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Abstract

The goal of this thesis is to present, both theoretically and through examples, two altern-
ative methods of computing p-values in a score test as opposed to assuming a normal
distribution of the score. We consider a double saddlepoint approximation and show that
it takes a simple form when working with certain generalized linear models, which yields
an easier implementation that can be used for computing p-values of a score test. Fur-
thermore, we discuss an alternative score statistic called effective score, which handles
nuisance parameters using projection methods, as opposed to performing conditional in-
ference. Along with saddlepoint approximation, the effective score yields an unconditional
test. We compare both alternatives, the double saddlepoint method and the effective score
method, to each other and to a regular score test, using both simulated and real data sets.
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Sammendrag

I denne oppgaven presenteres, bade teoretisk og ved hjelp av eksempler, to alternative
metoder for & regne p-verdier i en score test i motsetning til & anta en normalfordeling
pa score-statistikken. Vi presenterer en dobbel sadelpunkt-approksimasjon og viser at den
far et enkelt uttrykk for visse generaliserte lineere modeller, hvilket resulterer i en enklere
implementering som kan brukes for & regne ut p-verdier av en score test. Videre diskuterer
vi en alternativ score-statisikk kalt effektiv score, som héndterer plageparametre ved hjelp
av projeksjonsmetoder, i motsetning til & gjore betinget inferens. Vi sammenligner begge
alternativer, dobbel sadelpunkt og effektiv score, med hverandre samt til vanlig score test,
ved hjelp av bade simulerte og ekte datasett.






Acknowledgments

This thesis marks the end of my master’s degree in mathematics at NTNU, as well as my
five years as a student in Trondheim.

First and foremost, I would like to thank my supervisor Thea Bjernland, who gave me a
challenging and interesting topic when I expressed an interest in pursuing a more theoret-
ically angled master’s thesis. I would not have been able to write this were it not for your
patience, your keen interest, and our detailed discussions throughout the last year. Thanks
also to Ingeborg Gullikstad Hem for, on short notice, providing me with an interesting
data set and a problem setup related to neurological research that I could use to investigate
my methods.

These five years in Trondheim, in particular this last one, has been an intense ride that
probably would have derailed at some point were it not for the amazing people around
me. Thanks to my amazing roommates, Ingvild and Nora, who are my best friends and
who made this time living in Trondheim immensely better. You have been my closest
family while living in Trondheim, but I wish also to thank my family at Hamar, who is
always there for me when I need help or extra support. Thanks also to all the great people
at Matteland I have gotten to know, with a special shout-out to my dear friends Irma and
Clara, and thanks in particular to Lesesal 395B and all its lovely inhabitants. Lastly, thanks
to Elias, who has been a patient and loving companion both in mathematics and in life.
Writing a master thesis with you by my side (literally) has been challenging, but I would
never have wished to be without your care, love, and support.

Nora Rohnebak Aasen
Trondheim, Norway
June 2023

vii






Contents

Abstract . . . . . . oL iii
Sammendrag . . . . . . .. ... e v
Acknowledgments . . . . . .. .. Lo vii
1 Introduction . . . . .. ... .. ... 1
2 Preliminaries . . . . . . .. ... L 3
2.1 Hypothesistesting . . . . . . . . . . . . . .. 3
2.1.1 Performing and evaluatingatest . . . . .. ... ... ...... 4

2.1.2  Bonferroni Correction . . . . .. ... ... ... .. ...... 5

2.1.3 Clopper-Pearson Interval . . . . .. ... ... .......... 5

2.2 Generalized Linear Models . . . . . .. ... .. ... ... ....... 6
221 Linearmodel . . . ... .. ... ... 7

2.2.2  Logistic regressionmodel . . . . ... .. ... ... ...... 7

2.2.3 Poissonregressionmodel . . . . . ... ... 8

2.2.4  General assumptions and notaion . . . . . ... ... ... L. 9

2.3 Likelihood theory and the score . . . . ... .. ... ... . ...... 9
2.3.1 Likelihood function. . . . . . ... ... ... ... ...... 9

2.3.2 Maximum Likelihood Estimators . . . . . ... ... ...... 11

X



Aasen: Saddlepoint approximation in score testing

24 Scoretesting. . . . . . . .. e e e 11
2.4.1 Score tests for a regular exponential family . . . ... ... ... 15
Saddlepoint Approximation . . . . . . ... ... ... ... ... 19
3.1 Cumulant Generating Function . . . . . . ... ... ... ........ 19
3.2 Saddlepoint approximation . . . . . . . .. ... ... 23
3.2.1 Saddlepointdensity . . . . . . . ... ... ... 24
3.2.2 Saddlepoint distribution . . . . ... ..., 25
3.2.3 Double saddlepoint distribution . . . . .. ... ... ... ... 26
3.3 Saddlepoint approximations in a regular exponential family . . . . . . . . 28
3.3.1 Distribution function . . . . . ... ... Lo 28
3.3.2 Double saddlepoint distribution in a regular exponential family . . 31
Effective Score . . . . . . . . .. 35
4.1 Conditional score . . . . . . . ... L 36
4.2 Projectedscore . . . . . . ... e e e 39
4.3 Effective score and effective scoretest . . . . . . . ... ... ... ... 40
4.3.1 Asymptotic properties . . . . . . ... . 44
Simulated examples . . . . . . ... ... L L o 47
5.1 Comparing implementation methods . . . . . ... ... ... .. .... 49
5.1.1  Double saddlepoint approximated score test . . . . . . .. .. .. 49
5.1.2 Effectivescoretest . . . . . .. ... ... ... ... 51
5.2 Investigating the effect of the number of nuisance parameters . . . . . . . 51
53 Comparisonoftests . . . . . . . . . ... .. 55
5.3.1 Poisson regression with imbalanced response . . . . ... .. .. 56
5.3.2 Logistic regression with small sample size . . . . ... ... ... 56

Applying the methods to real datasets . . . . . . ... ... ... ...... 65



xi

6.1 Challengerdisaster . . . . .. ... ... .. ... ... 65
6.2 Investigating relations between neurons in the brain . . . . . . . ... .. 66

6.2.1 Setup . . . . . e 67

6.2.2 Discussion . . . . . ... e 69
Final discussion . . . . . . . . ... .. L 71
7.1 Furtherwork . . . ... . . ... 72
Code used to simulatedatasets . . . . . .. ... ... ............ 79
A.1 Example that compared the implementations . . . . . . .. ... ... .. 79
A.2 Example that explored different number of nuisance covariates . . . . . . 80
A.3 Poisson regression with imbalanced response . . . . .. ... ... ... 81
A.4 Logistic regressionexample . . . . . . ... ... oL 81
Code for implementations of the different scoretests . . . . . . . ... ... 83
B.1 Scoretest . . . ... ... . 84
B.2 Double saddlepoint approximated scoretest . . . . . .. ... ... ... 85

B.3 Effective scoretest . . . . . . . . . .. 86






Chapter

Introduction

Score tests, along with likelihood ratio tests and Wald tests, are commonly employed for
evaluating parameters or coefficients within a generalized linear model. While the asymp-
totic distribution of the score test follows a normal distribution, the finite sample distri-
bution is not generally known. Consequently, when applying a score test to a data sample
that fails to exhibit sufficient convergence of the score distribution, the test can yield an in-
creased rate of type I errors compared to the desired level of significance. Such a challenge
arises in cases of small sample inference where the sample size, denoted as n, is too small
for the score to converge adequately. Another circumstance in which this issue arises is
when dealing with imbalanced large data sets, as discussed by Johnsen et al. (2023), for
instance.

In the article by Johnsen et al. (2023), they investigate saddlepoint approximations to score
tests in a logistic regression model for genome-wide association studies. In this master
thesis, we build upon their article by presenting their methods in a more general frame-
work, showcasing that the methods are applicable to other models than logistic regression
models. We demonstrate that the saddlepoint approximation, subject to certain assump-
tions, can be reformulated in terms of maximum likelihood estimates which yields an
easier implementation. We also demonstrate the relationship between the effective score
and the so-called conditional score, in an attempt to build a stronger theoretical foundation
for this transformed score statistic.

The layout of this thesis is as follows. We begin with preliminaries in chapter 2, where we
focus on hypothesis testing, generalized linear models, and score tests. We emphasize the
relationship between the score and a sufficient statistic for the parameters of the general-
ized linear model, as this later motivates the rewriting of the saddlepoint approximation.

In chapter 3, we consider saddlepoint approximation and begin by offering a concise intro-
duction to the concept, highlighting its relevance in the context of computing p-values for
score tests. Saddlepoint approximation allows us to approximate the tail probabilities of
a distribution using the cumulant generating function of the distribution. Furthermore, we
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demonstrate that the saddlepoint approximation can be expressed in terms of maximum
likelihood estimates. This connection allows us to implement saddlepoint approximation
by utilizing output readily obtained from fitting a generalized linear model in statistical
software.

Moving on, we delve into the concept of the “effective score” which has emerged as an
alternative to the basic score statistic, offering improved robustness against the impact
of nuisance estimates (Hemerik et al., 2020). We explore the relationship between the
effective score and the conditional score as a mean of grating deeper insight into the the-
oretical foundations of the effective score and show that the effective score in conjunction
with saddlepoint approximation leads to an alternative test to the regular score test. This
approach, which we refer to as an “effective score test”, capitalizes on the improved ro-
bustness of the effective score and leverages saddlepoint approximation to estimate its
unconditional distribution.

The motivation behind these alternative methods is to enhance the accuracy and reliab-
ility of parameter inference within generalized linear models, particularly in situations
where the regular score test may suffer from inflated type I error rates. To evaluate the
efficiency of both the double saddlepoint approximated p-values and the effective score
test, we conduct simulations and analyze real-world data sets. In our simulated experi-
ments, we explore the two different implementations of saddlepoint approximation and
compare their performance to assess their suitability for practical applications. We also
examine the asymptotic properties of each test, investigating aspects such as consistency,
efficiency, and the control of type I error rates. Through these analyses, we aim to estab-
lish the strengths and limitations of the proposed methods and provide guidance on their
appropriate usage.

For the empirical evaluation, we consider two data sets; a small sample data set and a
large data set with an imbalanced response. These data sets represent scenarios where
the performance of traditional statistical tests may be compromised and approaches such
as the effective score test and double saddlepoint approximation could offer significant
advantages. By comparing the outcomes of these alternative methods against those of the
regular score test, we aim to assess their practical utility and their effectiveness in real-
world statistical analyses.

Throughout this thesis, all simulations and plots are executed using the statistical software
R Studio (Team, 2021), with the graphical representations generated using the ggplot2
package (Wickham, 2016).



Chapter 2

Preliminaries

In this chapter, we consider the preliminaries needed for this thesis. As mentioned in the
introduction, this thesis aims to present methods that can compute p-values for score tests
with higher accuracy than a normal approximation. Hence, we are interested in hypo-
thesis testing, more particularly hypothesis testing around parameters in a generalized
linear model. We begin by presenting hypothesis testing, and then we look at the gen-
eralized linear model. The last thing we look at in this chapter is the score, how it relates
to sufficient statistics, and how it can be used to perform a hypothesis test.

2.1 Hypothesis testing

A hypothesis test is defined as a statement about a parameter, with the goal of deciding,
based on a data sample Yi,...,Y, from the population, which of two complementary
hypotheses is true (Casella and Berger, 2001: p. 373). Assume there exists a population
parameter 6, which can be either a scalar or a vector. The hypotheses are formulated in
terms of a null hypothesis and an alternative hypothesis. Often the null hypothesis assumes
that 0 has some value 0, as follows

H() 10 = 00 V.S. Hl 10 7£ 90. (21)

We will call this a two-tailed hypothesis test. A one-tailed test is formulated as one of the
following

Hy:0<60, vs. H:0>0, (Right-tailed test)
Hy:0>60, vs. H,:0<8, (Left-tailed test)
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2.1.1 Performing and evaluating a test

Following Casella and Berger (2001; Ch. 8), a hypothesis test is usually formulated in
terms of a test statistic, which is a function of the data sample W (Y7,...,Y,) = W(Y).
The criteria for rejecting or accepting H, depends on the test statistic. One criterion that
specifies a test is a critical value c, where we for example reject Hy if W(Y') > c. This is
equivalent to defining a rejection region R, where H, is rejected if W(Y') € R. Given a
critical value c, the corresponding rejection region is

R=A{(y1,- -, yn) IW(y) = c}.

We cannot guarantee that the conclusion of a hypothesis test is correct. However, we can
control the probability of making certain errors. There are two types of error that can be
made (see table 2.1): A type I error is when we falsely reject the null hypothesis, while a
type 1l error is when we falsely keep the null hypothesis.

The probability of type I error, denoted «, is referred to as the significance level, or simply
level, of the test. The probability of correctly rejecting the null hypothesis, denoted 1 — 3
in table 2.1, is referred to as the power of the test.

Hj true H, false
Keep H, l—a P(Type II error) = 3
Reject Hy P(Type I error) = « 1-p

Table 2.1: Table indicating different outcomes of an hypothesis test.

When comparing different tests, one will often first consider to what degree the test is able
to control the type I error probability at a set level (Casella and Berger, 2001: p. 385). Let
W(Y') be any test statistic and R the rejection region for some hypothesis test. The class
of tests that are such that

PW(Y) € R| Hy true) < «

make up the set of level « tests for that hypothesis. If a suggested test has a substantially
smaller level than the decided significance level a, the test is said to be conservative. In
general, we want the test to have a probability of type I error as close as possible to the
chosen level from below.

An alternative, albeit equivalent, way of deciding whether or not to reject Hy, is by evaluat-
ing the p-value of the test. Given some test statistic I/ (Y"), we define the p-value of the test
as the probability of observing W (y) or something more extreme under the assumption
that the null hypothesis is true. In mathematical terms, this can be written as

PW(Y) = W(y) | Hy true) = p.

We reject Hy if p < «, meaning p is smaller than the chosen level of the test. By writing
conditional on “H, true”, we mean that the p-value is calculated based on hypothesized



Chapter 2. Preliminaries 5

true values 6 for 6. For simplicity, we introduce the notation
PW(Y) = W(y); Ho) = p,

to mean that the probability is computed under the assumption that H, is true.

2.1.2 Bonferroni Correction

Consider now that we wish to perform multiple hypotheses tests H,, . . . , H,,, where each
H; is formulated in terms of a null hypothesis and an alternative hypothesis, and the sig-
nificance level

a; = P(Making a type I error in test ;)

isaforalli = 1,... m. Then the overall probability of making one or more type I error
over all tests becomes much larger than the chosen significance level of each test.

There are multiple methods that can be used to compensate for this (Goeman and Sol-
ari, 2014), and one way is the Bonferroni method which aims to limit the familywise er-
ror rate (FWER). The FWER is defined as the probability of committing at least one
type I error. The Bonferroni correction proposes to perform each test at significance level
aj =« /m, where « is the decided, overall significance level and m is the number of tests.
The Bonferroni method can be very conservative in some cases, but will always guarantee
control of the FWER.

2.1.3 Clopper-Pearson Interval

A (1 — «)100% confidence interval for a parameter 6 is an interval [L(Y"), U(Y")] based
on the data Y, such that

PO e [LY),UY)])=1-a,
for some decided level o.

The Clopper-Pearson interval is an exact confidence interval for some unknown probab-
ility of success p in a Binomial distribution. Letting X be the number of successes and n
be the number of trials, the Clopper-Pearson interval is given by

[B(%;X,n—XJrl),B(l—%;XJrl,n—X)],

where B refers to quantiles in the Beta(a,b) distribution (Thulin, 2014). This expression
follows from the relationship between binomial distribution and beta distribution.
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2.2 Generalized Linear Models

Following McCullagh and Nelder (1989), let y = [y1, ...,y be a vector of length n,
where each element is one observation. For each observation y; there is a set of p covari-
ates x;1, . . ., T;p that influence the response with magnitude described by the coefficients
B1, ..., Bp. Generalized linear models are a wide class of models that can be fitted in this
situation. The model has the following three defining properties.

i. The random component

The random component of the model is a random vector Y = [Yi,...,Y,]?, whom
the observations, y, are assumed to be realizations of. The components Y; are assumed to
be independent and have mean p; = E[Y;]. Furthermore, each component is assumed to
come from a distribution Y; ~ f(y;), either discrete or continuous, such that f(y;) belongs
to the exponential family, and can be written in the general form

yil; — A(0;)
F (i 03, 0) = exp{—
(i, ¢) ()
for some functions a, A, and h. The parameter 6 is called the canonical parameter of the
distribution, whereas ¢ is called the dispersion parameter and is typically assumed to be
known or estimated independently of the other parameter.

+ h(yi, cb)} ; (2.2)

Remark 2.2.1. Some of the important distributions that belong to the exponential family
include normal distribution, binomial distribution with known n, Poisson distribution, and
exponential distribution.

ii. The systematic component

For each observed value y; we assume there is a linear predictor defined as

n
ni=PBo+ Y By =B (23)
j=1
The covariate vector «; = [1,x;1, ... ,:cl-p]T consists of known covariates. The vector of
coefficients 3y, ..., 3, are unknown and must be estimated from the data.

iii. The link

The link is a function that relates the systematic component to the random component,
such that

ni = g(p)-



Chapter 2. Preliminaries 7

The function g is called the link function of the model. It is also possible to write

i =g""(m),

in which case ¢! is usually called the mean function. For every distribution f that can be
written as in equation (2.2), there is also a unique link function called the canonical link.
This link function satisfies

m=x; B8 =g(w) =0,

where 6; is the canonical parameter in the distribution of Y; as written in equation (2.2).

2.2.1 Linear model

The classical linear model
Y = X3 +e,

with e ~ N(0,0?) is a special case of a generalized linear model. The matrix X is a
(n x p) matrix with row ¢ equal to =!. The components Y; are assumed to come from a
normal distribution, with expected value u; = x! 3 and constant variance o2. The linear
predictor is

N = 13?,3 = By + Zﬁj%j,
=1

and it can be easily seen that the link function in the linear model then must be the identity,
since [; = ;.

2.2.2 Logistic regression model

Logistic regression is a classification problem where the observation y is assumed to be a
realization from a random vector Y = [V, ..., Y,,]” with independent elements such that
Y; ~ Bernoulli(y;) fori = 1,...,n, meaning

Y, =

1 with probability p;,
0 with probability 1 — y;.

The probability mass function of Y; can be written as

p(yi; i) = (1 = pi) )

=exp {y;Inp; + (1 —y;) In(1 — ;) }

= exp {yi In (1 l_“ﬂ) +1In(1 — ,uz)} ,
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and we see that this is an exponential family as in equation (2.2) with

o
]
& n(l—ﬂi)’

A(0;) = —In(1 + exp(6,)),
h(yi, ¢) =0,
a(¢) =

The expected value of a Bernoulli distributed variable is F[Y;] = u;, and given a linear
predictor

1N = 33?,3 = B+ Zﬁszja
j=1

we can relate the two using the canonical link function

et L)
L —p

This link is called the /ogit link function.

2.2.3 Poisson regression model

In situations where the responses Y; are count data, meaning they take values {0, 1,2, ...},
it is common to model the distribution using a Poisson regression model. That means we
assume that the observation y is a realization of the random vector Y = [Vi,...,Y})]
which consists of independent elements Y; ~ Pois(y;). The probability mass function of
Y; is defined as

'
p(yi; pi) = ?exp(—m)

= exp {yiInp; — p; — Iny,!}.
Once again we recognize the exponential family from equation (2.2), with
0; = In pu;,
A(6;) = exp(¥);),
h(y;, ¢) = — Iny;!,
a(@) = 1.

The expected value of a Poisson distributed variable is E[Y;] = p;. Furthermore, we have
some linear predictor

ni=xB=Po+ Y By
j=1

The canonical link function for a generalized linear model with Poisson distributed re-
sponse is the log-function. Hence, the linear predictor relates to the expected value of Y;
through

ni=a; B =1Inpu,
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2.2.4 General assumptions and notaion

This thesis attempts to present a more general, theoretical tool. However, we wish to make
some general assumptions that are needed for many of the theoretical results before pro-
ceeding.

From subsection 2.2.2 and subsection 2.2.3, it is seen that both the Bernoulli and Poisson
distributions could be written in general terms as

f(yi; 0:) = exp{yiti — A(6:) + h(y:)}- 24

In this thesis, we will restrict ourselves to distributions belonging to the so-called regular
exponential family. By this, we will mean that the distribution of Y; can be written as in
equation (2.4) and that the linear predictor is regular. The linear predictor n = X3 is
regular if it consists of a regular covariate matrix, X, with rank equal to the dimension of
the covariates, and covariates (3 that are unconstrained.

Furthermore, we always assume that the linear predictor 7; and the canonical parameter 6;
are linked by a canonical link function, meaning ¢; = = 3. From these assumptions, we
have that the distribution in equation (2.4) is equivalent to

fyi; B,x:) = exp{yix] B — Az B) + h(y:)}- (2.5)

For simplicity, we will let (Y7, @), ..., (Y,,x,) denote the random sample where each
Y; is a random variable with distribution f(y;; 3, ;).

2.3 Likelihood theory and the score

In this section, we introduce the likelihood function and the score, and we explain how
the coefficients, or parameters, in the linear predictor are estimated by maximizing the
likelihood function, or, equivalently, the log-likelihood function.

2.3.1 Likelihood function

Following Fahrmeir et al. (2013), let (y1, 1) ..., (ya, ,) be a set of independent ob-
servations, and let each y; be a realization from the random variable Y; ~ f(y;; 3, ;).
The results discussed in this section hold even if we do not assume that all elements of
Y = [V1,...,Y,]" have the same distribution, as long as they depend on the same para-
meters 3. However, if the probability distribution f(y;; 3, ;) is equal for all Y}, then Y’
is a random sample of independent and identically distributed (IID) variables, with joint
distribution given by

fly; 8,X) = Hf(yi;ﬁawi)'



10 Aasen: Saddlepoint approximation in score testing

For notational simplicity we introduce f(y; 3, X) to mean f(y1,...,Yn; 3,1, ..., Ty.

The likelihood function is then defined as
LBy, X) =[] f(vi: B,:) = f(y; B, X).
=1

Note that the likelihood is a function of the parameters, depending on the observed data,
as opposed to the probability distribution, which is a function of the data, depending on
the parameters.

The log-likelihood is defined as ((3; y, X ) = In(L(8; y, X)), and can therefore be writ-
ten as

By, X) = Zlnf(yi;187$i)'
i=1

Assuming that (Y}, 1), ..., (Y}, x,) is a random sample from a regular exponential fam-
ily, the expression for the log-likelihood can be written generally as

n

By, X) =D {0y — A0:) + h(y:)} - (2.6)

i=1

Equivalently, since we always assume canonical link, meaning 6; = x! 3, this can be
rewritten as

(Bry, X Zﬁ iy — Ai(B) + h(y), 2.7)

where we define
Ai(B) = A(z]B). (2.8)

Both expressions will be used throughout the thesis, depending on what is most practical.
However, we emphasize that the expressions in equation (2.6) and equation (2.7) are the
same.

The score is defined as the derivative of the log-likelihood and can be written as

s(Biy, X) = - 0By, X Z In f(y;; B, x:). (2.9)

ﬁ

Since 3 is a (p+ 1)-dimensional vector, the score is the gradient of the log-likelihood with
respect to 3, and therefore itself a (p + 1)-dimensional vector, which can be written as,

SBo (/67 Yy, X)
s(B:y, X) = Vgl(B:y, X) = :
sg,(B;y, X)
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2.3.2 Maximum Likelihood Estimators

In order to estimate the parameters 3 = [fy, ..., 3,]7 we can maximize the likelihood
or, equivalently, the log-likelihood function, since the logarithm is a strictly increasing
function. This will yield an estimate which is a realization of the maximum likelihood
estimator (MLE) 3. For linear models, this estimator has a known, analytic solution which
is
B=(X"X)'X"Yy.

However, for generalized linear models, the maximum likelihood estimator does not gen-
erally have a closed-form solution.

The maximum likelihood estimator is the estimator that maximizes the likelihood function,
meaning

~

B = argmgxﬁ(ﬁ; Y, X).
This is equivalent to solving

350(/8§Y>X) 0
s(B;Y,X) = : =1:, (2.10)
s6,(3;Y, X) 0

since the derivative of the log-likelihood will be zero at its maximum point. Finding the
maximum likelihood estimator for 3 is done by solving the (p + 1)-dimensional, non-
linear system of equations given in equation (2.10). The most common method of doing
this is by using the Fisher scoring algorithm (Fahrmeir et al., 2013: p. 324), however we
will not derive this in detail.

For a regular exponential family, the log-likelihood will be a strictly concave function.
Hence, if there exist a maximum likelihood estimator 3 that satisfy

s(B;Y,X) =0,

it will be unique (Butler, 2007: p.148).

2.4 Score testing

In section 2.1 we said that a hypothesis test is usually formulated in terms of a test stat-
istic W (Y1, ...,Y,). For generalized linear models, we are often interested in performing
inference about one or more of the parameters J, . . ., 3,. The score can then be used as
a test statistic, in which case we call it a score statistic. The score statistic can be particu-
larly advantageous when the goal is to test some simpler model, where one or more of the
coefficients 3y, . . ., 3, are 0, against a larger and more complex model. This is because the
score test only requires us to fit the smaller model, and thus only compute the maximum
likelihood estimators for a subset of the coefficients.
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Let (Y1,x1),...,(Y,, ,) be a random sample, and let the score vector be defined as
before, meaning

$6,(8; Y, X) 5 l(B;Y, X)
s(B;Y, X) = : = : . 2.11)
5,(B:Y.X)| |08 Y, X)

Note that when S(3) = s(8; Y, X ) depends on an unrealized random vector Y, the score
can itself be thought of as a random vector with expectation, variance, and distribution of
its own.

Following Lindsey (1996; p. 188-189), the expectation of S(3), with the parameters as-
sumed to be fixed at their true values, is then computed as

E[S(B)=F %K(B;Y,X)}

. _% 1nf<Y;ﬂ,X>]
2 H(Y6,X)
Yi8.X)

2 1(¥: 5, X)

, [(V5,X)

0
- /y (Y8, X)dY

0
_%1
=0.

F(Y; 8, X)dY (2.12)

The variance of the score can be shown to be the expected Fisher information matrix, still
under the assumption that 3 is fixed at its true value. First note that since E[S(3)] = 0,
we get

Var[S(8)] = E[S(B)S(B)"].

It is a well-known result (Casella and Berger, 2001: p. 338) that

Bls@s@] - -5 |52

B

under certain regularity conditions. In particular, this holds for every probability distribu-
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tion belonging to the exponential family. Hence,

varis(@)] = -5 | 0]

_E<yaggcxu>

080"
%ﬁg (187Y7X) #&@,«B;Y,X)
=k : . 3
L UBY.X) . B Y, X)
=Z(p),

with Z(3) being the expected Fisher information matrix.

As noted by Lindsey (1996; p. 215), the exact distribution of the score statistic is only
tractable in certain simple cases, but not generally. However, the asymptotic distribution
can be shown to be a multivariate normal distribution. This follows from the central limit
theorem since the score vector is the sum of independent random variables. In particular,
from equation (2.9) we have

"0
SB = 5/ (V8. X)
=1

=Zwm

where each S;(3) is a random variable depending on Y;. Hence, under the assumption that
3 is fixed at the true parameter values, we have that, asymptotically,

S(B) ~ Np41(0,Z(8)).

Nuisance parameters

When performing inference about a regression model we often have only one parameter
that we are interested in investigating, whereas the remaining parameters are paramet-
ers that are of no intrinsic interest besides adding meaning to the model (McCullagh and
Nelder, 1989: p. 245). These other parameters are called nuisance parameters. Consider
now that instead of 7 = X 3, we define our problem in terms of a scalar! parameter of
interest, y, and a vector of nuisance parameters, 3, which in mathematical terms can be
written as,

n=XpB+ Zn.

'Some results in this section generalize to a vector parameter of interest, but we only consider testing
one parameter at a time and therefore introduce this notation from the start.
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The full covariate matrix then becomes a (n x p + 1) matrix V' = [X, Z|, where X is
(n x p)and Z is (n x 1). The full parameter vector is a (p + 1 x 1) vector ¢ = [3, 7|7,
where 3 is (p x 1) and ~ is a scalar.

The hypothesis test we are interested in only concerns our parameter of interest, v, and
since score tests are optimal for testing if the true model should have fewer covariates, as
mentioned earlier, the hypothesis will often be

Hy:v=0 vs. Hy:v#0. (2.13)

Hence, we are interested in testing if the parameter of interest v should be included in the
linear predictor, or not.

For the score statistic, we then get a natural partition, keeping in mind that the distribution
of the score is a normal distribution only asymptotically and with the parameters v» =
[B,7]" fixed at their true parameter values,

sw =[]~ ()7 72])

Following Smyth (2003), if the nuisance parameters 3 are known, the score test statistic
under H, from equation (2.13) becomes simply

S (thy) X N (0, L, (y)).

We write 1), to highlight that the null-value of -y, which in our case is 0, is used in place
of the parameter to compute the p-value. A low p-value indicates that our distributional
assumptions could be wrong, namely that 7y = 0 is not the true value of the parameter,
and this would lead to a rejection of the null hypothesis.

Generally, we do not have known nuisance parameters. They must therefore be estimated,
and the score test uses the maximum likelihood estimators, estimated under the null hy-
pothesis, fixing the nuisance parameters at 3 = 3. This is equivalent to S3(¢p,) = 0. The
score test statistic therefore becomes

S, (o) | S5(te) = 0 N(0, I,y — L sI5415,), (2.14)

where we see that the distribution accounts for the fact that we use estimators 3, as opposed
to the true parameter values 3, which are unknown to us.

Remark 2.4.1. The conditional distribution of the score S, () as given in equation (2.14)
follows from the known, conditional distribution of normally distributed variables (Hardle
and Simar, 2015: 186). Given two normal random vectors, X; and X5 such that

X4 M1 Y1 X
~N : .
{XJ ( [/”2} [221 222] >
Then the conditional distribution of X, | X; = x; has the known expression

Xo| X1 =21 ~ N(p2 + Z2121_11(551 — 1), Xoo — Z32121_11212)-
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2.4.1 Score tests for a regular exponential family

In this section, we restrict ourselves to a random sample from a regular exponential family,
(Y1,v1), ..., (Y, v,), assuming an underlying generalized linear model with the canon-
ical link function, meaning

O =mn; = ’U%P = 5'3?,3 + v2;.

Note that we are keeping with the notation above, in terms of distinguishing between
nuisance parameters and the parameter of interest.

Consider again the log-likelihood as in equation (2.6). Note that the score then takes the
form

(WY, V) =Y % (0., — A(6) + h(Y))}

", 90, O
= ; azpa_ei {0.Y; — A(6;) + h(Y))}

= D_wilYi = A(6)

= V'Y - V'A(9).

We will note two important things before moving on.

Proposition 2.4.2. The expression A'(0) is the expectation of Y .

Proof. We start by computing the derivative of f(y;; 6;) with respect to 6;, which is
%f(yi; 0;) = 0%2 exp{0iy; — A(0;) + h(y:)}
= (yi — A'(0;)) exp{0iyi — A(0:) + h(y:)}
= (yi — A'(0:)) f (yi: 0:)-
Then, integrating on the left side yields
0 0 0
/a—eif(yi; 0;)dy; = a_ei/f(yi§9i)dyi . 8_02-1 =0.

and integration on the right side yields
/yi — A(0:) f (yi; 0:)dy; = /yz-f(y,»;(%)dyz- - /A’(Qi)f(y,»;ei)dyz- = BY;] — A'(0;).
Hence, we get E[Y;] = A'(0;) after rearranging the terms and it is clear that

EY] A'(0r)
EY]=1| : | =] : [|=416).
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From this, it is clear that we can write the score in terms of the response vector Y and its
expected value u, as

S(y) = VI(Y - p). (2.15)

Proposition 2.4.3. The first term in the score, VY, is a sufficient statistic for .

According to Casella and Berger (2001; p.272), a sufficient statistic can be defined as
follows.

Definition 2.4.4. Denote the data Y, and let 7'(Y") be a statistic, that is, a function of the
data. Then T(Y) is said to be sufficient for a parameter % if the conditional distribution
of Y given the statistic 7'(Y") does not depend on ).

Informally, sufficient statistics can be thought of as transformations of the data Y that
maintain all relevant information about the parameter ).

To evaluate if a statistic is sufficient, the following theorem can be used (Casella and
Berger, 2001: p. 276).

Theorem 2.4.5. (Factorization Theorem) Let f(y;)) denote the joint distribution of a
sample Y and let T(Y') be a statistic of the data. Then T(Y') is sufficient for ¢ if and

only if
fys) = g(T(y): ¥)h(y),

for some functions g and h, and for all sample points y and parameter points ).

From this, it follows directly that 7(Y) = VY is a sufficient statistic for 4 in our
model, that is, where the distribution of Y; is from a regular exponential family and the
link function is a canonical link. To see that this is true, we write

F(Yi9,V) = exp {Z {0.; — A(6:) + hm)}}

i=1

= exp{07Y — A(0) + h(Y)}

=exp{(VY)'Y — A(¥) + h(Y)}

=exp{¢p' V'Y — A(p)} exp{h(Y)}

=exp{yp' T(Y) — A() } exp{h(Y)}

= g(T(Y); 9)h(Y),
where A is defined as in equation (2.8), and depends only on the parameter @) and the
known covariates V.

Remark 2.4.6. The sufficient statistic, T(Y) = V'Y, will be complete as well in many
situations, in particular for regular exponential families (Casella and Berger, 2001: p.288).
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Thus we get a second interpretation of the score, namely that it is a centered sufficient
statistic for the parameter vector v, that is

S() =T — E[TY, (2.16)
for T =T(Y)=V'Y.

Returning now to the hypothesis testing framework, we begin by introducing a simpler

notation, ,
wrn-v- [ (52

where we write the expression for the score as in equation (2.15). It can be shown that the
expected Fisher information matrix also gets a general expression

I() = Iy Iy [X'WX X'WZ
L L, Z'"WX Z'WZz|’

where W is a diagonal matrix with diagonal element i being the variance of Y;, for i =
1,...,n.

Assume now that we want to compute the p-value of the right-tailed score test given by,
Hy:v<0 vs. Hy:v>0.
Given a set of observations (y;,v1), .. ., (Yn, U, ), the observed score becomes
u=2z T(y — o),

where [i, is the expected value E[Y] computed under Hy, meaning that we use the max-
imum likelihood estimators for 3 and set v = 0. The p-value of the score test is

p=P(U, >u|Us=0: Hy). 2.17)

However, since the score also can be written as in equation (2.16), we have that,

o- )-SR B3l

Uy| | Ty—E[T) T,-Z'p

since the expectation E[T] = E[V'Y] = VT u. The variance of U is clearly equal to
the variance of T, since Var(E£[X]) = 0 for all random variables X. For fixed parameters
under Hy, 3 = B and v = 0, we have that p = f1,.

Therefore, we get
Us=0 = Ts—X"1,=0 = Ts=X"fi,

where we have simply used the definition of U s in terms of a sufficient statistic and the
fact that pu is known for fixed parameters.
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Similarly, given ¢, = Z"y defined as the observed value of T',, we have

Hence, the p-value of the score can also be computed with respect to the sufficient statistic
T = [T, T,)", meaning
p=PU,>u|Usz=0;H)
P(Uy+ Z" 1y > u+ Z" f1,| Ts — X" j1, = 0; Hy)
P(T, >t,|Ts = X" f1y; Hp). (2.18)

Usually, U is assumed to be multivariate normally distributed, in which case T" will also
be multivariate normally distributed, and then the p-value of the score test can be easily
computed from equation (2.17), or, equivalently, from equation (2.18). However, in this
thesis we will not assume that the distribution of the score statistic has properly converged
to a normal distribution, meaning that the p-value of the score test can not be computed in a
straightforward manner. In chapter 3 and 4 we, therefore, present two alternative methods
for computing the p-value of a score test, and in chapter 5 and 6 we compare these to
the standard way of computing the p-value from a score test using simulated and real
examples. It will be useful to consider p-value calculations both in terms of U (equation
(2.17)) and in terms of T" (equation (2.18)).



Chapter 3

Saddlepoint Approximation

Saddlepoint approximation is a technique for estimating the density and cumulative prob-
ability of a random variable. The method was first presented in a statistical setting by
Daniels (1954). For this thesis, we will use saddlepoint approximation to estimate the
p-values of a score test. However, we begin by establishing the relevant framework in
a general setting. The results presented here concern univariate and continuous random
variables. The material is based on Butler (2007), and we refer there for generalizations
and further details.

3.1 Cumulant Generating Function

An important tool for constructing the saddlepoint approximation is the cumulant gener-
ating function (CGF). This is defined as the logarithm of the moment generating function
(MGF).

Definition 3.1.1 (Moment generating function). Let Y be a random variable with density
f(y) and support ). Then the moment generating function of Y is defined as

[ e f(y)dy if Y is continuous,
y

My (s) = E(e*Y) =
i ) ST e*P(Y = k) ifY is discrete.
key

for s € (a,b) C R such that the expression is well-defined. The n’th derivative evaluated
in 0 is called the n’th moment of X, and it can be shown that

MM (0) = B(Y™).

19
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The cumulant generating function is defined as

Ky(s) =InMy(s), s€ (a,b).

The n’th derivative evaluated in 0 for the cumulant generating function is called the n’th
cumulant. In particular, the first two cumulants are

k1 = Ky (0) = E(Y) (Mean)
ko = Ky (0) = Var(Y) (Variance)

The CGF K is a strictly convex function for any random variable Y, meaning K7 (s) > 0
for all s € (a,b), and the variance as the second cumulant is therefore well-defined. A
proof can be found in Johnsen et al. (2023; Appendix C).

Properties

We consider three computational properties of the cumulant generating function, as well
as one that relates to the regular exponential family.

Proposition 3.1.2. Given an independent sample Y1, ...,Y,, where each Y; has CGF
Ky,(s), thenY =YY, has CGF
i=1

Ky (s) = ZKYi(s).

Proof. By definition we have,

Ky(S) = lnMy(S)
= In E[e""].

Since Y is the sum of independent random variables Y; we get,
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Proposition 3.1.3. Given a random variable Y with CGF Ky (s), then, for some b € R,
bY has CGF
Kby(S) = Ky(Sb)

Proof. Once again we use the definition of CGF to compute,

Ky (s) = In My ()
= In E[e*®)]
= In E[etYY]
= In My (sb)
= Ky (sb).
0

Proposition 3.1.4. Given a random variable Y with CGF Ky (s), then, for some b € R,
b+Y has CGF
Kyiy(s) =sb+ Ky(s).

Proof. Again, by writing out the definition we get,

Ky (s) =1In My, y(s)
— 1nE[es(b+Y)]
— ln B[]
= In E[e®"] + In E[e®Y]
= sb+ In My (s)
= sb+ Ky (s).

CGF for a regular exponential family

Let Y; be from a regular exponential family and assume we are working with a generalized
linear model with a canonical link, where z; is a known covariate and [ is a (scalar)
parameter!. In other words, ; = n; = ;3. Then

fyis B, 75) = exp{ft(y;) — Ai(B) + h(y:)},

where t(y;) = z;y;, and A;(8) = A(z;) as before. The function A; is sometimes called
the cumulant function or the log-partition function of the probability distribution.

Proposition 3.1.5. The cumulant generating function of the sufficient statistic T; = T(Y;) =
x;Y; is given by
Kr,(s; 8, ;) = Ai(B + s) — Ai(B).

I'This result generalizes to parameter vectors as well, but we only prove it for a univariate parameter.




22 Aasen: Saddlepoint approximation in score testing

Proof. First, we note that
1= [ explt(u) ~ A(9)} exp{hy)}

— exp{Ai(B)} = /y exp{Bt(y:)} explh(y:) . 3.1)

From the definition of the moment generating function, we then get

Mr,(s; B, 7;) = By, [e*T]
- /y exp{st(ys)} exp{Bt(ys) — A:(8)} exp{hly:) Yy

— exp{—A(5)} /y exp{st(ys) + B(s)} exp{h(ys)}dus

— exp{—A(9)} /y exp{(s + B)t(y:)} explh(y) Yy
=exp{Ai(B+s) — Ai(B)},

where the last equality comes from what we showed in equation (3.1). Since the cumulant
generating function is defined as the logarithm of the MGF, it follows easily that

KTi(S;ﬁ7xi) = AZ(B + S) - Al(ﬁ)a
as desired. O

From proposition 3.1.2 it follows that the sufficient statistic 7 = T(Y) = X'Y =

> 2;Y; has cumulant generating function
=1

Krls:5,X) = Y- Ka(s:.) = 30 A8+ 5) — A().

Define the function A(—) = > A;(—), then
i=1

Kr(s; 8, X) = A(B + 5) — A(D)- (3:2)

From the properties of the cumulant generating function we know that the first and second
cumulant is the mean and variance respectively. Thus we have that

BIT(Y)] = Kp(0; 3, X) = A(B) = X"
VarlT(Y)] = KJ(0; 8, X) = A"(8) = T(3).

We note also here that A must be a strictly convex function when evaluated in s, as the
CGF is a strictly convex function, and .A(/3) in equation (3.2) is merely a constant shift
with respect to s.
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Example 3.1.6. Consider Y; ~ Pois(u;) from a Poisson regression model with canonical
link, and linear predictor 7; = x;5. The cumulant generating function for Y;, a Poisson
distributed random variable, is known and given by

Ky.(s) = pu(exp(s) — 1).
The score vector corresponding to this model is given by
U=X"(Y - p),

and since the score is also a random variable for an unrealized response vector Y, it too
has a cumulant generating function, which can be computed as

Ky(s) = ZKYZ-(%S) — TS
i=1

= Z,ui(exp(xis) — 1) — szip;.

=1
This follows directly from the computational properties shown earlier. However, since
U = T — E|[T], we can also compute the CGF of the score by using proposition 3.1.5. We
note that A;(f) = exp(z;f) from how .4 was defined in equation (2.8), and the fact that
A(6;) = exp(0;), as showed in subsection 2.2.3. Hence,

Ky(s) = ZKTi<S) — sE[T}]
—~ ZAi(ﬁ +5) — Ai(B) — sK7,(0)

= ZeXp(xiﬁ + 2;8) — exp(z;8) — sAL(B + s)

i=1

= Zexp(g;iﬁ)(exp(xis) — 1) — sz exp(z;3)

i=1
= Z,u,»(exp(x,»s) — 1) — sxip,
i=1

where the last equality follows from the fact that exp(z;5) = exp(6;) = u;, which was
showed in subsection 2.2.3. We see that both methods yield the same CGF for U, as ex-
pected.

3.2 Saddlepoint approximation

In this section, we aim to motivate and explain the saddlepoint approximation. We will
present the saddlepoint approximation for a univariate density, mainly for illustrative pur-
poses of how the method works. As mentioned in at the beginning of this chapter, the
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saddlepoint approximation is a general method that works in multiple frameworks. There-
fore, we do not assume anything related to generalized linear models, unless explicitly
stated.

3.2.1 Saddlepoint density

Saddlepoint approximation can be used to estimate the density, f(y), of arandom variable
Y that is otherwise intractable. This is done by utilizing the cumulant generating function
Ky (s). The saddlepoint approximation to the density of Y, denoted f, is given by

A~

1
= ———exp(Ky(5) — 5y), 3.3
f(y) AR p(Ky(8) = 3y) (3.3)

where § = §(y) is the unique solution to
Ky(8) =y (3.4)

The point s is referred to as the saddlepoint associated with value y, and equation (3.4)
is called the saddlepoint equation. The name saddlepoint approximation comes from the
fact that the function

s — Ky(s) — sy
has a saddlepoint at $(y), where K% (3) = y.
Example 3.2.1. Tt can be easily shown that the saddlepoint density is exact for a random
variable Y ~ N (i, 0%). The CGF of a normally distributed variable is

2.2
Ky(s) = ps + 0; ,
and the saddlepoint then becomes
; - .Y p
Ky(38)=p+o’s=y = 5= o
Additionally,
Ky.(3) = o
By simply inserting this into equation (3.3), we get
—u\2
poo 1 y—u , o (F) y—u
fly) = 5=, P {u P o
1 1 (y—p\> p2—yp— 2
_ expd L(VTH) oy ynty
2o 2 o?
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which we recognize as the density of a normal random variable Y ~ N (1, 0?).

The saddlepoint approximation can be thought of as a refinement of the central limit ap-
proximation with higher-order expansion terms (Butler, 2007: p. 60-61), which leads to
greater accuracy than what we would expect from a normal approximation. Furthermore,
the saddlepoint approximation uses more information about the distribution. Whereas the
central limit approximation only uses the first two cumulants (the mean and variance of the
distribution), the saddlepoint approximation depends on the cumulant generating function
through a saddlepoint in every evaluation point y € ).

Comparing the accuracy, the central limit converges with rate O(n~'/2), and is more ac-
curate near the mean of the distribution. The saddlepoint approximation converges with
rate O(n™!), and in some cases up to O(n~%/2), and achieves almost uniformly well ap-
proximations over the entire distribution.

3.2.2 Saddlepoint distribution

The saddlepoint method can easily be applied to a cumulative distribution. Let Y be a
continuous random variable and let Ky (s) denote the cumulant generating function of
Y. Then there exists a saddlepoint approximation for the distribution of Y, introduced by
Lugannani and Rice (1980), which is given by

A

PY <y)=ow)+o@)(1/0—1/a), y#p (3.5)

where ® and ¢ are the normal distribution and normal density, respectively,

& = sen(8)V2Gy — Kv (3), 1= 3/ KL(5),
and s is the saddlepoint as defined in equation (3.4).

From this expression, the earlier mentioned ties to the central limit result become more
visible. Indeed, this approximation will also be exact for a normally distributed random
variable, as it was for the density which we saw in example 3.2.1. Furthermore, we note
the singularity in x. This follows from the fact that § = 0 when y = p, and hence 1/
will be undefined. However, a limiting value can be used in the singularity and is shown
derived in Butler (2007; p. 68-69).

Remark 3.2.2. We have so far assumed that Y is continuous and univariate. Extensions to
discrete random variables or random vectors are not very difficult for densities. However,
for the cumulative distribution, this is not straightforward. For discrete random variables,
the trouble arises from the fact that saddlepoint approximation is a continuous approxima-
tion. In Butler (2007), multiple continuity corrected expressions are presented. However,
we will only consider the continuous expression which is given in equation (3.5). The
continuous approximation applied to a discrete random variable with unit step length will
correspond to a so-called mid-p-value (Butler, 2007: p.188).
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3.2.3 Double saddlepoint distribution

Consider now the saddlepoint approximation for the conditional distribution of a con-
tinuous random variable Y given some random vector X = . This cumulative condi-
tional distribution has a saddlepoint approximation derived by Skovgaard (1987), which
is defined as

P(Y <ylX =z) = 0(d) + (@) (1/0 — 1/4), 50, (3.6)

where ® and ¢ are the normal distribution and normal density, as before, and

n(3)y/2([K (70,0) — #1] - [K(7.5) — #"a — 3y)).
K (5, 3)]
K7 (70, 0)]

>
I
Va8

The function K (7, s) is the joint cumulant generating function of (X ,Y’), and K is the
twice derivative only with respect to r of the joint CGF. The saddlepoints are defined as
the points (7, §) and (7, 0) which satisfy

K'(7,8) = (z,y)
K'(19,0) = Kx(79) = =,
respectively. Note that the joint CGF evaluated in K (r,0) is equal to the CGF of X,
Kx(r) (Butler, 2007: p. 108).

Example 3.2.3. In this example, we illustrate how the double saddlepoint approximation
can be used to compute the p-value of a score test in a simple Poisson regression model.

Consider responses Y; ~ Pois(y;) fori = 1,...,n in a Poisson regression model with
canonical link function and linear predictor 7; = x;8 + z;y. This is a simple model with
one nuisance parameter and one parameter of interest, where we are interested in testing
the null-hypothesis Hy : v < 0 against H; : v > 0 using a score test. Note that the
calculations will be practically identical for a vector of nuisance parameters 3.

The score test statistic is given by

U = Us _ XT(Y - :u')
U, zZ"Y -]’
and the joint CGF of (U, U,) is given by

KU(’T‘, S) = Z KYz (Zli'i’f‘ + ZZ'S) + ,UZ(ZIZ'ZT' + ZZ‘S)

i=1

=Y Ky(v]s) +m(v]'s),

i=1
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where v; = [x;,z]7 and s = [r, s]”. Since the double saddlepoint method is defined in
terms of the left-tail probability, and we are interested in performing a right-tail test, we
compute

A

P(U, > u|Us = 0; Hy) = 1 — P(U, < u|Ug = 0; Hy),

where the probability distribution is approximated in terms of the Skovgaard approxima-
tion from equation (3.6).

We must first compute the saddlepoints, for which we need the gradient of K (s)

n

VKU(S) = Z g exp(vis)vi — Vil

i=1
The saddlepoints are determined by,

VEKy(7,8) = (0,u) (3.7)
VTKU(TA0> 0) - 07

where u will be the observed value of the score U,. It is easily seen that the latter saddle-
point 7o must be zero as V, K7 (0) = 0, and this will be the unique solution to the saddle-
point equation as the CGF is a convex function. The saddlepoint (7, 3) is found by nu-
merically solving the two-dimensional, non-linear system of equations given in equation
(3.7).

The expression also uses the twice derivative of the CGF, the Hessian, which in this case

is given by

n

H(s) = Z p; exp(v;8)v! v;,

i=1

and

Hy(r) = Z i exp(a;r)as.
i=1

The p-value of the score test is therefore given by

p=1-[2@)+ow)(l/w—1/a)], §#0,

where
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3.3 Saddlepoint approximations in a regular exponential
family

In Butler (2007; Ch. 5), it is shown that the saddlepoint approximation takes a rather simple
form for sufficient statistics in a regular exponential family. We extend their ideas to score
statistics, and show how a saddlepoint approximated distribution of the score can be easily
computed using output that is usually provided when fitting a generalized linear model in
statistical software such as R Team (2021).

3.3.1 Distribution function

Proposition 3.3.1. Assume that (Y1, xy),...,(Y,, z,) is a random sample from a regular
exponential family with log-likelihood as in equation (2.7), and let the linear predictor
1; = x;8 be linked to the response with a canonical link function. Then the saddlepoint
approximation of P(T < t) for a sufficient statistic T = XY and observed value
t = X"y is given by

~

P(T < 1) = B(@) + 9(@)(1)s — 1)), t# E[T], (3.8)
with
& = sen(B— B), |—21n ﬁEg; i= (- AWT(B)

where ® and ¢ denote the standard normal distribution and density, respectively, B is
the maximum likelihood estimator of the parameter 3, and I denotes the expected Fisher
information matrix, which is the variance of T

In Butler (2007), this relationship between maximum likelihood estimates and the saddle-
point approximation is only shown for densities, but an analog proof for distributions is
easily constructed using a similar approach.

Proof. As shown in proposition 3.1.5, the cumulant generating function of 7" is given by
Kr(s; 0, X) = A(B + s) — A(p).
The saddlepoint equation (3.4) is defined as
Ki(5:8,X) = A(B+5) =t
However, from subsection 2.3.2, we know that the maximum likelihood estimator of 3 is
uniquely given by

olBy, X)| _
8 |

— t—AB)=0
— A(B) =t
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Since the point that satisfy A’(—) = t is unique, we must have

B=pB+5

Combining what we have noted so far, it is possible to rewrite the saddlepoint approxim-
ation in equation (3.5) for the special case P(7T" < t). This is done as follows,

& = sgn(3)/2(5t — K(3))

n(3 — B)\/21(3 — B)t — (A(B + B — B) — A(8))
— sgn(B — B)\/2(Bt — Bt — (A(B) — A())]
:Sgng_@ﬁm— AB) = (Bt = A(8))]

— sgn(B — A/ 2065 y) — (B w)]

- E(ﬁ)
= sgn( — —2ln —=.
sgn(f — B) ) —2 )

and

N

— (- /J’\/T
— AVIB).

Q>

The approximation therefore becomes
P(T <t) = 0(@) + (@) (1/0 —1/a), t+# B[T],

where

O

Corollary 3.3.1.1. Under the assumptions from proposition 3.3.1, and given the score
U = T — E[T), the saddlepoint approximation of P(U < w) will be the same as for
P(T < t) as given in equation (3.8).

Proof. This follows directly from the justification we did in equation (2.18). However,
we can also show it by writing out a similar proof as we did above, so we do that in order
to establish this relationship more firmly.
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We have that the CGF of U is given by
Ky(s;8,X) = Kr(s) — K7(0)s
= A(B +5) — A(B) — A'(B)s.
Hence the saddlepoint equation becomes
Ky(5:8,X) = A (B +5) — A(f) = u,

which is equivalent to
AB+3)=u+ AB) =t,
since u =t — A'(f).

Furthermore, we have also that the maximum likelihood estimator 73 is uniquely determ-
ined by X R
u=t—A(pB)=0 = A(p) =t

Again, we get the relationship X
f=p+5,
and we compute as before
= sgn($)v/2(8u — Ky (3))
sen(B — B)\/21(8 — B)u— (A(B+ 8 — B) — A(B) — A(B)(8 — B))]
— sgn(B — 6)y/2[Bu — Bu— A(B) + A(B) + 2" (B - B)]
— sgn(B — B)\/2[u+ 2T pf — A(B) — (Bu+ 278 — A(9))

:%né B)\20B(aTy - ﬂw+mnw—A@wwMﬂy—ﬂw+wnw—Awm

— sgn(3 wm— — (Bt — A(B))
= sgn(f3 \/2 0By B;
; £(6)
= sgn(f — —2In —=.
an(f — )y -2 £0)

— (B- BB+ - B)
— (- B/ A(B)
= (B = BIWI().
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Note that the distribution only depends on the parameter and its maximum likelihood es-
timate. Thus, it makes sense that the saddlepoint approximation is the same, as both U
and T are sufficient for the parameters, and therefore no information is lost when moving
between these two.

We note also that both the saddlepoint s and the maximum likelihood estimators depend
on the observed point u (or t), and that the saddlepoint approximation only gives us the
probability P(U < u) (or P(T < t)) for a specific, observed point, as opposed to the
cumulative distribution function over the entire domain of U (T').

3.3.2 Double saddlepoint distribution in a regular exponential family

The Skovgaard approximation can be rewritten in a similar manner as we did above. Given
a random sample (Y7, v1),...,(Y,,v,) from a regular exponential family, with known
covariate matrix V' = [ X, Z] and parameter vector 1) = [3,7]” consisting of a parameter
of interest and a vector of nuisance parameters. Then the canonical parameter and the linear
predictor are related by

0=n=Xp+~Z.

The joint distribution of y1, .. . , y,, can then be written as

fW;:8,X,7,Z) =exp{60"y — A(6) + h(y)}
= exp{(XB+72)"y — A(B,7) + h(y)}
=exp{B' X"y +~vZ"y — A(B.7) + h(y)}
= exp{B7ts + 1, — A(B,7) + h(y)}.

We have that T = [T'5, T,]" = [X"Y, Z"Y]" is a sufficient statistic for the parameter
vector ¥ = [3,7]". Then the joint CGF of T' = [T'5,T,]" is given by (Butler, 2007:
p.162)

Kp(r,s;¢, V) =A(r+ 8,s+7v) — A(B,7).

Similar arguments as was done in subsection 3.3 yields an alternative form of the double
saddlepoint approximation for the distribution P(T), < t,|T'3 = %), for an observation
(y1,v1), -+, (Yn, v,,) yielding t = [ts,t,]" as the observed value of T'.

Letting
_ | Lss 1py
zw) = |7

be the expected Fisher information matrix, and let 3,4 be the maximum likelihood estim-
ators of 3, 7, respectively. Lastly, denote by 3. the maximum likelihood estimator of 3
with v fixed at its true parameter value. Then

. 1 1
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where
. . L(5,)
— )y —21n =X
N =T
R A )
“= 0N

Equivalently, we get that the score statistic U = [Ug, U,]" has a double saddlepoint
approximated, conditional distribution given by

PO, < ulUs = 0) = #(6) +00) (3 - 7). u Ao (3.9)

where @ and 4 are as above.

We now consider an example of how this method can be used to compute the p-value
of a score test. Here, we only explain the procedure, while implemented examples are
considered in chapter 5 and 6. Keep in mind that this will correspond to what we did in
example 4.3.1, only with a different expression.

Example 3.3.2. Assume that we have a set of observations (y1,v1),. .., (Yn, V,), With
each y; being a realization of a random variable Y; ~ Pois(y;) fori = 1,...,n. Let the
linear predictor be given by 1; = v} 1 = x;8 + 2y, and linked to the response through
a canonical link function. We are interested in testing the null-hypothesis Hy : v < 0
against H; : v > 0 using a score test.

We use statistical software such as R to fit two models: one under the null hypothesis and
one for the alternative hypothesis.

In order to compute

& = sgn(§ — ) —ﬂnﬁ@”,

L(5,%)
we use the log-likelihood £(f3, 4) from the full model, and the log-likelihood £(£,) from

the null-model. The parameter value of - is 0, as we estimate the distribution under Hy,
and 7 is the MLE of ~ from the full model.

Furthermore,

R AR
=N LG

is computed by inserting the expected Fisher information matrix Z (B ,4) from the full
model, and the expected Fisher information matrix /3 5(/3,) from the null-model.
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Lastly, we plug w and « into the expression

p=1- P <ulUp=0) = 1= [00) +60) (3 - 7 ) w0,

to get the p-value of the right-tailed score test for a given observation u, and the corres-
ponding maximum likelihood estimates.

We note the lack of reliance upon the observed score in equation (3.9). Consider if we,
instead of evaluating a p-value against a significance level o, wanted to specify our test in
terms of a critical value ¢ such that P(U > ¢| Uz = 0) = « and we reject all observations
u > c. It is not clear how we could use the method from equation (3.9) to determine
the critical value ¢, as the method is fully specified in terms of the maximum likelihood
estimates, 3 and 4, for a given observation (y;,v1), ..., (yn, v,). This goes to show that
we are not approximating the distribution of U as a function F'(u) = P(Uﬁ, <u|Uz=0),
but rather that we are computing a p-value of a score test, and that this p-value would
correspond to p = 1—F'(u), for an observation (y1, v1), . . ., (Yn, v,,) yielding the observed
score u, or, equivalently, the maximum likelihood estimates 3 and A.






Chapter 4

Effective Score

We will now leave saddlepoint approximations for a moment and instead consider some-
thing we will call the effective score. As before, let the score vector be given by

o= o]

U’Y

where the parameter vector ¥ = [3,7]7 consists of a vector of nuisance parameters /3,
and a scalar parameter of interest .

In the paper by Johnsen et al. (2023), the double saddlepoint approximated score test as
discussed in chapter 3 is compared to a method presented in Dey et al. (2017) which uses
saddlepoint techniques on the a statistic defined as

U, =U, — I4I;5Us, 4.1

where 1,5 and I 55 are submatrices of the expected Fisher information matrix, as before.
According to Johnsen et al. (2023; p.3), U, can be interpreted as a reparametrization of
the regression model

(B,7) = (e,7),

for some parameter « = (3, y) depending on the original parameters, such that the new
parametrization yields local orthogonality under the null hypothesis v = ~,, meaning
I.,, = I,, = 0 in the expected information matrix of this reparametrized model. This
is precisely the motivation for the construction of UV, henceforth referred to as effective
score, namely to remove some of the dependency between the elements of the score vector,
in order to allow for unconditional inference. This “alternative” formulation of the score
appears in many different frameworks in the literature.

In a hypothesis testing framework, the articles by Hall and Mathiason (1990; p. 82) and
Marohn (2002; p. 341) define something called effective score, as in equation (4.1). The
effective score was also recently used in a paper by Hemerik et al. (2020) as an alternative
to the regular score in a sign-flipping test.

35



36 Aasen: Saddlepoint approximation in score testing

The alternative score presented in equation (4.1) also appears in an article by Waterman
and B. G. Lindsay (1996; p. 4). Their paper shows how the conditional score (McCullagh
and Nelder, 1989)(B. Lindsay, 1982) can be approximated using projection methods. Their
method results in something they call the ¢th order projected score, and the first-order,
linear approximation turns out to be the effective score.

Without going into detail, we will also acknowledge that the alternative score from equa-
tion (4.1) is a familiar concept in semi-parametric and non-parametric settings (Bickel
et al., 1993)(Choi et al., 1996). When the nuisance parameters are of potentially infinite
dimension or are functions, the effective score can be used to perform inference on the
parameter of interest. In this case, the most common name seems to be efficient score,
also used in Johnsen et al. (2023).

In this chapter, we will attempt to derive and explain this other score statistic by con-
sidering the work of Waterman and B. G. Lindsay (1996). First, we show how to derive
the conditional score in a special case. Secondly, we link the conditional score to what
is called the projected score, and show that the first-order projected score is the effective
score. Lastly, we show how the effective score can be used in place of the regular score
as the test statistic in a score test, and consider some asymptotic properties of the effect-
ive score test. We will denote the alternative score as the effective score as it seems to
be the most common consensus within the parametric testing framework. We will denote
the score from section 2.4 as the regular score, to emphasize the difference and avoid
confusion.

4.1 Conditional score

The conditional score is defined as (B. Lindsay, 1982: p.504)
Ue = Uy — E[U,|Tg], (4.2)

where U, is a score with respect to a parameter of interest -, and T’ is a sufficient statistic
for a vector of nuisance parameters 3. We recognize the notation from our above discus-
sion of generalized linear models. However, we emphasize that conditional scores are not
limited to only these models. Note also that E[U,|T s3] does not mean the expectation of
U, conditioned on some observation T3 = ts, but rather conditioned on the stochastic
variable T'5, and we, therefore, think of E[U,|T 5] as a random variable.

Following McCullagh and Nelder (1989; Ch. 7.2.2) assume that for each fixed v = ~o,
there exists a sufficient and complete statistic T'3(7) for 3. We distinguish between the
statistic T'3(yo) being the same for all choices of 7y, and when it depends on ~y,. In Water-
man and B. G. Lindsay (1996), they denoted these two cases a 7ype I problem and 7ype
11 problem, respectively. They also state that generalized linear models with a canonical
link, where Y; is from a regular exponential family are models of Type I structure. The
conditional score as defined in equation (4.2) is well-defined for both Type I and Type
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IT problems. However, for Type I problems, meaning T'5(y) = T's is the same for all
choices of 7y, the conditional score can be computed as the derivative of the conditional
log-likelihood (Waterman and B. G. Lindsay, 1996: p. 1).

Derivation of the conditional score

We now derive the conditional score as the derivative of the conditional log-likelihood, in
a Type I problem. We start by noting that the joint density of Y7, ..., Y,, can be expressed
as

fY(Yaﬁvfy) = fY,TB(YHBa 7) = fY|T5(Y7T,Ba7)fT5(T,3aﬁ7 7)

The first equality follows from the fact that T'5 is fully determined by Y. From this, we
define the conditional log-likelihood as

gc(’% Y7 Tﬁ) =1In fY|T5 (Y7 Tﬁ7 7)
=Infy(Y;8,7) — In fr,(Ts; B,7). (4.3)
Note that /.. is a function only of v whereas the regular log-likelihood is a function of

the full parameter vector ¢p = [3,7]’. Denote by U. the derivative of the conditional
log-likelihood, that is

~ 0
=—VLl(v;Y,T
Uc 87 éc(’% ’ B)
_Olnfy(Y;8,y)  Olnfr,(Ts;8,7)
- — : (4.4
I Oy
We claim that U, = U, from equation (4.2).
The first expression in equation (4.4) is recognizable as the regular score for ~,
v, = Li(g,7v)
Y T 8’}/ 777 .
In order to justify our claim, what remains to show is that
oln fr,(Ts; 8,7)
B BT
We start by noting that
-~  Oln Tgs; 3,
O A
- o0l T;s; 3,
— E[U.|T5] +E{ nfTﬁgf B.7) ‘Tﬁ}, (4.5)
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where we use the fact that
~ Oln T3 3,
U, = 0.+ fTﬁF 3:8,7)
vy

from a rearrangement of equation (4.4). The first term in equation (4.5) is zero, under the
assumption that integral and derivative are interchangeable, since

g

(Vi Ts )| ]
B

fY|T5(Y;T577)
fY|Tﬁ (Y7 Tﬁ: V)dY

~ 0
ElUT, = E | -20,(vY,T
0.1T] = £ | -4.05Y T

=L

B a%fym,(Y;Tﬁﬁ)
N fY|T5(Y7Tﬁ77>

0
- 8_7/ny|T5(Y;TB7'7)dY

9,
_8_71

=0.

This is similar to the argument that is used to show that the regular score function has ex-
pected value zero, which we showed in equation (2.12). For the remaining term in equation
(4.5), we get

B alnfTﬁ(Tﬁaﬁav) T _alnfTﬂ(T[g,B,“/)
Bl — P )
0y oy
since E[h(T's)|Ts] = h(Ts) (Karr, 1993: Example 8.16). Hence,
| I fr,(T5:8.7)
Iy

To summarize, we have shown, by computing the derivative of the conditional log-likelihood
(4.3), that

E[UW|T5] =0

g _ Onfr(YiB,y) Olnfr,(Ts0.7)
¢ o~ o
= Uy — E[U,|T5) = UL,

which is what we wanted.

Remark 4.1.1. From the calculations above, we get a computational understanding of the
conditional score. However, as noted by B. Lindsay (1982) there is also another, perhaps
more intuitive interpretation. We can think of the conditional expectation E[U,|T 5] as
an orthogonal projection of U, onto the probability subspace generated by T's, which is
(Karr, 1993: p.227)

St = {X € L?: X = h(Tp) for some h : R” — R}.

The conditional score is then the residual of the projection of U, onto the subspace St,
which will be orthogonal to T'3. The visual interpretation of this can be seen in Figure 4.1.
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Ue = Uy, — E[U,|T4]

E[UY]T.E]

Figure 4.1: An illustration of how the conditional expectation E[U.,|T s] is projected out
in order to make a new, orthogonal parameter U..

4.2 Projected score

The conditional expectation, E[U, |T 5], is typically intractable, and, consequently, U, will
also be intractable. However, Waterman and B. G. Lindsay (1996) suggests a method
for approximating the conditional score by exploiting that this is a projection onto the
subspace St,.

They propose to use the so-called Bhattacharya basis, to construct a space called Acyg,
which approximates St,. Assume that Y3, ..., Y, is a random sample from a parametric
family!', and let our vector of parameters be v = [3,~]" with dimension p + 1. Then
the basis for the subspace Ac|r, the Bhattacharyya basis, is defined as a set of sets 5; =
VI, ..., V)T, where V), is the constant function 1 and V; is the column vector containing
all ¢’th order derivatives on the form

_ 9L B,% .
; - 1<i. <

where £(3, v;vy) is the likelihood function.

Example 42.1. Let Y1, ...,Y, be a random sample from a parametric model with two
nuisance parameters, that is 3 = [y, 51]7, and denote its likelihood by £ = L(3,7;y).

'For instance a generalized linear model with known covariates.
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Then the Bhattacharryya basis for ¢ = 1, 2 will be

B, = (VI yI)T ( /5852/.5)

By = (Vg , Vi, V)"
( f)ﬂl/£ aﬁg/£ ooty /£ (9ﬁ1(962/£ aﬁ2861/£ dp3 /E)

As seen from example 4.2.1, the length of the Bhattacharyya basis grows quickly, since
V; has length p’, where p is the dimension of the nuisance parameter 3.

The Bhattacharya basis is used to make what is called the projected score, which can be
defined in terms of the score vector U and a matrix M, given by

wi=r (5], mm)= [ 2]

As noted by Waterman and B. G. Lindsay (1996; p.3), the constant V, is redundant and
can be ignored in the computations. According to Waterman and B. G. Lindsay (1996; p.
4), the t’th order projected score is given by

Uy = Uy — jyp35 Be.

Since the matrix M, is the expected Fisher information matrix (Waterman and B. G. Lind-
say, 1996: p. 4), it is easily seen that the first-order projected score is the effective score

U, =U, — IsI;}Us. (4.6)

In conclusion, the conditional score is an intractable score that is orthogonal to the space
St, spanned by the sufficient statistic T"s. The effective score is an approximation of the
conditional score, namely the residual of U, after projecting onto a subspace spanned by
the nuisance scores which we have shown is a linear approximation to the spaces St . This
intuition corresponds with Hall and Mathiason (1990; p. 82), who writes that “[effective
scores are] obtained as the residual from projection of [U, on U], that part of the score
for v which is orthogonal to the score for 3.

4.3 Effective score and effective score test

Let (Y1,v1),...,(Y,,v,) be a random sample from a regular exponential family and as-
sume the responses come from a generalized linear model using a canonical link function.
We have shown earlier that the score then takes the general form

o-[1)- B0 2]
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with expectation zero and variance given by the expected Fisher information matrix

XWX X"wz
L(y) = Z’WXxX Z'™wz|

For these models the effective score takes the general form

U, =U, - I4I;5U;
=U, - Z"WX(XWX) 'Us
=Z'Y —p) - Z"WX(XWX)'XT(Y — p)
=(Z"T - Z"TWX(XWX) ' X" (Y — )
~ 7T

where

Z=7Z-XX"WX)'X"wWz.

The expectation and variance of U7 can be found through straightforward calculations,
always keeping ) fixed at its true parameter value,

E(Uv) = E(Uw - I%BI,E[;UB)
E(Uw) - E(IWBIEéUﬁ)

= E(U,) — IsI;3E(Up)
0

Var(U,) = Var(U, — I,51;3U)
= Var(U,) + Var(I,51 33U ) — 2Cov(U,, IsI 55U 5)
=1, + IwﬁIgﬁlVar(Uﬁ)(Ingé)T — 2Cov(U,, Uﬁ)(IvﬁIgﬁl)T
= Loy + Lyl T 55T 5505y — 2051550 g,
=1Ly~ I%BI,EéIBv
- Z'WZ.

The final line in the calculations of the variance can be found by straightforward verific-
ation and is also the notation used by Johnsen et al. (2023).

The motivation behind formulating the effective score is to reduce the dependency on the
nuisance parameters, in order to perform unconditional inference. It is easily shown that
the effective score is indeed uncorrelated with the score vector U g, still keeping 1) fixed
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at its true parameter value

Cov(U,,Ug) = Cov(Uy — I,sI 53U, Up)
= Cov(U,,Up) — Cov(I,5I;5U, Up)
=I5 — I,5I;;Cov(Us,Up)
=I5 — LsI 55055
=15 —-1p
=0.

Hence, we formulate the effective score test as an unconditional test
P (U’Y S fb),

where we allow the nuisance parameters 3 to be fixed at their maximum likelihood es-
timators 3, without conditioning in the distribution. In a sense, we can think of it as if the
conditioning happened already at “likelihood-level”, instead of in the distribution.

As noted by Hall and Mathiason (1990; p. 78), the effective score test and the regular score
test are equivalent under the assumption that the score vector U is multivariate normally
distributed. To see this, assume now that U is multivariate normal. Then

U, =U, - IsI;5Ups 4.7)

is a linear combination of normally distributed random variables, and therefore also nor-
mally distributed. The normal distribution is uniquely determined by the mean vector and
covariance matrix, and we have already shown that the effective score has expectation and
variance
7 7 -1
E(U,) =0, Var(Uy) = Ly — Lygl 51 5y

Hence,
U,2U|U;=0,
when U is multivariate normal.
Furthermore, the observed value & = Z g(y — fo) Will be equal to the observed value

u= Z"(y— 1), because U 5 = 0 when we plug in the MLE for 3. Therefore, under the
assumption that U is multivariate normal, we have

P(U, <) =PU,<u)=PU, <u|Ugz =0).

This relation is probably also why Hall and Mathiason (1990; p. 78) notes that the effective
score test “will rarely differ much from the [regular score] test in practice”. However, if
we now instead apply a saddlepoint approximation to compute the distribution of 177, the
tests may differ. We illustrate how an effective score test with saddlepoint approximation
can be computed in the following example.
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Example 4.3.1. Let (y1,v1),. .., (yn, v,) be a set of observations where each y; is a real-
ization of the random variable Y; ~ Pois(y;) for i@ = 1,...,n. The linear predictor?
n; = x;8 + z;7y is, as before, linked to the response by a canonical link function, and we
are interested in testing the null-hypothesis H : 7 < 0 against H; : v > 0 using a score
test.

We start by considering the effective score, which is defined as
~ ~T
Uy=2Z (Y —p).

The saddlepoint approximation of the distribution P (U7 < u) can be computed using the
cumulant generating function as in subsection 3.2.2. Then we must first compute the CGF
of U,, which is straightforward using the propositions from section 3.1, and we get

Ky (s § Ky, (Zis) — sZip

— Zui(exp(iis) — 1) — sZip,.

=1
To compute the saddlepoint, we solve the equation
K’ (8) uz exp(2;8)Z; — Zip; = u,
and this equation can be solved numerically by minimizing the function
s — Kg (s) — us.
We also need the second derivative of the CGF, which is

K ! Z ;i exp(Z;s

We note that both p and Z, through W, depend on the parameters ) = [3,7]", and
must therefore be computed under the null hypothesis and with the maximum likelihood
estimate in place of 5. The saddlepoint approximation becomes

P(U, < u) = ®(@) + ¢(@)(1/& - 1/4), @+#0

with

and the p-value of our right-tailed test is then p = 1 — P(U, < u).

>The example would work well also for a vector of nuisance parameters (3, instead of a scalar as con-
sidered here.
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For a regular score U, from an exponential family, we saw in subsection 3.3 that it is
possible to use the special case of saddlepoint approximation expressed in terms of max-
imum likelihood estimates and not cumulant generating functions. We note that Uﬁ, =
=T . . . . .

Z (Y — p) appears as a score function for an exponential family, with expectation 0 and
variance Z' W Z. We, therefore, suspect that the saddlepoint implementation that uses
maximum likelihood estimates can be used for the effective score as well. This is done by
first fitting a null model for estimating the coefficients 3, and then a “full” model where we
manually set the intercept to be Béi) = x; B, fori =1,...,n. We then use the output from
these two models in the expression from equation (2.18). The approximation becomes

P(U, < u) = B(@) + o(@)(1/& — 1/8), u#0,
where
LOv) .. -
26 = (¥ —7VIH),

with v = 0 and with 7 being the MLE from the “full model”. A pseudo-algorithm of how
this could be done is given in algorithm 1.

w=sgn(y —7)y/—2In

Algorithm 1: Effective score test with saddlepoint approximation using glm-output

Input : A vector of responses y, a matrix of nuisance covariates X, and a vector
covariate of interest Z

Output: The right-tail p-value of the hypothesis test v = 0
effectiveScoreTest (y, X, Z)

mod0 + glm(y ~ X)

[, B + mod0

By — g (X1), (g is the canonical link function)
Compute Z using the fitted values

modl «— glm(y ~ Z + offset(3,))

¥, Z(%) + modl

& = sgn(9)/—2(loglik(mod0) — loglik(mod1))

i =9vZ(7)

p-val = pnorm(w) + dnorm(w)(1/w — 1/4)

4.3.1 Asymptotic properties

In subsection 2.4, we said that the score has been shown to be asymptotically multivari-
ate normally distributed. From this we get important asymptotic results concerning the
effective score U, as well. First of all, we note that

Ui>./\[p+1 - Ury i>N1



Chapter 4. Effective Score 45

This follows from the same argument as in equation (4.7), in particular, that 177 is, asymp-
totically, a linear combination of normally distributed random variables. From this, it fol-
lows that the effective score [77 and the nuisance score U s will be asymptotically inde-
pendent, as uncorrelatedness implies independence for normally distributed random vari-
ables.

Furthermore, we have that the unconditional test using U7 will be asymptotically the same
as the conditional test U,|U s = 0. Note also that this will hold in practice when we use
a saddlepoint approximation to determine P(U7 < u), as saddlepoint approximations
are exact for the normal distribution. Hence, asymptotically, a saddlepoint approximated,
effective score test will be the same as a conditional score test computed with a normal
distribution.

Lastly, we will also note that the effective score is asymptotically equal to the conditional
score. To see this, consider U = T — E[T] as simply a centered sufficient statistic, and
note that 7" must also be normal if U is multivariate normal. Furthermore, we have that
Var[U] = Var[T| = Z(v). The conditional expectation E[U,|T 3] can be written out
explicitly when both U, and T3 are normal. We get,

E|U,ITy) = EU,] ~ LT 3}(T = E[T]) = 0~ LT3

Hence, the conditional score will asymptotically be given by
Ue =U, — E[U,|Ts] = U, — IWBI[;;UBUB - Uw

which is the efficient score.






Chapter

Simulated examples

The goal of this thesis is to present two new methods of computing p-values for score tests.
From chapter 3 we saw that a double saddlepoint approximation could be used to compute
more accurate p-values of a score test, and from chapter 4 we defined an effective score
test, also based on a saddlepoint approximation. We have also seen that the saddlepoint
approximation can be implemented in two different ways, which yields a total of four
“different” methods which should in theory be pairwise equivalent. In this chapter, we
consider simulated examples to investigate and compare what we have only presented
theoretically so far.

We begin by comparing the two different implementations, either using the cumulant gen-
erating function or using maximum likelihood estimates. We will call them the CGF-
method and MLE-method, for short. We have seen that the double saddlepoint approxim-
ation should be equivalent regardless of which method we use to implement it, but since
the effective score is not exactly the same as a regular score, we are particularly interested
to see if the effective score test will work with the implementation that uses maximum
likelihood estimates, as outlined in algorithm 1, since this has not been shown explicitly.

Thereafter, we focus on the difference between the tests, and compare double saddlepoint
approximated score test and effective score test against the regular score test. We are inter-
ested in investigating the ability of the tests to control the type [ error at a given significance
level. We consider first a Poisson regression example with an imbalanced response and
next a small sample example with n less than 100, where we fit a logistic regression model.
A complete overview of the different simulations for this chapter is found in table 5.1. The
code used to generate the different data sets as well as the code for implementation of each
test can be found in Appendix A and B, respectively.

There is a singularity in the saddlepoint method, which was discussed in chapter 3. The
problem occurs when the realization is close to the expected value of its corresponding
random variable. As we have not implemented anything to compensate for this, all meth-
ods can be seen to have some illogical results near the expected value, which is 0 for the

47
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score. For a regular score test we have that the p-value is 0.5 for an observed value of 0.
We will therefore see that p-values that in theory should lie near 0.5 can give irregular
results when computed with either the double saddlepoint or effective score method.

For all examples, we let (Y7, v1), ..., (Y,,v,) be a random sample from a regular expo-
nential family, with the response and covariates linked through a generalized linear model
with canonical link function. As before, denote by V' = [ X, Z] the covariate matrix, and
let the parameter vector be given by 1 = [3,~]|”. For our examples, we consider a score
test to evaluate the hypothesis

Hy:v<0 vs. Hy:v>0. (5.1)

Hence, we wish to perform a right-tail hypothesis test. We implement the methods on
a simulated data set (y;,v1),..., (Yo, vs), Where v; = [x;, ;] are both drawn from a
random distribution. The covariate Z; is always drawn from a Gamma(1,3) distribution
and the parameter of interest is always 0, meaning we only consider models for which the
null hypothesis is true. The nuisance covariates vary somewhat for the different examples.
See table 5.1 or Appendix A for details.

Sim. | Model Sample Nuisance Number of Goal
S1Z€ Covariates simulations
Compare methods
. . n = 50 p==06 .
1 | Logistic " — 500 All continuous 5000 f’f saddlepon.lt
implementation.
B B Investigate the
. n=50 |~ 3 andp =10 effect of different
2 | Logistic Mix of continuous 1000
n = 500 . number of
and discrete .
nuisance parameters.
Controlling type I
n =150 p=©6 :irglgf?ct:ance level
3 Poisson | n = 500 All continuous 50000 o = 0.0005, with
n = 1000 .
imbalanced
response.
Controlling type I
n =35 _6 error at
4 | Logistic | n =250 All CZ; Iiinuous 50000 | significance level,
n =100 o = 0.0005, with
small sample size.

Table 5.1: Overview of the setup for each simulation done in this chapter. The covariate
of interest, Z, is always sampled from a Gamma(1, 3) distribution.
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5.1 Comparing implementation methods

In this section, we investigate how the double saddlepoint approximated score test and
effective score test behaves for the two different implementations. We fit a logistic re-
gression model and consider sample sizes of n = 50 and n = 500. We perform 5000
simulations, meaning we compute 5000 p-values for each method.

5.1.1 Double saddlepoint approximated score test

We consider first a double saddlepoint approximated score test. In Figure 5.1 we have
plotted the 5000 computed p-values from the CGF-method against the MLE-method when
performing the hypothesis test from equation (5.1). In theory, the two methods should
agree, but it can be seen that they are quite different in practice. As the differences seem
to grow near the singularity in p = 0.5, we find it plausible that the discrepancy between
the methods is a result of instability in the vector optimization in the algorithm, which
we perform to find the saddlepoints, rather than some inherent difference between the
methods.

Computed p-values Computed p-values
Logistic regression, sample size 50 Logistic regression, sample size 500
1.00+ 1.004
0.75+ 0.75+
TN TN
8 8
a 0.50 a 0.50
%) %)
la} la}
0.25+ 0.25+
0.00+ 0.00+
0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00
DSP DSP
(a) Sample size n = 50 (b) Sample size n = 500

Figure 5.1: The computed p-values from both implementations of double saddlepoint plot-
ted against one another. The x-axis is the MLE-method, and the y-axis is the CGF-method.
The blue line across the diagonal displays y = .

We compare both methods also to a regular score test, and those plots can be seen in Figure
5.2. Here, we have once again plotted the p-values from the different methods against each
other. The instability of the CGF-method is once again clearly visible, which is seen in
subfigures 5.2a and 5.2b. Trial and error also showed that this method is very sensitive to
the initializing vector used in the saddlepoint optimization algorithm, where we use optim
to find the saddlepoints

K,<’fa7 §) = («’L',y), K,(’f.O?O) = KX(/’AAO> =&,
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as described in section 3.2.3. By contrast, the MLE-method seems quite consistent, despite
a few outliers when n = 50 (subfigure 5.2¢). For n = 500 (subfigure 5.2d) it seems
practically identical to a regular score test, indicating that the distribution of the score has
converged to a normal distribution.

Computed p-values Computed p-values
Logistic regression, sample size 50 Logistic regression, sample size 500
1.00+ 1.00+
0.75+ 0.754
& &
30.50 30.50
Q Q
4 4
0.254 0.254
0.00+ 0.00+
0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00
DSP.CGF DSP.CGF
(a) Sample size n = 50 (b) Sample size n = 500
Computed p-values Computed p-values
Logistic regression, sample size 50 Logistic regression, sample size 500
1.00+ 1.00+
0.754 0.754
& &
20.50 20.50
[} [}
4 4
0.25+ 0.25+
0.00+ 0.00+
0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00
DSP DSP
(¢) Sample size n = 50 (d) Sample size n = 500

Figure 5.2: The computed p-values from double saddlepoint implemented with CGF-
method (upper) and MLE-method (lower). The regular score test is plotted on the y-axis,
whereas the double saddlepoint methods are on the x-axis.

Both implementations outputted some values that were “invalid”, meaning that they were
either NA or outside the interval [0, 1]. In the plots in Figure 5.2 these outputs have been
manually set to 0.5, and the lack of outliers in the plots indicates that these invalid outputs
are points that the regular score test will evaluate at around 0.5 as well. However, we
note that there is an outlier in subfigure 5.2c, at approximately (DSP, Regular)= (0.5, 1).
One could speculate if this happened because the algorithm may also be unstable at p-
values very close to 0 or 1, which would be problematic as we are particularly interested
in computing tail probabilities for hypothesis testing. However, as this was not a recurring
problem in the simulations, we have not investigated this further.
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5.1.2 Effective score test

We now consider the effective score test for the same setup and data sets as in the previous
subsection. From figure 5.3 we see that the two implementations seem to agree, except
for a few outliers near the singularity in p = 0.5. This is interesting, as we were not
certain beforehand that the two implementations would correspond perfectly. However,
the simulations give confirmation that the two algorithms are practically equivalent.

Computed p-values Computed p-values
Logistic regression, sample size 50 Logistic regression, sample size 500
1.001 1.00+
0.75+ 0.75+
[T [T
8 8
a 0.50 a 0.50
%] %]
i i
0.254 0.254
0.00+ 0.00+
0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00
ESP ESP
(a) Sample size n = 50 (b) Sample size n = 500

Figure 5.3: The computed p-values from both implementations of effective score test us-
ing saddlepoint approximation plotted against one another. None of the points have been
manually set to 0.5 in this plot, and the outliers are likely due to instability in the saddle-
point optimization near the singularity.

We compare also the two implementations to a regular score test, and those plots can be
seen in Figure 5.4. There are four outliers in subfigure 5.4b, that are not present in subfigure
5.4d, indicating that the CGF-method is slightly less robust than the MLE-method near the
singularity for this example. However, four points are not sufficient in order to conclude
that this is a general trend. Also here we see a clear convergence to a regular score test when
n = 500 for both implementations, supporting the asymptotic results from subsection
4.3.1.

5.2 Investigating the effect of the number of nuisance para-
meters

We investigate how the methods are affected by the number of nuisance parameters, p. We
compare two models, either with p = 3 or p = 10, including the intercept, and once again
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Computed p-values Computed p-values
Logistic regression, sample size 50 Logistic regression, sample size 500
1.00+ 1.00+
0.754 0.754
ke ke
3 0.50 3 0.50
[5] [5]
4 4
0.254 0.254
0.00+ 0.00+
0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00
ESP.CGF ESP.CGF
(a) Sample size n = 50 (b) Sample size n = 500
Computed p-values Computed p-values
Logistic regression, sample size 50 Logistic regression, sample size 500
1.00+ 1.00+
0.754 0.75+
8 8
30.50 30.50
Q Q
4 4
0.25+ 0.25+
0.00+ 0.00+
0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00
ESP ESP
(c¢) Sample size n = 50 (d) Sample size n = 500

Figure 5.4: The computed p-values from effective score test with saddlepoint approxim-
ation implemented with CGF (upper) and glm-output (lower).

consider a logistic regression model'. We simulated 1000 data sets (y1,v1), - -, (Yn, Un)
and computed p-values using a double saddlepoint approximated score test and an effect-
ive score test, using both methods of implementation, and then compared the results based
on whether the data set contained a smaller or larger set of covariates. We are interested in
investigating the performance of the algorithms, not the actual inference. We remark that
general conclusions cannot be drawn from one example, but the difference is still quite
remarkable and interesting.

In Figure 5.5, we plot the computed p-values by the different implementations, meaning
we plot the CGF-method against the MLE-method for the two tests and for the two sets of
covariates. We see from subfigure 5.5c, where the double saddlepoint approximated score

ITesting with Poisson regression yielded similar results, but on a smaller scale as there was a higher
overall stability of the algorithm.
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Computed p-values
Logistic regression, sample size 50

ESP.CGF

ESP.CGF

1.00+
0.75+
[T
8
a 0.50
%)
[a]
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0.004 7
0.00 0.25 0.50 0.75 1.00
DSP
@p=3
Computed p-values
Logistic regression, sample size 50
1.00+
0.754
[T
8
a 0.50
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a
0.25+
0.00+
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Computed p-values
Logistic regression, sample size 50

1.001
0.751
0.50+
0.251
0.001
000 025 050 075  1.00
ESP
(b)p=3

Computed p-values
Logistic regression, sample size 50

1.001 /
0.754 /
0.50 /
//
/
e
0.254
0.001
0.00 0.25 0.50 0.75 1.00
ESP
(dp=10

Figure 5.5: Plotting the CGF-method against the MLE-method for small (upper) and large
(lower) number of covariates. To the left is a plot with p-values computed by the two
implementations of double saddlepoint approximated score test, and to the right are the

two implementations of effective score test.

test is applied to a data set with 10 covariates, a similar trend as in Figure 5.1, namely
that there is a quite high disagreement between the implementation methods and that the
singularity in 0.5 interferes with the optimization algorithm. What is remarkable is that for
p = 3, as seen in subfigure 5.5a, this instability is almost completely gone. This indicates a
strong correlation between the number of covariates and the stability of the double saddle-
point approximated score test, in particular when implemented manually using the cumu-
lant generating function. This remarkable difference may also be due to the fact that the
CGF-method contains a quite naive attempt to do vector optimization by someone? who
is not well-versed in the realm of numerical optimization, whereas the MLE-method in-
directly uses more robust optimization algorithms implemented in packages inR Studio

2that would be the author
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(Team, 2021). For the effective score test, the number of covariates seems to have no effect
on the stability of the implementation methods, as the p-values are seemingly identical. It
makes sense that the CGF-method is more stable for the effective score test, as it handles
the nuisance parameters outside of the saddlepoint approximation. Therefore, the optim-
ization used to determine the saddlepoint is always a convex optimization problem of one
variable no matter the number of nuisance covariates.

We also consider the time spent by each algorithm, as well as the number of NA’s produced
by each method. Here, we include the regular score test for reference. Note that the actual
times themselves may vastly differ depending on processing power. They can, however,
be used for relative comparison between the methods.

Regular | DSP | DSP.CGF | ESP | ESP.CGF
n = 50 237 5.11 10.19 4.7 2.81
n=>500| 398 |10.15 51.10 12.18 7.98

(a) Running time with p = 3.
Regular | DSP | DSP.CGF | ESP | ESP.CGF
n =50 2.76 6.24 10.79 5.41 3.46
n = 500 591 12.55 59.26 13.82 11.06

(b) Running time with p = 10

Table 5.2: Accumulated time each algorithm spends over the course of 1000 simulations
with number of nuisance parameters p = 3 (upper) and p = 10 (lower). The headings de-
note the methods Regular (score test), DSP (Double SaddlePoint implemented with MLE-
method), DSP.CGF (Double SaddlePoint implemented with CGF-method), ESP (Effective
(SaddlePoint) score test implemented with MLE-method), ESP.CGF (Effective (Saddle-
Point) score test implemented with CGF-method).

Regular | DSP | DSP.CGF | ESP | ESP.CGF
n = 50 0 23 23 20 15
n = 500 0 0 1 0 1

(a) Invalid values forp = 3
Regular | DSP | DSP.CGF | ESP | ESP.CGF
n = 50 0 59 110 37 36
n = 500 0 1 133 1 1

(b) Invalid values for p = 10

Table 5.3: Number of NA’s or other invalid p-values out of 1000 simulations with number
of nuisance parameters p = 3 (upper) and p = 10 (lower).

Unsurprisingly, we once again see that the double saddlepoint method implemented with
the CGF-method takes the most time (table 5.2), and also produces the most invalid values
(5.3). Furthermore, we see that the effective score test implemented with MLE-method
is slower than the double saddlepoint approximated score test implemented with MLE-
method when n = 500. In Johnsen et al. (2023; p.2755), they write that “The [effective
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score] test is considerably faster to compute [than the double saddlepoint approximated
score test]”. This is true for the CGF-methods, which is what Johnsen et al. (2023) imple-
mented, but we see that for this example the same does not hold for the MLE-methods.
This is not necessarily surprising, as the effective score test requires matrix multiplica-
tion in order to determine Z, as well as the manually determined intercept, or offset, in
the “full” model (see algorithm 1 for details). These matrix operations will become more
tedious when either n or p becomes larger. Despite this, the effective score test using
CGF-method seems to be the fastest implementation of all, thus supporting the idea that
the effective score test can be used as a computationally cheaper alternative to a double
saddlepoint approximated score test if implemented efficiently.

Lastly, we see that all methods produce more invalid values for small n, except for the
double saddlepoint approximated score test with CGF-method when p = 10, indicating
that, in general, the methods are more stable for large sample sizes.

5.3 Comparison of tests

For this section, we consider two examples where we are interested in comparing how the
three different score tests are able to control the level of a hypothesis test

Hy:~v<0 vs. Hy:v>0. (5.2)

In order to investigate the ability of each test to control level, we generate 50000 data
sets (i, @i, z;), with i = 1,... n, with nuisance covariates Xj;. ..., X;5 generated from
a predetermined, continuous® distribution and Z; ~ Gamma(1, 3). Each response Y] is
simulated from a generalized linear model with a linear predictor

n =z, B+ Y%, (5.3)

where 79 = 0. We then apply the regular score test, the double saddlepoint approximated
score test, and the effective score test, and compare the computed p-values as well as the
number of p-values below the decided significance level & = 0.005, which are the number
of p-values that would have led to a rejection of the null hypothesis. The null-hypothesis
is clearly true for this example, and a test should therefore reject Hy in approximately
a = 0.005 times of the cases for us to say that it is able to control the significance level.
Based on the discussions in section 5.1 we only implement the MLE-methods, as it seems
that the tests are indifferent to the implementation method up to algorithmic error.

3The covariates can very well be discrete as well, but in the simulated examples we wished to gener-
ate 50000 samples while keeping an imbalanced response, and this was easier to achieve with continuous
covariates.
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5.3.1 Poisson regression with imbalanced response

For the first example, we consider a Poisson regression model where the responses are
imbalanced, by which we mean that there is a prevalence of zeros in the responses. Let
Y; ~ Pois(p;), with i = 1,...,n, with u; relating to the linear predictor from equation
(5.3) by

n;i = In(p;).

The simulated covariates and chosen coefficients yielded on average y; ~ 0.1. We will
consider three different sample sizes n = 150, 500, 1000.

We consider first a plot where the p-values from the different tests are plotted against
one another. Considering the smallest sample size, n = 150 first, we see from Figure 5.6
that the regular score test computes more significant p-values than the other two tests.
This makes sense as the normal distribution often tends too fast towards zero in the tail,
which will yield inflated p-values when the distribution of the score has not converged to
a normal distribution yet. The effective score test and double saddlepoint approximated
score test seem to agree quite well.

In Figure 5.7 we investigate the proportion of tests that lead to a rejection of the null-
hypothesis for the three different tests and sample sizes, and consider this to be an estimate
of the level of each respective test. We illustrate the uncertainty in our simulations with
Clopper-Pearson confidence intervals. Letting K; be the number of significant p-values
computed from test j, and let S = 50000 be the number of simulated data sets. Then K
can be thought of as a random variable from a binomial distribution Binom(p;, S) with p,
being the unknown, true probability of making a type I error for that model when using test
j. The confidence intervals are found using a beta distribution, as described in subsection
2.1.3. We see that the effective score test and double saddlepoint approximated score test
are both able to control the level of the test, whereas the regular score test is not able to
control the level at all. The normal approximation is better for larger sample size, but even
at n = 1000 it is not yet near the chosen level of the test, which is marked in a red, dashed
line.

We also note that from Figure 5.8, all three methods seem to converge towards the same
test as the sample size n — oo. This is consistent with the discussion in subsection 4.3.1
as well as the property that saddlepoint methods are exact for normally distributed random
variables.

5.3.2 Logistic regression with small sample size

We now consider a logistic regression model, and this time we consider smaller data sets
of sample sizes n = 35, 50, 100. Letting Y; ~ Binom(y;) fori = 1, ... n, with y; relating
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to the linear predictor from equation (5.3) through

Hi
! n<1—/1fz‘>

The simulated covariates and chosen coefficients for this example yielded an average value
of p; ~ 0.32.

We compare the methods as in the previous example, by first plotting each p-values against
one another for the smallest sample size n = 35. As can be seen from Figure 5.9, the regu-
lar score test in general produces more significant p-values than the other two tests. How-
ever, at this small sample size, all methods seem less consistent with each other overall,
and we note that the effective score test seems to disagree more with the double saddlepoint
approximated score test in this example, as compared to the Poisson regression model with
larger sample size.

From Figure 5.10, we again consider the proportion of tests that lead to a rejection of the
null-hypothesis, which we consider to be an estimation of the level of the test. We include
Clopper-Pearson confidence intervals to signify uncertainty in our estimations. We see
that both the effective score test and the regular score test produce inflated p-values, and
the only test that is able to control the level of the test for this example is the double
saddlepoint approximated score test. From this we can speculate that the projection to
eliminate nuisance parameters is not precise enough for small sample sizes, thus making
the effective score test in practice as bad as the regular score test. However, for all sample
sizes n = 35,50, 100, the effective score test is closer to the decided significance level
than the regular score test. Also for this example, the asymptotic tendency of the tests to
become similar as n — oo can be seen in Figure 5.11.
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Figure 5.6: Comparison of the computed p-values from each of the three tests. The plot is
enhanced in the tail, in order to compare the smallest p-values. The red, dashed line marks

the chosen significance level.
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Figure 5.7: Estimated level over 50000 simulations of each test for the three different

sample sizes, with Clopper-Pearson confidence intervals. The red, dashed line marks the
chosen significance level.
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Figure 5.8: Comparing the p-values near the tail computed by double saddlepoint approx-
imated score test against regular score test (upper), effective score test against regular score
test (middle) and double saddlepoint approximated score test against effective score test
(lower) for the three different sample sizes.
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Figure 5.9: Copmarision of the computed p-values for each of the three methods for n =
35.The plot is enhanced in the tail, in order to compare the smallest p-values. The red,
dashed line marks the chosen significance level.
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Figure 5.10: Estimated level over 50000 simulations of each test for the three different

sample sizes, with Clopper-Pearson confidence intervals. The red, dashed line marks the
chosen significance level.
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Figure 5.11: Comparing the p-values near the tail computed by double saddlepoint ap-
proximated score test against regular score test (upper), effective score test against regular
score test (middle) and double saddlepoint approximated score test against effective score
test (lower) for the three different sample sizes.






Chapter

Applying the methods to real data sets

In this chapter, we apply the discussed methods to two real data sets. We consider a small
data set first, and then a large data set with an imbalanced response. We emphasize that it
is, as before, the three score tests and a comparison and evaluation of those that is the goal
of this thesis and therefore also this chapter, as opposed to performing complete inference
of the data at hand.

6.1 Challenger disaster

The Challenger disaster refers to the tragic incident that occurred the 28th of January 1986,
when the Challenger space shuttle exploded only 73 seconds after launch, killing all of its
seven crew members. The cause was later determined to be the result of a failure in the
rubber O-rings, which was likely caused by the cold weather on the day of the launch
(‘Space Shuttle Challenger disaster’ 2023).

Test data collected before the launch did reveal that there might be a increased risk of
O-ring failure in low temperatures. This data set is openly available, for instance in the
R-package alr4 Weisberg (2014) by the name Challeng. The data set consists of 23 ob-
servations and 7 covariates. However, we consider only a subset of the data set containing
the continuous covariate temp, which is the air temperature at launch, and a covariate fail
denoting the number of O-rings that failed, which we encode binary with 0 indicating no
fails, and 1 indicating at least one O-ring failed. See Figure 6.1 for a plot of these two
variables against one another.

We fit a logistic regression model with fail as the response. The linear predictor consists
only of an intercept and the covariate temp, Z, meaning

ni = Bo + V-
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Figure 6.1: Plotting the occurrence of one more O-ring failure during testing against the
temperature.

| Regular | DSP | ESP |
p-value | 0.003582 | 0.004010 | 0.003621 |

Table 6.1: The p-values from each of the three discussed methods for the hypothesis test
posed in equation 6.1.

We propose to test the hypothesis
Hy:v>0 vs. Hy:v<0, (6.1)

meaning we investigate if low temperatures increase the probability of an O-ring failure.

We run the three score tests, regular score test, effective score test, and double saddlepoint
approximated score test, and the resulting p-values are given in table 6.1. The three score
tests all indicate a significant association. Of the three computed p-values, the double
saddlepoint approximated score test is the most conservative, with the effective score test
giving a p-value closer to a regular score test, and the regular score test giving the lowest,
or most extreme, p-value. This aligns with what we saw in subsection 5.3.2, with double
saddlepoint approximated score test being the most conservative, and effective score test
being closer to the regular score test than the double saddlepoint approximated score test.

6.2 Investigating relations between neurons in the brain

In this chapter, we look at a large data set with an imbalanced response that is fitted with
a logistic regression model. The data set consists of observations of so-called spikes, or
signs of activity, in different neurons in the brain of mice. In neurological research, the
brain can be thought of as a network where the neurons act as nodes that interact with each
other.
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An important part of understanding the brain is understanding how the neurons interact,
and which neurons influence other neurons’ behavior. However, to understand sow they
influence each other we must first determine which neurons seem to be related. In this
example, we use score testing to determine which neurons that are predictive for the be-
havior of our response neuron, and which that are not. The data set can be found openly
available at Laboratory (2023). The package Matrix (Bates et al., 2023) was used in the
pre-processing of the data set.

6.2.1 Setup

The data set consists of observations over 81 minutes for 35 different neurons V;, for
j =1,...,35. The observations are made into a binary data set with encoding

_J 1 ifneuron V; spiked in time interval ¢,
" 0 if'neuron V; did not spike in time interval ¢,

where each time interval ¢ is 2ms long.

Remark 6.2.1. Note that this setup will yield a discrete score statistic with unit step length.
As noted earlier, in remark 3.2.2, using a continuous saddlepoint approximation on a dis-
crete random variable will yield mid-p-values.

To investigate the relationship between neurons V; and V;, we assume a logistic regression
model with V; ; ~ Bernoulli(p; ;), and with canonical link function

logit(p; ;) = m; = Bo + wjiVie1,
fort = 2,...,n. The hypothesis test we are interested in is
H, - Wi <0 vs. Hp: Wjs > 0.

This is a right-tail test, which means that we are testing whether a spike in neuron V; at
time ¢ — 1 increased the probability of a spike in neuron V; at time ¢. A left-tail test would
correspond to testing if a spike in neuron V; at time ¢ — 1 decreased the probability of a
spike in neuron V; at time ¢.

The full data set consists of approximately 2.5 million observations. However, since the
observations in this data set are time-dependent, and independent observations is an under-
lying assumption in generalized linear models, we consider only every 10th observation.
The data set we work with therefore has a sample size of n = 243360.

Testing for neuron 1

We consider neuron 1, V, ;, as our response, and consider a simple linear predictor con-
sisting only of an intercept and the neuron we are interested in testing, meaning

My = Bo 4+ w1, Vi1
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There were 1646 spikes in neuron 1, which is a frequency of about 0.68%.

We perform 34 hypothesis tests,
HO TWi <0 vs. H;: Wis > 0,

with ¢ = 2,...,35. Since we want an overall significance level @ = 0.05 we use a
Bonferroni correction (see subsection 2.1.2) and evaluate each test at significance level
a; = 0.05/34.

In Figure 6.2, we see a plot of the smallest p-values from the double saddlepoint approxim-
ated and effective score tests plotted against the regular score test. The p-values situated
in the lower right quadrant of the plot signify coefficients that would be categorized as
non-significant by a double saddlepoint or effective score test, meaning they keep H,, but
where the regular score test would reject the null-hypothesis. From the plots we see that
this only occurred with one coefficient, namely wy ;5.

Computed p-values Computed p-values
Neuron 1 Neuron 1
0.0041 0.0041
0.0031 0.0031
8 ‘ 8
> >
& 0.0021 £ 0.0021
0.0011 ! 0.0011
wi, 18 w1,18
] @ ©
e ! ®
0.000{ © | 0.000{ © |
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DSP ESP
(a) Regular score test compared to double (b) Regular score test compared to effective
saddlepoint method. score test.

Figure 6.2: A plot, enhanced in the tail, showing the p-values of each coefficient wy ; for
1=2,...,35.

In Figure 6.3, we see an overview of all p-values computed by each of the tests, along
with the coefficient that was tested. Row 13 contains the coefficient w; 15, which is the
only coefticient where the tests conclude differently with respect to rejecting or keeping
the null hypothesis strictly based on the decided significance level. This is also the cut-off
point for significant covariates.

We see also that the three smallest p-values are 0 for both the double saddlepoint and
effective score test. This could indicate some rounding errors in the algorithm for very
small values.

Note also row 27, with coefficient w; 1. Here, the double saddlepoint approximated score
test yielded a p-value of 0.03214, whereas the other two tests clearly agreed that this ob-
servation should have a p-value around 0.8. This point is also clearly visible in Figure
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Regular DSP ESP coef Regular DSP ESP  coef

1 4.926e-206 0.000e+00 0.000e+00 w1,35 18 0.3641 0.35762 0.3573 w1,8
2 5.661e-122 0.000e+00 0.000e+00 w1,4 19 0.4620 0.45581 0.4563 w1,25
3 6.071e-29 0.000e+00 0.000e+00 w1,34 20 0.4872 0.45287 0.4537 w1,28
4 3.002e-19 5.462e-14 6.117e-14 w1,32 21 0.5054 0.48295 0.4814 w1,29
5 1.164e-14 3.399e-12 3.773e-12 w1,2 22 0.5264 0.50279 0.5027 w1,21
6 3.205e-13 7.939e-12 8.883e-12 w1,33 23 0.5495 0.53082 0.5312 w1,20
7 2.061e-11 2.411e-08 2.487e-08 w1,16 24 0.6815 0.67629 0.6767 w1,12
8 1.832e-09 5.398e-08 5.598e-08 w1,31 25 0.7450 0.73211 0.7320 w1,27
9 2.832e-08 8.898e-07 9.087e-07 w1,24 26 0.8385 0.83705 0.8372 w1,11
10 2.043e-07 7.964e-06 8.063e-06 w1,5 27 0.8797 0.03214 0.7821 w1,19
11 2.082e-06 2.024e-05 2.047e-05 w1,3 28 0.9751 0.98685 0.9869 w1,22
12 2.182e-04 5.497e-04 5.524e-04 w1,6 29 0.9871 0.98871 0.9887 w1,7
13 4.383e-04 2.398e-03 2.402e-03 w1,18 30 0.9988 0.99953 0.9995 w1,9
14 2.445e-02 3.172e-02 3.172e-02 w1,23 317 0.9990 0.99917 0.9992 w1,13
15 2.644e-02 3.812e-02 3.811e-02 w1,17 32 0.9996 0.99990 0.9999 w1,14
16 5.205e-02 5.613e-02 5.612e-02 w1,15 33 0.9998 0.99994 0.9999 w1,30
17 2.364e-01 2.303e-01 2.302e-01 w1,26 34 1.0000 0.99999 1.0000 w1,10

Figure 6.3: A table showing all the p-values computed by each score test, sorted according
to the regular score test.

6.4, where the p-values of the effective score test and double saddlepoint approximated
score test are plotted against each other. Quite interestingly, neuron 19 is the neuron with
the lowest number of positive responses. This neuron only had 202 spikes, or 0.083%
responses that are 1. It is plausible that this imbalance is related to why the double saddle-
point algorithm produced such a low p-value. However, as we have no reason to believe
that the regular score should indicate a p-value in the wrong tail, we can reasonably sus-
pect that the p-value computed by the double saddlepoint approximated score test is an
algorithmic error, and not close to a true p-value.

6.2.2 Discussion

The example discussed here is quite brief, and to perform a complete analysis we would
have to repeat what we did for neuron 1 above for the remaining 35 neurons, as w; ; # w;j ;.
However, based on what we saw from this example we can make some general observa-
tions.

First and foremost, we see that the different methods did not yield vastly different p-values.
In particular, sorting the different p-values from smallest to largest with respect to the
different methods would yield the same order for all coefficients where the null-hypothesis
were rejected. On the other hand, we see also that for coefficient w; 19 the effective score
test and regular score test disagree, indicating that the need for reference methods is still
there. We remember that neuron 19 was the neuron with the least spikes, in other words
the most imbalanced covariate, and this could be the reason the effective score and regular
score test are so different for this coefficient. Hence, the usefulness of the methods lays
not necessarily in them as alternatives to a regular score test, but rather as complementing
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Figure 6.4: A plot of the computed p-values from the double saddlepoint and effective
score test.

methods.

We note also that both the double saddlepoint approximated score test and the effective
score test are time consuming methods, and it would take much time to compute every p-
value three times. Therefore, for situations where we are interested in computing p-values
for multiple different hypothesis test, in order to also reduce the number of demanding
computations needed we can opt to only compute p-values “close” to the desired signific-
ance level with one of the alternative methods. This could be done by first computing all
p-values of the test with a regular score test. Then, for p-values such thatp € [a—d, a+d|
for some chosen significance level a and distance d, the p-values are computed again us-
ing either double saddlepoint approximated score test or effective score test, or both. This
would also dodge the problem concerning the singularity near the center of the distribu-
tion, by simply choosing d such that o + d << 0.5.



Chapter

Final discussion

This thesis aimed to present and compare two alternative methods for computing p-values
of score tests in the presence of nuisance parameters, that would ensure better control
over type I error even with small sample sizes or data sets with imbalanced response. The
two alternative methods, namely the double saddlepoint approximated score test and the
effective score test, both utilized saddlepoint approximation to estimate the distribution
of the score. The distinction between them lies in how they handle nuisance parameters.
The double saddlepoint approximation computed the conditional distribution of the score,
thus it is a form of conditional inference. The effective score test transforms the score stat-
istic to a decorrelated effective score where the p-value is computed using unconditional
inference.

Furthermore, we have shown that the saddlepoint distribution of both the regular score and
effective score can be easily implemented in terms of its maximum likelihood estimates.
The simulations in section 5.1, show that the approximation in terms of maximum likeli-
hood estimates aligned with the method employing cumulant generating functions for the
effective score test. The MLE-method is easier to implement for different models, as we
do not have to compute the unique cumulant generating function for our specific model.
However, we saw also that the effective score test using CGF-method was slightly faster,
thus making both implementations for effective score test good candidates. For the double
saddlepoint approximated score test, the theoretical calculations in chapter 3 indicates that
they should be equivalent, but we saw from the simulations in section 5.1 and 5.2, that the
MLE-method appear to be both easier to implement and more stable for large number of
covariates, thus making it preferable over the CGF-method.

For computing p-values, the examples discussed in chapter 5 indicated that the double
saddlepoint approximated score test controlled the type I error better than the regular score
test, and that the effective score test also controlled the type I error better, but relied more
on the sample size of the data than a double saddlepoint approximated score test. However,
these alternative tests have some drawbacks. They are computationally more demanding
and less robust near the singularity for p-values close to 0.5. These challenges might be
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mitigated through improved implementations. Nonetheless, in situations where multiple p-
values are computed for numerous hypothesis tests, as shown in section 6.2, it is possible to
reduce the computational burden by employing the alternative methods only for p-values
“close” to the desired significance level as discussed in subsection 6.2.2.

While this thesis predominantly focuses on p-values, it is widely acknowledged among
statisticians that blindly relying on p-values may not be advisable, even if the test ad-
equately controls type I error. However, the findings presented here can still be a valuable
tool. Firstly, p-values continue to be widely used in various fields that employ statistical
tests. Thus, the need for methods that are able to approximate p-values with high accuracy
when other methods fail is an addition to the tools of statistical inference. Secondly, the
double saddlepoint approximated score test and the effective score test can enhance the
reliability of other methods, or work as a complementing quality check of the methods we
would commonly rely on. As noted by Pierce and Peters (1992), “the application of the
higher order methods frequently serves more to verify [first order asymptotic methods]
than to provide a substantial improvement.[...] practical work ordinarily does not require
extremely precise calculation of p-values and confidence limits, and an important role of
higher order asymptotics is to improve one feel’s for the adequacy of standard first-order
methods.” In other words, the effective score test and double saddlepoint approximated
score test give additional verification and ensure higher confidence in the accuracy of our
methods.

7.1 Further work

Several aspects were not covered in this thesis, but could be pursued for future research.
Since the saddlepoint distribution is typically asymmetric, there is no general scheme
presented here for computing two-sided tests. This becomes more problematic when con-
sidering continuity-corrected p-values, as discussed both in Butler (2007) and in Johnsen
et al. (2023), but this topic has been omitted here due to simplicity.

Furthermore, the power of a test, meaning to what degree the test is able to correctly reject
H, when the null-hypothesis is false, has not been addressed. Within the set of level « tests,
power becomes an important measure for comparing the effectiveness of different tests.
Hence, it would be interesting to compare the power of a double saddlepoint approximated
score test against an effective score test.

Lastly, it is worth noting that when employing a saddlepoint approximation based on max-
imum likelihood estimates, the “score test” appears more as a likelihood ratio test, as both
a model under the null hypothesis as well as a full model need to be fitted. However, we
have shown in section 3.3 that the computed p-values do correspond to a score test. To
expand on this idea, Jensen (1992) introduces the concept of the modified signed likeli-
hood statistic, which appears very similar to the ideas discussed in this thesis. This can
be seen by considering chapter 3 as well as lemma 2.1 in Jensen (1992). Comparing a
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test based on the modified signed likelihood statistic with the double saddlepoint approx-
imated score test and effective score tests presented in this thesis would therefore be an
intriguing avenue for future exploration.
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Appendix

Code used to simulate data sets

Below is the code used to generate simulated data sets for the examples in chapter 5. The
seed was set to be 248.

A.1 Example that compared the implementations

Code for generating data sets used in the discussion of different implementations of the
saddlepoint approximation (section 5.1).

# Generate the nuisance covariates and parameter
X = matrix(c(rep(1,n),rnorm(n,0,0.25),runif(n,-1,0.5),
rexp(n,1),rgamma(n,1,1),runif (n)),
ncol = 6, byrow = F)
colnames (X) = c("intercept", "x1", "x2", "x3", "x4", "x5")
beta = ¢(-1,0.2,1,0.5,0.1,-0.3)

# Generate the parameter of interest and covariates
gamma = 0
Z = rgamma(n,1,3)

# compute mu
mu = exp (X%*%beta + gammaxZ)/(1 + exp(X¥)*)%beta + gammaxZ))

#generate samples
y = rbinom(n,1,mu)
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A.2 Example that explored different number of nuisance
covariates

Code for generating data sets used to investigate how the number of nuisance covariates
affected the implementations of the alternative score tests (section 5.2).

# Testing with p = 9 + intercept
if (exm == 1){
# Generate the nuisance covariates and parameter
X = matrix(c(rep(1l,n),rnorm(n,0,0.25),runif(n,-1,0.5),
rexp(n,1),rgamma(n,1,1),runif (n),
rbinom(n,1,0.25), rexp(n,1),runif(n,-2,2),
rpois(n,0.5)), ncol = 10, byrow = F)
colnames (X) = c("intercept", "x1", "x2", "x3", "x4", "xb5",
"xe","x7", "x8", "x9")
beta = ¢(-3,0.2,1,0.5,0.1,-0.3,1,1,0.5,1)

# Generate the parameter of interest and covariates
gamma = 0
Z = rgamma(n,1,3)

# Testing with p = 2 + intercept
else if (exm == 2){
# Generate the nuisance covariates and parameter
X = matrix(c(rep(l,n),rnorm(n,0,2),rpois(n,0.5)),
ncol = 3, byrow = F)
colnames (X) = c("intercept", "x1", "x2")
beta = c(-3,1,1)

# Generate the parameter of interest and covariates
gamma = 0
Z = rgamma(n,1,3)

¥

# compute mu
mu = exp (X%x*%beta + gammax*Z)/(1 + exp(X%*/beta + gammax*Z))

#generate samples
y = rbinom(n,1,mu)
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A.3 Poisson regression with imbalanced response

Below is the code for generating the imbalanced data sets with a Poisson distributed re-
sponse, used in the example of subsection 5.3.1.

# Generate the nuisance covariates and parameter
X = matrix(c(rep(l,n),rnorm(n,0,0.25),runif(n,-1,0.5),
rexp(n,1),rgamma(n,1,1),runif (n)),
ncol = 6, byrow = F)
colnames (X) = c("intercept", "x1", "x2", "x3", "x4", "x5")
beta = ¢(-2.3,0.2,1,0.2,0.1,-0.3)

# Generate the parameter of interest and covariates
gamma = O
Z = rgamma(n,1,3)

# compute mu
mu = exp(X %x*), beta + gammaxZ)

# generate samples
y = rpois(n,mu)

A.4 Logistic regression example

Below is the code for generating the small data sets with a Bernoulli distributed response,
used in the example of subsection 5.3.2.

# Generate the nuisance covariates and parameter
X = matrix(c(rep(l,n),rnorm(n,0,0.25),runif(n,-1,0.5),
rexp(n,1),rgamma(n,1,1),runif(n)),
ncol = 6, byrow = F)
colnames (X) = c("intercept", "xi1", "x2", "x3", "x4", "xb")
beta = ¢(-1,0.2,1,0.5,0.1,-0.3)

# Generate the parameter of interest and covariates
gamma = 0
Z = rgamma(n,1,3)

# compute mu
mu = exp (X%x*%beta + gammaxZ)/(1 + exp(X%*/beta + gammaxZ))

#generate samples
y = rbinom(n,1,mu)






Appendix

Code for implementations of the different
score tests

Below, the R code used to perform the different score tests is included. The code to com-
pute the cumulant generating function, and the twice derivative of the cumulant generating
function is needed for both the effective score test and the double saddlepoint approxim-
ated score test, and is included below.

CGF is the cumulant generating function
s: variable of the function

#
#
# x: matrix of covariates
# mu: mean vector

#

family: either "binomial" or "poisson"

CGF <- function(s, X, mu, family = "binomial"){
if (family == "binomial"){
return(sum(log(l - mu + mu*exp(X %*% s)))-sum(s * mu %*% X))
}
elseq
exp_term <- exp(X %*% s)
return(sum(mu * (exp_term - 1)) - sum(s * mu %x*x% X))
}
+
# CGF.D2 is the twice derivative of the CGF wrt s
CGF.D2 <- function(s, X, mu, family = "binomial"){
if (family == "binomial"){
emsx = exp(-X%*%s)
muexp = mu * (1 - mu) * emsx / (((1 - mu) * emsx + mu)~2)
return(t(as.numeric (muexp) * X) %x% X)
b
elseq

emsx = exp (X%x*%s)

&3
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return(t (as.numeric(mu * emsx) * X) %x*x% X)
}
}

B.1 Score test

This is a manual implementation of a score test. It is also possible to use the function
glm.scoretest from the package statmod (Dunn and Smyth, 2018).

# X: matrix-argument with nuisance covariates (including intercept)
# Z: vector-argument with covaraite we want to test

# y: vector of responses

# fam: the exponential family of Y, either "binomial" or "poisson"

score.test.int <- function(y, X, Z, fam = "binomial", left.tail = T){

# Fit model under HO
mod0 = glm(y ~ . - 1, data = as.data.frame(cbind(y,X)), family = fam)

# Get fitted values for mu
mu.hat = modO$fitted.values

# Weights

if (fam == "binomial"){
W = mu.hat*(l-mu.hat)

b

else {
W = mu.hat

}

# Compute observed score

u <- t(z) %*% (y - mu.hat)

Compute covariance matrix

1 <= t(Z) %k (Z % W)

212 <= t(Z) Wxh (X * W)

.2 <- solve(t(X) %*x% (X *x W))

HoH O

I <-TI.1 - T1.12 %*% I.2 %*x% t(I.12)

# Return p-value
pnorm(u,mean = 0, sd = sqrt(I), lower.tail = left.tail)
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B.2 Double saddlepoint approximated score test

In the code below the double saddlepoint approximated score test is implemented using
both the cumulant generating function and maximum likelihood estimates.

X: matrix-argument with nuisance covariates (including intercept)
Z: vector-argument with covaraite we want to test

#
#
# y: vector of responses

# fam: the exponential family of Y, either "binomial" or "poisson"

double.sadpnt.int <- function(y, X, Z, fam = "binomial", CGF = F,
left.tail = T, init = 0){

# Fit model under HO
mod0 <- glm(y ~ . - 1, family = fam, data = as.data.frame(cbind(y,X)))

if (CGF){

# Get fitted values for mu
mu.hat = modO$fitted.values

# compute the score

u = t(Z)%*%(y-mu.hat)
x = cbind(Z,X)

nx = dim(x) [2]

x2 = x[,2:nx]

# Estimate the saddlepoint
s.hat = optim(rep(init,nx),
function(s)CGF(s,x,mu.hat, family = fam)-u*s[1])$par

# Compute w.hat and u.hat according to Butler p.12

w.hat = sign(s.hat[1])*sqrt(2*(-CGF (s.hat,x,mu.hat, family = fam)+
s.hat [1]*u))
u.hat = s.hat[1]*sqrt(det (CGF.D2(s.hat,x,mu.hat, family = fam))/

det (CGF.D2(rep(0,nx-1),x2,mu.hat, family = fam)))

# Compute left-tail p-value according to Butler p.12
p.val = pnorm(w.hat) + dnorm(w.hat)*((1/w.hat)-(1/u.hat))

# Return p-value in either left or right tail
if (left.tail){
return(p.val)
}
elseq
return(1l - p.val)
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}
¥
else {
# Fit model under H1
modl <- glm(y ~ . - 1, family = fam, data = as.data.frame(cbind(y,X,Z)))
# Compute covariance matrix for restricted and full model
I0.inv = vcov(modO)
Il.inv = vcov(modl)
# Compute the log-likelihood for restricted and full model
110 = as.numeric(logLik(mod0))
111 = as.numeric(logLik(mod1l))
# Get the MLE estimate for the parameter of interest
coefZ.hat = as.numeric(coef(mod1)["Z"])
# Compute w.hat and u.hat according to Butler p.170
w.hat = sign(coefZ.hat)*sqrt(2%111-2%110)
u.hat = coefZ.hat*sqrt((1/det(Il.inv))/(1/det(I0.inv)))

# Compute left-tail p-value according to Butler p.113
p-val = pnorm(w.hat) + dnorm(w.hat)*((1/w.hat)-(1/u.hat))

# Return p-value in either left or right tail
if (left.tail){
return(p.val)
+
else{
return(l - p.val)

}

B.3 Effective score test

In the code below the effective score test is implemented using both the cumulant gener-
ating function and maximum likelihood estimates.

X: matrix-argument with nuisance covariates (including intercept)
Z: vector-argument with covaraite we want to test

y: vector of responses

fam: the exponential family of Y, either "binomial" or "poisson"
mu: fitted values for mu under HO

H OH HF H H
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effectiveZ <- function(X, Z, mu, family = "binomial"){

# Weights

if (family == "binomial"){
W = mu*x(l-mu)

}

else {
W = mu

(-

# Compute Zx

M = solve(t(X * W) %x% X) %*x% t(X *x W) %x%h Z
Z.star = Z - X %*x% M

# Return Zx

return(Z.star)

effective.sadpnt.int <- function(y, X, Z, fam = "binomial", CGF = F,
left.tail = T){

# Model under HO
mod0 <- glm(y ~ . -1, family = fam, data

as.data.frame (cbind(y,X)))

# Get fitted values for mu
mu.hat = modO$fitted.values

# Compute Zx*

Z.star = effectiveZ(X, Z, mu.hat, family
u.e = t(Z.star)%*%(y-mu.hat)

# can also use u = t(Z)%*%(y-mu.hat)

fam)

if (CGF){
# Estimate the saddlepoint
s.hat = optimize(function(s)CGF(s,Z.star ,mu.hat,family
c(-10,10) ,tol=1e-10)$minimum

fam)-u.ex*s,

# Compute w.hat and u.hat according to Butler p.12
w.hat = sign(s.hat)*sqrt(2*(s.hat*u.e-

CGF (s.hat,Z.star ,mu.hat,family fam)))
s.hat*sqrt (CGF.D2(s.hat, Z.star, mu.hat, family = fam))

u.hat

# Compute left-tail p-value according to Butler p.12
p-val = pnorm(w.hat) + dnorm(w.hat)*((1/w.hat)-(1/u.hat))

# Return p-value in either left or right tail
if (left.tail){
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return(p.val)
¥
else{
return(l - p.val)
}
}

else {

# Weights
if (fam == "binomial"){
theta = log(mu.hat/(l1-mu.hat))
}
else {
theta = log(mu.hat)

# Modified model under H1 (correct to remove intercept?)
modl = glm(y ~ -1 + Z.star + offset(theta), family = fam,
data = as.data.frame(cbind(y,Z.star)))

# Compute covariance matrix for full model
I1 = as.numeric(vcov(modl))

# Compute the log-likelihood for restricted and full model
110 = as.numeric(logLik(mod0))
111 = as.numeric(logLik(mod1l))

# Get the MLE estimate for the parameter of interest
coefZ.hat = as.numeric(modl$coefficients)

# Compute w.hat and u.hat according to Butler p.170
w.hat = sign(coefZ.hat)*sqrt(2*x111-2%110)
u.hat = coefZ.hat*sqrt(1/I1) # Hvorfor er det 1/ her?

# Compute left-tail p-value according to Butler p.12
p-val = pnorm(w.hat) + dnorm(w.hat)*((1/w.hat)-(1/u.hat))

# Return p-value in either left or right tail
if (left.tail){
return(p.val)
Iy
elsed{
return(l - p.val)

}
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