are taken from the sampling port. The dissolved
oxygen (DO) and pH-meter measure the oxygen levels in the media and pH, respectively. The illustration
was created using BioRender.com.

The organism, its genetics and strain, and the conditions in the bioreactor all affect the rate
of growth, as well as the number of microorganisms and the availability of nutrients [28]. This
brings into attention another important aspect of bioreactor cultivation. Besides providing
the ability for microbial growth in optimal conditions, the substrate concentration is also
controlled. The concentration may vary and change over time, depending on factors such
as the number of microorganisms and whether the growth process is a batch-, fed batch-
operation [29] or continuous. The difference between these modes is whether or not the
system is closed. In a fed-batch fermentation, growth limiting nutrients are added, and in
a continuous culturing (chemostat) there is constant removal of old media and addition of
fresh media [30].

2.2.1 Batch-mode fermentation

Fermentation in batch-mode entails that the system is partially closed. There is no addition
or withdrawal from the culture. Growth media and most materials required are aseptically
added to the bioreactor before inoculation of the particular microorganism [31]. Since the
system is partially closed, all substrate is added to the media before the start and then the
process runs its course without addition of more substrate [30]. There is withdrawal of media
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and biomass only for sampling or harvesting at the end of the fermentation. Air, anti-foam,
and pH-controlling agents are added during the fermentation as needed. Other than that,
the system is closed until the fermentation is completed. During the batch fermentation,
there is a program that monitors and controls the conditions. This ensures the environment
is stable, and the only changes occurring is what is being taken up from and released into
the media, and the microorganisms growing [31].

Compared to fed-batch or continuous mode of fermentation where substrate or media is
added during the fermentation, the stages of microbial growth in batch operations are not
controllable. This means that the bacteria can not be kept in a specific state of growth [30].
The process is started when a small amount of a cell culture is added to the media in the
reactor. Unless the cells are harvested at some point, the growth runs its course through the
growth phases described below [31].

Typically, growth in a batch fermentor can be divided into four phases, as Figure 2.3 illus-
trates. The cell culture is added to the fermentor from a starter-culture [31], usually followed
by what is called a lag-phase [31, 32]. In the lag phase, the cells reorganize their metabolism
to the new environment. This is, for example done by accelerating the synthesis of enzymes
that are needed depending on the nutrients available in the medium [33]. After the cells have
adjusted they enter a growth phase, usually characterized by an exponential increase in the
number of cells. Unless the fermentation process is stopped, the cells will continue to grow
into the next phase. The growth slows down in this stage because most of the nutrients, or
a growth limiting nutrient, have already been consumed during exponential growth. This is
often referred to as the second growth phase, where growth slows down. The next phase is
the stationary phase, where essential nutrients for cell growth have been depleted, followed
by the death phase. This is the final stage. Here, the concentration of viable cells rapidly
decreases [31, 32].
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FIGURE 2.3. Illustration of the four growth phases of bacteria in batch fermentation. After introduction to
a new media, there is a lag-phase where the bacteria reorganize their metabolism to adapt to the environment.
When the bacteria has adjusted to the environment, they enter a phase of exponential growth. The dashed
line representing ”theoretical growth” illustrates the expected growth if the old media was replaced with
fresh media, as in a chemostat set up, allowing the bacteria to continue exponential growth [34]. Because the
figure illustrates the growth in batch fermentation however, the bacteria continue to stationary phase [31].
Figure retrieved from Komorniczak (2009) [35].

2.3 Metabolic modelling

Biological systems are networks of mutually dependent, interacting, components that inte-
grate to form a unified entity with its own emergent properties - properties only possessed
by the whole system, not by its individual components in isolation. There are several layers
of hierarchy in biological systems. A metabolic pathway is one example of a system at lower
level, where substrates are converted to products by enzymes. A cell is a biological system
at a higher hierarchical level, where pathways are mutually dependent and interact, resulting
in emergent properties of the cell. The various levels of hierarchy are interlinked. Mutations
in the a gene can affect the emergent properties of the cell, its phenotype [5]. A phenotype
is a characteristic of cells that can be observed. In metabolic modeling the focus is often
on growth phenotypes, which refers to characteristics of growth such as if it grows and how
quick the organism proliferates [36].

Understanding the complex relationship between genes and phenotypes has long been a
challenge in molecular biology, as most phenotypic traits are a result of coordinated action
between several gene-products [7]. Additionally, gene-regulatory networks and pathways in-
teract with each other. Thus, the complexity of biological systems can not fully be understood
by studying genes, proteins and pathways in isolation. To achieve a comprehensive under-
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standing, the dynamic interactions of the components and structure of the cellular system
have to be examined [37].

Advancements in the field of molecular biology enabled the collection of extensive sets of data
through genome sequencing and high-throughput measurements [37]. Genome sequencing has
enabled the identification of gene products involved in complex pathways in an organism.
The increase in available metabolic data enabled the reconstructions of metabolic networks
of given organisms on genome-scale, called genome-scale metabolic models (GEMs) [7]. These
are reconstructions of an organisms metabolism, reconstructions, systematized as a mathe-
matical representation [6, 38]. One of the objectives in metabolic modeling is to use GEMs
to predict the behavior of cells, for example their growth phenotype [36].

2.3.1 Genome scale metabolic models

GEMs enable in silico exploration and analyses of microorganisms, their metabolism and
genomic data [39]. These mathematical models contain biochemical, genetic and genomic
data such as information about enzymes, gene-protein associations, reactions and metabo-
lites [6], and allow for computation of phenotypic traits [7, 39]. They are mathematical
representations of an organisms metabolism [1], and have become powerful tools for studying
the genotype-phenotype relationship [40].

GEMs are used for computation of the metabolic capabilities of an organism, its phenotype.
Because growth is directly related to gene-protein relationships, it is important that the
model is constructed based on data that provides insight about how the cells adapt to various
conditions [36]. It is also important that the models are structured in such a way that they
account for stoichiometry and reversibility of the reactions, assuming the metabolic system
is in a steady-state [1, 6], and and how the the underlying metabolic fluxes — the flow of
metabolites — are distributed across the metabolic model [41].

A GEM is constructed by first listing all available data on reaction equations, compounds
and compartments of the organism. The reaction equations are then converted to a matrix
with the stoichiometric coefficients from the reactions, as shown in Figure 2.4. The relation-
ship between reactions and compounds of the network is defined by this matrix [39]. The
stoichiometric matrix (S) has a size of m× n, where m are the number of metabolites in the
model and n are the number of reactions [42]. As illustrated in Figure 2.4B, each column rep-
resents a reaction, and contains the stoichiometric coefficients of the metabolites associated
with the given reaction. Each row is associated with a given metabolite. If an entry in S has
a negative value, this indicates the substrate was consumed. A zero means it is not a part
of the reaction and a positive value indicates the production of the compound. This matrix
is the first step in defining the framework of the organisms metabolism, and thus represents
the first level of constraints on the model [39, 42]. Each coefficient in the matrix constrains
the model by imposing limitations on the flow of metabolites, or flux, through the network,
thereby ensuring mass balance in the system. The total mass produced is equal to the amount
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consumed [42]. This way, the stoichiometric matrix defines the space of achievable metabolic
phenotypes [39].

FIGURE 2.4. (A) shows an example of a bacterial model and how the reactions for it can be listed. The
reactions are labeled in blue text. In figure (B) the stoichiometric matrix for that bacterial model has been
made, illustrating how one uses -1 or 1 to indicate consumption or production of the metabolites in the
reaction. Figure retrieved from Cuevas et al. (2016).

The compartment of the substrates or compounds in a reaction is denoted in the stoichio-
metric matrix. This is another constraint in the system as it enables the differentiation of
compounds inside the cell from those outside the cell. It also enables the model to include
reactions of transportation across the outer membrane or cell wall of the organism. Other
higher-level constraints on the model are media composition, as well as uptake- and secretion
from the media, defined by exchange reactions in the stoichiometric matrix. However, the
model also includes boundaries for each reaction. These boundaries limit the flux through
the reaction. Otherwise, one or several reactions could achieve unrealistically high or low
fluxes. Flux boundaries are also used to define whether or not a reaction is reversible [39].

The next step for construction of a GEM is setting the objective [42]. This means defining the
reaction that represents the main objective of the cell [39]. The objective is normally growth,
represented by biomass production, in which case it is referred to as the biomass objective
function (BOF). This function defines the the conversion of metabolic compounds to biomass
constituents, such as lipids, proteins, DNA, RNA etc [39, 42]. The BOF is implemented in
the model as an additional reaction in a column of stoichiometric coefficients, where precursor
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metabolites are consumed in a manner that stimulates production of biomass [42]. The BOF
is scaled so that the flux through this reaction equals the growth rate [42].

The BOF is constructed based on data on the organisms biomass composition. This data
should be based on experimentally derived measurements of biomass composition for the
organism being modeled [42]. This is important for accuracy in model predictions because
biomass composition has been shown to vary with organism, strain and environmental con-
ditions. However, data on biomass composition is not available for most organisms [2].
Therefore, the biomass composition is often derived from experiments performed with closely
related organisms, another organism entirely, or from experiments performed in different con-
ditions than what is being modeled. This can affect the validity of the predictions made by
the model [2, 4]. This will be explained in further detail in section 2.5.

In order to construction a GEM that well represents the genotype-phenotype relationship,
the generation of the model must be based on a few fundamental features. A few of which
have been introduced so far; all cellular functions can be described by chemical equations,
genome sequencing and high-throughput measurements enable constructions of metabolic
models [37, 43], cells are subjected to constraints, cells adapt to their environment, and
the mass is conserved. When these features are combined, they represent the concept of
what is called Constraint-Cased Reconstruction and Analysis (COBRA)[43]. When the sto-
ichiometric matrix is made, the reconstructed metabolic model can be analysed following
the constraint based approach. Constraints-based approaches entail identification of feasible
metabolic states, or growth phenotypes of the biological network that satisfies the constraints
that have been applied [44] .

2.3.2 Flux balance analysis

After the construction of the stoichiometric matrix is completed, and the media has been
defined, boundaries for compounds and reactions are set and the objective function has
been defined, the GEM is ready for analysis [39]. A common approach to study the flow of
metabolites (the flux) through the network is flux balance analysis (FBA) [42]. The purpose
of FBA is to find a feasible set of steady state fluxes that optimizes a specified objective of
the cell, for example maximizing biomass production within the space that the constraints of
the network define [45]. Essentially an FBA harnesses the information in the GEMs to make
predictions on growth and corresponding flux distribution of the model [42]. The biological
basis of the analysis is the knowledge that an organisms over time will adapt to their growth
environment by altering their metabolism to achieve optimal growth given the conditions.
In FBA, the growth rate and corresponding fluxes are based on the assumption that the
organism has evolved to an optimal state [46].

The system is solved using linear programming in FBA [39, 42]. ”Solving” the system refers to
maximizing or minimizing the objective-function, depending on what is being analyzed [42].
In biological systems, there are usually more reactions than metabolites. This means that
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the stoichiometric matrix (S) has more columns than rows, resulting in plurality of possible
distributions of metabolites through the network (flux distributions). This means there are
several feasible solutions in the model, but under a particular set of constraints, for example
definition of the media, only a set of feasible phenotypes can be expressed [8]. While the
stoichiometric coefficients, flux values and objective of the system define a range of possible
solutions for solving the system, an FBA will identify single points within this range, as
illustrated in Figure 2.5 [42].

FIGURE 2.5. An FBA analysis can be performed on a Genome Scale Metabolic network (GEM), in order
to identify the optimal flux distribution. The solution is on the edge of the solution-space allowed by the
stoichiometric matrix, reaction fluxes, media composition and the objective of the model. Figure retrieved
from Orth et al. (2010) [42]

.

With the objective being biomass production, FBA seeks to maximize the flux through the
BOF as much as possible given the restraints on the system [42]. When the network has been
constructed and the stoichiometric matrix has been defined, the mass balance of the system
can be defined as

dx

dt
= S · v. (2.1)

S is the stoichiometric matrix and v is the vector of fluxes that correspond to each reaction in
the network. dx/dt denotes the rate of change of a vector x, a vector with the concentrations
of all the metabolites in the system, with respect to time. Overall the equation represents
how the rate of change of metabolite concentrations is determined by the stoichiometry of
the reactions in the model and the flux of the reactions [45].

There is no change in the amount of compound x over time, t when the system is in steady-
state. In this case, the reaction defined in equation 2.1 can be written as

S · v = 0. (2.2)
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This represents the steady-state constraint of FBA. The optimized solution is calculated
assuming the system is in steady-state [45], and is found by maximizing or minimizing the
objective function which is defined by

Z = cTv. (2.3)

In Equation 2.3, c is a vector that contains the weights of how much each reaction contributes
to the BOF. c defines the objective as a linear combination of fluxes in the model, which
commonly is a vector with all zeros except a single non-zero element for the BOF. In FBA the
equation 2.2 below is solved given a set of upper- and lower bounds for the reactions in v, and
a linear combination of fluxes as an objective function, as shown below with equations 2.3, 2.2
and 2.4. The output of this analysis is a flux distribution v that maximizes the BOF [42].

max Z = cTv (2.3)

s. t. S · v = 0 (2.2)

vl ≤ v ≤ vu. (2.4)

The system of equations above formulate the FBA-problem as a linear programming problem,
where equation 2.3 is solved such that (s. t.) the upper (vu) and lower bounds (vl) for the
reactions in v are upheld [42].

2.3.3 Flux variability analysis

A flux variability analysis (FVA) is used to calculate the maximum and minimum flux for
each reaction in a GEM while satisfying the objective, for example biomass production [47].
Because a FBA solution normally is not unique, FVA can be used to find the range of possible
fluxes that reside in the solution of the FBA-problem [48]. The maximum and minimum value
is found for each reaction given the highest and lowest achievable flux possible through each
reaction, given the objective. This analysis is optimal for studying flux distributions and
the robustness or flexibility of the GEM. cT represents the objective, for example biomass
production. The FVA is performed by solving two optimizations for each flux (vi) [47],
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max/min vi

s. t. Sv = 0 (2.5)

cT · v ≥ γZ0

vl ≤ v ≤ vu.

γ is a parameter that defines whether the analysis is performed in optimal (γ = 1) or sub-
optimal (0 ≤ γ < 1) conditions. vu and vl represent the upper and lower bounds possible
for a given reaction. The optimal solution is where Z = cTv. During FVA, each reaction is
iterated through and two LP optimization problems are solved [47].

2.3.4 Minimization of Metabolic Adjustment analysis

As mentioned, FBA assumes that the organism is growing optimally. However, this is not
always the case, as for example with unevolved mutants or during response to metabolic
limitations. With MOMA, one can predict the behavior of strains in such conditions where
they exhibit sub-optimal growth [49]. This analysis is performed to find a solution-vector
that is closest to a given reference-vector of fluxes (w). The output of this analysis is a
vector x that contains a list of fluxes that are feasible and closest to the fluxes in vector w.
The aim is to minimize the Euclidean distance from the reference fluxes to fluxes that are
actually possible for the network to function with, using quadratic programming. It predicts
a metabolic phenotype by minimizing the distance in flux space. The analysis can be used
with experimental data in vector w. The objective in MOMA is to minimize the Euclidean
distance, D [46], which is defined as

D(w,x) =

√√√√ N∑
i=1

(wi − xi)2. (2.6)

where distance between vectors w and x is calculated by finding the sum of squared differ-
ences between the two, and then calculating the square root of the sum. In MOMA, the
original distance function has been transformed [46]. The objective is to identify a feasible
flux state v that is closest to the reference flux distribution w(Ref. equation 2.7), while
still maintaining the steady-state-(Ref. equation 2.8), and the capacity constraints in the
model(Ref. equation 2.9) [43],

min||v−w||2, (2.7)
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S · v = 0, (2.8)

vj,min ≤ vj ≤ vj,max. (2.9)

2.3.5 Constructing a biomass objective function

An accurate representation of the composition of the cell that is needed for proliferation is a
requirement for GEM predictions that well represents the organism in study. The BOF is the
function in the model that defines this composition, by specifying the components needed for
growth and their respective amounts required [2]. It is central part of analyses such as FBA,
FVA and MOMA. Therefore, an objective function that is based on specific physiological
measurements is key in successful FBA analyses [45, 2]. In order to formulate this function,
the composition of the cell must be known as well as the energy requirements for biomass
generation [12].

The BOF, as mentioned, is represented as a reaction in the stoichiometric matrix. The
stoichiometric coefficients of this reaction represent the requirements for biomass generation
at steady-state [11]. Depending on the available data, the BOF of a given organism falls
into one of three categories. A basic BOF only includes the macromolecular composition
of the cell, meaning the amount and synthesis of macromolecules such as proteins, RNA,
DNA and lipids. A BOF at intermediate level also includes maintenance costs of synthesis of
macromolecules and for the cell in general, meaning the energy costs of driving biosynthetic
processes and for synthesizing building blocks. Advanced BOFs have metabolites specific to
the organism, such as coenzymes, cell wall components etc. [12]. Eventually an advanced
BOF will have a structure similar to the example equation 2.10, where ci represent the
coefficients for each component in the BOF.

c1 protein + c2 DNA + c3 RNA + c4 lipid + c5 cell wall

c6 cofactors and ions + c7 ATP + c7 water

→
c7 ADP + c7 phosphate

(2.10)

To construct a BOF, the coefficients (ci) have to be calculated for the macromolecular com-
ponents that are necessary for biomass production [11] - DNA, RNA, proteins, lipids, car-
bohydrates, etc. The coefficients represent the relative amount of a each component in the
BOF measured in gram per gram dry weight (g/gDW) of the biomass. These coefficients
are scaled so that all the components in the BOF together adds up and represents 100% of
the cellular dry-weight, or biomass [16]. Scaling the coefficients is a critical step of assuring
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valid predictions based on the BOF. It enables quantitative comparisons to be made between
biomass production and growth yields, such as growth rate. The scaling of the BOF is im-
portant for the model to account for stoichiometry in substrate conversion to biomass. It also
ensures accuracy as it enables the comparison of simulated predictions to experimental data.
The biomass produced must have a molecular weight of 1 g/mmol to ensure the steady-state
assumption is also applied to the the biomass function [50].

Synthesis reactions for the components in the BOF have to be defined as well, in order for
the components of the BOF to be produced by the organism. Otherwise, the constituents of
the BOF are not produced and there will be no growth. For example, DNA is a component
in the BOF. The synthesis reaction for DNA is the reaction in which dAMP, dGMP, dCMP
and dTMP make DNA [16];

x1 dAMP + x2 dGMP + x3 dCMP + x4 dTMP → DNA. (2.11)

The coefficients for the components of the synthesis reactions for the macromolecular com-
ponents in the BOF are also scaled. For example for the reaction in equation 2.11, the
coefficients for the nucleotides (xi) are scaled so that the g/gDW (%) of the four substrates
adds up to represent 100% of the g/gDW of DNA. By doing this, the coefficients in the BOF
can be implemented directly as g/gDW DNA found experimentally of the total biomass of
the modeled organism [16].

2.4 A genome scale metabolic model of B. subtilis -

iBsu1147

The genome scale metabolic model iBsu1147 is one of the newest models available of B.
subtilis. It is based on the two older models, iYO844 and iBsu1103 [14]. Because the BOF
is central to the analyses described (FBA, FVA and MOMA), the focus is on how it was
developed.

The oldest of the two models, iYO844, was one of the first highly detailed genome scale
metabolic networks for B. subtilis and was constructed by Oh et al. (2007). It contains 844
genes, 1020 reactions and 988 metabolites. The objective function for this model was devel-
oped to account for the metabolites that go into biomass. It consists of six macromolecular
components; DNA, RNA, protein, lipid, lipoteichoic acid and cell wall components, and ions
and metabolites as well [16].

The coefficients for the components in the Oh et al. (2007) BOF was gathered from pre-
viously published experimental data by Dauner and Sauer (2001) [16].They performed ex-
periments with glucose-limited continuous cultures with B. subtilis. In these experiments
they measured the content of RNA and proteins at various dilution rates, and found there
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was a linear relationship between RNA content and growth rate, and proteins and growth
rate. This means that an increase in growth rate leads to an increase in RNA- and protein-
concentrations. Their measured concentrations were used to find the coefficients for RNA-
and protein-content in the iYO844 BOF. The coefficients other macromolecules in the BOF
are derived from this same paper, however they were not experimentally measured by Dauner
and Sauer. They were found in other published research that Dauner and Sauer refer to in
their paper [13]; the DNA and lipid content is based on a paper from Bishop et al. (1997);
metabolites and ions are based on data from Umbarger (1996); Lipoteichoic acid and cell
wall composition are both based on data from Foster et al. (2002) and Dauner and Sauer
themselves [16, 13] The composition of amino acids and nucleotides in the model are adopted
from two papers; Dauner and Sauer (2001) [13], and Sauer et al. (1996) [51]. The lipid
components are adopted from Matsumoto et al. (1998) [52].

The iBsu1103 model was constructed after the model by Oh et al. (2007). It contains 1436
reactions that are associated with 1103 genes. This model also includes Gibbs free energy
change to improve reaction reversibility prediction. Further, iBsu1103 was updated with
annotation data generated by the SEED project. The SEED project provides information
that is continuously updated, yielding annotations that are highly accurate [53].

The BOF in iBsu1103 was reconstructed based on the same BOF used in iYO844. How-
ever, the 61 components that make up the Oh et al. (2007) BOF were not associated with
the genes involved in their synthesis. In iBsu1103 the macromolecular components were
categorized into seven synthesis reactions; DNA synthesis; RNA synthesis; protein synthesis;
lipid content; lipoteichoic acid; cell wall synthesis and biomass synthesis. The macromolecule
synthesis reactions (like the synthesis reaction described in section 2.3.5) are consumed as
reactants along with 22 co-factors and ions in the biomass objective function. In doing so
the BOF complexity is reduced. This also allows the synthesis of the BOF components to
be associated with their respective genes [53].

The stoichiometric coefficients in iBsu1103 BOF are derived from the same papers as the
iYO844 model. The coefficients proteins, RNA, DNA, and lipids in iBsu1103 are derived
from the article by Dauner and Sauer (2001) [13]. To improve gene essentiality predictions,
two new biomass precursors were added to the iBsu1103 BOF; Coenzyme A (CoA) and Acyl-
Carrier-protein (ACP). These are important carrier compounds in iBsu1147. Except for the
changed structure of the function by lumping the reactions of the BOF together, and the
addition og CoA and ACP, the BOF remained unchanged. It was not updated with newer
data on DNA-, RNA-, protein-, lipid-, cell-wall- or lipoteichoic acid composition [53].

iBsu1147, the model used in this project, is based on iBsu1103 but has been upgraded with
additional data from KEGG and Uniprot. 99% of the reactions in iBsu1103 are included
in this newer model. The reactions that were excluded, were removed because they were
either replaced by a new, more specifically defined reaction or because they were lumped re-
actions that could be represented as un-lumped in iBsu1147. The biomass objective function
remained unchanged and was adopted in this model as it was defined in iBsu1103 [14].
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2.5 Methods for analysing biomass composition and its

importance in growth predictions

It is known that the environmental- and growth conditions affect the composition of biomass
in bacteria [13]. In computational analyses of metabolism, cellular growth or biomass is
normally an important output. In order to have successful growth predictions, it is critical to
have accurate measurements of the biomass components of the organism [2, 4]. Differences in
biomass composition have been shown to significantly affect model predictions, as the weight
of the components in the BOF (the coefficients) influence the requirement of the precursors
in the synthesis-reactions, and so on. For example, the coefficient for DNA in the BOF will
affect how much is needed of the necessary nucleotides for generation of DNA. The objective
function sets the proportions needed of biomass components, and this further dictates the
flux distribution through other reactions in the model [4].

While the technology for generating metabolic models for predictions of growth phenotype
automatically is rapidly increasing, it is still essential that the BOFs in these models are
based on measured mass fractions. Rather than quantifying the macromolecular composition,
coefficients for the components of the BOF are rather found in published literature [4], as with
iBsu1147 (Section 2.4). This in it self is not a problem, but often the adopted coefficients are
based on experiments performed in other environments, or with another strain or organism,
than what is being modeled. This potentially harms the accuracy of the model predictions,
as the values adopted from literature might not be representative for other organisms [2,
4]. Additionally, biomass has been shown to adjust in response to environmental conditions.
Utilizing data gathered from other experimental conditions than what is being modeled,
is therefore not an optimal approach [2]. Accurate quantification of biomass is critical for
predicting the potential production of the products under various conditions [4, 2]. Ratios
between the different groups of macromolecular constituents, for example RNA, DNA and
proteins, might vary and be correlated to specific properties, for example growth rate [4].

There are several methods available for quantification of macromolecular composition. In
most protocols available, DNA and RNA composition is measured by spectroscopic methods,
while the protein content is measured by high-performance liquid chromatography following
acid hydrolysis [4]. Lipids are usually quantified gravimetrically following a methanol/chloroform
extraction [54, 55].

2.5.1 Analysis DNA and RNA by spectroscopic methods

DNA can be analyzed using spectroscopic methods. However, the DNA has to be extracted
from the rest of the cell tissue before it can be analyzed. The cytoplasmic and nuclear
membranes have to be disrupted which is commonly achieved with liquid-liquid extraction,
for example with phenol and chloroform. The cells are first treated with a lysis buffer to

18



disrupt the membranes, as mentioned. Then a phenol/chloroform mix is added. The lysis
buffer sufficiently denaturates proteins. The organic chloroform/phenol phase in the mixture
will contain all organic solvents and hydrophobic cellular components. The DNA can thereby
be separated by extracting the aqueous phase. Any potential RNA in the sample can be
removed by incubating the sample with RNAase [56].

Before RNA can be analyzed by spectroscopic methods, it has to be extracted [56]. For
RNA, extraction can be carried out by perchloric acid extraction, as perchloric acid had been
proven to extract RNA from tissue without extracting DNA. Instead the DNA is denaturated.
The resulting perchloric acid solution containing the RNA can therefore by analysed by
spectroscopic methods [57] .

2.5.2 Protein extraction by acid hydrolysis and analysis with HPLC

To determine the amino acid composition in biomass and protein content, the sample con-
taining the proteins and biomass, has to be hydrolysed. This is normally done with acid.
After the sample has been hydrolyzed, the amino acids can be analyzed by high performance
liquid chromatography (HPLC) [58].

Separation, identification and purification of compounds in a mixture containing molecualr
components of various sizes, molecular weights and affinities can be done with chromatogra-
phy. It is a method of physical separation of molecules [59], based on their ability to interact
with a stationary- and mobile phase [60]. The principle that chromatography is based on, is
that molecules in a mixture that are applied on a surface or a fluid stationary phase, can be
separated as they move from one side of the stationary phase to the other, aided by a mo-
bile phase [61, 59]. Affinity and molecular weight are some of the characteristics that define
the speed at which the molecules will move with the mobile phase. Based on the number
of interactions with the stationary phase, some molecules will move quick into the mobile
phase while others remain in the stationary phase longer. This separates the molecules of a
mixture. Such methods are efficient for identification and separation of small molecules, for
example amino acids [61, 60].

HPLC is a column chromatography method commonly used to identify and quantify com-
pounds of a mixture. The mobile phase in HPLC flows through columns that hold the
stationary phase. It has a pump that moves the mobile phase under pressure of 10-400 atm
through the columns [62, 61]. The sample that is being analyzed is added to the stream of
mobile phase, and is delayed because it interacts physically and chemically with the station-
ary phase. The time it takes for the compound being analyzed to come through the column,
is called the retention time.A detector measures the retention time. The retention time varies
depending on the interaction between the stationary phase, the molecules analyzed and the
solvent used [62]. HPLC is a good method for separation and identification of for example
amino acids [61].
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2.5.3 Lipid quantification by liquid-liquid extraction

Lipid content can be quantified by combining liquid-liquid extraction with methanol, chlo-
roform and water followed by evaporation of chloroform. Most lipids are insoluble in water,
and must be extracted with organic solvents. As many lipids are bound to proteins, a mix of
organic solvents should be used. For example, methanol will separate lipids from proteins,
facilitating their extraction by enabling them to dissolve in chloroform. Chloroform will dis-
solve lipids [63]. By homogenizing the cells in water, methanol and chloroform, a biphasic
system is created where the lower phase of mostly chloroform contains the lipids from the
sample. The organic phase containing the lipids can be extracted [54, 55, 63], and by letting
the chloroform evaporate, the amount extracted can be quantified gravimetricallys [2].

2.6 NMR analysis

Nuclear magnetic resonance (NMR) spectroscopy is a tool for analysing the structure and
dynamics of molecules [64], and for identification and quantification of compounds in complex
mixtures.NMR is based on the principle that energy transitions related to nuclear orientation
take place in the presence of a strong magnet [65]. Most of the elements have at least one
isotopes that is magnetic [64] which comes from the magnetic moment associated with nuclear
spin - an angular momentum of the nuclei [66]. There are two possible orientations for the
nucleus to adapt when a magnetic field surrounds the isotope, both of which are associated
with a different energy state [64]. One energy-state is associated with the orientation of the
nuclei being parallel to the magnetic field, while the other is anti-parallel to the magnetic
field [66]. The energy state depends on the strength of interactions between the isotope
nucleus and the magnetic field. If a radiofrequency (RF) pulse is applied to the magnetic field
at various frequencies, the energy state of the nuclei can be measured. The RF pulse causes
the nuclei to flip from a low energy orientation to a high energy orientation. The elements,
or isotopes, can be distinguished from one another by changing the strength of the magnetic
field, because each nuclei has its own characteristic magnetic moment. Additionally, the
chemical environment of the nucleus, meaning the molecule it is in, affects the the resonance
frequency of the nuclei. This means that for example, if an NMR analysis is performed on
ethanol (CH3CH2OH), the H atoms in CH3, CH2 and OH will yield three separate peaks
for H-atoms as they have different resonance frequencies [66, 64]. Based on these principles,
NMR can be used to analyse complex mixtures as it is able to distinguish between organic
molecules and metabolites [65].

NMR can be used to identify changes in the flux of metabolites being secreted in to the media
or being taken up by the organism. This information can be used to identify the flux rates for
metabolites, or to see if any metabolites are limiting growth. The analysis is used to quantify
the metabolites in the media. If this is done at various times through the cultivation, the
change in metabolite concentration over the course of growth is determined [67].
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3. Methods

This project can be divided into four parts, two parts of which were performed in the lab-
oratory; Growth experiments, biomass analyses, and two that were performed in silico; im-
plementation of the experimentally derived coefficients in the model, and analysis of how the
new coefficients affect model predictions. In this chapter the methods for all four parts are
presented, starting with the experiments performed in the lab. hyperlinks are provided in
blue to relevant to supplementary data in GitHub, such as excel sheets used for calculations
and scripts. The link to the repository in its entirety is here: Supplementary data. In case
of potential issues with the hyperlinks, a full URL is available in Appendix C.

The first part of this chapter presents the protocols for for the fermentations. Then the
protocols for biomass analysis are presented, followed by how the experimental data was
implemented in the model, and a description of how the MOMA-, FBA-, and FVA-analyses
were performed. The terms nBOF and oBOF refer to ”new biomass objective function” and
”original biomass objective function”, respectively. The carbon-source from the fermentation
will be used to identify that fermentation run, as this is the only variance between runs. For
example, nBOF glucose refers to the new biomass coefficient in minimal media containing
glucose.

3.1 Preparation of glycerol stock solutions

In order to ensure the cells were preserved and to retain their characteristics [68], new glycerol
stock cultures were prepared from a preexisting stock of Bacillus subtilis 168 prepared in
Lennox broth (LB) medium. These were stored in -80 ◦C after preparation until needed. A
protocol by [69] was followed for the preparation of the glycerol stocks.

This protocol was completed over three days. The first day the shake flasks and LB medium
were prepared, with the components and their concentrations as described in Table 3.1. The
flasks and media were sterilized by autoclavation at 121 ◦C for 20 minutes.

TABLE 3.1. Compounds and their concentration in LB-media for growth of Bacillus subtilis.

Chemical: Concentration (g/L): Supplier: CAS Number:
Tryptone 10 Sigma-Aldrich 91079-40-2

Yeast Extract 5 Sgima-Aldrich 8013-01-2
Sodium Chloride 10 VWR chemicals 7647-14-5

The next day, 25 µL of Bacillus subtilis 168 from the preexisting glycerol stocks were inocu-
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lated in 50 mL LB medium in 250mL baffled flasks. The cells were incubated overnight, for
16 hours, before the culture was harvested into a sterile 50mL Falcon tube, and centrifuged
(5 min, 4000 RCF). Some of the supernatant was discarded, leaving a total volume of 16 mL
together with the pellet. The pellet was resuspended by gentle pipetting. 4 mL of 18% sterile
glycerol was added to reach a final concentration of 16 % in the glycerol stock, and the sample
was mixed by inverting the tube gently. The glycerol-culture solution was transferred into
sterile cryotubes with 1 mL in each. These were snap-frozen in liquid nitrogen before being
stored at -80◦C.

3.2 Preparation of stock solutions for the media

To improve preparation-time for both over-night cultures and for the fermentations, stock
solutions were pre-made and stored ready to use. All stocks except the stocks of various
carbon sources, the MgSO4 stock, and the trace mineral solution (TMS) were sterilized by
autoclavation at 121◦C for 20 minutes. The carbon source stocks and MgSO4 were sterilized
by filtering through a 0.22 µm polyethersulfone (PES) filter. The stock solutions in Table 3.2
were prepared by dissolving the components in MQ-water.

TABLE 3.2. Three of the stock-solutions pre-made for use in defined media for Bacillus subtilis 168 and the
concentrations of the stocks.These three stock solutions were made by dissolving the compounds in MQ-water

compound:
chemical
formula:

stock
concentration (g/L):

supplier: cas number:

sodium chloride NaCl 50 VWR 7647-14-5
ammonium chloride Nh4Cl 60 Merck 12125-02-9
magnesiumsulfate MgSO4 ·H2O 246,5 Sigma-Aldrich 10034-99-8

3.2.1 Trace mineral solution

The trace mineral solution (TMS) was mixed by dissolving the components as listed in Table
3.3 in 500 mL of 5M Hydrochloric acid (HCl), and subsequently stored at 4 ◦C wrapped in
aluminium foil. As the TMS was made with HCl, the solution was not further sterilized.
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TABLE 3.3. The concentrations of the compounds in the trace mineral solution for minimal media, dissolved
in HCl (500mL, 5M) and their supplier and CAS-number. The stock was prepared and kept ready-to use,
stored at 4◦C.

Chemical formula: Concentration (g/L): Supplier: CAS-number:
FeCl2 · 4 H2O 7.2 13478-10-9

ZnCl2 0.5 7646-85-7
CaCL2 · 2 H2O 0.5 Sigma-Aldrich 10035-04-8
CuCL2 · 2 H2O 1.0 Sigma-Aldrich 10125-13-0
MnCL2 · 4 H2O 0.2 Sigma-Aldrich 13446-34-9
CoCL2 · 6 H2O 0.05 Sigma-Aldrich 7791-13-1

Na2MoO4 · 2 H2O 0.01 Sigma-Aldrich 10102-40-6

3.2.2 Phosphate buffer

The phosphate buffer consisted of sodium phosphate dibasic heptahydrate ( Na2HPO4 · 7 H2O,
Sigma-Aldrich, 7782-77-0) and potassium phosphate monobasic (KH2PO4, Sigma-Aldrich,
7778-77-0). The final concentrations of the components were 112 g/L and 30 g/L respec-
tively. After mixing the two components in MQ-water, the pH was adjusted to 7.2 using 4M
sodium hydroxide (NaOH, VWR, 1310-73-2).

3.2.3 Carbon source stocks

Stocks were made of each carbon source. Depending on the solubility of the compound,
the stocks had different concentrations. This was corrected for when making the defined
media in order to achieve the same concentration of carbon source in each medium. The
amount of MQ-water added to the media was adjusted thereafter. The various stocks and
their concentrations are listed in Table 3.4. They were mixed by adding the carbon source
to MQ-water while the water was stirred. When the compounds had completely dissolved,
the stocks were sterilized by filtering through a 0.22 µm polyethersulfone (PES) filter.

Because the succinate stock was made using disodium succinate, corrections had to be made
in order to get the same weight of carbon atoms as in the other stocks. This was done by
first calculating what grams were needed for a stock with a concentration of 130 g/L. Then
the molar mass of succinate was used to find the mass-percentage of succinate in disodium
succinate. This was found to be 71.62%. This percentage was used to scale or up-regulate
the amount of disodium succinate added to reach a concentration of 130 g/L of succinate in
the stock.
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TABLE 3.4. The stock solutions made of the different carbon sources and their concentrations for use in
minimal media for cultivation of B. subtilis. They were made by dissolving the components in MQ-water
under constant stirring and subsequently sterilized by filtering through a 0.22 µm polyethersulfone (PES)
filter.

Carbon-source
Solubility
(g/L):

Stock
concentration (g/L):

Supplier: CAS:

D-glucose 909 400 VWR 50-99-7
Glycerol 1260 400 VWR 56-81-5
Xylose 1170 300 Sigma-Aldrich 58-86-6

Mannitol 182 80 Sigma-Aldrich 69-65-8
Succinate* 350 130 Sigma-Aldrich 150-90-3

*The succinate stock was made using disodium succinate.

3.3 Preparation for Batch fermentation

100 µL from the glycerol stocks with Bacillus subtilis 168 were first inoculated in LB-medium
directly from the glycerol stocks made as described in subsection 3.1. The LB medium was
made with the components as described in Table 3.1. After inoculation the flasks were
incubated at 37◦C in an Infors HT Ecotron incubator shaker at 200 rpm for 8 hours. After
incubation, cells from the LB medium were transferred to flasks containing defined medium
for further incubation over night. The defined media consisted of the stock-solutions as
described in Table 3.5, MQ-water was added to reach a final volume of 100 mL.

TABLE 3.5. Media composition for over-night cultures with volumes of 100 mL in 500 mL shake-flasks.
Depending on the carbon source stock used, the amound of MQ water added to give the media its final
volume varied.

Stock:
Stock concentration

(g/L):
Concentration
in media (g/L):

Stock addded to
media (mL):

NaCl 50 0.5 1.0
Nh4Cl 60 3 5.0

MgSO4 ·H2O 246.5 0.493 0.2
Phosphate buffer see Table 3.2.2 - 10.0

TMS see Table 3.3 - 0.13
C-source stock: see Table 3.4 10 -

The over-night cultures in the defined media were inoculated in 500 mL baffled shake-flasks,
with 100 mL of media. The NaCl-, Nh4Cl-stock, and MQ-water were mixed in the shake-
flask and sterilized by autoclavation at 121◦C for 20 minutes. 5.0 mg L-tryptophane (Sigma-
Aldrich, 73-22-3) and 200mg L-glutamic acid (Sigma-Aldrich, 56-86-0) was also added to the
flasks before autoclavation reaching a concentration of 50.0 mg/L and 2.0 g/L respectively,
in the media. The TMS, MgSO4-, and the carbon source stock were added aseptically to the
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media in a Thermo Scientific Safe 2020 sterile bench. The cells were inoculated in the defined
media overnight for 12-15 hours. Because of the time required to get the fermentation started
the next day could vary for a number of reasons, two flasks were used per carbon source for
over-night cultures. For each carbon source there was one flask inoculated with 75 µL from
the LB-flask, and one with 150 µL. Cells for the fermentation would be transferred from
the flask where cells had grown enough to be in exponential phase, and not yet reached the
stationary phase. The cells from the over-night culture with 75 µL of media transferred from
the LB-culture was used to inoculate the bioreactors for all carbon sources.

3.4 Batch fermentation protocol and procedure

The fermentation of Bacillus subtilis for this project was performed using New Brunswick
BioFlo®/CelliGen® 115 Benchtop 3L bioreactors. The final volume for each fermentation
was 1.5 L of defined media, following the same recipe as for the overnight cultures but adjusted
to the larger volume (ref. Table 3.6). The media was mixed directly in the bioreactor, except
the carbon source-, TMS-, and MgSO4-stock. 75 mg L-tryptophane and 3g L-glutamic acid
was also added to the bioreactor before autoclavation reaching a concentration of 50.0 mg/L
and 2.0 g/L respectively, in the media. The bioreactor with the media was autoclaved for
20 minutes at 121◦C. The day of the fermentation, the rest of the stocks for the media were
added aseptically to the bioreactor inside the sterile bench.

TABLE 3.6. Media composition of minimal media used in bioreactors for batch fermentations with B.
subtilis. The amount of carbon source stock (C-source stock) added depended on the concentration of the
stock solution. MQ-water was added to reach a final volume of 1.5L.

Stock:
Stock concentration

(g/L):
Concentration
in media (g/L):

Stock addded to
media (mL):

NaCl 50 0.5 15
Nh4Cl 60 3 75

MgSO4 ·H2O 246.5 0.493 3
Phosphate buffer see Table 3.2.2 - 150

TMS see Table 3.3 - 2
C-source stock: see Table 3.4 10 -

The bioreactor was then connected to the Brunswick BioFlo®/CelliGen® 115 Benchtop
system, and properly set up. The temperature was set to 37◦C. The pH and dissolved oxygen
(DO) electrode were calibrated for each fermentation. The pH electrode was first calibrated
for pH 7 and then pH 4 using buffer solutions before the bioreactor was autoclaved. The
DO electrode was calibrated for 0% using nitrogen gas before autoclavation, and then for
100% after the bioreactors had been set up. To do this, the agitation was set to 500, and
after the temperature had reached 37◦C in the media, the DO electrode was calibrated for
100%. After the DO electrode had been calibrated, a cascade was set connecting agitation
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to amount of DO in the media. The cascade was set from 200 to 1000rpm. This allowed
for the stirring to increase as the amount of oxygen consumed in the media increased. The
increase in stirring was set to start at a threshold value of 40% Dissolved oxygen.

4M sodium chloride (NaOH, VWR, 1310-73-2) was added in a cylinder that was attached
with a hose on the bottom to the pump-system of the reactor. NaOH was thereby added
automatically when the system registered a pH below 7. For the fermentation with succinate
as the carbon source, 4M Hydrochloric acid (HCl, Sigma-Aldrich, 7647-01-0) was used in
stead of NaOH. The amount of base or acid added to the system was logged manually.

During the fermentation, the New BrunswickTM BioCommand ® Software continously
logged pH-, DO-, agitation- and temperature-values. Gas analysed from the system was
measured with a Thermo ScientificTM Prima BT Benchtop Process Mass Spectrometer.
The software ”Gasworks” tracked the concentrations of various gasses such as oxygen and
carbon dioxide in the air leaving the bioreactor through the exhaust outlet, ref Figure 2.2.
In addition, samples were extracted manually from the bioreactor via the sampling port
for other analyses, such as dry weight measurements, NMR, and OD measurements. The
time points for extraction of media for these analyses were logged manually by the hour and
minute.

For the OD measurements, 1 mL of media was extracted from the system using a syringe that
attached to the sampling port of the bioreactor. The OD was measured using the VWR V-
1200 Spectrophotometer and was used to track the growth of the bacteria in the bioreactors.
The cells would ideally be harvested from the bioreactor around OD 3. The growth curves
and data that was logged during the fermentations can be found in the GitHub repository
for this project, in the Fermentation data and growth rate calculations Excel document.

3.4.1 Protocol for collection of dry weight- and media samples

The dry weight measurements and media samples were gathered during the fermentation
by extracting 3 mL of sample and transferring them to VWR 15 mL centrifuge tubes. The
samples were centrifuged for 4 minutes at 4500 RCF. The supernatant was transferred into
a syringe with a 0.22 µm polyethersulfone (PES) filter and filtered into a 3 mL Eppendorf
tube. This tube was immediately stored in -20◦C and was later used for media analysis by
NMR. The cell pellet in the 15mL centrifuge tube was resuspended in 3 mL of MQ-water. 1
mL of this cell solution was transferred with a pipette onto a previously weighed and dried
aluminium pan. For each time-point, three parallels were made. The aluminium pans were
placed in a VWR DRY-Line® Prime drying oven for drying at 110◦C for 3 days. These were
weighed again and the weight of the aluminium pan was subtracted to get the actual weight
of the cells in the sample. These measurements were used to calculate growth rates, while
the media samples stored in the freezer were used to calculate the uptake- and secretion rates
various compounds in the media.
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The protocol for the medium analysis by NMR was based on Søgaard et al. (2018) [70]. The
frozen samples were thawed out and shortly vortexed. 800 µL of sample was transferred into
a 1,5mL Eppendorf tube. 80 µL 0.75% deuterium oxide (D2O-TSP, Sigma-Aldrich, 7789-20-
0) was added to the sample before it was shortly vortexed again. 600 µL was transferred
from this new Eppendorf tube into a 5mm Wilmad® NMR tube. For each time point three
replicates were made. After the samples were prepared they were analyzed in a 400MHz (14.6
T) Bruker NMR spectrometer by Christian Schulz as described in the paper by Simensen et
al. (2021) [2].

3.4.2 Cell harvesting and washing and washing the cells

Around OD 3, the cells were harvested. 60 mL syringes were used to transfer all media in the
bioreactor into several 50mL VWR centrifuge tubes. The tubes were centrifuged at 4◦C for
5 minutes at 4500 RCF. The supernatant was discarded and and the cell pellet was washed
by re-suspending the cells in approximately 15 mL of NaCl-solution (0.9%). The cells were
resuspended by vortexing. This washing-step with NaCl was repeated, centrifuging for 4◦C
for 5 minutes before the second wash. After the NaCl supernatant was discarded after the
second wash, the final wash was performed using approximately 20 mL of MQ-water per
tube. The cells were resuspended in the MQ-water by vortexing before they were centrifuged
for 10 minutes at 4◦C at 4500 RCF. As the supernatant was discarded between washings and
the cell pellet was re-suspended in the NaCl or MQ-water, the samples could be combined.
The final biomass harvested was stored in 2-4 50mL tubes per fermentation. The tubes with
the cells were stored at -80◦C until further treatment.

3.4.3 Freeze drying of the cells

After all the fermentation experiments were completed the harvested cells were stored at
-80◦C. The next step was to freeze dry the cells using the Christ Alpha 3-4 LSCbasic freeze
dryer. The 50 mL VWR tubes were covered with parafilm, and small holes were made so
moisture could escape the tubes as the sample dried. The samples were then freeze dried for
3 days at -140◦C in near vacuum before the now dry cells were stored again in -80◦C.

3.5 The protocols for biomass composition analyses

3.5.1 DNA

The DNA was extracted following a protocol described by Wright et al. (2017) [71] using
individual enzymes and a phenol/chloroform separation method. For each carbon source,
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three parallels with 10 mg of cells was weighed in 2 mL Eppendorf tubes. The method
involved using a lysis buffer to lyse the cells. This buffer was prepared by mixing the chemicals
and a TE buffer as listed in table 3.7. The TE buffer was made with mixing 0.5 mL Tris
EDTA buffer solution (pH 8.0), that contains 10mM Tris-Cl and 1mM EDTA, with MQ-water
(49.5 mL). 600 µL of the lysis buffer was added to the cells and the samples were incubated
in a VWR COOL THERMAL SHAKER TOUCH 230V for 30 minutes at 55◦C. After the
incubation and the samples had cooled to room temperature, 600 µL phenol/chloroform mix
(1:1) (Sigma-Aldrich, 136112-00-0) was added. The sample was mixed by inverting the tubes
and after the phases had mixed completely it was centrifuged at 12000 RCF for 5 minutes.
The upper aqueous layer was transferred to a new tube. This phenol/chloroform washing step
was repeated twice, transferring the upper aqueous phase to a new 2mL Eppendorf tube each
time. Following the last round of washing, 600 µL chloroform (Sigma-Aldrich, 67-66-3) was
added to the sample, in order to remove any phenol left. The tubes were mixed by inverting
them, and then centrifuged at 12000 RCF for 5 minutes. Then, 40 µL of 3M sodium acetate
(Sigma-Aldrich, 126-96-5) and 1 mL 99% ice-cold ethanol (VWR, 64-17-5) was added and
the samples were incubated overnight at -20◦C.

TABLE 3.7. The components in the lysisbuffer used for analysis lysis of B. subtilis as an initial step in
measuring the DNA-content of its biomass.

Stock: mL in lysis buffer Supplier CAS:
TE buffer 9.34 Sigma-Aldrich *SLCG3955
10% SDS 0.6 - -
Proteinase K (20mg/mL) 0.06 MERCK 39450-01-6
*CAS number not available. Lot number used instead.

After incubation, the cells were centrifuged for 15 minutes at 12000 RCF at 4◦C. The su-
pernatant was discarded and the DNA pellet was washed with 1 mL 70% EtOH. After cen-
trifuging the sample again for 2 minutes at 12 000 RCF, the supernatant was again discarded
and the DNA pellet was dried using a VWR COOL THERMAL SHAKER TOUCH 230V
at 37◦C. After the samples had dried, the DNA pellet was resuspended in 50 µL TE-buffer.
1 µL of RNase A (Thermo Scientific, RNase A, Lotnr:01001341) was added and the samples
were incubated again in the Thermoshaker for 15 minutes at 37◦C. After this incubation the
samples were analyzed using Nanodrop with the setting ”double stranded DNA”, measuring
the DNA concentration. The experimental data and calculations for the DNA content in
the biomass composition can be viewed in the ”DNA” sheet in the biomass analyses Excel
document.

3.5.2 RNA

The method for RNA quantification followed the protocol described by Benthin, Nielsen and
Villadsen (1991) [72]. Three parallels of cells from each growth-condition of around 10 mg
each was prepared in 15 mL VWR polypropylene centrifuge tubes. In order to degrade
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the cell walls, the cells were washed three times with 3 mL 0.7M perchloric acid (HClO4,
Sigma-Aldrich, 7601-90-3). In between washes, the tubes were centrifuged at 4500 RCF for
10 minutes at 4◦C, and the supernatant was discarded in between washes. After the third
wash, the pellet was re-suspended in 3 mL 0.3M potassium hydroxide (KOH, Sigma-Aldrich,
1310-58-3). The cells were then incubated for 1 hour at 800 rpm at 37◦C in the VWR COOL
THERMAL SHAKER TOUCH 230V. After the incubation and the samples had cooled down,
1 mL of 3M HClO4 was added. The samples were centrifuged at 4500 RCF for 10 minutes at
4◦C, and the supernatant was transferred into a new 50 mL VWR polypropylene centrifuge
tube. The pellet was washed two more times, with 4 mL of 0.5M HClO4, and after each
round in the centrifuge the supernatant was added to the 50 mL tube. 3 mL 0.5M HClO4

(3 mL, 0.5M) was added to this 50mL tube with extracts in order to get a final volume of
15 mL and was subsequently centrifuged again 4500 RCF for 10 minutes at 4◦C once more
to remove any precipitates of KOH. The samples were analyzed using NanoDrop using the
setting for ”single-stranded RNA”. NanoDrop gives the concentration of RNA in the sample.
The raw data and calculations for RNA content of the biomass can be viewed in the ”RNA”
sheet in the biomass analyses Excel document.

3.5.3 Proteins

The quantification of the content of proteins in the cells was measured by amino acid derivati-
zation through HPLC after acid hydrolysation, following the protocol as described by Noble
et al. [58]. About 10 mg of cells from each growth condition were weighed out in Schott
flasks. 500 µL of 6M HCl was added and the samples were weighed before they were put in
the oven to boil at 105◦C for 24 hours. After the boiling, and the samples had cooled down
they were again weighed, before they were neutralized with 500 µL of 6M NaOH. Then three
dilutions were made of each sample - 1:50, 1:100 and 1:250 - in HPLC glass vials and stored
in -20◦C until further analysis.

These dilutions were analyzed by HPLC by Siri Stavrum. The method followed a protocol as
described by Lindroth and Mopper in 1979 [73]. The pre-column derivatization was performed
using OPA (o-Phthaldialdehyde Reagent Solution, Sigma P0532). The column used was a
Waters Nova-Pac C18 (4µm), with a dionex RF2000 flourescence detector. The software
used for sample analysis was ChromeleonTM Chromatography Data system. Based on the
resulting concentrations, the dilution that gave a concentration of an amino acid closest to
2.5 µmol/L would be used for further analysis. This is important to ensure the concentrations
measured are within the upper boundary for linearity from the HPLC analysis.

Due to partial or complete degradation during hydrolysis, not all twenty amino acids could be
measured following this protocol, for example methionine and cysteine. The concentrations
of these amino acids were predicted by linear regression, as described by [2]. An example
of a the linear regression for the amino acid distribution in the media containing glucose is
illustrated in Figure 3.1. The linear regression was preformed using the concentrations of
the amino acids that could be measured, and their prevalence in protein-coding genes. The
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amino acid prevalence and distribution were determined using the ”Amino acid distribution”
Python script by written by Vetle Simensen.

FIGURE 3.1. To correct for partial or complete degradation of Arg, Met, Cys, Pro, and Trp during
amino acid derivatization protocol, a linear regression was performed on the measured concentrations of the
other amino acids against their relevant prevalence calculated from protein coding genes in B. subtilis. The
equation of the linear regression was used to predict the concentrations of the remaining amino acids by their
prevalence.

Another correction had to made for amino acids with overlapping retention times. The con-
centrations of these amino acids were predicted as well, using the same protocol. Glutamine
is deaminated to glutamate, and asparagine to aspartate. To get the correct concentrations,
these were predicted as well [2]. The Excel sheets containing the calculations and raw data
from the protein analyses for each carbon source can be viewed in the HPLC calculations
folder in the GitHub repository.

Due to technical problems, the HPLC results were quite delayed. As a safety measure to
ensure data on protein analysis, a Bradford protein assay was performed to get the quantity of
proteins. As the HPLC results eventually were received in time, this data and the description
of the Bradford protein assay is described in appendix A.

3.5.4 Lipids

A chloroform/methanol extraction protocol was followed to gravimetrically quantify the
amount of lipids [55, 54]. Three parallels of 40 mg of cells were weighed out for each growth
condition in 2 mL Eppendorf tubes, as well as 6 blank tubes per round performed of the pro-
tocol. The cells were rehydrated by adding 0.15 mL MQ-water and vortexing them shortly
at low rpm. After re-hydration, 1.4 mm zirconium beads (0,5 g, Precellys Bulk bead for 500
preps, lotnr: 210622-830) and 0.4 mL methanol (VWR chemicals, 67-56-1) was added to the
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samples. The samples were then homogenized at 5500 rpm at 20 second intervals for 2 cycles.
The samples stored on ice between the cycles. After this step, 0.8 mL of chloroform (67-66-3)
was added, and the samples were vortexed for 20 minutes. Then 100 µL of MQ-water was
added to the samples and they were vortexed again for 10 minutes before being centrifuged
for 4 minutes using a table centrifuge at 12000 RCF. After the centrifuge, the organic phase
was collected from the samples and transferred to a dark MS vial using a syringe. These
vials and their lids had been weighed before the organic phase was collected in them. This
washing step of the samples was repeated, but now with 0.6 mL chloroform before they were
mixed by vortex for 10 minutes, and then centrifuged again for 4 minutes at 12000 RCF.
The organic phase was extracted using a syringe and collected in the same MS vial. After
collecting the organic phase twice, the dark MS vials were weighed, and then put back in the
fume hood without their lids in order for the chloroform to evaporate. After 3 and 4 days
the samples were weighed. To get the amount of lipids in the sample, the average weight of
the blank samples were subtracted from each of the weights of the samples containing the
cells. The experimental data and calculations for lipid content in the biomass can be viewed
in the ”Lipid” sheet in the Biomass analyses Excel document.

3.6 Determination of experimentally measured growth

rates

The growth rates were calculated based on the dry weight measurements. The natural
logarithm of the dry weight measurements were plotted against time. By preforming a linear
regression in Excel, the slope of the line equals the growth rate [32]. The experimental data
and calculations of growth rates for each carbon source are available in the Fermentation
data and growth rate calculations Excel document. The standard error for the growth rates
was found by performing a linear regression in RStudio. That script ( RStudio - Linear
regression growth rates) is available in the GitHub repository. The equations from the linear
regressions of the dry-weight measurements was later used to predict dry-weights for other
calculations, such as the media analyses and gas uptake- and secretion rates.

3.7 Uptake- and secretion rates

3.7.1 Uptake- and secretion from the media

The previously prepared samples for media analysis with NMR as described in section 3.4.1
were analyzed and the resulting concentrations were used to calculate uptake- and secretion-
rates of various compounds in the media. The measured concentrations for each compound
were log transformed and plotted against time. A linear regression was performed for the
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measurements taken during exponential phase. The equation for the regression line was used
to predict concentrations of the compounds. These predicted concentrations were used, to-
gether with predicted dry-weight measurements in the same time-points to calculate specific
uptake- and secretion rates using formula 3.1, which is based on the protocol used by Bar-
tosova et al. (2021) [74]. An average of the last three measurements before harvest gave the
final uptake- and secretion rates. The calculations and experimental data is in the NMR raw
data and calculations Excel document.

mmol/Lt0 −mmol/Lt1

t1 − t0
ΣT1

T0
gCDW/L

2

=
mmol

g × h
(3.1)

3.7.2 O2-uptake and CO2-secretion

During the fermentation, the off-gas was measured by Thermo ScientificTM Prima BT Bench-
top Process Mass Spectrometer. The mass spectrometer analyzed the constituents of the gas
leaving the bioreactor and gave the values of percentage out of the air. The percent-values
were used to calculate mmol/h of gas for O2 and CO2, which was used to calculate the specific
uptake- and secretion rates of the two gasses. The calculations and experimental data are in
the Gas - Uptake and secretion Excel document.

By predicting the dry weight of cells at the same time-points as there are gas measurements,
this could be used to calculate the specific uptake-rate per time point using the formulas
below 3.2, 3.3, 3.4. For each time point an average of the five measurements leading up to
that time point was used for further calculations. Because the amount of gas measured is
provided as a percentage, the flow-rate (mL/min) of gas entering the system was used to
find the liters per minute of O2 and CO2, as shown in equation 3.2. This was finally divided
by the predicted total content of cellular bacteria in the bioreactor at that time. In order
to find the content of CO2 and O2 in the air entering the reactor, the average was taken
of 15 measurements of gas flowing through the system before inoculation (sparge air). The
average uptake- and secretion rates were then calculated by taking the average of the final
10 measurements before harvesting.

recorded(%) − sparge(%)

100
× Airflow(ml/min) =

ml

min
(3.2)

ml

min
×N =

mmol

min
(3.3)

The N was found using the equation below, 3.4. This was calculated for O2 and CO2 and
was used to find the mmol/min of gas, the sparge air, flowing into the system.
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mmol

L
= N (3.4)

3.8 Construction of the new condition-specific biomass

objective functions

The construction of the new BOFs (nBOFs) started with sorting the substrates of the orig-
inal BOF (oBOF) reaction in seven groups; Lipteichoic acid content, cell wall composition,
cofactors and ions, protein, DNA, RNA, lipids. This was done to ease the ability to compare
the nBOFs to each other, and to ease the process of running the model with the nBOFs. All
the twenty-seven substrates in the original iBsu1147 BOF were sorted in one of these seven
groups, except for ATP, water, orthophosphate and Apo-acyl-carrier-protein.

A critical feature of Genome Scale metabolic models to correctly predict growth yields is that
the biomass produced has a molecular weight of 1g/mmol [50]. The first part of constructing
the BOFs for the various media compositions was first to find the preceding reaction of the
macromolecular components that were measured (DNA, RNA, proteins, lipids) and scale
these reactions so that the g/gDW (%) measured of each component in these experiments
could be used as coefficients in the nBOF. The substrates that were lumped into the co-factor
group were scaled as well.

To scale the synthesis reaction, the chemical formulas for each metabolite as defined in the
model were used to calculate the molecular weight for each substrate. The molecular weight
for each compound was used with the coefficient from the reaction to find the gram per gram
dry weight (g/gDW). The sum of the g/gDW of all substrates in the synthesis reaction was
calculated. For most reactions the sum was somewhere around 0.9. The sum of the g/gDW
was used to scale the coefficient of the substrate in the reaction (mmol/gDW). To check if
the substrates were scaled correctly, the molecular weight was again used to calculate the
g/gDW from the scaled coefficients, and the sum of of the scaled g/gDW was again calculated
to check that it would be 1. For the cofactor function, the new coefficient for that lumped
reaction was 0.044, which was the sum of g/gDW before the coefficients were scaled. The
Excel document, BOF and synthesis reactions, contains all calculations of these data.

The new coefficients for the synthesis reactions were loaded into the model using Python. The
model was loaded and the reactions were added to the model. The old synthesis reactions
were deleted. Each carbon source has its individual script where this is performed. All
Python scripts are available in the Functions and reactions GitHub folder. The script for the
model in glucose medium contains explanations in the code. The functions to create reactions
from the experimental data were modified from the functions script by Linn Sandvik. The
new synthesis reactions were all labeled with ”new” behind the reaction ID. Additionally, the
model was updated with the media composition for each of the fermentation analyses. Excel
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documents with the coefficients for the nBOFs, BOF-new, is available in the Gihub repository.
The Excel document with the new coefficients for the synthesis reactions, Macromolecule-
synthesis, is available there as well.

3.8.1 Network analyses with the newly constructed BOFs

Three different types of analyses were performed on the network comparing the new BOFs
to the original iBsu1147 BOF in the same media compositions. In total 10 models were
analysed, of which 5 had the original BOF (oBOF), but the measured uptake- and secretion
rates that were found experimentally or by MOMA. The last 5 models each had a newly
constructed, experimentally derived BOF (nBOFs), with the measured uptake-rates. The
analyses were performed with nBOF and oBOF in minimal media containing their respective
carbon source.

To update the model with the media composition, a list of exchange reactions that correlated
to components in the media was imported. The model was then updated with new flux rates
based on this list. If an exchange ID was in the media, the model was updated with flux range
-1000 as the lower bound, and 1000 as the upper bound. This means that the compound
corresponding to that exchange reaction can be taken up by the bacterium, and secreted into
the media. If and exchange ID from the model was not in the list of media components, the
model was updated with flux range 0 as the lower bound and 1000 as the upper bound. This
means the bacterium could not take up that compound, but could secrete it. An overview
of the exchange reactions and their corresponding media component per carbon source is
available in the Medium Excel document.

3.8.2 Minimization of metabolic adjustment analysis for adjusting
measured fluxes

Because the model was not able to run with both the experimental growth rate and uptake-
and secretion rates for glucose and mannitol, a MOMA-analysis was performed to find flux-
values that were compatible in the model with the measured growth rates.

The analysis was performed in Python, using the ReFramed library created by Daniel
Machado [75]. The growth-rates for glucose and mannitol were set, and the nBOFs were
implemented with their synthesis reactions. By adjusting the upper boundary to the mea-
sured growth-rate plus 2 × the standard deviation, and the lower boundary to the measured
growth-rate minus 2 × the standard deviation. The model was then reloaded as a cb model
and the MOMA analysis was performed. The experimentally measured fluxes were used as
reference-values. The feasible resulting solution from the analysis will thereby be the closest
possible to the experimentally measured values while maintaining the growth-rate within the
locked upper and lower bounds. The scripts for the MOMA-analysis is in the ”Functions and
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reactions” files for glucose and mannitol in the supplementary data repository in GitHub.

MOMA results in a list of feasible fluxes for the reactions. These fluxes were used for
the reactions that would have been updated with experimental values; O2, carbon source,
glutamate, tryptophane uptake and CO2 and acetate secretion. Glucose and mannitol nBOFs
were still used as derived experimentally, only the exchange reactions and growth rate was
updated with the fluxes suggested from MOMA.

3.8.3 Parsimonious Flux balance analyses with experimental data
and original data

The FBA was performed using the parsimonious FBA function from the COBRA toolbox
in Python. This was performed on the model with the nBOF and oBOF for each of the
experimental conditions. The models were updated with the fluxes that had been exper-
imentally measured, or that were updated from the MOMA analysis. The script for this
analysis, pFBA-script takes in the models, performs the pFBA analysis and returns a plot of
the results.

The reason a pFBA was performed and not FBA is because the results were to be compared
between nBOFs and oBOFs in their respective media composition. In pFBA, the solution
is found based on optimizing flux through the objective function, then minimize the fluxes
through the other reactions of the model [76]. This means that the presented solution from
pFBA is one of the solutions from FBA, but between the nBOF and oBOF, and between
conditions, the solution from the analysis is made on the same basis, and therefore results
can be compared.

The resulting flux distributions were visualized in scatter plots. One plot was made for each
media composition, with the flux values from the nBOF and oBOF. The plots then visualize
a the change in flux distribution between the model with the oBOF and the nBOF in the
same media composition to illustrate how the nBOF affects model predictions. Further, the
reaction IDs with large variations in flux between the nBOF and oBOF were identified using
KEGG REACTION [77, 78, 79]. This helped understand how the new BOF coefficients
altered the flux distribution through the model.

3.8.4 Flux variance analysis with experimental data and original
data

Following the FBA, a FVA was performed on the models for nBOF and oBOF in the different
media compositions. The FVA function from the COBRA toolbox was used on the model.
The script used, FVA-script, takes in the nBOF and oBOF and performs the FVA analysis,
and returns a plot with the resulting range and mid-values. This analysis returns the reaction
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IDs and their corresponding feasible minimum flux and maximum flux. The optimality
constraint in this analysis was set to 95%.

Following this analysis the range and mid-value were calculated for each reaction. These
values were then illustrated in scatter plots to visualize the change between the model with
the nBOF and the oBOF. The calculations were performed in Python, and are available in
the FVA-script.
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4. Results and analyses

As previously mentioned in the introduction to chapter two, the project can be divided into
four parts; Growth experiments, biomass analyses, implementation of the experimentally
derived coefficients in the model, and analysis of how the new coefficients affect model pre-
dictions. This chapter is initiated with the results from a preliminary-, exploration phase of
the project. The second part is the results from the batch fermentations that were performed
with B. subtilis in minimal media. Each fermentation is referred to by the carbon source
available in the media, as all other components in the media are the same. Then the results
from the biomass analyses are presented and discussed, followed by the measured uptake- and
secretion-rates. The chapter then moves on discussing the new biomass objective functions
(nBOFs). The nBOFs from all five carbon sources are compared to the original BOF (oBOF)
in the same media composition with the experimentally measured uptake- and secretionrates.
The final section of this chapter presents the results from FBA, FVA and MOMA analyses
that were performed to explore the effects of the nBOFs on model predictions.

The fermentation experiments and biomass analyses were performed in cooperation with
another masters student Linn Sandvik. Both individual projects included 4 to 5 batch fer-
mentation, and we decided to perform them together. A significant amount of work is
associated with the preparation for, and performance of batch fermentations. Both projects
also involved biomass analyses. By cooperating, there was the opportunity to exchange ideas
and deliberate while still independently planning and carrying out the individual projects.

4.1 Preliminary research

4.1.1 Shake flask experiments to confirm growth with various car-
bon sources

Initial shake-flask experiments were performed to evaluate potential carbon-sources for batch-
cultivations of B. subtilis. The objective was to identify carbon-sources that B. subtilis is
able to metabolize effectively. The following carbon sources were tested in the shake-flask
experiments: Glucose, glycerol, mannitol, xylose, succinate, acetate, and fructose. One flask
was prepared with every media-component without addition of a carbon source to confirm
that there would not be any growth without it. The media prepared followed the same recipe
as described in Table 3.5, and the flasks were inoculated with 100µL of B. subtilis from the
glycerol stocks and incubated at 200 rpm at 37◦ C.
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However, there was little to no growth in the flasks. This experiment could not be used to
draw any conclusion on what carbon sources to use, because the cells did not grow in any
of the media composition. One of the trouble-shooting steps performed was to measure the
pH of the media in the flasks, and it was measured to be 2.4 after a few hours of cultivation.
The pH measured for pure media was 3.3. One of the causes for the low pH uncovered was
the adjustment that had been made to properly dissolve all the components of the TMS.
The media composition described in Table 3.5 has been modified from the original recipe. In
the original recipe, 2mL of TMS is used in 100mL media. However, in that case, the TMS
was made using MQ-water. The TMS used for these experiments was made dissolving the
components in 5M HCl, after discovering that the components did not properly dissolve in
water. Adding 2mL of the TMS dissolved in 5M HCl significantly affected the pH, which
was supposed to be around 7.

To find a solution to the pH problems, a new shakeflask experiment was performed with
minimal media containing glucose. This time the media was made with different volumes
of TMS added to find a concentration that would not affect the pH, and still add enough
minerals for the bacteria to grow. The amounts of TMS added were 130µL and 200µL. There
was growth in both flasks, but more growth in the flask containing 130µL. The final volume
of TMS to add in a 100mL shakeflask was therefore adjusted in the recipe to be 130µL.

After resolving the TMS- and pH-issues, the original shake flask experiment with growth on
the various carbon-sources was performed again, with the media composition as described
in Table 3.5. The carbon sources that were selected for further experiments were those that
exhibited interesting variations in growth; glucose, glycerol, mannitol, xylose and succinate.

4.1.2 Minimizing the duration of the lag-phase in batch fermen-
tation

A few practice rounds of fermentation were performed before the actual experiments, in order
to get familiar with the protocol and the bacterium. In the first few rounds of fermentation
the lag-phase was about 4 hours long for B. subtilis cultivated in defined media containing
glucose. To prepare for this fermentation, the bacterium was inoculated directly from the
glycerol stocks in defined media the day before fermentation. The overnight culture was
incubated in 100mL media in a 500 mL shake flask for about 15-17 hours.

The same overnight culture procedure was performed one more time. But this flask was
used to try to identify why the lag-phase had been so long in the bioreactor. The OD was
measured and showed that the cells reached stationary phase in the over-night culture. They
would still grow when transferred to the fermentor, but it would take the cells some time
to start growing again. In order to cut the lag phase, the over-night culture protocol as
described in the methods section 3.3 was attempted for B. subtilis 168, and a new round
of fermentation was performed. This time, the lag-phase was around 2 hours, a significant
reduction compared to the approximate 4 hours for the first fermentation (Fig. 4.1).
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FIGURE 4.1. Improvements were made to the protocols of making starter cultures for the batch fer-
mentation experiments with B. subtilis in minimal media. By changing the protocol, the duration of the
lag-phase was reduced. This plot shows the reduction of time in the lag-phase with OD-measurements from
both fermentation experiments.

Because this preliminary research only was performed on B. subtilis in glucose, another
measure to reduce the risk of the bacteria reaching stationary in the flasks with the other
carbon-sources was implemented. Two over-night cultures in defined media were made for
each fermentation. In one 75µL of culture was transferred from the LB-media, in the other
150 µL was transferred. That way, the OD could be measured in each flask the morning of
the fermentation, and the flask with an OD closest to exponential growth would be used to
inoculate the fermentors.

By implementation of these steps described here; inoculation in LB medium and then min-
imal medium over night, the lag-phase was reduced. The lag phase is the phase where the
metabolism is reorganized to adjust to a new environment [31, 33]. One of the factors that
affect the lag phase duration is how much the environment changes from the media they were
in compared to the media they are transferred to [33]. By initiating the cell recovery phase
from glycerol stock to shake-flask in LB-medium, the cells were allowed to re-initiate growth
in the same type of environment as was used for cultivating the glycerol stocks. This requires
little adjustment, and reduces the lag-phase of re-initiating growth.
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After growth in LB-medium, the cells were transferred to minimal medium, a more nutri-
ent limited environment. This transfer requires the cells to adapt their metabolism to the
nutrients available. By using two inoculum sizes, the risk of transferring cells in stationary
phase to the fermentor was reduced. The OD could be measured in the flasks, and the
flasks with cells still in exponential phase could be used. Stationary phase is characterized
by nutrient depletion and a decrease in growth rate [31]. In this phase the cells re-adjust
their metabolism in preparation for starvation. When starved cells are transferred to a new
environment where resources are available, it has been shown that they do not immediately
resume growth. Instead, they show a delay in re-initiating growth at population level [80].
Therefore, it would reduce the lag-time if the cells had not reached stationary which is why
two inoculum sizes were used for the flasks. A higher cell count will metabolize the available
substrates faster, reaching stationary phase quicker than a media inoculated with fewer cells.
Further, by allowing the re-adjustment of metabolism to happen over night and transfer-
ring already rapidly growing cells into to the same media composition in the bioreactor, the
lag-phase is reduced.

4.2 Fermentation analyses

4.2.1 ODs at harvest of B. subtilis from bioreactors

The cells would ideally be harvested during exponential growth, when the cells are still
exponentially increasing, just before the growth starts to decrease. This is important because
the cells in exponential growth are said to be growing in a ”steady-state”, meaning they are
harvested before they are restricted by nutrient depletion [81]. The steady-state is achieved
in the exponential phase, because the total biomass in the bioreactor increases exponentially
with time. A characteristic of this growth phase is that the concentration of macromolecules
in the bacteria is constant and increases proportionally with time [82]. Because there is
no addition of fresh media in batch fermentation, the exponential growth phase is the only
phase where the bacteria can achieve the highest possible growth rate, given the nutrients
available [83].

As previously mentioned in subsection 2.3.2, predictions in GEMs (for example FBA) are
performed with the assumption that the system exhibits steady-state properties [84, 42]. As
the results from the biomass analyses of the harvested bacteria will be implemented in the
GEM iBsu1147, it is important that the cells are harvested at ”steady-state” as this is a
central assumption in the model.

In order to get a good estimate of an approximate OD where the cells are growing exponen-
tially, a fermentation was performed letting the cells reached stationary phase. From looking
at the growth curve in appendix B (Figure 3) from this fermentations, one can see that OD 3
is the point where the growth transitions from exponentially increasing to growth decreasing.
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The actual ODs of harvest for each carbon source is listed in Table 4.1. Some of the ODs
are a bit higher than this ideal value. This might have affected the state of the bacteria at
harvest. If they had started decreasing in growth this might for example affect the growth
rate and biomass composition. The effects of the growth phase on the biomass composition
is further discussed in chapter 5.

TABLE 4.1. The ODs of which Bacillus subtilis was harvested from the bioreactor from each round of
batch-fermentation in defined media containing different carbon sources.

Carbon-source Harvest OD:
Glucose 3.4

Mannitol 3.7
Glycerol 3.4
Xylose 3.0

Succinate 3.5

4.2.2 The results and analysis of the experimentally derived growth
rates

Growth rates were calculated for B. subtilis cultivated in the five different carbon sources.
In order to find the growth rates, the three parallels of measurements from each time-point
were log-transformed. A linear regression analysis was preformed, and the growth rate was
then determined by calculating the slope of the line from the linear regression. A Table with
the growth rates is in Appendix C ( ref. Table 1), and they are illustrated in Figure 4.2.
As illustrated, there are differences in the growth rates achieved by B. subtilis with different
carbon sources available. An ANOVA analysis of the results gave a P-value < 0.05 meaning
there is significant variance. By performing a post hoc analysis, it was revealed that it is only
between glycerol and glucose, mannitol and glucose, and glycerol and succinate that there
is no significant variance. The experimental data and the scripts for the statistical analyses
available in appendix C.
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FIGURE 4.2. Estimated specific growth rates for Bacillus subtilis cultivated by batch fermentation in
minimal media containing one available carbon source per round of fermentation. Error bars denote one
standard deviation of uncertainty.

The ability for a cell to grow fast on a given substrate is connected to its ability to adapt its
carbon- and energy metabolism to the nutrient available [26]. Utilization of different sources
of carbon is associated with expression of different sets of genes to synthesise the specific
transporters, regulators and enzymes needed to metabolize the given compound [85]. Addi-
tionally, different carbon sources have different energy content, meaning that some contribute
more energy to the cell than others [86]. The resulting growth rates found for B. subtilis in
the various carbon sources indicate that the bacteria is able to better utilize glucose, glycerol
and mannitol, compared to xylose and succinate.

B. subtilis can reach high growth rates on glycerol, as it can be rapidly imported via a
selective facilitator [87]. Glucose and mannitol are taken up by efficient, substrate-specific
transporters and enter the metabolism early in glycolysis [19, 24]. The efficient uptake is part
of the reason growth on these substrates is faster. The growth rate for the media containing
xylose is much lower than what was calculated for B. subtilis in the media containing the
other carbon sources. This can be explained by the fact that B. subtilis does not have a
xylose-specific transporter, and therefore cannot efficiently transport xylose rapidly into the
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cell to metabolize it [27].

The growth rate for B. subtilis in succinate is modest as well. Succinate is metabolized
in the TCA. Utilization of succinate requires the cells to reverse the flow of metabolites in
their metabolism, the flux, from glycolysis to gluconeogenesis in order to synthesise precursors
needed for the metabolism [26, 19]. Waschina et al. (2016) [86] investigated the cost of amino
acid production on different carbon sources and characterized three groups of amino acids
depending on the type of carbon substrate their production is associated with. They found
that there is a cost trade-off between these groups. The amino acids that are metabolically
cheaper to produce when glycolytic substrates are utilized, are produced at a higher metabolic
cost when carbon sources utilized are gluconeogenetic (such as succinate), and vice versa.
Additionally, there are several reactions in gluconeogenesis that cause additional metabolic
costs [86]. The growth rate measured for growth on succinate, indicate that the metabolic
cost of succinate utilization might be higher compared to the other carbon sources used.

When taking dry-weight samples, 3 ml of media was extracted and centrifuged, and the
pellet was resuspended in 3 mL of MQ-water. 1 mL was transferred to each aluminium-pan
for dry-weight samples. This protocol had some room for error. In some cases it was clear
that the pellet had not been properly resuspended and there was a high standard deviation
between replicates from the same time-point. A better protocol would likely have been
to do three replicates with 1 mL tubes. Then, rather than a pellet from 3mL of sample
being resuspended in 3mL of MQ-water, three pellets would be resuspended in 1 mL of
water, avoiding the issue of improper re-suspension or uneven distribution of the cells on
the aluminium pans. However, the standard deviation between measurements were not a
problem for all fermentation rounds, indicating that error of execution might have been the
biggest challenge, not necessarily the protocol itself.

4.3 Experimental determination of biomass composi-

tion in different media compositions

It is known that the environmental- and growth conditions affect the composition of biomass
in bacteria [13]. Various analyses were executed to measure the biomass of B. subtilis grown in
environments containing different carbon sources to see how the composition might vary. The
overall resulting g/gDW with corresponding standard deviations is illustrated in Figure 4.3.
The experimental values for growth rate, DNA, RNA, proteins and lipids are listed in tables
in Appendix C as well, along the results from statistical analyses performed. All ANOVA and
post hoc analyses were performed in Python, and can be in the statistical analyses script.

43

https://github.com/Sofieta95/Supplementary-data---Master-s-project/blob/8817b3c3550f94c0aff3d03e102780cdc6e33fdc/Python%20-%20Model%20scripts%20with%20analyses/Statistical%20analyses.ipynb


A B

DC

FIGURE 4.3. The amount of A) DNA, B) RNA, C) proteins and D) lipids in g/gDW measured in Bacillus
subtilis in the exponential growth phase of batch fermentations performed in minimal media containing
different carbon sources.
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4.3.1 DNA content

The DNA content was measured using NanoDrop following a phenol/chloroform liquid-liquid
separation protocol. The contents measured are presented in the Figure 4.3A. As can be seen
in the Figure, the amount of DNA found in B. subtilis growing on mannitol as the sole source
of carbon is the highest. An ANOVA analysis gave a P-value < 0.001, and post hoc analysis
showed that it was only DNA content measured from the glucose and glycerol fermentations
that were not significantly different from each other. The ANOVA analyses indicate that
there the amount of DNA varies with the carbon-source available.

When xylose was the only available source of carbon, the DNA content was measured to
be 1,41 g/gDW(%), compared to 4,68 g/gDW(%) in mannitol. The growth rates in media
with the same carbon sources were found to be 0.911 h−1 and 0.411 h−1, respectively. These
results are in accordance with research showing there is a positive correlation between growth
rate and DNA-content, where faster growing cells contain more DNA [88]. Looking at the
results in Figure 4.3A, and comparing the amount of DNA to the growth-rates, it looks
like this might be the case. B. subtilis in xylose, which as mentioned had low amounts of
DNA, also had a low growth rate. The opposite is true for the bacterium in mannitol, where
the growth rate and amount of DNA is significantly higher than for the rest. Research on
mero-olioploidity in B. subtilis might be a part of the explanation for this. Experiments in
exponential growth phase with B. subtilis by Böttinger et al. (2018) found that the average
number of origins was around 5.9, and the number of termini was 1.2. This indicates that
the bacteria is mero-oligoploid, which means it has multiple copies of its genome during
exponential growth. Their results showed that most of the cells had between 4 and 8 origins
of replication, which aligns with previous research on B. subtilis by Sharpe et al. (1998),
Webb et al. (1998), Kodoya et al. (2002) and Moriya et al. (2009) [89, 90, 91, 92] that showed
the DNA content increased with increasing growth rate. The number or origins decreases
when the cells reach stationary phase, indicating that the copy number is positively correlated
to growth rate [88]. The results from these fermentations are in accordance with the findings
by Böttinger et al. (2018), as the amount of DNA measured is higher in carbon-sources
where a high growth rate was also observed.’

A Pearson correlation analysis gave a correlation coefficient of 0.76, indicating a positive linear
correlation between DNA amount and growth rates in this experiment as well. However, the
P-value for this correlation-analysis is 0.14 which is too significant to draw a conclusion on
correlation between DNA and growth rates on this data alone. There are some deviations
from the aforementioned research in the results from these fermentation experiments. The
growth rate for B. subtilis cultivated in media containing succinate was the second lowest
compared to growth on the other carbon sources. However, the amount of DNA found in
B. subtilis in the succinate media is only surpassed by the amount found in mannitol. The
results could indicate that the amount of DNA is not only correlated to the growth rate, but
is also affected by the media composition. It might be that a positive correlation between
growth rate and DNA-content would be seen at different growth rates in the same carbon
source.
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4.3.2 RNA content

The amount of RNA (g/gDW) was found to vary with the carbon-source. An ANOVA-test
proved that the variations were statistically significant. The mass fractions (g/gDW) and
the corresponding standard deviations are illustrated in Figure 4.3B. As can be observed,
there is quite some variation in the amount of RNA found in cultivation of B. subtilis with
different carbon sources available, and an ANOVA analysis gave a P-value < 0.001. There
is especially a high variation in amount of RNA between mannitol compared to xylose and
succinate. The growth rates for succinate and xylose were the lowest out of the five media
compositions that were used for these fermentations.

The amount of RNA in B. subtilis has been shown by Dauner and Sauer (2001) to increase
linearly with increasing growth rate [13]. The correlation between RNA and growth rate
is associated with the increasing need for ribosomes to meet protein synthesis demands,
meaning that the rRNA (ribosomal RNA) levels increase [93]. The expectation was therefore
to observe that the cells that had faster growth rates would also have a higher amount of
RNA. RNA content (g/gDW) was plotted against growth rate to illustrate the results. From
observing Figure 4.4 there seem to be a correlation and linear relationship between the two.
A pearson correlation analysis revealed a correlation coefficient of 0.69, however the P-value
for the analysis was too significant to make a conclusion on this based on the available results
from these experiments.
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FIGURE 4.4. The calculated RNA-amount (g/gDW) of Bacillus subtilis from batch fermentations per-
formed in minimal media with different carbon sources available, plotted against the corresponding growth
rate (h−1) found from biomass analysis.
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As can be observed in Figure 4.4, the levels of RNA in xylose is higher than in succinate,
but succinate has a higher growth rate. Same can be observed for glucose and glycerol.
This is in disagreement with the research by Dauner and Sauer (2001) indicating a positive,
linear relationship between RNA content and growth rate. However, the results in these
experiments are from cultivations with different carbon sources, and they could indicate that
the amount of RNA varies with the carbon source available.

Comparing these results with those of Dauner and Sauer (2001) in a direct manner is not
entirely appropriate. The experiments they conducted were performed using a chemostat
set-up in minimal media containing glucose, harvesting B. subtilis for biomass analysis at
various growth rates. The potential explanation for why the same correlation is not observed
in the results from these experiments could be attributed to the different carbon-sources used
for each measurement.

4.3.3 Protein content

The protein analysis was performed following an amino acid derivatization with HPLC after
an acid hydrolyzation protocol. The resulting concentrations of each amino acid was used to
find the total content of proteins (g/gDW) which is illustrated with corresponding standard
deviations in Figure 4.3C. As can be observed in Figure 4.3C, there is not much variance
in total amount of protein between the different media compositions. An ANOVA analysis
gave a P-value < 0.01, showing some significant variance between the groups. A post hoc
analysis showed there is only significant variance between the bacteria cultivated in mannitol
compared to glucose, xylose and succinate. These results indicate that there is not much
variance in protein content as a result of variation in available carbon source.

Dauner and Sauer (2001) found there to be a positive correlation between protein content
and growth rate in B. subtilis [13]. A Pearson correlation analysis performed on this data-
set resulted is a correlation coefficient of -0.61, indicating the opposite of their discoveries.
However, the P-value for the correlation coefficient was 0.28, and so no conclusion can be
drawn on whether the amount of protein increases with growth-rate based on this data. The
negative correlation and high P-value could be due to a low number of samples, or as a result
of the effect of carbon source. However, as mentioned with the RNA results, the experiments
from Dauner and Sauer (2001) were performed using a chemostat-setup and glucose as the
carbon source at various dilution rates. A comparison of correlation between proteins and
growth rate from these batch fermentations with different carbon-sources to their results is
therefore not optimal.

As described in Section 3.5.3 the HPLC analysis gave the concentration of each amino acid
in the samples. A one-sample T-test was performed comparing the experimentally measured
amino acid triplicates to the molar-fraction in the model for each amino acid. Though a few
amino acids were not significantly different in concentration from the model coefficient, most
were. Because there was significant variance, the concentrations of amino acids were used
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in the model. The synthesis reactions for protein were updated with the scaled amino acid
concentrations.

The relative distribution of amino acid composition in all carbon sources is illustrated in a
radial plot (ref. Figure 4.5). There is not much variance in the relative distribution, except
for Leu and Arg.
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FIGURE 4.5. Radial plot of the relative distribution of amino acids in g/gDW fractions in protein samples
from B. subtilis dry weight samples harvested from five batch fermentations performed in minimal media
with different carbon sources.

Amino acids are enzyme-building blocks. The sequence of amino acids determine the fold
of proteins and thereby the functional structure of the enzyme. The composition of amino
acids has been shown to vary between species, additionally Simensen et al. (2022) [94] found
that the amino acid distribution of the yeast Saccharomyces cerevisiae varied in response
to the external environment. However, there is variance in the degree to which amount of
individual amino acids tend to vary with the environment [94].
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The variance in amount of amino acids reflect the demand of amino acids by the cell [94].
The metabolism has to be adapted in response to the available carbon source. This adap-
tion is associated with expression of different genes to produce the needed transporters and
enzymes [85], and amino acids are as mentioned the building blocks of proteins and en-
zymes [94]. Variation in amino acid distribution could be an indication of such adaptions to
a new environment where different proteins are needed.

4.3.4 Lipid content

Lipids were extracted from the freeze-dried cells by chloroform/methanol extraction as de-
scribed in section 3.5.4. The total lipid content extracted from cells and the corresponding
standard deviations are shown in Figure 4.3D. An ANOVA analysis on the data gave a P-
value of 0.289. The following post hoc analysis showed that there was only a statistically
significant variance between the bacteria grown in succinate and glycerol. The results indicate
that the amount of lipids is not affected by different carbon sources.

It was expected to see some variation in lipid content based on growth rate. It is known
that cell size is positively correlated to growth rate in environments characterized by limited
nutrient availability. Further, the growth rate is related to metabolic rates and cell size to
phospholipid synthesis, meaning that an increase in growth rate with a subsequent increase in
metabolic rates, leads to a larger cell size and higher production of phospholipids for the cell
membrane [95]. In B. subtilis this relationship between cell size and growth rate is linear [96].
However, though differences in growth rates are observed in these experiments, all measured
growth rates are between 0.1 h−1 and 0.5 h−1. In this part of the linear regression of cell size
and growth rate, the cell size does not increase by a large amount [96].

4.4 The experimental uptake- and secretion rates

4.4.1 Carbon, glutamate, tryptophane, and acetate

During the rounds of fermentation, samples were extracted from the media to perform anal-
yses of what is taken up from and released into the media by B. subtilis. These samples
were analyzed by NMR. The results from the analyses were used to calculate uptake- and
secretion rates for glutamate, L-tryptophane, Acetate, Pyruvate and the respective carbon-
source present in the media. The calculated uptake rates for B. subtilis cultivated in different
carbon sources are shown in Table 4.2.
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TABLE 4.2. The calculated rates of uptake- and secretion of various compounds measured from five batch
fermentations of B. subtilis in minimal media containing different carbon sources. The rate is measured
at mmol gCDW-1 h-1. The carbon-source, glutamate and tryptophane are taken up from the media, while
acetate is secreted in to the media.

Fermentation: Carbon source: Acetate Glutamate Tryptophane
Glucose 3.52 ± 1.0 3.60 ± 0.12 1.99 ± 0.65 0.021 ± 0.006
Glycerol 14.2 ± 2.8 3.04 ± 0.17 2.30 ± 0.55 0.031 ± 0.007
Xylose 0.58 ± 0.04 0.07 ± 0.00 1.59 ± 0.29 0.008 ± 0.001

Mannitol 4.79 ± 1.33 3.01 ± 0.01 1.84 ± 0.65 0.013 ± 0.003
Succinate 5.76 ± 1.97 0.23 ± 0.04 2.84 ± 1.55 0.017 ± 0.006

The results from an ANOVA analysis showed there is statistically significant variance in
uptake-rates between all compounds except for Glutamate. When it comes to the uptake of
carbon sources, it was only the variance between glucose uptake with xylose, mannitol and
succinate that was not statistically significant. As can be seen in Table 4.2 the difference in
uptake is quite large. B. subtilis in glycerol had the highest uptake-rate of carbon source,
while the uptake of xylose was quite low. As has been discussed already, the uptake of xylose
is likely reduced by the fact that B. subtilis does not have a xylose-specific transporter [22]. In
contrast, the bacterium is able to import glycerol quite efficiently via a glycerol facilitator [87].

Dauner and Sauer (2001) did analyse the uptake of glucose and secretion of acetate in corre-
lation with growth rate. Based on their results, the uptake-rate of glucose calculated here was
lower than expected. With a growth rate of 0.3567 their research suggests the uptake-rate
should be around 6 mmol g-1 h-1. The calculated rate here was 3.52 mmol g-1 h-1, which
is lower than their measured value. For acetate secretion the measured value from glucose-
media in this experiment is close to the values measured at similar growth rates for glucose
found by Dauner and Sauer(2001) [13].

There is also a large variance in secretion of acetate, especially between succinate and xylose
compared to B. subtilis in the other media compositions. The secretion of Acetate is asso-
ciated with ”overflow” metabolism, meaning a switch in metabolism happens if the cell has
reached its respiratory capacity or during fermentation at high glucose concentrations [97].
B. subtilis growing in glucose, glycerol and mannitol were the fastest growing. The results
indicate that the cells in media containing xylose and succinate did not enter the ”overflow”
stage, perhaps because growth on these substrates proved inefficient.

4.4.2 Calculated O2-uptake and CO2-secretion

During the fermentation, analyses were automatically performed of the gas flowing through
the system with a Thermo ScientificTM Prima BT Benchtop Process Mass Spectrometer.
The off-gas was sampled continuously throughout the fermentation process, and the resulting
concentrations of O2 and CO2 were used to calculate the uptake and secretion rates. Uptake-

50



and secretion rates were calculated based on the specific rates from the 10 last measurements
before the cells were harvested and are listed in Table 4.3.

TABLE 4.3. The calculated rates of uptake of oxygen and secretion of carbon dioxide measured from five
batch fermentations of B. subtilis in minimal media containing different carbon sources. The rate is measured
at mmol gCDW-1 h-1. O2 is taken up by B. subtilis, and CO2 is secreted.

Oxygen Carbon dioxide
Rate: Std. Dev: Rate: Std. Dev: RQ:

Glucose 5.22 0.30 5.49 0.81 1.05
Glycerol 9.85 0.06 7.23 0.12 0.73
Xylose 6.06 0.06 6.68 0.03 1.10

Mannitol 5.58 0.25 4.96 0.26 0.88
Succinate 14.2 0.9 16.7 1.0 1.17

An ANOVA analyses on the O2 uptake-rates gave a P-value < 0.001. A Tukey’s post hoc test
was performed and showed that there is statistically significant variance between most rates
calculated for the various carbon sources, except between mannitol with glucose and xylose.
The ANOVA analysis for CO2 also showed statistical significance with a P-value below P-
value < 0.001. Glucose and mannitol, and glycerol and xylose were two only combinations
where the variance was not found to be significant for CO2 secretion.

The respiratory quotient was calculated to determine whether the uptake of oxygen and
release of carbon dioxide is balanced for growth in the various substrates. The RQ indicates
how the carbon-source is utilized or to what degree it is reduced, and is therefore an important
part of understanding the metabolic activity [98]. The RQ value will be 1 for glucose under
aerobic conditions if all reactions in the respiratory chain are active, and no alternative
electron receptors are in use [99]. The RQ can vary with the carbon-source, and it is higher
than 1 when more CO2 is produced than oxygen consumed, and vice versa [98]. As observed
in these experiments, the RQ varies with the carbon-source. The RQ for B. subtilis in
glucose is almost 1, indicating that the oxygen consumption and carbon dioxide secretion is
happening at similar rates. B. subtilis in xylose and succinate have a higher production of
CO2 than O2. They were also not able to grow efficiently on these substrates.

4.5 New experimentally derived, condition specific biomass

objective functions

The first step in creating the new biomass objective functions was to lump the cofactors and
ions together in one new synthesis reaction where the product was a co-factor metabolite
that was created. This reaction was called the cofactor synthesis reactions and was added to
the model as well as the ’”cofactor” metabolite. The new BOF was structured as shown in
equation 4.1.
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c1 protein + c2 DNA + c3 RNA + c4 lipid + 0.0304 lipoteichoic acid

+ 0.224 cell wall + 0.0446 cofactor + 105.00 ATP + 105.00 H2O

+ 0.00027 Acyl- carrier protein

⇀↽

104.99 ADP + 104 Orthophosphate + 0.00027 Acyl-carrier protein

(4.1)

The only coefficients updated in this experiment are the DNA, RNA, protein and lipids
coefficients. All substrates in the updated BOFs are the same as in the iBsu1147 model,
only the metabolites and ions are lumped in the cofactor synthesis reaction. After having
structured the BOF, the synthesis reactions for DNA, RNA, proteins and lipids were found.
Those reactions were scaled so that the total g/gDW of all substrates and products in each
reaction would have a sum of 1 not counting the macromolecule. That way, the measured
g/gDW of the macromolecular constituents could be used directly as coefficients in the BOF.
The new, scaled BOF-coefficients in g/gDW are listed in Table 4.4.

TABLE 4.4. The experimentally derived biomass objective function coefficients (g/gDW) found in batch
fermentation analyses performed with B. subtilis in minimal medium with a different carbon-source (C-
source) available. These are the scaled g/gDW coefficients from the experimentally measured values. They
are scaled so that the sum of coefficients for all components in the BOF together add up to 1 g/gDW. The
original BOF coefficients from the model are listed at the bottom of the table as a comparison to the measured
values obtained by these experiments.

DNA RNA Protein Lipid Sum (%)
Glucose 0.0234 ± 0.0015 0.0697 ± 0.0022 0.572 ± 0.027 0.0311 ± 0.0017 69.6
Glycerol 0.0245 ± 0.0014 0.0784 ± 0.0022 0.559 ± 0.003 0.0301 ± 0.0021 69.2
Xylose 0.0145 ± 0.0003 0.0642 ± 0.0023 0.576 ± 0.003 0.0369 ± 0.0019 69.2
Mannitol 0.0484 ± 0.0019 0.0899 ± 0.0015 0.519 ± 0.021 0.0336 ± 0.0032 69.1
Succinate 0.0282 ± 0.0009 0.0490 ± 0.0034 0.578 ± 0.013 0.0369 ± 0.0007 69.2
iBsu1147 0.026 0.0655 0.528 0.076 69.55

There is some variation observed between the content measured from these experiments and
the coefficients found in the model. However, the coefficients in the oBOF are not measured
from B. subtilis in the same media-composition, in the same phase of growth, or are neces-
sarily derived from experiments of B.subtilis [16, 13]. A one sample T-tests were performed
comparing experimentally measured g/gDW to the expected value for that coefficient in the
oBOF. The expected value used in the T-test was the corresponding coefficient value in the
oBOF. The experimental values for the nBOF coefficients were scaled using the same scaling-
factor as for the final coefficients used in the BOFs. Otherwise raw data would be compared
to a scaled value from the model. The one sample T-test showed that all nBOF coefficients
for glycerol and succinate were significantly different from the original coefficients. For man-
nitol and glucose all but the protein coefficients were significantly different from each other.
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For xylose it was only the RNA coefficient that did not statistically vary from the value in
the original BOF. The results from the T-test are in appendix D.

The sum (%) in Table 4.4 refers to the total percentage of the biomass composition that is
represented by these new coefficients. The row on the far right contains the corresponding
coefficients from the iBsu1147 model. The BOF in the model was created using stoichiometric
coefficients from previous lab-experiments from Dauner and Sauer (2001) [13]. There was
a significant variance in the lipid coefficient derived from these experimental measurements,
compared to the coefficient in the model. However, this was not surprising as the lipid
coefficient in the oBOF is based on data by Bishop (1967) [13], but the bacteria in the
experiments were cultivated until they reached stationary phase [100]. As mentioned in
section 4.3.4 cell size is known to vary with growth rate and the rate metabolic activity [95].
Because the cells were in stationary, they likely exhibited different growth characteristics
than the bacteria in these experiments, harvested in exponential phase. Some variation in
lipid-content was therefore expected. However, this brings to question why the amount of
lipids measured here is lower.

The protein coefficients measured experimentally in the nBOFs exceed the corresponding
coefficient in the oBOF, with the exception of B. subtilis in mannitol. The coefficient in
the model is calculated from the equation of the linear regression Dauner and Sauer (2001)
performed with protein content against growth rate. The coefficient is calculated with a
growth rate of 0.1 [16, 13], which is a lower growth rate than B. subtilis exhibited when
the protein content was calculated. This might explain why the experimentally measured
protein-coefficients for the nBOFs surpass the oBOF coefficient. As the variance between the
coefficients for the nBOFs compared to the coefficients in the oBOF was significant, the new
nBOFs were implemented in the model to explore what effect they have on model predictions.

4.6 Implementation of the condition specific BOFs in

iBsu1147

After having found the nBOF coefficients (Table 4.4), these were implemented in the iBsu1147
GEM. The next step of the project was to see how the new condition-specific BOFs affect
model predictions. For mannitol and glucose, the measured growth rates implemented to-
gether with the measured uptake- and secretion rates led to the model not being able to find
a feasible solution. For those two carbon sources new flux rates were found using MOMA,
and the resulting uptake- and secretion rates from the MOMA analysis was further used in
FBA. All models were analysed with FBA and FVA to see how the flux distribution and
growth rate is affected by the nBOFs.
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4.6.1 Identifying feasible solutions using MOMA

With the new fluxes measured in glucose and mannitol, the model was not able to find feasible
solutions. As described in section 2.3.4, a MOMA analysis can be performed to find a solution
vector of fluxes that is as close as possible to the fluxes provided in the reference vector [46].
Therefore, the experimentally measured fluxes were used as a reference vector in the MOMA
analysis to find the closest, feasible uptake- and secretion rates given the measured growth
rate. The upper- and lower bound for the growth-rates was set to the measured rate ± 2× the
standard deviation, to allow for some flexibility. The MOMA-analysis was performed with
the nBOF and oBOF from both media compositions. The resulting list of fluxes, Table 4.5,
was used for further analysis with FBA and FVA.

TABLE 4.5. A MOMA analysis was performed to find a feasible vector of fluxes given the measured growth
rates. The experimentally measured fluxes were used as a reference, to find the closest possible, feasible fluxes
to the experimentally measured uptake- and secretion rates. The growth rate for the analysis was locked
at experimentally measured value ± 2 × std. dev. The feasible fluxes from the analyses are listed in this
table, and these flux values were used as constraints in the model for the nBOF and oBOF for these media
compositions for pFBA and FVA.

Glucose Mannitol
Flux nBOF oBOF nBOF oBOF
Growth rate 0.303 0.303 0.379 0.379
C-source 4.86 4.95 6.79 6.84
O2 6.74 6.83 9.12 9.12
CO2 6.00 6.03 6.01 6.03
Acetate 3.79 3.52 3.01 3.01
Glutamate 2.06 2.07 2.01 2.09
Tryptophane 0.01 0.02 0.02 0.02

The suggested fluxes from the MOMA analysis are quite similar between the oBOF and the
nBOF for glucose. The coefficients in the nBOF shifts the MOMA-results a slightly towards
the rates that were measured experimentally, compared to the oBOF. The same applies for
the MOMA results for mannitol. Although the flux values suggested for the nBOF and oBOF
by MOMA analysis vary slightly from each other, the growth rates suggested for the model
with the nBOF and the oBOF are the same. These observations were consistent for both
glucose and mannitol. Indicating that the growth rate predictions are quite robust against
changes in the BOF coefficients.

The MOMA analyses for both conditions suggested higher uptake- and secretion rates than
what had been measured, and a slightly lowered growth rate. It has been observed in cases
with other models that the growth rate predictions of the model can be slower than what is
measured experimentally. Potential explanations for this is that the efficiency in the model
for generating biomass is too low compared to what is observed in vivo [76]. The highest
growth rates in these experiments were measured for B. subtilis in glucose and mannitol. It
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might be that the measured uptake-rates were not significant enough to support this growth
in the model. Or it might be that the model needs improvement when it comes to generation
of biomass as mentioned in the article by Lewis et al. (2010) [76].

4.6.2 Analysis of flux patterns associated with the new BOFs using
FBA

The FBA analyses were performed comparing the nBOF with the oBOF in the each of the
different media compositions, for example nBOF and oBOF from glucose media with the
measured uptake- and secretion-rates derived experimentally for that media composition.
The type of FBA analysis performed was a Parsimonious FBA (pFBA). This analysis assumes
that there is a selection of the fastest growing strain that requires the least amount of flux
through the network during exponential growth. For the bacteria this means that under
growth selective pressure, the cells will over time adapt to a higher growth rate. In this process
there will be a down-regulation of expression of genes and proteins in non-functional reactions.
This down-regulation saves resources which then can be allocated towards further increasing
the growth rate. This assumption of down-regulation separates pFBA from FBA [76].

As mentioned, pFBA finds the solution in the space of feasible solutions which yields a high
growth rate combined with the least amount of flux through the model [76]. This means the
pFBA can be used to provide one feasible solution that is made on the same basis for all the
carbon sources in these experiments, and ensures that the results are comparable.
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FIGURE 4.6. A scatter-plot of the resulting fluxes following a parsimonious flux balance analysis (pFBA)
on the GEM iBsu1147 with the new experimentally derived BOF (nBOF) compared to the flux distribution
following a FBA in the same model with the original BOF (oBOF), both in minimal media containing glucose.
The y-axis was cut at 5 and -5 so the variety in flux-distribution could more easily be studied. The synthesis
reactions for the macromolecular constituents of the BOF are not included in the plot, due to differences in
the nBOF and oBOF formulation.

The resulting flux-distribution from the pFBA of the model with the nBOF and oBOF in
minimal media containing glucose show some variance in flux distribution, as illustrated in
Figure 4.6. KEGG REACTION database [77, 78, 79] was used to see what pathways the
reactions with biggest variance between nBOF and oBOF reactions belong to. For glucose
the biggest flux variances were observed between oBOF and nBOF in reactions that are a
part of carbohydrate, lipid, and amino acid synthesis. This was expected to see. The amino
acid composition in the protein synthesis reaction was updated with experimental values, as
well as the coefficients for DNA, RNA, proteins and lipids. Changing these coefficients mean
that their weight of significance has been changed. This will impact the other reactions in
the model - the flux level is adjusted by the new biomass requirements [12]. Between the
nBOF and oBOF in the other media compositions the same can be observed, as seen in
Figure 4.7. There are adjustments in the flux distribution as a result of the updated amino
acid composition in the model as well as the coefficients in the nBOFs.

There is variance in the flux patterns between the media compositions, as expected. The
bacterium has to adapt the metabolism to the available carbon source. This adaption to
the carbon source is observed in reaction numbers 1 to 250, which represent the exchange
reactions, and one can see that the flux pattern for these reactions is different for each carbon
source. B. subtilis reached a higher growth rate in glycerol and mannitol than in xylose and
succinate. In the flux-plots for glycerol 4.7A and mannitol 4.7C the distribution is more
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wide-spread and there are more reactions of higher flux, and the comparison between nBOFs
and oBOFs show some variance. In xylose 4.7B and succinate 4.7D, the bacterium’s growth
rate was significantly lower. In these plots, the flux distributions are less dispersed and the
variance in flux between nBOF and oBOF is less obvious.

A B

DC

FIGURE 4.7. Plots of the flux ranges per reaction in iBsu1147 found by performing pFBA on the model
with the original BOF (oBOF) and the new BOF (nBOF). A shows the flux distribution in minimal media
containing glycerol as sole source of carbon. B shows the flux distribution in minimal media containing
xylose. C in mannitol, and D succinate. As all four flux distributions had some flux values of much greater
value than the rest, the plots y-axes were cut of at 5 mmol gDW−1 h−1, in order to better visualize the flux
distribution for the majority of the reactions.
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The growth rates predicted by pFBA with the nBOFs and oBOF in the same media compo-
sitions show consistent results, indicating that the model is resilient when it comes to growth
rate predictions. A group of researchers studying diatoms, Lavoie et al. (2020), found that
that the GEM for the organism in study was robust to changes in biochemical composition,
except for carbon uptake rate [101]. In this case, the pFBA analyses were only conducted
between nBOF and oBOF with the same uptake-rates for carbon, so the same observation
can not be derived for iBsu1147 on these data alone. However, the data shows that the
growth rate predictions are robust to changes in biomass composition.

4.6.3 Assessing the impact of the new BOFs on optimal steady
state using FVA

A FVA analysis was performed with the new flux- and growth rates for all five carbon
sources. For comparison, the FVA was performed on the model with the oBOF for all 5
flux-environments. This way, the resulting flux ranges for the model with the nBOFs could
be compared to the results from the same analysis with the oBOF.

The reactions from 1 to 252 are the exchange reactions in the model. As the uptake- and
secretion rates for glucose and mannitol are from the MOMA analysis and therefore not
exactly the same between nBOF and oBOF. There are small variances, as seen in Table 4.5.
Overall, that area of the curve for mid-value, as seen in Figure 4.8A and B, is more or less the
same between mBOF and oBOF. In these experiments, only the uptake- and secretion-rates
for O2, CO2, carbon-source, acetate, tryptophane and glutamate are measured and updated.
This means only 6 of the flux-variables are updated out of 252 exchange reactions. So it was
not expected to see a major change in this area of the plot.
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FIGURE 4.8. A FVA analysis was performed on the GEM iBsu1147 with an experimentally updated BOF
(nBOF) and for the same network with the original BOF (oBOF). Both analyses were performed for the
network in minimal media with glucose as the available carbon source. Plot A shows the resulting log of the
range values, and plot B shows the log of the mid-values from the analysis.

The reactions from around reaction number 850 to 950 are related to synthesis of lipids. All
nBOFs have coefficients for lipids almost half the weight of the oBOF. This is visualized in
both plot A and B. There is a line of reactions around those reaction numbers where the
range and mid-values for nBOF are slightly lower on the y-axis than for the oBOF. Overall
Figure 4.8 shows there is a slight reduction in the span of max and min flux values for the
model, indicating that the solution space has shifted.

For the other media compositions, Figure 4.9, the same is observed. For the lipid-reactions,
there has been a shift to a lower range and lower mid-value for the nBOFs. However, because
the only the content was measured for DNA, RNA and lipids, and not the composition, it was
not expected to see great changes in flux distribution. What was expected to be observed was
a shift, depending on whether the measured content was higher or lower than the coefficient
in the model. As for lipids, the measured content resulted in a coefficient for the BOF that
was significantly lower than in the oBOF. Therefore, the maximum and minimum possible
flux values have shifted, but the composition remains the same and that is why the pattern
of flux value is mostly unchanged.
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FIGURE 4.9. Plots of the resulting distribution of range and mid-values calculated after FVA analysis of
the network with the oBOF and nBOF in the model iBsu1147, in minimal media containing different carbon
source. A visualizes the resulting range and mid-values for B. subtilis in media containing glycerol as sole
source of carbon, B is in xylose, C is in mannitol, and D is in succinate.
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5. Discussion

Initial discussions around the results were presented in chapter 4. In this chapter the scope
is broadened and the discussion will be centered around the aim of this project, building
on the discussions in chapter 4. To begin with, the experiments performed in the lab are
discussed, before moving on to a discussion on the analyses of how the experimental BOFs
affect the model predictions. This will lead to the section on whether updating the BOFs
with experimental data affects model predictions. As presented in the Introduction, the aim
of the study is to perform experiments on B. subtilis to map its biomass composition and
update iBsu1147 BOF with the measured coefficients. The results from these analysis should
help answer the question of whether BOF-coefficients should be condition-specific.

5.1 Evaluation of the protocol for measuring biomass

composition

5.1.1 Challenges and considerations with batch-fermentation

There are two experimental parts to the quantification of biomass; cultivation of the bacteria
and then the actual protocols for measuring its biomass. There are several available protocols,
and each comes with its own set of considerations [4]. Because several carbon sources were
tested in this project, and the main objective was to examine if changes in available carbon
source affects biomass composition, the chosen cultivation method was batch fermentation.

There are multiple benefits to batch-fermentations. Because the organism and media are
loaded in to the reactor aseptically at the beginning, there is little risk of contamination
during the cultivation process [102, 31]. Further, the growth-conditions can be controlled in
many aspects, for example temperature, agitation, aeration and pH [31]. However, because
there is no addition of fresh media, the cells added at the beginning will continue through
all phases until the death phase, unless they are harvested before nutrient depletion. They
cannot be maintained in exponential phase as can be achieved with a chemostat setup [31,
32]. This can affect how well experimentally measured values align with the underlying
assumptions of an analysis, such as the steady-state constraint of FBA.

It takes generations for bacteria to properly adapt its metabolism and then acquire an op-
timal growth phenotype. For example, Lewis et al. (2010) found that it took hundreds of
generations of adaptive evolution before the growth of Escherichia coli was in accordance
with pFBA results. As described previously, the assumption behind pFBA is that the cells
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will evolve to achieve higher growth rate, while minimizing the flux through the reactions
in its metabolism. Because an excess of enzymes require large amounts of energy, the idea
is that the organism will adapt to not over-produce in order to allocate as much energy as
possible into growth and proliferation [76]. In batch-fermentation the cells are not main-
tained in exponential phase for a prolonged amount of time. The cells go through metabolic
transition in the lag phase where their metabolism is adjusted to the new environment. After
the adjustment the cells enter the exponential growth phase [31]. They have adjusted their
metabolism, but they might not have achieved this optimal state prior to harvest. If this
is the case, the experimental conditions deviate from the underlying assumption of pFBA.
However, the aim of this project was to examine changes in biomass with environmental con-
dition. For this purpose it should be sufficient that the biomass is measured after metabolic
adjustments have been made.

The alternative to batch fermentation would have been to perform the experiments using
a chemostat setup. In this process, the cells can be kept in exponential growth longer by
addition of fresh media. This is combined with an overflow device so that fresh medium
replaces old, and continuous growth in exponential phase can be maintained. If the addition
of the media is kept at such a rate that the organism maintains a stable growth rate, eventually
a steady state is achieved. The total amount of mass leaving the system is equal to the mass
entering the system. Introducing fresh media facilitates cell division, and the old media with
the deceased cells are removed [32]. In batch-fermentation, the growth can not be stabilized
like this over time. However, as previously stated, one can assume that the culture has
steady state properties during exponential growth [81]. This is why it was essential that the
cells were harvested during exponential growth in these experiments. The analysis of the
biomass composition and its incorporation into the model could be completed ensuring that
the experimental additions to the model were in alignment with its underlying steady-state
assumptions.

Another consideration in terms of cultivating the cells through batch-fermentation is that
there is great variability from one run to another [34]. While there are technical replicates
for the biomass analyses, and triplicates for growth rate determination, only one batch fer-
mentation analysis was performed for each carbon source. Usually, the biological variability
is higher than the technical variability [103]. Having biological replicates would strengthened
the observations related to biomass composition and growth rates. With multiple replicates
the analyses would have been more robust, and this would have enhanced the reliability of
the results.

5.1.2 Addressing the protocol for biomass quantification

In these experiments the DNA, RNA, protein, amino acid distribution and lipid content was
measured following the pipeline by Simensen et al. (2021) [2] which is based on the workflow
by Beck et al. (2018) [4]. Simensen et al. (2021) characterized 91.6% of the bacterial mass of
Escherichia coli. This percentage is significantly higher than achieved in these experiments.
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However, they also performed an analysis of carbohydrate content, and so it was not expected
to see the same coverage from these analyses. Further, because B. subtilis as a gram-positive
bacteria has a higher content of cell-wall material, a lower percentage of the cellular dry
weight is RNA [13]. The coverage following the same pipeline using B. subtilis was therefore
expected to be slightly lower for the macromolecular constituents of the BOF that were
quantified in these experiments.

The total coverage is an important factor of evaluation of the protocols for biomass quantifi-
cation because when constructing the BOF, the coefficients in the reactions are scaled such
that the coefficients add up to represent 100% of the cellular dry weight or biomass, and the
biomass produced must make add up to 1g/mmol to relate biomass to other characteristics
such as growth rate [2, 50]. If the total coverage is high, it provides a more accurate under-
standing of the proportions of the components in the BOF, and the need for loss-adjustment
is reduced. Thereby, a high total coverage provides a BOF that more accurately represents
the organism [2].

Not all components of the BOF were found experimentally in this project, and there is not
a lot of available data on B. subtilis biomass composition. Therefore, it is challenging to
draw a final conclusion on the total coverage achieved in these experiments. A carbohydrate
analysis would have been interesting in addition, as this is an important macromolecular
constituent in the BOF. However, compared to the coefficients in the model, the total coverage
of the measured coefficients for DNA, RNA, protein and lipids is in close range to the total
representation by the model coefficients 4.4.

The amount of proteins is normally the largest among the macromolecules in the BOF. The
quantification based on amino acid analysis is one of the methods for protein quantification
with less bias compared to UV absorbance and dye-methods. It is also more accurate than
these methods. Further, using different dilutions of the samples ensures that amino acids
of various abundance in the cell can be detected. One challenge with this method is that
cysteine and tryptophane are degraded during hydrolysis. Additionally, methionine is only
present in small amounts and usually the HPLC measurements have a high standard devia-
tion [4]. However, it is possible to correct for these issues, as was done in these experiments.
In this case the measured values of the other amino acids were plotted against the predicted
concentrations based on the protein-coding genes in the B. subtilis 168 genome. A linear re-
gression was performed and the concentrations of cysteine, methionine and tryptophane were
found by their predicted concentrations. The same challenge is amino acids with overlapping
retention times. Corrections can be made for this scenario as well, on the same assumptions
as just described using the relative distribution [2]. Even though adjustments have to be
made for some amino acids, this protocol has proven to be highly accurate for amino acid
distribution and protein content [4].

The amount of RNA is a reliable indicator of the metabolic activity of the cell, as the
RNA content is correlated with the amount of protein being synthesized [72]. An accurate
measurement of RNA is therefore key for understanding the rate of expression and production.
There are many methods for quantification of RNA, one of which is by OD-measurements.
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Though this is precise, it requires a pure sample, and can not be performed if it is a mix of
RNA and DNA [4]. The cells were therefore analyzed with NanoDrop, which allows for direct
quantitative analysis of nucleotides by UV-visible spectroscopy [2]. Because NanoDrop does
not require large volumes for analysis compared to OD-measurements for example, it reduces
the amount of sample needed, and increases the the range of concentrations of nucleic acids
that can be examined, making it an efficient method for quantification [104]. The NanoDrop
was also used for the analysis of DNA, ensuring efficient measurements of DNA-content as
well.

Lipid quantification can efficiently be performed gravimetrically. A challenge surrounding
this protocol however, is loss of sample during the protocol. There are several steps of
extraction of the organic phase using a syringe. It is important not to get any of the aqueous
solution in this extraction process, because then the water-soluble components of the cell will
be weighed as well. However, by rather being a bit conservative with the extraction, any loss
of organic phase can be corrected for by using the density of chloroform to find the weight
of organic phase that would have been extracted if the entire phase was transferred [2].

All protocols are associated with some form of correction to be made or concerns to account
for. However, the main take-away from this is that it is possible to quantidy the components of
the biomass of B. subtilis. In this project only a few of the BOF constituents were accounted
for. Carbohydrates, cell-wall components or lipoteichoic acid are other macromoleculuar
components it would have been interesting to quantify. Additionally several other compounds
and biopolymers are also important factors in biomass productions that were not measured
in these experiments. There are several cofactors, ions and metabolites that have not been
quantified. They do not contribute as much to the actual biomass, but they are essential
for biomass production and therefore an important part of the BOF [2]. An examination of
their effect on the predictions by the model would therefore have been interesting.

5.2 Uncovering inconsistencies in iBsu1147 BOF con-

struction

The total mass quantified in these experiments after scaling the coefficients are around 69.1-
69.6% of the cellular dry-weight. This is close to the mass represented by the same coefficients
in the model (69.5%). At first glance this might give the impression that the oBOF repre-
sents what is seen experimentally well. However, there are some important differences to note
behind these sums, and all of these will be discussed in this section. First, the distribution of
the weights of the coefficients in the BOF are different. Additionally, the experiments behind
the coefficients in the oBOF have not all been performed under the same conditions. Some of
the experiments behind the coefficients are also performed using a recombinant strain of B.
subtilis. In addition, the assumption behind the DNA coefficient diverge from observations
in other relevant studies. The total content of DNA was assumed to be constant when con-
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structing the BOF for iBsu1147 [16, 13], however more recent research show that the amount
of DNA increases with increasing growth rates [88]. Dauner and Sauer (2001) [13] point out
in the same paper as the coefficients are adopted from that the macromolecular composi-
tion of biomass changes in response to environmental conditions, and in response to growth
rate. Yet the BOF coefficients in iBsu1147 are based on data from various environments and
growth rates.

In these experiments the protein content was measured to be higher than the coefficient is
in the model, and the reverse is true for the content of lipids. One potential reason the
experimental coefficients are so different from the ones in the model, might be that the
coefficients from the model are derived from experiments performed in various conditions -
as was shortly discussed in chapter 4.4. The lipid components in the oBOF are derived from
experiments performed with cells in stationary phase, cultivated in minimal medium. Bishop
et al. (1967) found the lipid content to be 5.2% of the dry-weight of the cells, which by
Dauner and Sauer was used in their model. It is from this model the coefficient for the BOF
in iBsu1147 comes from. The protein-coefficient was derived from experiments by Dauner
and Sauer (2001). However, these experiments were performed in chemostat culture. They
harvested cells at various growth rates in the exponential phase. This means that in the
same BOF, two of the coefficients are harvested from cells at different phases of growth.
This is not ideal, because the biomass composition composition has been shown to vary
between different stages of growth. The amount of DNA, RNA, proteins, and lipids have
been shown to increase as a result of increased growth rate in the exponential phase [88,
13, 95]. Stationary phase is associated with several molecular changes such as synthesis of
proteins related to survival, reduction in cell size, and an increase in ratio of DNA compared
to proteins [105]. In other words, the composition of the biomass of the same organism is
not expected to be the same in different growth phases. The oBOF for iBsu was constructed
using biomass composition data derived from cell in conditions that are expected to yield
distinct biomass compositions.

Not only are the conditions of the growth experiments behind the coefficients for the model
not the same. The strain that has been used in the experiments also differs. In the experi-
ments performed by Dauner and Sauer (2001), they used a recombinant, riboflavin producing
strain of B. subtilis [13]. As biomass composition has also proven to be organism and strain
specific [2, 4] this is another aspect of the BOF used in iBsu1147 that draws its validity into
question. The BOF consists of data from different strains, cultivated in different conditions,
and harvested in different phases of growth. While the significance of the BOF for accurate
model predictions is clear, it is still not necessarily formulated from biomass composition
data on the organism in study [106], as the BOF in iBsu1147 exemplifies.

DNA-content in the composition of B. subtilis in iBsu1147 is considered constant at 2.6%,
based on research by Bishop et al. (1967) [13]. However, these cells were harvested from
stationary phase [100]. In this phase, characterized by the depletion of a necessary nutrient
in the media [31, 32], the cells adapt to new stresses and divert energy away from growth.
One of the consequences of this is nucleoid condensation to protect the DNA, and to fit the
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chromosome in the now-smaller sized cells. The only production of proteins is limited to
those only necessary for cell viability [105, 107]. In the exponential phase however, under
optimal conditions, it has been observed that the cells of B. subtilis have 4 to 8 genomes per
cell. This is referred to as mero-oligoploidity, where the number of origins is up-regulated.
This up-regulation was also found to vary with growth rate. In stationary phase the number
of origins was down-regulated again. This would lead to there being less DNA in the cell in
stationary phase [88]. Based on these new findings, and the difference in characteristics of B.
subtilis across different growth-phases, the validity of maintaining this BOF coefficient as is
raises some concerns. The DNA content measured in these experiments revealed significant
variation between growth conditions and/or growth rate, further undermining the underlying
assumption that DNA-content remains constant.

5.3 The impact of carbon source on biomass composi-

tion

The quantification of the biomass of B. subtilis showed, as discussed in chapter 4.3, that
there is significant variance in biomass depending on the growth condition. It was expected to
observe variations, as this is something that has been reported previously [2, 3, 83]. Although
the content of lipids remained consistent across the different conditions, the DNA-, RNA-,
and protein content varied significantly. The amino acid composition showed some variance as
well. Adapting to different carbon sources requires a metabolic reorganization in the cell [31,
32], which often involve making alterations in gene expression. For example, succinate will
require a shift in metabolism such that the gluconeogenesis and pentose phosphate pathway
are active in order to produce metabolic precursors as well as energy [19]. In other words,
metabolic redistribution happens in adaption to the media, consequently influencing the
composition of the cell.

The calculated growth rates that B. subtilis was able to achieve in these batch-fermentations
varied with the carbon source available as well. It is difficult to conclude whether the carbon
source available or the growth rate achieved has the impact on biomass composition with-
out conducting additional experiments. However, these experiments show that the growth
rate was significantly different when B. subtilis was cultivated with different carbon sources.
This is likely result of the various transportation methods that can be used to import the
carbon source [87, 19, 24, 15, 22, 26], as discussed in section 4.2.2, or due to different energy
requirements associated with maintaining metabolism on different sources of carbon [86].
Considering that biomass composition, as indicated in multiple research articles [95, 88, 13]
is known to vary with growth rate, the observed differences in growth rates measured in these
experiments with different sources of carbon further support the concept of condition-specific
BOFs. For instance, if B. subtilis can not achieve a high growth rate on xylose but can do so
in glucose, and this leads to different biomass compositions, then the argument for condition
specific BOFs remain valid.
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5.4 The effect of updated BOF on model predictions

and a call for condition specific BOFs

As observed in the results from the FBA and FVA, there is a change in flux distribution
for certain groups of reactions - especially those related to lipids and exchange reactions -
in adaption to the nBOFs. Because the BOF sets the objective of the cell, and defines the
weight of which its components must be synthesised for biomass production, the coefficients
in the BOF alter the down-stream distribution of flux through the model [4]. The internal
fluxes have been shown to be sensitive to changes in the biomass composition implemented
by the BOF. Experimentation performed on a GEM for E. coli found that the internal fluxes
are especially sensitive to changes in protein- and lipid composition when it came to macro-
molecular changes. The experiments also showed that the flux distribution is sensitive to
changes is amino acid composition [3]. The protein and lipid compositions found experimen-
tally were significantly different from the coefficients in the model, and so was the amino acid
distribution. Therefore, it was expected to see variation in the flux distributions between
oBOFs and nBOFs.

However, the BOF contains many components that were not measured in these experiments.
The BOF was only updated in the DNA, RNA, protein and lipid coefficient. Further, only
the composition of amino acids was examined. The composition of lipid-groups was not.
As mentioned this affects the distribution of fluxes in the model. When the composition
remains the same but the amount is changed, there is a shift in the fluxes, but the flux is
not redistributed between the lipid-groups. The carbohydrate content was not measured,
and neither were other metabolites that contribute to biomass production. While alterations
have been made to the oBOF to make it specific to the conditions B. subtilis was cultivated
in, several other components that also might affect model predictions were not measured.

Though the oBOF coefficients have been derived from various conditions and two different
strains, the growth rate predictions seem robust. pFBA was performed on the model in the
different media compositions, comparing the flux distribution with the nBOF to the oBOF.
Though the flux distribution through the model is changed when the nBOF is implemented,
the growth rate predictions were always the equal between the two BOFs for each condition.
As shortly discussed in section 4.6.2, Lavoie et al. (2020) found that growth rate predictions in
GEMs were robust to changes in biomass composition, which is what is implemented with the
BOF. Changes in the carbon-uptake rate however, affected the growth rate predictions [101].
In this case, the pFBA analyses were only conducted between nBOF and oBOF with the
same media composition and the same carbon uptake rate.

Changes in environment forces the cells to adapt on a transcriptional level, by adjusting
the expression of genes the productions of compounds is altered to be able to utilize the
available resources for vitality and proliferation [106, 19]. The argument can be made that
measuring the composition for every relevant environmental condition is unrealistic [106].
However, the significant variance in biomass composition and growth rates in different media
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composition, and the subsequent effect on flux distributions highlight the significance of
constructing condition specific BOFs.
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6. Conclusion and outlook

The biomass composition of bacteria is known to vary between organism, strain and condi-
tions. However, the coefficients for this central equation to phenotype predictions in GEMs
are often derived from research on other closely related strains or from other conditions [2,
4]. In the case of the GEM iBsu1147, the BOF coefficients have been derived from multiple
experiments, and so the coefficients are based on two strains, bacteria cultivated by different
methods and harvested in different phases of growth [14, 16, 13].

Following the pipeline by Simensen et al.(2021), the biomass composition of Bacillus subtilis
was quantified after cultivation by batch-fermentation in minimal media containing different
sources of carbon - glucose, glycerol, mannitol, xylose and succinate. The cells were harvested
in the exponential growth phase and subsequently analyzed. The macromolecular compounds
that were analysed were DNA, RNA, protein and lipids, which are all components in the BOF.
The analysis of biomass composition of B. subtilis cultivated with different carbon sources
show significant variation, further demonstrating the dynamic nature of biomass composition.
The resulting g/gDW found of DNA, RNA, protein and lipids were implemented in the model
by creating five new condition-specific BOFs.

The total mass quantified in these experiments after scaling the coefficients are around 69.1-
69.6% of the cellular dry-weight. This is close to the mass represented by the same coefficients
in iBsu1147 (69.5%). However, the distribution of weights in the original BOF is significantly
different from the weights in the new BOFs. The levels of lipids were found to be lower
experimentally, and the measured protein content was higher. The new conditions-specific
BOFs were implemented in the model, and pFBA and FVA was performed to see if and
how they affected model predictions. The growth rate predictions proved to be quite robust,
however the flux rates and distribution throughout the model were more sensitive to changes
in biomass composition, implemented in the model with the nBOFs.

Further analyses of iBsu1147 with the new BOFs would be necessary to conclude any further
on the specifics of how these variances in flux distributions affect the phenotype predictions.
However, the variances in biomass between growth conditions is significant, and it is pos-
sible to measure it. It might be time consuming, however these results illustrate how the
experimentally measured, conditions-specific BOFs affect the flux distribution in the model
predictions. They are also all significantly different from the original BOF. Implementing
BOFs based on experimentally measured biomass compositions, and condition-specific BOFs,
would help increase the specificity of the BOF and thereby improve the validity of GEM phe-
notype predictions.

To improve the strength of these results, it would have been beneficial with biological
replicates from the different carbon sources. There is variation associated with batch-

69



fermentations [34], and biological variation is usually greater than technical variation [103].
To substantiate the reliability of the results from this project of the significant difference in
biomass composition as a result of the conditions of cultivation, biological replicates are key.

In addition to DNA, RNA, proteins and lipids, the BOF consists of numerous other compo-
nents. By measuring the content of these additional components the BOF would be further
specified and provide an even better representation of the cells biomass composition. Carbo-
hydrates represent another macromolecular constituent [2, 4]. While the carbohydrate layer
for E. coli was found to be around 7.2% of the biomass, it is expected to be higher for the
gram-positive B. subtilis because of the thicker peptidoglycan layer of the cell wall [108, 13].
It was planned to perform an analysis following the protocol by Rühman et al. (2016) [109], as
part of the pipeline by Simensen et al. (2021) [2], however the pipeline for mass-spectrometry
analysis was not ready in time for the protocol to be performed in time.

All of the energy in a cell cannot be allocated towards growth. Other processes require
energy as well, such as motility, cellular osmolarity maintenance, correction of errors [43] by
proofreading followed by repairs of for example proteins or RNA [110]. The energy required
for these processes is represented in GEMs by the maintenance coefficient. The maintenance
energy required impacts the biomass yield and overall resource allocation in the cell [43]. The
flux through the model is therefore distributed to satisfy both the objective, which in this
case is growth, but also the cellular maintenance [111]. The maintenance energy in iBsu1147
was set according to the energy coefficient of B. subtilis 168, and is a static component in
the model [14]. However, it has been observed in E. coli that maintenance energy is lower at
higher growth rates and higher in unfavorable environments with lower growth rates [112].
It would have been interesting to explore the potential effects of the maintenance energy on
the model predictions, and whether presuming a uniform maintenance requirement is a valid
assumption.
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Appendix A - Bradford protein assay

The first step was to make the standard curve. This was done by using a BSA protein
standard (100µg/mL). The BSA stock was used to make a series of dilutions with MQ-water,
as listed in Figure 1 below. There were three replicates from each concentration. The average
of all three replicates per concentration were used to make the standard curve. The equation
for the regression line between these points was used to calculate the concentration of proteins
in the bacterial samples later. When measuring the OD for the replicates, the OD is set to
zero only with the first blank.
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FIGURE 1. The standard curve for analysis of protein content, made with samples of BSA protein standard,
to be used for protein content analysis in experiments of B. subtilis cultivated in minimal media containing
different carbon sources.

The equation for the regression line was found with Excel, and was y = 0, 0384x + 0, 017,
with an R2 of 0.97. In order to find the amount of proteins, this was solved to find the x for
each OD measured in the protein samples.

After making the regression curve, the cells from the fermentations were analyzed. 10 mg of
cells were weighed out, and MQ-water (30 µL) was added to re-hydrate the cells. To lyse the
cells 1 mL of Bacterial Protein Extraction Reagent (B-PER) was mixed with lysozyme (2µL,
50µg/mL). Because B-PER is best suited for gram-negative bacteria, the lysozyme was added
for increased yield. The samples were incubated at room temperature in a thermocycler for
some slow stirring (500 RPM) for 3 hours. After incubation the samples were centrifuged
at 7200 RCF for 10 minutes. 150 µL of the the supernatant was extracted and diluted with

II



MQ-water to a total volume of 10mL. The samples were further diluted 1:4000, and 2.4 mL of
this dilution was mixed with 0.6mL Bio-Rad protein assay. The samples were mixed with by
vortex, before a 10 minute incubation. Then the samples were analyzed by OD-measurements
at 595nm. The resulting amount of proteins found is illustrated in Figure 2.
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FIGURE 2. The resulting amount of proteins (g/gDW) found by bradford protein assay analysis performed
on cells of B. subtilis cultivated in minimal media containing different carbon source

The analysis was performed with triplicates from each carbon source. The calculations and
raw data can be viewed in the ”Proteins - Bradford” sheet in the Biomass analyses excel
document.
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Appendix B - Full growth curve for B. subtilis in mini-

mal media

This full growth curve with B. subtilis illustrates how the growth shifts around OD 3 to
decreasing. This plot was used to find an appropriate OD for harvesting the cells in the later
batch-fermentations, to ensure that the cells used in the biomass analyses were in exponential
growth at the time of harvest.
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FIGURE 3. A full growth curve of B. subtilis cultivarted by batch-fermentation in minimal media containing
glucose to explore the duration of the exponential phase. This was used to determine an approximate OD
appropriate for harvesting the cells in later batch-fermentations for biomass analyses.
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Appendix C - Experimental data

In case there are any issues with the hyperlinks in this thesis, the full URL to the supple-
mentary data in GitHub is here: https://github.com/Sofieta95/Supplementary-data

---Master-s-project.git

Experimental growth rate values

This section contains the growth rates with corresponding standard deviations and R2, listed
in Table 1. The standard deviations were found using RStudio, with the Linear regression
Growth rates-script. Between Excel and RStudio, the growth rate predictions were the same,
but the R2-values varied between the two programs, and so the values from both are included.

TABLE 1. Experimentally determined growth rates for B. subtilis in minimal media containing different
carbon sources. The growth rates were found by linear regression in Excel of log-transformed dry weight
measurements against time. The slope of the equation for the regression line corresponded to the growth
rate. The standard deviation (std. dev) was found using RStudio regression analysis.

Growth rate Std. Dev R2 excel R2 Rstudio
Glucose 0.357 0.027 0.97 0.91
Glycerol 0.303 0.036 0.83 0.79
Xylose 0.091 0.012 0.86 0.76
Mannitol 0.411 0.032 0.96 0.93
Succinate 0.213 0.025 0.95 0.79

The script for the ANOVA and post hoc analyses performed is available in the Statistical
analyses Python script.

Experimentally determined DNA content

The experimentally measured values are listen in Table 2 with corresponding standard devi-
ations.

The ANOVA analysis was performed using Python. The script is in the ”Statistical analyses”
file in the GitHub repository. The results from the one-way ANOVA analysis performed with
the measured DNA content between the carbon sources was 2.82 × 10−38. The results from
the post hoc- and the Pearson correlation analysis between DNA content and growth rate
can be viewed in the script Statistical analyses.
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TABLE 2. The experimentally measured values for DNA content in B. subtilis cultivated by batch-
fermentation, and harvested in exponential growth phase for biomass composition analysis.

DNA (g/gDW) Std. Dev
Glucose 0.0231 0.0016
Glycerol 0.0238 0.0014
Xylose 0.0141 0.0003
Mannitol 0.0468 0.0020
Succinate 0.0274 0.0009

Experimentally determined RNA content

The experimentally measured values for RNA are listen in Table 3 with corresponding stan-
dard deviations.

TABLE 3. The experimentally measured values for RNA content in B. subtilis cultivated by batch-
fermentation, and harvested in exponential growth phase for biomass composition analysis.

RNA (g/gDW) Std. Dev
Glucose 0.0688 0.0022
Glycerol 0.0762 0.0022
Xylose 0.0623 0.0023
Mannitol 0.0870 0.0016
Succinate 0.0476 0.0034

The ANOVA analysis was performed using Python. The script is in the ”Statistical analyses”
file in the GitHub repository. The results from the one-way ANOVA analysis performed with
the measured RNA content between the carbon sources was 1.9× 10−46. The results from
the post hoc- and the Pearson correlation analysis between RNA content and growth rate
can be viewed in the script Statistical analyses.

Experimentally determined protein content

The experimentally measured protein content (g/gDW) is listed in Table 4.
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TABLE 4. The experimentally measured values for protein content in B. subtilis cultivated by batch-
fermentation, and harvested in exponential growth phase for biomass composition analysis.

Protein (g/gDW) Std. Dev
Glucose 0.564 0.027
Glycerol 0.544 0.003
Xylose 0.559 0.003
Mannitol 0.502 0.021
Succinate 0.562 0.013

The ANOVA analysis was performed using Python. The script is in the ”Statistical analyses”
file in the GitHub repository. The results from the one-way ANOVA analysis performed with
the measured RNA content between the carbon sources was 0.004. The results from the post
hoc- and the Pearson correlation analysis between protein content and growth rate can be
viewed in the script Statistical analyses.

Experimentally determined lipid content

The experimentally measured lipid content (g/gDW) is listed in Table 5.

TABLE 5. The experimentally measured values for lipid content in B. subtilis cultivated by batch-
fermentation, and harvested in exponential growth phase for biomass composition analysis.

Lipid (g/gDW) Std. Dev
Glucose 0.0307 0.0017
Glycerol 0.0292 0.0021
Xylose 0.0328 0.0020
Mannitol 0.0326 0.0032
Succinate 0.0358 0.0007

The ANOVA analysis was performed using Python. The script is in the ”Statistical analyses”
file in the GitHub repository. The results from the one-way ANOVA analysis performed with
the measured RNA content between the carbon sources was 0.028. The results from the post
hoc- can be viewed in the script Statistical analyses.
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Appendix D - One sample T-test comparing nBOF co-

efficients to oBOF

A one-sample T-test was used to compare the resulting coefficients in the nBOFs to the
coefficients in the original BOF in iBsu1147. The script used to perform the one sample
T-test can be found in the Statistical analyses script. The P-values from the analysis are
listed below. The raw data values are listed in the script for all of the fermentation analyses.
The expected value in the test was the coefficient from the model.

Glucose

Coefficient Expected value
New coefficient

value
T-statistic: P-value

DNA 0.0260 0.0234 -5.176 0.00058
RNA 0.0655 0.0697 6.707 3.34 · 10−5

Lipid 0.076 0.0311 -44.82 0.00049
protein 0.528 0.572 2.721 0.11

Glycerol

Coefficient Expected value
New coefficient

value
T-statistic: P-value

DNA 0.0260 0.0245 -3.213 0.012
RNA 0.0655 0.0784 24.19 1.31 ·10−14

Lipid 0.076 0.0301 -36.11 0.00076
Protein 0.528 0.559 14.31 0.0048

Xylose

Coefficient Expected value
New coefficient

value
T-statistic: P-value

DNA 0.0260 0.0145 -108.3 5.92 ·10−14

RNA 0.0655 0.0642 -1.81 0.097
Lipid 0.076 0.0369 -35.85 0.00077

Protein 0.528 0.576 26.017 0.0015

VIII

https://github.com/Sofieta95/Supplementary-data---Master-s-project/blob/8817b3c3550f94c0aff3d03e102780cdc6e33fdc/Python%20-%20Model%20scripts%20with%20analyses/Statistical%20analyses.ipynb


Mannitol

Coefficient Expected value
New coefficient

value
T-statistic: P-value

DNA 0.0260 0.0484 32.82 8.09 ·10−10

RNA 0.0655 0.0899 49.25 2.87 ·10−13

Lipid 0.076 0.0336 -22.01 0.002
Protein 0.528 0.519 -0.7992 0.508

Succinate

Coefficient Expected value
New coefficient

value
T-statistic: P-value

DNA 0.0260 0.0282 7.94 2.35 ·10−5

RNA 0.0655 0.0490 -17.9 4.71 ·10−11

Lipid 0.076 0.0369 -96.7 0.00010
Protein 0.528 0.578 6.52 0.023

IX
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