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Sammendrag

Databaser er en av grunnsteinene i v̊ar moderne digitaliserte virkelighet. Deres oppgave er
ikke bare å lagre data, men ogs̊a å servere data og svare p̊a spørring – og dette p̊a mest mu-
lig effektivt vis. De siste to ti̊arene har et nytt format for datakommunikasjon og lagring,
JSON (”JavaScript Object Notation”) hatt sitt inntog i databaseverden og mange av de
store relasjonelle databaseaktørene har de siste årene lagt til støtte for dette formatet. En
av disse databasene er MySQL. For å effektivt kunne svare p̊a store, komplekse spørringer
er det vitalt å ha grundig og god databasestatistikk – alts̊a oversikt over verdiene som
finnes ligger i kolonnene og tabellene i databasen. Men for JSON, som er mer komplekst
og dynamisk enn de datatypene som vanligvis brukes i relasjonelle databaser finnes det
ingen allmen enighet om hvordan denne statistikken burde se ut. I MySQL’s tilfelle betyr
dette at databasen ikke har tilgang til statistikk for JSON i det hele tatt, noe som fører
til tap av ytelse i tilfeller der god statistikk ville utgjort en forskjell. Denne oppgaven
undersøker eksisterende tilnærminger til innsamling av statistikk for JSON data, for å
finne noe som kunne vært implementert i MySQL. Den beskriver s̊a en implementasjon
av et slikt system samt presenterer resultater av m̊alinger som er gjort av resulterende
endringer i ytelse og nøyaktighet av estimat.
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Abstract

Databases are one of the cornerstones of our digital society. Their task is not only to store
data but also to serve it by responding to user queries. And they must do so as efficiently
as possible. A rise in the use of the JSON (”JavaScript Object Notation”) data format over
the last decades, has led to many of the major relational database vendors adding support
for this format. One of these databases is MySQL. To be able to effectively respond to
large, complex queries, it is vital to have accurate and up-to-date database statistics – that
is, an overview of the values that exist within the columns and tables of the database. For
JSON however, a format that is more complex and dynamic than the data types typically
used in relational databases, there is no broad consensus on how these statistics should be
gathered.

In the case of MySQL, the database has no access to statistics for JSON data at all,
resulting in a theoretical performance loss in cases where good statistics would have made
a difference. This master’s thesis’ aim is to investigate existing approaches to collecting
statistics for JSON data to find something that could be implemented in MySQL. It
will then attempt an implementation of such a system. Finally, the goal is to perform
measurements of the implementation’s impact on accuracy and performance, to whether
further investigation into the topic could be warranted.
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1 Introduction

Databases are a cornerstone of modern computing and digital infrastructure, tasked with
the responsibility of storing much of the worlds information records. A core part of this
responsibility is data retrieval. Many things must be done right for a database to have
good retrieval speeds. Clever use of algorithms and data structures is crucial, as is proper
management of main memory and of processing power. In the context of relational data-
base systems especially, one cannot – excepting the very simplest of queries – achieve good
query performance without a good query optimizer.

SQL queries, being written in a declarative language, specify only the expected result of a
query, providing no information about how the database is expected to complete its task1.
The task of figuring out how best to execute the query is instead given to the database.
Specifically, the database’s query optimizer. Query optimization is a hard problem and
the optimizer is faced with both time constraints, and a massive search space. To this
end, the query optimizer relies on a slew of clever techniques to prune the search space,
save on redundant computations and quickly rank alternate execution plans. Central to
the query optimizer’s ability to make good predictions on which query plans will perform
well are database statistics.

Database statistics is a general term used to refer to metadata on the contents of the
tables and columns in the database. In its simplest form, database statistics is the row
count of a table, but modern database systems usually rely on much more complex stat-
istical information such as histograms that approximate the distribution of values within
a column. These advanced forms of statistics are not always available for all data types
however, negatively impacting the query optimizer’s ability to reason about the behavior
and attributes of columns using these data types. One such case is the JSON datatype, a
relatively fresh type in the relational database world, but also one with a quickly growing
mind- and storage space share.

This thesis is meant as an exploration of the solutions to the challenge of collecting viable
statistics for JSON data in databases. Specifically, the thesis aims to survey existing
approaches to the problem, and then implement a prototype system for gathering JSON
data statistics in the MySQL database based on the findings of the survey. Experiments
will then be performed to examine the viability of the chosen approach, measuring gains
in accuracy and performance and cost in terms of storage and speed.

1.1 Background and Motivation

Currently, there is no broadly accepted approach to collecting database statistics for JSON
data. And due to the relatively recent addition of the datatype to most RDBMS systems,
few existing systems support the collection of statistics for JSON columns. One of these
databases is MySQL, which not only does not support the creation of statistics for JSON
columns, but also does not use heuristics to make approximations for JSON data.

The work of this master’s thesis is based on the hypothesis that MySQL’s handling of
JSON data can be improved. And while there is no commonly accepted way to solve this
challenge, research efforts into solving the problem have been made and their approach and
results publicized. Additionally, some RDBMS systems have implemented solutions that

1This is no longer completely true for modern databases, which things like hints to of influence the
decisions of the query optimizer

1



either help solve or circumvent the issue of JSON column statistics. This previous work
is discussed in greater detail in section 3. We expect that through inspection of previous
work, a solution suitable for MySQL will be found. The goal is then to implement a
prototype of this solution as a proof-of-concept of the method, and to report the impact
it has on the accuracy of MySQL’s estimates for predicates over JSON data.

1.2 Goals, Research Questions and Scope

The core goal of this thesis is to find a viable and sensible approach to improving se-
lectivity estimates for JSON data in MySQL. To this end a survey of existing methods
and approaches to collecting statistics for JSON data in and outside of databases will be
made. These approaches will then be judged by their applicability in the context of an
implementation for MySQL. If one or more promising candidates are found, one of them,
or a synthesis of multiple approaches, will be implemented as prototype in MySQL. If no
good candidates are found, the task will instead be to attempt to find a novel approach
to the problem which is suitable for implementation in MySQL. Finally, the aim of the
project is to implement a prototype of the chosen method in MySQL, and to evaluate its
performance. It is hoped that the work done for this thesis along with this report can
serve as a resource for those doing further work on implementing a proper solution to the
problem.

The goal of this report is to document the process, findings and outcome of this work. As
such, the report aims to answer the following research questions (RQs):

RQ1 What are the existing, published methods for collecting and using statistics for
JSON data in an RDBMS context, which also fit well with MySQL’s design and
architecture?

RQ2 Can a working system for collecting and using JSON statistics realistically be im-
plemented into MySQL?

RQ3 With such a system implemented, are MySQL’s estimates for the selectivity of pre-
dicates over JSON expressions improved in a meaningful way?

RQ4 How would a system for JSON statistics, if introduced to MYSQL, affect MySQL’s
performance when dealing with JSON data?

Finally, it is important to discuss what the goals of the project are not, and which questions
will not be explored in this report.

First and foremost, is is important to state that this project is an exploration. Because
so much is unknown about the work required for this project, its goal is not to implement
the very best and most finetuned and perfected solution. The goal is to find one approach
that seems promising and then to implement a simple, working prototype to get some
preliminary results that show whether the approach is promising or not.

The project will not, for example, explore which specific histogram types (beyond a com-
mon few) are optimal, nor will it attempt to squeeze as much performance out of the
system as possible. Some obvious and maybe simple optimizations will likely be left on
the table.
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1.3 Work and Contributions

To meet the abovementioned goals and to answer the stated research questions, the fol-
lowing work was performed:

Initially, a survey was conducted of earlier published work related to the topic at JSON
statistics and selectivity estimation for JSON data. Both research and commercial systems
were examined. A summary of the findings of this work can be found in section 3.

Two prototype implementations of the chosen solution were than created. First, a pro-
totype was created in Python, with the goal of generating statistics and measuring the
degree of accuracy that they provided. Second, a MySQL prototype was created, mak-
ing use of the statistics generated by the Python prototype to provide MySQL’s query
optimizer with improved estimates for filtering and join predicates over JSON data.

Finally, experiments were performed with both prototypes. The experiments performed
with the Python prototype focus on how changing various parameters of the statistics
collection algorithm affect the accuracy that the statistics provide. The experiments per-
formed with the MySQL prototype examine the impact that the added statistics have on
MySQL, both in terms of how much they boost the accuracy of estimates given to the
query optimizer, and in terms of the impact that the changed estimates have on MySQL’s
performance.

1.4 Thesis Structure

The first section after the introduction is the ”Background” section. It presents material
helpful for the unfamiliar reader to more easily grasp the later contents of the report. The
next section, ”Related Work”, will then explore earlier published work on the topic of
gathering and using JSON statistics in a database context. Section 4 (”Implementation”)
describes the work that went into implementing the two prototypes. The next two sec-
tions, ”Python Experiments” and ”MySQL Experiments” then present the experiments
and experimental results for each of the two prototypes. These sections also contain a
discussion of the experimental findings. Finally, section 7, ”Conclusion” concludes the
report.

2 Background

This chapter presents the background knowledge that is foundational to the work in this
thesis. All concepts presented here will be referred to in later chapters and assumed to
be known. A basic familiarity with general computer science, programming and database
concepts is also assumed.

The chapter starts with two sections that explain the motivating forces behind this thesis:
section 2.1 covers the motivation behind and basics of query optimization in databases.
Section 2.2 discusses the topic of selectivity estimation in query optimization in greater
detail. Next, section 2.3 covers the basics of JSON, the data format that this thesis
focuses on. Familiarity with key concepts and terminology related to JSON is vital to
understanding the rest of this thesis, and unfamiliar readers are recommended to at a
minimum be comfortable with the concepts presented in this section. Finally, section 2.4
discusses the MySQL database system, providing a brief overview of its relevant features
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Figure 1: The query processing pipeline as presented in Elmasri and Navathe [10].

and an introduction to the concepts and techniques used extending the MySQL codebase.

2.1 Query Optimization

Databases are highly optimized storage systems for digital data, designed to safeguard
everything from medical records and financial data, to recipes for vegan quinoa pancakes,
to weather data – typically providing very strong storage guarantees. But databases
commonly provide more than just storage functionaly. Support for inserting, updating
and, crucially to this project, retrieving data is also at the core of the services provided.
As it turns out, there are quite a few ways to go about retrieving data in a modern database
system, especially as the queries grow more complex. Because retrieval performance is a
key comptetitive area for database systems, the envelope is constantly being pushed in
terms of latency, bandwidth and scale. And core to achieving good retrieval performance
is query optimizaiton.

Query optimization is a process that occurs in the context of the query pipeline (see
figure 1). The query pipeline describes the process that a query goes through, from being
accepted by the database systems to being executed and retrieving and return data to
the client. The first step in the query processing pipeline is to receive and validate (both
syntactically and semantically) the query statement. At this stage, the access rights of
the client are also confirmed. The query is then rewritten into a canonical form, so that
expectations that further stages have of the query structure hold true. The query is then
ready for query optimization. The query optimization stage, which will be explained in
much greater detail soon, has as its goal to find the most efficient way to answer the
query’s request, i.e., to retrieve the data being asked for. The query optimization stage
produces as its output a query plan – a description of how of the data will be retrieved.
The final stage is query plan execution. As the name implies, at this stage the query plan
produced by the optimizer is interpreted (or compiled) and executed, resulting in actual
data being retrieved (and returned to the client).

To understand the massive impact that the query plan can have on database performance,
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one must understand which aspects of the retrieval process it controls and the impact that
these aspects have. First, the query plan determines how the base data is retrived. There
are two main approaches to this: doing a full table scan, or doing an index based lookup.
Depending on the query, one of these can be much more expensive than the other. For
example, using an index for a point lookup can be several orders of magnitude cheaper
than doing a table scan if scanning all the data is expensive enough (slow disk, lots of
data, ...). Another example of an impactful decision made by the query optimizer is join
ordering. In general, it is good for performance to first perform joins that will result in
smaller result sets, while saving the larger joins for last. Doing the opposite can have a
severely negative impacts on query performance. Many more aspects of the query plan
can have large performance impacts. These include (but are not limited to): join methods,
group by methods, sort ordering, and more [10].

For complex queries, the execution time of the worst possible query plan can easily be
thousands of times worse than the best possible plan. And while modern query optimizers
have gotten pretty good, they still struggle with finding the most optimal plans for many
complex queries [19].

The 1979 System R paper by Selinger et. al is often referred to as the ”bible” of the field
of query optimization[32]. In it, Selinger and her co-authors and colleagues at IBM detail
many approaches to query optimization which since then have come to constitute the
foundation that other database developers build their query optimizer upon. Among the
techniques presented in the seminal paper were: using dynamic programming for query
optimization, using heuristics values to estimate selectivity of various predicate functions,
as well as a cost-based model which was used to evaluate and compare the (assumed)
performance of the generated plans.

Compared to todays database systems, the System R query optimizer is quite rudimentary.
For example, the System R and other early database system optimizers relied heavily on
heuristics to estimate the size of intermediate relations. The only information they had
about the actual size of the relations was table and index cardinalities. When filtering
predicates and join conditions were applied to these relations, these estimates could quickly
become very wrong. The System R cost model was also very simple, assuming the cost of
reading a tuple was the same for all relations in all situations [5, 32]. Modern databases on
the other hand, while still building on those same fundamentals, have expanded on these
ideas to create much more complex and accurate systems. Modern cost-based optimizers
feature much more complex cost models that take into account how much of a relation
is currently in main memory, disk vs SSD I/O costs, computation costs and intermediate
storage costs, and more[10]. In addition, they feature much more advanced techniques for
estimating the size of relations, both for base tables as well as intermediate tables. The
use of such advanced techniques, as well as simpler approaches like the heuristics featured
in System R, is collectively referred to as selectivity estimation.

2.2 Selectivity estimation

When modern cost-based optimizers calculate the cost of executing a query plan, there
are two main inputs. The first is information about where the data that the plan will
be accessing is placed, the size of records, and other such information, plus information
on buffer sizes and such. The second is an estimate of the cardinality (the number of
records) of every relation, both intermediate and otherwise, involved in the plan. All this
information is then fed into the query optimizer’s cost model, which assigns an estimated
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cost to every operation involved in the plan. The plan with the lowest calculated cost is
then chosen for execution. Each of these components play a vital role in the optimizer.
But while having a good cost models is vital to the query optimizer, given a working
cost model, good cardinality estimates have been found to have a much greater potential
impact on performance [19].

There are many approaches and techniques that can be used to estimate cardinalities
in databases. In general, we refer to all these sources used for cardinality estimation as
statistics. Perhaps the simplest statistic, and one that is almost universally available, is
the number of tuples in a table. Further, when indexes exist on a column, the index
itself can be used to estimate the number of tuples that will satisfy predicates on that
column (usually – this is dependant on the type of index and the predicate). However,
these two sources of statistics are only enough to give estimates for the simplest (or the
most contrived) queries. The database catalog, which stores various metadata on the
tables and columns in the database, can often provide further statistics for use in query
optimization. For example, some catalogs store the number of distinct values (”NDV”)
per column. However, for predicates that filter on (e.g.,) equality with a specific value,
more specifific statistics are needed. While an index could provide estimates for this exact
example, indexes have their own drawbacks – they can take up a large amount of space
and must be updated on every change to the column data.

2.2.1 Histograms

A more lightweight data structure whose explicit goal is to provide more accurate database
statistics is the histogram. Histograms provide reasonably accurate information on the
distribution of values within (usually) a single column at a relatively low cost compared to
indexes [10]. A standard assumption within databases is that the distribution of values is
completely uniform. And while this is a reasonable assumption to make provided nothing
more is known about the data, it is often absolutely wrong. Database histograms, like their
commonly seen data visualization aid namesake, divide the complete range of values into
sub-ranges (buckets) and track the number of values that fall into each. Thus, histograms
give the query optimizer much more accurate information about the true distribution
of the data. Within each bucket however, the assumption of uniformity is still usually
applied.

Size is a limiting factor when it comes to histograms, negatively impacting lookup speeds
and taking up space that could be used for other operations. Therefore, histograms must
attempt to convey as much information about the value distribution as possible while
minimizing the amount of space taken up. What this usually means in practice is that the
number of buckets that histograms are allowed to use is bounded. In MySQL for example,
histograms may not contain more than 1024 buckets [15].

Many different types and variations on histograms are used in modern databases. Perhaps
the most commonly used type (although the exact implementation differs) is the equi-
height histogram. Equi-height histograms attempt to size the buckets in such a way that
each bucket holds approximately the same amount of values (i.e., the same total count).
This is considered advantageous because it tends to avoid keeping multiple frequently
occurring values in the same bucket. It also tends to put more of the less frequently
occurring values in the same bucket. Another common type of histogram is the singleton
histogram. Singleton histogram buckets, instead of representing a range of values, keep
only the count for a single value. This is very useful in cases where there are few distinct
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values in a column such that a separate bucket can be kept for every single value. A final
type of histogram which is relevant to this specific project is a variation of the singleton
histogram which stores only the most frequently occurring values in buckets. The Oracle
database implements this histogram under the name ”top frequency histogram” [7].

Histograms in databases is a deep topic, and this introduction to the topic only covers a
small part of the field. For a more in-depth introduction to the topic, see Building Query
Compilers (Under Construction) by Moerkotte.

2.2.2 Notes on Database Statistics

When discussing improvements in selectivity estimation and database statistics, one must
keep in mind that while selectivity estimates are of a continuous (as far as computers can
represent continuous data, that is) nature, the output of the query optimizer is very much
discrete – one plan from a finite set of plans. This means that large improvements in
selectivity estimation may lead to no change in the choice of plan if the change in the final
calculations in the cost model do not change enough for some threshold to be crossed. On
the other hand, even a tiny change in estimates may have a massive, outsized impact if the
change is just enough to make the cost of a radically different plan to become cheapest.

Additionally, query optimizers are far from perfect, and even a large improvements in
estimate accuracy may have zero impact on the actual performance of the database. In
fact, improved selectivity estimates can even lead to worse performance in some cases. A
database optimizer optimizer may be caused by some ”happy accident” to make better
plan choices when provided with worse / less granular data, and then make more rational
but worse choices when provided with more accurate data.

Query optimizers are complex pieces of machinery with many ”moving” parts that are,
despite large advancements in complexity, still based on heuristics and assumptions about
how computers, networks and the data work and fit together. Optimally handling all the
complex scenarios and edge cases that can arise in database queries with these assumptions
is simply not possible. In addition, query optimizers may have blind spots, bugs, half-
implemented features and more that lead it to making poor choices when certain conditions
are met. This does not mean that query optimizers cannot be improved however. And
their improvement, rather than better cost models, in large part is dependent on making
more accurate estimates of the size of query relations – a challenge that database statistics
is a very good fit for [19].

2.2.3 The Assumption of Statistical Independence

The assumption of a uniform distribution of values within columns is not the only common
assumption made by database systems which oftentimes leads to a poor choice of query
plans. Filtering predicates seldom appear alone – and when multiple predicates appear it
is not unusual for them to in some way be semantically (in terms of the data’s domain)
related. For example in the case of the Airbnb data, the number of beds in an apartment
and the number of people a the apartment can accommodate are quantities that are
strongly related. Most databases don’t collect information on the correlations between the
different columns of the a database however, at least not automatically. This makes sense
– just the number of column pairs quickly balloons to an unmanageable size. When faced
with no way to gleam any information on the relations between the different predicates
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Figure 2: Histogram showing a (hypothetical) group of people’s favorite color.

of a query, the default action of most databases is to assume that all query predicates are
statistically independent.

This assumption can quickly lead to severe underestimations. In an extreme case, one
might have a set of predicates, all of which in practice check the same semantic property
and thus have a combined selectivity about equal to the selectivity of just one of the
predicates alone. The assumption of independence however will result in a calculated
selectivity equal to the product of the selectivity of each of the predicates. Of course,
correlations between predicates may also be much more subtle. In the Airbnb data for
example, there is a correlation between the number of beds in a listing and the latitude
and longitude values of the listing because certain areas of Los Angeles typically have
larger houses than others.

There exist several solutions to the problem. PostgreSQL for example, allows users to order
the creation of an advanced multivariate statistic referred to as functional dependencies
which encodes the correlation between two columns. Combining this with PostgreSQL’s
most-common values statistic allows for the collection of correlation statistics for pairs
of values from the two columns in question [36, 26]. Another, cheaper solution is to use
a damping factor [19, 2]. With damping, selectivity is adjusted upward as the number
of predicates in a query grows to account for the probability of independence growing
smaller.

2.3 JSON

JavaScript Object Notation, or JSON as it is commonly referred to, is a plaintext human-
readable data serialization, transfer and storage format. As the name implies, the format
is heavily inspired by the notation used for object literals in the Javascript language.
Despite having the name of a specfic programming language embedded in its name, JSON
is intended to function as a universal data-interchange format.

JSON is built on two fundamental data structures. First is the unordered collection
of key-value pairs – referred to as an object, but known in other languages as records,
structs, dictionaries to name a few. Second is the ordered list, or array. The values, both
in the array and in the objects, may be another structure or one of the primitive data
types defined by the JSON standard. These primitive data values are: strings, numbers,
true and false (collectively referred to as boolean values) and null. Listing 1 contains an
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[

{

"number": 1,

"string": "abc",

"another_number": 1.7e10,

"boolean": true,

"optional_number": null,

"empty_string": ""

},

{

"list": [0, null, "false", {}, true, []]

}

]

Listing 1: Example JSON document. In this case, the JSON document is an array containing two objects,
the first of which contains five keys that all lead to primitive values. The Second object has a
single member and whose value is a list containing one value for each of the types that a JSON
document can contain. The names of the keys hold no semantic meaning and were chosen for
the sake of pedagogy.

example of a JSON document. By combining the two data structures with the primitive
data values, JSON documents can contain massive amounts of data and easily translate
many complex and hierarchical data structures. The term key path is used to indicate a
sequence of one or more keys (and array indices) that lead to some value that is nested
within a document.

Most programming languages differentiate between integers and floating point numbers
because the range and type of values that they can represent is very different. JSON itself
is in fact agnostic about how the number values it contains are interpreted – allowing any
sequence of digits and characters that can be parsed as number, irrespective of size. The
JSON RFC recommends that parsers at a minimum support to interpreting the values as
64-bit floating point numbers (also known as ”doubles”) [4]. Parsers are free however, to
interpret JSON numbers as any numeric type, including integers. A common approach
seems to be for JSON serializers to write all floating point numbers, including whole
numbers, with a dot separator and at least one digit behind the dot (0 if the number
is whole). So the floating point value 1 is encoded as 1.0, while the integer value 1
is encoded as 1. Parsers usually follow this scheme as well, parsing any number with
decimal digit separator as a floating-point number and numbers without one as integers.
Therefore, when this text refers to there being four non-null primitive JSON types, they
are as follows: string, boolean, float and integer.

JSON started out as a data exchange format for internet applications, and has with time
become the accepted standard for this use case, with large public APIs like Twitter’s,
Reddit’s, Facebook’s and more all supporting JSON. However, JSON has also come to
be widely used for many other applications as well. Examples include logging services,
web APIs, RPCs, and even as a storage format, as seen with recent rise in popularity of
document (or ”NoSQL”) databases which store JSON. A large benefit of using document
databases versus traditional relation databases is exactly this use of JSON. Due to its
highly dynamic nature, document databases can allow users to insert any kind of document
to a table, without requiring any predefined schemas. This dynamicity not only has
the benefit of enabling rapid development, but also eases integration with external data
sources. In recent years, many large relational database vendors have added proper support
for JSON to their databases – including MySQL.

A JSON document collection is a collection of JSON documents. The documents in a
collection may all be the exact same, have the same structure but have different values –
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either of the same type or different types –, or they may all be completely different. In this
text, the terms homogeneity and heterogeneity will be used to describe how similar (and
different, respectively) in structure the documents in a collection are. As an example, the
document in listing 1 could be seen as a very heterogeneous collection of two documents.
A much more homogeneous document collection can be seen in listing 24. Note that across
documents, keys can both be missing or be null.

The lack of structure enforcement for collections of JSON documents presents a challenge
in several contexts, for example during data analysis of JSON data which relies heavily on
assumptions about the structure of the data which are/cannot be guaranteed. Another
area where the lack of schema and schema enforcement is presenting a challenge is data-
bases trying to optimize queries over JSON data. This will be discussed in greater detail
in section 3.

2.3.1 Deriving Schemas From Schemaless Data: JSON Schema

See foundations of json schema paper, IETF standard. 2016 paper claims that in grey
areas, implementations differ ”significantly”. json-schema.org shows/links to drafts that
show the specification is still under development. MongoDB’s JSON schema resource/help
page directs its readers to a 2013 IETF standard. 2023 blog post titled ”the last breaking
change in JSON Schema”. Anyways – JSON Schema is kind of orthogonal to our use
case. And in the case of a relational database, requiring it would destroy many of the
advantages of the JSON data type.

2.3.2 JSON in Databases

Support for proper JSON data storage and retrieval is now common among the major
RDBMS systems. The number of RDBMS systems which support statistics structures
tailored to JSON data however, seems to be much smaller. This does not mean that users
using JSON data have no options for helping the query optimizer make better estimates for
queries involving JSON columns. A commonly supported feature for example, is to allow
users to defined virtual (also called ”functional”) columns over JSON access expressions.
Indexes and advanced statistics structures like histograms can then be created for these
virtual columns. As discussed in section 3, some database vendors have gone much further
in their support.

2.4 MySQL

MySQL is a highly popular free and open-source relational database management system
(RDBMS) first released in 1995 and still under active development.

Since 2017, MySQL has had support for histogram statistics in the form of singleton and
equi-height histograms [15]. Currently, histograms are supported for numeric data types,
date and time types, strings, enums and the set type. Histograms must be both created
and kept up to date manually. This is achieved using the ANALYZE TABLE statement
[3], which will create fresh histogram statistics from scratch when run. This is achieved
by, for each colum listed, sampling the data of the column (at the page level) until the
sampling buffer as full, and then computing a histogram using that data. The size of the
sampling buffer can be adjusted by the user. The MySQL query optimizer always prefers
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using indexes over histograms when performing selectivity estimation, so the creation of
histograms should be reserved for columns for which no indexes exist.

2.4.1 Two Optimizers

The MySQL optimizer is known to be somewhat primitive compared to that of other
competitor systems. A new optimizer, referred to as the hypergraph optimizer, is currently
being developed by the MySQL team.

Among many other improvements, the hypergraph optimizer is better able utilize cost
estimates, able to create bushy query plans (instead of only left-deep query plans), and
may use histogram data to estimate the size of joins [12, 29, 28]. This in turn means
that histogram statistics are likely to have a larger impact on the hypergraph optimizer
than on MySQL’s current query optimizer. By toggling a few compile time flags, the
hypergraph optimizer can be made available in release builds of MySQL 8.0.32 and can
then be enabled through the @@optimizer_switch setting variable.

SELECT

listings.data

FROM

listings,

calendar

WHERE

-- Join listings with their calendar

listings.data->"$.id" = calendar.data->"$.listing_id"

-- Filter out listings which have poor ratings

AND listings.data->"$.review_scores_rating" >= 4

-- Filter out listings which are not available on the given date

AND calendar.data->"$.available" = "t"

AND calendar.data->"$.date" = "2023-12-12"

ORDER BY

listings.data->"$.last_review";

Listing 2: An example query for the Airbnb dataset (see sections 5 and 6) retrieving well-rated listings
which are available on a certain date.
The column j of the listings table contains the JSON documents describing the listings in a
City, with each document containing all data directly related to one listing (advert for a rental
unit). The calendar table keeps track of when each listing is available and unavailable for
booking.

2.4.2 JSON Support in MySQL

MySQL has extensive support for JSON, with a separate data type, specialized storage
format and a long list of JSON-specific functions for accessing, creating, operating on, and
converting JSON data [38, 18]. In the context of this project, the most central of these
functions is JSON_EXTRACT. JSON_EXTRACT(column, path) (in its simplest form) returns
data from the JSON documents in the given column that is retrieved by the argument
path. If the argument path is not found, NULL is returned. The more common form of the
function is its alias form as the -> operator, used column->path. The ->> operator is an
alias for a call to JSON_EXTRACT, wrapped in a JSON_UNQUOTE. JSON_UNQUOTE(json_val)
will ”unquote” the argument json value, such that it will be interpreted as a literal value
and be converted to whatever type that MySQL deems apropriate for that literal. Listing
3 shows how these two functions behave differently.
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> CREATE TABLE t (data JSON);

> INSERT INTO t VALUES('{"a": "7"}');

> INSERT INTO t VALUES('{"a": 7}');

> SELECT * FROM t WHERE data->"$.a" = 7;

data

{"a": 7}

> SELECT * FROM t WHERE data->>"$.a" = 7;

data

{"a": "7"}

{"a": 7}

Listing 3: The difference between the -> and ->> operators.

2.4.3 Selectivity Estimation for MySQL JSON Queries

As of MySQL version 8.0.32 – the current release of MySQL at the time of this report’s
writing and deadline (July 20 2023) – there is no support for creating or using (histogram)
statistics for JSON columns. Attempts to generate histograms or insert custom histo-
grams for columns with the JSON column type result in an error message being returned,
explaining that MySQL does not support histograms for the JSON data type.

In cases where indexes and histogram statistics are lacking, MySQL will normally fall back
on a set of heuristic multiplers when performing selectivity estimation. However, these
heuristic values are not emplyed when accessing JSON data using MySQL’s JSON parsing
functions such as JSON_EXTRACT. Instead, all such functions end up with a selectivity of
1.0, meaning that all rows are estimated to pass the filtering predicate.

These poor cardinality estimations are a detriment to MySQL, preventing its optimizer
from making informed choices on query plan performance when dealing JSON queries. As
will be shown in section 6, when the hypergraph optimizer is in use, poor choices of query
plans are often made as a result with a resuting negative impact on MySQL’s performance.

2.4.4 Examining MySQL’s Query Plans

Prepending a query with the EXPLAIN statement will make stop MySQL from executing
the query, and instead make it return its chosen query plan for the query [11]. Each step
(”iterator”) of the query plan is annotated with the estimated number of rows that will
be returned by the step, as well as the estimate cost of performing the step. An example
EXPLAIN output can be seen in listing 4, which shows the explanation for the example
Airbnb query in listing 2.

By adding the ANALYZE keyword to get the EXPLAIN ANALYZE command, one can make
MySQL execute the query and add additional information to each step in the execution.
This added information includes the time spent executing each step, the number of loops
performed and the real number of rows returned by the iterator. By comparing the
estimated and real number of rows, one can calculate the estimation error made by MySQL
at each step of the query plan.
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-> Sort: json_extract(listings.data, '$.last_review')

-> Stream results (cost=15291378.98 rows=2633)

-> Filter: (json_extract(listings.data, '$.id') = json_extract(calendar.data, '$.listing_id'))

(cost=15291378.98 rows=2633)↪→
-> Inner hash join (<hash>(json_extract(listings.data,

'$.id'))=<hash>(json_extract(calendar.data, '$.listing_id'))) (cost=15291378.98

rows=2633)

↪→
↪→
-> Filter: ((json_extract(calendar.data, '$.available') = 't') and

(json_extract(calendar.data, '$.date') = '2023-12-12')) (cost=12375.78 rows=2169)↪→
-> Table scan on calendar (cost=12375.78 rows=2169417)

-> Hash

-> Filter: (json_extract(listings.data, '$.review_scores_rating') >= 4) (cost=5558.20

rows=1214)↪→
-> Table scan on listings (cost=5558.20 rows=3642)

--------------------------------------------------------------------------------------------------

-> Sort: listings.j->'$.last_review'

-> Stream results (rows=2633)

-> Filter: listings.j->'$.id' = calendar.j->'$.listing_id' (rows=2633)

-> Inner hash join (<hash>(listings.j->'$.id')=<hash>(calendar.j->'$.listing_id'))

(rows=2633)↪→
-> Filter: (calendar.j->'$.available' = 't') and (calendar.j->'$.date' = '2023-12-12')

(rows=2169)↪→
-> Table scan on calendar (rows=2169417)

-> Hash

-> Filter: listings.j->'$.review_scores_rating' >= 4 (rows=1214)

-> Table scan on listings (rows=3642)

Listing 4: Example EXPLAIN output. To reduce the visual clutter, latter EXPLAIN output listings may
(among other things) have their cost estimates removed and revert to using the arrow syntax
for JSON expressions. The result of these changes is shown in version below the dashed line.

2.4.5 Extending MySQL

When extending MySQL, one of the core concepts one must be aware of is arena allocators.
An arena allocator is a heap allocation structure and algorithm that provides very efficient
short-term memory allocation by allocating all objects to the same region (”arena”). The
entire region can then be reallocated or deallocated at once when the region is no longer
needed. MySQL’s arena allocator structure is named MEM_ROOT, and is among other things
used to store histogram data.

MySQL’s histogram component is relatively modern, being introduced in MySQL version
8.0.3 which released in 2017. All histogram implementations inherit from a common
Histogram base class which defines the public interface of its implementors and also acts
as a public interface for the component. The component is not heavily coupled to the rest of
the codebase, with a single function serving as the entry point for retrieving a histogram,
and another for estimating the selectivity of a predicate using a given histogram. The
logic for when to retrieve actually retrieve a histogram and perform selectivity estimation
however, is not centralized. Instead it is up to each Item object – the representation of a
relational expression in a query whether – to decide. This is explored further in section
4.3.4

3 Related Work

This section will discuss previously published work on the topic of dealing collecting statist-
ics for and querying large collections of JSON documents. The works have been organized
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into subsections by their approach to the problem. For each topic, the system and its
context will first be introduced. Then, The parts of the work which are relevant to the
goals of this project will be examined.

3.1 Translation Layer Solutions

When JSON was first becoming popular as a data storage and data exchange format, few
major RDBMS systems had proper support for it. JSON functions were only added to
the ISO SQL standard in 2016. Because of this, the approach taken by some developers
and researchers was to put a translation layer in front of the RDBMS which would alter
incoming JSON queries into something more ’traditional’ that the system could understand
and handle more gracefully.

3.1.1 Argo

One of the earliest published works on improving the performance of JSON data in a
relational database is Chasseur et al. [6]. In this work, Chasseur et al. present an automatic
mapping layer (”Argo”) for queries that insert and retrieve JSON data. Instead of JSON
being stored as large string blobs, JSON documents are mapped onto relational tuples
and inserted into special tables for JSON documents. Queries that access JSON data are
then translated to access these relational tables and tuples.

This approach allows the query optimizer to treat JSON queries as any other query access-
ing normal relations, and thus it can use its existing statistics and selectivity information
infrastructure to make better cost estimates than it otherwise would be able to. In fact,
the authors find that with Argo on top, MySQL’s query optimizer is able to make some
very good choices, outperforming MongoDB on many of the queries on the benchmark.
However, no mention of histogram statistics is in the work.

Interestingly, Argo does no differentiate between integers and floats, even when storing
types in separate tables. The authors do not elaborate on this choice however, so their
reasoning remains unclear.

3.1.2 Sinew

A similar approach was taken by the authors of Tahara et al. [37]. However, instead of
translating the JSON documents into sets of relational tuples that would be inserted into
relational tables, Tahara et al. instead opted for a hybrid column-oriented approach using
both physical and virtual columns. Sinew was intended not only as an improvement for
JSON data, but any schemaless hierarchical data (such as XML). Where Argo inserts
all tuples into the same table(s) and column(s), Sinew instead analyses the data to find
common key-value pairs to extract into columns of their own. Uncommon key-valye pairs
are inserted into a physical column for ”leftover” data, and virtual columns are constructed
for each unique key-value pair in this column.

As with Argo, Sinew’s approach enables the collection and use of indexes and database
statistics for JSON data. Being built on top of PostgreSQL means that Sinew benefits
from automatic statistics collection (including histograms) for the physical columns. By
not materializing every single key-value pair, but only the most frequent ones (above some
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frequency threshold), Sinew avoids gathering statistics for the most infrequent key-value
pairs. An issue with this approach, as mentioned in Durner et al. [9], is that for very
heterogeneous data, Sinew might end up materializing very few key-value combinations
and end up using virtual columns for most key-value pairs. This will in turn make moot
many of the advantages of the system, degrading its performance.

While Sinew achieves impressive improvements in performance compared to the base sys-
tem, it is not clear how much of these gains that can be attributed to the availability of
more detailed and accurate statistics.

3.2 Database Updates

The most conceptually straightforward solution to the problem of improving JSON per-
formance and collecting JSON data statistics is to simply update the database system to
better handle these cases.

3.2.1 Oracle

JSON support has been one of the Oracle RDBMS’ many strengths for a long time. As
of the time of writing, the database supports multiple types of indexes, a bespoke binary
format and auto-generated schemas for JSON data [20, 21, 22]. It seems that the Oracle
database does not gather any advanced statistics for its JSON data – no references to
histograms or sketches or statistics structures of another kind was found during research.
It is not unlikely that through use of one or more of the four different types of indexes
supported for JSON data, additional statistics gathering becomes superfluous. Oracle
themselves suggest that developers create functional indexes2 over JSON key paths which
are expected to be queried often. A more interesting index structure is the one referred
to as the ”JSON search index”. It is intended to be used when many different key paths
are likely to be explored, or when the developer is unsure of which paths are likely to
be looked up. The search index consists of two indexes used together: First is an index
mapping all key path strings to their respective document’s id. Second is an index of leaf
node values (usually referred to as primitive values in this report) [31].

The most interesting (with respect to the goals of this project) of all the techniques
supported by the Oracle DBMS, is the DataGuide. The DataGuide is a structure that
summarizes the structural and type information contained in a JSON column [1]. This
information can then be used by the database to perform various optimizations. One of
these optimizations is to automatically add and updating virtual columns when new fields
or changes to existing fields are detected. The DataGuide also allows for the creation
of soft schemas, and is automatically kept up-to-date if used in conjuction with a search
index [1]. The DataGuide keeps track of several statistics for each path in the collection.
This includes information such as frequency, the number of null values, and the minimum
and maximum values [20, 21]. However, this statistics gathering is not automatic, but
must be initiated by the user. Updates of these statistics must also be initiated manually
[1].

Finally, a recent update of the Oracle DBMS added JSON-Relation duality views. This
is a feature that is quite similar to traditional views, but which maps relational tables

2An index over a virtual column. In this case, the virtual column would be an expression accessing
some JSON path.
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to and from JSON. The feature allows for hierarchical relationships and nesting of data.
Statistics are then collected for the relational tables as normal, and used when incoming
queries are translated into accessing the underlying relational tables instead of the JSON
structure specified in the query. Thus, the feature is similar to the translation layer
solutions – with an interface emulating interacting with JSON directly while the reality is
that the underlying tables are relational. However, because the feature is implemented at
the database level instead of as a middleware on top of the database, it likely achieves both
better performance and robustnes than the previously discussed translation layer solutions.
While this solution is quite elegant, its approach is very different from supporting JSON
data directly like the goal is with this project. Thus, it cannot really serve as an inspiration
for this project. It is possible that, with respect to support for and use of advanced
statistics, the approach of mapping JSON to relational tables will (once implemented)
yield better results and with less work than the approach chosen for this project. This
because existing statistics gathering and estimation techniques likely can be used as-is with
the JSON-relational views. Statistics gathered for JSON data directly meanwhile, can
possibly also re-use much existing logic, but there will likely need to be accommodations
and changes made to existing statistics techniques to account for the particularities of
JSON data3.

3.2.2 JSON Tiles

‘JSON Tiles: Fast Analytics on Semi-Structured Data’ by Durner et al. is a very recently
published work in which Durner et al. present the implementation of support for JSON
in their columnar RDBMS Umbra. While the goals and techniques of the authors are
broader than that of this project – going so far as to create a brand new storage format
for JSON – some of the techniques used for collecting statistics very much also applicable
in the context of MySQL.

Several novel techniques for dealing with JSON data are presented. A critique which
the authors offer to earlier systems is that they handle heterogeneous data poorly. Their
solution to this is the paper’s namesake technique of tiling. Instead of analyzing the
entire collection as one, the collection is analyzed such that the data can be collected into
separate, possibly (inter-) heterogeneous sub-collections (”tiles”) which are homogeneous
internally. Then, each tile is mined for frequently occurring key-value combinations which
are used in a further optimization in which these commonly occurring combinations are
materialized into an efficient columnar storage format. Infrequent combinations are stored
separately. This allows the system to very effectively deal with heterogenous data quickly
narrowing down the search space to only the tiles which actually contain relevant data,
and likely storing the data in a very efficient format. This is very much like the approach
taken by Sinew, where each common key-path becomes a column. But unlike in Sinew,
there’s not just a single global relation – each tile becomes its own relation. A header is
kept with each tile, describing the data it contains.

The eponymous tiling technique itself is not applicable in the context of this project, as
it is intended for column-store database systems. However, for each of the separate tiles,
the JSON tiles system collects statistics on the data within the tile before combining
the statistics of each tile into a single statistics usable for the whole column. Umbra

3As discussed in section 4.3, all histogram estimation logic had to be re-created for the JSON statistics
implementation and very little could be re-used. However, this was due to the structure of the JSON
histograms being different from MySQL’s existing histograms. It is plausible that a proper implementation,
could use the same histogram logic for both cases.
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does not collect histogram data, instead opting for the use of frequency counters and
HyperLogLog sketches for its statistics. It is not clear if this decision was made because
the authors believed it would yield the best statistics for the use case, or if the approach was
chosen mainly due to HyperLogLog sketches being chosen solution for existing statistics
gathering. The system supports limiting the total number of frequency counters and
sketches used such that the memory footprint of the statistics is kept bounded and small.
Because both the frequency counters and sketches gathered for each tile are combined, the
query optimizer only has to do a single lookup of the global statistics when performing
estimations. If the key being looked up is not found in the global frequency counter, the
smallest frequency value in the statistics is used. The HyperLogLog sketches are used
to extract ’domain statistics’ for each key-value pair (which I interpret as meaning min
and max values and the distinct values count). Finally, Umbra performs some sampling
at runtime during query plan generation to improve (and create new if not present) its
existing estimates.

MySQL does not currently use sketches to collect any statistics. Previous work on on this
topic has found the use of sketches for statistics collection to lead to overall improvements
in performance in MySQL[30]. However, implementing such a technique is outside the
scope of this project, and so that exact feature is not very relevant to this project. However,
the idea of keeping at most N number of counters and statistics objects per collection is
very relevant.

3.3 Other Solutions

This section describes work that did not fit within the previous two categories.

3.3.1 Dremel

Another interesting solution from a team at Google (the first being Sinew) is Dremel
[24, 23]. Dremel is a query execution engine designed to handle large-scale analysis of
schemaless and hierarchical data such as JSON and XML. Dremel does not support type
heterogeneity (same key leading to different types), but it does support making some key-
value pairs optional. The development team have made multiple references to statistics
being collected and used to speed up data collection [23, 17]. However, little has been
published on the details of exactly which statistics are collected and how they are used.

3.4 Looking Back at Similar Problems

Another hierarchical human-readable (and potentially schemaless) data-interchange format
that has seen widespread use is XML. In fact, in the cases where XML would previously
have been used, JSON is now often used in its stead [6]. This replacement includes data-
bases and storage systems, for which much effort has previously been spent on researching
efficient ways of storing and retrieving XML data. The similarities between the use cases
and structure of the two data formats, one would hope that the findings when it comes
to optimizing XML retrieval would be applicable or somehow transferable to the case of
optimizing JSON retrieval. But while there is published work showing that it is possible
to successfully draw inspiration from the innovations of XML-oriented database systems
[41], there are certain fundamental differences between the two data formats which can
make the process very challenging.
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In ‘Enabling JSON Document Stores in Relational Systems.’, Chasseur et al. [6] note some
of the crucial differences between the two data formats.

• In JSON, keys always map to a single value. The equivalent of keys in XML (nodes)
however may appear any number of times beneath the same parent.

• In the XML-equivalent of the JSON object, the order of keys (nodes) may have
semantic meaning. JSON objects on the other hand are defined to be unordered, and
one must instead of use arrays if the order of the children is intended to communicate
semantically meaningful information [4].

• JSON supports several primitive data types: strings, booleans, numbers and null.
And each of these can be determined from the syntax itself without any ambiguity.
Basic XML, on the other hand, support only a single one: strings.

• Some XML document collections may have associated XML schemas (see figure ??)
or document type definitions (DTDs). These are descriptions of the structure, typing
and other invariants of the documents in the collection. While there has been an
effort to create something similar for JSON (see section ??? about JSON schema),
the work is not yet finished and its use is not widespread. Therefore, techniques
which exploit DTDs or schemas are not directly applicable to the JSON use case.

In addition to these semantic and syntactic differences, the use cases of JSON and XML
are not as similar as they might at first appear. Chasseur et al. [6] make the observation
that XML documents typically are large and heavy, and collect all entities belonging to the
same conceptual group. For this reason XML documents are often not accessed directly or
in their entirety, but rather are accessed via special APIs like SAX that parse the source
XML document and emit only the requested information. JSON documents on the other
hand are often more lightweight with less nesting. In modern applications, clients usually
retrieve, manipulate and emit entire JSON document.

4 Implementation

Before proceeding with the discussion of implementation details, I wish to reiterate the
goal of this project. This will hopefully help explain the motivation behind some of the
decisions discussed further in this section.

The core goal of this thesis is to explore ways to improve MySQL’s selectivity estimates
for JSON data. As discussed in section 3, little published work on this topic exists at the
moment, and the work that exists is not directly applicable to MySQL (the actual degree
of applicability varies from solution to solution). As such, the purpose of this thesis is
to, based on previous research, synthesize a new approach to collecting database statistics
for JSON data and explore the viability of that approach. What this thesis does not
do, is take an existing and proven solution that we expect to work well and attempt to
integrate it into MySQL in the best and most efficient way possible. It is also not the
goal of this project to create and implement a structure that is thoroughly optimal and
efficient. Rather, it is to design and test a broader approach to the problem, to see if that
approach is even viable at all. However, some ideas as to how to improve and optimize
the structure are explored.
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The actual, technical implementation work was divided into two stages: first, a free-
standing, proof of concept prototype was built in Python. The goal of this stage was
to enable rapid iterative development and to avoid getting bogged down by limitations
imposed by the existing MySQL codebase. The stage allowed me to explore various ap-
proaches to the problem and enabled me to quickly test the effect of various parameters
and architecture decisions. The second stage of the project was the implementation of
the solution in MySQL. Both stages of implementation will be discussed in this section.
For each stage, I will be discussing the technical implementation of the system, as well as
some of the technical challenges faced and how they were dealt with.

The remainder of this section is divided into four main parts. The first section contains an
examination of the design of the proposed data structure itself. Next, section 4.2 describes
a standalone prototype implemented in Python. Finally, in section 4.3 I will discuss the
implementation of another prototype, this time in implemented MySQL and written in
C++.

4.1 Concepts and Design

The focus of this project has chiefly been the actual writing/coding and implementation of
a system for estimating selectivity for JSON. But while the survey of related work revealed
concepts and ideas to could be used within the context of a MySQL implementation, none
of the surveyed projects provided an exact template for something that could feasibly be
directly implemented in MySQL. Therefore, the project also required a degree of synthesis
and invention to come to a design which could be implemented as a prototype in MySQL.
There is nothing novel in the individual components of the data structure – counters,
singleton histograms, equi-height histograms, I do believe that the final makeup and use
of the structure is fairly novel. As such, much of my early efforts were spent as much on
theoretical considerations related to the design of the data structure as they were on its
actual implementation. As most of these design decisions are present in both the Python
prototype and the C++ MySQL prototype, I will spend this current section presenting
that shared design at a non-technical level (as in no code or implementation details).

The goal of the algorithm is to take a collection of JSON documents and produce some
data that very succinctly describes the data in the collection in as much (useful) detail
as possible. I.e., exactly the same as the goal of other database histogram generation
algorithms. The difference lies in the structure of the input data, as well as the nature
of the filtering predicates. While predicates for other common data types like integers
and floats ask questions about the entire value/piece of data itself, predicates over JSON
data (may) ask about the attributes of only certain parts of the contents of the entire
field. To allow us to estimate the selectivity of such predicates, the data structure must
be able to answer questions about not the whole of the item, but rather those specific
parts referenced in the predicate. This requires a much more granular data structure
than standard histograms (which, again, only describe the distribution of each value as a
whole).

A natural way to structure the JSON statistics is in a format that mirrors the documents
of the JSON collection itself. A simple example of the transformation of some collection to
a basic structure counts the number of occurrences of each path could then look something
like the following:

[{"a": 1, "b": 1}, {"b": true}] → {"a": 1, "b": 2}
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Querying this structure is as simple as querying the source document, and the same key
path used in the predicate can be used to query the data structure. So for a query like the
one seen in listing 5, we can use the exact same key path "$.a" to query the data structure.
By using the same storage format for the statistics as the original data, we ensure good
compatibility and avoid the added complexity of having to support any additional storage
formats. Finally, it allows the statistics to have a very dynamic structure, which is both
great for matching the dynamicity of JSON data as well as for allowing rapid iteration
during development.

The approach of mimicking the structure of the JSON documents themselves also works
really well when implementing the scheme n MySQL because MySQL stores its histogram
data as JSON. Extending MySQL to accept and use histograms structured as a JSON
document will therefore not require any changes to MySQL’s core histogram storage and
retrieval logic. See section 4.3 for more on this topic.

SELECT ... FROM t WHERE t.data->"$.a" = 1

Listing 5: A simple SELECT query featuring an equality predicate over the JSON column ’data’. The
-> syntax is shorthand for the MySQL JSON functions JSON_EXTRACT(column, path).

4.1.1 Extending the Design

We can see that even for a simple query such as the one in listing 5 that collecting only
the count of each key path is not sufficient to estimate the selectivity of all predicates.
However, the proposed structure can easily be extended to hold practically any type of
(relevant) information by having the values in the statistics object be objects themselves,
rather than just a simple counter. The information we can store for each path is then
only limited by what the JSON format can convey, and it can easily accommodate the
information that histograms usually contain. Using this scheme, the statistics object from
before becomes

{"a": {"count": 1}, "b": {"count": 2}}.

Exactly what information to store in the value associated with each key path is an open
question. The cardinality (or alternatively, the frequency) of the key path is a cheap but
very useful statistic. Other information that may be useful is the number of (or, again, the
frequency of) null values, the number of distinct values, and the minimum and maximum
values. We can even store entire histograms for each path. Storing actual values that
appear in the documents presents a challenge, however: across multiple documents, the
same key path can lead to values of different types. Determining the minimum of a string,
an integer and an array is not something that is commonly understood or well-defined
– not to speak of creating a histogram of such disparate values. Thus, the design must
either allow the keeping of separate statistics for each type that appears for each path, or
only keep the statistics for a single type, similar to how Json tiles solves the problem.

Other considerations that must be made include how to deal with nested paths. The
natural solution to this, and the solution which continues the theme of simply mirroring
the source structure, is to nest the statistics objects. Listing 6 shows how this might look.
While this approach likely is a fine solution, it has a couple of drawbacks: speed is not op-
timal (it’s not ”hashmappable”, could be very nested but few keys overall, less predictable
structure) and wildcard paths become very expensive ("\$.**.filtering\_effect" for
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example). Simply flattening the structure and putting all keys on the same level with no

[

{"a": 1, "b": {"c": 3}},

{"b": null},

{"a": {"c": 3}}

]

↓

{

"a": {

"count": 2,

"null-count": 0,

"children": {

"c": {

"count": 1

}

}

},

"b": {

"count": 2,

"null-count": 1

"children": {

"c": {

"count": 1

}

}

}

}

Listing 6: How a nested JSON statistics structure might look.

further modification of the keys will also not work because keys with different parentage
may have the same name. An example of this can be seen in 6, where the key ”c” occurs
both as a child of two different parent keys: ”b” and ”a”. The solution chosen for this
project was to keep all the key paths at the top level but to combine all nested keys with
the key of every single parent into a single string. This allows the structure to easily
be converted into a hashmap, providing constant time lookup of keys and making the
structure itself very ”predictable” in the sense that there’s no question about how deep
something is nested. The statistics structure in listing 7 shows an example of this design.

Listing 6 showcases another challenge: JSON keys can both be missing and lead to a null
value. In the listing, this is tracked through the use of a separate counter for nulls.

4.1.2 The Final Design

Listing 7 shows an example of the final design that was decided upon. This exact listing
was generated by the Python prototype and so it tracks cardinality rather than frequency.
Going from cardinality to frequency can be achieved by dividing the counters by the
collection’s size.
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{

"user": {

"count": 10,

"null_count": 0

},

"user_obj": {

"count": 10,

"null_count": 0

},

"user_obj.id": {

"count": 10,

"null_count": 0

},

"user_obj.id_num": {

"count": 10,

"null_count": 0,

"min_val": 1,

"max_val": 10,

"ndv": 10,

"histogram": [

"EQUI_HEIGHT",

[[4, 4, 4], [8, 4, 4], [10, 2, 2]]

]

},

"user_obj.screen_name": {

"count": 8,

"null_count": 5

},

"user_obj.screen_name_str": {

"count": 3,

"null_count": 0,

"min_val": "harry",

"max_val": "ron",

"ndv": 3,

"histogram": [

"SINGLETON",

[["harry", 1], ["hermoine", 1], ["ron", 1]]

]

},

}

Listing 7: The statistics created for a collection of 10 documents, containing information on some users,
as output by the Python prototype. The actual JSON collection be found in listing 24 in
appendix A.

Each path is recorded, both with and without a type suffix. The underscore character is
used as the separator between the key string and the type suffix. Each key along with its
type suffix, is separated from its child keys by the dot character. These will be referred to
as the ”type separator” and the ”key separator”. For every path, the count (”cardinality”)
is stored, as well as the null count, i.e., the count of how many times the key path was
present in a document but led to a null value. If a key path is not present in a document,
it is not counted. For key paths typed with a primitive type, i.e., key paths that lead to
a primitive value, additional information may be stored. The minimum and maximum
values encountered are stored as ”min val” and ”max val” respectively. The number of
distinct values may also be stored as ”ndv”. Finally, a histogram may also be present.
Histograms are either equi-height or singleton and are very simple in their construction.
An equi-height bucket contains three values. These are as follows (in order): the bucket’s
(inclusive) upper bound, the count of values the bucket accounts for, and the number of
distinct values in the bucket. The buckets of the singleton histogram are even simpler.
Each bucket contains first the value itself, and second the count for that value. In both
cases of histograms, the buckets are always sorted in ascending order – the equi-height
buckets by their upper bound and the singleton buckets by their value.
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Null values are handled differently from the other primitive data types supported by
JSON. Whereas the other types have their own type suffix and have information collected
separately for them, the null values are largely ignored. The base/untyped path records the
number of null values encountered for that path, but that’s all. But this is also sufficient
for getting accurate estimates related to null values.

The key paths do not nest as their document counterparts do. Instead, everything is
kept at a single level of nesting, no matter how deeply nested the documents in the
source collection may be. Instead, non-top-level keys are prefixed with all of their parents’
combined (recursively) key strings. Each key is separated by a special character – the ”key
separator”. Before the keys are combined, they are suffixed with information on their type.
This allows implementing systems to look up the statistics for a specific type by simply
appending the respective type suffix to the key it’s interested in. If the system is interested
in all types related to a key path, then it can omit the type suffix, and retrieve the ”parent”
statistics that share the same key path irrespective of the type of the value that it leads to.
This can be seen in listing 7, where the untyped key path ”user obj.screen name” leads
to information about all occurrences of the key ”screen name” inside an object lead to by
the ”user” key, while the typed key path ”user obj.screen name str” leads to information
about the documents where the ”screen name” key lead to a string value.

While the underscore (’ ’) and dot (’.’) characters are used as type and key separators
respectively, the design does not mandate the use of these characters. In fact, they are
likely poor choices, as they are prone to appear in existing key strings and thus may
confuse implementing systems. Any other characters allowed in JSON key strings could
be used in their stead. Which characters to use in their stead is a complex issue and not
something I will spend more time discussing here. However, using the underscore and dot
characters was not found to cause any trouble during the implementation and experiments
of this project, so they were kept because due to their clarity and readability.

Arrays are treated like they are in Javascript: as objects with integer strings (”0”, ”1”,
etc.) for keys. This makes it so that almost no changes to the structure are needed to
accommodate them. Arrays do get a separate type suffix from objects, however, as being
able to differentiate between the two could prove useful.

As discussed in section 2.3, the JSON format itself does not explicitly distinguish between
floating-point and integer numbers, but serializers and parsers often do. It is therefore
possible for the statistics structure to differentiate between integers and floating point
numbers. Tracking the two types separately could allow for increased accuracy, as more
assumptions can be made about the distribution of integers than the distribution of real
numbers4, which again can lead to more accuracy estimations. In addition, separating the
two types would make the statistics more fine-grained. However, there are a few prob-
lems when taking this approach. First, one cannot rely on serializers to always clearly
distinguish between integers and floats. For example, Javascript’s JSON.stringify, will
encode both 1 and 1.0 as ’1.0’. Thus, the optimization cannot be applied evenly. Addi-
tionally, comparisons against numeric values currently lack type information by default.
For example, given a predicate like, j->"\$.n" > 1 the system does not know whether to
look up statistics for integers or floats. Assuming the wrong type could lead to very poor
estimates. One could look up both, but that would defeat the point of separating the two
values. Alternatively, all such comparisons would have to be explicitly typed by the user,
which they currently are not required to be in MySQL. For these reasons, it was decided
that the simplest choice was to track both integers and floating point numbers together.

4For example, given an equi-height histogram
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The design does contain some redundant information in a few places. For example, paths
that lead to primitive JSON values will always have a null count of 0. Including it in
all statistics objects simplifies the design, however. For paths where no null values were
found, the count and null values count will be equal for both the typed and untyped paths,
leading to duplicate information being stored. Some of this redundancy may be removed
by certain optimization techniques. However, the base design keeps the slight redundancy
for the sake of simplicity of design and ease of implementation.

4.1.3 Histograms

The design supports the creation of two common types of histograms: equi-height histo-
grams and singleton histograms. Both types can be seen in the statistics structure in listing
7. The design does not mandate the use of any specific histogram types or implementa-
tions. However, both prototypes use almost the exact same design: equi-height buckets
contain the bucket’s upper bound, the count/frequency, and the number of distinct val-
ues. Singleton histogram buckets contain the value and then the value’s count/frequency.
Very simple structures were intentionally selected to ease the task of implementing the
histograms. It is not unlikely that employing more advanced histogram structures would
lead to a moderate improvement in the accuracy of estimations.

A minor variation on the singleton histogram, where only the most frequent values are
included in the histogram, is also permitted. This histogram type is only created when
the number of distinct values is higher than the allowed bucket count for the singleton
histogram, and when some values have an outsize frequency. For example, in the Twitter
data set (see section 6.2 for more details on the data), 37 distinct string values are found
for the ”source” key. However, the distribution of these values is heavily skewed, with the
most frequent value having a frequency of 0.9, and another having a frequency of 0.08.
The 35 remaining strings have a combined frequency of 0.02. In this case, the singleton
histogram stores those two most frequent strings, as well as the mean frequency of the
remaining items: 0.02/35 = 0.0006.

This is not a novel technique, and other RDBMS systems implement a similar system. The
Python implementation refers to these as ”singleton plus” histograms, while the MySQL
prototype features an optional field (”rest mean frequency”) in its histogram that indicates
that this singleton histogram type was used.

4.1.4 Handling Array Operations

A unique advantage of using JSON documents as a data store is that they allow one to
store ordered collections (by storing the items in an array). The JSON standard guarantees
that the order of (dissimilar) items in an array is fixed [4]. As Databases implementing
JSON support are required (by the SQL ISO) to conform to the JSON RFC, RDBMS
systems must make this guarantee as well. Ordered collections are technically possible to
achieve in relational databases like MySQL by having a table for the items and within that
table storing the index of the item within the parent collection. An example of this can
be seen in the tables used in the TPC-H benchmark, where the LINEITEM table stores
a LINENUMBER column [40]. I would argue however, that this is not really comparable
to having an actual ordered list directly available.

JSON arrays are also used for unordered collections. An example of such a usage can

24



be found in the Airbnb data used for the experiments in sections 5 and 6. Each Airbnb
listing includes an unordered list of the amenities provided. Some examples amenities are:
”Fire extinguisher”, ”Bed linens”, ”Wifi” and ”Host greets you”. A typical filter for the
listings data would be to check whether a certain amenity or a certain set of amenities
is provided by a listing. However, with the base statistics structure as presented so far,
the only estimation technique that could be used would be to estimate equality for every
single amenity for every single existing index in the array. This is both very inefficient
and also likely to lead to errors in the estimate if we are unable to make a good estimate
for certain combinations of amenities and indexes.

The design handles this case by collecting statistics for the entire array as a single unit,
instead of for each array index separately. This collective array information is then stored
in a separate path that is formatted somewhat differently from the paths of other statistics,
so that it can easily be identified as containing array statistics. The implementation can
then look up this path to make more accurate estimates more quickly than otherwise when
faced with filters that check a subset/superset condition, like MySQL’s JSON CONTAINS
and JSON MEMBEROF. The statistics kept for the path are exactly the same as the ones
tracked for other paths. The difference is – of course – that the statistics are for all values
in all places of the array rather than just at a single index. The only histogram type
supported for array statistics is the singleton histogram. The singleton histogram tracks
the frequency with which each child element appears in the array. Figures 8 and 9 show
an example of how of array statistics look, compared to the statistics that are normally
collected for arrays.

It should be noted that the statistics collected in this manner are not always applicable.
If the arrays contain duplicates, or if the data is not ”enum-like” then its accuracy will
suffer. No information on the ordering of the array elements is stored. Additionally, this
technique is only intended to be used with string or integer arrays.

4.1.5 Limitations

The design in its current form has several limitations. This section lists a few that did not
fit elsewhere.

• The design does not really define how to handle primitive types at the top level. The
Python prototype will handle this case fine, but a more explicit protocol would be
preferable.

• MySQL’s histogram system is currently designed to handle data types which average
much smaller values (in terms of size in bytes) than what JSON documents can and
often tend to be. This is important because when MySQL samples a for the purpose
of building a histogram, it samples only as many values (blocks, really) as will fit
within the allocated buffer. The size of this buffer is controlled by the variable
histogram generation max mem size which has a default size of 20 000 000 and a
minimum size of 1 000 000 – 19 and 0.95 megabytes respectively [33]. Though it’s
not common, a single JSON document can easily reach a megabyte in size, so if these
values are any indication of the buffer sizes used in real applications, the sampling
rate for a large collection could end up being absolutely miniscule.

• Join estimates, when the HG optimizer is used, do not necessarily (the can by
accident if a filter is first applied on the join condition element) take into account
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{

...,

"host_verifications_arr.0_str": {

"count": 42440,

"null_count": 0,

"min_val": "email",

"max_val": "phone",

"ndv": 2,

"histogram": [

"SINGLETON", [

["email", 38727],

["phone", 3713]

]]

},

"host_verifications_arr.1_str": {

"count": 38947,

...,

"histogram": [

"SINGLETON", [

["phone", 38682],

["work_email", 265]

]]

},

"host_verifications_arr.2_str": {

"count": 5373,

...,

"histogram": [

"SINGLETON", [

["work_email", 5373]

]]

},

...

}

Listing 8: The statistics collected for each index of the ’host verifications’ array. Some details have been
left out.

the selectivity of the path being joined on. This makes makes sense for all other data
types, but is not necessarily true for JSON data. For example, a key being joined on
could only be present in 1% of all documents in the collection. Ideally, an implicit
IS NOT NULL estimate would be performed on the path that was being joined on
first, to handle this case.

4.2 The Python Prototype

The purpose of the Python prototype was twofold: first, I wanted to quickly build a proof-
of-concept codebase that would implement the data structure and be able to build it from
raw JSON data. This would allow me to quickly encounter any unforeseen technical or
design challenges and to work around them in an environment where making changes was
cheap. The second purpose of the Python prototype was to enable me to measure the
performance of the data structure and the impact that various variations in the design
would have. Again, the Python prototype seemed like it would ease the process of testing
variations in design and the measuring the impact of those variations on performance.
This was not only due to the Python prototype being a ”green field” project (compared to
the MySQL-prototype which had to fit into the existing MySQL codebase), but also due
to Python’s dynamic nature and due to it being an interpreted language (i.e., no waiting
for compilation). Additionally, I assumed that the development velocity would be much
higher creating a prototype in Python instead of MySQL and C++ due to me being much
more familiar with the development process in the former. This assumption turned out
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{

...,

"host_verifications_arr[str]": {

"count": 42440,

"null_count": 0,

"ndv": 3,

"histogram": [

"SINGLETON", [

["phone", 42395],

["email", 38727],

["work_email", 5638]

]]

},

...

}

Listing 9: Array statistics summarizing the ’host verifications’ key path.

to be correct.

The end result was a program can ingest JSON data, generate a corresponding statistics
collection, and then make cardinality estimates using those statistics and compare them to
the true cardinality. All of this can be done while settings are changed dynamically during
runtime so that the differences between varying configurations can be easily compared.

In this section I will be discussing the implementation of the Python Prototype and detail
how it differs from the core design explained in section 4.1.

4.2.1 Overall Structure

The Python prototype consists of three main modules: compute_stats.py holds the code
for taking a JSON collection and capturing statistics of the data. use_stats.py holds all
the functions for computing estimates from the statistics. Finally, analyze.py uses the
two aforementioned modules to create statistics with variations in parameters and then
to test the accuracy of the estimations that those statistics allow the system to make.
Additionally, several smaller modules provide additional functionality to the system. The
various tweakable parameters which affect statistics creation are stored in a settings object
initially created in settings.py. The statistics creation code reads this settings object
before beginning its work to determine which statistics to compute, how to compute those
statistics, and finally which optimizations to apply.

4.2.2 Tunable Parameters

The Python prototype features several tuneable parameters/settings that change both
which data is captured and how it is captured. This section details those settings and
their impact on the program.

By far the most impactful setting is which statistics ”type” to create. The possible allowed
values for this setting and their effects are as follows:

• BASIC: The BASIC option is intended to be the cheapest and most efficient option,
both in terms of computation cost and storage. It minimizes cost by recording as
little data as possible, storing only singular scalar values and no arrays or hashmaps.
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Using this option, the count, null count as well as the minimum and maximum values
(where possible to compute) will be recorded and stored.

• BASIC NDV: This option is nearly identical to the BASIC option – the only
difference between the two iss that using this option, the system will also attempt
to record the number of distinct values for each (typed) key path. Using a naive
implementation, this approach is much more expensive than the preceding option,
as computing the NDV requires storing all unique values encountered. This option
is in part included to be used as a baseline to compare against the next option.

• NDV HYPERLOG: The structure of the statistics output when using the
NDV HYPERLOG is exactly the same as when using the BASIC NDV setting.
The difference between the two settings lies in how the ndv statistic is computed.
Instead of using a hashmap, this method relies on the HyperLogLog method[13].
The specific implementation used was the PyPi-hosted ’hyperloglog’ library5. Using
HyperLogLog allows for the estimation of NDV statistics with high accuracy while
significantly reducing the memory footprint compared to the previous approach.
Controlling the allowed HyperLogLog error can be done through a separate setting.
An allowed error of 0.05 (5%) was found to produce good estimates while having a
low memory cost and was used during all further work.

• NDV WITH MODE: Using this setting, the system will collect the same inform-
ation that the previous two settings would result in, plus a mode value and count
for each path where applicable. With this setting, the system uses the same brute
force approach to collecting the ndv statistic as the BASIC NDV option.

• HISTOGRAM: When the statistics ”type” is set to HISTOGRAM, the system will
attempt to compute histograms for all paths ending in non-null primitive values. In
addition, all the previously mentioned statistics will be collected as well. Because
computing a histogram requires all values to be collected (or all unique values along
with their frequency), HyperLogLog is not used to compute the NDV statistic. The
number of buckets allowed per histogram is a tunable parameter. The system will
create singleton histograms for all collections of values whose cardinality is less than
or equal to the number of allowed buckets. Otherwise, equi-height histograms will
be created. Equi-height histograms are not supported for string values.

JSON document collections may have a massive number of unique paths can potentially be
massive. Because our method collects statistics for each unique (typed) path, this will in
turn lead to a massive statistics collection. This may be problematic for the performance
of the system, both because traversing a larger structure is more expensive, and because
keeping the structure in memory may negatively affect the other operations of the system
by reducing the remaining space available for other operations. The simplest approach to
reducing the size of the statistics object is to collect less detailed statistics. Specifically,
not collecting histogram data. For collections with many paths that lead to primitive
values, the storage required to store all the histogram data – especially if the number of
allowed buckets is high – may far outstrip the storage required for the remainder of the
structure. This is especially true when lots of string values are involved.

Alternatively, a number of other techniques may be employed to reduce the storage re-
quirements of the structure. We refer to the use of these techniques as pruning the JSON
tree structure. The Python prototype supports several pruning approaches, all of which

5https://pypi.org/project/hyperloglog/
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can be combined with the others if so desired. Which pruning approaches are used, as
well as the parameters of these algorithms, is controlled by the ”prune strats” (pruning
strategies) and ”prune params” (pruning parameters) settings. The pruning strategies are
as follows:

• MIN FREQ: This setting, along with its threshold parameter will drop the statist-
ics of all paths whose frequency is determined to be below the given threshold. This
allows the system to remove all paths whose frequency is so low that the system
is unlikely to benefit much from the estimates that they enabled. As an extreme
example of such a case, MySQL prevents the histograms module from returning es-
timates lower than 0.001 [34]. Keeping statistics for paths whose frequency is at or
below that threshold then offers no benefits.

• MAX NO PATHS: While the previous setting may reduce the number of paths
stored, this is by no means guaranteed. The MAX NO PATHS setting guarantees
that no more than a specific number of paths, as set by the algorithm’s parameter,
will be included in the final structure. Paths whose frequency is lower are removed
first. Ties are currently broken through lexicographical ordering, which is not ideal.
A better approach would be to somehow prioritize paths by somehow judging their
likely benefit to selectivity estimation. For example, accessing array elements may
be less likely than accessing object values. If the goal is to reduce size, then larger
objects should be removed first.

• MAX PREFIX LENGTH: The previous two approaches were based on reducing
the number of paths in the final output, this approach instead sets the maximum
length that paths in the final system may have. The length here refers to the number
of keys included, rather than the string length itself. For example, with a parameter
of max length = 2, the path user object.friends array.2 object.id number would in-
stead become 2 object.id number. While this technique does lead to a reduction in
the size of the statistics object, it may also lead to the statistics of two or more sep-
arate paths being combined into one, degrading the estimates for each path involved.
A more advanced approach than simply cutting off the first part of the string could
likely allow us to avoid most collisions. However, this algorithm would have to be
implemented by the system querying the statistics as well.

An alternate, and likely better approach to this kind of pruning could be to replace
the paths by their hash value. I did not have time to explore this avenue.

• UNIQUE SUFFIX: This algorithm is similar to the MAX PREFIX LENGTH al-
gorithm, in that it attempts to reduce the storage requirements of the statistics by
pruning paths. However, as opposed to the aforementioned algorithm,
UNIQUE SUFFIX does not lead to collisions between the pruned paths. This is
because, rather than having a set maximum allowed length, the algorithm attempts
to shorten each path as much as possible, but only performs the pruning of the path
string if the pruned path does not collide with any existing paths.

It should be noted that, except for the MAX NO PREFIX pruning strategy, all of these
techniques are applied after the complete statistics have been collected. Therefore, they
do not reduce the running time or storage size requirements of the system that creates the
statistics – these alterations only benefit the system that stores and queries the statistics.
None of the pruning settings are aware of, or take into account the sampling rate.
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The singleton_plus_enabled and enum_statistics_enabled settings respectively toggle
the ”singleton plus” and array histogram features. The sampling_rate setting determ-
ines the sampling rate used when analyzing the data. Finally, some parameters were not
included in the settings object, but are still easily tweakable. Examples of these include
the type and key separator values, as well as various settings adjusting the behavior of the
analysis code.

4.2.3 Collecting statistics

When generating the statistics, the prototype examines one document at a time, traversing
all paths recursively and (depending on the settings used) storing the data it encounters
for later aggregate analysis. After all the documents have been iterated over, aggregate
statistics (ndv, histograms) are then computed for these collections. The null values count
and minimum and maximum statistics are calculated throughout.

After all the statistics have been computed, the pruning strategies are applied to get the
final statistics object.

Along the way, several meta-statistics are tracked and kept in a separate object. These are
then stored together with the statistics themselves and provide context about the collected
statistics. The most important of these extra statistics are the sample rate, the size of the
collection, and the highest cardinality of the paths not included in the final statistics.

4.2.4 Querying the Statistics

The Python prototype not only supports creating the JSON collection statistics them-
selves. It also allows for measuring the performance (read: accuracy) of the gathered
statistics. To this end, a module for querying the statistics was implemented. The statist-
ics querying module supports the following operations by implementing special logic for
each: EXISTS, IS NULL, IS NOT NULL, GREATER THAN, LESS THAN, EQUAL TO,
JSON MEMBEROF, JSON CONTAINS, JSON OVERLAPS. An example of the imple-
mentation of one of these functions can be found in listing 10.

Each operation is different logic for each type of statistics gathered, at least where applic-
able. Each function follows much of the same logic. All functions first check to see if they
can find a match for the argument query path in the collected statistics. If not, then the
highest cardinality seen and which is not included in the statistics is used as a substitute.
The cardinality is multiplied by a heuristic value which is dependent on the operation. For
example, the greater than operation will use 0.3 as its heuristic constant. This approach
of using heuristic constants when no other information is present goes back to System R
[32]. If the statistics structure created for the given path is found, the function starts
by comparing the lookup value and the minimum and maximum values encountered. If
the lookup value appears to be outside the range of encountered values, the function will
return an estimate of 0. The next steps depend on the type/depth of the gathered stat-
istics. If histograms are present, the function will loop over the histogram until it finds
the bucket that matches the compare value. It will then use the information in the bucket
(and possibly the previous buckets as well) to make its estimate.

The functions that estimate JSON array membership/subset/overlap have slightly differ-
ent logic from the other predicate estimation functions. Each of these functions relies
on an internal function that estimates the cardinality of the JSON MEMBEROF func-

30



1 def estimate_eq_cardinality(query_path: str, compare_value: Json_primitive) -> int:

2 if query_path not in statistics:

3 max_skipped_count = meta_statistics["highest_count_skipped"]

4 return max_skipped_count * FALLBACK_EQUALITY_MULTIPLIER

5

6 path_stats = statistics[query_path]

7

8 if compare_value > path_stats.max_val or compare_value < path_stats.min_val:

9 return 0

10

11 match settings.statistics.stat_type:

12 case StatType.BASIC:

13 return path_stats.count * FALLBACK_EQUALITY_MULTIPLIER

14 case StatType.BASIC_NDV | StatType.NDV_HYPERLOG:

15 return path_stats.count / path_stats.ndv

16 case StatType.NDV_WITH_MODE:

17 mode, mode_count = path_stats.mode_info

18 if compare_value == mode:

19 return mode_count

20 if path_stats.ndv == 1:

21 # If mode was the only value encountered during statistics creation

22 # then compare_value was seen 0 times

23 return 0

24 # Divide by ndv-1 as we can exclude the mode

25 return (path_stats.count - mode_count) / (path_stats.ndv - 1)

26 case StatType.HISTOGRAM:

27 match path_stats.histogram.type:

28 case HistogramType.SINGLETON:

29 return next((b.count for b in path_stats.histogram.buckets

30 if b.value == compare_value), 0)

31

32 case HistogramType.EQUI_HEIGHT:

33 for bucket in path_stats.histogram.buckets:

34 if bucket.upper_bound >= compare_value:

35 return bucket.count / bucket.ndv

36 return 0

37

38 case HistogramType.SINGLETON_PLUS:

39 normal_buckets = path_stats.histogram.buckets[:-1]

40 plus_bucket = path_stats.histogram.buckets[-1]

41 fallback = plus_bucket.count / plus_bucket.ndv

42 return next((b.count for b in normal_buckets

43 if b.value == compare_value), fallback)

Listing 10: The Python function for estimating the number of documents that satisfy the condition ”=
compare value”. Somewhat simplified compared to the original implementation. Rounding,
adjusting for the sampling rate, and the handling of prefix/suffix pruning is done in a wrapper
function that is not shown. The value of FALLBACK EQUALITY MULTIPLIER is 0.1.
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tion for a single value. The ”memberof” function can use this value directly. For the
JSON OVERLAPS function, the ”memberof” cardinality is calculated for each member
of the argument array of values to look up, and the maximum of those is returned (or the
maximum times the square root of the size of the lookup array). For JSON CONTAINS,
the minimum of the ”memberof” cardinality of the array members is returned.

1 def _get_memberof_cardinality_estimate(base_stat_path, lookup_val):

2 arr_stat_path = make_enum_array_stat_path(base_stat_path, type(lookup_val))

3 if arr_stat_path not in statistics:

4 # If we can't find array statistics, look up the stats of the common parent path instead.

5 # If the stat type is histogram, we could optionally look through the histograms

6 # of each child element of the array, though that would be very expensive.

7 return statistics[base_stat_path].count * JSON_MEMBEROF_MULTIPLIER

8

9 arr_stats = statistics[arr_stat_path]

10

11 match settings.stats.stats_type:

12 case StatType.BASIC:

13 return arr_stats.count * JSON_MEMBEROF_MULTIPLIER

14 case StatType.BASIC_NDV | StatType.NDV_HYPERLOG:

15 return arr_stats.count / arr_stats.ndv

16 case StatType.NDV_WITH_MODE:

17 if arr_stats.mode_info:

18 if arr_stats.mode_info.value == lookup_val:

19 return arr_stats.mode_info.count

20 return (arr_stats.count - arr_stats.mode_info.count) / (arr_stats.ndv - 1)

21 return arr_stats.count / arr_stats.ndv

22 case StatType.HISTOGRAM:

23 histogram = arr_stats.histogram

24

25 for bucket in hist_buckets:

26 if type(bucket) == EquiHeightBucket:

27 # Reaching an equi-height bucket means we reached the final bucket of

28 # the "singleton-plus" histogram

29 return bucket.count / bucket.ndv # average of the remaining cardinalities

30 elif bucket.value == lookup_val:

31 return bucket.count

32 return 0

Listing 11: The Python function for estimating the number of documents that satisfy the condition
”JSON MEMBEROF([...])”. Some details have been left out.

4.2.5 More Approaches to Reducing Size

Several more approaches to reducing the size of the histogram are possible. For example,
the type suffix string for internal nodes of the JSON representation (”obj” and ”arr”) are
not strictly necessary for the system to function, as the type information of the system
is currently only used for the primitive leaf nodes. This would not only eliminate the
type suffix itself from those path strings, but also remove duplicate information because
the system will no longer store both the path ’...key obj’ and ’...key’, but only the ’...key’
path. This was in fact implemented in the Python prototype and found to reduce sizes by
a couple of percentage points.

A very simple technique that was not implemented is to shorten the type string suffix that
is appended to each key in a path. As each type supported by the system starts with a
different letter, this would be very simple: ’arr’ would become ’a’, ’bool’ would become
’b’, and so on. The type suffix separator (set to ’ ’ during our work on the system) could
also be completely dropped.

A final approach to seriously reducing the size of the statistics object would be to disallow
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storing string values (both min/max, mode, and in histograms), or to place a very strict
maximum length restriction on the strings stored in the statistics object. MySQL does
this when building its histograms, considering at most 42 characters per string value [35].

4.2.6 Preparing for Data Analysis

The Python prototype also includes code for testing and comparing the different config-
urations against each other on a series of metrics including storage size required, time to
create, and accuracy of estimates. This is achieved by first generating a set of test data for
every single key in the source collection. Then a set of configurations is iterated over, and
for each configuration, statistics are built from the ground up. For each configuration, the
entire set of test data is then iterated over, and estimations are made for each value and
for each applicable operator. The ground truth is also computed for each, and compared
to the estimate to generate an error value. These error values are then collected and make
up the basis for which the configuration is rated against the competing configurations, at
least in terms of accuracy.

4.3 MySQL Implementation

While the Python prototype is interesting on its own, I had as a goal from the very start
of the project to implement much of the same logic in MySQL. The reason for this is
simple: the structure is not intended to be used as a standalone project – it was invented
and designed with the express purpose of integrating it into a database system. And
while the Python prototype does provide some data, both in terms of the feasibility of an
actual implementation and in terms of performance, the database factor is still at its core.
Implementing the design in MySQL allows for a much more realistic view of the work
and challenges that would face a proper integration of the design into a database system.
Additionally, while the measurements obtained with the Python prototype are valuable,
they are not a substitute for measuring the estimates made by MySQL itself when using
these data structures, as well as how these estimates impact MySQL’s performance. And
as become clear late in this section, there are several differences between the Python and
MySQL/C++ prototypes. And while many of these differences arose due to time/resource
constraints, others stem from the design of MySQL and the C++ language.

I will being this section with a discussion of the work that was done to create a working
(though minimal) implementation of the proposed JSON statistics structure in MySQL.
Starting with loading the JSON statistics into MySQL, I will go on to discuss the design
of the structures used, before looking into how selectivity estimations are made.

Please note that the final MySQL prototype does not generate its own histogram data.
However, once such data has been inserted, the prototype is able to store and retrieve it
and use it to make accurate estimates both for use in estimating the selectivity filtering
predicates and join conditions (with some caveats – see section 4.3.4).

4.3.1 Inserting Custom Histogram Data in MySQL

As discussed in section 2.4, MySQL has an existing statistics system that is responsible
both for the creation and interpretation of histograms. The SQL command ANALYZE

TABLE t UPDATE HISTOGRAM ON col_a; will lead to MySQL gathering statistics for the
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column col a. The computed histogram is stored in an internal table as a JSON document.
When retrieved (for use in selectivity estimation), the JSON representation is converted
into an in-memory representation of a histogram and is then queried for the selectivity of
the given predicates. With the release of MySQL version 8.0.31, released on October 11th,
2022, the USING DATA optional parameter was added to the ANALYZE TABLE statement,
allowing users to insert their own histogram data as a JSON string [3]. The inserted data
must conform to the same structure and standards as the histograms that MySQL itself
generates. For example, the JSON data type is not supported for histograms in MySQL
8.0.31, so inserting custom data for a column with a JSON data type is not allowed. These
hurdles were overcome relatively quickly however, and the new ANALYZE TABLE statement
greatly simplified the process of loading custom histograms into MySQL.

The structure of the data that is inserted to create a histogram is exactly like the one that
is returned when querying for the histogram data in the column_statistics table, and
can be seen in listing 12.

4.3.2 Setting Up the Basic Structures

The shared functionality of MySQL histogram module is defined in the file
sql/histograms/histogram.h. The file defines a base Histogram class, error report-
ing logic and structures, and some public functions for finding the histogram associated
with a table and column. Common properties defined in the base class include the sample
rate, the histogram type, the type of the data itself, and an arena allocator onto which the
histogram contents are loaded. The two existing histogram implementations, Singleton
and Equi_height, then define their own histogram bucket structure. The base Histogram
class is quite flexible, and as long as the implementing class conforms to the interface of
the base class, it can basically put any kind of data in its actual buckets. This is in many
parts due to MySQL’s histogram system storing its data in a JSON column.

> CREATE TABLE test(i INT);

> INSERT INTO test VALUES(1);

> INSERT INTO test VALUES(2); -- repeated once

> INSERT INTO test VALUES(3); -- repeated twice

> INSERT INTO test VALUES(5); -- repeated four times

> INSERT INTO test VALUES(100);

> SELECT HISTOGRAM FROM information_schema.column_statistics WHERE TABLE_NAME = 'test' AND

COLUMN_NAME = 'i';↪→
HISTOGRAM

{

"buckets": [[1, 0.0833], [2, 0.25], [3, 0.5], [5, 0.9166], [100, 1.0]],

"data-type": "int",

"null-values": 0.0,

"collation-id": 8,

"last-updated": "2023-06-19 08:53:37.166280",

"sampling-rate": 1.0,

"histogram-type": "singleton",

"number-of-buckets-specified": 100

}

Listing 12: The resulting histogram (singleton) data after running the command ANALYZE TABLE test

UPDATE HISTOGRAM ON i; on a small integer column. The JSON representation of the equi-
height histogram is very similar – the ”histogram-type” value becomes ”equi-height”, and the
structure of the buckets changes slightly.

The JSON representation of the histograms aligns quite closely with how MySQL rep-
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resents them internally. An example of the JSON representation of a MySQL singleton
histogram can be seen in listing 12.

Because the Singleton class was the simplest of the two, it was chosen as the start-
ing point for the implementation of the JSON histogram structure. Specifically, the
Singleton<String>6 specialization was used, as the bucket value could then represent
the key path that the statistics were collected for. The cumulative_frequency struct
member was kept, though its name was changed to frequency to reflect the fact that in
the Json flex structure, each top-level bucket is basically an independent and complete his-
togram similar (but not identical!) in structure and function to MySQL’s existing singleton
and equi-height histograms. Because the JSON histogram only deals with a single colum-
nar data type (JSON), all templating and other type information was dropped from the
Json flex class. A few minor modifications had to be made to the common histogram logic
to allow histograms with "data-type": "json" and "histogram-type": "json-flex"

to be inserted. After these changes were made, inserting custom histograms for JSON data
was technically possible, though the allowed structure was very limited. The remainder of
the structuring work was spent primarily on developing the structure. The base Singleton
bucket structure that was used as a base had only two members, while the design had 8
(or 9): path, frequency, null frequency, minimum value, maximum value, distinct values
count, and the histogram (and mode information).

Adding new members to a struct is simple as long as their type is fixed. However, while the
table column type is always JSON, the type that a path in the JSON statistics structure
leads to can vary between any of the primitive JSON values (except null). While most
of the members in the struct are of a fixed type (path is a String, frequency a double,
ndv an int), the minimum and maximum value members (as well as the values in the
histogram buckets, as will be discussed later) are not. Additionally, some of the members
are dynamic length arrays (vectors) and thus require special attention because they will
be separate from the struct in memory.

To address the first issue (differing types), a tagged union type was created to hold all pos-
sible primitive JSON values. It can be seen in listing 13 with the name json_primitive.
The enum BucketValuesType is used to indicate which member is correct. The second
issue requires slightly more work to get around.

If the type that the path leads to does not require any additional allocations – as is the case
for double, integer, and boolean values – the value can simply be added to the bucket struct
with no extra work. The issue is that in addition to the C++ fundamental types, JSON
primitive values may also be strings, which due to their dynamic size must be allocated
for at runtime. Because the string value, as a part of JSON string representation of the
histogram, only lives for the duration of the query, the string value must first be copied
into an area of memory that has a lifetime that is as long as or longer than that of the
histogram object. This was done by allocating string values onto the same MEM ROOT
that the histogram itself is allocated on. Care also had to be taken when histograms were
being copied (as they are each time one is inserted) to make sure that string values were
copied onto the MEM ROOT of the newly created copy.

A similar challenge arose when implementing the histograms belonging to each path.
Because the histograms themselves contain a dynamically sized array of buckets, each
histogram had to be specially allocated on the MEM ROOT just as with the string values.
One must also be careful to handle the string values inside those histograms in the same

6String is a string implementation internal to MySQL.

35



manner. A small difference between the histograms and the JSON primitive union is that
the histogram values are implemented using generics rather than a union. The enum used
for the primitive union doubles as an indicator of the specification of the histogram (if a
histogram is present).

Because none of the objects described here are particularly long-lived, further memory
management like reducing the memory footprint and avoiding leaks could be approached
with a lax attitude. When the owner of the arena allocator dies, all the memory allocated
onto MEM ROOT is freed.

An alternate approach would have been to use fixed-size arrays for both strings and histo-
grams, but this approach would have resulted in a massive use of space for any realistically
allowed number of elements. This is because each json primitive member would take up
as much space as the fixed string buffer, and each histogram would contain the maximum
allowed number of buckets. These two combined would result in both a massive use and
a massive waste of space.

The fit between Json flex and the Histogram interface isn’t the best. This is because
Json flex requires more information to make its estimates than the other Histogram im-
plementers, and as such they do not have the exact same interface. Whenever we want
an estimate for JSON data, we have to detect this and specifically call Json flex meth-
ods. Another place where this became an issue was when implementing NDV estimations
for joins. Here, the caller must specifically cast the histogram to Json flex and call a
Json flex-specific method for estimating ndv. This could be rectified by changing the His-
togram interface so that the information needed by Json flex is passed to a common ndv
estimation call.

4.3.3 The Final Structure

The final set of data structures used in the MySQL prototype consists of a top-level class
inheriting from the Histogram class, as well as two (main) structs that contain the actual
statistics data. In addition, three additional structs and two enums were needed to make
things come together. I will now present these structures in detail, explaining how they
come together to implement the solution and how each of them fits together. A compressed
version of the actual code can be seen in listing 13, while figure 3 shows a simplified class
diagrams showing the relations between the different structures.

The class Json_flex (defined on line 61 of listing 13) inherits the common Histogram class
and as such acts as the entry point and interface for building and querying the JSON stat-
istics structure. The Json flex class itself, while implementing the bulk of the prototype’s
logic, does not contain much interesting data in and of itself. The first member of note is
the (global) minimum frequency, which tracks the smallest frequency value encountered
while building the histogram. The minimum frequency is used during selectivity estim-
ation when no data is found for a given path. The second member is a dynamic array
(allocated on the MEM ROOT arena allocator) containing all the remaining statistical
data. Each array element is a KeyStat (defined on line 42 of listing 13) struct. Each
KeyStat struct stores the statistics for a single key path in the JSON statistics document.
The struct has three required members which will always be present: the frequency of the
path, the frequency of null values (as a ratio 0-1) of the path, and the type of the path.
The type of the field is indicated using the BucketValuesType enum which defines five
values: one for each of the four non-null primitive JSON types, plus the value NOTHING.
The NOTHING value indicates that the KeyStat struct holds no values from the original
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KeyStat

+ key_path: string

+ frequency: double

+ null_frequency: double

+ values_type: BucketValuesType

+ min_val: json_primitive

+ max_val: json_primitive

+ ndv: int64_t

+ histogram: *void

JSON_flex

+ minimum_frequency: double

+ m_buckets: Mem_root_array<KeyStat>

KeyPathHistogram

+ m_buckets: Buckets

Array of

Optional pointer

SingleBucket

EquiBucket

Array of

union Buckets

Figure 3: The classes and structs that make up the JSON statistics implementation in MySQL.

JSON path. Additionally, the KeyStat struct has four optional members: the minimum
and maximum values encountered for the path, the number of distinct values counted for
the path, and a histogram. As mentioned in section 4.3.2, the minimum and maximum
values can be any of the four non-null primitive JSON types, and this is facilitated by the
use of a union type called json_primitive. The minimum, maximum, and ndv mem-
bers are all wrapped in an optional7 object to make explicit the fact they may not be
defined. Due to its potential size, the histogram is not a contiguous part of the KeyStat
struct. The histogram is allocated separately (though in the same arena as all the other
structures), and the KeyStat struct only holds a pointer (which may be null) to it. The
key path histogram itself is defined in the KeyPathHistogram (defined on line 17 of listing
13) struct. This struct is both generic to any of the allowed JSON primitive value types
and may be either a singleton or an equi-height histogram. The KeyPathHistogram struct
also does not contain histogram bucket data directly. Instead, it holds a pointer to an
array allocated on MEM ROOT and of which each element is a histogram bucket. The
histogram buckets themselves have the exact same structure as in the Python implement-
ation, although one member has been slightly changed: Instead of holding a count of the
number of values that fit in the bucket, the buckets hold the frequency of the value, as
a fraction of the total frequency of the key path. The bucket array, like json primitive,
is a tagged union and the caller must check which type of histogram they are accessing
before reading the buckets array either as an array of singleton buckets or as an array
of equi-height buckets. Finally, the KeyPathHistogram struct has one field that is not
present in the Python prototype. The rest_mean_frequency member is used in conjunc-
tion with singleton buckets when there are more elements than the singleton can hold, but
an equi-height cannot be used (basically, for string values). The singleton histogram then
holds the most frequent values, and the mean frequency of the remaining values is stored
in the rest_mean_frequency variable. In other words, it fulfills the same function as the
”singleton plus” structure in the Python prototype.

Due to time constraints, the JSON statistics structure implemented in MySQL does not
support the mode information that that the Python prototype collects when running with
the NDV WITH MODE statistics setting. However, I believe that what is implemented

7https://en.cppreference.com/w/cpp/utility/optional
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is enough to cover all interesting bases when it comes to measuring the performance and
accuracy of the solution.

A final thing to note is that while the existing histogram buckets (singleton and equi-
height) store cumulative frequency, the KeyPathHistogram buckets store point frequency
(i.e., they store the frequency of that key only, independent of the frequency of the other
keys). This has to be the case because each top-level bucket is basically a separate complete
histogram like the histogram of a column over any other type is in MySQL. The histogram
(”KeyPathHistogram”) buckets themselves could have used cumulative frequency, but they
do not. The reason for this is that it simply matched the Python implementation better to
store point frequency, and thus made translating both the code and statistics themselves
simpler.

4.3.4 Selectivity Estimation with Json flex

Internally, MySQL represents all (relational) expressions in its queries as Items[27]. Item
classes are defined for constant literals, identifiers, fields, variables, and more. For ex-
ample, the Item subclass Item_func_eq represents the equality comparison operator. Be-
cause the equality operator is a binary operator, the equality item has two child items,
one for each side of the equality expression. Each item class implements a method
get_filtering_effect, whose responsibility it is to figure out the selectivity of the ex-
pression that the item represents. And this function may come to use MySQL’s histogram
statistics. However, before this function is even called, the system checks whether it is
even possible for the item in question to contribute to the filtering effect. In the current
release of MySQL (8.0.32), function calls that act on JSON data do not pass this test of
contribution, which means that selectivity estimation is never attempted when these func-
tion calls appear inside an expression. In fact, any filtering expression involving MySQL’s
JSON functions was found during early testing to return a filter effect of 1 (meaning no
effect)8. Accessing JSON data without the use of JSON functions is very limited and
basically invalidates the point of implementing a complete JSON data type.

To enable selectivity estimations to be made using the JSON statistics structures, this
had to change. The changes that enable selectivity estimations to be made for expressions
involving JSON functions, however, mean that the prototype alters the behavior of MySQL
even when no statistics are present for the JSON data being accessed. The system attempts
to make estimates no matter whether statistics are actually present or not, whereas it never
attempted to do so before. The MySQL prototype, just like the Python prototype (see
section 4.2.4), implements fallback heuristic constants which are used when no data is
found. Thus, the estimates for certain predicates may change drastically from the base
8.0.32 version of MySQL, even if no JSON statistics data has been inserted.

This change was not the goal of the project/thesis and is not especially interesting with
respect to the stated goals of the project. However, it is important to be aware of this
fact as it will affect the change in performance of the system when compared to the base
8.0.32 version of MySQL. This will be discussed in more detail in section 6.

The entry point for selectivity estimation for histograms is the Histogram method
bool get_selectivity(Item **items, size_t item_count, enum_operator operator,

double **selectivity_buffer). This function previously operated only on either the

8Why this is, I cannot say for certain. Investigating exactly why the heuristic filtering effects are not
applied when JSON functions are involved was outside the scope of this project.
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1 // Simplified version of the MySQL String class with no ownership of the data it points to.

2 // This makes it much simpler to use in a union with the other primitive data types.

3 struct BucketString {...};

4

5 union json_primitive {

6 double _float;

7 int64_t _int;

8 bool _bool;

9 BucketString _string;

10 };

11

12 // An actual histogram. Contained by Json_flex's KeyStat

13 // Allowed type specifications are: double, int64_t, bool and BucketString

14 template<typename T>

15 struct KeyPathHistogram {

16 enum class JFlexHistType {

17 SINGLETON, EQUI_HEIGHT,

18 };

19 struct SingleBucket {

20 T value;

21 double frequency; // As a fraction of the total frequency of the key_path

22 };

23 struct EquiBucket {

24 T upper_bound;

25 double frequency;

26 int64_t ndv;

27 };

28 union Buckets {

29 Mem_root_array<SingleBucket> single_bucks;

30 Mem_root_array<EquiBucket> equi_bucks;

31 };

32

33 JFlexHistType buckets_type; // Indicates whether this is a singleton or equi-height histogram

34 Buckets m_buckets;

35 std::optional<double> rest_mean_frequency = std::nullopt;

36 };

37

38 // Keeps the information related to a single statistics path.

39 // Not a traditional histogram bucket, despite the (admittedly bad) name.

40 struct KeyStat {

41 enum class BucketValuesType {

42 NOTHING, INT, FLOAT, STRING, BOOL,

43 };

44

45 // Required members

46 const String key_path;

47 const double frequency;

48 const double null_frequency;

49 const BucketValuesType values_type; // Indicates the type of the min/max_val and histogram members

50

51 // std::Optional members

52 const std::optional<json_primitive> min_val;

53 const std::optional<json_primitive> max_val;

54 const std::optional<int64_t> ndv; // number of distinct values

55 void *histogram; // optional pointer to a histogram (KeyPathHistogram)

56 };

57

58 // Top-level class that inherits Histogram and is called

59 class Json_flex : public Histogram {

60 Mem_root_array<KeyStat> m_buckets; // Array of KeyStat structs

61 double minimum_frequency = 1.0; // Set to the smallest frequency encountered during creation.

62 ...

63 }

Listing 13: All data structures used for the internal representation of the JSON statistics. Some minor de-
tails have been left. The complete code can be found in the file sql/histograms/json_flex.h
in the supplied code or on repository’s Github page:https://github.com/jonaengs/mysql-server.
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combination of a field item and a constant item or only a field item in the case of unary
operators like IS NULL. A field item represents some value/item in a record (or all of
a specific item/value in all records of some table) – usually a column (Norvald: is this
correct?). However, when called to estimate selectivity for JSON data, the field is always
wrapped inside one or more function call items (because, again, we don’t just read the
JSON column, we access specific parts of it using MySQL’s JSON * functions). This is
incompatible with what the other Histogram implementations expect. Therefore, when
the get_selectivity function detects that one of the passed items is a function item, it
immediately delegates the remaining work to the Json flex class which handles everything
internally. This stands in contrast to how much selectivity estimation logic is shared
between the other two histogram classes Singleton and Equi-height.

The Json flex selectivity estimation function is relatively simple. It has three main tasks:
first, it must determine whether the JSON function results in a quoted or an unquoted
value, i.e., whether the expression returns the value as encoded in the JSON document,
or whether MySQL will attempt to convert any strings to the literal that the string value
represents. This is important because when collecting the statistics, the Python prototype
does not do any conversion of string values, meaning it leaves string values as quoted.
This is because we assume that data is generally stored as the type that it is supposed to
represent9, and that values that are represented as strings are meant to be interpreted as
strings. Changing the system to assume and work with unquoted values does not require
any large changes, however. Next, the function must construct the path that will be
used to query the statistics. If the value is unquoted, a type suffix will not be added
to the final key, so the statistics for all possible types will be used (the downside is of
course that the statistics for this path are less detailed because only the frequency and
null frequency is stored for these paths). Finally, the function examines the comparand
and operator arguments to determine which selectivity estimation function to dispatch to
for estimation.

The selectivity estimation process itself is not very complex. First, an attempt to find
statistics matching the generated path is made10. If nothing is found, then the recor-
ded minimum frequency is used as a base and then multiplied with one of the heuristic
constants like in the Python prototype (section 4.2.4). If statistics are found, then the
function proceeds in a manner quite similar to the estimation functions used in the Python
prototype. First, the code checks to see whether the value is within the recorded range. If
not, a selectivity of 0 is returned. If histogram statistics are available, it uses the histogram
data to make an estimate. Otherwise, the ndv statistic is used where applicable, before
finally falling back on the frequency and null frequency information. See listing 25 in the
appendix section B for an example. For untyped paths, only the frequency and fromnull
frequency information can be used to make the estimate.

Due to time constraints, statistics for arrays were not implemented in the MySQL proto-
type. Support for the functions JSON CONTAINS, JSON MEMBEROF, and JSON OVERLAPS
is also missing. However, the MySQL prototype supports the ”IN LIST” operation
(... WHERE col IN (1, 2, 3);), which is somewhat similar.

9The exception to this is data types that are not supported by the JSON standard, such as date strings.
However, none of the two prototypes currently support any such values. If support for dates were to be
added, the system may have to change to using unquoted JSON.

10This is done by doing a linear scan of the KeyStat array, not by way of a dictionary lookup like the
Python prototype does. The reason this was done was that constructing the array was simpler than using
a hashmap, and time was limited. In a proper implementation, I would recommend using a hashmap for
lookups, or at least doing a bisection search of the array.
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In total, there are six ”fundamental” selectivity estimation functions implemented: equal
to, less than, greater than, exists, equals null, and not equals null. All other operations,
like ’greater than or equal to’ and ’between’ are implemented using these functions.

Another feature supported by the MySQL prototype but which the Python implementation
does not support is making join estimates, though this is only the case when the hypergraph
optimizer is enabled (which required some small changes, as the hypergraph optimizer is
hard-coded to be disabled for release versions of MySQL). This was relatively simple to
implement, as the histogram module only needs to supply the estimated number of distinct
values, and the hypergraph optimizer will take care of the rest of the calculations. The
existing Histogram class method for getting the ndv stat does not take any arguments,
however, as the method is little more than a histogram bucket count. When estimating
the ndv for a join condition on a JSON function, however, it is impossible to make a
good estimate without knowing the path argument of the function. Therefore, a separate
method had to be added to the Json flex class to support passing information about the
field and the function accessing it.

One final difference between the Python and MySQL/C++ versions is how null estimation
is handled. In the Python prototype, the ”is null” estimation function estimates the
number of times that the given key path leads to a null value. The ”exists” function
estimates the number of documents in which the key path occurs at all. In MySQL
however, a third case has to be handled: the document itself may not be present for
the row – i.e., it may be NULL. The Python prototype does not handle this case, as it
makes little sense for a row itself to be null when examining only a collection of JSON
documents. It is important to note here that the JSON ”null” and the MySQL ”NULL”
are distinct entities and are not interchangeable. At least, this is how MySQL views it.
Additionally, when accessing the value of a key that is not present in a JSON document,
MySQL will return a NULL for that row. Therefore, MySQL’s IS NULL acts more like
the ”exists” query of the Python prototype, letting those rows pass where either the
key path is not present in the document or the document is not defined. If the key is
present in the document and leads to ”null”, this does not count towards MySQL’s IS
NULL. However, using the function JSON VALUE, JSON ”null” values can be converted
into MySQL NULL values. However, if NULL would already be returned, this does not
change. Therefore JSON VALUE($path) IS NOT NULL acts like the Python ”is not null”
function, but the JSON VALUE($path) IS NULL does not act like the Python ”is null”
function, because it includes missing key paths and missing documents. 11

4.3.5 The Complete Process

When a histogram is inserted into MySQL as a JSON histogram literal, the first that
happens is that the JSON string is parsed and wrapped in an internal class for handling
JSON data. This wrapper class is then passed on to the histogram module which begins
the construction of a histogram object matching the JSON data. First, the base Histogram
class constructs the common top-level properties, before handing the creation of the bucket
data over to the implementing subclass. This construction step involves a lot of verification
of properties and values and features an error-handling system that returns detailed and
specific errors if encountered. Finally, the histogram is converted back into JSON and

11The simplest way to get the Python ”is null” behavior I think is to do equality with a JSON null
literal, if that is possible – I couldn’t figure out how when I looked into it. The other approach is to do
equality on the type of the value and the string ”null”, which I think is the suggested approach to this
problem. However, detecting this exact case in the selectivity estimation code is quite inelegant.
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Figure 4: The process of converting a document collection into statistics for the Python prototype, and
then converting those statistics into a format that is acceptable to MYSQL, before inserting
that data in a query.

stored in the statistics table, and a success message is returned to the client.

Before selectivity estimation can be performed, the stored histogram JSON document is
retrieved and converted into a histogram again. A common method, get_selectivity
is then called, and performs some verification of the validity of the arguments before
passing them on to the implementing subclasses where the actual selectivity estimation is
performed.

Inside Json flex, a query path (the key to use for the statistics object) is constructed before
the argument items, their types, and values, are inspected to determine how and which
selectivity estimation dispatching function to call. The selectivity dispatch functions then
inspect the filtering predicate’s operator to determine which of the ”primal” selectivity
estimation functions to use to make the estimate. One or more of these functions are then
called and their results are combined (if several calls were made) to get a final estimate
that is returned to the caller.

4.3.6 Putting it All Together

The MySQL prototype does not have the capability of generating JSON statistics from
scratch on its own and instead relies on this data being given to it through the afore-
mentioned histogram insertion query statement. For the experiments in section 6, the
statistics used are therefore generated by the Python prototype before being inserted into
MySQL. Because the exact structure and contents that the MySQL prototype expects
differ somewhat from what the Python prototype generates, a script to convert between
the two structures was created. The script processes the Python prototype statistics in
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the following way:

1. Converts the cardinality count to a frequency value, where the frequency indicates
how many percent of the complete document collection the key path is present
in. The null count is also converted to a number in the range [0, 1] indicating the
frequency with which the key path, when present, leads to a null.

2. This conversion from count to frequency is also applied to all buckets.

3. The 'rest_frequency' property is calculated for the histograms that were of the
type ”singleton-plus”.

4. All strings inside the buckets, both keys and values (and as parts of values) are
encoded as base64 and prefixed with the string "base64:type254:", as expected by
MySQL’s JSON string values.

5. The sampling rate is taken from the meta statistics object and set as the value of
the "sampling-rate" key in the top-level histogram string.

5 Experiments With Python Prototype

The real test of the efficacy of the proposed design is whether it improves MySQL’s
estimates and choice of query plans. However, experiments with the Python prototype
can still result in valuable information. The experiments on the Python prototype are
also much simpler and cheaper to run, so the number of configurations that can feasibly
be tested is much greater.

The goal of the Python prototype experiments is to learn more about the following:

• Can the proposed structure actually be used to make estimations for predicates over
JSON data?

• What is the cost, in terms of storage, of the different statistics types?

• How are estimations affected by sampling?

• How are estimations affected by pruning?

The remainder of this section is organized as follows: First, the experimental setup will be
examined. I will be presenting the testing strategy, the data used, and various drawbacks
and caveats that apply to the approach taken. Next, the experimental results will be
presented, examining various aspects of the efficacy and cost of the statistics and how
these are affected by the tunable parameters. Finally, a broad discussion of the results
will follow.

5.1 Experimental Setup

The experiments were run an a computer with the following specs.

• Ubuntu 20.04.6 LTS
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• 16GB RAM

• Intel® Core™ i7-8550U CPU @ 1.80GHz × 8

• Python 3.11.3

The quantities measured for the Python prototype experiments do not depend on the
underlying hardware in any significant manner, however.

5.1.1 The Data

Two datasets were used for the Python experiments. The first, referred to as the Twitter
dataset, is a collection of tweets from the 2014 Recys challenge[8, 39] in JSON format.
Of the three datasets published for the challenge, the largest (”training”) was used. The
collection consists of 170285 documents, totalling 416 MB of data. The data is structurally
heterogenous, with many paths occurring with a very low frequency. In total, the Twitter
data has 809 unique key paths.

The second dataset, referred to as the Airbnb dataset, is a collection of information about
Airbnb listings published by the Inside Airbnb organization [16]. Specifically, the collection
used for the Python experiments was the listings data for Los Angeles published in on the
7th of March 2023 (accessed on June 13th, 2023). The collection has a total size of 189
MB and contains 42451 documents with 448 unique paths.

The Twitter dataset has no arrays eligible for array statistics collection. The Airbnb
dataset on the other hand contained two such key paths: ”host verifications” (see figure
9) and ”amenities”.

The structure of the documents in these two collections is explored in further detail in
section 6.2.

While the Twitter dataset is structurally heterogeneous to an extent, finding eligible JSON
document collection datasets that were heterogeneous with respect to typing (same path
leading to different types) proved a major challenge. This precluded the possibility of
testing the impact of keeping only the most frequent type per path versus keeping all
types per path. Whether this is a large issue or not is hard to say. A lack of of real-world
queries against these types of datasets made it hard to tell whether type heterogeneity is
common and how it is handled by developers – i.e., whether queries specify which data
type they are looking for or not.

The experiments included testing the impact of sampling on the accuracy and size of
the statistics. Table 1 contains an overview of the number of documents expected to be
sampled for the different sampling rates. Please note that the method of sampling used
by the Python prototype is not the exactly same as the one used by MySQL. MySQL
samples on a per-block basis, while the Python prototype implementation does it on a
per-row basis. Because there is a chance of inter-block correlation, MySQL’s method of
sampling may result in slightly skewed results. The Python prototype does not have this
problem. Thus, it is possible that the impact of sampling measured for these experiments
may be slightly more positive than it would be in a proper implementation where MySQL
is responsible for creating the statistics.
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Sample Rate Twitter Airbnb

1.0 170285 42451

0.3 51086 12736

0.1 17029 4245

0.02 3405 849

0.005 851 212

Table 1: Expected number of documents sampled per dataset and sampling rate.

5.1.2 The Testing Scheme

The experiments for the Python prototype were run as follows: First a dataset was selected
for testing, before a list of all combinations of settings (parameter values) intended to be
tested was generated. Then, for each such setting, statistics were collected.

1. Select a dataset for the experiments to be executed for.

2. Collect test values for the dataset.

3. Generate a list of all combinations of settings (parameter values) intended to be
measured.

4. For each settings combiation, do the following:

(a) Apply the settings.

(b) Collect new statistics for the dataset using the given settings.

(c) Iterate over the collected test values and measure how well the statistics can
be used to estimate the selectivity of each of the supported operators.

The test values are gathered from the source dataset used for the experiment. For each
key path, the set of values corresponding to that key path is sampled without replacement.
No other values are used. This means that no values that are not present in the dataset
are used as test values. This may have both a positive and negative on the measured
accuracy, as unseen test values that are outside the encountered range of values for a
path will always be correctly estimated to 0, while unseen test values inside the range are
likely to have less accurate estimates than the test values generated from the dataset. The
choice of sampling from the set of values rather than the list of values for each key path is
likely to lead to a lowered measured accuracy as the statistics keep better track of popular
values than unpopular values (NDV with mode and histogram do, at least).

The operators supported by the Python prototype can be divided into three categories.
First are the unary operators, whose only arugment is a key path. These are: ’exists’,
’is null’, and ’is not null’. Then there are three scalar binary operators: equality, greater
than, and less than. These take a path and a constant scalar value. Finally there are the
three array operators, which compare an argument value (scalar for ’memberof’, arrays for
the two remaining) against arrays in the data set. These are ’memberof’, ’contains’ and
’interesects’. Due to the nature of the data and the operators themselves, the distribution
of test values, and thus measurements, is not even between the different operators. For the
two data sets tested, there were more operands available for the scalar binary operators
than the other two, and more operands available for the unary operators than for the
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('Central heating', 'Smoke alarm', 'Washer', 'Shampoo', 'Kitchen',

'Hair dryer', 'Dedicated workspace', 'Dryer', 'Free parking on

premises849', 'Wifi', 'Indoor fireplace', 'Carbon monoxide

alarm', 'Bathtub', 'Iron', 'TV', 'Refrigerator', 'Essentials',

'Cleaning products', 'Coffee maker', 'Keypad', 'Dishes and

silverware', 'Hot water', 'Self check-in', 'Body soap', 'Cooking

basics')

↪→

↪→

↪→

↪→

↪→

↪→

Listing 14: Example test value gathered from the Airbnb dataset and used to test estimations for the
’contains’ and ’includes’ operators.

array operators. Additionally, there will be more operands available for testing with the
equality operator than for the inequality operators. This is because the equality operator
accepts all four scalar value (’primitive’) types, while the inequality operators only accept
numeric values. For the unary operators, there will be as many operands as there are key
paths. For example for the Airbnb data set the following number of tests were performed
for each operator:

• Equality: 3967

• Greater/less than: 875

• Unary operators: 448

• Array operators: 80

Whether this is a realistic distribution of operations as compared to real-world situations
is of course impossible to say as such things differ wildly. In the visualizations which
aggregate accuracy across operators, the error is combined through a non-weighted mean
unless otherwise stated.

The configurations tested were the cartesian product of the sets of options seen in figure 15.
Invalid or redundant configurations were dropped. In total, 468 different configurations
were tested. MAX NO PATHS and MIN FREQ were not tested together because it was
found that one of the two would almost always take ”precedence” and make the inclusion
of the other moot.

5.1.3 Applicability

The results from these experiments are unlikely to match the real-world experience if one
were to implement this system in MySQL. It is unlikely that all paths in a document
collection are accessed with the same frequency. It is also unlikely that the constants used
for the binary operations will be distributed in randomly in the universe of values. Finally,
the frequency of each operation used in these experiments is also unlikely to match that
of a real-world scenario. The results of the experiments in this section therefore, while
accurately measuring the quality of the predictions that the statistics provide, may not
necessarily match well with the gains in estimation accuracy experience when using the
same statistics in real-world scenarios. However, I believe that the results are still useful
for comparing the different configurations and measuring their performance against each
other. – The absolute values of the numbers is meaningless, but the relative difference
between them is still valid.
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1 {

2 "stats_type": [st for st in StatType],

3 "prune_strats": [

4 [],

5 [PruneStrat.MAX_NO_PATHS],

6 [PruneStrat.MIN_FREQ],

7 [PruneStrat.MAX_PREFIX_LENGTH],

8 [PruneStrat.NO_TYPED_INNER_NODES, PruneStrat.UNIQUE_SUFFIX],

9 ],

10 "num_histogram_buckets": [6, 16, 32, 64, 128, 512],

11 "sampling_rate": [0.0, 0.7, 0.9, 0.98, 0.995],

12 "prune_params": [

13 {

14 "min_freq_threshold": 0.01,

15 "max_no_paths_threshold": 200,

16 "max_prefix_length_threshold": 4,

17 },

18 {

19 "min_freq_threshold": 0.003,

20 "max_no_paths_threshold": 400,

21 "max_prefix_length_threshold": 4,

22 },

23 {

24 "min_freq_threshold": 0.001,

25 "max_no_paths_threshold": 500,

26 "max_prefix_length_threshold": 5,

27 },

28 ],

29 }

Listing 15: The object used to generate the all the different configurations used during testing.

5.1.4 Experimental Data Collected

For each combination of settings, the following data was collected:

• For each operator and test value: the true and estimated cardinality.

• The settings used when collecting and processing the statisticss.

• The space required to store the collected statistics.

Some information on time use and memory consumption during statistics creation was
also collected.

5.1.5 Exclusion

From the experimental results, it is clear that there is little benefit in using the BASIC
statistics type – it has the worst accuracy in general, and it is not significantly cheaper
to compute than the other non-histogram statistics (see figures 5 and 6). We can also
see that there seems to be little advantage in using BASIC NDV over HYPERLOG NDV
(see also section 5.2.4). Because the latter is cheaper with respect to memory costs, it
almost always will be preferable to the former. Because they are outperformed by the
other statistics approaches, BASIC and BASIC NDV will therefore be left out of most
figures.

Additionally, the operations EXISTS, IS NULL and IS NOT NULL all use the same
statistics that are available at the same level of granularity for all statistics types. For this
reason, these operators have been left out of several of the figures in this section.
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Figure 5: Airbnb. Median estimation error per statistics type for the different sampling rates. The
difference in error between the ’less than’ and ’greater than’ operators for NDV WITH MODE
statistics type stems from the randomly selected test values favoring one operator over the
other.
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Figure 6: Twitter. 90th quantile estimation error per statistics type for the different sampling rates.
NDV and mode statistics are of little use when estimating selectivity for inequality operators.
Histogram statistics do well for these types of operators however.
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5.2 Overall Results

Figures 7 and 8 summarize the results gathered from the Python prototype well. Un-
surprisingly, histogram statistics are the most accurate, and the more histogram buckets
used, the more accurate the estimates using histogram statistics become. Diminishing
returns quickly kick in however, so doubling the maximum histogram size will not lead
to the estimation error being halved. Of course, histograms have an additional cost when
it comes to storage compared to the basic and NDV variants. Interestingly, though not
unexpected, the size/accuracy tradeoff differs between the two test datasets.

0.2 0.4 0.6 0.8 1.0
Average Absolute Error (Log Scale) Across Operations

100000

150000

200000

250000

300000

350000

Si
ze

 (i
n 

By
te

s)

Statistics Type
NDV_HYPERLOG
NDV_WITH_MODE
HISTOGRAM

Sampling rate
0.0
0.7
0.9
0.98

Max Histogram Size
6
16
32
64
128

Max Histogram Size
6
16
32
64
128

Figure 7: Comparison of the storage size required for the different statistics types using the Twitter
dataset. No Pruning techniques used.

In some cases it can be observed that as the sampling rate decreases, the histogram
statistics object increases in size. This is due to more singleton histograms being created.
This happens because singleton histograms are only created if the number of distinct
values seen for a key path is at or below the maximum allowed histogram bucket count.
When sampling, enough of these unique values were then not encountered so that the
distinct values count fell below the threshold. The algorithm then decides to create a
singleton histogram for that key path. It should be noted that this only happens to key
paths leading to string values, as equi-height histograms will be created for numeric values
if there are too many to fit in a singleton histogram. In general, reducing the sampling
size will reduce the size of the statistics.

Figures 7 and 8 also show that the sampling rate does affect the storage use, with a
reduction in sampling leading to a general reduction in the size of the statistics. As
one would expect, reduced sampling is not the most effective technique for achieving a
reduction in size while keeping accuracy high, however. Instead, the better option is to use
the NDV (with or without mode) statistics type, which is less demanding on space while
scoring better on accuracy than histogram statistics with high sampling. The same effect
can be seen with pruning techniques as well (see figure 14), where more severe pruning is
effective at reducing the size of the statistics, but with NDV statistics scoring better on
accuracy versus size compared to pruned histogram statistics.
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Figure 8: Comparison of the storage size required for the different statistics types using the Airbnb
dataset. Histogram with 512 buckets omitted. No Pruning techniques used.
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Figure 9: Comparison of the storage size required for the different statistics types for both datasets. Sizes
are in bytes. Note that the y-axes do not use the same scale.

5.2.1 Storage Requirements

As expected, the experimental results show that with respect to estimation accuracy, the
NDV statistics outperform the base statistics and the histogram statistics outperform the
NDV statistics. This gain in accuracy naturally comes at the cost of increased storage
requirements. Figure 9 shows the storage requirements for the two Airbnb and Twitter
datasets with no sampling employed.

The reason for the massive size of the histogram statistics with a maximum of 512 buckets
computed on Airbnb data is due to there being a lot of key paths whose value sets fit
wholely within a singleton histogram with 512 buckets or less. The bulk of this data is
made up of values for the ”amenities” key, which is an array. Each array counts as a unique
key path and is therefore collected statistics for. As there are many different amenities
and many listings list a lot of amenities, the histogram statistics up with majority of its
contents being singleton histograms listing the various amenities in the different positions
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they appear in (the amenities are not sorted across documents). Amenities are string values
and can be quite long, so this adds even more cost to the storage of these histograms.

This shows a weakness in the current approach to collecting statistics: a lack of conser-
vativeness when it comes to deciding which key paths to include. With arrays containing
more elements than can be represented by a single decimal digit, it is probably unlikely
that queries will query for specific indexes of those arrays. Therefore, a fix that would
likely be simple and effective and cause little degradation in performance would be to not
collect statistics for array indexes after the first few, or to simply drop all array index stat-
istics where the array is detected to be over a certain length. In addition, when summary
array statistics are collected, the need for data on individual array indexes is also likely to
decrease even further.

It should be noted that the structure of the statistics is different for the MySQL and
the Python versions. The Python prototype stores the statistics for each as an object
(see listings 7, 8, and 9). The MySQL version instead uses arrays, meaning that the key
strings for each object can be dropped. This leads to significant savings, as storing all
the object keys ends up requiring quite a bit of space. However, the relative difference
between measurements are the same for both versions – only the absolute values are lower.

5.2.2 The Impact of Sampling

It is clear from figures 7 and 8 that sampling has a large impact on the accuracy of
estimations. The sampling rate does not affect the different statistics types equally. We
can see from the same figures that as the sampling rate becomes lower, the gap between
the histogram and NDV statistics lessens. This is likely due to the fact that the NDV
statistic is less susceptible to resulting in large misestimations compared to the histogram
statistics. This effect becomes even more clear when looking at figure 10. Here, we can
see that the varying sampling rate has almost no effect on the BASIC statistics type. On
the other hand, when the sampling rate is very low, the assumption that the histogram
data is correct proves to be so wrong that the larger histogram is outperformed by the
smaller histogram statistic. This effect is not present in the Airbnb data, however.

It should be noted that this latter effect is most pronounced for the inequality operators.
For the unary operators, all statistics types perform the same.

5.2.3 Error Distributions

Figures 11 and 12 show the distribution of estimation errors for each operator for the
different statistics types. While both the NDV and histogram statistics lead to overes-
timations, the NDV statistic – and especially NDV and mode value statistic – lead to
underestimations at a far higher frequency than the histogram statistics do. Interestingly,
the accuracy for the equality operator is almost the same for the NDV and histogram
statistics up until 64 or 128 histogram buckets are allowed. This is likely due to both
relying on the assumption of uniform distribution, which either proves to be relatively
true, or equally false within the equi-height buckets as across the whole value range.

Another observation is that the histograms with few buckets perform very poorly on the
array operations. This is because the key path that most heavily contributes test values
to these operations, the ”amenities” key, has a ton of different possible values. As seen
with the example test value for this key in listing 14, the test values can be quite large.
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Figure 10: Comparison of the impact of different sampling rates on the estimation errors of the different
statistics types for the three binary operators. Twitter dataset.
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Figure 11: Airbnb. Comparison of the distribution of estimation errors for each operator and statistics
type. Sample rate of 0.02.
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Figure 12: Airbnb. Comparison of the distribution of estimation errors for each operator and statistics
type. Sample rate of 0.1.

A good estimate for such a test list value therefore requires accurate estimates for most
if not all of the individual values within that test list. This again, requires histograms to
allow many buckets.

5.2.4 HyperLogLog Accuracy

The impact of using HyperLogLog on the accuracy of estimations is negligible, as can be
seen in figure 13. In fact, when sampling is involved, the small inaccuracies that come
with the use of HyperLogLog seem to make the statistics more robust.

5.2.5 Pruning Techniques

Figures 15 and 16 show the impact on accuracy for the two pruning strategies which
remove paths: MIN FREQUENCY and MAX NO PATHS. For the Twitter dataset, even
the very lenient MIN FREQUENCY threshold of 0.1% results in a noticeable degradation
of accuracy. With a threshold of 1%, this effect becomes even more pronounced, with
estimates being off with several orders of magnitude compared to when no pruning was
employed.

The structure of the documents of the dataset very much affects the outcome of the
pruning step. For certain document structures, the pruning may result in large changes.
However, the opposite is also true. If there are few paths, then the MAX NO PATHS
strategy will have no effect. If there is little heterogeneity, and all/most paths are present
in all documents, then the MIN FREQ pruning strategy will have no effect. Both of these
effects were seen in the Airbnb data, which features few paths overall, and most paths are
always present.

For the Twitter data however, there are many more paths, and the documents are much
more heterogeneous (with respect to paths missing or not). This effect can be seen in
figures 16 and 15. Another effect that can be seen in these plots is that as the pruning
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Figure 13: Comparison of the estimation error using the BASIC NDV and HYPERLOG NDV statistics
gathering settings.
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becomes more severe, the advantages of more detailed statistics seem to lessen somewhat.
The effect can perhaps most clearly be observed by comparing figures 17 and 18

5.2.6 Estimating Array Operations

With the unary operators, every statistics type is equally effective getting accurate estim-
ates. With the scalar binary operators, except for the BASIC type perform very poorly,
the statistics gradually and evenly improve in accuracy as more data is added to them.
Large histogram statistics perform slightly better than small histogram statistics which
perform slightly better than statistics with NDV and mode which again perform slightly
better than statistics with only NDV.

With the array operations however, the only statistics type found to perform well were
statistics with histograms. As seen in figure 19, the NDV and NDV WITH MODE types
perform very poorly on these operations, severely underestimating the true cardinality of
the test value. This is likely due to the distribution of array values being very uneven,
leading to the assumption of uniformity being very wrong. The statistics which include a
mode value will subtract the count of the mode value from the total count before dividing
by NDV when the test value does not equal the mode value, leading to an even lower
estimate. The histogram statistics on the other hand seem to perform quite well with the
array operations, and the accuracy also improves quite significantly when more buckets
are added.

Figure 20 compares the error distributions for the two datasets with and without array
operations. From these error distribution plots, it seems that the array operations depend
on histogram statistics to a greater degree than the other operations tested. It also seems
that they benefit from an increase in the number of histogram buckets than the other
operations.

It should be noted that the Aribnb dataset contains quite a limited number of arrays
that could be tested against the array operations. Therefore these results might change
significantly when tested on larger and better suited datasets. Sadly this was not possible
to achieve for this project due to time constraints.

5.2.7 Overall Costs

When collecting and processing statistics, the difference in memory use and time taken
between the different statistics types was found to be small. This is because the size of
the document collection itself dominates the size of the statistics, and because the most
time consuming part of the statistics creation process is traversing all the documents.
Compared to these, the cost of collecting and processing individual collections of values
is miniscule. There are therefore little savings to be made in terms of statistics creation
costs by choosing simpler statistics types – at least for datasets of the size used in these
experiments. It is possible that for more massive datasets, the distribution of costs would
be different.
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Figure 15: The impact of the MIN FREQ pruning strategy on Twitter dataset with no sampling. Each
row contains a different statistics strategy. The columns are ordered from least severe (no
pruning) to most severe (strictest pruning setting). Y axis shows the log error, with smaller
(closer to the middle) being better.
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Figure 16: The impact of the MAX NO PATHS pruning strategy on Twitter dataset with no sampling.
Each row contains a different statistics strategy. The columns are ordered from least severe
(no pruning) to most severe (strictest pruning setting). Y axis shows the log error, with
smaller (closer to the middle) being better
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Figure 17: Twitter. The effect that pruning has on the improvement in estimation accuracy yielded
by increasing histogram bucket counts. It appears that as the pruning becomes more strict,
increasing the bucket count yields smaller gains in accuracy overall.
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Figure 18: Airbnb. The effect that pruning has on the improvement in estimation accuracy yielded by
increasing histogram bucket counts.
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Figure 19: Airbnb. Overall accuracy distribution for five different statistics configurations. Full sample
size and no pruning.
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(a) Twitter w/ array operations
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(b) Airbnb w/ array operations
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(c) Airbnb with only array operations
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(d) Airbnb w/o array operations

Figure 20: Comparison of the impact of Array operators on error distributions. Sampling rate 0.
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5.3 Discussion

The general trend seen in the experiments of the Python prototype is that the more
data is included in the statistics, the better the estimates become – although the returns
are diminishing. When sample sizes are very low, the utility of the more advanced and
detailed statistics types is reduced as they become more susceptible to becoming biased
and blindsided (see for example figure 10 where the larger histogram performs worse than
the smaller one at a sample rate of 0.02). The accuracy of the less detailed statistics
types suffers less when the sample sizes are low, closing the gap between the more and less
detailed statistics types.

This effect of diminishing returns on more detailed statistics can also be seen when pruning
techniques are used. See for example figure 17, where there is practically no gain in
accuracy when increasing the maximum number of buckets allowed for the histogram
statistics when the pruning is severe.

The severity of this effect of diminishing returns is heavily dependent on the dataset
however! For the Twitter data set, which is highly heterogeneous and contains many
key paths, many of which appear infrequently, the impact of missing data can be very
high. In the case of pruning, this happens because the paths simply disappear from the
statistics due to being being below the set threshold limit. When sampling, paths that
already appear infrequently become encountered even more rarely and may even never be
encountered at all when the statistics are built. Both cases clearly lead to statistics that
do not contain information that is sufficient to

Comparing figures 17 and 18, and 5 and 6, it is clear that the Airbnb dataset is much
less severly impacted both by sampling and by pruning. The smaller impact from pruning
makes sense – the dataset contains fewer distinct key paths so the MAX NO PATHS
removes less data. The dataset is also more homogenous than the Twitter dataset and
as such is less impacted by the MIN PATH FREQUENCY pruning strategy as well. The
smaller impact of sampling can be explained by the homogeneity of the airbnb dataset.
The chances of missing a key path are much lower, and the distribution of values within
for each key path can be approximated in many fewer samples because each key path is
almost always present in each document sampled. This can also be seen in figures 7 and
8, where histogram with sampling scores better for than NDV statistics with no sampling
in the case of the Airbnb data. This is not the case for the Twitter data, where the NDV
statistics are both smaller in size and provide better accuracy than histogram statistics
with sampling12.

Therefore, the choice of whether histogram or NDV (with or without mode) statistics
depends also on the dataset, with NDV statistics being better at accommodating more
diverse and heterogeneous datasets, and histogram statistics being a better fit for more
homogeneous and less diverse datasets – provided that the statistics size should be limited.

6 Experiments With MySQL Implementation

This section presents the experiments ran on the MySQL prototype. The goal of the per-
forming these experiments on the MySQL prototype was to discover the impact that JSON

12The Airbnb histogram data is also positively influenced by the fact that the array operators respond
more positively to histogram data than the other operators. However, the number of array operator tests
is so small that this data has very little impact on the figure in questions (see figure 20).
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statistics have on the estimates made by MySQL, and the impacts that these changed es-
timates have on the MySQL’s performance when executing queries. To achieve this goal,
a number of data sets were loaded into MySQL and then queries associated with those
data sets were executed and the estimates and query plans produced by MySQL for these
queries were measured and analyzed.

While section 5 discussed in great detail the different configurations and parameters pos-
sible for the statistics, the measurements of their impact were not made in a realistics
environment. The Python prototype experiments only reveal differences between different
configurations in that testing environment. While this data is undoubtedly interesting and
useful, it can only tell us about the idealized accuracy enabled by the statistics structures.
It tells us little about their real-world performance.

The section is structured as follows: first, the hardware and software setup used for the
experiments will be examined. Then, a description of the data sets and queries used for the
experiments will follow. Finally, a discussion of the experimental results will follow. The
presentation of the experiment results are divided into two parts: the first part examines
the impact of statistics on the accuracy of estimations. The second part examines whether
these changes in estimations have any impact on the performance of the queries.

6.1 Experimental setup

For each data set, a total of eigth different configurations of MySQL was tested. Four
”levels” of differing statistics configurations were tested:

1. The base MySQL 8.0.32 release.

2. MySQL 8.0.32 with the modifications described in section 4.3, but with no statistics
inserted.

3. Same as level 2, but with statistics gathered with using the BASIC NDV statistics
type.

4. Same as level 2, but with statistics gathered with using the HISTOGRAM statistics
type.

Each statistics type was tested both with the hypergraph optimizer enabled and disabled
(meaning the current MySQL optimizer was used). The reason for this is that both
the impact on the current version on MySQL and future versions is of interest. The
hypergraph optimizer will be taken into use in the future, and so ignoring it will yield
results that will soon no longer be applicable to current releases of MySQL. In addition,
because the hypergraph optimizer is able to consider a larger set of query plans, and will
also use the JSON statistics for join size estimations, the statistics are likely (and do in
fact, as will be shown later in the section) to have a larger impact when this optimizer is
used. When the hypergraph optimizer is said to be ”off” or disabled, this means that that
MySQL’s current optimizer is being used. The reason for testing both the base release
version of MySQL as well as the modified version without any statistics is to isolate the
effect that simply allowing heuristics to be used makes on estimation accuracy and query
performance. Again, the current release of MySQL (8.0.32) simply assigns a selectivty
factor of 1.0, i.e., no reduction in cardinality, to all JSON functions.

The statistics used in the experiments were gathered withoutout any sampling, and no
pruning techniques were used. The histogram statistics allowed at most 64 buckets. Due
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to time constraints, running the MySQL experiments with any more configurations was
not feasible. However, I believe that the chosen configurations are be sufficient to show
the impact that the statistics have. For a detailed discussion of how the sampling and
pruning affect the accuracy of estimations, see section 5. No indexes were created for the
data.

For the timing experiments, timing data was gathered using MySQL’s built-in performance
schema. As no modifications were made to the MySQL client for this project, the base
MySQL 8.0.32 client was used for all experiments. To prevent the amount of table data
currently in memory from affecting the judgements of the query optimizer, the cost model
variables io_block_read_cost and memory_block_read_cost were updated to have the
same value.

The machine used for the MySQL experiments is not the same as the one used for the
Python experiments. The specs of the machine used for the MySQL prototype experiments
were as follows:

• Ubuntu 22.04.2 LTS

• 32 GiB RAM

• 11th Gen Intel® Core™ i7-1185G7 @ 3.00GHz × 8

• 512 GB SSD13

The queries measuring query execution timing were executed multiple times and their
results averaged to ensure that even and representative measurements were used.

6.2 Data and Queries

Few benchmarks or real-world datasets with complex queries against RDBMS JSON data
were found when researching suitable experiments to perform for the MySQL prototype.
This is problematic because relational data is structured and queried differently from
document data like JSON. It is especially problematic for operations that are unique
to JSON such as the JSON array operations because these are not found in existing
benchmarking suites for relational data – meaning that improvements in estimates for
these operations will not be measured using existing suites without heavy modifications.

Instead of existing JSON data benchmarks, a combination of existing relational bench-
marks and custom data sets and queries created specifically for use in these experiments
was used. The goal of the inclusion of the relational benchmark is to test the statistics on
established data and queries, while the custom data sets and queries were used to test the
statistics on (likely) more realistic data and queries. The next few sections will detail the
data sets and queries used in the experiments.

Due to time and technical constraints, not all queries could be executed for all configura-
tions. Most simply took longer than the set timeout limit, while some caused the machine
running the experiment to run out of disk space by storing massive intermediary data
sets. The queries for which this happened are marked in the figures. The timeout limit
used varied between the datasets, and will be noted for each. Unless otherwise stated, the
timeout limit used was 10 minutes.

13with about 256 GB of available space when running the experiments
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The queries created for these experiments are all relatively complex. This is because the
main things that statistcs impact, and which is visible when measuring performance, is
join ordering. Observing differences in performance between different configurations for
simple queries where no joins are performed is highly unlikely, and so such simple queries
are uninteresting results-wise. It is important to keep in mind however, when seeing that
a majority of queries are impacted somehow by statistics, that the queries chosen for the
experiments do not necessarily represent a realistic sampling of real-world queries.

6.2.1 TPC-H

The TPC-H data is relational when generated, and so it had to be converted to JSON
for use with the experiments. The JSON version of the data was a direct translation of
the TPC-H data to JSON format, with the tables retained, but with all the data for each
table being placed into a single column containing JSON data. Each row was translated
into an object with the table’s column names used as keys and the row values being used
as values. Several columns in the TPC-H data are of the decimal data type, which is
not directly supported by JSON. The values in these columns were converted to integers
and multiplied by 100 (as they had two values after the fractional point). The decimal
columns were defined to support up to 15 digits in total, giving the numeric values of these
columns a range which can comfortably be supported by 64-bit integers (log[2]1015 < 50).
It is possible that the very extremes of this range cannot be represented by doubles, which
can accurately represent integers up to 253 [4] ((log[2]1016 = 53.15), accounting for signed
numbers), the numbers were serialized as whole numbers which means that MySQL will
interpret them as 64-bit integers. Several of the columns also encode date values, which
JSON does not support directly. Instead of turning the date values into date strings, they
were converted to UNIX timestamps and stored as integers. This was done because the
current prototype does not support detailed statistics for date strings (see section 4.3.4
for discussion), but adding support for them is seen as only a minor technical challenge.
Because time constraints did not allow for the implementation of date string support,
the use of UNIX timestamps with the TPC-H data was used as a simpler, temporary
workaround. In theory, date strings and UNIX time stamps would be treated exactly the
same by the estimation system.

The TPC-H queries, being written (generated) to make use of the standard relational
tables and column types also had to be rewritten. This was done programmatically,
with a minor errors in the translation corrected by hand afterwards. For reasons related
to various technical challenges and time constraints, the TPC-H queries X, Y, Z were
excluded from the experiments.

The data generated by TPC-H is not ideal for testing the impact of statistics. TPC-H
famously generates statistically independent data [14], so the TPC-H queries will benefit
much from the addition of accurate selectivity estimates without experiencing one of the
major downsides when the assumption of independence turns out to be incorrect. In ad-
dition, the distribution of the data itself within each column is often practically uniform.
This leads to lessening in the impact of histogram statistics compared to NDV statistics,
because the assumption of a value’s frequency being 1/NDV will always hold true, some-
thing which is usually not the case in real data sets. Finally, the directly translated TPC-H
data makes for perhaps unrealistically structured JSON data. There are no null values,
no nesting, no missing keys, no ”type confusion”, and all key paths have a frequency of 1.
However, the TPC-H dataset is widely known and an accepted part of database perform-
ance benchmarking, and the TPC-H queries explore many different approaches to data
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retrieval and query structures. And importantly, the TPC-H queries are independent of
this work and created by an outside party. I therefore believe that they will offer good
and valid insight into the effect that the JSON statistics have. And while limitations of
the generated data must be kept in mind, the other datasets used for these experiments
do not suffer from the same issues.

The data was generated using the following arguments to the data generation application:
-f -s 0.05.

Note: Some tpch queries use the BETWEEN operator, whose implementation was slightly
wrong for the experiments. It assumed that the base frequency of the key path was always
1, which of course is unlikely to always be the case and in some cases may be completely
wrong. However, as just discussed, this assumption is true for the TPC-H data. And as
the TPC-H datasat was the only dataset for which the BETWEEN operator was used,
the bug had no real impact on the experiments.

For a detailed description of the structure and semantics of the TPC-H data, see the
TPC-H manual.

6.2.2 Airbnb

The Airbnb dataset used in the testing of the MySQL prototype is a superset of the Airbnb
dataset used when testing the Python prototype. In addition to the listings data, three
additional document collections were used: calendar, reviews, neighbourhoods. All four
document collections stem from the Los Angeles dataset published March 7th. 2023. A
table representation of the datasets is presented in table 2, showing the most important
key paths for each of the collections. All keys shown in the tables have a frequency of 1.

The calendar data keeps the availabilities and prices for each listing for every day of the
coming year. The Neighbourhoods data groups neighbourhoods into greater areas. For
example, both neighbourhoods of Arleta and Bel-Air are in City of Los Angeles. Val Verde
on the other hand, is located in Unincorporated Areas. The reviews data contains the
user reviews for each listing. The actual ratings of the listings however, are stored in the
listings data set.

The sizes of the different tables can be seen in table 3.

The queries of the Airbnb dataset feature multiple joins, and filters. Typically, the calendar
and listing tables are joined to find listings available for a certain date and filtered on the
properties of the listings like rating, amenities and location. The Airbnb queries can be
seen in their entirity in appendix C.

6.2.3 Twitter

The Twitter dataset consists of the exact same data as the Twittier data used in the Python
experiments. It is all inserted as a single table with a single column, with each row of
that column containing the data for one tweet. The Twitter data is quite heterogeneous
structurally, with more than 80 of its 809 paths occurring less than 1000 times, meaning
that they have a frequency of less than 0.6%.

The dataset contains tweets only. However, the various metadata available with the tweets
is quite extensive and includes geographic information, language information, some user
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Table 2: The Airbnb data fields used in the experiment queries.

(a) Calendar

Key Name Usual Type Example Value

listing id string ”10000255”

date string ”2023-03-07”

available string ”t”

minimum nights integer 1
(b) Neighbourhoods

Key Name Usual Type Example Value

neighbourhood group string ”City of Los Angeles”

neighbourhood string ”Acton”
(c) Reviews

Key Name Usual Type Example Value

listing id string ”10000255”

date string ”2023-03-07”
(d) Listings

Key Name Usual Type Example Value

id string ”10000255”

review scores rating float 5.0

bedrooms integer 2

host is superhost string ”f”

Table Row Count Size

listings 170285 190 MB

reviews 1398664 538 MB

neighbourhoods 270 23 KB

calendar 15492121 2.7 GB

Table 3: File sizes and row counts for the different document collections in the Airbnb dataset.
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profile information, data on the hashtags used, and more.

The queries for the Twitter data in general feature fewer joins than the Airbnb and TPC-
H data, and uses some operators that were not used for the Airbnb data such as the not
equals operator <> and the IS NULL operator with the JSON_VALUE function. Operators
such as IS NULL depend on very simple statistics, which are gathered for all the statistics
types supported by the Python prototype. As such, it is also likely here that the differences
in the estimates using the NDV and histogram statistics may be small. As with the Airbnb
queries, all the queries of the Twitter data can be found in appendix C.

6.3 Estimation Experiments

Accuracy of estimates can be hard to compare across different configurations because
the query plans may differ significantly in their structure. While the filtering predicates
are the same for all configurations, their place and context within the query plan may
differ. This is especially true when using the hypergraph optimizer, which was found to
produce a much more diverse set of plans than the current query optimizer. Because errors
propagate and (usually) grow larger the further up the execution tree you go, the input
to the predicates may differ greatly between configurations. Therefore, naively comparing
the estimates for each filter or join is not always possible. Additionally, MySQL’s estimate
of the row count of a table can be off by quite a few percent (the author has observed
misestimations of up to 30%). This error will of course propagate, affecting all subsequent
estimations.

To minimize the influence of some of these factors on the estimation accuracy calculations
and comparisons, the scheme used to calculate estimations does not simply compare the
estimated row count and the actual row for each filter or join in the query plan. Instead, the
selectivity estimate is calculated by comparing the estimated row count by the estimated
row count of the child iterator feeding the current step. The real selectivity is calculated
by comparing the actual row counts of the two iterators. Then, two selectivity estimates
are compared to get the estimation error used in the visualizations in this chapter.

Another challenge is that in cases where queries time out or run out of memory or disk
space, we can only see the estimated row counts because the real ones could not be
computed. This is important to keep in mind when comparing error distributions because
when query plans time out, a lack of an actual row count to go with the estimated row
counts makes calculating the estimation error very challenging. These errors cannot then
be added to the distribution – and so the worst mis-estimates don’t show up. Due to
these challenges, this section relies somewhat on comparing the query plans and associated
esimates directly instead of by using visualizations and graphs.

6.3.1 TPC-H

For the TPC-H data and queries, as with the other data sets and associated queries (see
the next few subsections), massive improvements in the quality of selectivity estimations
were observed when MySQL prototype compared to when using the current release version
(the ”base” version) of MySQL. A summary of these improvements can be seen in figure
21.

Because base MySQL assigns selectivity factor of 1.0 to all predicates, it is incapable of
underestimations. This results in the massive overestimations seen in figure 21. The ver-
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Figure 21: TPC-H. Comparison of the logarithmic relative estimation errors measured at all steps in the
queries.

sion using heuristics and no statistics will sometimes make underestimations, but because
the strictest selectivity factor it can produce is 0.1, its estimates also tend towards large
overestimations. With large queries with many joins, these overestimations propagate and
multiply causing a ballooning of estimates. In the case of the base version of MySQL, the
most extreme case resulted in an overestimation of 13 orders of magnitude.

The figure also shows that estimation errors in general are larger when MySQL’s current
optimizer is used. This happens because MySQL’s current optimizer is unable to make
use MySQL’s histogram statistics to make selectivity estimates for join conditions, so the
result sizes of joins are often to estimated to be much larger than they turn out to really be.
This ends up causing much larger estimation errors for complex queries with many joins
than what is usually seen with the hypergraph optimizer. A filter may be applied after
the join to alleviate this issue, but this is not a perfect solution, and can cause estimates
to become too small. While this effect is not as pronounced in the TPC-H data, it is very
clear in the Airbnb and Twitter results (see figures 22 and 23).

As expected, the even distribution of values within columns caused the measured differ-
ences in error for NDV statistics and histogram statistics to be miniscule.

6.3.2 Airbnb

For the Airbnb queries, one can clearly see an improvement an estimation accuracy when
moving from the least amount of tools and informations (base MySQL) to the most (pro-
totype with histogram data). This effect can be observed both using the current and with
the hypergraph optimizer. Figure 22 shows this progression well. The estimates are clearly
not perfect, with both the NDV and histogram statistics causing relative overestimations
in the order one million in the worst case. However, they are a massive improvement over
the estimations offered by the base version and the version using only heuristics.

The impact of the improved estimates can be clearly seen in the choice of query plans
(and thus the execution times, as will be discussed in the performance section) when
the hypergraph optimizer is enabled, with the majority of queries getting different and
improved plans when NDV and histogram statistics are introduced. Listings 17, 18 and
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Figure 22: Airbnb. Comparison of the logarithmic relative estimation errors measured at all steps in the
queries.

19 make up an example of how the query plans change with the introduction of statistcs,
and how how accurate the estimates used to construct these query plans are.

SELECT listings.j

FROM listings, calendar

WHERE

-- Join conditions

listings.j->"$.host_id" = "144214204" -- Host with the most listings in LA, ca. 1000 in total

AND listings.j->"$.id" = calendar.j->"$.listing_id"

-- Filters on availability

AND calendar.j->"$.available" = "t"

AND calendar.j->"$.date" = "2023-12-12"

AND calendar.j->"$.minimum_nights" = 1

ORDER BY

listings.j->"$.last_review"

;

Listing 16: The host_availabilities_d query. One of the eight queries for the Airbnb data sets. It
retrieves the listings of a certain host which are available for booking one night only at a
certain date.

As expected, the estimates made by the Base version of MySQL (listing 17) are way off.
The filters are not applied and a cartesian join is assumed, resulting in the estimation
of a humongous number of rows (463 308 494 745) being returned. The misestimation of
the sizes of the two join relations causes the optimizer to believe that a sort followed by
a sort-preserving nested loop join is the cheapest alternative. This is likely due to the
optimizer perceiving the post-join number of rows to so large that performing the sorting
after the join would be incredibly expensive. In truth, the nested loop join is very slow
compared to the hash join due to the real sizes of the relations being joined, and the join
result itself, being very small (see figure 18).

The query plans chosen when using NDV and histogram statistics are the same. However,
the actual estimates made using the two statistics approaches are quite different. For
the listings filter, the prototype has to rely on the assumption of uniformity when using
NDV statistics. The average host has two listings, so that is what forms the basis of the
estimate. However, the host id used in this specific query is that of the host with the most
listings (1003) in the data set. Thus, the NDV statistics lead to massive underestimate in
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-> Nested loop inner join (rows=463308494745)

-> Sort: json_extract(listings.j,'$.last_review') (rows=31893)

-> Filter: (json_extract(listings.j,'$.host_id') = '144214204') (rows=31893)

-> Table scan on listings (rows=31893)

-> Filter: (((json_extract(calendar.j,'$.available') = 't') and

(json_extract(calendar.j,'$.date') = '2023-12-12') and

(json_extract(calendar.j,'$.minimum_nights') = 1)) and (json_extract(listings.j,'$.id') =

json_extract(calendar.j,'$.listing_id'))) (rows=14526965)

↪→
↪→
↪→
-> Table scan on calendar (rows=14526965)

Listing 17: The EXPLAIN output for the host_availabilities_d query for the base MySQL configura-
tion with the hypergraph optimizer enabled. Because the query timed out, only the estimates
are included with the query plan. The true row count for some of the steps can be seen in
listing 18 which includes EXPLAIN ANALYZE output.

-> Sort: json_extract(listings.j,'$.last_review') (rows=0.006) (actual rows=0)

-> Inner hash join

(<hash>(json_extract(listings.j,'$.id'))=<hash>(json_extract(calendar.j,'$.listing_id')))

(rows=0.006) (actual rows=0)

↪→
↪→
-> Filter: ((json_extract(calendar.j,'$.date') = '2023-12-12') and

(json_extract(calendar.j,'$.minimum_nights') = 1) and

(json_extract(calendar.j,'$.available') = 't')) (rows=178) (actual rows=3813)

↪→
↪→
-> Table scan on calendar (rows=14360514) (actual rows=15492121)

-> Hash

-> Filter: (json_extract(listings.j,'$.host_id') = '144214204') (rows=2) (actual rows=1003)

-> Table scan on listings (rows=31893) (actual rows=42451)

Listing 18: The EXPLAIN ANALYZE output for the host_availabilities_d query for the MySQL
using NDV statistics and with the hypergraph optimizer enabled.

this case. The NDV statistics also lead to the size of the filtered calendar relation being
underestimated. While the calendar’s date values conform exactly to the expectation of
uniform distribution, and the availability values are quite close to uniformly distributed,
the minimum nights predicate has a true selectivity of 17%. This is quite far from the
selectivity of 1

110 ≃ 0.9% that is given to the query optimizer. Because none of the listing
ids found through the calendar predicates match the listings owned by the host however,
the join of the two relations ends up having zero actual rows, which is almost exactly what
is predicted as the outcome of the join when using NDV statistics. This is coincidental
however, and not the result of clever use of statistics.

-> Sort: json_extract(listings.j,'$.last_review') (rows=68) (actual rows=0)

-> Inner hash join

(<hash>(json_extract(listings.j,'$.id'))=<hash>(json_extract(calendar.j,'$.listing_id')))

(rows=68) (actual rows=0)

↪→
↪→
-> Filter: ((json_extract(calendar.j,'$.date') = '2023-12-12') and

(json_extract(calendar.j,'$.minimum_nights') = 1) and

(json_extract(calendar.j,'$.available') = 't')) (rows=3841) (actual rows=3813)

↪→
↪→
-> Table scan on calendar (rows=14360514) (actual rows=15492121)

-> Hash

-> Filter: (json_extract(listings.j,'$.host_id') = '144214204') (rows=754) (actual

rows=1003)↪→
-> Table scan on listings (rows=31893) (actual rows=42451)

Listing 19: The EXPLAIN ANALYZE output for the host_availabilities_d query for the MySQL
with histogram statistics and the hypergraph optimizer enabled.

The estimates produced using the histogram statistics are very accurate, with most of the
error in the estimations coming from the fact that MySQL misjudges the number of rows
in the base tables. The reason that the estimate for the host id predicate does so well is
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that a ”singleton plus”/top frequency histogram was created for the key due to its uneven
distribution of values. The host id used in this query being by far the most frequent of the
host values means that it is present in this histogram and can be accurately estimated for.
These accurate estimates do not lead to any changes in the choice of query plan, however.

Using the current optimizer, while estimates are improved, no major changes in the choice
of query plan was found to have been made as a result.

6.3.3 Twitter

Perhaps somewhat unexpectedly, analysis of the estimation errors for the Twitter queries
did not show any significant difference in the estimations made using NDV and histogram
statistics. With the hypergraph optimizer enabled, the mean estimation error using his-
togram statistics can be seen to be every so slightly closer to 0 (which is good), and the
worst recorded overestimation is one order of magnitude lower than for the NDV statistics.
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Figure 23: Twitter. Comparison of the logarithmic relative estimation errors measured at all steps in
the queries.

The one query for the Twitter dataset which exhibited major changes in the performance of
with the hypergraph optimizer enabled was for the count_replies_and_retweets query,
seen in listing 20.

Listings 21 and 22 and 23 show the query plans generated for this query for three of four
statistics configurations with the hypergraph optimizer enabled. The base configuration
estimates that a total of 18 665 024 400 ( 18 billion) rows will be input into final sorting
step. With heuristics, this number is reduced by three orders of magnitude to 82 228 688
rows. Using NDV statistics, the final estimate instead comes out to be 2 278. Because none
of predicates in the query are such that histogram statistics can be used, the configurations
using NDV and histogram statistics arrive at the exact same estimates and thus the same
query plan. The true number of rows input to the final sorting step is 15. The reason
for these massive misestimations is that replies and retweets are a rare occurrence in the
dataset, with the "retweeted_status" key appearing in about 1% of documents, and
the "in_reply_to_status_id" value being null in 99.84% of documents. Thus, with no
heuristics or statistics to draw from, the base MySQL version massively overestimates
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SELECT

tweeters.j->"$.user.screen_name",

tweeters.j->"$.id",

COUNT(*) AS count

FROM (

SELECT * FROM twitter

WHERE

(JSON_VALUE(j, "$.in_reply_to_status_id") IS NULL OR j->"$.in_reply_to_status_id" IS NULL)

AND (JSON_VALUE(j, "$.retweeted_status.id") IS NULL OR j->"$.retweeted_status.id" IS NULL)

) AS tweeters, (

SELECT * FROM twitter

WHERE JSON_VALUE(j, "$.in_reply_to_status_id") IS NOT NULL

) AS replies, (

SELECT * FROM twitter

WHERE JSON_VALUE(j, "$.retweeted_status.id") IS NOT NULL

) AS retweets

WHERE

tweeters.j->"$.id" = replies.j->"$.in_reply_to_status_id"

AND

tweeters.j->"$.id" = retweets.j->"$.retweeted_status.id"

GROUP BY

tweeters.j->"$.user.screen_name",

tweeters.j->"$.id"

ORDER BY

count DESC

LIMIT 20

;

Listing 20: One of the four queries for the Twitter data sets. It counts the number of replies and retweets
for each of each tweet in the data set where that count is greater than 0. It then retrieves
the 20 users with the most replies and retweets in total.

the size of the replies and retweets relations. On the other hand, the configuration
relying on heuristics makes the opposite mistake, calculating a much too small size for
the tweeters table, whose predicates in actuality have a miniscule selectivity. The result
of the misestimations of the base and heuristic configurations is that the resulting query
plans are based on absolutely wrong assumptions about the sizes of the tables. These
overestimations result in the use of nested loop joins where hash joins should be used, and
the queries end up timing out before they are able to be completed.

6.4 Timing Experiments

As stated in section 2.2, improved database statistics and selectivity estimates need not
necessarily lead to improved database performance, and may even lead to performance
regressions in some cases. In addition, if the assumptions which the selectivity estimation
calculations rely on turn out to be wrong, the more accurate statistics may in fact lead to
cardinality estimations that are worse than when using heuristics or no estimates at all.
These worse estimates may also lead to performance regressions.

Therefore, there is no guarantee that the increases in estimation accuracy seen so far will
lead to an increase in performance.

6.4.1 TPC-H

Figures 25 and 24 summarize the timing findings for the experiments using the TPC-H
benchmark data and queries with hypergraph optimizer off and on, respectively.
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-> Sort: count DESC, limit input to 20 row(s) per chunk (rows=20)

-> Table scan on <temporary> (rows=18665024400)

-> Temporary table (rows=18665024400)

-> Group aggregate: count(0) (rows=18665024400)

-> Nested loop inner join (rows=2550015633528000)

-> Nested loop inner join (rows=18665024400)

-> Sort: json_extract(twitter.j, '$.user.screen_name'), json_extract(twitter.j,

'$.id') (rows=136620)↪→
-> Filter: (((json_value(twitter.j, '$.in_reply_to_status_id' returning char(512))

is null) or (json_extract(twitter.j, '$.in_reply_to_status_id') is null)) and

((json_value(twitter.j, '$.retweeted_status.id' returning char(512)) is null) or

(json_extract(twitter.j, '$.retweeted_status.id') is null))) (rows=136620)

↪→
↪→
↪→
-> Table scan on twitter (rows=136620)

-> Filter: ((json_value(twitter.j, '$.in_reply_to_status_id' returning char(512)) is

not null) and (json_extract(twitter.j, '$.id') = json_extract(twitter.j,

'$.in_reply_to_status_id'))) (rows=136620)

↪→
↪→
-> Table scan on twitter (rows=136620)

-> Filter: ((json_value(twitter.j, '$.retweeted_status.id' returning char(512)) is not

null) and (json_extract(twitter.j, '$.id') = json_extract(twitter.j,

'$.retweeted_status.id'))) (rows=136620)

↪→
↪→
-> Table scan on twitter (rows=136620)

Listing 21: The EXPLAIN output for the count_replies_and_retweets query for the base MySQL
configuration with the hypergraph optimizer enabled. Because the query timed out, only the
estimates are included with the query plan. The true row count for some of the steps can be
seen in listing 23 which includes the EXPLAIN ANALYZE output.

-> Sort: count DESC, limit input to 20 row(s) per chunk (rows=20)

-> Table scan on <temporary> (rows=82228688)

-> Temporary table (rows=82228688)

-> Group aggregate: count(0) (rows=82228688)

-> Sort: json_extract(twitter.j, '$.user.screen_name'), json_extract(twitter.j, '$.id')

(rows=745650035403)↪→
-> Inner hash join (<hash>(json_extract(twitter.j,

'$.id'))=<hash>(json_extract(twitter.j, '$.retweeted_status.id')))

(rows=745650035403)

↪→
↪→
-> Nested loop inner join (rows=60642662)

-> Filter: (((json_value(twitter.j, '$.in_reply_to_status_id' returning char(512))

is null) or (json_extract(twitter.j, '$.in_reply_to_status_id') is null)) and

((json_value(twitter.j, '$.retweeted_status.id' returning char(512)) is null) or

(json_extract(twitter.j, '$.retweeted_status.id') is null))) (rows=4932)

↪→
↪→
↪→
-> Table scan on twitter (rows=136620)

-> Filter: ((json_value(twitter.j, '$.in_reply_to_status_id' returning char(512)) is

not null) and (json_extract(twitter.j, '$.id') = json_extract(twitter.j,

'$.in_reply_to_status_id'))) (rows=12296)

↪→
↪→
-> Table scan on twitter (rows=136620)

-> Hash

-> Filter: (json_value(twitter.j, '$.retweeted_status.id' returning char(512)) is

not null) (rows=122958)↪→
-> Table scan on twitter (rows=136620)

Listing 22: The EXPLAIN output for the count_replies_and_retweets query for the MySQL using
heuristics only and with the hypergraph optimizer enabled.
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-> Sort: count DESC, limit input to 20 row(s) per chunk (rows=20) (actual rows=15)

-> Table scan on <temporary> (rows=2278) (actual rows=15)

-> Temporary table (rows=2278) (actual rows=15)

-> Group aggregate: count(0) (rows=2278) (actual rows=15)

-> Sort: json_extract(twitter.j, '$.user.screen_name'), json_extract(twitter.j, '$.id')

(rows=108699) (actual rows=150)↪→
-> Inner hash join (<hash>(json_extract(twitter.j,

'$.id'))=<hash>(json_extract(twitter.j, '$.retweeted_status.id'))) (rows=108699)

(actual rows=150)

↪→
↪→
-> Inner hash join (<hash>(json_extract(twitter.j,

'$.id'))=<hash>(json_extract(twitter.j, '$.in_reply_to_status_id')))

(rows=110681) (actual rows=231)

↪→
↪→
-> Filter: (((json_value(twitter.j, '$.in_reply_to_status_id' returning char(512))

is null) or (json_extract(twitter.j, '$.in_reply_to_status_id') is null)) and

((json_value(twitter.j, '$.retweeted_status.id' returning char(512)) is null) or

(json_extract(twitter.j, '$.retweeted_status.id') is null))) (rows=136392)

(actual rows=168212)

↪→
↪→
↪→
↪→
-> Table scan on twitter (rows=136620) (actual rows=170285)

-> Hash

-> Filter: (json_value(twitter.j, '$.in_reply_to_status_id' returning char(512))

is not null) (rows=213) (actual rows=265)↪→
-> Table scan on twitter (rows=136620) (actual rows=170285)

-> Hash

-> Filter: (json_value(twitter.j, '$.retweeted_status.id' returning char(512)) is

not null) (rows=1451) (actual rows=1808)↪→
-> Table scan on twitter (rows=136620) (actual rows=170285)

Listing 23: The EXPLAIN ANALYZE output for the count_replies_and_retweets query for the
MySQL with histogram statistics and the hypergraph optimizer enabled.
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Figure 24: TPC-H. Time spent per query for each of the four statistics configurations using the current
MySQL optimizer. The statistics configurations are grouped together for each query in the
order of base MySQL, heuristics only, NDV statistics, and histogram statistics. Note the
logarithmic y-axis. Higher is worse.
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Figure 25: TPC-H. Time spent per query for each of the four statistics configurations using the hyper-
graph optimizer. Higher is worse.

As expected, the change in performance due to the introduction of statistics (and heur-
istics) is much more noticeable when the hypergraph optimizer is used. When using the
old/current optimizer, most query plans stay exactly the same (see figure 26 for more de-
tails on the exact differences). The three queries with a significant change in performance
queries 7, 9 and 21, and for the first of these, the only change is that when using only
heuristics, a 9x slowdown is observed. This slowdown is not seen however when statistics
are introduced. In fact, with statistics inserted, no real regressions in performance are
observed. On the other hand, for query 9, the base version of MySQL times out, resulting
in the configurations using statistics seeing a calculated speed-up of (at the very least)
500x. For query 21, a speedup of around 2.5x was measured.

When using the hypergraph optimizer, more queries experienced speedups than those that
experienced no change in performance and those that experienced performance regressions
combined (see figures 27, 28). And in fact, when the hypergraph optimizer was not
used, the only case of a serious performance regression was seen when using heuristics
and disappeared once collected statistics were inserted. With the hypergraph optimizer
disabled, the largest query speedup was observed for all three cases of heuristics, NDV
statistics and histogram statistics. If it is the case that the largest increases in performance
can be achieved by simply enabling heuristics for JSON data, this weakens the argument
for introducing JSON statistics. However, with the hypergraph optimizer enabled, the
majority of the speedups observed appear only when proper statistics were used, or the
speedup achieved using heuristic was much smaller. This can be seen in further detail in
figure 29, which shows the cases in which the NDV and histogram statistics outperformed
the heuristics-based statistics configuration.

As expected, no significant performance differences were measured when using NDV stat-
istics and histogram statistics.
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Figure 26: TPC-H. The measured relative difference between the performance of the non-base statistics
configurations compared to the performance of base MySQL. Higher is better.
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Figure 27: TPC-H. Changes in performance relative to the baseline query. Positive and negative scales
are symmetric, so −101 means that a query was 10x slower than the baseline query. Higher
is better.
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Figure 28: TPC-H. Positive changes in performance relative to the baseline query. Higher is better.
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Figure 29: TPC-H. Positive changes in performance relative to the performance of the heuristics-only
configuration. Higher is better.

6.4.2 Airbnb

With the current optimizer, no significant change in query execution times between the
different MySQL configurations was detected (see figure 31). With the hypergraph optim-
izer enabled however, a majority (five out of eight) of queries saw major speedups when
statistics were introduced. Of these five queries, three were not helped when heuristics
were enabled and required NDV or histogram statistics to achieve a gain in performance.

No regression in performance was detected for the Airbnb data and queriess, both with
using the current optimizer and using the hypergraph optimizer.

6.4.3 Twitter

Of the four queries for the Twitter data, only the count_replies_and_retweets query
exhibited major changes in performance when statistics were added to the system. How-
ever, whereas the discussion on estimation accuracy and the resulting query plans focused
on the case where the hypergraph optmizer is enabled, a change (albeit a smaller one) was
also observed when the current optimizer was used.

This regression is due to a mis-estimation that only occurs using the old hypergraph
optimizer, where the size of the tweeters relation is massively mis-estimated, causing the
wrong join method to be used. Why this misestimation happens I cannot explain. The
size of the tweeters relation is correctly estimated when the hypergraph query optimizer
is in use, but is incorrectly estimated when the current optimizer is in use – despite the
fact that the relation is only a table scan plus a filter. Sadly, time constraints preclude
further investigation into the matter. It is possible that this regression is caused by a bug
and is not a true limitation of the current optimizer. Becausee hypothesis of the cause
being a minor and fixable bug cannot be established, I will regard the regression as a true
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Figure 30: Airbnb. Time spent per query for each the four statistics configurations with using the current
MySQL optimizer. The minor variations are not significant.
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Figure 31: Airbnb. Time spent per query for each the four statistics configurations with using the
hypergraph optimizer. The thin line above the 500 mark shows the timeout limit. Higher is
worse.
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Figure 32: Airbnb. Positive changes in performance relative to the baseline query. Higher is better.

regression for this report.

However, the major difference in performance is the massive speedup achieved for
count_replies_and_retweets when using statistics and with the hypergraph optimizer
enabled. Here, an increase in execution speed of far more than 100x was measured.

A keen-eyed reader may notice that there seem to be minor regressions for the three other
Twitter data queries, especially with the hypergraph optimizer enabled. However, inspec-
tion of the query plans generated for these queries reveals that they are identical. These
variations are therefore caused by some unknown external factor. The execution times of
these other queries are relatively short, ranging from half a second to two seconds, which
makes their exact timing more susceptible minor changes in the computing environment.

As discussed in the section on estimates for Twitter data, the heuristics-based version’s
query plan was better than that of the base version. It is therefore likely that, with a higher
timeout limit, the performance of the heuristics-based configuration would be measured to
be better than the base version. Thus, in the case of the Twitter queries, using heuristics
would only yield gains in performance for both optimizers and no regressions. Those gains
would clearly be significantly smaller than the gains achieved if proper statistics were to
be used along with the hypergraph optimizer however.

6.5 Discussion

Overall, the introduction of JSON statistics lead to an improvement in the quality of
estimations produced by MySQL – not only in comparison to the base version of MySQL,
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Figure 33: Airbnb. Positive changes in performance relative to the performance of the heuristics-only
configuration. Higher is better.
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Figure 34: Twitter. Time spent per query for each the four statistics configurations with using the
current MySQL optimizer. Higher is worse.
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Figure 35: Twitter. Time spent per query for each the four statistics configurations with using the
hypergraph optimizer. Higher is worse.

but also in comparison to the modified version employing heuristics. The change was
positive both when the current and hypergraph optimizers were used.

The impact of the changes to MySQL can also be observed to have had a mostly positive
impact on the performance of MySQL (with respect to queries of JSON data). With
MySQL’s current optimizer in use, there were cases where a degradation in performance
was observed. However, most were due to misestimations caused by only heuristics being
available and only case of degraded performance persisted when statistics were introduced
(specifically, the query count_replies_and_retweets for the Twitter dataset).

With hypergraph optimizer enabled, the heuristics-only statistics configuration can also
not be said to be a perfect improvement over MySQL’s current behavior. For example,
TPC-H query 5 saw at least a 5-fold increase in its execution time when heuristics were
used. However, in the majority of cases, heuristics can be seen to lead to an improvement
in performance. The introduction of statistics to the hypergraph optimizer cannot be
observed to be anything other than a major success in terms of impact on performance:
not a single one of the experiment queries experienced performance regressions when JSON
statistics were used. And half were seen to enjoy major gains in performance.

If the changes introduced in this prototype were to be introduced to MySQL, the lack
of automatic statistics-gathering would likely lead to a majority of estimates being made
with the use of heuristics rather than statistics. Thus, despite the good results achieved
when introducing JSON statistics, it is likely that users would experience regressions in
performance for many of their JSON data queries. Even if statistics were gathered, the
queries used in these experiments are by no means exhaustive and there is practically
guaranteed to exist queries for which, even when detailed JSON statistics are collected
and used, the query optimizer will make worse a choice in query plans than it currently
does. The exact impact on the proposed changes on real-world JSON queries is difficult
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to judge, and deciding when the gains from increases in performance are worth the losses
from the eventual regressions even more so. However, I believe that, given the results
found in this section, that this might be a matter worth investigating.

The performance gain from changing from no JSON predicate estimation support at all,
to heuristics, to proper statistics is visible at each step. And when examining estimates,
it is clear that histograms do offer much more accuracy than NDV statistics. The Python
prototype shows the same increase in accuracy when comparing the latter to the former.
However, this increase in estimation accuracy could not be seen during these experiments
to translate into any tangible improvements in performance. I theorize that the reason for
this is that for the queries used in this experiment, the NDV statistics are good enough for
the query optimizer to choose the best possible plan it can come up with for the query; not
even perfectly accurate estimates could make it come up with a better plan14. The reason
for this, I belive, is twofold: First, of the predicates used in the queries, only a few truly
benefitted from the availability of histogram statistics15. Second, there is a diminishing
return effect when going from NDV to histogram statistics compared to when going from
nothing to heuristics and from heuristics to NDV statistics (see for example figures 21
and 23). The queries used in these experiments were not large and complex enough for
these much smaller relative differences in estimates to have an impact. However, without
further tests to back up this hypothesis, the best option seems to be to use NDV statistics
rather than histogram statistics as the results found here do not justify the increased
storage costs incurred by the use of histogram statistics. As discussed in section 5.3, NDV
statistics can in some cases offer more accurate estimates than histogram statistics if the
size of the statistics is limited or the sample size is low.

7 Conclusion

In this section, I will summarize the work done for this thesis by answering the research
questions defined in section 1.2 and discussing the overall outcome of the project. Then,
a brief discussion of potentially interesting future research areas related to the project.

7.1 Answering the Research Questions

The goal of this thesis has been to find an effective and viable method for improved
selectivity estimation for JSON data in MySQL. The goal of this report has been to
document the process and its outcome. To this end, section 1.2 introduced four research
questions that the report should clearly answer to make clear whether the goals the project
were achieved or not. These research questions will now be answered.

Research Question 1 What are the existing, published methods for collecting
and using statistics for JSON data in an RDBMS context, which also fit well
with MySQL’s design and architecture?

14This could be tested by injecting the true cardinalities into the optimizer, but sadly a lack of time did
not allow for this

15This might have been different if array operations had been implemented into the MySQL prototype
and used in the queries. The Python prototype experiments showed that for these predicates, histogram
statistics outperformed NDV statistics in terms of accuracy to a much greater degree than for other
operators.
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Section 3 presents the findings related to this research question in detail. In brief, no
existing methods could be found which were directly transferable to the context of MySQL.
However, much of the existing work does contain concepts and ideas which are transferable
to the context of a MySQL implementation of a JSON statistics system.

Research Question 2 Can a working system for collecting and using JSON
statistics realistically be implemented into MySQL?

Section 4 shows that it is possible to implement a prototype system for using JSON stat-
istics to make estimates for JSON predicates in MySQL. This is not a fully fledged system,
and it is brittle and does suffer from instability issues. However, the core functionaly was
put in place and no major problems or incompatibilities were encountered during this im-
plementation. It is therefore likely that a properly engineered version of the system could
be implemented in MySQL.

The MySQL prototype does not generate its own statistics. The Python prototype shows
that collecting and generating the statistics of a design as presented in section 4.1 is very
much feasible.

However, a question arises over how the restrictions that MySQL places on sampling –
specifically the restrictions on the size of the sampling buffer – would impact the statistics
gathered by such a system. From the Python experiments (section 5), it is clear that for
certain datasets, accuracy quickly degrades when samples become too small. The average
size of a document in the Twitter dataset is 2.5 KB. If one imagines the Twitter dataset
to have the modest size of 2 GB (which makes it contain 838 860 docuemnts total), the
default sampling buffer size of 20 MB would give a sample rate of 0.1%. For the Airbnb
documents, which are larger in size on average, the sampling rate would be even lower. It
is possible that such low sampling rates for even such modestly sized data sets would lead
to statistics of poor quality. In addition, MySQL’s sampling strategy is coarser than that
of the Python prototype and can more easily lead to biases in the data. This will require
further investigation before a conclusion can be drawn.

Additionally, while the proposed system has been implemented and been shown to work,
there are some naive choices in the design which hamper it. Among these are a suscept-
ibility to ballooning in size when collecting histograms for large arrays and duplication of
information. However, these are problems that can be fixed (or at least alleviated) with
relative ease.

Research Question 3 With such a system implemented, are MySQL’s es-
timates for the selectivity of predicates over JSON expressions improved in a
meaningful way?

The answer to this question is yes. As shown in section 6, the introduction of JSON
statistics to MySQl lead to a marked improvement in estimates. How dramatic the im-
provement in estimation accuracy is depends on the dataset and the queries tested. For
example, the introduction of statistics led to a huge improvement in the estimates related
to the Twitter dataset and queries (see figure 23). Improvements were also clearly visible
for the TPC-H and Airbnb datasets and queries, but the improvements were less marked
and differed more between the two optimizers.

As discussed in section 2, improved estimate accuracy does not necessarily lead to im-
provements in performance. Query optimizers are complex and faulty, and may not al-
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ways respond positively to better quality information. Therefore, the improvements in
selectivity estimation accuracy can be seen as big ’win’ in and of itself.

However, for the method to be practical and viable, it should be possible to integrate
it into database system and expect and overall gain in performance. Making changes
(large ones at least) to a database’s query optimizer so that it will better utilize the added
information is usually neither practical nor advantageous. Therefore, for the proposed
system to truly be practical and worth an implementation, it should demonstrate that
not only does it increase accuracy, but that noticeable gains in performance are achieved
without modifications that change the expected behavior of the rest of the system. This
leads into the fourth and final research question.

Research Question 4 How would a system for JSON statistics, if introduced
to MYSQL, affect MySQL’s performance when dealing with JSON data?

As seen in section 6 and discussed in section 6.5, the answer to this question seems to
depend very much on which optimizer is used. The current MySQL optimizer is rather
conservative with the plans it chooses. This is in part due to a design decision of examining
only left-deep trees, and in part because it does not consider all information that would
technically be available to it. This leads to fewer opportunities for the large increase in
JSON predicate selectivity estimation accuracy to shine. Of the 30 of queries tested in
total, only four showed a significant change in performance – either positive or negative
– with the introduction of statistics and/or heuristics for JSON data to MySQL. And for
one of these queries the only time a difference in performance was recorded was when only
heuristics were used.

In addition, the changes in performance were both negative and positive (though the mean
speedup was larger than the mean slowdown). As such, the conclusion becomes that when
using MySQL’s current optimizer, the statistics had little overall impact on the system.

The same cannot be said of MySQL’s behavior with the hypergraph optimizer enabled,
however. Because of its ability to consider a broader range of plans and because it can
draw on more statistical information when doing so, the hypergraph optimizer was found
to produce a much broader set of query plans for the queries tested16. This resulted
in a much more diverse set of measurements, and one in which the advantage of JSON
statistics became very clear. With the queries tested, half were observed to have increased
in performance when executed with statistics enabled and inserted, compared to the base
version of MySQL. And over a quarter were observed to have better performance than
the prototype version of MySQL using heuristics only. And when statistics were available,
none of the queries tested were seen to exhibit worse performance than either the base
version of MySQL, or the version utilizing heuristics.

16Interestingly, it seems that the hypergraph optimizer, when fed with JSON statistics, came up with
many of the same plans that the current MySQL optimizer chose. And when statistics were missing, worse
plans were chosen than what would have been the case had the current optimizer been used. It is therefore
possible, in the case of MySQL specifically, that a cheaper solution than the introduction of JSON statistics
would be to simply always use the current/old optimizer when detecting JSON queries. However, it is also
possible that the current optimizer would benefit more from JSON statistics than could be shown in the
experiments performed for this project when presented with larger datasets and more complex queries.
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7.2 Future Work

Several topics that would have been interesting to explore were left out of the project due
to feasability and time constraints. Many of these could be interesting to explore in future
research efforts on the topic. Some of these include:

• Exploring better algorithms for choosing which key paths to keep, and which values
key paths to collect which information on. The current design system is very naive
in certain cases. For example like if each document contains a massive array of
floats (say for example, the vertices of some large multi-polygon), statistics will be
recorded for every single index of that array, despite the very low likelihood of that
data ever being used in a predicate. It is also possible that certain key paths will
benefit more from histogram statistics than others. Exploring whether to, instead of
choosing either NDV or histogram statistcs, one could choose a hybrid method which
collects histogram statistics from only the most prominent key paths or key paths
whose properties indicate that they will benefit more than average from histogram
data. How to determine this is an open question.

• I would really have liked to expand on the array statistics aspects of this work,
which is the technique I feel is most unique and interesting of the ones presented in
the design. The Python experiments with the Airbnb data show that the technique
has promise. However, a closer look at the Twitter data set and the statistics
generated for it reveals its limitations (though also sparking imagination – seeing
its potential). Again, arrays are not used as ordered collections, but unordered
collections, so the use for summary statistics is likely there. This could be especially
useful with wildcard paths17, which I also could not explore. One could image a
query like j->"$.hashtags.*.string" = "MySQL" to get all tweets where any of
the hashtags (whose information is stored in an array) equal ”MySQL”.

• An alternative to better algorithms would be to explore allowing the user to choose
which key paths either to include in statistics gathering, or exclude from statistics
gathering.

• Support for automatically determining that certain predicates preclude other predic-
ates from impacting selectivity estimates. For example, if the predicate
j->"$.object" IS NULL is applied, then that would mean that the predicate
j->"$.object.number" > 0 could not apply, because that path cannot be reached
in documents for which the first predicate is true. This goes the other way as
well: a predicate checking that a property is not null should not impact selectivity
estimates if another predicate in the same iterator filters on the values of that prop-
erty or children of that property. A simple example would be the selectivity factor
A=j->"$.path" IS NOT NULL and factor B=j->"$.path" = "some string". Right
now, if a query checks both of these and the path is uncommon, the system will end
up with a severe underestimation of the selectivity due to squaring (or worse) the
real selectivity of the predicates (which is just B). So if B=A=0.01, the selectivity
will be reported is 1/100th of its real value.

• It can be imagined that an attacker could construct a lookup path such that the
system is tricked into assuming either very small result size for an actually large

17Adding wildcard support to the current MySQL implementatation of the design would not be difficult.
A design consideration to be had though is that it would be better for performance reasons to store paths
either as a list or using a nested structure, instead of using a hashmap (as I suggested for the design).
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result (and thus choosing a very inefficient plan), or assuming a very large result
size for a tiny result and also choosing a worse plan. This could potentially lead to
a severe degradation in performance, and may be worth investigating.

• Compare to the cost and gains in performance when using virtual columns with
histograms vs JSON histograms. It would also be interesting to see the performance
differences between virtual columns with indexes plus histograms vs virtual columns
with indexes plus JSON histogram.
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Appendix

A JSON Documents

[

{"user": {"id": 1, "screen_name": null}},

{"user": {"id": 2, "screen_name": "harry"}},

{"user": {"id": 3}},

{"user": {"id": 4}},

{"user": {"id": 5, "screen_name": null}},

{"user": {"id": 6, "screen_name": "ron"}},

{"user": {"id": 7, "screen_name": "hermoine"}},

{"user": {"id": 8, "screen_name": null}},

{"user": {"id": 9, "screen_name": null}},

{"user": {"id": 10, "screen_name": null}},

]

Listing 24: A collection of ten JSON documents, formatted as a JSON array. Each object contains some
information about a user. The user ID is always included. The ”screen name” key is optional,
and when it is present in the document it may either lead to a string value or it may be null.

B More Code Samples

C Custom Experiment Queries

C.1 Airbnb Queries

C.2 Twitter Queries

D Reproducing Experimental Results

This section contains a detailed account of the workflow for setting up and running the
experiments described in sections 5 and 6 so that others may attempt reproduce the results
if they so wish.

D.1 Reproducing Python Experiments

The Python version used was 3.11.3. The Pip modules used were as follows:

contourpy==1.0.7

cycler==0.11.0

fonttools==4.39.3

hyperloglog==0.0.14

kiwisolver==1.4.4

90



1 lookup_result estimate_selectivity(const String &path, const longlong cmp_val) const {

2 if (auto candidate = find_bucket(path)) {

3 const KeyStat *path_stats = *candidate;

4 double base_freq = path_stats->frequency * (1.0 - path_stats->null_values);

5

6 // If float and int have the same type identifier (key path type suffix), then it

7 // is possible that an integer comparand was used for a key path which actually holds float values

8 // In this case, we convert the comparand to float and lookup that value instead:

9 if (path_stats->values_type == BucketValuesType::FLOAT) {

10 return estimate_selectivity(path, (double) cmp_val);

11 }

12

13 // Check if cmp_val out of range of path_stats values

14 if (path_stats->min_val && path_stats->max_val) {

15 if ((*path_stats->min_val)._int > cmp_val) {

16 return lookup_result{0, 0, base_freq};

17 }

18 if ((*path_stats->max_val)._int < cmp_val) {

19 return lookup_result{0, base_freq, 0};

20 }

21 }

22

23 if (path_stats->histogram) {

24 auto histogram = static_cast<KeyPathHistogram<longlong> *>(path_stats->histogram);

25

26 double cumulative = 0;

27 if (histogram->buckets_type == JHistogramType::SINGLETON) {

28 for (const auto &jg_buck : histogram->m_buckets.single_bucks) {

29 if (jg_buck.value == cmp_val) {

30 return lookup_result{

31 base_freq * jg_buck.frequency,

32 cumulative * base_freq,

33 (1 - (cumulative + jg_buck.frequency)) * base_freq

34 };

35 } else if (jg_buck.value > cmp_val) {

36 return lookup_result{

37 0,

38 (cumulative) * base_freq,

39 (1 - cumulative) * base_freq

40 };

41 }

42 cumulative += jg_buck.frequency;

43 }

44 } else {

45 for (const auto &jg_buck : histogram->m_buckets.equi_bucks) {

46 if (jg_buck.upper_bound >= cmp_val) {

47 return lookup_result{

48 (base_freq * jg_buck.frequency) / jg_buck.ndv,

49 (cumulative) * base_freq,

50 (1 - cumulative) * base_freq

51 };

52 }

53 cumulative += jg_buck.frequency;

54 }

55 }

56 }

57

58 if (path_stats->ndv) {

59 return lookup_result{base_freq / (*path_stats->ndv), base_freq * 0.3, base_freq * 0.3};

60 }

61

62 return lookup_result{base_freq * 0.1, base_freq * 0.3, base_freq * 0.3};

63 }

64

65 // If stats can't be found for the path, return global minimum frequency

66 return {min_frequency * 0.1, min_frequency * 0.3, min_frequency * 0.3};

67 }

Listing 25: The selectivity estimation function for integers. Note that the functions returns estimate
for both equality, less than and greater than to reduce the amount of code required (and
duplicated) to support all the supported operands for each allowed type.
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SELECT listings.j

FROM listings, calendar

WHERE

-- Join conditions

listings.j->"$.host_id" = "62180436" -- ? ('144214204' 1003), ('263524662', 87), ('66796928',

8), ('62180436', 1)↪→
AND listings.j->"$.id" = calendar.j->"$.listing_id"

-- Filters on availability

AND calendar.j->"$.available" = "t"

AND calendar.j->"$.date" = "2023-12-12"

AND calendar.j->"$.minimum_nights" = 1

ORDER BY

listings.j->"$.last_review"

;

Listing 26: Airbnb query host_availabilities_a

SELECT listings.j

FROM listings, calendar

WHERE

-- Join conditions

listings.j->"$.host_id" = "66796928" -- ('144214204' 1003), ('263524662', 87), ('66796928',

8), ('62180436', 1)↪→
AND listings.j->"$.id" = calendar.j->"$.listing_id"

-- Filters on availability

AND calendar.j->"$.available" = "t"

AND calendar.j->"$.date" = "2023-12-12"

AND calendar.j->"$.minimum_nights" = 1

ORDER BY

listings.j->"$.last_review"

;

Listing 27: Airbnb query host_availabilities_b

SELECT listings.j

FROM listings, calendar

WHERE

-- Join conditions

listings.j->"$.host_id" = "263524662" -- ? ('144214204' 1003), ('263524662', 87), ('66796928',

8), ('62180436', 1)↪→
AND listings.j->"$.id" = calendar.j->"$.listing_id"

-- Filters on availability

AND calendar.j->"$.available" = "t"

AND calendar.j->"$.date" = "2023-12-12"

AND calendar.j->"$.minimum_nights" = 1

ORDER BY

listings.j->"$.last_review"

;

Listing 28: Airbnb query host_availabilities_c
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SELECT listings.j

FROM listings, calendar

WHERE

-- Join conditions

listings.j->"$.host_id" = "144214204" -- Host with the most listings in LA, ca. 1000 in total

AND listings.j->"$.id" = calendar.j->"$.listing_id"

-- Filters on availability

AND calendar.j->"$.available" = "t"

AND calendar.j->"$.date" = "2023-12-12"

AND calendar.j->"$.minimum_nights" = 1

ORDER BY

listings.j->"$.last_review"

;

Listing 29: Airbnb query host_availabilities_d

SELECT listings.j, reviews.j

FROM listings, calendar, reviews

WHERE

-- Join conditions

listings.j->"$.host_id" = "144214204" -- ? ('144214204' 1003), ('263524662', 87), ('66796928',

8), ('62180436', 1)↪→
AND listings.j->"$.id" = calendar.j->"$.listing_id"

AND listings.j->"$.id" = reviews.j->"$.listing_id"

-- Filters on availability

AND calendar.j->"$.available" = "t"

-- Filter on recent reviews

AND reviews.j->"$.date" >= "2023-01-01"

;

Listing 30: Airbnb query host_availabilities_d_variant

SELECT listings.j

FROM listings, calendar, neighbourhoods

WHERE

-- Join conditions

listings.j->"$.id" = calendar.j->"$.listing_id"

AND

listings.j->"$.neighbourhood_cleansed" = neighbourhoods.j->"$.neighbourhood"

-- Listing predicates

AND listings.j->"$.review_scores_rating" >= 4

AND listings.j->"$.bedrooms" >= 3

-- AND listings.j->"$.accommodates" >= 6

AND listings.j->"$.host_is_superhost" = "t"

-- Calendar predicates

AND calendar.j->"$.available" = "t"

AND calendar.j->"$.date" = "2023-12-12"

AND calendar.j->"$.minimum_nights" = 1

-- Neighbourhood predicates

AND (

neighbourhoods.j->"$.neighbourhood_group" = "City of Los Angeles"

OR

neighbourhoods.j->"$.neighbourhood_group" = "Unincorporated Areas"

)

;

Listing 31: Airbnb query many_filters
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-- Will retrieve the three most recent reviews for the top 10 rated

-- listings available on a certain date

SELECT top_rated_listings.*, recent_reviews.*

FROM (

SELECT ls.j->"$.id" AS id

FROM listings ls, calendar c

WHERE ls.j->"$.id" = c.j->"$.listing_id"

AND c.j->"$.date" = "2023-11-17" AND c.j->"$.available" = "t"

ORDER BY ls.j->"$.review_scores_rating" DESC

LIMIT 10

) AS top_rated_listings

INNER JOIN

(

SELECT rs.j->"$.listing_id" AS listing_id, row_number() OVER w AS row_n

FROM reviews rs

WINDOW w AS (PARTITION BY rs.j->"$.listing_id" ORDER BY rs.j->"$.date" DESC)

) AS recent_reviews

ON recent_reviews.listing_id = top_rated_listings.id

WHERE recent_reviews.row_n <= 3

;

Listing 32: Airbnb query recent_reviews_for_top_listings

matplotlib==3.6.3

munch==2.5.0

numpy==1.24.3

packaging==23.1

pandas==1.5.3

Pillow==9.5.0

psutil==5.9.5

pyfakefs==5.1.0

pyparsing==3.0.9

python-dateutil==2.8.2

pytz==2023.3

six==1.16.0

tqdm==4.65.0

Instructions for installing and running the Python experiments can be found in the
mysql-statistics-dev repository’s README.md file. The seed used for all experiments
was 6617389845874142767.

D.2 Reproducing MySQL Experiments

The MySQL prototype is somewhat unstable and prone to crashing on repeat inserts of
histograms for the same column. The experiments work around this issue by avoiding
inserting histograms more than once as much as possible. This may help explain some of
the design decisions made in the experiment workflow which make little sense otherwise.

Instructions on setting up and running the MySQL experiments can be found in the tpch
repository which will be handed in together with this report.
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SELECT

acceptable_listings.listing_info

FROM (

SELECT

DISTINCT j->"$.listing_id" AS listing_id

FROM

calendar

WHERE

j->"$.available" = 't'

AND

j->"$.date" IN ("2023-12-12", "2023-12-13", "2023-12-14", "2023-12-15")

AND

j->"$.minimum_nights" <= 4

ORDER BY listing_id

)

AS available_listings,

(

SELECT

listings.j AS listing_info,

listings.j->"$.id" AS listing_id,

listings.j->"$.review_scores_rating" AS rating

FROM

listings,

neighbourhoods

WHERE

-- Join condition

listings.j->"$.neighbourhood_cleansed" = neighbourhoods.j->"$.neighbourhood"

-- Listing predicates

AND listings.j->"$.review_scores_rating" >= 4.5

AND listings.j->"$.bedrooms" >= 3

AND listings.j->"$.host_is_superhost" = "t"

-- Neighbourhood predicates

AND neighbourhoods.j->"$.neighbourhood_group" = "City of Los Angeles"

)

AS acceptable_listings,

(

SELECT

DISTINCT j->"$.listing_id" as listing_id

FROM

reviews

WHERE

-- Less than ish a year old

j->"$.date" >= "2022-01-01"

)

AS recently_reviewed

WHERE

acceptable_listings.listing_id = available_listings.listing_id

AND

acceptable_listings.listing_id = recently_reviewed.listing_id

ORDER BY

acceptable_listings.rating

LIMIT 10;

Listing 33: Airbnb query top_ten_listings_with_filters
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SELECT

tweeters.j->"$.user.screen_name",

tweeters.j->"$.id",

COUNT(*) AS count

FROM (

SELECT * FROM twitter

WHERE

(JSON_VALUE(j, "$.in_reply_to_status_id") IS NULL OR j->"$.in_reply_to_status_id" IS NULL)

AND (JSON_VALUE(j, "$.retweeted_status.id") IS NULL OR j->"$.retweeted_status.id" IS NULL)

) AS tweeters, (

SELECT * FROM twitter

WHERE JSON_VALUE(j, "$.in_reply_to_status_id") IS NOT NULL

) AS replies, (

SELECT * FROM twitter

WHERE JSON_VALUE(j, "$.retweeted_status.id") IS NOT NULL

) AS retweets

WHERE

tweeters.j->"$.id" = replies.j->"$.in_reply_to_status_id"

AND

tweeters.j->"$.id" = retweets.j->"$.retweeted_status.id"

GROUP BY

tweeters.j->"$.user.screen_name",

tweeters.j->"$.id"

ORDER BY

count DESC

LIMIT 20

;

Listing 34: Twitter query count_replies_and_retweets

SELECT

j->"$.place.country_code",

j->"$.user.lang",

COUNT(*) AS count

FROM twitter

WHERE

(

(j->"$.user.lang" <> "en" AND j->"$.user.lang" <> "en-gb")

AND j->"$.place.country_code" IN ("GB", "US", "CA", "AU", "NZ", "IE")

) OR

(

(j->"$.user.lang" = "en" OR j->"$.user.lang" = "en-gb")

AND j->"$.place.country_code" NOT IN ("GB", "US", "CA", "AU", "NZ", "IE")

)

GROUP BY j->"$.place.country_code", j->"$.user.lang"

ORDER BY j->"$.place.country_code", count DESC;

Listing 35: Twitter query foreign_languages

SELECT unpopular.tweeter_id, unpopular.tweet_id

FROM (

SELECT * FROM twitter

WHERE j->"$.user.followers_count" > 5000

) AS popular, (

SELECT j->"$.id" AS tweet_id, j->"$.user.id" AS tweeter_id

FROM twitter

WHERE

j->"$.user.followers_count" < 100

AND j->"$.user.verified" = FALSE

) AS unpopular

WHERE popular.j->"$.in_reply_to_status_id" = unpopular.j->"$.id";

Listing 36: Twitter query popular_and_unpopular
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-- Most commonly replied to users: (121377261, 7), (23511065, 7), (99624309, 6), (283335575, 4),

(246082550, 4), (230283763, 3), (71667445, 3), (84389890, 3), (454631670, 3), (212299385, 3)↪→

SELECT

replied_users.user_id AS user_id,

tweeting_users.username AS username,

replied_users.reply_count AS reply_count,

tweeting_users.tweet_count AS tweet_count

FROM

(

SELECT

j->"$.in_reply_to_user_id" AS user_id,

COUNT(*) AS reply_count

FROM

twitter

WHERE

JSON_VALUE(j, "$.in_reply_to_user_id") IS NOT NULL

GROUP BY

j->"$.in_reply_to_user_id"

) AS replied_users

INNER JOIN

(

SELECT

j->"$.user.id" AS user_id,

j->"$.user.screen_name" AS username,

COUNT(DISTINCT j->"$.id") AS tweet_count

FROM

twitter

WHERE

JSON_VALUE(j, "$.user.id") IS NOT NULL

AND

JSON_VALUE(j, "$.id") IS NOT NULL

GROUP BY

user_id, username

) AS tweeting_users

ON

replied_users.user_id = tweeting_users.user_id

ORDER BY

reply_count DESC,

tweet_count DESC

LIMIT 20

;

Listing 37: Twitter query users_with_most_replies
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