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Abstract
Two parametrizations of a classical electrostatic model for the polarizability has been un-
dertaken. The parametrizationswere conducted on a large set of small organicmolecules,
containingmany normal functional groups. For one parametrization, the set ofmolecules
were supplemented with molecules where one of the bonds had been stretched or com-
pressed. This was done such in order to include a larger number of less represented bond
lengths to the parametrization. Care was taken not to stretch bonds between bond orders.

It was found that carbon-carbon bond lengths in the interval 1.46− 1.48 Å were under-
represented. These consisted of a number of aromatic bonds and bonds near electroneg-
ative functional groups. A number of carbon bonds were added in this interval. It was
found that this had little effect on the parametrization. A smaller number of carbon-
fluorine bonds were also added. This was found to give better effect, but mainly due to
these bonds initially representing a far smaller number of the total bonds. It shows that
adding geometries like this may have some effect for under-represented bond distances,
but that the focus should be on increasing the number of bonds that are under-represented
for the whole data set, not just within each category of bonds.

The optimization algorithm used was found to be able to get stuck at certain parameter
values if they were initially set to be zero. The model compensated for this by changing
other parameter values in order to minimize the error. This showed a weakness in using
molecular properties to optimize atomic contributions. Care should be taken with the
initial parameter values to avoid this.
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Sammendrag
To parametriseringer av en klassisk elektrostatisk modell for polariserbarheten er blitt
gjennomført. Parametriseringene er gjennomført på et stort sett av små organiskemolekyler,
med mange vanlige funksjonelle grupper. For den ene parametriseringen ble settet med
molekyler utvidet med molekyler der geometrien hadde blitt endret for å komprimere
eller strekke en av de kjemiske bindingene. Dette ble gjort med hensikten å forbedre
beskrivelsen av disse underrepresenterte kjemiske bindingslengdene. Bindinger ble ikke
strukket utover egen bindingsorden.

Det ble funnet at for karbon-karbon bindinger var bindingslenger mellom 1.46 − 1.48
Å var underrepresentert. Disse bindingene var sammensatt av aromatiske bindinger og
bindinger nær elekronegative funksjonelle grupper. Flere karbon-karbon bindinger ble
lagt til i dette intervallet. Det ble funnet at dette hadde liten effekt på parametriseringen.
Et mindre antall karbon-fluor bindinger ble lagt til. Dette ble funnet å gi bedre effekt for
parametriseringen, muligens fordi disse bindingene opprinnelig utgjorde et mye mindre
antall av de totale bindingene. Dette viser at å legge til flere geometrier kan ha et positivt
bidrag for underrepresenterte bindinger, men at fokuset av disse geometriene burde være
på å legge til bindinger som er underrepresentert i hele datasettet, ikke bare innenfor hver
kategori av bindinger.

Optimeringsalgoritmen som ble brukt ble funnet å kunne sette seg fast på visse pa-
rameterverdier dersom de opprinnelig ble satt til null. Det ble observert at modellen
kunne kompensere for dette med å endre andre parameterverdier for å minimere feilen.
Dette demonstrerer en svakhet ved å bruke molekylære egenskaper for å optimalisere
parameterene for atomiske bidrag. For å unngå dette må aktsomhet vises for valg av de
initiale parameterverdiene.
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1 Introduction
The use of computational models are a driving force for research on chemical systems
[1]. While much research being conducted employs quantum chemical calculations, for
large enough systems the computational load of purely quantum mechanical solutions
are still very demanding [2, 3]. To simulate larger systems, such as biomolecules [4] or
condensed phases [5] the use force field methods are often a requirement [6], still today
it is not possible to simulate very ambitious systems in complete detail, even using force
fields [7]. Still work is being done to improve and introduce new force fields [8–11].

The polarizability is a molecular property with great importance for the behaviour of
many simulations [12]. The molecular polarizability is connected to many important
properties like induction and dispersion, and is important for spectroscopic determina-
tion of molecules [13]. For simulations of ionic liquids, the inclusion of polarizability
may be necessary for accurate results [14, 15], and many of the best performing force
field do include polarization [16], for which the polarizability is an important property.
Many applications of force field methods exists for use on fullerenes and graphene
systems, and the polarizabilities have been shown to be of great importance in such
systems [17, 18]. Still the proper incorporation of polarizability in classical force fields
continues to be researched [19].

The dipole moment gradient is another molecular property, it is related to the intensities
in the infrared spectre [20–23] and to Raman intensities [22]. The inclusion of the dipole
moment gradient may be a better metric for a parametrization of the force field because
it is a size localized to an atom, and may thus be better tied to the atomic parameters.

Quite some work has gone into the development of the charge transfer - point dipole
interaction (CT-PDI) model [24–28]. The model consists of the combination of an
electronegativity equalization model, where atomic charges are redistributed to form
an equal chemical potential at each atom [29], and a point dipole model that places a
dipole at polarizable points in the system [30]. The ct-pdi model has been used for the
calculation of local fields, which can be used to find areas of a molecular system where
rare events can occur [31]

A good parametrization is necessary to get useful data from a force field model [32,33].
While many force fields exist, many are focused on certain groups of molecules [34]
it would be ideal to generate a force field which has good transferability of parameters
between larger and smaller molecules.

In this project, a large set of molecules have been generated, in bond length intervals
where a smaller representation of bond lengths were found, the set was supplemented
by modifying certain geometries to include these abnormal geometries, and the effect of
this on the parametrization has been investigated.

1



2 Theory

2.1 Quantum chemistry
2.1.1 The Schrödinger equation

To examine chemical systems in full detail, it is necessary to include the effects of quan-
tummechanics. Themost fundamental equation in quantum chemistry is the Schrödinger-
equation eq. (38) [35].

ĤΨ(x, t) = iℏ
∂Ψ(x, t)

∂t
= EΨ(x, t) (1)

Where i is the imaginary number, h̄ is the reduced Planck constant, E is the total energy,
andΨ is the wave function. The time dependent Schrödinger-equation eq. (38) describes
the time evolution of the wavefunction [35]. For cases where the Hamiltonian Ĥ is
independent of time [36], it can be shown that the Schrödinger equation can be separated
into a time independent, and a time dependent part. This leads to a formulation of the
time independent Schrödinger equation

ĤΨ(x) = EΨ(x) (2)

This formulation has had great importance in the development of approximate solu-
tions to the Schrödinger equation. Despite the ability to formulate the equation for the
development of the system, the problem is not analytically solvable. This is due to
the Schrödinger equations spatial dependence on the coordinates of the particles in the
system [35].

2.1.2 Born-Oppenheimer Approximation

The fundamental problem of solving the Schrödinger equation is the correlated move-
ment of the quantum particles. This has the consequence of the movement of all the
particles in the system being coupled, which is problematic for finding a solution. For
nuclei, which have amuch larger mass than electrons, it can be assumed that the coupling
between the movement is negligible [35]. This would then allow for the separation of the
total wavefunction for the system into a nuclear and a electronic wavefunction [36–38].

Ψ(x) = Ψel(x)Ψnuc(x) (3)

This can be seen as the electronic wavefunction being able to instantaneously adjust
to changes in changes in the nuclear configuration [39] and allows for solving the two
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wavefunctions seperately, greatly simplifying the solution.

2.1.3 Orbitals and Slater determinants

When treating a many electron wavefunction, the problem of the correlated movements
of electrons returns. The crudest way to approximate the wavefunction would then be
to neglect this correlation and simply define the wavefunction as a product of many one
electron, non-interacting wavefunctions. This is the simple Hartree-product [35]. By
exchanging labels for the electrons in the Hartree product, a Slater determinant can be
constructed [36]

Φ =
1√
N !

det

∣∣∣∣∣∣∣∣∣
χ1(1) χ2(1) · · · χN(1)
χ1(2) χ2(2) · · · χN(2)
... ... . . . ...

χ1(N) · · · · · · χN(N)

∣∣∣∣∣∣∣∣∣ (4)

This Slater determinant accounts for the symmetry constraints on the wavefunction im-
posed by the Pauli exclusion principle.

2.1.4 Basis sets

For non-periodic systems, the orbitals may be represented by a linear combination of
atom centered functions [36]. One of themost commonways to represent these functions
is Gaussian-type orbitals. These are functions on the form [35,36]:

ϕ(r) = Nxiyjzk exp
{
−ar2

}
with i, j, k ≥ 0 (5)

Where a is an exponent and N is a normalization constant. These have the central
advantage that the product of such Gaussians is a Gaussian centered between the two.
However, these functions do not have a cusp at r = 0, but a linear combination of
Gaussians will approach such behaviour. In this way a contracted Gaussian can be
constructed from a linear combination of primitive Gaussian orbitals eq. (5) [35]

χo =
∑
i

doiϕi(r) (6)

Using a single contracted Gaussian eq. (6) to describe an orbital is often not sufficient to
approximate the wavefunction with good precision. Instead one can use two contracted
Gaussians for each orbital. This is what is known as a double-zeta basis set. Further
one can use three Gaussians for this, in this case it is a tripple-zeta basis set. As will be
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shown, using a larger basis set will improve the resulting approximated wavefunction,
but increase the computational cost [35].

For the calculation of properties, it is common to also add diffuse functions, Gaussians
with a smaller parameter value for a eq. (5) such that it is more diffuse and has a greater
density near the tails of the distribution [36].

2.1.5 Variation theorem

The variation theorem states that if the energy of any approximated wavefunction Φ̃ is,

Ẽ =

〈
Φ̃
∣∣∣H∣∣∣Φ̃〉〈
Φ̃
∣∣∣Φ̃〉 (7)

Then the energy of this wavefunction is greater or equal to the true ground state energy
E0.

Ẽ ≥ E0 (8)

This has the strength that if any improvement is made to the estimated energy Ẽ, by
varying the wavefunction Φ̃, then the resulting wavefunction is a better approximation
of the true wavefunction and it provides an upper bound to the ground state energy [35].

2.1.6 Hartree-Fock equations

Considering the Hamiltonian of one electron orbitals, moving in a potential of the av-
erage of interactions with all other particles in the system. The Hamiltonian for such a
system can be expressed as [35]

Ĥ =
∑
i

hi +
1

2

∑
i ̸=j

1

rij
(9)

Where hi is the one-electron hamiltonian for non-interacting electrons and 1
rij

is the
coulomb interaction. Atomic units have been used to simplify constants. Applying
this to a wavefunction approximated by a slater determinant eq. (4), the energy is the
expectation value [35]

E =

〈
Φ

∣∣∣∣∣∑
i

hi +
1

2

∑
i ̸=j

1

rij

∣∣∣∣∣Φ
〉

(10)
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Applying the Slater-Cordon rules [35], the energy becomes

E =
N∑
i

⟨ϕi|h1 |ϕi⟩+
1

2

N∑
i ̸=j

(
⟨ϕiϕj|

1

rij
|ϕiϕj⟩ − ⟨ϕiϕj|

1

rij
|ϕjϕi⟩

)
(11)

Minimizing this, with respect to the energy δE, using the orthonormality of the one
electron orbitals of the slater determinant δ ⟨ψi|ψj⟩one obtains [35]:

N∑
i

⟨δϕi|hi |ϕi⟩+
1

2

N∑
i ̸=j

(
⟨δϕiϕj|

1

rij
|ϕiϕj⟩−⟨δϕiϕj|

1

rij
|ϕjϕi⟩

)
−

N∑
i,j

ϵi,j ⟨δϕi|ϕj⟩ = 0

(12)

Since δϕi is chosen arbitrarily, the sum of all terms must be zero [35].

N∑
i

hi |ϕi⟩+
1

2

N∑
i ̸=j

(
⟨ϕj|

1

rij
|ϕi⟩ |ϕj⟩ − ⟨ϕj|

1

rij
|ϕj⟩ |ϕi⟩

) N∑
i,j

ϵi,j |ϕj⟩ = 0 (13)

Introducing the Coulomb operator J and the exchange operatorK, for each orbital [35]

hiϕi +
1

2

N∑
j

(
Jjϕi −Kjϕi

)
=

N∑
j

ϵi,jϕj (14)

Then the Fock operator can be defined [35, 36]

f1 = h1 +
N∑
j=1

Jj(1)−Kj(1) (15)

This operator then can be used to find the orbital energies.

2.2 Density functional theory (DFT)
Density functional theory (DFT) is a widely used quantum mechanical method [35,40].
Very generally the concept of DFT is that the energy of an electronic system can be
written in terms of the electron density ρ of the system [35]. This offers many advantages
over the wavefunction methods described above.

Fundamental for the development of DFT as a method for quantum chemical calcula-
tions are the Hohenberg-Kohn theorems [41]. The first of these theorems show that the
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electron density ρ(r) can be used to uniquely define the external potential caused by
the nuclei, and that its normalization determines the number of electrons N [41]. This
allows for the determination of all the ground state properties of the molecules. This can
be expressed as [36]

E[ρ(r)] =

∫
Vextρ(r)dr + F [ρ(r)] (16)

With Vext being the external potential, F being the remaining energy terms, and ρ(r) is
the electron density.

The second of the Hohenberg-Kohn theorems states that using variational theory, the
energy of a system does not change with a variation of the electron density ρ(r), given
that ρ(r) is always normalized to N in integration [41]. This then implies [36]

δ

δρ(r)

(
E[ρ(r)]− µ

∫
ρ(r)dr

)
= 0 (17)

Where E[ρ] is the energy from eq. (16) and µ is a Lagrangian multiplier that can be
associated with the chemical potential [36].

2.2.1 Kohn-Sham DFT

In the Kohn-Sham approach, the density functional is formulated in a set of solvable
equations [35]. This includes partitioning the energy in eq. (16) as

E[ρ(r)] =

∫
Vextρ(r)dr + EKE[ρ(r)] + EH [ρ(r)] + EXC [ρ(r)] (18)

Where EKE describes the kinetic energy of an ideal electron gas, EH corresponds to the
coulomb term from the hartree-fock approximation eq. (14), and EXC is the exchange
correlation energy. By introducing orbitals, like in the Hartree-Fock approach, an esti-
mate of the electronic density can be found by a linear combination of orbitals [35,36,42].

ρ(r) =
N∑
i=1

|ϕ(ri)|2 (19)

Using eq. (17) on the terms in eq. (18) this leads to an expression for the orbital ener-
gies [36, 43, 44].
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f̂KS
I ϕi =

(
Vext + VKE + VH + VXC

)
ϕi = ϵiϕi (20)

Where f̂KS
I can be seen as an analogy to eq. (15). This includes the term VXC which

is the exchange-correlation functional VXC . This term is not immediately known, and
many ways of approximating this functional has been proposed [35].

2.2.2 Exchange correlation functionals

The exchange correlation functional VXC eq. (20), can be separated into two contribu-
tions [35, 42, 43]

VXC = VX + VC (21)

Due to the KS-DFTmethod sharing the orbitals with the Hartree-Fock method, the exact
exchange can be calculated using this the Hartree-Fock equations [42, 45]. However
as the Hartree term in eq. (20) conatains self interactions, simply using this does not
necessarily give a good approximation for the correct exchange correlation potential
VXC [42]. The full form of the exchange correlation potential VXC is however unknown,
and much work has been done to approximate it [35, 46].

One method of approximating the exchange correlation functional is the use of the local
spin density approximation (LSDA). Using this the energy can be estimated from the
exchange correlation energy of the particles in a uniform electron gas [47, 48].

ELSDA
xc =

∫
ϵunifxc (n↑, n↓)d

3r (22)

Where ϵunifxc is the energy of particles in a uniform electron gas [48], and the arrows
signify spins. To improve on this, the generalized gradient approach can be used. Here
ϵxc is chosen to be a function, not only of the spin density, but also of the gradient of the
spin density [48]. This gives

EGGA
xc =

∫
ϵGCA
xc (n↑, n↓, |∇n↑|, |∇n↓)|)d3r (23)

The next development involved the addition of the kinetic energy density [35]

τ(r, n↑/↓) =
ℏ2

2me

∑
i

∇ϕ∗
i (r)∇ϕi(r) (24)

7



Whereme is the electron mass, and ϕi is an occupied orbital. Functionals including this
kinetic energy density are known as meta-GGA functionals [35, 44].

Em−GGA
xc =

∫
ϵm−GCA
xc (n↑, n↓, |∇n↑|, |∇n↓)|τ↑(r), τ↓(r))d3r (25)

A problem with these approaches (collectively the is that they fail at longer range due to
them giving little knowledge about the system far from an electron [47]. To overcome
this it is possible to include the exact Hartree-Fock exchange energy, which can be
calculated due to the similar choice of orbitals between the methods. Then one or more
parameters are chosen, along with approximations for the energy to make up the total
exchange-correlation energy functional. Some of these hybrid functionals also are range
separated, with the idea being to includemostlyDFT-exchange at short range, andmostly
Hartree-Fock exchange at long range [49]. These then have a smooth transition from
short range to long, with a percentage making up the different part of the energy at
different ranges [50].

2.3 Perturbation theory
An important method for the approximation of the eigenvalue problem for the hamil-
tonian is perturbation theory [35]. Here the change of the system caused by a small
perturbation of the system is divided into the assumed known solution to an unperturbed
system, and an additional contribution caused by the perturbation [36].

2.3.1 Time independent perturbation theory

In Rayleigh-Schrödinger perturbation theory the Schrödinger equation can be written
[36]

Ĥ |ψk⟩ =
(
Ĥ0 + λĤ1

)
|ψk⟩ = ϵk |ψk⟩ (26)

Where Ĥ0 is the unperturbed hamiltonian, Ĥ1 is the perturbation of the hamiltonian,
and λ is an order parameter. Including more terms the perturbed Schrödinger equation
eq. (26), giving [51]

(
Ĥ0 + λĤ1

)(∑
λn
∣∣∣ψ(n)

k

〉)
=
(∑

λnϵ
(n)
k

)(∑
λn
∣∣∣ψ(n)

k

〉)
(27)

Where the sum is over n and, ψ(n)
k and ϵ(n)k represents the n-th order correction to the

wavefunction. This equation must hold for all orders n in λn [36]. The expanded sum
can be rearranged for orders of λ to give equations for the lowest order corrections .
It is assumed the perturbed wavefunction obeys intermediate normalization such that
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〈
ψ

(n)
k

∣∣∣ψ(m)
k

〉
= δnm [36, 51]. Expanding eq. (27) by orders the first and second order

corrections to the energy can be written as

ϵ
(1)
k =

〈
ψ

(0)
k

∣∣∣ Ĥ1

∣∣∣ψ(0)
k

〉
(28)

ϵ
(2)
k =

〈
ψ

(0)
k

∣∣∣ Ĥ1

∣∣∣ψ(1)
k

〉
(29)

Because the unperturbed hamiltonian constitutes a complete basis set of functions [35],
the first order correction to the wavefunction can be written as∣∣∣ψ(1)

k

〉
=
∑
j=1

c
(1)
j,k

∣∣∣ψ(0)
j

〉
(30)

Looking at the terms of eq. (27) for order n = 1, this is(
ϵ
(0)
k − Ĥ0

)∣∣∣ψ(1)
k

〉
=
(
Ĥ1 − ϵ

(1)
k

)∣∣∣ψ(0)
k

〉
(31)

Multiplying with
〈
ψ

(0)
j

∣∣∣ gives
(
ϵ
(0)
k − ϵ

(0)
j

)〈
ψ

(0)
j

∣∣∣ψ(1)
k

〉
=
〈
ψ

(0)
j

∣∣∣ Ĥ1

∣∣∣ψ(0)
k

〉
− ϵ

(1)
k

〈
ψ

(0)
j

∣∣∣ψ(0)
k

〉
(32)

For all j ̸= k this gives

〈
ψ

(0)
j

∣∣∣ψ(1)
k

〉
=

〈
ψ

(0)
j

∣∣∣ Ĥ1

∣∣∣ψ(0)
k

〉
ϵ
(0)
k − ϵ

(0)
j

(33)

Which is equivalent to eq. (30) multiplied with
〈
ψ

(0)
j

∣∣∣, giving an expression
∣∣∣ψ(1)

k

〉
=
∑
j ̸=K

〈
ψ

(0)
j

∣∣∣ Ĥ1

∣∣∣ψ(0)
k

〉
ϵ
(0)
k − ϵ

(0)
j

∣∣∣ψ(0)
j

〉
(34)

This can also be inserted into eq. (29) to find the second order correction to the energy
[36].
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2.3.2 Time dependent perturbation theory

For a time dependent system, the hamiltonian can be expressed as [35, 36]

Ĥ(t) = Ĥ0 + λĤ1(t) (35)

Where Ĥ0 is a time independent hamiltonian of the system, and Ĥ1(t) is the perturbation.
In this time dependent case the time dependent Schrödinger equation eq. (38) can be used
and the time dependent unperturbed wavefunction can be written as [35, 36]

ψ(0)
n (t) = ψ(0)

n exp{−iωnt} (36)

Where ωn = E
(0)
n

h̄
. The wavefunction can then be written as [36]∣∣ψ(0)(t)

〉
=
∑
n

an(t) exp{−iωnt}
∣∣ψ(0)

n

〉
(37)

Where an(t) is a time dependent coefficient. Inserting this into the time dependent
Schrödinger equation eq. (38) gives

Ĥ
∑
n

an(t) exp{−iωnt}
∣∣ψ(0)

n

〉
= iℏ

∂

∂t

∑
n

an(t) exp{−iωnt}
∣∣ψ(0)

n

〉
(38)

Using the product rule on the right hand side and eq. (35) on the left, this becomes [36]

∑
n

an(t) exp{−iωnt}Ĥ0

∣∣ψ(0)
n

〉
+ λĤ1(t)

∑
n

an(t) exp{−iωnt}
∣∣ψ(0)

n

〉
= iℏ

∑
n

∂an(t)

∂t
exp{−iωnt}

∣∣ψ(0)
n

〉
+ ϵ(0)n

∑
n

an(t) exp{−iωnt}
∣∣ψ(0)

n

〉 (39)

Where ωn = E
(0)
n

h̄
has been used. As Ĥ0

∣∣∣ψ(0)
n

〉
= ϵ

(0)
n

∣∣∣ψ(0)
n

〉
, the first and last term

cancel [35, 36]. Multiplying from the left with
〈
ψ

(0)
m

∣∣∣ exp{−iωmt}

∑
n

an(t)
〈
ψ(0)
m

∣∣λĤ1(t)
∣∣ψ(0)

n

〉
exp{−i(ωm − ωn)t} = iℏ

∂am(t)

∂t
(40)

Where the sum disappeared due to the orthonormal states If an can be expanded in terms
of the order parameter λ so an =

∑
i λ

ia
(i)
n if i = 1 [36], the equation becomes:
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iℏ
∂a

(1)
m (t)

∂t
=
∑
n

a(0)n (t)
〈
ψ(0)
m

∣∣ Ĥ1(t)
∣∣ψ(0)

n

〉
exp{−i(ωm − ωn)t} (41)

Assuming the system was in state p at t = 0 then the unperturbed coefficient a(0)n is δpn
in order to make sure this condition is filled. This makes the sum disappear. integrating
the surviving term yields [36]

a(1)m (t)− a(1)m (0) =
1

iℏ

∫ t

0

〈
ψ(0)
m

∣∣ Ĥ1(t
′)
∣∣ψ(0)

p

〉
exp{−i(ωm − ωp)t

′}dt′ (42)

Setting a(1)m (0) = 0 by an initial condition gives [35]

a(1)m (t) =
1

iℏ

∫ t

0

〈
ψ(0)
m

∣∣ Ĥ1(t
′)
∣∣ψ(0)

p

〉
exp{−i(ωm − ωp)t

′}dt′ (43)

2.3.3 The Frequency dependent polarizability

Considering a system being perturbed by an oscillating electric field, the first order
hamiltonian can be written [35, 36]

Ĥ1(t) = 2V̂ eϵt cosωt = V̂
(
e(ϵ+iω)t + e(ϵ−iω)t

)
(44)

Where eϵt will approach zero when the field has been on for a long duration. Inserting
this into eq. (43) gives

a(1)m (t) =
1

iℏ

∫ t

0

〈
ψ(0)
m

∣∣ V̂ ∣∣ψ(0)
p

〉 (
e(ϵ+iω)t′ + e(ϵ−iω)t′

)
exp{−i(ωm − ωp)t

′}dt′ (45)

Solving the integral yields [36]

a(1)m (t) =
1

iℏ
〈
ψ(0)
m

∣∣ V̂ ∣∣ψ(0)
p

〉 (exp{(ϵ+ iωkp + iω)t}
ωkp + ω − iϵ

+
exp{(ϵ+ iωkp − iω)t}

ωkp − ω − iϵ

)
(46)

Where it is used that ωkp = ωp−ωp. Allowing ϵ to go to zero after a long time simplifies
the result. As the polarizability is the field induced contribution to the dipole moment,
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the time dependent dipole moment must be considered up to the first order [35]. This
becomes [35, 36]

µ(0)
α =

〈
ψ

(0)
0

∣∣∣ µ̂α

∣∣∣ψ(0)
0

〉
(47)

And

µ(1)
α =

∑
k ̸=0

(〈
ψ

(0)
0

∣∣∣ µ̂α

∣∣∣ψ(0)
k

〉
a
(1)
k exp{−iωk0t}+

〈
ψ

(0)
k

∣∣∣ µ̂α

∣∣∣ψ(0)
0

〉
a
(1)∗
k exp{iωk0t}

)
(48)

Where α represents a Cartesian coordinate x, y or z and ∗ indicating the complex con-
jugate. Inserting for a(1)k using eq. (46) with V̂ = −µ̂βEβ This becomes [36]

µ(1)
α =

Eβ

ℏ
∑
k ̸=0

(〈
ψ

(0)
0

∣∣∣ µ̂α

∣∣∣ψ(0)
k

〉〈
ψ

(0)
k

∣∣∣ µ̂β

∣∣∣ψ(0)
0

〉(exp{iωt}
ωk0 + ω

+
exp{−iωt}
ωk0 − ω

)
+
〈
ψ

(0)
0

∣∣∣ µ̂β

∣∣∣ψ(0)
k

〉〈
ψ

(0)
k

∣∣∣ µ̂α

∣∣∣ψ(0)
0

〉(exp{−iωt}
ωk0 + ω

+
exp{iωt}
ωk0 − ω

)) (49)

With the definition of the frequency dependent polarizability [36]

µ(1)
α = ααβ(ω)Eβ

(
exp{iωt}+ exp{−iωt}

)
(50)

The polarizability term can be identified from eq. (49) by rearranging terms as [36]

ααβ(ω) =
1

ℏ
∑
k ̸=0

(〈
ψ

(0)
0

∣∣∣ µ̂α

∣∣∣ψ(0)
k

〉〈
ψ

(0)
k

∣∣∣ µ̂β

∣∣∣ψ(0)
0

〉
ωk0 − ω

+

〈
ψ

(0)
0

∣∣∣ µ̂β

∣∣∣ψ(0)
k

〉〈
ψ

(0)
k

∣∣∣ µ̂α

∣∣∣ψ(0)
0

〉
ωk0 + ω

)
(51)

Which is the frequency dependent polarizability. It is important to see that when the
frequency ω approaches ωk0 the polarizability will diverge. This corresponds with ex-
citation energies [52–54]. This is one of the applications of the frequency dependent
polarizabilities to describe other molecular properties.
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2.4 Force-field models for polarizability
The polarizability is a property that describes the change in charge distribution for a
molecule, as a response to the environment [30]. The polarizability has important ap-
plications, and explicit treatment of it can give important insights not possible without
it [55].

2.4.1 Electronegativity equilization model

The electronegativity equilization model (EEM) is a model that is based on the idea that
when atoms form molecules, the electronegativity of the constituent atoms will equalize
and the charge is redistributed in the molecule to achieve this [56]. By expanding the
electrostatic energy to the second orderwith respect to atomic charge one obtains [57–59]

E(q1, q2, . . . , qn) =
n∑

i=1

(
Ei + χiqi +

1

2
ηiq

2
i +

1

2

N∑
j=1

qiqj
Rij

)
(52)

Where Ei is the charge independent energy, qi is the atomic charge, χi is the atomic
electronegativity, used for calculating atomic charges, ηi is the atomic chemical hard-
ness, Rij and the final term may be modified by a screening factor [58, 59]. Taking
the derivative of this eq. (52), with respect to the atomic charge qi. A set of linear
equations is then solved to equalize the electronegativity, with a constraint that the charge
is conserved [56,60]. This allows the model to calculate the minimum of the energy with
atomic charges [58]. The EEM unfortunately does not scale correctly at long range [57].

One modification of the EEM model is the atom-atom-charge-transfer model (AACT)
[58]. In this model the charges in the molecule is redistributed as a number of par-
tial charges, describing charge transported between two atoms. [58]. By introducing a
topology matrix, describing what atoms are bonded, the total charge is automatically
accounted for. Describing the energy and minimizing this with respect to the chemical
potential, the ideal charge distribution can be found [58].

By applying an electric field a linear response equation may be formulated [58]. Cal-
culating the the atomic charges in the presence of this field the induced dipole moment
can be calculated. Then from this the polarizability components can be found [58]. The
AACT model has been shown to scale with the size of the system for both alkanes and
alkenes [61]
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2.4.2 Point dipole model

In the inducible point dipole model, a point dipole is associated with polarizable sites
often at atomic centres, but implementations with dipoles on the bonds exists [30]. This
polarizable site can then be expressed as [62–65].

µi = αi

[
Ei −

N∑
J=1
j ̸=i

T
(2)
ij µj

]
(53)

Where Ei is the electric field at i, µ is a dipole, and T (2)
ij is the dipole dipole interaction

tensor eq. (80). Solving eq. (53) for the applied field yields [64, 66]:

Ei = α−1
i µi +

N∑
J=1
j ̸=i

T
(2)
ij µj (54)

Or in matrix form, the sum terms can be written as


α−1
1 T

(2)
12 · · · T

(2)
1N

T
(2)
21 α−1

2 · · · T
(2)
2N

... ... . . . ...
T

(2)
N1 T

(2)
N2 · · · α−1

N

 (55)

Defining a matrix B to be the inverse of the 3N × 3N matrix and assuming the applied
field is uniform, the linear equations can be written [64, 67]

µi =
N∑
j=1

BIJE (56)

So the molecular dipole moment is

µmol =
N∑
i=1

µi =
N∑
i=1

N∑
i=1

BijE (57)

and the molecular polarizability is recognized as [64, 65, 68]
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αmol =
N∑
i=1

N∑
i=1

Bij (58)

The induced dipoles depend on each other. To find values for the induced dipoles, these
equations may be solved iteratively. Solving eq. (56) for a guess set of atomic dipoles,
the dipoles are updated. This allows for a solution to eq. (55). Solving eq. (56) for the
set of atomic dipoles, a new one is obtained. Allowing for an updated solution again.
This may be done iteratively until the fields are self consistent. This is also known as the
extended Lagrangian method [69]. The solving of this self consistent field, is usually
the computational bottleneck in these types of calculations [70, 71].

2.4.3 Drude oscillator

The method of Drude oscillators uses two point charges to represent polarizable atoms
[30, 72]. Each non-hydrogen atom can be described by the charges q, which is the core
charge, and qD which is a Drude particle, that are bound together by and harmonic spring
[73, 74].

In an external field the drude particle will oscillate around a displaced position r + d
where the displacement d is

d =
qD
kD
E (59)

where E is the external electric field, and kD is the fore constant of the harmonic string
[70]. Then the induced dipole for the atomic charge is

µ = qDd =
q2D
kD
E (60)

So the isotropic atomic polarizability α is [70, 75]

α =
q2D
kD

(61)

The advantage to this model is the computational efficiency while still reproducing
molecular polarizability, even without treating the hydrogens.
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2.5 CT-PDI model
In the CT-PDI model, a combination of a charge-transfer and electronegativity equaliza-
tion model is combined with a point-dipole interaction model [27].

In the model each atomic charge may be rewritten as a time dependent charge, where
the charge is formulated in terms of charge transfer variables [24]. For an atom I , the
atomic charge is [27]

qI =
N∑
K

qIK(t) (62)

The Lagrangian for a molecular system in the model may be written as [26]

L = Kq +Kµ − V (63)

WhereKq is the charge kinetic energy,Kµ is the atomic dipole moment kinetic energy,
and V is the potential energy. Expanding the terms gives [24, 26]:

Kq =
1

2

N∑
I,K>I

(cq∗I + cq∗K )R2
IK q̇

2
IK (64)

Where cq∗I is an atom type parameter. It is adopted that all subsequent atom-type pa-
rameters, being parameters specific to the atom at which they are located is denoted
by a superscript ∗. The parameters can be seen as the inverse number of oscilating
charges [25, 28]. RIK is the internuclear distance between atoms I and K, and q̇IK is
the time derivative of the charge passing as a current from atom I , to atom K.

Kµ =
1

2

N∑
I

cµ∗
2

I (µ̇I)
2 (65)

Here cµ∗I is an atom type parameter representing an inverse number of oscillating dipoles [25,
28], and µ̇I is the time derivative of the atomic dipole moment for atom I.

V = V qq + V qµ + V µµ (66)

Where V qq is the charge-charge interaction energy, V qµ is the charge dipole interaction
energy, and V µµ is the dipole-dipole interaction energy.
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2.5.1 Representation of charges

In the model charges are represented as Gaussian charge distributions on the form [24,
26, 27, 76].

ρI(ri) = qI
(Φ∗

I

π

) 3
2

exp
{
(−Φ∗

Ir
2
i )
}

(67)

Where Φ∗
I is an atom type parameter and ri represents the position in the distribution.

The interaction between two Gaussian charge distributions with exponents Φ∗
I and Φ∗

J

is [76]

V =

∫∫
ρI(r1)ρJ(r2)

r12
dr1dr2 = qIqJ

erf(
√
aRIJ)

RIJ

(68)

Where erf is the regular error function and a is [24, 26, 76]

a =
Φ∗

IΦ
∗
J

Φ∗
I + Φ∗

J

(69)

This result of eq. (68) may be used to introduce a modified distance R̃IJ [24] such that

R̃ =
RIJ

erf(
√
aRIJ)

→ Ṽ =
qIqJ

R̃
(70)

An approximation of the modified distance eq. (70) is [24, 26, 76]

R̃ =

√
R2

IJ +
π

4a
(71)

Taking the limits of this approximation eq. (71) as RIJ approached infinity causes Ṽ to
approach 0. The same behaviour is found in the original result in eq. (68) where the error
function is bound to be less than or equal one. IfRIJ approaches zero, both eq. (71) and
eq. (68) will approach

√
4a
π
as can be shown for eq. (68) using the definition of the error

function and the fundamental theorem of calculus [77].

2.5.2 Charge-Charge interaction energy

The charge-charge interaction may be expressed as [24]

V qq =
N∑
I

(χ∗
I + ϕext

I )qI +
1

2
η∗Iq

2
I +

1

2

N∑
I ̸=J

qIT
(0)
IJ qJ (72)
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χ∗
I is the atomic electronegativity and η∗I is the atomic chemical hardness. Both are

atom type parameters. ϕext
I is an external electrostatic potential at atom I . T (0)

IJ is the
inverse internuclear distance between atom I and J . T (0)

IJ = 1
RIJ

Thus the first term can
be interpreted as the energy of the charge caused by the attraction of the nuclei in the
molecule and the applied external field. The chemical hardness term can be interpreted
as the resistance to change in chemical potential from a change in number of electrons
[78–80], this is used to calculate polarizabilities, and the final term can be seen as the
Coulomb interaction. The electronegativity is included to calculate atomic charges, as
it gives different elements an inherent potential difference [27].

Rewritten in terms of charge-transfer variables the charge-charge interaction energy
becomes [24]:

V qq =
N∑

I,K>I

(χIK + ϕext
IK)qIK +

1

2

N∑
I,K>I
J,M>J

qIKT
(0)
IJ,JMqJM (73)

Wherein it has been used that χIK = χ∗
I − χ∗

K , ϕext
IK = ϕext

I − ϕext
K , and T (0)

II = η∗I .
T

(0)
IK,JM is defined as [24]:

T
(0)
IK,JM = T

(0)
IJ − T

(0)
KJ − T

(0)
IM + T

(0)
KM (74)

For the case in eq. (74) where J =M , this becomes [24]

T
(0)
IK,JM = T

(0)
II − T

(0)
KI − T

(0)
IM + T

(0)
KM

= η∗I − T
(0)
KI − T

(0)
IM + T

(0)
KM

(75)

Where η∗I is the atomic chemical hardness. IfK =M and I = J [24]

T
(0)
IK,JM = T

(0)
II − T

(0)
KI − T

(0)
IK + T

(0)
KK

= η∗I + η∗K
(76)

2.5.3 Charge-dipole interaction energy

In terms of charge transfer variables, the dipole-charge interaction from the potential
energy eq. (66) may be written as [24]

V µq =
N∑
I,J

qI T̃
(1)
IJ,αµJ,α =

N∑
I,K>I,J

qIK T̃
(1)
IK,J,αµJ,α (77)

Where eq. (62) has been used. The Einstein summation convention for repeated sub-
scripts has been used and α and β represent the Cartesian coordinates x, y or z. T̃ (1)

IJ,α is
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the modified charge dipole interaction tensor, and T̃ (1)
IK,J,α = T̃

(1)
IJ,α−T̃

(1)
KJ,α. The modified

charge dipole interaction tensor is defined as [24]

T̃
(1)
IJ,α =

∂T̃
(0)
IJ

∂R̃IJ,α

= −RIJ,α

R̃3
IJ

(78)

Where T̃ (0)
IJ = R̃−1

IJ

2.5.4 Dipole-dipole interaction energy

The final term of eq. (66) is V µµ [24, 26]

V µµ =
1

2

N∑
I

µI,α(αI,αβ)
−1µI,β −

1

2

N∑
I

N∑
K ̸=I

µI,αT̃
(2)
IK,αβµK,β −

N∑
I

Eext
I,αµI,α (79)

Where µI,α is the dipole moment at I, and subscript α is one of the Cartesian coordinates.
T̃

(2)
IK,αβ is is defined as [24]

T̃
(2)
IK,αβ =

∂T̃
(1)
IK,α

∂RIK,β

=
3RIK,αRIK,β

R̃5
IK

− δαβ

R̃3
IK

(80)

In eq. (79), αI,αβ is the atomic polarizability with a modification for the chemical sur-
roundings [24, 26, 67], discussed below.

The atomic polarizability may be included in the sum by defining

T̃
(2)
II,αβ = µI,α(αI,αβ)

−1µI,β (81)

2.5.5 Modification of the atomic polarizability

For the anisotropy of the chemical environment one can define a symmetric matrix Γ
such that [67]

ΓI,αβ =
N∑

I ̸=J

ᾱJ(gIJ)
κRIJ,αRIJ,β

RIJ

(82)

Where ᾱJ is the average polarizability of atom J , gIJ is a electronic repulsion integral
defined by the Ohno formula [67], and κ is an adjustable parameter; the repulsion ex-
ponent. Newer models have rewritten this in terms of an atom type parameter, and a
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intermolecular charge transfer resistance SIJ [26]

ΓI,αβ =
N∑

I ̸=J

α∗
JSIJ

RIJ,αRIJ,β

RIJ

(83)

Where SIJ is defined [24, 27]

SIJ = exp{(−aIJ(RIJ −R∗
I −R∗

J))} (84)

This formulation is constructed such that SIJ ≈ 1 when the internuclear distance is
within a regular bond length, such that there is little contribution to the polarizability
from atoms far away. R∗

I is an atom type parameter.

Using eq. (83), the normalized atomic anisotropy tensor can be defined as [24, 27, 67]

GI,βα =
3

Tr(ΓI)
ΓI,βα (85)

Which is normalized such that the trace is three [67]. This then offers an isotropic and
anisotropic modification to the atomic polarizability as

αI,αβ = α∗
I(δαβ + x∗I(1−GI,βα)) (86)

Where δαβ is the Kronecker-delta, α∗
I and x∗I are atom type parameters. This term also

gives correct properties with respect to rotations [24,27] It is imposed that the anisotropic
polarizability parameter must be less than 0.5 [26], this is done such that if eq. (83), only
has one contribution, eq. (85) becomes −3, and eq. (86) might become negative [26].
This is not a physical result, and it is therefore avoided.

2.5.6 Modification of the chemical hardness

To achieve the correct scaling of the polarizability for the systems, one can introduce a
modification to the chemical hardness [24, 26, 27]. This becomes

η∗I → η∗IS
− 1

2
IK S

− 1
2

IMgI,KM (87)

SIK is from eq. (84), and gI,KM is the resistance to charge flow in the molecule. This
resistance is defined to be [27]:

gI,KM = exp
{
(CI,KM(∆I,KM )2)

}
(88)
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With CI,KM being (C∗
I )

2C∗
KC

∗
M where all C∗ are atom type parameters and

∆I,KM = RIK − (R ∗I +R∗K) + RIM − (R ∗I +R∗M) (89)

With R∗ being atom type parameters like in eq. (84)

It is possible to define different equations for this resistance [24, 26].

gI,KM = (g∗0,I)
2g∗0,Kg

∗
0,MHI,KM(∆I,KM)

+ (g∗1,I)
2g∗1,Kg

∗
1,M(1−HI,KM(∆I,KM ))

(90)

g0,I∗ and g1,I∗ are atom type parameters. HI,KM is a smooth step function

HI,KM(∆I,KM) =
1

2
(1 + tanh(CI,KM∆I,KM) (91)

Previous work on the model found eq. (88) to give too sharp change with bond distance
for certain molecules and therefore used eq. (90) [26], however it was eq. (88) which
was used in this model.

2.6 Calculation of the molecular polarizability in the CT-PDImodel
Assuming a molecule is in an external electric field and electrostatic potential oscillating
with a frequency ω, such that [24, 26]

Eext
J,α = Re(Eω

J,α exp(iωt)) (92)
ϕext
IJ = Re(Eω

IJ exp(iωt)) (93)

This will cause an oscillation of the charge transfer and atomic dipole moments away
from the static conditions [24, 26]

qIK = Re(q(0)IK + q
(ω)
IK exp(iωt)) (94)

µI,α = Re(µ(0)
I,α + µ

(ω)
I,α exp(iωt)) (95)

According to Hamilton’s principle [81], the evolution of the system

J =

∫ {
L
(
q(t), q̇(t), µ(t), µ̇(t)

)}
− λ
{ N∑

I

qI −Qtot

}
(96)

21



is minimized such that δJ = 0 [28]. Here L is the Lagrangian from eq. (63), qI is
the atomic charge and Qtot is total charge of the molecule. For the condition that the
molecule is neutral the final term in eq. (96) with the Laplace multiplier term λ may be
neglected in favour of a topology matrix, controlling permitted charge transfers to be
restricted to bonded nuclei [27]. Enforcing the condition the equations must be solved
from eq. (96), results in the system being a stationary value, and the Euler-Lagrange
equations apply [81]. For the system these equations become [26],

∂

∂t

( δL
δq̇IK

)
− δL

δqIK
= 0 (97)

∂

∂t

( δL

δµ̇I,α

)
− δL

δµI,α

= 0 (98)

2.6.1 Evaluation of Euler-Lagrange terms

For the first term in eq. (97), the only term depending on q̇IK is the charge kinetic energy
(eq. (64)) [26], thus

∂

∂t

( δL
δq̇IK

)
=

∂

∂t

( δKq

δq̇IK

)
= (cqI + cqK)R

2
IK q̈IK

= (cqI + cqK)R
2
IKω

2 Re(q(ω)IK exp(iωt))

(99)

Where eq. (94) has been used in the final step. Further, in the first term of eq. (98), only
the dipole kinetic energy eq. (65) depends on the time derivative of the dipole moment
µ̇I,α [26, 27]

∂

∂t

( δL

δµ̇I,α

)
=

∂

∂t

( δKµ

δµ̇I,α

)
= cµI µ̈I

= cµIω
2 Re(µ(ω)

I,α exp(iωt))

(100)

Where eq. (95) is used in the final step.
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The final term in eq. (97) becomes [26, 27]

δL

δqIK
= − δV

δqIK
= −δ(V

qq + V qµ)

δqIK

= −
N∑

J<M

T
(0)
IK,JMqJM

− (χIK + ϕext
IK)

−
N∑
J

T
(1)
IK,J,αµJ,α

(101)

Where eqs. (77) and (79) have been used. The last term from eq. (98) is [26, 27]

δL

δµI,α

= − δV

δµI,α

= −δ(V
qµ + V µµ

δµI,α)

= −
N∑

J<M

T
(1)
I,JM,αqJM

+
N∑
J

T
(2)
I,J,αβµJ,β + Eext

I,α

(102)

Putting together the equations eqs. (99) to (102), into the conditions from eqs. (96) to (98)
can be expressed in matrix form as [24, 26]((

T
(0)
IK,JM T

(1)
IK,J,α

T
(1)
I,JM,α T

(2)
I,J,αβ

)
− ω2

(
Cq 0
0 Cµ

))

×

(
q
(ω)
J

µ
(ω)
J,β

)
=

(
−χIK − ϕ

(ω)
IK

E
(ω)
I,α

) (103)

Where the diagonal matrix elements Cq and Cµ are the frequency dependent parts of the
equations eq. (99) and eq. (100) respectively [24]. Dissipationmay be added to themodel
by replacing the squared frequency ω2 in eq. (99) and eq. (100) with ω2−ω i

2
(γq∗I +γq∗K )

andω2−iγµ∗I ω respectively [26]. Thus the elementsCq andCµ with included dissipation
become [24, 26]

Cq = (cqI + cqK)R
2
IK

(
1− i

2ω
(γq∗I + γq∗K )

)
δIKδJM (104)

Cµ = cµI
(
1− i

2ω
γµI
)
δIKδαβ (105)
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Where γq∗I is an atom type parameter. If the polarizability α is the linear response to an
electric field [82,83] and assuming the molecule is in an electric field that can be treated
as homogeneous, the polarizability may be calculated as the gradient of the induced
dipole moment with the external electric field [24,26]. This may be found by taking the
derivative of eq. (103) with respect to an external electric field. This gives:((

T
(0)
IK,JM T

(1)
IK,J,α

T
(1)
I,JM,α T

(2)
I,J,αβ

)
− ω2

(
Cq 0
0 Cµ

))

×

 ∂q
(ω)
J

∂E
(ω)
γ

∂µ
(ω)
K,β

∂E
(ω)
γ

 =

(
−RSP

δαγ

) (106)

Where it has been used that the electrostatic potential for an homogeneous external
field is ϕext

I = RI,αE
ext
α [26]. We thus arrive at a solvable equation for the molecular

polarizability [24, 26]

αmol
αβ (ω) =

∂µindα

∂E
(ω)
β

=
N∑

I,M>I

RIM,α
∂q

(ω)
J

∂E
(ω)
β

+
N∑
I

∂µind
α

∂E
(ω)
β

(107)

This must then be solved three times for α, β = x, y, z [24]. In this way the molecular
polarizability tensor elements may be estimated by the model.

2.7 Calculation of the dipole gradient
Hunt demonstrated a method for the calculation of the dipole gradient directly using only
electrostatics [84, 85]. Using the Hellmann-Feynmann theorem the force on a nucleus
is [84, 86, 87]

fI = QIEI (108)

Where the force on nucleus I is fI , QI is the charge of nucleus I and EI is the electric
field, caused by all the other particles in the molecule. For no applied external field.
This is equivalent to the classical definition of the force from an electric field [82, 87].
Following Hunts method [84], the field at point r due to the charge of nucleus I,QI ,
is [82]

EI(r) =
QI

|r −RI |2
(109)
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Where RI is the position of nucleus I and r is a given position. The gradient of the
electric field with respect to the cartesian coordinate α is [84]

EI,α(r) =
QI(r −RI)α
|r −RI |3

(110)

If the nucleus I is shifted from RI to RI + δRI , eq. (110) becomes [84]

EI,α(r) = EI(0),α(r) + EI,α(r) + . . .

=
QI(r −RI)α
|r −RI |3

+QITαβ(r, RI)δRI,β + . . .
(111)

Where I(0) indicates the original, unshifted position of RI . Tαβ(r, RI) is the dipole
propagator [84]

Tαβ(r, RI) = ∇α∇β(|r −RI |−1)

=
3(rα −RI,α)(rβ −RI,β)− δαβ|r −RI |2

|r −RI |5
− 4π

3
δαβδ(r −RI)

(112)

This is equivalent to the unmodified expression of the dipole-dipole interaction ten-
sor eq. (80) with an additional term.

2.7.1 Electric field shielding tensor

With a molecule in a static uniform electric field F e, the net field on nucleus I can be
expanded as the series [84]

F I = F I(0) + (1− γI)F e + . . . (113)

The energy of the field on the molecule can be written

E(F e) = E(0) + µF e + . . . (114)

The force on nucleus I can be expressed as the gradient of the energyE(F e)with respect
to RI . Then [84]

∂E(F e)

∂RI

= −∂E
(0)

∂RI

+
∂(µF e)

∂RI

+ . . . (115)
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Equating this with the force found in eq. (108), then equating the terms linear with the
electric field yields [84]

∂µβ

∂RI,α

= QI

(
δαβ − γIαβ

)
(116)

Where δαβ is the Kronecker delta and γIαβ is the electric field shielding tensor at nucleus
I . An explicit expression for the tensor γIαβ must be found to be able to calculate the
dipole gradients.

2.7.2 Polarization

Shifting the position of nucleus I by δRI will effect the polarization of the molecule.
This effect is [84]

δPα(r) =

∫
ααβ(r, r

′)δfI,β(r
′)dr′ (117)

Where polarization is the dipole moment per volume [82]. To evaluate this term the
relation between the polarization P (r) and charge density ρ(r) is [84]:

∇P (r) = −ρ(r) (118)

Further the ground state polarizability density ααβ(r, r
′) is [84]

ααβ(r, r
′) = ξαβ

′∑
k

⟨0| P̂α(r) |k⟩ ⟨k| P̂β(r
′) |0⟩

(Ek − E0)
(119)

Where ξαβ imposes symmetry with respect to the polarizability operators P̂α and P̂β .

Inserting eq. (111) and eq. (119) into eq. (117) yields

δPα(r) =

∫ (
ξαβ

′∑
k

⟨0| P̂α(r) |k⟩ ⟨k| P̂β(r
′) |0⟩

(Ek − E0)

)(
QITαβ(r, RI)δRI,β

)
dr′ (120)

Distributing ξαβ and expanding the dipole propagator eq. (112) the expression becomes

δPα(r) =

∫ ( ′∑
k

⟨0| P̂α(r) |k⟩ ⟨k| P̂β(r
′) |0⟩+ ⟨0| P̂β(r

′) |k⟩ ⟨k| P̂α(r) |0⟩
(Ek − E0)

)
(
QI∇α∇β(|r −RI |−1)δRI,β

)
dr′

(121)
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Using then the relation in eq. (118)

δρ(r) =

∫ ( ′∑
k

⟨0| ρ̂(r) |k⟩ ⟨k| P̂β(r
′) |0⟩+ ⟨0| P̂β(r

′) |k⟩ ⟨k| ρ̂(r) |0⟩
(Ek − E0)

)
(
QI∇α∇β(|r −RI |−1)δRI,β

)
dr′

(122)

Integrating this expression with respect to r′ by parts and using that∇α‘|r′ − RI |−1 =
−∇I

α|r′ −RI |−1 gives

δρ(r) =

∫
QI∇α(|r −RI |−1)δRI,β

′∑
k

⟨0| ρ̂(r) |k⟩ ⟨k| ρ̂(r′) |0⟩+ ⟨0| ρ̂(r′) |k⟩ ⟨k| ρ̂(r) |0⟩
(Ek − E0)

dr′

(123)

The molecular dipole moment µmol gradient with respect to the shift in position of
nucleus I has two contributions [84]

∂µmol

∂RI,α

=
∂µn

β

∂RI,α

+
∂µe

β

∂RI,α

(124)

The dipole moment is the integral of the polarization density over all space [84]. The
nuclear component becomes

∂µn
β

∂RI,α

= QIδαβ (125)

2.7.3 Perturbation theory polarization gradient

The shift of the position of nucleus I by δRI can be expressed as a perturbation of the
Hamiltonian [84]

H = H0 +H1

= H0(RI) +
∂H0

∂RI,α

δRI,α + . . .
(126)

Perturbation theory has also been used to show that the change in electronic charge
density from the shift of δRI is to the lowest order [84]

δρ(r) =
′∑
k

[
⟨0| ρ̂(r) |k⟩ ⟨0|H1 |k⟩+ ⟨0|H1 |k⟩ ⟨0| ρ̂(r) |k⟩

]
(E0 − Ek)

(127)
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Inserting the expression from eq. (126) into eq. (128) becomes

δρ(r) =
′∑
k

[
⟨0| ∂H0

∂RI,α
δRI,α |k⟩ ⟨0|H1 |k⟩+ ⟨0|H1 |k⟩ ⟨0| ∂H0

∂RI,α
δRI,α |k⟩

]
(E0 − Ek)

(128)

It can be shown that the first order correction to the hamiltonian in eq. (126) is [84]
∂H0

∂RI,α

=

∫
QI∇I

α|r −RI |−1ρ̂(r)dr (129)

Inserting eq. (129) into eq. (128) and moving the terms that do not operate on the wave-
function out of the sum gives

δρ(r) =

∫
QI∇α(|r −RI |−1)δRI,β

′∑
k

⟨0| ρ̂(r) |k⟩ ⟨k| ρ̂(r′) |0⟩+ ⟨0| ρ̂(r′) |k⟩ ⟨k| ρ̂(r) |0⟩
(Ek − E0)

dr′

(130)

Which is equal to the previously found expression in eq. (123). This strengthens the
assumption that eq. (117) is an appropriate expression for the polarization.

As the polarization is the is the total dipole moment over the volume [82] the dipole can
be found by integrating eq. (123) over all space. This gives

∂µe
β

∂RI,α

= QI

∫
ααγ(r, r

′)Tβγ(r
′, RI)drdr

′ (131)

2.7.4 Expression of the shielding tensor

For a molecule in an external field F e The field at nucleus I becomes [84]

F I = F (0)(RI) + F e(RI) +

∫
T (RI , r) · P ind(r)dr

= F (0)(RI) + F e(RI) +

∫
T (RI , r) · α(r, r′) · F e(r′)dr + . . .

(132)

Then using eq. (113), equating terms gives [84]

γIαβ = −
∫
T (RI , r) · α(r, r′)dr (133)

This then gives an expression for the dipole gradient
∂µβ

∂RI,α

= QI

(
δαβ +

∫
T (RI , r) · α(r, r′)dr

)
(134)
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2.8 The dipole gradient in the CT-PDI model
The expression for the dipole gradient in the CT-PDI can be found by evaluating the
equation eq. (134). In the model the integral will simply become the sum over atomic
contributions to the total gradient. The term then becomes

∂µβ

∂RI,α

= QI

(
δαβ +

∫
T (RI , r) · α(r, r′)dr

)
(135)

Inserting the equation for the molecular polarizability eq. (107) into the expression for
the dipole gradient eq. (134), gives:

∂µβ

∂RI,α

= QI

(
δαβ +

N∑
I,M>I

(
T (RI , RM)

(
RIM,α

∂q
(ω)
I

∂E
(ω)
β

+
∂µind

α

∂E
(ω)
β

))
(136)

3 Method

3.1 DFT-Calculations
An initial geometry for the molecules were generated using the AVOGADRO soft-
ware [88] version 1.2.0, and was optimized using its implementation of the UFF force-
field [89], except if there was potential for hydrogen bonding within the molecule,
in which case the MMFF94s force field [90] was employed for the initial geometry.
The dalton molecular electronic structure program was employed to carry out quantum
chemical DFT calculations [91]. For the functional the CAM-B3LYP functional [49]
was chosen. The Jensen polarization consistent basis sets apc-1 [92] were used. The
same basis sets and functional was used in the calculation of the geometry and property
calculation.

Basis set apc-1
Functional CAM-B3LYP

Table 3.1: Basis set and functional used in DFT calculations.

3.1.1 Choice of functional

The CAM-B3LYP functional [49] was used in the DFT calculations. This was chosen
because the B3LYP [93] functional does not offer sufficiently accurate results for the
polarizability of longer chain molecules and excitations [49]. As the polarizabiltiy is of
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importance to the CT-PDI model it was seen as resonable to use the functional for the
calculations, this has also been done in other experiments [94].

The geometry was also optimized using the CAM-B3LYP functional. As the CAM-
B3LYP offers a correction to the B3LYP functional at longer range [49], for smaller
molecules the use of the CAM-B3LYP functional should not be greatly different than
having used normal B3LYP. For longer conjugated π systems, the B3LYP functional
does not give an accurate geometry [94]. As most molecules in the study were in these
categories the CAM-B3LYP functional is useful in the parametrization of the model.

Also the dipolemoment, quadrupolemoment andDipole gradients were calculated using
the CAM-B3LYP functional.

3.1.2 Choice of basis sets

The Jensen polarization consistent basis sets [92] were used for the geometry opti-
mization and calculation of molecular properties. Previous works have employed the
Dunning correlation consistent basis sets [95, 96].

The polarization consistent sets have the advantage that higher angular momentum func-
tions have geometrically decreasing importance, while the correlation consistent sets
have arithmetically decreasing importance. As such they may have faster convergence
than correlation consistent sets [92].

Polarization functions were also added to improve description of the molecular prop-
erties. The addition of polarization functions improves the descriptions of molecular
properties [1] and for dipole and quadrupole moments, as well as for static polarizabil-
ties the addition of diffuse d-functions were important, with higher angular momentum
function being less important [97]. The use of the apc-1 basis set has also been used in
parametrization of another force field [10]

3.2 Modification of geometries
A distribution of the bond lengths in the molecules were visualized. From this and the
optimized geometries the final geometry was modified to stretch or compress select
bonds such that the intervals with less common bond lengths are better represented.
In this way a better parametrization could be achieved for these bond lengths. When
modifying molecular bonds, only one bond was modified at a time.

With the modified geometries, the single point properties were recalculated, and a new
input file was generated.
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3.3 Generation of parameter input files
Using the results of the DFT calculations described in section 3.1. Final geometry,
dipole moment, quadrupole moment, static- and frequency-dependent polarizabilities,
and the dipole gradient of the molecule was extracted. For the frequency-dependent
polarizabilty, if the molecule an excitation energy lower than the frequency of the po-
larizabilty, all higher frequencies were discarded as the model will not correctly model
excited states.

Discarding the frequency dependent polarizability if it was found to be above the excita-
tion energy was done regardless of whether the excitation was symmetry forbidden. This
was because many molecules were to have their modified as discussed in section 3.2.
As such when the geometry is changed, the symmetry of the molecule would also be
effected, and may cause a change in the oscillator strength, which would be incorrect if
used in the parametrization.

3.4 Optimization of parameters
After the generation of input files, the files are used with the simplex algorithm [98] for
optimizing the atom type parameters discussed in section 2. The simplex algorithm has
been used for the optimization of force field parameters in several studies [99–101]. The
parameters are optimized with respect to a given molecular property. For the project
the parameters were optimized with respect to minimizing the root mean square error
of the polarizability [25]. For each molecule in the parametrization, each component
was divided by the isotropic polarizability. This was done to keep every molecule
equally important. To parametrize the frequency dependence, the difference between
the referance and static polarizability was used for the parametrization [26].

The parameters of the model given in table 3.2
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Parameter Interpretation Equation

α∗ Atomic isotropic polarizability eqs. (83) and (86)
x∗ Atomic anisotropy factor eq. (86)
η∗I Atomic chemical hardness eqs. (72) and (87)
C∗ Steepness of resistance to charge transfer in molecule. eq. (88)
R∗ Atomic radius for nuclear overlap and bond order eqs. (84) and (88)
cq∗I Inverse number of oscillating charges. eqs. (64) and (104)
cµ∗I Inverse number of oscillating dipoles. eqs. (65) and (105)
Φ∗

I Width of Gaussian charge distribution. eqs. (68) and (69)

Locked:

χ∗
I Atomic electronegativity eq. (72)
γqI Dissipation of charge eq. (104)
γqI Dissipation of dipole eq. (105)

Table 3.2: Atom type parameters in the model. All parameters are given in atomic units.

It was chosen to lock certain parameters at fixed values. This was done to the atomic
electronegativity χ∗

I due to the polarizability calculation being independent of the atomic
electronegativity [27] as shown in eq. (106), It was therefore chosen that as this pa-
rameter did not effect the result of the calculation, it would slow the optimization and
not effect the resulting values, however it would be useful for other calculations, such
as the dipole moment [27]. Likewise the dissipation of the atomic dipoles and atomic
charges was locked to zero. This will only effect the frequency dependent part of the
polarizability, as seen in eqs. (104) and (105). Because the dataset consists mostly of
smaller molecules, it is unlikely that this will introduce a large error.
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4 Results and discussion

4.1 Parametrization of the force field
A selection of 374 molecular geometries were used in the parametrization of the force
field. In total the molecules consisted of molecules of the type C,H,O, F,Cl,N and S.
The total number of nuclei in the dataset were:

Unique molecules 224
Modified geometries 150

Total 374
(a) Geometries in parametrization

Nucleus Number

H 2375
C 1536
F 348
O 143
N 60
Cl 17
S 30

(b) Different nuclei in the
parametrization, for both
unmodified and modified
geometries together.

Table 4.1: Overview of geometries and nuclei in the parametrizations

Themolecules in the parametrization were selected to belong to one or several functional
groups. The number of molecules belonging to each groups is shown in table 4.2.
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Classifications Number Stretched
Alcohols 10 0
Aldehyde 11 26
Alkanes 12 4
Alkenes 11 5
Alkynes 8 19
Amines 14 0
Branched alkanes 5 0
Carboxylic acids 8 0
Chlorinated 10 0
Cyclic alkanes 3 0
Cyclic alkenes 6 0
Dichlorinated 2 0
Difluorated 4 12
Esters 9 6
Ethers 5 0
Fluorinated 8 18
Hetrocycles 11 0
Hydroxy groups 9 0
Ketone 5 0
Nitriles 8 35
Partially fluorinated polyenes 9 0
Perfluorated 5 13
Perfluoro polyenes 8 0
Phenyl 5 0
Polyenes 8 2
Thioaldehydes 4 0
Thioethers 7 0
Thioketone 4 0
Thiols 9 4
Trichlorinated 1 0
Trifluorinated 5 6

Table 4.2: Number of molecules and stretched geometries belonging to different
categories of molecules in the dataset.

34



4.2 Description of bond distributions
The description of bond distributions in the dataset is important to visualize what bond
distributions are under-represented in the dataset. It is believed that the low coverage
of bonds in some areas in the optimization may cause the optimization algorithm to
misestimate the correct parameters for these areas. The error molecules containing these
bonds can be comparatively large by it themselves, but achieving a lower error for all of
the better represented bond interactions may cause the optimization algorithm to favour
this as the total error decreases. It should therefore be noted what bond distributions are
most represented in the data.

4.2.1 Carbon-Carbon bonds

The distribution of bond lengths in the parametrization were visualized, the distribu-
tion of bond length, for the unmodified bondlengths is shown below in Figure 4.1a.
In Figure 4.1b the modified geometries are included. The primary focus of the stretched
geometries were on the carbon carbon bonds. This is the most common bond in the
dataset, can be very sensitive to chemical environment, and it was believed achieving a
good parametrization for the atomic carbon parameters were of primary importance.

(a) Unmodified geometries only (b) All geometries.

Figure 4.1: Carbon-carbon bond length distribution

It can be seen that some additional bonds have been added between fig. 4.1a and fig. 4.1b
the area between 1.45 Å and 1.50 Å for example.

By supplying the force field optimization algorithm with more data in this region, a
better estimate for the true parameters may be reached. Care must be taken not to stretch
between bond orders. The area between 1.30Å - 1.40Å consists of double bonded carbon
bonds, the area of larger bond lengths than this consists of the single bonded carbon
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atoms. As the model contains explicit parameters for normal bond lengths, eq. (84), this
can be problematic if a single-bond is distorted into the double bond range. The peak
around 1.20 Å is the triple bonded carbons. Above 1.48 Å, the distribution consists of
single bonded carbons. In the area 1.45 Å and 1.50 Å there exists a mixture of aromatic
bonds and single bonds next to a particularly electronegative functional group, such as
the bond between carbon α to, and included in a nitrile group.

4.2.2 Carbon-Hydrogen bonds

Bond lengths for hydrogen is visualized below fig. 4.2.

Figure 4.2: Carbon-hydrogen bond length distribution.

It can be seen that the carbon hydrogen bonds show a wide distribution of different bond
lengths. There can not be seen any areas where the distributions is very low within the
normal bond lengths. The shortest bonds in small peak at 1.07 Å are hydrogen bound to
terminal alkynes, while the longest at 1.10 Å consists of hydrogen along a carbon chain,
such as octane, these may be slightly longer due to steric hindrance from neighbouring
carbon and hydrogen. As such the carbon-hydrogen bond lengths did not need to be
supplemented.
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4.2.3 Carbon-Fluorine bonds

The bond distributions for carbon-fluorine bonds is shown below in figs. 4.3a and 4.3b.

(a) Unmodified geometries (b) All geometries

Figure 4.3: Carbon-fluorine bond length distribution

The peak at 1.285 Å consists of fluorine bonded to tripple bonded carbon, for exam-
ple difluoroethyne. In the area between 1.30-1.32Å the bonds consist of the terminal
bonds from the per-fluorinated polyenes. The bond between 1.32-1.35 consists of the
C-F bonds from perfluorinated polyenes not in the terminal position, as well as trifluo-
romethyl groups substituted on the end of the partially fluorinated polyenes. Above this
the distribution consists of Fluorine connected to only single bonded carbons.

It is expected that the non terminal bonds are longer in the perfluorinated polyenes, this
can be because of steric effects from the carbon chain, while the terminal bonds can be
more relaxed and draw closer to the carbon. The terminal trifluoromethyl groups also
show lower bond lengths than other fluorines bonded to single bonded carbon. This
could be explained by the double bonded α carbon. the conjugated π-bonds may allow
more electron mobility and thus allowing the fluorine bonds to relax.

The large peak appearing in the stretched parametrization at 1.37 arises from the stretch-
ing of the carbon carbon bond in 11-difluoroethane. Due to this the two carbon-fluorine
bonds in the molecule is counted multiple times.
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4.2.4 Carbon-Nitrogen bonds

The bond distribution of carbon nitrogen bonds is shown as fig. 4.4

Figure 4.4: Carbon-nitrogen bond length distribution for unmodified geometries

The peak at 1.15Å is nitrile groups. The triple bond between carbon and nitrogen causes
the short bond distance. In the area between 1.44-1.46Å the amines can be found, the
single bond allows for longer bond lengths than the double and triple bonded molecules.
At 1.33Å is pyridine, and at 1.37 is pyrrole. The bond in pyridine is aromatic and is
therefore has an unusual bond length, while pyrrole is only singly bonded to the carbon
in the ring, and not part of the aromaticity, it is bonded to the doubly bonded carbons,
which has the effect of constraining the size of the ring, explaining the bond lengths of
pyrrole while tetrahydropyrrole is found among the amine bonds. At 1.38 is prop-1-ene-
2-amine, this too is bonded to the double bonded carbon, and thus a shorter bond length
is achieved.

4.2.5 Carbon-Oxygen bonds

Oxygen-Carbon bond distribution is shown in fig. 4.5

Between 1.18 Å to 1.22 Å is carbon oxygen double bonds, consisting of several func-
tional groups such as aldehydes, ketones, esters, and carboxylic acids. Between 1.31-
1.33Å there are the single bonds to the hydroxy-group in the dicarboxylic acids ethanedioic-
acid and propanedioic-acid. These are shorter than the C-O bond to the hydroxy-group
in for example ethanoic acid (1.35 Å) compared to ethanedioic-acid (1.325 Å and 1.337
Å). This may be due to the possibility for intramolecular hydrogen bonds between the
two carboxylic acid groups in the dicarboxylic acid giving a different electron density
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Figure 4.5: Carbon-oxygen bond length distribution for unmodified geometries

near the double bonded oxygen and allowing for a shorter bond distance. Between 1.34-
1.36 Å are the normal length carbon-hydroxyl bonds in carboxylic acids. Also in this
bond area is the bond to the ether bridge in esters, or esters where there is no double
bond α to the ester group.

From 1.39 Å and above are alcohols, ethers, and singly bonded carbon oxygen bonds.
As these are singly bonded to sp3-hybridized carbon, they are expected to have a longer
bond length than bonds to doubly bonded carbon.

4.2.6 Carbon-Sulfur bonds

Sulfur-Carbon bond distribution is shown in fig. 4.6.

Figure 4.6: Carbon-sulfur bond length distribution for unmodified geometries
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The bonds between 1.58 Å to 1.65 Å are thioaldehydes and thioketones. At 1.70Å is
thiophene, these two bonds are singly bonded to double bonded carbons. The peak
at 1.76 Å is the bond to an ethenyl group in the thioether methylsulfanylethene. This
bond is somewat longer than the bond in thiophene due do being less constrained by
the cyclicity of the ring in thiophene. Between 1.80 Å and 1.85 Å are the carbon sulfur
bonds in thiols and thioethers. These are singly bonded to sp3 carbon and are therefore
found to be at the longest distance from the carbon.

4.2.7 Carbon-Chlorine bonds

Chlorine-Carbon bond distribution is shown in fig. 4.7.

Figure 4.7: Carbon-Chlorine bond length distribution for unmodified geometries

At 1.74 Å there is chlorine bonded to a double bonded carbon in 1,3-dichloroprop-1-
ene. This causes the bond length between carbon and chlorine to shorten as the electron
density is more shared between the carbon-carbon double bond. At 1.775 Å is chloro-
cyclopropane. The constrained nature of the cyclopropane bonds may cause less steric
hindrance to the chlorine as the carbon bonds are at a smaller angle than normal for an
alkane and this allows for some smaller carbon chlorine bond distance. Between 1.79 Å
and 1.80Å is trichlorobutane, the single bonded chlorine of 1,3-dichloroprop-1-ene, and
chloromethane. These chlorine atoms are bonded to sp3 hybridized carbon and therefore
have similar bond lengths to each other.
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4.3 Optimized parameters
The optimized parameters for the model based on unmodified geometries is given in
table 4.3. The optimized parameters using all geometries if shown in table 4.4

Model parameters unstretched geometries [a.u.]

Atom

Parameter C Cl F H N O S

Static polarizability parameters

α∗ 6.556 12.909 2.042 1.663 6.867 3.119 15.331
x∗ 0.015 0.064 0.134 0.416 0.008 0.056 0.081
η∗ 1.446 2.982 3.640 3.588 2.432 2.586 0.750
C∗ 1.072 22.437 12.140 3.310 27.866 3.429 1.939
R∗ 1.265 3.122 1.093 0.656 1.216 1.289 1.968
Φ∗ 0.024 78.112 1.552 5.633 0.270 2.086 1.507

Frequency dependent polarizability parameters

cq
∗ 0.665 -0.000 0.000 4.103 0.000 0.000 0.000

cµ
∗ 0.763 0.000 0.000 2.925 0.000 -0.000 0.000

Table 4.3: Model parameters for unstretched geometries in atomic units. Only
parameters used in the calculation is included

Model parameters stretched geometries [a.u.]

Atom

Parameter C Cl F H N O S

Static polarizability parameters

α∗ 6.953 12.782 1.981 1.767 5.471 2.896 15.594
x∗ 0.013 0.082 0.125 0.303 0.006 0.048 0.070
η∗ 1.760 3.381 3.640 4.684 1.948 2.796 0.861
C∗ 0.989 5.442 12.254 5.025 29.147 7.506 4.011
R∗ 1.263 3.388 1.067 0.651 1.226 1.315 2.026
Φ∗ 0.038 12.166 1.935 6.195 0.387 1.862 0.645

Frequency dependent polarizability parameters

cq
∗ 0.680 -0.000 0.000 8.997 -0.000 0.000 0.000

cµ
∗ 0.695 0.000 0.000 1.751 0.000 0.000 0.000

Table 4.4: Model parameters for stretched geometries in atomic units. Only parameters
used in the calculation is included
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4.3.1 Static polarizability parameters

The isotropic and anisotropic polarizability parameters a∗I and x∗I are in close agreement
for all atoms. This may indicate these parameters are important for the parametrization
and that the model may be sensitive to changes in this parameter. The isotropic and
anisotropic parameters are included in the calculation of the calculation of the polariz-
ability, through the dipole-dipole interaction tensor T (2)

II,αβ in eq. (81). The calculation
of the atomic polarizability is also related to the Φ∗

I and R∗
I parameters through the cal-

culation of the intermolecular charge transfer resistance SIJ in eq. (84). This resistance
then scales the contribution of the ΓI,αβ matrix eq. (83). This relation then describes the
relation between the polarizability parameters and the parameters Φ∗

I and R∗
I .

The atomic isotropic polarizability a∗I is in close agreement between the two parametriza-
tions except for nitrogen where the unstretched parametrization gives a value of about
1.4 a.u. higher than the stretched geometry parametrization. It is seen that while the a∗I
parameter of carbon is higher in the stretched geometry parametrization, all the other
atoms have decreased. This may be an effect of the optimization target is the result of
a molecular property, meaning the sum is of polarizability contributions is important
but that the individual atomic contributions are not necessarily important. This allows
for several solutions to the molecular polarizability, and therefore allows for several
parameter values with similar results, given that they provide the same sum.

The anisotropic polarizsability x∗I is a correction to the polarizability eq. (86) such that
the out-of-plane elements of the polarizability are given an additional contribution. These
elements are expected to be low compared to the in-plane polarizability. It is seen that
the anitrotropy is on a smaller order of magnitude than the istropic parameter, which
is in line with this expectation. The anisotropic polarizabilities are low, but the value
for fluorine and hydrogen can be seen to be comparatively high, indicating a larger
degree of anisotropy. Due to the comparatively large values of α∗

I however the atomic
polarizability is still expected to be dominated by the in-plane elements.

The atomic chemical hardness is related to the polarizability through the calulation of the
interatomic distance, where the sum over the same index is replaced with the chemical
hardness eq. (75). As the atomic chemical hardness can be interpreted as the molecules
resistance to change in chemical potential, it is expected that more electronegative atoms
should have larger hardness. Looking at the parametrizations, it is seen that the halogens
fluorine and chlorine have the greatest hardness. Oxygen, nitrogen, and carbon too fol-
low this trend from the periodic table, but hydrogen can be seen to have a large hardness
in both parametrization, and especially in the parametrization of all the geometries. This
can be seen as there being a large energy cost from charge transfer away from hydrogen
atoms. As the hydrogen only has one electron it therefore explains that charge transfer
is especially energetically disadvantageous. Sulfur is a group 16 molecule but is here
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seen as having the lowest atomic chemical hardness in both parametrizations. This can
indicate the suflur atoms are quite likely to transfer charge, and that this can indicate a
larger charge contribution for sulfated compounds.

Φ∗
I andR∗

I are related to the atomic chemical hardness in themodification of the chemical
hardness eq. (87). In this modification the intermolecular charge transfer resistance SIJ
eq. (84) is, like for the dipole-dipole interaction tensor, as well as the intramolecular
charge transfer resistance gI,KM eq. (88). Through gI,KM the C∗ parameter is also used.
Through these calculations all the parameters of the model are employed, all remaining
terms are based on scaled interatomic distances, which again rely on the parameter Φ∗

I .

Looking at the parameters, first it is seen that the atomic radius R∗
I follows a trend of

increasing for heavier atoms except for fluorine. As these radii determine the inter- and
intramolecular charge transfer resistance, it is an important parameter. The atomic radius
should be examined in detail for all atoms, as this is related to the parameters Φ∗

I and
C∗, this will be discussed in detail for the individual possibilities.

4.3.2 Frequency dependent polarizability parameters

It can be seen that for both the stretched and unstretched geometries, that the frequency
dependent parameters cq∗ and cµ∗ are only non-zero for carbon and hydrogen. This
indicates that the entire frequency dependence can be described by oscillating charges
and dipoles associated with hydrogen and carbon. It seem unintuitive that none of the
heteroatoms should give a contribution to the frequency dependence, however it is noted
that all the molecules in the parametrizations contain both at least one carbon and mul-
tiple hydrogens, as the model parametrization minimizes the molecular polarizability,
a molecular property, it is possible that the carbon and hydrogen parameters simply
compensate for the lacking contribution of the hetreroatom.

4.3.3 Smaller parametrization using different bonds

It is possible that one of the contributing reasons for the parameters values of cµ∗ and
cq

∗ being zero for heteroatoms is due to the lacking bonds between these type of atoms.
For example there are no fluorine-oxygen bonds in the data set, nor were there nitrogen-
nitrogen bonds like in an azo-group, or sulfur-sulfur bonds. If these functional groups
were included in the set, it is possible the optimization would assign values to these
parameters. To test this a smaller parametrization was undertaken. This set of molecules
contained a number of interatomic bonds not represented in the original dataset. The
nuclei in this set of molecules is described in table A.2 in appendix A. Allowing this
parametrization to go to convergence showed that values for cµ∗ had been assigned to
chlorine (0.4) and sulfur (0.44) Still no nuclei except hydrogen and carbon were assigned
a value for cq∗ . This shows that the model will predict values for these parameters for
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hetroatoms, but it does not appear logical that oscillating dipoles associated with oxygen
and nitrogen do not contribute to the frequency dependent polarizability.

To see if the model would accept a solution with this dipole contribution, the parameter
value for nitrogen wasmanually set to 0.2 and the parametrization restarted. It was found
that with this the parameter value increased to 1.26 after optimization, this would indicate
that the oscillating dipoles associated with nitrogen are more important than carbon in
describing the frequency dependence of the polarizability. This is more in line with what
is expected from a compound like azomethane. The result also illustrates the important
point that the optimization algorithm optimizes towards a molecular property, so that the
sum of contributions is what determines the result. This allows some atomic parameters
to potentially compensate for a lacking contribution from another atom, explaining the
two different results.

To test the rest of the parameters, all values of cµ∗ and cq∗ , that were zero were set
to an initial value of 0.2. The optimization of parameters were then started. It was
found that the optimization converged with none of the parameters becoming zero, the
final parameters are shown in table 4.5. This shows that it is perhaps possible for the
optimization algorithm to get stuck at parameter values if they are set to zero. The initial
values were zero for all atoms except carbon and hydrogen for the full parametrization,
explaining why this unphysical result was found.

Model parameters for the small parametrization [a.u.]

Atom

Parameter C Cl F H N O S

Static polarizability parameters

α∗ 7.912 12.640 2.165 2.130 5.705 3.076 15.175
x∗ 0.109 0.024 0.019 0.250 0.018 0.106 0.014
η∗ 2.888 2.284 3.558 9.446 2.457 3.963 3.566
C∗ 1.687 20.381 51.069 54.398 69.964 1.935 4.268
R∗ 1.288 16.271 1.306 0.709 1.338 1.423 2.064
Φ∗ 0.128 73.124 181.976 20.883 0.129 0.226 0.126

Frequency dependent polarizability parameters

cq
∗ 0.471 1.239 0.897 18.745 2.824 1.103 0.882

cµ
∗ 0.159 0.442 0.244 3.541 0.625 0.230 0.411

Table 4.5: Model parameters for the smaller parametrization in atomic units. Only
parameters used in the calculation is included

Looking at the values for the frequency dependent parameters in table 4.5, it is seen that
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compared to the full parametrization, the cµ∗ and cq∗ parameter values for carbon has
decreased. This may be in line with the assumption that in the full parametrization, the
carbons compensate for the lacking contributions of the other atoms by increasing its
values. Meanwhile hydrogen has increased in these values, perhaps to compensate for
the smaller contribution of carbon. This indicates that the carbon parameters of cµ∗ and
cq

∗ may be very important for the frequency dependent polarizability in the model. This
is in line with the fact that carbon makes up a large part of the atoms in the dataset.

For the static polarizability parameters in table 4.5, the values for Φ∗ is very large for
chlorine, fluorine, and hydrogen. All these can only bond singly to the other nuclei,
and is therefore not expected to be sensitive to the slope in SIJ , and a very large value
will not effect the scaled interatomic distance if it is bonded to a nucleus where Φ∗ is
low. C∗ is seen to be high for chlorine, fluorine, and nitrogen. For the former two, this is
likely due to the nuclei only being singly bonded to other nuclei, thus ifR∗ is sufficiently
large C∗ becomes less important, and may be tuned to be very large. For nitrogen, it is
possible to observe single, double and tripple bonds, so this large C∗ parameter may be
an indication that the types of bonds are treated quite differently. This is also seen in the
full parametrizations tables 4.3 and 4.4.

4.3.4 Comparison of chlorinated molecules

It is noted that the size of parameters between the two parametrizations in tables 4.3
and 4.4 are largely comparable except for chlorine. Especially it can be seen that the
C∗ parameter, related to the steepness of the step function is very large for the model
containing only unmodified geometries. This indicates that the model has a very steep
change between a higher and lower order bond, such that the longer bonds have a strong
resistance to charge transfer.
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Figure 4.8: Intramolecular charge transfer resistance for 1,3-dichloroprop-1-ene. The
two points indicate the function value for the sum of interatomic distances in the
molecule. The blue point indicates the chlorine connected to the sp3 carbon and the
red point is chlorine bonded to the sp2 carbon. The x axis indicates the sum of two
interatomic distances.

By visualizing gI,KM for the two chlorine atoms in 1,3-dichloroprop-1-ene, as shown in
fig. 4.9, it can be seen that for both the distances the function value is one. As these two
points are well within the area where the function remains constant at one, and the two
points indicate the shortest carbon-chlorine bond and one of the longer, as discussed in
section 4.2.7, it is likely that the function value is one for all carbon-chlorine bonds in the
set and that the steepness of the step function, as defined by the atomic parameter C∗

Cl is
completely irrelevant for the molecules in the set. As chlorine can only bond singly to
carbon it is reasonable that there is only one value for the intramolecular charge transfer
resistance, since there is only one type of bond. The comparatively large value of R∗

Cl

indicates that the bond distances must be quite long before the resistance is effected so
that it was perhaps not be necessary to optimize the C∗ parameter for chlorine.

Turning to Φ∗
Cl the parameter is also comparatively very large. The parameter repre-

sents the width of the Gaussian charge distribution and such a large value indicates a
very localized charge near the chlorine atoms. Further the very small size of the Φ∗

C

parameter indicates that the intermolecular charge transfer resistance eq. (84) may be
very dominated by the R∗

Cl parameter, and that the value will remain constant for all
C-Cl bonds in the parametrization. Visualizing the function gives
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Figure 4.9: Intermolecular charge transfer resistance for 1,3-dichloroprop-1-ene. The
two points indicate the function value for the sum of interatomic distances in the
molecule. The blue point indicates the chlorine connected to the sp3 carbon and the
red point is chlorine bonded to the sp2 carbon.

Here too it is observed that the function is one for both shorter and longer values of C-Cl
bond length. It is noted Φ∗

I is used to approximate the scaled distance using eq. (71).
As the parameter value of Φ∗

C is so small, the product in the numerator of eq. (69)
while the denominator sum is still large due to Φ∗

Cl that the approximated modified
distance may have a large contribution from the modification to the distance. A plot
of the polarizability for 2-chloropentane is shown in figs. 4.10 and 4.11

Figure 4.10: Polarizability of 2-chloropentane for the model including stretched and
only including unstretched geometries.
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Figure 4.11: Polarizability of 2-chloropentane for the model including stretched and
only including unstretched geometries. Showing the off diagonal elements

It can be seen form fig. 4.10 that there is a close agreement between the parametrizations
despite tables 4.3 and 4.4 showing large difference in parameter values for chlorine.
The frequency independent part of the parametrization appears to be slightly better for
the unstretched parametrization. This might indicate that the parameters for carbon are
better optimized for other functional groups. None of the molecules that were stretched
included a carbon-chlorine bond. The amount of carbon-carbon bonds included from
chlorinated compounds is therfore proportionally less than it is for the unmodified ge-
ometries and this gives the chlorinated compounds more importance than it gives for
the parametrization including all geometries. It can be seen that the full parametrization
achieves lower error for higher frequency ω. This indicates that the frequency dependent
part of the model is better parametrized for the inclusion of all geometries. This is
maybe unexpected as both parametrizations had zero contribution from the parameters
of any heteroatoms. It may show that the model parameters are optimized such that
the parameters for carbon and hydrogen compensate for the lacking contribution of the
heteroatom. This would explain why a larger set of molecular geometries may be more
general than the smaller set of only including unmodified geometries.

Looking at the dipole and charge contributions can be seen in fig. 4.12. From fig. 4.10,
the largest error is in the αzz component, and therefore only it has been visualized.
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Figure 4.12: Polarizability of 2-chloropentane for the model only including the charge
and dipole polarizability contributions.

It is seen that the unstretched parametrization predicts a slightly higher contribution
of the polarizability from charges, while the stretched geometry predict higher dipole
contribution. The frequency dependence to the dipole contribution has a slightly higher
trend in the unstretched parametrization. This may indicate that the unmodified ge-
ometry parametrization predicts an excitation energy at a lower frequency than the full
parametrization and the DFT reference data.

4.3.5 Parametrization of hydrocarbons

Alkanes contain only singly bonded carbon and hydrogens. This leaves a somewhat
simple molecule with not many different types of interactions. For carbon, it can be
seen that the parameters are in close agreement between the parametrizations tables 4.3
and 4.4, for hydrogen however there is some disagreement. It can be seen that the for
the frequency dependent parameters, cq∗ is much larger in the stretched parametrization
(9.00) than the unstretched parametrization (4.10) and cµ∗ is nearly twice as large in the
unstretched parametrization (2.93) than the stretched parametrization (1.75). This shows
that the presence of oscillating charges is much more important in the parametrization
containing stretched geometries, while oscillating dipoles are more important in the
parametrization containing only unmodified geometries.

Further it can be seen that the parameters for the static polarizability there is close
agreement between the two parametrizations in the case of carbon. For theC∗ parameter,
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it is seen that carbon has the lowest value of all the atomic parameters. This shows
that the steepness of the step function gI,KMeq. (84) is much lower than for the other
parameter. This is in line with the purpose of modifying the chemical hardness for
different bond orders of carbon. Visualizing the step function for the two carbon-carbon
interatomic distances in propane illustrates this.

Figure 4.13: Step function for three carbon atoms, and example function value for
propane carbon-carbon distances. The x-axis represents the sum of two interatomic
distances.

It is seen that the step function does offer a modification the chemical hardness for bond
lengths near those found in propane. If either bond is shortened, as it would be for an
sp2- or sp hybridized carbon, the function value would increase for this shorter distance.
This shows that the step function does have an appropriate shape for the parameters
of carbon atoms, since it it able to separate between σ bonded and π bonded carbon,
however it is not able to separate between double and tripple bonded carbon.

It can also be seen that theΦ∗ parameter is very small for carbon, indicating the Gaussian
distribution is very diffuse. This small Gaussian can be seen as the carbon charge
being very spread out, this might make sense for conjugated π bond systems where the
electrons may be seen as quite delocalized, it would indicate that the carbons charges
generally have large overlap. This can be seen by visualizing the intermolecular charge
transfer resistance SIJ for carbon carbon bonds fig. 4.19.
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Figure 4.14: Carbon-carbon overlap function with a point for the function value for a
C-C bond length in propane.

It is seen from fig. 4.19, that the overlap function SIJ is very high for any reasonable
carbon-carbon bond distance. This is connected to the low value of Φ∗ as the steepness
of the curve is connected to aIJ eq. (69). This shows that the overlap function functions
well for bonded carbon as it remains close to one for any carbon-carbon bonds. It further
shows that R∗

I is an appropriate size for carbon, in line with what was seen in fig. 4.13.

Figure 4.15: In-plane components of the polarizability of propane for the two
parametrizations. The stretched parametrization is here the parametrization with added
geometries, and the unstretched parametrization only includes unmodified geometries.
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From fig. 4.15 it can be seen that there is better agreement between the unstretched
parametrization and the reference data in the x-direction, while in the y, and z directions,
the parametrization containing all geometries is in better agreement. It also seems the
frequency dependence is overestimated for both models, but with better agreement for
the full parametrization for all components. This implies the dipole contribution of
hydrogen to the frequency dependent polarizability is overestimated for the model based
on unmodified geometries. Looking at methane fig. 4.16:

Figure 4.16: Polarizability along the z direction for two parametrizations of methane.
Polarizability contributions are shown.

In methane there is only one carbon bonded to each of the hydrogen, as such the only
interaction is between hydrogen the hydrogens and this central carbon. It can be seen
that it is the dipole component of the polarizability that is giving too large a contri-
bution for the unstretched parametrization, for higher frequency. As cµ∗ only has a
parametric dependence on the inverse number of oscillating dipoles when neglecting
dissipation eq. (105), it can be seen that the parametrization using only the unmodified
geometries does not estimate this correctly. When solving eq. (106) for the polarizability
contribution, it is the inverse matrix of the first term that is solved. Therefore the
higher value obtained for cµ∗ in the unmodified geometry parametrization may lower
any excitation frequency in the solution, giving a sharper gradient for the frequency
dependence.

By tuning the parameters, the effect of this can be visualised by manually tuning the pa-
rameter values for the stretched parametrization fig. 4.17. The stretched parametrization
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was chosen as it appeared from fig. 4.16 that these parameters were better for describing
the polarizability values for methane.

Figure 4.17: Dipole component of methane polarizability with tuning of the cµ
∗

parameter for carbon. Values are based on the parameter values of the stretched
parametrization. Higher and lower values for cµ∗ are produced simply by multiplying or
dividing the parameter value by a factor of two.

The charge contribution to the polarizability remains very similar between the parametriza-
tions fig. 4.16, despite cq∗ for hydrogen being higher by more than 1 for the unmodified
geometries. The parametrization of cq∗ for carbon also gives a contribution to the dipole
component for hydrogen through eq. (104).

Visualizing gI,KM for the interatomic distance between two hydrogens and the central
carbon shows fig. 4.18. It can be seen that the curve is quite steep, due to the high value
of C∗ for hydrogen. This means the polarizability contribution from the hardness will
vary quite drastically with bond distance. However the carbon-hydrogen bond distances
vary quite little in the data set fig. 4.2.
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Figure 4.18: Step function for two hydrogen carbon bonds, and example function
value for methane carbon-hydrogen distances. The x-axis represents the sum of two
interatomic distances.

Figure 4.19: Carbon-hydrogen overlap function with a point for the function value for a
C-H bond length in methane.

4.3.6 Parametrization of oxygen

Carbon can bond to oxygen singly or doubly. It is therefore worth visualizing the gI,KM

for an alchohol group. For ethanol it can be seen that the singly bonded C-O is located
somewhat around the middle of the curve. As such it can be seen that if the oxygen was
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double bonded, like in a ketone, the charge transfer resistance would be less important.
This indicates that the parametrization is able to distinguish between different oxygen
bond orders.

Figure 4.20: Step function for three carbon atoms, and example function value
for ethanol carbon-carbon-oxygen distances. The x-axis represents the sum of two
interatomic distances and the unstretched parametrization indicates the parametrization
without the added geometry, and stretch indicates the parametrization with added
geometries.

4.4 The effect of stretching a bond
The effect of stretching a bond on the polarizability is of interest. When the bond
is changed, this has an effect on the interatomic distance between two atoms. This
is used to calculate the interaction tensors eqs. (78) and (80), as well as the potential
overlap and charge transfer resistance between atoms in the molecule. By stretching the
central carbon-carbon bond in 111-trifluoroethane it can be seen that fig. 4.21 the DFT
polarizability increases with a longer bond length. This may be due to the molecule
being a strong permanent dipole due to the large electronegativity of the fluorine. In the
presence of an external field, this may stabilize the induced dipole, such that the dipole
will increase with larger bond distance.
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Figure 4.21: αzz for polarizabilities of trifluoroethane and some of the stretched variants

It is seen that as the bond is stretched, there is less effect on the polarizability. Stretching
the bond from equilibrium with 50 mÅ has more effect than stretching from 50 mÅ to
100 mÅ. Further it can be seen that the model polarizability has the same shape for all
model values. The size of the effect is also noteworthy. It can be seen that there is
less than a half a.u. difference between the unmodified and stretched geometry. Then
this shows that the stretching of the bond has little effect. This can be connected to the
correction to the chemical hardness, as it is distance dependent. As both fluorine and
hydrogen have quite high C∗ parameters, it is likely that this curve could be quite steep.
Thus showing why the effect dissipates at longer distances. Further, the polarizability
depends on the internuclear distance through the interaction tensors T (0), T (1) and T (2).
These scale inversely with the interatomic distances. Thus it should be expected that this
would increase with increased bond length. The sum of these two effects may explain
the difference in static polarizability between the molecular geometry. The correcting
factor to the chemical hardness gI,KM is shown in fig. 4.22.
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Figure 4.22: gI,KM for 111-trifluoroethane and a variant stretched along the carbon-
carbon bond. Curves are visualized for the carbon-carbon-fluorine and carbon-carbon-
hydrogen two atomic distances.

Looking in detail at the polarizability contributions to the polarizability of the stretched
molecule fig. 4.23, it can be seen that the unstretched geometry has a slightly higher
frequency dependence for the charge contribution. This arrises from the dependence on
the interatomic distance in eq. (104). This term means that modifying the geometry to
increase this bond length causes the pole to shift to a higher frequency as the pole must
be inversely proportional to the bond length. This explains the slightly higher frequency
dependent polarizability for the charge contribution.
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Figure 4.23: αzz for polarizabilities of trifluoroethane and a stretched variant, with
polarizability contributions

4.5 Result of the addition of stretched geometries
The overall effect of the addition of adding geometries to the parametrization can be
seen from figs. 4.24 and 4.25. It can be seen that both parametrizations are approxi-
mately equal in the static polarizabilities. From this it can be seen that the addition of
modified geometries did not generally improve the description of static polarizability.
From fig. 4.25, the full parametrization was found to be somewhat better. This shows
that overall the full parametrization was in closer agreement with the reference data.
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Figure 4.24: Isotropic polarizability (mean trace component) for each molecule in the
parametrization including all frequencies. All molecules were given equal weight in the
calculation of R2.

Figure 4.25: Static isotropic polarizability (mean trace component) for each molecule in
the parametrization. All molecules were given equal weight in the calculation of R2.
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4.5.1 Addition of carbon bonds

The additional geometries were added in order to better represent less common bond
lengths in the dataset. The major portion of this was done for carbon-carbon bonds
in the bond length range between 1.46 − 1.48. In this interval the bond between the
carbon bond to the nitrile carbon was found. 3-cyano-penta-13-diene shows some large
deviation for the higher frequencies. The polarizability is therefore visualized figs. 4.26
and 4.27. It is seen that there is general agreement between the two polarizabilities, and
there cannot be said generally that either result is more favourable.

Figure 4.26: In-plane components of the polarizability of 3-cyano-penta-13-diene for
the two parametrizations.

Figure 4.27: Out-of-plane components of the polarizability of 3-cyano-penta-13-diene
for the two parametrizations.
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The result shows that the description of nitriles were not significantly improved by the
addition of more geometries. The addition of these geometries may not have had enough
significance for the large number of molecules included, then it be expected not to see a
clear improvement.

Looking at molecules with the overall largest error, the polyenes and phenyl molecules
are represented. These molecules also contain bond lengths in the interval with added
geometries. The errors for polyenes are shown in tables 4.6 and 4.7. It is seen that
the RMSE is quite high. This is due to the very high values of the polarizabilities for
these molecules. Then even if the error is only on a few percent, it may appear large as
a root mean squared error, as this does not account for the magnitude of the reference
polarizability, just the difference. It is noted that for the optimization algorithm, steps
were taken to keep every molecule equally important as described in section 3.4.

Root mean square error for Unstetched polyenes

Frequency ω [a.u.]:

Molecule 0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20 Mean

Penta-13e-diene 1.80 1.83 1.89 2.02 2.22 2.54 3.04 3.80 4.98 6.72 3.38 3.11
Hexa-13e5-triene 2.12 2.12 2.13 2.13 2.16 2.24 2.47 4.00 17.35 4.08
Hepta-13e5e-triene 2.18 2.21 2.31 2.51 2.88 3.53 4.69 7.04 13.83 4.58
Octa-13e5e7-tetraene 4.50 4.56 4.75 5.18 6.13 8.37 14.80 46.67 11.87
Nona-13e5e7e-tetraene 4.22 4.25 4.37 4.67 5.40 7.11 11.73 35.57 9.67
Deca-13e5e7e9-pentaene 12.40 12.72 13.78 16.05 20.82 32.53 75.91 26.32
Undeca-13e5e7e9e-pentaene 13.17 13.50 14.59 16.91 21.79 33.88 80.56 27.77
Dodeca-13e5e7e9e10-pentaene 26.38 27.23 30.09 36.32 50.21 89.44 43.28

Mean: 8.35 8.55 9.24 10.72 13.95 22.46 27.60 19.42 12.06 6.72 3.38

Table 4.6: RMSE for between model and DFT polarizability at frequency (a.u.) for
unstetched polyenes.

Root mean square error for Stetched polyenes

Frequency ω [a.u.]:

Molecule 0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20 Mean

Penta-13e-diene 1.31 1.32 1.36 1.44 1.57 1.80 2.16 2.79 4.00 7.44 28.14 4.85
Hexa-13e5-triene 1.51 1.53 1.57 1.67 1.89 2.30 3.13 5.11 13.16 3.54
Hepta-13e5e-triene 2.40 2.45 2.60 2.90 3.43 4.35 6.15 10.70 33.32 7.59
Octa-13e5e7-tetraene 3.28 3.36 3.62 4.12 5.03 6.78 10.75 25.64 7.82
Nona-13e5e7e-tetraene 3.71 3.80 4.10 4.67 5.72 7.71 12.36 34.42 9.56
Deca-13e5e7e9-pentaene 8.12 8.33 9.04 10.51 13.42 20.07 42.82 16.04
Undeca-13e5e7e9e-pentaene 8.21 8.42 9.10 10.49 13.16 18.87 35.96 14.89
Dodeca-13e5e7e9e10-pentaene 19.19 19.79 21.81 26.16 35.59 61.55 30.68

Mean: 5.97 6.12 6.65 7.75 9.98 15.43 16.19 15.73 16.83 7.44 28.14

Table 4.7: RMSE for between model and DFT polarizability at frequency (a.u.) for
stetched polyenes.
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The largest component of the polyene polarizability is the αzz, it is visualized below.
There can not be seen a clear trend in what parametrization is better.

Figure 4.28: αzz component of the polarizability for polyenes from penta-
1(E)3(E)-diene (lowest) to Dodeca-13(E)5(E)7(E)9(E)10-pentaene (highest). The
two parametrizations are in close agreement, with the full parametrization using all
geometries generally showing less error for the higher frequency.

Looking in detail at Octa-13E5E7-tetraene( fig. 4.29) it can be seen that there is good
agreement between the two parametrizations and there is only a slight improvement for
the parametrization of all geometries at higher frequency. This strengthens the suspi-
cion that the addition of geometries in this interval has not significantly improved the
parametrization.
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Figure 4.29: In plane polarizability of Octa-13E5E7-tetraene for the two parametriza-
tions.

The same pattern can be seen for perfluorated-polyenes fig. 4.30

Figure 4.30: αzz component of the polarizability for polyenes from perfluoro-penta-
1(E)3(E)-diene (lowest) to perfluoro-dodeca-13(E)5(E)7(E)9(E)10-pentaene (highest)
except for perfluoro-hexa-13(E)5(E)-triene due to an error in the generation of the input
file. The two parametrizations are in close agreement.

The single largest error molecule for both parametrizations was phenylethene (styrene).
It can be seen from visualizing the polarizability for the two parametrizations fig. 4.32
that this error stems from the large growth in the polarizability for the frequency 0.18a.u.
in the reference data, which the model completely fails to capture.
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Figure 4.31: In plane polarizability of phenylethene for the two parametrizations.

Looking at the polarizability contributions to phenylethene, it is found that to the degree
the frequency dependent polarizability is modelled, it is the charge contribution that
depends most on the frequency in the area. This then shows that also the charge contri-
bution may participate in an excitation, however the steepness is not well modelled. It
is also noteworthy that both contributions are of almost similar size.

Figure 4.32: Polarizability of phenylethene for themodel including the charge and dipole
polarizability contributions for both parametrizations.

Looking at an example in 12-difluoroethane fig. 4.33 it can be seen that there is better
agreementwith the static polarizability for all three components. Further the parametriza-
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tion containing the unmodified geometries appear to show a too steep frequency depen-
dence. One reason for this may be the addition of stretched geometries in the bond length
interval, giving more weight to these bond lengths. This shows that it can in principle
be possible to improve the description of less represented bond distances by addition of
stretched geometries, however it should not be seen as a strength of the parametrization
that there was a comparatively low number of fluorine bonds to singly bound carbon, as
this could have easily been represented with the addition of more perfluorated alkanes,
for example.

Figure 4.33: Polarizability of 12-difluoroethane for both parametrizations. The
‘Stretched‘ parametrization refers to the parametrization including all geometries, the
‘Unstretched‘ refers to parametrization including only unmodified geometries.

4.6 Parametrization of cyclic compounds
Some cyclic and heterocycles have been included in the parametrization. For cyclopend-
tadiene, there can be seen some differences between the parametrizations fig. 4.36. It
can be seen that the model predicts an excitation for the ‘stretched‘ parametrization
with poles in the x, and y direction. For the ‘Unstretched‘ optimization, the pole is
not reached but the sharp increase in the polarizability shows that the pole is very close.
This then indicates that the model underestimates the excitation value. It is noted that
as the pole is reached in the stretched optimization, the polarizability proceeds to fall to
below the reference polarizability. As the optimization attempts to minimize the error
in the polarizablity the excitation may be considered more favourable for the algorithm,
despite being a physically incorrect excitation.
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Figure 4.34: Polarizability of cyclopentadiene for both parametrizations. The
‘Stretched‘ parametrization refers to the parametrization including all geometries, the
‘Unstretched‘ refers to parametrization including only unmodified geometries.

Figure 4.35: Polarizability y component of cyclopentadiene for both parametrizations
with dipole and charge contributions. The ‘Stretched‘ parametrization refers to the
parametrization including all geometries, the ‘Unstretched‘ refers to parametrization
including only unmodified geometries.
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A similar excitation can be seen for thiophene. At the frequencies 0.6 and 0.8 a.u., a
weak excitation can be seen for the ‘stretched‘ parametrization including all geometries.
The same excitation is found between 0.8 and 0.10 a.u., for the parametrization of the
unmodified ‘unstretched‘ geometries. These excitations are very weak, but occur well
below the DFT predicted excitation above 0.2 a.u., This shows the model is vulnerable to
predicting unphysical excitations also well below the true excitation energy. A possible
reason for this is that the sulfur does not correctly participate in the polarization, such that
the parametrization would be different if there was a sulfur contribution to the frequency
dependent polarizability, this pole would have occured at a higher frequency. Further the
discussion of the bond lengths in the parametrization showed that these aromatic rings
were often less represented in the bond distribution than they perhaps could have been
section 4.2.

Figure 4.36: Polarizability y component of thipohene for both parametrizations
with dipole and charge contributions. The ‘Stretched‘ parametrization refers to the
parametrization including all geometries, the ‘Unstretched‘ refers to parametrization
including only unmodified geometries.
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5 Conclusion
Two parametrizations of a classical electrostatic model for the polarizability was under-
taken. A large set smaller organic molecules were used for the nuclei of types, carbon,
hydrogen, nitrogen, oxygen, sulfur, fluorine and chlorine. For the bond lengths in the
dataset for which there was less coverage, the molecules were supplemented with mod-
ified geometries that had one of their bonds stretched or compressed in order to better
represent these bond lengths. The modified geometries were primarily modified by
stretching or compressing carbon-carbon bonds, however some carbon-fluorine bonds
were also modified.

While the two parametrizations were found to have differing numerical values. There
was not a significant improvement to the parametrization that included the larger set of
modified geometries. The largest errors in the model came from large highly polarizable
molecules. Many of these were the polyenes.

The noticeable difference between the parameter values in the parametrizations were
thought to arise from the fact that the model is trained to optimize the parameters with
respect to a molecular property, as a sum of atomic contributions. This allows the polar-
izability to have many equally valid solutions provided the sum of atomic contributions
returns the molecular polarizability.

The simplex optimization algorithm that was used was found to be able to get stuck
on parameter values for the inverse number of oscillating charges cq∗I and oscillating
dipoles cµ∗I if they were initially set to zero, as they were for the main parametrizations.
These parameters effect the frequency dependent polarizability. This complicates the
results and makes it difficult to make a conclusion on the effect of supplementing the
dataset with modified geometries, at least for the frequency dependent components.
It is possible that having started the parametrization with better initial values for the
parameter values either parametrization could have given a better result.

From the limited amount of modified geometries of carbon-fluorine bonds, this was
found to give somewhat better results for fluorinated compounds. This might indicate
that if the dataset is to be supplemented by modified geometries, a focus should be on
carbon-heteroatom bonds.

Further work on the model should attempt to implement the equations for the dipole
moment gradient, which is a local atomic property andmay therefore be able to be solved
less ambiguously with respect to atomic parameters than the molecular polarizability.
This may aid the parametrization of the static polarizability, which has been found to be
a source of error.
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Appendix A Molecules used in parametrization

Table A.1: Molecules in the dataset. For stretched molecules the stretched bonds are
shown by writing explicitly the unmodified bond length directly above the bond.

Molecule Stretch [mÅ]

Alcohols

Cyclopentanol 0
Benzenol 0
Methanol 0
Propanol 0
2-butanol 0
Propan-2-ol 0
Ethanol 0
Butanol 0
Hex-3-ol 0

Aldehyde

1-butanal 0
Prop-2-en-1-al 0, 6, 12, 18, 24, 30, 36, 42, 48

O
1.4
73
Å

Ethanal 0
1-hexanal 0
Propanal -10, -5, 0

O
1.5
02
Å

Pent-2e4-dien-1-al 0
Hex-24-en-1-al 0
But-2e-en-1-al -18, -14, -11, -7, -4, 0, 4, 7, 11, 14, 18

O
1.4
75
Å

1-pentanal 0

Alkanes

Methane 0
Ethane 0, 8, 16, 25, 33

C C
1.522Å

Continues on next page
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Continuation of table A.1

Propane 0
Butane 0
Pentane 0
Hexane 0
Heptane 0
Octane 0
Nonane 0
Decane 0
Dodecane 0
Undecane 0

Alkenes

E-but-2-ene 0
Butene 0
Buta-13-diene -20, -16, -12, -8, -4, 0

1.458Å

Propa-12-diene 0
23-dimethylbut-2-ene 0
E-hex-3-ene 0
Z-but-2-ene 0
Ethene 0
Pent-2-ene 0
Z-hex-3-ene 0

Alkynes

Cyclopentyne 0
Pent-2-yne 0
Propyne 0, 33, 66, 99, 131, 164, 197, 230

1.203Å

Ethyne 0
Hex-3-yne 0
But-2-yne -11, -6, 0, 3, 7, 10, 14, 17, 20, 24, 27, 31, 34

1.4
6Å

Amines

2-aminopentane 0

Continues on next page
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Continuation of table A.1

1R-phenylethane-1-amine 0
NN-dimetylamino-ethane 0
Ethaneamine 0
2S-amino-3-pheynylpropanoic-
acid

0

2-N-methylamino-propan-1-ol 0
Propan-1-amine 0
N-methylamino-ethane 0
N-ethylethamine 0
Prop-1-en-2-amine 0
2-aminoethan-1-ol 0
3-aminopropanoic-acid 0
2-propanamine 0
2-n-methylamino-propane 0

Branched alkanes

2-methylpropane 0
2-methylbutane 0
22-dimethylpropane 0
22-dimethylbutane 0
12-dimethylcyclopentane 0

Carboxylic acids

Butanoic-acid 0
Methanoic-acid 0
Ethanoic-acid 0
Propanoic-acid 0
Butanedioic-acid 0
Ethanedioic-acid 0
Propanedioic-acid 0
But-2-enedioic-acid 0

Chlorinated

2-chloropentane 0
2-chloropropane 0
Chlorocyclopropane 0
3-chloro-prop-1-en 0
3-chloropropanol 0

Continues on next page
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Continuation of table A.1

2-chlorobutane 0
Chloromethane 0
Chloroethane 0
Chlorobutane 0
Chloropropane 0

Cyclic alkanes

Cyclopropane 0
Cyclobutane 0
Cyclopentane 0

Cyclic alkenes

Cyclopentene 0
12-dimetylcyclopentene 0
12-dimethylcyclobutene 0
24-cyclohexadiene 0
Cyclobutene 0
Cyclohexene 0

Dichlorinated

12-dichloroethane 0
13-dichloro-prop-1-en 0

Difluorated

Difluoroethyne 0
12-difluoroethane 0
11-difluoroethane -15, -12, -10, -8, -5, -2, 0, 5, 10, 15, 20, 25, 30

F2C

C

1.496Å

22-difluoropentane 0

Esters

Ethyl-ethanoate 0
Methyl-prop-2e-enoate 0
Ethenyl-prop-2e-enoate 0

Continues on next page
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Continuation of table A.1

Methyl-but-2e-enoate -20, -10, 0, 5, 10, 15, 20

O

O

1.476Å

Ethenyl-but-2e-enoate 0
Methyl-propanoate 0
Methyl-butanoate 0
Methyl-ethanoate 0
Ethenyl-ethanoate 0

Ethers

Methoxymethane 0
Methoxyethane 0
Methoxyethene 0
Ethoxyethane 0
3-methoxyprop-1-ene 0

Fluorinated

Fluorocyclopropane 0
1-fluoro-prop-1-yne 0
Fluoroethane 0, 15, 30, 45, 60

FC C
1.504Å

Fluorobutane 0
2-fluorobutane 0
2-fluoropropane 0
Fluoropropane -20, -17, -14, -11, -9, -6, -3, 0, 3, 6, 9, 11, 14, 17, 20

F

1.397Å

Hetrocycles

Benzene 0
Toluene 0
Pyridine 0
Cyclopentadiene 0
Cis-butadiene 0
Tetrahydrofuran 0
Furane 0

Continues on next page
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Continuation of table A.1

Tetrahydrothiophene 0
Thiophene 0
Tetrahydropyrrole 0
Pyrrole 0

Hydroxy groups

11-dihydroxyprop-2-ene 0
22-dihydroxypropane 0
11-dihydroxypent-2e4e-diene 0
11-dihydroxybut-2e-ene 0
11-hydroxybut-2e-ene 0
22-dihydroxybuthane 0
1144-tetrahydroxybut-2e-ene 0
33-dihydroxybut-1-ene 0
11-dihydroxypent-2e-ene 0

Ketone

2-butanone 0
Cyclopentanon 0
Cyclopropanon 0
Propanon 0
2-pentanon 0

Nitriles

3-cyano-penta-13-diene 0
Prop-2-ene-1-nitrile 0, 10, 20, 30, 40, 50, 60, 70

N

1.433Å

Ethanenitrile -11, -6, 0, 6, 12, 19, 25, 31

N

1.457Å

Propane-1-nitrile 0
But-2-yne-1-nitrile 0, 8, 17, 25, 33, 42, 50, 58, 66, 75, 83

N

1.452Å

Continues on next page
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Continuation of table A.1

2-ethylbut-2-ene-1-nitrile -20, -10, 0, 12, 24, 36, 48, 60
N

1.491Å

2-methylprop-2-ene-1-nitrile 0, 20, 40, 60, 80

N
1.442Å

Partially fluorinated polyenes

2-trifluoromethyl-1113-tetrafluoro-
octa-2e4e6e-triene

0

2-trifluoromethyl-1113-tetrafluoro-
hepta-2e4e-diene

0

2-trifluoromethyl-1113-tetrafluoro-
pent-2e-ene

0

2-trifluoromethyl-1113-tetrafluoro-
nona-2e4e6e8-tetraene

0

2-trifluoromethyl-1113-tetrafluoro-
hepta-2e4e6-triene

0

2-trifluoromethyl-1113-tetrafluoro-
deca-2e4e6e8e-tetraene

0

2-trifluoromethyl-1113-tetrafluoro-
nona-2e4e6e-triene

0

2-trifluoromethyl-1113-tetrafluoro-
hexa-2e4e-diene

0

2-trifluoromethyl-1113-tetrafluoro-
but-2e-ene

0

Perfluorated

Tetrafluoroethene 0
Hexafluoroethane 0
Perfluoroprop-1-ene 0, 2, 5, 7, 9, 12, 14, 16, 18, 21, 23, 25, 28, 30

F3C CF2 C
F

F

1.308Å

Perfluoro-but-2-ene 0

Continues on next page
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Continuation of table A.1

Perfluoro polyenes

Perfluoro-buta-13-diene 0
Perfluoro-penta-13e-diene 0
Perfluoro-hepta-13e5e-triene 0
Perfluoro-octa-13e5e7-tetraene 0
Perfluoro-nona-13e5e7e-tetraene 0
Perfluoro-deca-13e5e7e9-pentaene 0
Perfluoro-undeca-13e5e7e9e-
pentaene

0

Perfluoro-dodeca-13e5e7e9e10-
pentaene

0

Phenyl

1s-phenylethan-1-ol 0
2-phenylpentane 0
Phenylethen-2-ol 0
Phenylmethanol 0
Phenylethene 0

Polyenes

Penta-13e-diene 0, 15, 30
1.5
17
Å

Hexa-13e5-triene 0
Hepta-13e5e-triene 0
Octa-13e5e7-tetraene 0
Nona-13e5e7e-tetraene 0
Deca-13e5e7e9-pentaene 0
Undeca-13e5e7e9e-pentaene 0
Dodeca-13e5e7e9e10-pentaene 0

Thioaldehydes

Prop-1-en-3-thial 0
Propane-1-thial 0
Ethanethial 0
Methanetial 0

Continues on next page
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Continuation of table A.1

Thioethers

Ethyl-methyl-sulfide 0
Ethylsulfanylethane 0
1-methylsulfanylpropane 0
Methylsulfanylmethane 0
3-methsulfanylprop-1-ene 0
Propanylsulfanylpropane 0
Methylsulfanylethene 0

Thioketone

Propane-2-thione 0
But-1-yne-2-thione 0
But-1-ene-2-thione 0
Butan-2-thione 0

Thiols

Methanethiol 0
But-1-en-2-thiol 0
Prop-1-en-2-thiol 0
Butan-2-thiol 0
Propan-1-thiol 0
Ethanethiol 0, 20, 40, 60, 80

HS

1.517Å

Prop-1-yn-3-thiol 0
Propan-2-thiol 0
But-1-yn-3-thiol 0

Trichlorinated

111-trichlorobutane 0

Continues on next page
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Continuation of table A.1

Trifluorinated

111-trifluoroethane 0, 17, 33, 50, 67, 83, 100
F3C CH3

1.495Å

111-trifluorobutane 0
222-trifluoro-1-phenylethane 0
112-trifluoroprop-1-ene 0
Trifluoroethene 0

Table A.2: Molecules in the smaller parametrization.

Molecule Stretch [mÅ]

Small parametrization

N-hydroxy-propan-2-imine 0
Ethaneperoxoic-acid 0
Diazomethane 0
Dimethylsulfone 0
Methanesulfinic-acid 0
Nn-difluoroaminoethane 0
Chloroxy-ethane 0
Nitrosoethene 0
Difluoroxyperfluoromethane 0
Fluoroxyethane 0
Ethaneperoxol 0
Ethyl-methyl-disulfide 0
Ethanesulfinic-acid 0
Diazoethane 0
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