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Response inhibition and interference resolution are often considered subcomponents of an overarching inhibi-
tion system that utilizes the so-called cortico-basal-ganglia loop. Up until now, most previous functional magnetic
resonance imaging (fMRI) literature has compared the two using between-subject designs, pooling data in the
. form of a meta-analysis or comparing different groups. Here, we investigate the overlap of activation patterns
interference . o penes . . 1 . . . .
cognitive modelling unde'rlymg response inhibition and interference re.soluuon on .a thhln—sub.J'ect level, u'smg ultra'—hlgh field M.RI.
fMRI In this model-based study, we furthered the functional analysis with cognitive modelling techniques to provide
a more in-depth understanding of behaviour. We applied the stop-signal task and multi-source interference task
to measure response inhibition and interference resolution, respectively. Our results lead us to conclude that
these constructs are rooted in anatomically distinct brain areas and provide little evidence for spatial overlap.
Across the two tasks, common BOLD responses were observed in the inferior frontal gyrus and anterior insula.
Interference resolution relied more heavily on subcortical components, specifically nodes of the commonly re-
ferred to indirect and hyperdirect pathways, as well as the anterior cingulate cortex, and pre-supplementary motor
area. Our data indicated that orbitofrontal cortex activation is specific to response inhibition. Our model-based
approach provided evidence for the dissimilarity in behavioural dynamics between the two tasks. The current
work exemplifies the importance of reducing inter-individual variance when comparing network patterns and
the value of UHF-MRI for high resolution functional mapping.

1. Introduction derlying behaviour in the tasks have not been directly compared (Bush
& Shin, 2006; de Hollander et al., 2017; Deng et al., 2018; Mileti¢ et al.,

Response inhibition is defined as the global inhibition of a planned 2020).

or already initiated response, commonly investigated using the stop-
signal task (SST; Aron, 2011; Logan & Cowan, 1984). Interference res-
olution is a selective inhibition process that functions to suppress pre-
potent but suboptimal behaviour and is required for tasks such as the
multi-source interference task (MSIT; Bush et al., 2003). Although both
constructs are placed under the umbrella of inhibition-related function-
ing, concrete knowledge on their overlap in neural implementation is
lacking (Isherwood, et al., 2021; Nee et al., 2007; Schmidt et al., 2020;
Swick et al., 2011). Both the SST and MSIT have yielded robust results
in functional magnetic resonance imaging (fMRI) studies and lend them-
selves well to cognitive modelling, although the neural architectures un-

Accumulating evidence indicates response inhibition is executed
via a complex cortico-basal-ganglia network which is also involved
in action planning and initiation (Albin et al., 1989; DeLong, 1990;
Jahanshahi et al., 2015; Wessel & Aron, 2017), though some work has re-
vealed inconsistencies in this theory (de Hollander et al., 2017; Mileti¢
et al., 2020). Through these intricate subcortical-cortical connections
the idea is that the direct pathway plays a pivotal role in the initia-
tion of movement (see Fig. 1). It is generally accepted that two separate
pathways, the indirect and hyperdirect, work in tandem to pause or in-
hibit planned or already initiated movement (Diesburg & Wessel, 2021;
Schmidt & Berke, 2017). While the role of this network in response in-
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Figure 1. The direct, indirect and hyperdirect pathways in humans (adapted from Diesburg & Wessel, 2021). Glutamatergic connections are represented as green
lines, GABAergic connections as red and a reduction in signaling as dotted. IFG, inferior frontal gyrus; preSMA, pre-supplementary motor area; GPe, globus pallidus
externa; GPi, globus pallidus interna; SNr, substantia nigra pars reticulata; STN, subthalamic nucleus.

hibition has been widely investigated, its role in interference resolution
remains elusive. With the idea that interference resolution is a type of
selective inhibition, and response inhibition a more global method of
inhibition, we sought to investigate to what extent they share common
neural substrates within and outside of these canonical inhibitory path-
ways.

Previous meta-analyses and original studies indicate that the two
types of inhibitory control utilize several distinct brain areas, namely
the pre-supplementary motor area (preSMA) and subthalamic nucleus
(STN) in response inhibition and the anterior cingulate cortex (ACC),
superior parietal lobule (SPL) and striatum in interference resolution
(Cieslik et al., 2015; Hung et al., 2018). However, overlapping activation
has been found in the anterior insula (al), preSMA, and inferior frontal
gyrus (Cieslik et al., 2015; Hung et al., 2018; Isherwood, et al., 2021).
These studies also suggest that response inhibition recruits a more right-
lateralized, and interference resolution a more left-lateralized network.
Combined, these studies found little evidence of common subcortical in-
volvement across the tasks. It is important to note that almost all meta-
analyses are based mostly on 1.5T or 3T data and may lack the signal
quality (in terms of signal-to-noise ratios) necessary to uncover acti-
vation in deeper parts of the brain. As such, there is an abundance of
studies investigating both response inhibition and interference resolu-
tion in isolation, but few that have focused on intra-individual overlaps
(Sebastian et al., 2013), especially at higher field strengths.

In addition to a lack of within-subject studies, model-based imaging
approaches are missing (Sebastian et al., 2018; van Maanen et al., 2015).
Such an approach allows us to further understand the algorithmic level
underlying behaviour as well as the implementation level in the brain
(Marr, 1982), giving us the tools to gain mechanistic understanding. For
example, if a parameter of a cognitive model correlates with brain ac-
tivity in a specific region, there is an indication that the region could be
involved in the specific process that parameter defines. To gain a deeper
understanding of the neural signatures of response inhibition and inter-
ference resolution, here we apply both a well-established and a novel
method of cognitive modelling to the two tasks (Matzke et al., 2013,
2017). The stop-signal reaction time (SSRT) is the canonical marker
of behavioural stopping ability during the SST and can be estimated
using several methods (Logan et al., 1984; Matzke et al., 2018). This
marker has been shown to correlate negatively with nodes of the in-
direct pathway including the rIFG, caudate nucleus, and STN activity
(Aron & Poldrack, 2006; Li et al., 2006; Whelan et al., 2012). To the best
of our knowledge, there are no model-based fMRI studies of the MSIT.
Here, we apply an evidence accumulation model, the racing Wald, to
identify whether we can capture behaviour during interference resolu-
tion in terms of changes in drift rate, threshold or non-decision time
(Logan et al., 2014; Stevenson et al., 2022).

To accurately compare these two tasks, we employed ultra-high field
magnetic resonance imaging (UHF-MRI) to acquire within-subject fMRI
data of the SST and MSIT. UHF-MRI allowed us to obtain high resolu-

tion and optimized contrasts in deep subcortical areas as well as main-
taining sufficient signal in the cortex (Isherwood et al., 2021; Mileti¢
et al., 2020). The echo time is important for optimal BOLD-sensitivity
and should be equal to the T2* of the tissue of interest, for the STN and
GPe this is around 14 ms (Posse et al., 1999). We therefore ‘tailored’ the
sequence to the subcortex, by choosing a TE more optimal for it (Mileti¢
et al., 2020). This, of course, results in a suboptimal TE for imaging cor-
tical regions (which is around 30 ms). Due to the increased signal you
achieve in the cortex, simply from being closer to the MRI head coils, we
chose to focus on increasing sensitivity to subcortical BOLD responses
which are widely underrepresented in functional studies.

We fit both whole-brain and region of interest (ROI) based general
linear models (GLMs) for each participant of the study and compared
their activation patterns. As the precise delineation of smaller subcorti-
cal structures is crucial for accurate statistical analysis, we here used the
multi-contrast anatomical subcortical structures parcellation (MASSP)
algorithm to directly obtain individual masks for each participant (Bazin
et al., 2020). To better understand the mechanisms underlying observed
behaviour in each task, we utilized separate cognitive modelling tech-
niques. Based on previous literature, we expected to replicate findings
of cortical overlap of response inhibition and interference resolution in
the al, preSMA, and IFG. Additionally, by using the high-resolution sub-
cortical masks derived we aimed to explore possible commonalities in
basal ganglia structures that constitute canonical inhibitory pathways.

2. Methods
2.1. Participants

A total of 37 participants (20 female; mean age 26.3 + 5.6; age range
19 - 39 years) completed the study, which was approved by the ethi-
cal committee at the University of Amsterdam, the Netherlands, and
the Regional Committees for Medical and Health Research Ethics, Nor-
way. Written informed consent and MRI screening forms were obtained
from all participants. The participants were recruited from the Norwe-
gian University of Science and Technology and had corrected-to-normal
vision and no history of epilepsy or overt clinical neuropsychiatric dis-
ease.

2.2. Scanning protocols

Each participant was scanned in a total of four MR sessions as part
of a larger project on a Siemens MAGNETOM TERRA (Tesla (T) = 7;
gradient strength = 80 mT/m at 200 T/m/s) with a 32-channel head
coil. Here, we only describe the sessions that acquired the high resolu-
tion anatomical images and the SST and MSIT experimental data. The
anatomical session acquired a multi-echo gradient recalled echo scan
(GRE; TR = 31.0 ms, TE1 = 2.51 ms, TE2 = 7.22 ms, TE3 = 14.44
ms, TE4 = 23.23 ms, FA= 12°, FOV = 240 x 240 x 168 mm) and an
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Figure 2. Task design of the SST (left) and MSIT (right). Trials in the SST lasted 7 seconds and were either go or stop trials: a) shows an example of a stop trial, where
the participant should have attempted to inhibit responding to the right facing arrow. Trials in the MSIT also lasted 7 seconds. b) An example of an incongruent trial,

where the correct response is 2 (middle finger on the button box).

MP2RAGE scan (TR = 4300 ms; TE
ms, TI2 = 3270 ms; flip angle 1 5°, flip angle 2 = 6°Field of
View (FOV) = 240 x 240 x 168 mm; bandwidth (BW) = 250 Hz/Px;
Marques et al., 2010). The experimental session consisted of four func-
tional echo-planar imaging runs with subsequent acquisition of 4 EPI
volumes with opposite phase encoding direction for susceptibility dis-
tortion purposes. The functional data was collected using a single
echo 2D-EPI BOLD sequence (TR = 1380 ms; TE = 14 ms; MB = 2;
GRAPPA = 3; voxel size = 1.5 mm isotropic; partial Fourier = 6/8; flip
angle = 60°; MS mode = interleaved; FOV = 192 x 192 x 128 mm; ma-
trix size = 128 x 128; BW = 1446 Hz/Px; slices = 82; phase encoding
direction = A >> P; echo spacing = 0.8 ms). Each task had a total of 2
runs, each with a 13:27 min acquisition time, for a total of 4 runs and
53:48 min functional scanning.

1.99 ms; inversions TI1 = 840

2.3. Physiological data

Physiological data (heart and breathing rate) were recorded for all
participants in order to estimate the effects of physiological noise on the
fMRI data. An 18 regressor RETROICOR model was fit (Glover et al.,
2000). This included a fourth order phase Fourier expansion of the
heart rate signal, second order phase expansion of the respiration sig-
nal, and a second order phase Fourier expansion of the interaction be-
tween heart rate and respiration (Harvey et al., 2008). Additional re-
gressors were used to model heart rate variability (HRV; Chang et al.,
2009), and respiratory volume per time unit (RVT; Birn et al., 2008;
Harrison et al., 2021).The PhysIO toolbox (Kasper et al., 2017) as exe-
cuted in the TAPAS software (Fréssle et al., 2021) was used for physio-
logical regressor estimation.

2.4. Experimental Paradigms

2.4.1. Stop Signal Task (SST)

To test response inhibition, we used the SST(Logan & Cowan, 1984;
Verbruggen, et al., 2019). Participants were presented with a right or
left-facing arrow surrounded by a white circle in the middle of the
screen. They were instructed to respond to the direction of the arrow
as quickly and as accurately as possible, using the index finger on their
left or right hand (see Fig. 2). 25% of the trials were ‘stop’ trials, where
the circle surrounding the stimulus turned red. The other 75% of the
trials are termed ‘go’ trials, where the circle remains white. When pre-
sented with a stop trial, participants were instructed to inhibit their re-
sponse to the direction of the arrow. On go trials, participants should
respond to the arrow as initially instructed. The time delay between the
presentation of the arrow stimulus on stop trials and the visual stop sig-
nal (the red circle), is defined as the stop signal delay (SSD). The SSD
was adjusted to the stopping ability of the participant by means of a
staircase procedure, where the SSD is increased 50ms if the participant

100 010 001
020 200 002
003 300 030
CON SIM
331332 311
g 211232 212
223122
133 323 221 313 112
322 131 233
FLA INC

Figure 3. Conditions and stimuli presented in the MSIT. Possible stimuli are
shown left or right of the conditions. There were three possible stimuli in the
CON condition, six possible stimuli in the SIM and FLA conditions, and twelve
possible stimuli in the INC condition. Each subject was presented with three
selected stimuli from each condition during the experiment. CON, congruent;
SIM, Simon; FLA, Flanker; INC, incongruent.

successfully stopped and decreased by 50ms when the participant failed
to stop. The SSD was initially set at 200ms for all participants. For anal-
ysis, trials were categorized into go trials (GO; no visual stop signal cue),
successful stops (SS; visual cue presented, and response inhibited) and
failed stops (FS; visual cue presented but response still initiated).

2.4.2. Multi-source Interference Task (MSIT)

To test interference resolution, we used the MSIT (Bush et al., 2003).
Participants were presented with three numbers inside a white circle in
the middle of the screen (see Fig. 2). Of these three numbers, two were
identical and one differed. These numbers could either be a 0, 1, 2 or 3.
Participants responded by indicating the identity, but not the position,
of the number that was the odd one out as quickly and accurately as
possible using the index, middle and ring fingers of their right hand.
For example, the correct response to the stimulus ‘1 3 1’ was to press
the button corresponding to the number 3. There were four conditions;
congruent (CON), Simon (SIM), Flanker (FLA), and incongruent (INC;
see Fig. 3).

CON trials incurred stimuli such as ‘1 0 0’ or ‘0 2 0’, in which the
correct responses were 1 and 2, respectively, and include a congruency
between position and identity of the correct response. SIM trials con-
tained stimuli such as ‘0 0 1’ or "2 0 0’, where the correct responses were
also 1 and 2, respectively. The Simon effect caused an inconsistency be-
tween the position and identity of the correct answer, increasing the
difficulty of the choice. FLA trials contained stimuli such as ‘1 2 2’ or ‘3
2 3, in which the correct responses were 1 and 2, respectively. FLA tri-
als also include a congruency between the position and identity of the
correct response, but this response was surrounded by goal-irrelevant
stimuli which act as distractors, which further increases choice diffi-
culty, known as the Flanker effect. Finally, INC trials contained stimuli



S.J.S. Isherwood, PL. Bagzin, S. Mileti¢ et al.

signal-respond RT distribution ——>
(i.e., failed inhibitions)

Neurolmage 271 (2023) 119988

stop-signal delay

onset
stop signal

onset
choice stimulus

time

finishing time distribution of stop runner
with parameters Uisiop, Ostop, @aNd Tsiop

Figure 4. Schematic representation of the horse-race model (Heathcote et al., 2019). The horse-race model treats go RTs and SSRTs as independent random variables,
defining the finishing times of either the go or the stop process. The signal-response RT (SRRT) distribution (grey) is treated as a censored Go RT distribution. If the
go RT on any given trial is longer than SSD + SSRT, the response is successfully inhibited. SRRTs occur when the go RT on the given trial is shorter than SSD + SSRT.
Figure available at tinyurl.com/5hnyzz2w under CC-BY 2.0 license (https://creativecommons.org/licenses/by/2.0/).

such as ‘33 1’ or ‘1 1 2’, with correct answers as 1 and 2, respectively.
In INC trials, both the Simon and Flanker effects were present. We de-
fined interference effects as a bias towards a possible choice option that
is incorrect, the CON condition therefore had no interference effects, as
the zeros did not bias participants towards a potential or valid response
option. As there were different numbers of possible stimuli in each con-
dition (e.g., three for the CON condition but twelve for the INC condi-
tion), each participant was pseudorandomly assigned three stimuli from
each condition as to harmonize any learning effects. After the response
window, feedback of either ‘in time’ (responses less than 600ms), ‘too
slow’ (responses between 600 — 900ms) or ‘very slow’ (for response more
than 900ms) was shown. This feedback was aimed to keep participants
responding quickly.

2.5. Behavioural Analyses

For both runs of the SST, median reaction times (RTs) on go and
stop trials, the mean stop-signal delay (SSD) and proportion of successful
stops (SS) were calculated. For each participant, the main measure of
response inhibition, the stop-signal reaction time (SSRT) were calculated
using modelling techniques described below. For both runs of the MSIT,
median RTs and accuracy were calculated for all four conditions. Bayes
factors (BFs) were computed using the BayesFactor package (Morey &
Rouder, 2015).

2.6. Cognitive Modelling

2.6.1. SST

The SST was modelled using the Bayesian Estimation of Ex-Gaussian
Stop-Signal (BEESTS) reaction time distributions method (Matzke et al.,
2013, 2017). The aim of modelling the SST is to estimate the efficiency
of the unobservable stopping response, commonly defined as the stop
signal reaction time (SSRT). The model is based on the standard horse-
race model (see Fig. 4), where the go process, initiated upon presentation
of the stimulus, and the stop process, initiated by the presentation of
the visual stop signal, independently race against each other. If the go

process finishes the race first, the prepared action is executed. If the
stop process finishes first, this action is inhibited. This can be further
formalized, if the go RT is faster than the SSD + SSRT on a given trial,
then the go process wins and a signal-response RT (SRRT) is observed.
If the go RT is slower than the SSD + SSRT, then the stop process wins,
and the action is inhibited. The RT distribution derived from failed stop
trials are estimated as a partially known (censored) go RT distribution.
The race model assumes that, on average, these SRRTs are quicker than
go RTs. Due to the simplicity of the go choice, incorrect response on go
trials were removed from the analysis (0.24% of all go data).

By using a Bayesian parametric approach (BPA), the entire distribu-
tion of SSRTs is estimated, as opposed to using the mean or median ap-
proach, which provides only a summary measure. The BPA assumes that
go RTs and SSRTs follow an ex-gaussian distribution (Matzke & Wagen-
makers, 2009; Ratcliff & Murdock, 1976). Such a distribution is defined
by three parameters, the mean of the gaussian component (y), the stan-
dard deviation of the gaussian component (¢) and the mean of the ex-
ponential component (7). The BPA model simultaneously estimates the
80 (Hgo» Tgo» Tgo) AN StOP (Hstops Tstops Tstop) RT distribution parameters.
The mean of the ex-gaussian distribution is the sum of the u and r pa-
rameters, pg, + 7g, derives the mean go RT and pgop + Tgi0p derives the
mean SSRT. Posterior distributions for these go and stop parameters are
estimated using Markov chain Monte Carlo sampling (Gilks et al., 2003).
Proper convergence of these chains during sampling is diagnosed using
the Gelman-Rubin statistic, where values of 1.1 or lower indicate the
chains have converged (Gelman & Rubin, 1992). The stop signal data
is analyzed hierarchically, therefore assuming that subject-level go and
stop signal parameters are drawn from group-level distributions. Both
group-level and subject-level parameters are estimated simultaneously,
where the group-level distributions define the between-subject variabil-
ity of the subject-level parameters (Gelman & Hill, 2006). Hierarchical
methods allow adjustment or “shrinkage” of extreme or unlikely param-
eters estimates towards the group mean.

Attentional failures are captured by the model by means of trigger
failures (tf), where the stop process is not initiated and go failures (gf),
where the go process is not initiated. The overall probability of stopping
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remains the same, as stopping and trigger failures are, by definition, mu-
tually exclusive. Similarly, go responses are not observed upon the man-
ifestation of a go-failure. The priors used for the population-level param-
eters of the model were truncated normal distributions, constrained be-
tween 0 and 1000ms for the go and stop parameters and normal distribu-
tions between -6 and 6 for P(tf) and P(gf) parameters. The priors for the
group-level means and group-level standard deviations are weakly in-
formative uniform distributions, as in (Matzke et al., 2017). After model
estimation, an inverse probit transformation that simultaneously consid-
ers the population-level mean and the population-level standard devi-
ation was applied to the P(tf) and P(gf) parameters to convert them to
the probability scale. The described model is therefore comprised of 8
parameters (Hg5, Ogos Tgos Hstops Tstops> Tstops P(tD), P(gD).

2.6.2. MSIT

There have been few attempts to investigate the MSIT within a
model-based framework. Here, we use a process-orientated approach
developed by Stevenson et al., (2022) to model participant behaviour
during the task. Through cognitive modelling, the aim is to disentangle
the individual contribution that both the Simon and Flanker effects have
on behaviour, as well as their cumulative effects when both are present.
The evidence accumulation model we used was the racing Wald model
(Logan et al., 2014). This model is characterized by three parameters:
the rate of evidence accumulation (drift rate), the decision threshold
(B) and non-decision time (t0). We assume that evidence accumulates
during each trial of the task at some rate until evidence for a certain deci-
sion reaches a threshold, upon which a decision is triggered. The model
assumes that most of the between-condition effects can be put down
to differences in drift rates. Since there are three potential responses,
there are three accumulators racing on each trial. As a reminder, there
are four conditions in this task, a CON condition (no Simon or Flanker),
SIM condition (Simon only), FLA condition (Flanker only) and INC con-
dition (both Simon and Flanker). We hypothesized that the drift rate for
each choice is jointly driven by an urgency component and the evidence
supporting that choice. The drift rate for any choice is therefore an ad-
dition of the urgency component (vy), target evidence (vrarger), Simon
evidence (vgjyon), and Flanker evidence (vgjan). Furthermore, we also
found that response time and accuracy were influenced by the position
of the target, possibly due to left to right reading effects (Stevenson et al.,
2022). We therefore modified the drift rate of the accumulator corre-
sponding to the target based on position of the target. Additionally, the
evidence accumulation process is subject to Gaussian noise W, with stan-
dard deviation ¢, defining within-trial variation in drift rate, was fixed
to 1 to satisfy scaling constraints. Consequently, the drift rate in our
MSIT model can be described as:

dxA = [VO + UFlank + USimon + UCorrect] dt + oW

Where, Vegrect is €qual to the summation of Vo, and the positional
drift rate modifier, which can vary among positions (1, 2 or 3). The
positional drift rate modifier vj,.; was fixed to 0, by which the other
positional modifiers (vjos; and vpas,) were relative. In total our MSIT
model comprised 8 estimated parameters (Vpjank, Vsimons> VTargets Vposls
Vpos2> Vo> B, t0). The above-described model was selected after model
comparison against competing models as in Stevenson et al., (2022).
Uninformed priors were used for all parameters constituting a Gaussian
distribution centred on 0 with a standard deviation of 1.

2.7. Procedure and exclusions

Prior to the MRI session, all participants completed a practice ver-
sion of the two tasks to ensure that the task instructions were correctly
understood. Each trial of the functional tasks lasted 7 seconds. For the
SST, six participants were excluded on the basis of having (1) more than
10 go-omissions (non-responsive during Go trials) across both runs. One
of these participants also had (2) a stopping accuracy of less than 35%
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or more than 65%. No participants were excluded for having (3) a go-
accuracy of less than 95%. Two of the already excluded participants had
(4) mean signal respond RTs that were longer on average than go RTs
(inconsistent with the race model; (Logan et al., 1984). For the MSIT,
participants were excluded if they performed below chance level (33%)
in any of the four conditions. One subject was excluded for using in-
correct response buttons. Based on these exclusions the final sample for
the analysis was a total of 31 participants for the SST (17 female; mean
age 26.7 + 5.9; age range 19 -39) and 36 participants for the MSIT (19
female; mean age 26.4 + 5.7; age range 19 - 39).

2.8. fMRI preprocessing pipeline

fMRIPrep was used to preprocess all acquired anatomical and func-
tional data (Esteban et al., 2018, 2020). For each of the 2 BOLD runs
found per task per subject, the following preprocessing was performed.
First, a reference volume and its skull-stripped version were gener-
ated by aligning and averaging 1 single-band references (SBRefs). A
BO-nonuniformity map (or fieldmap) was estimated based on two echo-
planar imaging (EPI) references with opposing phase-encoding direc-
tions, with 3dQwarp (Cox and Hyde, 1997; AFNI 20160207). Based
on the estimated susceptibility distortion, a corrected EPI (echo-planar
imaging) reference was calculated for a more accurate co-registration
with the anatomical reference. The BOLD reference was then co-
registered to the Tlw reference using bbregister (FreeSurfer) which
implements boundary-based registration (Greve & Fischl, 2009). Co-
registration was configured with six degrees of freedom. Head-motion
parameters with respect to the BOLD reference (transformation matri-
ces, and six corresponding rotation and translation parameters) are es-
timated before any spatiotemporal filtering using mecflirt (FSL 5.0.9,
Jenkinson et al., 2002). BOLD runs were slice-time corrected using 3dT-
shift from AFNI 20160207 (Cox and Hyde, 1997; RRID:SCR_005927).
First, a reference volume and its skull-stripped version were gener-
ated using a custom methodology of fMRIPrep. The BOLD time-series
(including slice-timing correction when applied) were resampled onto
their original, native space by applying a single, composite trans- form
to correct for head-motion and susceptibility distortions. These resam-
pled BOLD time-series will be referred to as preprocessed BOLD in orig-
inal space, or just preprocessed BOLD. Several confounding time-series
were calculated based on the preprocessed BOLD: framewise displace-
ment (FD), DVARS (the spatial standard deviation of difference images),
and three region-wise global signals. FD was computed using two formu-
lations following Power (absolute sum of relative motions, Power et al.,
2014) and Jenkinson (relative root mean square displacement between
affines, Jenkinson et al., 2002). FD and DVARS are calculated for each
functional run, both using their implementations in Nipype (following
the definitions by Power et al., 2014). The three global signals are
extracted within the CSF, the WM, and the whole-brain masks. Addi-
tionally, a set of physiological regressors were extracted to allow for
component-based noise correction (CompCor, Behzadi et al., 2007). Prin-
cipal components are estimated after high-pass filtering the preprocessed
BOLD time-series (using a discrete cosine filter with 128 s cut-off) for the
two CompCor variants: temporal (tCompCor) and anatomical (aComp-
Cor). tCompCor components are then calculated from the top 2% vari-
able voxels within the brain mask. For aCompCor, three probabilistic
masks (CSF, WM and combined CSF + WM) are generated in anatomi-
cal space. The implementation differs from that of Behzadi et al. in that
instead of eroding the masks by 2 pixels on BOLD space, the aComp-
Cor masks are subtracted a mask of pixels that likely contain a volume
fraction of GM. This mask is obtained by dilating a GM mask extracted
from the FreeSurfer’s aseg segmentation, and it ensures components are
not extracted from voxels containing a minimal fraction of GM. Finally,
these masks are resampled into BOLD space and binarized by thresh-
olding at 0.99 (as in the original implementation). Components are also
calculated separately within the WM and CSF masks. For each CompCor
decomposition, the k components with the largest singular values are re-
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tained, such that the retained components’ time series are sufficient to
explain 50 percent of variance across the nuisance mask (CSF, WM, com-
bined, or temporal). The remaining components are dropped from con-
sideration. The head-motion estimates calculated in the correction step
were also placed within the corresponding confounds file. The confound
time series derived from head motion esti- mates and global signals were
expanded with the inclusion of temporal derivatives and quadratic terms
for each (Satterthwaite et al., 2013). Frames that exceeded a threshold
of 0.5 mm FD or 1.5 standardised DVARS were annotated as motion out-
liers. All resam- plings can be performed with a single interpolation step
by composing all the pertinent transformations (i.e. head-motion trans-
form matrices, susceptibility distortion correction when available, and
co-registrations to anatomical and output spaces). Gridded (volumetric)
resamplings were performed using antsApplyTransforms (ANTSs), con-
figured with Lanczos interpolation to minimize the smoothing effects of
other kernels (Lanczos, 1964). Non-gridded (surface) resamplings were
performed using mri_vol2surf (FreeSurfer). Many internal operations of
fMRIPrep use Nilearn 0.6.2 (Abraham et al., 2014, RRID:SCR_001362),
mostly within the functional processing workflow.

2.9. fMRI analyses

2.9.1. General Linear Models (GLMs)

GLM analyses were performed at both a whole-brain voxel-wise and
region-specific level. A canonical double gamma hemodynamic response
function (HRF) with temporal derivative was used as the basis set for
both tasks and both methods of analysis (Glover, 1999). The design ma-
trix consisted of either the three experimental conditions for the SST
(GO, FS, SS) or the four for the MSIT (CON, SIM, FLA, INC). Func-
tional data were first spatially smoothed using SUSAN (kernel size full
width half maximum = 1.5 mm) and high-pass filtered before GLM
analysis (Smith & Brady, 1997). In addition to the task-specific regres-
sors, six motion parameters were also included (three translational and
three rotational) as well as DVARS and framewise displacement esti-
mated during preprocessing. 20 physiological regressors obtained from
RETROICOR estimations were also included in the design matrix. For
two participants on the second runs of the SST physiological data were
not collected due to technical reasons, the first 20 aCompCor compo-
nents were used instead (Behzadi et al., 2007). Therefore, a total of 31
or 32 regressors were used in the model, depending on the task being
analyzed (SST or MSIT, respectively). The SST consists of three possible
contrasts: FS - GO, FS - SS and SS - GO. The MSIT consists of six possible
contrasts: INC - CON, INC - SIM, INC - FLA, SIM - CON, SIM - FLA and
FLA - CON.

Whole-brain analyses were computed using the FILM method from
FSL FEAT (Jenkinson et al., 2012; Woolrich et al., 2001), accounting for
autocorrelated residuals. Fixed effects analyses were used to combine
the resulting run-level GLMs per task. Group-level models were subse-
quently estimated using FLAME1 and FLAME2 from FSL (Woolrich et al.,
2001). Statistical parametric maps (SPMs) were generated to visualize
the resulting group-level models. The maps were corrected for the false
discovery rate (FDR) using critical value of q < 0.05 (Yekutieli & Ben-
jamini, 1999).

Region of interest (ROI) analyses were then performed. Timeseries
were extracted from each subcortical region of interest using probabilis-
tic masks provided by MASSP (Bazin et al., 2020), each voxels con-
tribution to the mean signal of the region was therefore weighted by
its probability of belonging to the region. Cortical regions parcellations
were provided by the Harvard-Oxford cortical atlas (Rizk-Jackson et al.,
2011). The timeseries were subsequently converted to percentage signal
change by dividing each timepoint by the mean timeseries signal, mul-
tiplying by 100 and subtracting 100. These timeseries were extracted
from unsmoothed data so to ensure regional specificity. Runs were con-
catenated within task. We only infer from positive BOLD responses due
to the discrepancy around negative BOLD responses (Schridde et al.,
2008; Wade, 2002).
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2.9.2. Comparisons

To investigate the similarities and differences in neural implementa-
tion during the two tasks, we performed both a conjunction and subtrac-
tion analysis on the GLMs. To do this, we first had to define a contrast
for both tasks that best fits the inhibition construct we were measuring.
The SS - GO contrast of the SST represents the triggering and successful
implementation of the global inhibition pathway, and therefore is the
baseline definition of the network behind canonical response inhibition.
The INC — CON contrast of the MSIT exemplifies the highest cognitive
load of selective inhibition in the task and was therefore used for these
analyses. A conjunction map was generated by overlaying the FDR cor-
rected group-level z-maps of the two contrasts and keeping only voxels
that survived significance in both instances. For the subtraction analy-
sis, we calculated a voxel-wise comparison of the contrasts by nullifying
voxels on the FDR corrected group-level z-map in the MSIT contrast that
also survived thresholding in the SST contrast, and vice versa.

In addition to brain-level comparisons, we also investigated
behavioural-level associations. To do this, we correlated the model es-
timates derived from the independent modelling techniques described
above. The mean of the group-level parameter estimates were corre-
lated with one another using Pearson’s r and FDR corrected to account
for multiple comparisons (Pearson, 1895).

3. Results
3.1. Cognitive modelling

3.1.1. SST

To assess the goodness of fit of the model to the data, we plot aver-
aged simulated posterior predictive data and the raw data averaged over
all participants (see Fig. 5). The cumulative density functions (CDFs)
show the average cumulative probability of observing a correct RT.
The sum of each asymptote in each condition equals the probability
of making a response. In stop trials, this was around 0.5 due to the
frequency of successful stops, where no response is observed. Overall,
the model fits the data very well, though it slightly overestimates the
RT in STOP conditions. In addition to CDFs referenced above, we also
plot the group level inhibition function and median signal-respond RTs
(SRRTs). To account for individual differences in participant-specific
SSDs, we normalized the inhibition function by averaging equal per-
centile ranges of SSDs for each participant. As expected, the inhibition
function increases with SSD, suggesting that the probability of respond-
ing increases as the SSD increases. Additionally, the median SRRTs in-
creased as a function of SSD as expected. The median estimated param-
eter values and 95% credible intervals for the SST model are as follows;
Hgo = 0.54 (0.48, 0.59), 0go =0.08 (0.05, 0.11), Tgo = 0.09 (0.07,0.11),
Hstop = 0.21 (0.20, 0.22), 6o, = 0.01 (0.0068, 0.031), 74, = 0.018
(0.0098, 0.043), P(tf) = 0.0062 (0.0019, 0.021), P(gf) = 0.018 (0.011,
0.029), SSRT = 0.23 (0.21, 0.24).

3.1.2. MSIT

To assess goodness of fit of the model and the MSIT data, we com-
pared the average posterior predictive data to the average observed data
collected from each participant (see Fig. 6). For accuracy estimates, the
model fits each condition relatively well, though it slightly underesti-
mates the accuracy in the INC condition. Estimates for the three quan-
tiles of RT data fit very well, though also underestimating RTs in the
INC condition and overestimating the spread of RTs in the SIM con-
dition. Due to the small number of errors in the task, RT data for in-
correct responses had a more variable model fit. The mean parameter
values and 95% credible intervals for the MSIT model are as follows;
Velanker = 1.25 (1.06, 1.44), Vgimon = 1.31 (1.09, 1.52), vyarger = 3.32
(3.00, 3.66), Vpos1 = 0.46 (0.25, 0.68), Vpoe = 0.068 (-0.09, 0.24), v = -
0.08 (-0.34, 0.19), B = 1.69 (1.57, 1.84), t0 = 0.27 (0.24, 0.29). As
shown from the parameter estimates, the vgj,ier and vginon Parameters
are of similar values suggesting that both types of interference introduce
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Figure 5. Goodness of fit graphs for the SST. a) Cumulative distribution functions. The data are shown with thick lines, with open points marking the 10th, 30th,
50th, 70th, and 90th percentiles. Model predictions are shown with thin lines and solid points, with the clusters of grey dots showing the uncertainty in the percentiles
from 100 randomly selected samples from the joint posterior. b) Average inhibition function across all participants, as a function of nine equal percentile ranges.
c) Average median signal response RTs across all participants, as a function of nine time intervals over the range of SSDs for each participant. The data are shown
with solid points. The uncertainty of the model predictions resulting from 100 randomly selected samples from the joint posterior is shown with violin plots, with

the white dots indicating the median of the predictions.

a similar amount of conflict to resolve. These results indicate that both
types of interference biased participants equally.

3.1.3. Comparisons

To identify behavioural associations between the two tasks, we cor-
related the estimated model parameters within-subject. Fig. 7 shows the
results of this analysis. There were no significant correlations in param-
eter estimates between models after multiple comparison correction.
This suggests that the parameters we estimated by decomposing the be-
havioural data in the two tasks are not linearly dependent.

3.2. Behavioural analyses

3.2.1. ST

The Go RTs for correct responses were within normal range for fMRI
studies of response inhibition (Mileti¢ et al., 2020; Verbruggen et al.,
2019). Overall, participants had a mean stopping accuracy of 54 + 1%.
Go omissions and Go errors were slightly higher than previous studies
(de Hollander et al., 2017; Mileti¢ et al., 2020). SSRT was calculated
using the modelling parameters estimated with BEESTS where SSRT is
equal to the addition of pg, and 7. Median Go RT did not correlate

with estimates of SSRTs when corrected for trigger failures, in accor-
dance with the independence assumption of the independent race model
(Aron & Poldrack, 2006; Logan et al., 1984).

3.2.2. MSIT

Table 2 illustrates the differences in RTs and accuracy between the
four conditions. All RTs and accuracies were significantly different be-
tween conditions based on BFs and FDR correct p-values. Based on FDR-
corrected p-values and BFs the differences in RT and accuracy between
all conditions were highly significant (p < 0.001; BF > 1e3) with the
exception of the SIM — FLA comparisons (RT: p = 0.003, BF = 2.1el;
Accuracy: p = 0.006, BF = 9.7).

3.3. GLMs: Whole-brain analyses

3.3.1. SST

3.3.1.1. Task-related activity. For the FS - GO contrast (see Fig. 8) we
observed many areas that show significant BOLD responses, in line with
previous findings (de Hollander et al., 2017; Mileti¢ et al., 2020; Li et al.,
2008). Cortically, these regions included the IFG, preSMA, ACC, and al.
Subcortically, significant differences between the FS and GO trials were
found in the caudate nucleus (CN), putamen (PUT), thalamus (Tha),
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Figure 7. Correlation heatmap depicting associations within and between models for the SST and MSIT. Darker colours indicate larger correlations, grey denotes
correlations that were non-significant (p > 0.05 FDR corrected). Between-model correlations are shown within a black box.

Table 1

Group-level descriptive statistics of the main quantitative aspects of the SST. Standard errors are given.

Median go RT (ms)  Median failed stop RT (ms)  Go omissions (%)

Go errors (%)

Mean SSRT (ms)  Median SSD (ms)  Mean stopping accuracy (%)

626 + 25 543 + 22 19+04

22+04

251+6 350 + 30 54+1

Table 2
Group-level median RTs and mean accuracies for each con-
dition in the MSIT. Standard errors are given.

Median RT (ms) Mean accuracy (%)

CON 536 + 10 99.3 +£0.3
SIM 604 + 12 90.4 + 1.7
FLA 630 + 12 95.5+ 0.8
INC 702 + 15 78.1 £2.5

STN, and SN. For the FS - SS contrast, we observed similar activation
patterns as with the former contrast, both cortically and subcortically.
For the SS - GO contrast, we found significant cluster differences in four
cortical regions; the al, M1, IFG, and occipital fusiform gyrus, and two
subcortical regions; the CN and Tha.

3.3.2. MSIT

3.3.2.2. Task-related activity. For our main measure of interference res-
olution, the INC — CON contrast, we observe marked differences in re-
cruitment of the ACC, insula, Tha, and VTA (see Fig. 9). We also observe
larger recruitment of the ACC and insula in the FLA - CON contrast, but
not for the SIM - CON contrast, suggesting these regions are more en-
gaged when resolving the Flanker effect. The SIM - FLA contrast does
not display significant differences in activation patterns in the voxel-

wise GLMs and is therefore not included in Fig. 9. The contrasts com-
paring the FLA and SIM conditions to the INC condition display similar
differences in the recruitment of the ACC and insula, though to a much
lesser extent.

3.3.2.3. Conjunction analysis. To investigate the overlap between re-
sponse inhibition and interference resolution on a network-level, we cal-
culated a conjunction map between the SS - GO and INC — CON contrasts
of the SST and MSIT, respectively. The conjunction map was calculated
using the minimum FDR corrected z-score of each contrasts group-level
model (see Fig. 10). Notable overlap of activation patterns between the
two tasks includes the bilateral al and rIFG.

3.3.2.4. Subtraction analysis. To observe regions of the brain recruited
specifically for response inhibition or interference resolution, we com-
pared the statistically significant activation of the SS - GO contrast from
the SST and the INC - CON contrast from the MSIT. Fig. 11 shows sig-
nificant activation in the INC condition that were not significant in the
SS condition (MSIT - SST) and vice versa (SST - MSIT). The MSIT - SST
subtraction map indicates a number of significant clusters including the
ACC, preSMA, lIFG, anterior supramarginal gyrus (aSG), and Tha. The
SST - MSIT subtraction map shows significant activation in the posterior
SG (pSG), orbitofrontal cortex, and occipital fusiform gyrus.
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Figure 8. Group-level SPMs of the three main
contrasts of the SST. Activation colours indi-
cate FDR thresholded (q < 0.05) z-values. Sagit-
tal (top), axial (middle) and a zoomed in coro-
nal (bottom) view are shown. Coloured contour
lines indicate regions of interest (CN in dark
blue, PUT in red, STN in light blue, GPe in dark
green, GPi in light green, VTA in black, rIFG in
white, and SN in pink. The background tem-
plate and coordinates are in MNI2009¢ (1mm);
slices are drawn through x = 51 (top), y = -13
(bottom), and z = 2 (middle).

INC - SIM

z-value

Figure 9. Group-level SPMs of five of the six contrasts of the MSIT. Activation colours indicate FDR thresholded (q < 0.05) z-values. Sagittal (top), axial (middle)
and a zoomed in coronal (bottom) view are shown. Coloured contour lines indicate regions of interest (CN in dark blue, PUT in red, STN in light blue, GPe in dark
green, GPi in light green, VTA in black, rIFG in white, and SN in pink. The background template and coordinates are in MNI2009¢ (1mm), where x = 0, y = -13, and

z=2.

5.5

4.1

257

1.4

y=23 x=:32

Figure 10. Conjunction analysis between ac-
tivation from the SS — GO contrast in the SST
and INC - CON contrast in the MSIT. Activation
colours indicate FDR thresholded (q < 0.05) z-
values. The background template and coordi-
nates are in MNI2009¢ (1mm).
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Figure 11. Subtraction analyses between activation from the SS — GO contrast in the SST and INC - CON contrast in the MSIT. The MSIT - SST subtraction map is
shown on the top, and the SST - MSIT subtraction map on the bottom. Activation colours indicate FDR thresholded (q < 0.05) z-values. The background template

and coordinates are in MNI2009¢ (1mm).
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subcortical.

3.4. GLMs: ROI analyses

3.4.1. SST

To statistically quantify the different activation patterns within each
trial type and contrast of the SST, we fit a set of GLMs using the canoni-
cal HRF to the timeseries extracted from each ROI (see Fig. 12). t-values
were calculated per run, per ROI for each participant against baseline.
In line with previous work (de Hollander et al., 2017; Miletic¢ et al.,
2020), significant bilateral STN activation was found in FS and GO tri-

10

als and right STN activation in SS trials (see Supplementary Fig. 1).
Other nodes of the direct, indirect, and hyperdirect pathways also showed
significant activation in all trial types (rIFG, preSMA, al, SN, and Tha).
Turning to the contrasts of interest, we replicated previous findings that
showed that FS trials drive a large portion of activation in the subcor-
tex (de Hollander et al., 2017; Mileti¢ et al., 2020). Indeed, the only
significant differences in activation found between SS and GO trials in
our ROIs were the bilateral IFG, pSG and M1, and right insula. Although
SS trials displayed a largely bilateral recruitment of ROIs, the analysis
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cortical regions, red, subcortical.

provided evidence of some type of right-lateralized network in the IFG,
insula, GPe, GPi, RN, and STN. In the FS — GO contrast, significantly
larger activation was found in the ACC, rIFG, r-insula, pSG, preSMA,
ICN, rGPe, RN, SN, rSTN, Tha, and VTA. Both cortically and subcorti-
cally, similar activation profiles for the FS — GO and FS - SS contrasts
were found, with the notable exception of the IFG, pSG, and ICN which
showed similar recruitment on both types of stop trials.

3.4.2. MSIT

The same ROI analysis was performed for the MSIT (see Fig. 13).
Compared to baseline, all trial types displayed significant activation in
most if not all cortical and subcortical ROIs (see Supplementary Fig.
2). Cortically, significant differences in activation between the INC and
CON trial types appeared in the ACC, IFG, insula, and preSMA, replicat-
ing previous studies of the MSIT (Deng et al., 2018). Subcortically, we
found regions that have not been previously observed in this task. Sub-
cortical contribution to the INC - CON contrast included the IRN, rSN,
rSTN, Tha, and VTA. All of the INC, SIM and FLA trial types displayed
a significant difference in the preSMA from the easiest of the conditions
CON, suggesting the cortical region plays an important role in the Si-
mon, Flanker, and joint Simon and Flanker types of interference. For
the SIM and FLA conditions, no significant activation differences were
found.
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3.5. Model-based analyses

3.5.1. SST

To gain insight into which regions code for inhibition, we correlated
ROI-based brain activation with our SST model parameters, zooming
in on SSRTs (see Fig. 14). No significant correlations between ROI ac-
tivity and model parameters were found. We did not replicate previ-
ous findings showing a negative correlation between SSRTs and brain
activation in SS > GO trials in the STN and the rIFG (Aron & Pol-
drack, 2006; Li et al., 2006; Whelan et al., 2012). The same is also
true when correlating SSRT with brain activity on SS trial or the FS
> SS contrast (see Supplementary Fig. 3). In order to compare these
results to previous literature, we have also correlated brain activity dur-
ing the SST with SSRTs calculated using the mean method (Logan &
Cowan, 1984; see Supplementary Fig. 4) This method calculates SSRT
by subtracting the mean SSD from the mean RT of each individual.
When correlating SSRT (calculated by the mean method) with the con-
trast of SS > GO we do not find any significant correlations, in con-
tention to previous work (Aron & Poldrack, 2006; Li et al., 2006). In
addition, as the modelling method of SSRT estimation we use here
takes significantly more behavioural information into account, and al-
lows the estimation of the entire distribution of SSRTs, we make infer-
ences only based on these SSRTs, not SSRTs calculated using the mean
method.
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Figure 14. Group-level correlations between GLM betas on the SS > Go contrast and SSRTs in the SST. Significance is FDR corrected. r denotes the Pearson correlation,
with p the corresponding p-value. Left hemisphere is shown in dark blue. Right hemisphere is shown in light blue.
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Figure 15. Group-level correlations between GLM betas on INC trials and the drift rate of INC trials in the MSIT. Significance is FDR corrected. p denotes the
significance level; r denotes the Pearson correlation. Left hemisphere is shown in dark blue. Right hemisphere is shown in light blue.

3.5.2. MSIT

To observe which regions may code for aspects of interference res-
olution, we correlated the MSIT model parameters with ROIs that are
theorized to be involved in selective inhibition (see Fig. 15). For this, we
used the difference in drift rate between the incongruent and congruent
conditions, which results in vg, o + Vpani for each participant sepa-
rately. For our measure of neural activity, we calculated the difference
in activation in each ROI on incongruent and congruent trials. After
multiple comparison correction, we found that these cognitive model
parameters correlated positively with activation in the right ACC and
right IFG. We did not find significant correlations in the left ACC, left
IFG, or bilateral CN.

4. Discussion

This study aimed to gain insights into the neural and behavioural
overlap of response inhibition and interference resolution using a
within-subject design. To do so, we tested participants on two tasks,
the SST and MSIT, to tap into these subcomponents of inhibition and
identify areas of similarities or differences that inter-individual and
meta-analytical techniques may miss. Using ultra-high field (UHF) mag-
netic resonance imaging (MRI), tailored sequences and a high voxel
resolution, we were able to obtain robust results, especially in smaller,
deeper regions of the brain with a higher SNR than using canonical fMRI
at lower fields. Additionally, we used a model-based cognitive neuro-
science approach to tap into the latent level of response inhibition and
interference control. The results provide evidence of a common network
for inhibition-based decision-making as well as the existence of distinc-
tive activation patterns. The whole-brain conjunction map shows that
shared activation was found in one central region of the canonical in-
hibition network, the rIFG, as well as in the al. Divergent activation
regions were found in the main contrast of the MSIT including the ACC,
preSMA, 1IFG, aSG, and Tha. Inhibition during the SST also involved the
recruitment of regions not required for interference resolution, namely
the pSG, orbitofrontal cortex (OFC), and occipital fusiform gyrus. The
ROI-based analysis is largely in accordance with these whole-brain find-
ings, while suggesting that the posterior division of the supramarginal
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gyrus may be recruited both in interference resolution and response in-
hibition.

First, we will discuss the findings of each task separately and
compare them to previous task-specific findings before turning to the
between-task comparison. For the SST, we replicate recent imaging find-
ings that call into question the idea of the classical inhibitory pathway
underlying response inhibition in humans (de Hollander et al., 2017;
Jahfari et al., 2011; Mileti¢ et al., 2020; Li et al., 2008). Our whole-
brain and ROI analyses indicate that neither the STN, nor any other
basal ganglia regions displayed heightened activity when comparing SS
trials to GO trials, in contrast to much of the literature on response inhi-
bition (Aron et al., 2014; Aron & Poldrack, 2006; Eagle et al., 2008). A
large-scale pattern of greater activation in the basal ganglia nuclei when
comparing FS trials to GO trials was observed. This suggests that the act
of stopping does not drive the recruitment of the canonical indirect or
hyperdirect pathway, but that activation in these subcortical regions is
driven by a failure to inhibit one’s actions. Contrasting FS trials with
SS and GO trials displays an almost identical network of heightened ac-
tivity in the ACC, IFG, insula, preSMA, STN, SN, VTA, Tha, and RN. It
is however worth noting that SS and GO trials do recruit these nodes
when compared to baseline, but to a much lesser extent than FS tri-
als (see Supplementary Fig. 1). Significant bilateral IFG activation was
observed when comparing both types of stop trials (FS and SS) to GO
trials, suggesting the region may play a role in the detection and inte-
gration of the salient stop signal, which is a role that has been theorized
before and may not be specific to inhibition tasks (Aron et al., 2004;
Hampshire et al., 2009, 2010; Miller & Cohen, 2001; Shallice et al.,
2008; Wessel & Aron, 2013). Although it seems that the BOLD response
in this region does not differentiate between successful and failed stop-
ping, electrocorticography has shown increased signaling in successful
vs failed stopping (Swann et al., 2009; Wessel et al., 2013).

For the MSIT, group-level model estimates of the vg;,o, and vgank
parameters are comparable, suggesting that participants are equally bi-
ased by the Simon and Flanker effects during the task. In addition, the
ROI-based analyses observed no differences in activation between the
SIM and FLA conditions at the group-level in any ROI, suggesting that
these interference types are rooted in similar brain regions and that they
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are recruited to a similar degree. Due to the similarity in the two con-
structs, it may be that a greater number of trials or higher field strength
may be required to observe neural differences in their implementation.
Contrasting the SIM and FLA conditions with the INC condition display
similar responses, with greater activation found in the IFG, preSMA, and
SPL for both. For the INC — CON contrast, we observed a marked recruit-
ment of both cortical and subcortical regions that appear to be required
for interference resolution. A recent meta-analysis found activation dif-
ferences in the ACC, preSMA, IFG, insula and putamen when contrasting
these conditions (Deng et al., 2018) Here, we replicate these findings as
well as provide evidence that a larger network including the SPL, pSG,
GPi/e, STN, SN, RN, Tha, and VTA are also activated during interference
resolution. In contrast to other previous findings, we did not see signifi-
cant activation of the CN during interference resolution (Schmidt et al.,
2020).

We performed both conjunction and subtraction analyses of the
two tasks to observe common and distinct brain areas involved in re-
sponse inhibition and interference resolution, respectively. The con-
junction analysis indicates an overlap in the rIFG and bilateral al.
We do not observe significant differences in lateralization patterns
across the two tasks, in contention to previous meta-analytical findings
(Isherwood, Keuken, et al., 2021). Multiple regions were identified that
are recruited during interference resolution and not response inhibition,
namely the ACC, preSMA, 1IFG, aSG, and Tha. The ACC and preSMA are
highly connected and potentially work together to resolve interference
in the environment (Nachev et al., 2008). We also found evidence that
the OFC and occipital fusiform gyrus play a role in response inhibition
but not interference resolution. Many studies have associated the OFC
with the ability to inhibit (Adnan Majid et al., 2013; Eagle et al., 2008;
Kringelbach & Rolls, 2004). Although the OFC appears to be recruited
during response inhibition, the activation does not appear inhibition-
specific as it is observed in a wide variety of roles including value-based
decision-making (Montague & Berns, 2002; O’Doherty, 2014), predic-
tion error signaling (Schultz & Dickinson, 2000; Sul et al., 2010) and
associative representations (Bechara et al., 1997, 2001). The activation
of the occipital fusiform gyrus is usually not associated with response
inhibition specifically, but does play a role in colour processing (Bartels
& Zeki, 2000). This finding may reflect the presentation of the red stop
signal in the SST, as it is the only aspect of the two tasks that differ in
colour.

The findings presented here paint a picture of largely divergent
networks underlying interference resolution and response inhibition in
humans. This demonstrates the need for more intra-individual studies
when comparing psychological constructs, owing to the minimization
in measurement differences, physiological differences (as all task data
is derived on the same day) and the possible impact of large individ-
ual variation when using different groups. The extent to which these
findings provide evidence for the canonical cortico-basal-ganglia loop
is mixed. For the SST, this study provides evidence against the recruit-
ment of the indirect or hyperdirect pathway during successful response
inhibition, as both would implicate increased activity in the STN. These
results are in contention to both older and more recent models of re-
sponse inhibition implementation (Aron et al., 2014; Diesburg & Wes-
sel, 2021; Schmidt & Berke, 2017). Resolution of the combined Simon
and Flanker effect does appear to recruit nodes of the indirect and hyper-
direct pathways. The IFG, rSTN, 1SN, and Tha are active during interfer-
ence resolution, but we do not find evidence of the GPe/GPi or striatum
in the network, both at a whole-brain and ROI level.

Our model-based analysis of the MSIT revealed that the drift rate
difference between INC and CON conditions positively correlated with
the difference in activity between INC and CON conditions in the right
ACC and right IFG. Since a larger difference in drift rate between the
two trial types indicates a greater level of susceptibility to the Simon or
Flanker effect, it appears that activity in these two regions somewhat
indicate the degree to which participants resolve conflicting stimuli.
The ACC has long been suggested to play a role in conflict monitor-
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ing (Van Veen & Carter, 2005; Wiecki & Frank, 2013) and these results
may indicate that the region encodes the degree of detected conflict. The
IFG has been implicated in many roles, but the evidence of drift rate en-
coding found here suggests it and the ACC are a major requirement for
interference resolution. Interestingly, we did not find any evidence of
regions encoding for our behavioural measure of response inhibition
(SSRT).

Bringing the findings of this study together, it appears that interfer-
ence resolution and response inhibition recruit markedly separate neural
systems. On top of this, the lack of correlation between modelling pa-
rameter estimations supports the dissimilarity between processes on a
behavioural level. There is therefore little evidence that we should see
these two phenomena as two sides of the same inhibition coin. Despite
that, the IFG and pSG appear to play a pivotal role in some aspect of
both tasks. In view of previous literature, it is likely that the IFG plays a
more domain general role in specific types of signal/conflict detection
and that it is needed to make the choice of what behavioural step to
perform. The continued lack of evidence that the hyperdirect and indi-
rect pathway are solely engaged in successful response inhibition raises
serious concerns. We therefore argue that the pathways involved in suc-
cessful stopping and successful going are integrated and that the nodes
constituting these pathways play task-general roles. Considering that re-
gions of basal ganglia display greater activation for failed stopping, this
points towards a general network not specific to global response inhibi-
tion.
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