
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y

M
as

te
r’s

 th
es

is

Giulia Fede

A Puzzle-Based Movable Rack system
with class-based storage policy

Master’s thesis in Miscellaneous Courses - Faculty of Engineering
Supervisor: Prof. Fabio Sgarbossa
Co-supervisor: Prof. Marco Melacini (Politecnico di Milano)
July 2023

camillomarchionni
Sottolineato

Giulia Fede

A Puzzle-Based Movable Rack system
with class-based storage policy

Master’s thesis in Miscellaneous Courses - Faculty of Engineering
Supervisor: Prof. Fabio Sgarbossa
Co-supervisor: Prof. Marco Melacini (Politecnico di Milano)
July 2023

Norwegian University of Science and Technology

i

Abstract in English
The recent growth in e-commerce during the COVID-19 pandemic has intensified the de-
mand for efficient warehouses with high storage density and throughput. Puzzle-based
storage (PBS) solutions have demonstrated their effectiveness in optimizing storage ca-
pacity with limited spaces. To further enhance these capabilities, the Logistics 4.0 Lab
at NTNU and the company Wheel.me have introduced a new system that utilizes au-
tonomous wheels, enabling storage racks to move in any direction. This innovative ap-
proach holds the potential to significantly improve throughput capacity.

Existing studies have primarily focused on evaluating retrieval performance based on
factors like escort locations, input/output (I/O) points, and movement constraints. This
paper aims to enhance retrieval time by implementing a two-class-based storage policy.
By strategically placing high-turnover items near the I/O point, travel distances are min-
imized, resulting in faster retrieval.

To evaluate the effectiveness o f t he c lass-based s torage s ystem, v arious i nput parame-
ters are considered, including the ABC curve, system size, class A shape, and shape ratio.
The objective is to examine how the optimized system with a class-based storage pol-
icy, impacts the performance of the new configuration. T he fi ndings re veal significant
reductions in cycle time, with improvements of up to 150% compared to random storage,
depending on the specific system configuration and characteristics of the stored items.

iii

Abstract in Norwegian
Den nylige veksten i netthandel under COVID-19-pandemien har intensivert etterspørselen
etter effektive lagerbygninger med høy lagringskapasitet og gjennomstrømning. Puzzle-baserte
lagringsløsninger (PBS) har vist seg å være effektive for å optimalisere lagringskapasiteten med
begrenset plass. For å ytterligere forbedre disse evnene, har Logistikk 4.0 Lab ved NTNU og
selskapet Wheel.me introdusert et nytt system som bruker autonome hjul, slik at lagringshyller
kan bevege seg i alle retninger. Denne innovative tilnærmingen har potensial til å betydelig
forbedre gjennomstrømningskapasiteten.

Tidligere studier har hovedsakelig fokusert på å evaluere henteytelsen basert på faktorer som
eskorteposisjoner, inngangs-/utgangspunkter og bevegelsesbegrensninger. Denne artikkelen
har som mål å forbedre hentetiden ved å implementere en lagringspolitikk basert på to klasser.
Ved strategisk å plassere høyomsetningsvarer nær inngangs-/utgangspunktet, minimeres
reiseavstander, noe som resulterer i raskere henting.

For å evaluere effektiviteten til lagringssystemet basert på klasser, vurderes ulike
inngangsparametere, inkludert ABC-kurven, systemstørrelse, formen til klasse A og
formforholdet. Målet er å undersøke hvordan det optimaliserte systemet med en
lagringspolitikk basert på klasser påvirker ytelsen til den nye konfigurasjonen. Funnene
avslører betydelige reduksjoner i syklustid, med forbedringer på opptil 150 % sammenlignet
med tilfeldig lagring, avhengig av den spesifikke systemkonfigurasjonen og egenskapene til de
lagrede elementene.

Acknowledgements

I would like to thank my supervisor at Politecnico of Milano, Marco Melacini, for being
responsive and providing helpful feedback. His guidance was instrumental in writing my
master’s thesis.
I also want to express my gratitude to my supervisor at NTNU, Fabio Sgarbossa, for
guiding me in the practical work and for his willingness to schedule meetings whenever I
encountered uncertainties.

I am grateful to NTNU and Politecnico of Milano for giving me the opportunity to extend
my time abroad to write my master’s thesis. This allowed me to fully immerse myself in
the working environment at NTNU and provided me with more time to build friendships,
experience Norwegian traditions, and even face the challenges of winter in Norway.

A special thank you goes to my flatmates, who were understanding, welcoming, and
shared this remarkable experience with me. Each of them taught me something valuable.
I am thankful to my friends from Italy for their support and closeness, and to the new
friends I made during this time. We shared countless memorable moments. Being in a
completely different country became an enriching and enjoyable experience, thanks to all
of you.

Lastly, I want to express my deepest appreciation to my family for their support and
belief in me, even when I doubted myself. You have always encouraged me to remain
resilient in challenging situations and supported me in every decision I made.

vii

i

iii

v

vii

Contents

Abstract in English

Abstract in Norwegian

Acknowledgements

Contents

Introduction 1
0.1 Motivation . 1
0.2 Research questions and method . 3
0.3 Outline . 4

1 Theoretical background 7
1.1 Puzzle-based storage . 7
1.2 Robotic mobile fulfillment systems . 13
1.3 Non-traditional aisle configurations . 15
1.4 Class-based storage policy . 16

2 Proposed configuration 21
2.1 Assumptions . 21
2.2 Movement policy . 22
2.3 Moviment policy for a square grid . 26
2.4 Moviment policy for a rectangular grid . 32

3 Analytical model with random storage policy 37
3.1 Storage capacity and density for a square grid 37
3.2 Storage capacity and density for a rectangular grid 38
3.3 Average travel distance . 38
3.4 Average cycle time and throughput . 39

3.5 Value of β . 40

4 Analytical model with class-based storage policy 41
4.1 Classes shape . 41
4.2 Average travel distance, cycle time and throughput 42
4.3 Class A with square shape . 44

4.3.1 Class A for a square grid . 44
4.3.2 Class A for a rectangular grid . 45

4.4 Class A with triangular shape . 50
4.4.1 Class A for a square grid . 50
4.4.2 Class A for a rectangular grid . 56

5 Design procedure 61

6 Random vs. Class-based 73

7 Comparison with literature 77

8 Conclusions and future developments 83
8.1 Conclusions . 83
8.2 Limitations . 84
8.3 Possible future developments . 84

9 Bibliography 87

List of Figures 91

List of Tables 93

1

Introduction

In recent years, the rapid growth of e-commerce has led to a greater emphasis on op-
timizing warehousing operations and performance. Two prominent areas of research in
this field are Robotic Mobile Fulfillment (RMF) systems and Puzzle-Based Storage (PBS)
systems.
However, these systems have typically been studied independently. Research on PBS sys-
tems has focused on reducing retrieval times while maintaining high storage density. On
the other hand, research on RMF systems has prioritized achieving high picking rates and
overall throughput capacity.

In a collaborative effort between the Logistics 4.0 Lab at NTNU (Norwegian Univer-
sity of Science and Technology) and the Norwegian company Wheel.me, there has been a
recent conceptualization of an evolved PBS system. The goal is to combine the advantages
of both PBS and RMF systems by addressing the trade-off between throughput capacity
and storage density.
Previous studies have primarily concentrated on the design of the system and the de-
velopment of effective movement policies. These studies have demonstrated significant
improvements in performance. The specific contribution of this thesis is the adoption of
a class-based storage policy, which aims to enhance the performance of the new configu-
ration even further.

0.1. Motivation

The COVID-19 pandemic led to a relevant growth in online retailing, which had already
been growing in popularity (Guthrie et al. 2021). This resulted in the development of
new warehousing technologies suitable for e-commerce (Boysen, De Koster et al. 2019).
The pandemic also exposed the vulnerability of lean sourcing and just-in-time logistics, as
global supply chains were disrupted (Garnett et al. 2020). The lack of intermediate stor-
age in supply chains further worsened the crisis, especially for critical goods like medical
equipment (Bhaskar et al. 2020). The problems arising during COVID-19, in addition to

2 | Introduction

the growth of online retailing, highlighted the increasing need for compact and responsive
storage systems.
Storing goods requires space, and real estate prices in urban areas have risen due to urban-
ization. At the same time, companies want to reduce lead times. Higher costs associated
with the required storage area and rapid retrieval requirements pose a challenge.
Finally, order-picking activities in warehouses are labor-intensive and account for a sig-
nificant portion of operating costs. To improve efficiency, parts-to-picker systems have
been developed. These systems involve carrying inventory to a picker at a workstation,
eliminating non-value-adding time spent by the pickers to move between shelves.

In collaboration with the Norwegian company Wheel.me, the Logistics 4.0 Lab at the
Norwegian University of Science and Technology (NTNU) has conceptualized a new con-
figuration based on Puzzle-Based Storage (PBS) systems that leverages the use of au-
tonomous wheels.
Previously, no large-scale PBS system with moveable storage racks had been investigated.
According to the survey conducted by Boysen, De Koster et al. (2019), PBS systems were
considered unsuitable for handling the tight delivery schedules required in an e-commerce
environment due to movement constraints that limited retrieval times. However, the pur-
suit of designing storage systems with higher densities to minimize warehousing space and
reduce costs remains a prevalent topic.
This innovative approach aims to address the above-mentioned challenges in supply chain
and warehouse management by maximizing storage density while maintaining high through-
put levels. The new system allows for a high level of storage density and improved
throughput performance by relaxing movement constraints.
The key enabler of this new configuration is the development of these autonomous wheels
equipped with computational and mechatronic capabilities, allowing them to perceive
their surroundings, avoid collisions, and move autonomously in any direction. Control of
the wheels is achieved through a cloud computing system, allowing for the coordination
of multiple objects equipped with autonomous wheels. This makes autonomous wheels
a potential alternative to existing material handling equipment such as AMRs, AGVs,
shuttles, and conveyor belts.
In the context of developing this new configuration of PBS systems, it is assumed that
storage racks can be moved using autonomous wheels. An illustration can be found in
Figure 1.

| Introduction 3

Figure 1: Autonomous wheels developed by Wheel.me

The analysis of this new system was initially undertaken by a master’s student from
NTNU in previous years. The objective of the study was to describe the movement policy
of the system and compare its performance with other existing solutions. The findings of
the student’s work indicated significant improvements, highlighting the potential of the
new system. Therefore, it is valuable to pursue further research on this topic and explore
ways to enhance its performance even more.
Research has demonstrated the advantages associated with the implementation of a class-
based storage policy in minimizing the average travel distance within a storage system.
Building upon this knowledge, the primary objective of this study is to implement a two-
class storage policy, optimize the system’s design, and assess its impact on throughput
and cycle time.

0.2. Research questions and method

This work has the objective to answer the following research questions:

• RQ1: How can we implement a class-based storage policy on the new PBS system?

• RQ2: How does this storage policy affect the performance of the system?

• RQ3: What are the optimal values for the design parameters?

• RQ4: What are the possible improvements and limitations of this configuration

4 | Introduction

with respect to the same system with random storage and traditional PBS systems?

Before the initialization of the work, a crucial prerequisite was to develop a comprehensive
understanding of the design and load movements within the new system described in the
master thesis of the previous student.
To address RQ1, an extensive review of the existing literature on class-based storage
policies was conducted. The following phase consisted of the representation of the system
by using Microsoft Excel (Version 2305).
The visualization of the system played a fundamental role in determining the potential
configurations for class A and in adapting the analytical model to accommodate the
implementation of the class-based storage policy.
To effectively answer RQ2, it became necessary to simulate the system using the Python
programming language (Version 3.11). The code developed for this purpose has been
validated ensuring its accuracy by comparing the results obtained with the previously
constructed representation of the system in Excel. Furthermore, the Python simulation
results obtained considering a random storage policy were also compared against the
outcomes derived from the previous master thesis.
This simulation tool facilitated the evaluation of the system’s performance across different
scenarios, by varying the different input parameters. This enabled answering RQ3 through
the formulation of a design procedure aimed at minimizing the average cycle time.
Lastly, RQ4 required an exhaustive review of the existing literature concerning traditional
PBS systems.

0.3. Outline

This work is structured as follows:

• Chapter 1: Theoretical background
This chapter provides an overview of the theoretical background. It introduces
the PBS and RMF systems, explaining their main concepts and performance. The
chapter also describes the class-based storage policy and its specific implementation
in the context of this work.

• Chapter 2: Proposed configuration
The focus of this chapter is on the new configuration of the system and the assump-
tions made for the analysis. It provides a detailed description of the movement
policy implemented in the system.

• Chapter 3: Analytical model with random storage policy

| Introduction 5

This chapter presents the analytical model used to describe the new configuration
when a random storage policy is employed.

• Chapter 4: Analytical model with class-based storage policy
The analytical model developed to design and measure the performance of the sys-
tem under the class-based storage policy is described in this chapter. It also discusses
the choice of the shapes for the different classes.

• Chapter 5: Design procedure
This chapter outlines a procedure for determining the optimal parameters for de-
signing the system with a class-based storage policy. It provides guidelines on how
to define the parameters that will yield the best performance.

• Chapter 6: Random vs. Class-based
Here, the effect of implementing the class-based storage policy is examined in com-
parison to the random storage policy. The average cycle time is used as a measure
for the assessment.

• Chapter 7: Comparison with literature
The new solution is compared with existing approaches found in the literature.
The purpose of this comparison is to assess the potential improvements in terms of
density and average cycle time that can be achieved with the new solution.

• Chapter 8: Conclusions and future developments
This chapter offers an overview of the results achieved throughout the analysis. It
also discusses the limitations of the study and potential areas for future develop-
ments.

7

1| Theoretical background

1.1. Puzzle-based storage

Puzzle-based storage is one of the most space-efficient storage systems. They draw inspi-
ration from the popular 15-puzzle game, shown in Figure 1.1, where the goal is to arrange
numbered tiles in a 4× 4 grid by sliding them into a single empty slot.

Figure 1.1: 15-puzzle game

The original puzzle-based storage (PBS) system was introduced by K. Gue and B. Kim in
2007, resembling the tile configuration but with storage units such as containers or pallets
instead.
This system is represented as a grid whereby each cell can be either occupied by a load
or left free of stored units. One particular cell acts as the I/O point through which loads
enter or exit the system. For a desired load to be moved, the empty cell must anticipate
its path. Each movement within this system is defined in relation to the empty cell and
is known as an "escort move".
Figure 1.2 illustrates the series of escort moves required to transport the highlighted red
load, which is the requested one, to the I/O location. Each arrow represents an escort
move and they show how the escort must be moved in order to anticipate the requested
load on its way to the I/O point.

8 1| Theoretical background

Figure 1.2: Movements in PBS

They demonstrated that a grid with n cells can theoretically achieve a density of (n−1)/n,
extremely higher compared to the other storage systems. Only one cell, referred to as
the "escort", remains unoccupied to allow the movement of storage units. They also con-
ducted experiments to study the expected retrieval time in a PBS system and compared
their findings with multi-deep aisle-based storage systems in Gue (2006). They concluded
that PBS systems have the potential for high density with a reasonable trade-off in re-
trieval time.

This paper generated significant interest in research on PBS systems, with various objec-
tives and configurations being investigated. The common goal was to minimize retrieval
time while maintaining high density. Several researchers made contributions in this field:

• Rohit et al. (2010) used integer programming to solve optimal retrieval of a single
load. However, their approach was impractical for larger grids.

• Kota et al. (2015) improved on this work by providing a closed-form expression
for optimal retrieval in PBS systems with up to two escorts. They also developed
a heuristic algorithm for systems with three or more escorts, which yielded near-
optimal results for larger grids.

• Yalcin et al. (2019a) further improved the state of the art with an optimal algorithm
called MinMov. They also developed a greedy version of MinMov as a heuristic
approach for larger instances.

• Yunfeng et al. (2021) combined state-space search and beam search to reduce
the number of movements and algorithmic complexity. Their work provided two
heuristic contributions that reduced the computational complexity of Yalcin et al.’s
(2019a) work.

All these above-mentioned works were conducted under the constraint of allowing only
one escort move per step, making the minimization of load movements equivalent to
minimizing retrieval time.

1| Theoretical background 9

Other research was conducted allowing multiple moves to be executed within one step.
In this case, the objective of minimizing the retrieval time coincides with minimizing the
number of steps, instead of those of movements.

• Gue, Furmans et al. (2014) proposed a decentralized configuration of PBS systems
and they showed that increasing the number of escorts per row would enhance
system throughput.

• Zaerpour et al. (2017b, 2017a) proposed a multi-level PBS system called live-cube,
where each level resembles earlier PBS configurations with I/O locations instead of
separate input and output rows. They assumed a sufficient number of escorts to
create virtual aisles for load retrieval.

• Yu et al. (2017) attempted to devise an optimal algorithm for a conventional PBS
system where multiple escorts could move simultaneously. They showed that, at
most, five escorts were needed to move a requested load continuously to the I/O
location. However, the route taken by the load might not necessarily be the shortest
distance.

Based on the extensive research conducted in the field of PBS systems, here are summa-
rized the key concepts related to this storage system, namely the movement constraints
and the creation of virtual aisles.

Movement constraints

Research on PBS systems has highlighted the main load movement constraints. One key
distinction is between single movement and block movement, illustrated in Figure 1.3.
In single movement, the escort is limited to performing just one move in a single step.
This means that the escort can only move to an adjacent cell.
On the other hand, block movement allows the escort to shift to any cell within the same
row or column. All the loads between the starting cell of the escort and the desired one
are moved in a single step.

10 1| Theoretical background

(a) Single movement (b) Block movement

Figure 1.3: Single vs. block movement

The choice between block movement and single movement impacts the time required for
an escort to move from its starting position to a specific cell. When these cells are located
in the same row or column, block movement allows the escort to make the shift in a single
step. In contrast, if single movement constraints are in place, the escort would need to
perform multiple steps to reach the desired cell.
Figure 1.4 demonstrates that when employing block movement, it is possible to move an
escort n cells farther in a single step. In contrast, when employing single movement, the
same process would require n steps.

Figure 1.4: Comparison between single and block movement

This differentiation was first introduced by Gue and B. Kim (2007), who used block move-
ments in their experiments with one escort. Yalcin et al. (2019b) investigated the relative
change in average retrieval time between using load and block movement. In high-density
layouts, the increase in retrieval time without block movement was less than 10%. It

1| Theoretical background 11

was slightly higher, between 10% and 20%, with a virtual aisle strategy for similar grid
configurations.

Another important distinction is between simultaneous movement, illustrated in Figure
1.5, and sequential movement.
Simultaneous movement allows for the execution of several moves in a single step. In this
case, multiple escorts within the grid are allowed to move at the same time. The max-
imum number of simultaneous moves in a single step is equal to the number of escorts
present in the system.
Sequential movement, on the other hand, limits the movement to one move per step. This
means that each escort is moved individually in separate steps.

Figure 1.5: Simultaneous movement

Note that simultaneous movement should not be confused with block movement. Block
movement involves moving multiple loads with a single escort, whereas simultaneous move-
ment refers to moving multiple escorts simultaneously. Consequently, simultaneous move-
ment allows performing multiple block moves at the same time.

Yu et al. (2017) investigate the effect of simultaneous movement compared to sequential
movement in PBS systems. Their finding was a 50% improvement in retrieval time com-
pared to the state-of-the-art retrieval algorithm at the time by Kota et al. (2015).
In general, research on PBS systems acknowledges that the complexity of these systems
increases as the number of escorts involved grows (Gue and B. Kim, 2007; Mirzaei et al.,
2017; Yalcin et al., 2019a; Yunfeng et al., 2021). This complexity arises particularly when
simultaneous movement and block movement are allowed, as conflicting moves between
escorts can occur (Bukchin and Raviv, 2020).
Studies focusing on minimizing retrieval times in PBS systems with high storage density
tend to avoid this issue by not allowing simultaneous movement (Yunfeng et al., 2021).

12 1| Theoretical background

Virtual aisles

The concept of virtual aisles in PBS systems is a strategic approach that facilitates the
uninterrupted movement of requested loads toward the I/O location. It involves strate-
gically positioning escorts in cells along the path that the requested load needs to travel.
By doing so, a virtual aisle is created, eliminating the need for physical aisles typically
found in traditional storage systems (Gue, Furmans et al., 2014).
In PBS systems employing the virtual aisle strategy, loads can be dynamically moved
within the grid with the aim to open an aisle in front of the requested load. Virtual aisles
can be created in both cardinal directions (horizontal and vertical) and potentially even
diagonally, enhancing the flexibility of the system.
The implementation of virtual aisles enables higher storage density since only enough
empty space for a single aisle is required. Although this slightly reduces density com-
pared to traditional systems, it allows for faster load retrieval.
Figure 1.6 illustrates the block moves necessary to open a virtual aisle in front of a re-
quested load, which is highlighted in red. Depending on the position of the requested
load, the figure shows how to create either a horizontal or a vertical virtual aisle.

(a) Horizontal aisle (b) Vertical aisle

Figure 1.6: Opening of virtual aisles

Research by Gue, Furmans et al. (2014) and Yalcin et al. (2019b) explores different
configurations and strategies in the context of baggage handling. Simulation results show
that virtual aisle configurations can achieve densities up to 89% and average retrieval
times of 18.5 seconds, while traditional puzzle-based strategies achieve a density of 99%
with an average retrieval time of 22.7 seconds.

1| Theoretical background 13

It is important to highlight that the choice of movement constraints impacts the efficiency
of virtual aisle strategies. Not allowing for simultaneous movement results in a slight
advantage of only 4.2% in average retrieval time compared to traditional puzzle-based
strategies. However, the creation of virtual aisles requires approximately 28% more load
movements.

1.2. Robotic mobile fulfillment systems

Robotic fulfillment (RMF) systems are part-to-picker systems designed to facilitate the
picking process. They use autonomous mobile robots to bring storage racks to worksta-
tions where workers pick items or restock shelves.
These autonomous robots can travel underneath the racks when empty, but they require
aisles when carrying racks.

The RFS was first proposed as Kiva Systems by Wurman et al. (2008). It is now known
as Amazon Robotics after its acquisition in 2012 and it is currently employed in many
Amazon fulfillment centers in the US and Europe.

Figure 1.7: Amazon Robotics

Using robots to carry racks has proven to be much faster than manual picking. The robots
can process 200 to 300 order lines per hour, while humans can only manage 50 to 100.

14 1| Theoretical background

RMF systems are particularly suitable for environments with a large number of small
stock-keeping units (SKUs) and relatively low order volumes. They are also effective in
handling fluctuations in demand, which is common in e-commerce warehouses (Boysen,
De Koster et al., 2019).

Most of the research on robotic mobile fulfillment systems focuses on operation plan-
ning and control, including topics such as order and rack sequencing, storage policies,
workstation assignment, and robot path planning.
Order and rack sequencing research aims to investigate an efficient assignment of orders
and racks to workstations (Boysen, Briskorn et al. (2017); Merschformann et al.(2019);
H. Kim et al. (2020); Xie et al. (2021)). Storage policies research focuses on the efficient
division of the stock-keeping units (SKUs) among racks and the assignment of racks to
storage zones (Merschformann et al. (2019); H. Kim et al. (2020); T. et al. (2020)).
Workstation assignment research aims at optimizing performance by assigning worksta-
tions to robots (Zou et al. 2017). Robot path planning research tries to minimize robot
travel time and maximize robot utilization (Gharehgozli and Zaerpour 2020) but also
avoid conflicts between robots (Keunget al. 2020).

Some recent papers also explore system design optimization problems. Lamballais et
al. (2017) investigated aspects like the length-to-width ratio of the storage area and the
number of workstations. They found that the placement of workstations had a significant
impact on throughput. Moreover, using a semi-open queueing network, they estimated
that in a system with 14 aisles and 12 cross aisles, the maximum throughput could reach
1172 orders per hour when 14 AMRs are used with five workstations.

P. Yang et al. (2021) conducted research on a multi-deep RMF system, aiming to im-
prove density while maintaining high throughput. In this configuration, storage racks
might need rearrangement before being transported to a workstation. Using a semi-open
queuing network, they estimated a throughput of 334 units per hour and a density of
50% with three workstations and 14 robots. They compared the result with a single-deep
configuration that allows a density of 46%. They pointed out that increasing the deep-
ness of the storage blocks to increase the density of the system came with a high cost in
throughput.

Wang et al. (2020) also explored multi-deep configurations in RMF systems, focusing
on the travel time perspective of robots. They concluded that an optimal depth for stor-
age blocks is 2, as travel time increases significantly with greater depth.

1| Theoretical background 15

The travel distance of loaded robots is constrained by the aisle configuration, being the
robots required to travel through the aisles when transporting racks. To minimize the
travel distance of loaded robots, X. Yang et al. (2021) introduced diagonal cross aisles as
a design optimization perspective.

1.3. Non-traditional aisle configurations

Gue and Meller (2009) challenged traditional warehouse design rules of parallel picking
aisles and orthogonal cross aisles by proposing two alternative aisle configurations to
minimize the travel distance: the flying V and fishbone configurations.
These configurations are shown in Figure 1.8. In the flying V configuration, they allow
for non-orthogonal and non-straight cross aisles, while in the fishbone configuration, they
allow for non-parallel picking aisles.

(a) Flying V configuration (b) Fishbone configuration

Figure 1.8: Non-traditional aisle configurations

Their analytical model showed that these alternative configurations can reduce the ex-
pected travel distance with respect to the traditional aisle configuration respectively by
8% - 12% for the flying V configuration and 10% - 20% for the fishbone configuration.
Because of the diagonal and more direct path of pickers, these configurations allow for a
travel distance closer to the Euclidean distance rather than the Manhattan one, imposed
by the traditional configuration.
They also presented a theoretical lower bound for travel distance, obtained by avoiding
the constraint imposed by the aisles and considering the travel distance equal to the Eu-
clidean one. They found that the maximum theoretical reduction in the expected travel
distance is 23.5%, which indicated that the fishbone configuration is almost optimal.

16 1| Theoretical background

Bortolini et al. (2015) further investigated configurations with multi-diagonal cross aisles
and parallel picking aisles with the aim to minimize the travel distance. They identify
the possible areas of application.
A configuration with two diagonal cross aisles allows a reduction of the average travel
distance by 7% - 11.5% for smaller warehouses (under 10.000m2. A configuration with
four diagonal cross aisles results in a reduction of the travel distance by 11.5% - 15% for
medium-sized warehouses (between 10.000m2 and 65.000m2). Larger warehouses (over
65.000m2) could achieve a reduction of 15% - 17% with six diagonal cross aisles.

X. Yang et al. (2021) investigated the impact of a flying V configuration in a single-
deep RMF system with the aim to minimize robot travel distance. They found that the
average robot travel distance could be reduced by approximately 9% - 18% compared to
a traditional RMF layout.

1.4. Class-based storage policy

The class-based storage policy is widely acknowledged as the prevailing approach in prac-
tical storage systems. Its fundamental principle involves categorizing items to be stored
into a limited number of classes based on their demand rates.

Extensive literature discussions (De Koster et al., 2007; Graves et al., 1977; Gu et al.,
2007; Hausman et al., 1976; Rosenblatt and Eynan, 1989; Thonemann and Brandeau,
1998) consistently demonstrate its effectiveness in reducing travel distance as well as stor-
age and retrieval time.
Hausman et al., 1976 demonstrated that a class-based storage policy with two classes al-
lows for a percentage improvement over a random storage assignment that ranges between
18% for an ABC curve 60/20 and 53% for an ABC curve 90/20.
Bartolini et al. (2018) demonstrated the positive outcomes achieved by implementing a
class-based storage policy with two and three classes in a storage system featuring diag-
onal cross aisles. The savings in travel time ranged from 28.6% to 32.9%.

In the forthcoming chapters, the class-based storage policy, derived from the renowned
ABC curve, is applied to the proposed system, utilizing two distinct classes. Specifically,
a smaller yet more frequently requested set of loads is grouped into class A, while the
remaining loads are allocated to class B. Class A racks are strategically positioned closest
to the I/O point, and a randomized storage policy is implemented within each class to

1| Theoretical background 17

optimize efficiency.

ABC curve

The ABC curve represents a mathematical function that maps the cumulative demand of
items belonging to a specific class:

F (x) =
(1 + s)x

s+ x
(1.1)

where x is the cumulative fraction of the total storage space and s denotes the shape
factor.
For the purpose of this work, this function has been employed to estimate the proportion
of loads belonging to class A in relation to the overall number of loads requested. Con-
sequently, x represents the cumulative fraction of storage racks dedicated to class A items.

Different values of the shape factor can be considered to define distinct ABC curves,
as it is shown in Table 1.1.

Shape factor (s) ABC curve

1.39 30/20

0.60 40/20

0.33 50/20

0.20 60/20

0.12 70/20

0.07 80/20

0.03 90/20

Table 1.1: ABC curves and shape factor

The notation 80/20 means that the curve adheres to the Pareto principle, indicating that
80% of the overall requested loads are stored in only 20% of the storage racks. Similar
interpretations can be made for the other curves.

Observing Figure 1.9, it becomes evident that as the shape factor decreases, the curve
exhibits a greater degree of skewness. In other words, the distribution becomes more

18 1| Theoretical background

imbalanced, with a higher concentration of requested loads in a specific portion of the
storage space.

Figure 1.9: Different ABC curves

Several values for the percentage of racks dedicated to class A (x) have been selected
and the respective probability that a generic requested load belongs to class A (F (x))
has been computed using Formula 1.1 for different ABC curves. The outcomes of these
computations are displayed in Table 1.2.

1| Theoretical background 19

x
F(x)

30/20 40/20 50/20 60/20 70/20 80/20 90/20

0.05 0.083 0.123 0.174 0.240 0.329 0.457 0.655

0.1 0.160 0.229 0.308 0.400 0.509 0.640 0.800

0.15 0.233 0.320 0.415 0.514 0.622 0.738 0.864

0.2 0.300 0.400 0.500 0.600 0.700 0.800 0.900

0.25 0.364 0.471 0.572 0.667 0.757 0.842 0.923

0.3 0.424 0.533 0.632 0.720 0.800 0.873 0.939

0.4 0.534 0.640 0.728 0.800 0.862 0.914 0.960

0.5 0.632 0.727 0.800 0.857 0.903 0.941 0.973

Table 1.2: F (x) for different ABC curves

An intuitive example is provided. Assuming an ABC curve with the notation 60/20, if
30% of the total storage racks are dedicated to class A items, then the probability that a
load belonging to class A is requested would be 80%.

Moving forward, it is important to note that in the subsequent chapters, the fraction
of storage racks assigned to class A will be denoted as lA, while the corresponding prob-
ability will be referred to as pA.

21

2| Proposed configuration

The proposed system is a PBS system with a unique configuration. In this system, the
storage racks are equipped with autonomous wheels, enabling them to move within the
facility. What sets this configuration apart is that the storage racks have the ability to
move diagonally, which is not commonly considered in traditional research approaches on
PBS, primarily considering horizontal and vertical movements.
Section 2.1 outlines the underlying assumptions that have been considered in the system’s
design. Section 2.2 provides a comprehensive description of the system itself, including
the movement policy governing the relocation of storage racks. The specific movement
policy adopted within a square subgrid is presented in Section 2.3, extending then the
analysis to a rectangular subgrid in Section 2.4.

2.1. Assumptions

The overall analysis in this work is founded on several practical assumptions about the
system design, movement policy, and implementation of the class-based storage policy.

Regarding the overall system design, the following key assumptions have been made:

1. The storage area is represented as a discrete grid with cell dimensions of 1m × 1m.

2. Each load resembles one storage rack which can move with autonomous wheels.

3. A load can be moved with a velocity v = 1m/s

4. The time required to change direction is neglected.

5. Single command operations, commonly termed single load retrieval in PBS systems
literature, are assumed. This means that a new load can only be requested once the
previous load has arrived at the I/O location.

6. When a load arrives at the I/O location, a load ready for immediate replenishment
into the grid is available.

22 2| Proposed configuration

Regarding the movement policy, the following assumptions have been made:

1. An escort move involves relocating an escort from its initial cell to a new cell by
moving the loads between the two locations. Each load movement is a consequence
of an escort move.

2. From any given cell, a load can be moved to any of its eight adjacent cells. This
includes four adjacent cells in the same row or column, as well as four adjacent cells
diagonally.

Lastly, assumptions have been introduced for the design of the class-based storage policy:

1. Loads within each class are requested based on a uniform distribution being the
random-based storage policy implemented within each class.

2. Items are classified using the ABC curve approach.

3. The required storage space for items is equivalent to their average inventory levels.
Further details regarding this assumption will be provided in section 8.3.

2.2. Movement policy

In this chapter, a description of how the loads move in the system is provided.
The following convention will be followed through this work. A general rectangular grid
is defined with dimensions m × n cells, where m and n always represent the number of
cells along the shorter and longer sides of the grid, respectively.
The I/O location is consistently positioned in one of the corners of the grid, with coor-
dinates (0, 0). Each cell is defined to have positive coordinates (i, j) with respect to the
I/O point.

Travel route

A route consists of the cells the requested load needs to traverse in order to reach the
I/O point from its initial location. The length of the route is directly determined by the
number of cells included within the route itself.
Because the loads are free to move to any adjacent cells, including those not necessarily in
the same row or column, the distance between two points is determined by the Chebyshev
distance. It allows for the reduction of the route length with respect to the Manhattan
distance, which is constrained to rectilinear moves only. In a 2-dimensional grid, the

2| Proposed configuration 23

Chebyshev distance (dC) between two points with Cartesian coordinates (X1, Y1) and
(X2, Y2) is defined as the maximum difference between the coordinates of the two points:

dC = max
(
|X1 −X2|, |Y1 − Y2|

)
(2.1)

As a result of the convention introduced above, the Chebyshev distance between a cell
and the I/O location can be simplified as:

dC = max (i; j) (2.2)

Figure 2.1 shows an example of a grid where the value of the Chebyshev distance to reach
the I/O point is computed for each load. The route length for the purpose of this work is
assumed to be equal to the Chebyshev distance.

Figure 2.1: Chebyshev distance

There are several routes from a generic load to the I/O point whose length is equal to the
Chebyshev distance. The route taken into account for our purpose is the one composed
of a rectilinear path and a diagonal path. This route is shown in Figure 2.2.a. The
reason for the choice is that it resembles the route that loads would travel in the fishbone
configuration presented in section 1.3.

24 2| Proposed configuration

(a) Travel route for each load in the grid (b) Example travel route for a specific load

Figure 2.2: Travel route

It is easy to understand that, given a generic load of coordinates (i; j), the length of the
rectilinear path is equal to max (i; j) −min (i; j), while the length of the diagonal path
is equal to min (i; j). A practical example is shown in Figure 2.2.b where the load has
coordinates (7; 10). The length of the rectilinear path is 10− 7 = 3 cells, while the length
of the diagonal path is equal to 7 cells.

Virtual aisle

The use of virtual aisles in this configuration allows the loads to travel from their starting
position to the I/O point without any interruptions. Given the travel route followed by
the loads, the virtual aisle is strategically designed to align with this route.
Similar to what has already been done with respect to the travel route, it is convenient
to divide the concept of a virtual aisle into a rectilinear aisle and a diagonal aisle.

Diagonal aisles are necessary when loads need to move diagonally. Each cell along the
diagonal path, except for the I/O location, is assigned an escort. The diagonal movement
of loads requires additional escorts, which do not have the function of traditional escorts,
but they are required to allow the loads to pass through the diagonal path. They are
initially placed in the two adjacent cells in the same row or column as each cell on the

2| Proposed configuration 25

diagonal path, except for the two cells at the ends of the diagonal path, which require
only one adjacent escort.
Rectilinear aisles, on the other hand, are described in the existing literature on PBS sys-
tems. To ensure uninterrupted movement, a rectilinear aisle of the same length as the
rectilinear path of a requested load’s route is created. The number of escorts needed to
open a rectilinear aisle is equal to the length of the rectilinear path.

In a grid with dimensions m × n, m escorts are placed along the diagonal path to es-
tablish the diagonal aisle. Theoretically, n escorts are required to create the rectilinear
aisle, as the rectilinear path can be as long as the longest side of the grid. However, since
the diagonal path coincides with a movement of the load in the rectilinear direction by
m cells, the actual number of escorts strictly required for the rectilinear path is equal to
n−m. These escorts are placed along the longest side of the grid, connecting the diagonal
aisle and rectilinear aisle. It should be noted that, based on the system assumptions, the
rectilinear aisle can be opened in just one step.
Figure 2.3 illustrates the initial allocation of escorts in a generic grid with dimensions
m× n.

Figure 2.3: Initial allocation of escorts

To simplify the understanding of escort allocation and movement policies, the overall grid
is divided into a square sub-grid and a rectangular sub-grid.
The square sub-grid has dimensions m × m and contains the I/O location, while the
rectangular sub-grid has dimensions of m × (n − m). This division is shown in Figure
2.4 and it is particularly useful when dealing with grids that are not square in shape. A
rectangular grid of whatever dimensions can always be modeled as a combination of these
subgrids.

26 2| Proposed configuration

Figure 2.4: Division of the grid

Regardless of the shape and dimensions of the overall grid, the square sub-grid always
exists and serves as the foundation for the analysis. The escort configuration within this
sub-grid follows a unique approach, different from any other previously proposed methods,
because of the presence of the diagonal aisle.
The rectangular sub-grid represents the remaining portion of the overall grid that extends
beyond the square sub-grid. While it is typically in the form of a rectangle, it’s important
to note that even if this sub-grid has a square shape, it is still referred to and modeled
as the rectangular sub-grid since it does not contain the I/O location. This ensures
consistency in terminology and modeling conventions throughout the analysis.

2.3. Moviment policy for a square grid

A square grid can be modeled simply by considering the square sub-grid. The movement
policy for retrieving a load in the square sub-grid involves three main tasks: opening and
closing a rectilinear aisle, moving the requested load, and preparing the grid for the next
request (referred to as cycling). To accomplish these tasks, moves are categorized into
three types: rectilinear aisle moves, requested load moves, and cycle moves.

Rectilinear aisle move

A rectilinear aisle move (RAM) is responsible for either opening or closing a rectilinear
aisle. In the square sub-grid, opening an aisle involves moving escorts from the diagonal
aisle to the cells in front of the requested load. Remember that each cell on the diagonal
path has two escorts on either side.

2| Proposed configuration 27

Each load of the grid is located on one side of the diagonal aisle. Escorts adjacent to
the diagonal path and on the same side of the load are moved with a block movement to
create a rectilinear aisle.
Each RAM coincides with the block movement performed by each of these escorts. By
performing all the required RAMs simultaneously, the opening of the rectilinear aisle can
be done in just one step. The opening of a rectilinear aisle is shown in Figure 2.5.

Figure 2.5: Opening of a rectilinear aisle with two RAMs

Requested load move

A requested load move (RLM) is responsible for moving the requested load to a cell closer
to the I/O point.
To execute any RLM, there must be an escort preceding the requested load. Therefore,
if the rectilinear path is longer than two cells, a rectilinear aisle must be created before
the load can move. This means that a RAM must be performed before the first RLM.
RLMs are always single movements, but both cycle moves and RAMs aimed at closing
the rectilinear aisle can be made simultaneously to them.
Figure 2.6 illustrates how RLMs are performed in both parts of the travel route.

28 2| Proposed configuration

(a) RLM on rectilinear path

(b) RLM on diagonal path

Figure 2.6: RLMs performed in different directions

Cycle move

Cycle moves (CMs) are responsible for restoring the initial configuration of the grid when
a new load is requested. Overall, CMs ensure that the diagonal aisle and the I/O location
are clear of loads and that loads are replenished back in the grid. For each requested load,
three CMs are required.

When a new load is requested, the load to be replenished is currently in the I/O lo-
cation. Therefore, the first CM is performed to clear the I/O location by moving one of
the adjacent escorts. There are two scenarios:

1. If the new requested load is in the same row or column as the I/O location, an escort
moves from the diagonally adjacent cell to the I/O location.

2| Proposed configuration 29

2. If the new requested load is not in the same row or column, an escort moves from
one of the two rectilinearly adjacent cells on the same side of the diagonal path as
the I/O location.

Figure 2.7 illustrates the first CM in both scenarios.

(a) First CM in the first scenario

(b) First CM in the second scenario

Figure 2.7: First CM performed in both scenarios

The second CM is a block move from the initial cell of the requested load to the cell in
the same row or column where the load occupying the I/O location was moved in the
previous CM.
Figure 2.8 shows how the second CM is performed for both scenarios. Note that the first
RLM and the first RAM to open the rectilinear aisle have been performed simultaneously
with the first CM. Therefore, the initial cell of the requested rack is occupied by an escort
when the second CM is performed.

30 2| Proposed configuration

(a) Second CM in the first scenario

(b) Second CM in the second scenario

Figure 2.8: Second CM performed in both scenarios

The last CM performed considering the same escort moved in the second CM. It consists
of a block move to move rectilinearly the escort to the cell adjacent to the I/O location.
Figure 2.9 shows this third CM for requested loads in both scenarios. Note that, the
second RLM, the second RAM to open the rectilinear aisle, and the first RAM for closing
it have been performed during the second CM.

2| Proposed configuration 31

(a) Third CM in the first scenario

(b) Third CM in the second scenario

Figure 2.9: Third CM performed in both scenarios

These three CMs must be executed sequentially. However, as already highlighted, each
CM can be performed simultaneously with both RAMs and RLMs.

Figure 2.10 shows the sequence of all the movements performed for the retrieval of a
generic requested load.

32 2| Proposed configuration

Figure 2.10: Movements required in a square sub-grid

2.4. Moviment policy for a rectangular grid

In the rectangular sub-grid, loads only need to travel through a rectilinear aisle. Similarly
to the square sub-grid, the chosen movement policy ensures that for any cell there is
always an escort that can move to this cell in one step.
Initially, escorts are located on the upper or bottom part of the sub-grid. When a load is
requested, a rectilinear aisle must be opened in the cells between the requested load and
the square sub-grid. All the RAMs needed to open a rectilinear aisle can be performed
simultaneously in one step as illustrated in Figure 2.11.

2| Proposed configuration 33

Figure 2.11: Opening of a rectilinear aisle in the rectangular sub-grid

Note that for the next requested load, the escorts will just move from the previous recti-
linear aisle to the new rectilinear aisle. Therefore RAMs for closing the rectilinear aisle
that characterize the square sub-grid are not necessary
The load is moved toward the square sub-grid only performing RMLs on a rectilinear
path. Figure 2.12 shows a general RLM in the rectangular sub-grid.

Figure 2.12: RLM performed in a rectangular sub-grid

Finally, only two of the CMs are required and they are responsible for maintaining one
escort per column so that a rectilinear aisle can always be formed in one step.
The first CM consists of a single move from the initial cell of the requested load to the
adjacent cell in the same column. Note that the initial cell will be occupied by an escort
when the first CM is performed. The second CM consists of a block move of the same
escort to the cell in the same row adjacent to the square sub-grid. Figure 2.13 illustrates
both CMs required.

34 2| Proposed configuration

(a) First CM

(b) Second CM

Figure 2.13: CMs performed in a rectangular sub-grid

Figure 2.14 shows the sequence of all the movements performed in the rectangular sub-grid
for the retrieval of a generic requested load.

2| Proposed configuration 35

Figure 2.14: Movements required in a rectangular sub-grid

36 2| Proposed configuration

The opening of the rectilinear aisle in the square sub-grid is done when the requested load
has almost reached the square sub-grid. An additional movement is required to maintain
the number of loads in the sub-grids constant, but it can be performed simultaneously
with the final RLM required in the rectangular sub-grid. These final considerations are
shown in Figure 2.15.

Figure 2.15: Movements required in a rectangular sub-grid

37

3| Analytical model with random

storage policy

This chapter introduces the analytical model for describing the system when the random
storage policy is implemented. Sections 3.1 and 3.2 focus on measuring the storage capac-
ity and system density. Section 3.3 provides insights into calculating the average distance
traveled by the storage racks. Moving forward, section 3.4 presents the formulas used to
determine the average cycle time and throughput. Finally, section 3.5 offers a method
for computing the value of β. This value considers the requirement of opening rectilinear
aisles for certain loads.

3.1. Storage capacity and density for a square grid

The number of escorts needed to make a diagonal aisle in a square grid of dimensions
m×m is:

e (m,m) = 3m− 2 (3.1)

Consequently, the capacity is the total number of cells in the square grid minus the number
of escorts needed to form the aisle:

c (m,m) = m2 − (3m− 2) = m2 − 3m+ 2 (3.2)

The density for a generic square grid is modeled as the capacity divided by the grid size,
which is the total number of cells in the grid:

ρ (m,m) =
m2 − 3m+ 2

m2
(3.3)

38 3| Analytical model with random storage policy

3.2. Storage capacity and density for a rectangular

grid

In the case of a rectangular grid, the division presented in Section 2.2 is taken into
consideration. Hence, the overall number of escorts needed to move a generic load is the
sum of the escorts required to form the diagonal aisle and the ones necessary to open the
rectilinear aisle.
Considering the rectangular sub-grid of dimensions m × n, a number of escorts equal to
n − m is needed to make the rectilinear aisle. Therefore, the overall number of escorts
allowing a requested load to travel along the fishbone route in a rectangular grid is:

e (m,n) = 3m− 2 + (n−m) = 2m+ n− 2 (3.4)

Consequently, the capacity and the density can be respectively estimated as:

c (m,n) = mn− 2m+ n− 2 = (m− 1)(n− 2) (3.5)

ρ (m,n) =
(m− 1)(n− 2)

mn
(3.6)

where mn is the total number of cells in the rectangular grid.

3.3. Average travel distance

The cells visited by the requested load to travel from its initial location to the I/O point
are the ones included in the fishbone route, which is described in Section 2.2.
The length of this path coincides with the Chebyshev distance but is adjusted considering
a factor of

√
2 when moving diagonally in a cell. u indicates the length of the sides of

each cell in the grid, measured in meters.

The travel distance between a generic cell and the I/O point can be calculated as:

d (i, j) = [max (i; j)−min (i; j) +
√
2 min (i; j)] u =

= [max (i; j) + (
√
2− 1) min (i; j)] u

(3.7)

where min(i, j) is the number of diagonal moves each load travels on the fishbone route
to reach the I/O point. Consequently, max(i; j) − min(i; j) is the number of rectilinear

3| Analytical model with random storage policy 39

moves along the fishbone route between (i; j) and the I/O location.
The average travel distance for a square grid is the travel distance between all locations
that store loads divided by the capacity. No loads are permanently stored in the diagonal
aisle. Therefore, the travel distances from all cells in the diagonal aisle are subtracted.

d (m,m) =
1

c (m,m)

(
m−1∑
i=0

m−1∑
j=0

d (i, j)−
m−1∑
i=0

d (i, i)− 2
m−1∑
i=1

d (i, (i− 1))

)
u (3.8)

Similarly, it is possible to estimate the average travel distance for a rectangular grid. The
only consideration to make is that loads are not stored in the cells along the upper side
of the rectangular sub-grid, so their travel distance is subtracted.

d (m,n) =
1

c (m,n)

(m−1∑
i=0

n−1∑
j=0

d (i, j)−
m−1∑
i=0

d (i, i) −

− 2
m−1∑
i=1

d (i, (i− 1))−
n−1∑
i=m

d (i,m− 1)

)
u

(3.9)

3.4. Average cycle time and throughput

The cycle time is the time required to move a load from its initial location to the I/O
point and to replenish the grid.
Since the initial configuration of the grid is restored while the requested loads travel to
the I/O point, the average cycle time could be easily computed by multiplying the average
travel distance by the speed of the loads v.
However, as already mentioned in section 2.4, some loads require an additional step to
open a rectilinear aisle before moving on the fishbone route. Considering β as the fraction
of loads in the grid requiring this additional step, the distance traveled by the loads to
open a rectilinear aisle is on average equal to β times the length of a cell.
Hence, the average cycle time, measured in seconds, can be estimated as:

t (m,n) = d (m,n)× v + β (m,n)× v =

= (d (m,n) + β (m,n)) v
(3.10)

The throughput of the grid measures the number of loads retrieved per hour and can be
easily computed as:

τ (m,n) =
3600 s

t (m,n)
(3.11)

40 3| Analytical model with random storage policy

3.5. Value of β

In a generic square grid of dimensions m×m, the loads requiring the additional step to
open the rectilinear aisle are all the ones not located next to the diagonal aisle. In this
case, the number of loads stored next to the diagonal aisle is equal to 2(m−2). Therefore,
there are m2 − 3m + 2 − 2(m − 2) = m2 − 5m + 6 loads that have to move through the
rectilinear aisle.
Considering the formula for the capacity of a square grid 3.2, the value of β in a square
grid can be computed as:

β (m,m) =
m2 − 5m+ 6

m2 − 3m+ 2
(3.12)

In the case of a rectangular grid of dimensions m× n, it is necessary to take into account
the loads stored in the rectangular sub-grid. Within this area, the probability that a
rectilinear aisle does not need to be created when a new load is requested is so low that
we assume all loads need an additional step to open a rectilinear aisle. Concretely, there
are m(n −m) − (n −m) loads in the rectangular sub-grid requiring the additional step
to be performed.
Therefore, the value of β for a generic rectangular grid can be computed as:

β (m,n) =
m2 − 5m+ 6 +m(n−m)− (n−m)

(m− 1)(n− 2)
=

=
mn− 4m− n+ 6

(m− 1)(n− 2)

(3.13)

41

4| Analytical model with

class-based storage policy

This chapter focuses on the modifications to be made to the analytical model presented
in Chapter 3 when implementing the class-based storage policy within the system. It
begins by discussing the identification of the shape for class A in Section 4.1 and shows
the alternatives that have been selected and analyzed. Section 4.2 demonstrates how
the average travel distance, cycle time, and throughput can be computed based on the
performance of each class. Section 4.3 presents the analytical model specifically designed
for the scenario where class A has a square shape. Finally, in Section 4.4, the focus shifts
to the equations and analytical model for the triangular shape of class A.

4.1. Classes shape

The class-based storage policy with two classes involves categorizing items into class A
and class B. The initial phase in designing a class-based storage system is determining
the shape of class A. In Figure 4.1, the travel distance required for each load in the grid
to reach the I/O point is depicted. The travel distance is represented by a color gradient
ranging from blue to red, where the distance increases progressively.

42 4| Analytical model with class-based storage policy

Figure 4.1: Travel distance for each load in the grid

The shape of class A is defined in order to minimize the travel distance for the loads.
This work examines two potential shapes: a square shape and a triangular shape. These
shapes are illustrated and highlighted in Figure 4.2.

(a) Class A with a square shape (b) Class A with a triangular shape

Figure 4.2: Possible shapes for class A

4.2. Average travel distance, cycle time and through-

put

Given the implementation of the random storage policy within each class, the formulas
presented in Chapter 3 can be directly applied to each individual class. Consequently,
the estimation of the average travel distance and average cycle time for the overall grid

4| Analytical model with class-based storage policy 43

becomes feasible by calculating a weighted average based on the results obtained for each
class.
The weights in this weighted average are determined by the picking frequency associated
with each class. These picking frequencies are derived by examining the ABC curves, as
previously discussed in Section 1.4.

d = pA × dA + pB × dB (4.1)

t = pA × tA + pB × tB (4.2)

where pB can be easily computed as 1− pA.
The throughput of the grid can be computed using the same methodology as previously
demonstrated.

τ =
3600 s

t
(4.3)

44 4| Analytical model with class-based storage policy

4.3. Class A with square shape

4.3.1. Class A for a square grid

Formula 3.2, which applies to a generic square grid, can be utilized to determine the
capacity of the class A square sub-grid. By applying this formula, the capacity of the
class A sub-grid can be expressed as a2 − 3a+ 2.
Assuming that lA represents the proportion of total loads dedicated to class A items in
the grid, it is possible to determine the length of the side of the class A sub-grid. This
can be achieved by solving the equation a2 − 3a + 2 = lA(m

2 − 3m + 2) with respect
to a, where m represents the total number of loads. Once the solution is obtained, it is
important to round up the result to ensure an integer number of loads.

a (m,m) =

⌈
3 +

√
9− 4× (2− lA ∗ (m2 − 3m+ 2))

2

⌉
(4.4)

In Figure 4.3, the shape of class A within a square grid is depicted and highlighted. It
illustrates how class A occupies a specific portion of the grid, while the remaining area is
dedicated to class B items.

Figure 4.3: Class A with square shape in a square grid

4| Analytical model with class-based storage policy 45

4.3.2. Class A for a rectangular grid

Initially, class A is assumed to have a square shape, similar to the previous case. By
examining formula 3.5 for the capacity of a rectangular grid and employing a similar
approach, it becomes possible to determine the length of the side for the class A sub-grid.
This can be achieved by solving the equation a2 − 3a + 2 = lA(m − 1)(n − 2), where m

and n represent the dimensions of the rectangular grid. Following the same procedure,
the solution is rounded up to ensure an integer number of loads.

a (m,n) =

⌈
3 +

√
9− 4× [2− lA ∗ (m− 1)(n− 2)]

2

⌉
(4.5)

Based on the obtained result, it is important to differentiate between the following sce-
narios:

• If a ≤ m, the class A is a square sub-grid with dimension a× a

• If a > m, class A is composed of a square sub-grid of dimension m × m, plus an
additional area of dimensions bl × bh

Figure 4.4 shows the possible shapes of class A in a rectangular grid.

46 4| Analytical model with class-based storage policy

(a) a ≤ m

(b) a > m

Figure 4.4: Class A with square shape in a rectangular grid

4| Analytical model with class-based storage policy 47

Average travel distance and cycle time for a ≤ m

Since Class A is a square sub-grid with dimensions a×a, the formulas previously presented
for a generic square grid can indeed be applied to estimate its capacity, density, and the
value of β.

cA = a2 − 3a+ 2 (4.6)

ρA =
a2 − 3a+ 2

a2
(4.7)

βA =
a2 − 5a+ 6

a2 − 3a+ 2
(4.8)

As previously described, the average travel distance within Class A can be estimated
by summing the travel distance for each cell within this area that stores a load, and
then dividing it by the capacity of Class A. Specifically, formula 3.8 can be used for this
purpose, with adjustments made to account for the specific capacity and dimensions of
the Class A sub-grid.

dA =
1

cA

(
a−1∑
i=0

a−1∑
j=0

d (i, j)−
a−1∑
i=0

d (i, i)− 2
a−1∑
i=1

d (i, (i− 1))

)
u (4.9)

The average travel distance for class B can be devised as:

dB =
dA × cA + dgrid × cgrid

cB
(4.10)

where dgrid differs depending on the shape of the overall grid and it is computed using
either formula 3.8 or 3.9.

The shape of class B becomes relevant in estimating the value of β and computing the
average cycle time. In the case of a rectangular grid where a = m, the shape of class B is
straightforward. It corresponds to the rectangular sub-grid with dimensions m× (m−n),
and the number of loads requiring a rectilinear aisle to be opened can be calculated as
m(n−m)− (n−m), as previously estimated.
However, in all other cases where a ̸= m, the shape of class B is more complex. Therefore,
the value of βB is estimated indirectly by using the grid and class A as reference points.
Specifically, the number of loads in class B that require an additional step is computed by
subtracting the number of loads in class A requiring this additional move from the total

48 4| Analytical model with class-based storage policy

number of loads requiring it in the grid. Similarly, the capacity of class B is obtained as
the difference between the overall grid capacity and the capacity of class A.
In the specific case of a square grid, the final result is:

βB =
m2 − 5m+ 6− (a2 − 5a+ 6)

m2 − 3m+ 2− (a2 − 3a+ 2)
(4.11)

The one for a rectangular grid is:

βB =
mn− 4m− n+ 6− (a2 − 5a+ 6)

(m− 1)(n− 2)− (a2 − 3a+ 2)
(4.12)

Finally, the average cycle time for each class is computed using the formula 3.10.

Average travel distance and cycle time for a > m

From the right image in Figure 4.4, it is evident that when a > m, class A takes on
a rectangular shape comprising both a square sub-grid with dimensions m × m and a
rectangular sub-grid with dimensions bl × bh.
The total number of loads within class A is intended to be lA(m−1)(n−2). The capacity
of the square sub-grid is m2−3m+2. Thus, the rectangular sub-grid should accommodate
a number of loads equal to lA(m− 1)(n− 2)− (m2− 3m+2). Consequently, the length of
this rectangular sub-grid can be determined by solving the equation lA(m − 1)(n − 2) −
(m2 − 3m+ 2) = bl × bh, taking into account that bh = m− 1.

bl =

⌈
lA(m− 1)(n− 2)− (m2 − 3m+ 2)

m− 1

⌉
(4.13)

The capacity and density for class A in this case are:

cA = m2 − 3m+ 2 + (bl × (m− 1)) (4.14)

ρA =
m2 − 3m+ 2 + (bl × (m− 1))

m× (m+ bl)
(4.15)

The assumption already made about the number of loads in a rectangular sub-grid re-
quiring the rectilinear aisle to be opened is still valid. Consequently, the value of β for
class A is computed as:

βA =
m2 − 5a+ 6 + (bl × (m− 1))

m2 − 3m+ 2 + (bl × (m− 1))
(4.16)

4| Analytical model with class-based storage policy 49

The average travel distance within this class could be easily devised starting from formula
3.9 and adjusting the capacity and the length of the grid:

dA =
1

cA

(m−1∑
i=0

(m+bl)−1∑
j=0

d (i, j)−
m−1∑
i=0

d (i, i) −

− 2
m−1∑
i=1

d (i, (i− 1))−
(m+bl)−1∑

i=m

d (i,m− 1)

)
u

(4.17)

Again, the average travel distance for class B is obtained as in 4.10 and the value of βB is
1 since all the loads stored in this class required a rectilinear aisle to move through, under
the assumption made previously. Finally, formula 3.10 is used to estimate the average
cycle time within each class.

50 4| Analytical model with class-based storage policy

4.4. Class A with triangular shape

4.4.1. Class A for a square grid

(a) k ≤ m

(b) k > m

Figure 4.5: Class A with triangular shape in a square grid

4| Analytical model with class-based storage policy 51

Average travel distance and cycle time for k ≤ m

Class A is a sub-grid with an isosceles right triangle shape and the length of the sides is
equal to k. An example of this configuration is shown in Figure 4.5 a. To manage this
case, it is necessary to introduce specific formulas, which are different depending on the
fact that k is odd or even.
When k is odd, the capacity of class A is estimated as:

cA = 2

k−1
2

−1∑
i=1

2i (4.18)

When k is even, instead, the capacity is equal to:

cA = 2

k
2
−1∑

i=1

2i− 1 (4.19)

These equations can be used within an iterative process aimed at finding the minimum
value of k allowing the class A to store lA of the total number of loads in the grid. This
iterative process can be described in the following way:

1. Set k = 4, which is the minimum value in order to have loads in the sub-grid;

2. Compute the capacity associated with the current value of k, using the formulas
already presented;

3. Compute the number of loads that should be stored in class A as lA(m
2 − 3m+ 2)

4. If the actual capacity is higher or equal to the minimum capacity required for class
A, the actual value of k is the optimal one and the process ends. If this is not the
case, increase by 1 the value of k and iterate the process from 2.

If a solution is not found with this iterative process, it means that a larger class A shape
is required. See the case of k > m explained in the next paragraph.

Once identified the value of k and the respective capacity for class A, it is possible to
proceed to compute the total number of cells (NA), both storing loads and empty, within
this area:

NA =
k−1∑
i=1

i (4.20)

Then the density can be easily computed as the ratio between the capacity and the total

52 4| Analytical model with class-based storage policy

number of cells in the sub-grid.

ρA =
cA
NA

(4.21)

Finally, the last parameter to be estimated is β and its computation differs in the case
of k odd or even. In general, it is found by subtracting from the number of loads stored
in class A, the ones close to the diagonal, which do not require the rectilinear aisle to be
opened. This value is then subdivided by the class A capacity.
When k is odd, it can be computed in the following way:

βA =
cA − 2

(
k−1
2

− 1
)

cA
(4.22)

When k is even, the formula is slightly different

βA =
cA − 2

(
k
2
− 1
)

cA
(4.23)

For computing the average travel distance within class A, the limits of the summation
terms in Formula are adjusted and the result for k odd is given by:

dA =
1

cA

(k−2∑
i=0

k−2−i∑
j=0

d (i, j)−
k−1
2

−1∑
i=0

d (i, i) − 2

k−1
2∑

i=1

d (i, (i− 1))

)
u (4.24)

In the case of k even, the average travel distance can be estimated as:

dA =
1

cA

(k−2∑
i=0

k−2−i∑
j=0

d (i, j)−
k
2
−1∑

i=0

d (i, i) − 2

k
2
−1∑

i=1

d (i, (i− 1))

)
u (4.25)

Similarly to what has been already explained in the previous chapter, the formulas for
class B are retrieved as a difference with respect to the overall grid, and formulas 4.2 and
4.3 can be used to measure the average cycle time and the throughput.
The estimation of the value of β for class B is slightly more complex than that of the other
parameters. It is computed starting from the total capacity of class B and subtracting
the difference between the total number of loads close to the diagonal (m − 2) and the
number of loads close to the diagonal and belonging to class A. In formulas, when k is
odd:

βB =
cB − 2

(
m− 2−

(
k−1
2

− 1
))

cB
(4.26)

4| Analytical model with class-based storage policy 53

When k is even:

βB =
cB − 2

(
m− 2−

(
k
2
− 1
))

cB
(4.27)

Average travel distance and cycle time for k > m

Figure 4.5 b shows the shape of the class A sub-grid in the case of k > m. The shape is
no more triangular but pentagonal. With a similar procedure as the one used to find k,
it is possible to find the length of l, which is the only unknown dimension.
With the aim of facilitating the analysis of this case, the class A sub-grid is subdivided
into 2 smaller areas, as shown in Figure 4.6.

Figure 4.6: Subdivision of class A for k > m

Thanks to this subdivision, it is possible to implement for Y the formulas already pre-
sented for the case k ≤ m, by adjusting the value of k, which coincides with m− l.
Retrieving formulas for X is also intuitive. The capacity for this area is simply given by:

cX = 2
l−1∑
i=0

(m− 2− i) (4.28)

Therefore, the total capacity of class A is obtained as the sum of the capacity of X and

54 4| Analytical model with class-based storage policy

the capacity of Y . The result when m− l is odd is equal to:

cA = 2
l−1∑
i=0

(m− 2− i) + 2

m−l−1
2

−1∑
i=1

2i (4.29)

In the case of m− l even, it is given by:

cA = 2
l−1∑
i=0

(m− 2− i) + 2

m−l
2

−1∑
i=1

2i− 1 (4.30)

The same procedure explained in the previous paragraph is applied with the aim of finding
the minimum value of l in order to have the number of loads required in class A. The only
difference is that the starting value for l is equal to 1. Once identified the optimal value,
the associated value of the capacity is used to continue with the analysis.
The total number of cells in the area dedicated to class A is:

NA = ml + (m− l) l +
m−l−1∑
i=1

i (4.31)

The equations for the density are not reported but they are simply obtained by dividing
the capacity by the total number of cells.
The estimation of the value of β is slightly more complex, thus it is again better to look
at the subareas separately. To facilitate understanding, the variable λ is introduced and
it measures the number of loads requiring the additional step. This value is computed for
both subareas. Note that the value for Y is again different depending on whether m − l

is odd or even.

λX = 2
l−1∑
i=0

(m− 3− i) (4.32)

λY = 2

(m−l−1
2

−1∑
i=1

2i

)
− 2

(m− l − 1

2
− 1
)

(4.33)

If m− l is odd, otherwise:

λY = 2

(m−l
2

−1∑
i=1

2i− 1

)
− 2

(m− l

2
− 1
)

(4.34)

Starting from these results, it is easier to compute β. It is sufficient to sum these values

4| Analytical model with class-based storage policy 55

and divide the result by the total capacity of class A.

βA =
λX + λY

cA
(4.35)

The subdivision of the sub-grid is taken into account also for the computation of the
average travel distance. Referring to formulas 4.24 and 4.25, it is easy to compute the
total travel distance within area Y. It is computed in the following ways, respectively for
m− l odd and even:

dY =

(m−2∑
i=l

m−2−(i−l)∑
j=l

d (i, j)−
l+m−l−1

2
−1∑

i=l

d (i, i) − 2

l+m−l−1
2∑

i=l+1

d (i, (i− 1))

)
u (4.36)

dY =

(m−2∑
i=l

m−2−(i−l)∑
j=l

d (i, j)−
l+m−l

2
−1∑

i=l

d (i, i) − 2

l+m−l
2

−1∑
i=l+1

d (i, (i− 1))

)
u (4.37)

The total travel distance in X is easily computed as:

dX =

(
2

l−1∑
i=0

m−1∑
j=2+i

d (i, j)

)
u (4.38)

The average travel distance can be obtained as:

dA =
dY + dX

cA
(4.39)

Finally, the shape of class B is the same as the one of class A in the case k ≤ m. Therefore,
for the estimation of the value of β for class B, it is sufficient to use the formula and adjust
k with m− l + 1 and differentiate depending on whether m− l + 1 is odd or even.
For both cases, the average cycle time and throughput for each area can be estimated
once again by applying formulas 3.10 and 3.11. Then, the final results can be obtained
by referring to formulas 4.2 and 4.3.

56 4| Analytical model with class-based storage policy

4.4.2. Class A for a rectangular grid

The possible configurations for class A in a rectangular grid vary depending on the shape
ratio of the grid. However, if we assume that the area dedicated to class A is significantly
smaller than the overall grid (between 10% and 35%), as is commonly designed in practice,
the possible configurations can be summarized in the cases shown in Figure 4.7.

(a) k ≤ m

(b) k > m

Figure 4.7: Class A with triangular shape in a rectangular grid

4| Analytical model with class-based storage policy 57

Average travel distance and cycle time for k ≤ m

As in the same case already presented for a square grid, class A is a sub-grid with an
isosceles right triangle shape and the length of the sides is equal to k. For this reason,
the estimation of all the parameters related to class A can be obtained using the same
formulas.
Notice that, to find the minimum value of k that allows having the required number of
loads in class A, it is necessary to change the number of loads required to lA(m−1)(n−2).
Different considerations can be done for class B, whose shape is totally different from the
previous case. However, the capacity and the average travel distance for this class can be
retrieved taking into account the overall grid and the class A sub-grid once again.
The only parameter remaining to be estimated is β. Again, for simplicity class B is
subdivided. For the rectangular sub-grid, it is assumed that all the loads require the
rectilinear aisle to be opened and the capacity of this area is m(n − m). The number
of loads requiring the additional step in the other area can be computed starting from
equations 4.33 and 4.34 and adjusting the value of l, which in our case is m− k.
Overall, the value of β for class B can be estimated as:

βB =

m(n−m) + 2

(∑m−(m−k)−1
2

−1

i=1 (2i)− 2
(

m−(m−k)−1
2

− 1
))

cB
(4.40)

when m-k is odd, otherwise as:

βB =

m(n−m) + 2

(∑m−l
2

−1

i=1 (2i− 1)− 2
(

m−l
2

− 1
))

cB
(4.41)

58 4| Analytical model with class-based storage policy

Average travel distance and cycle time for k > m

In this configuration, class B has the shape of a trapezoid whose base is equal to k and
height equal to m.
The results for class A are obtained by extending its area in order to have a triangle with
both sides equal to k, and then subtracting the area that is not included in the original
shape. This idea is shown in Figure 4.8.

Figure 4.8: Subdivision of class A for k > m

Following this approach, it is possible to estimate the parameters starting from the for-
mulas presented for the case k ≤ m in a square grid. The main issue consists in adjusting
them to remove the additional loads that have been introduced.
When k is odd, the capacity can be estimated as:

cA = 2

k−1
2

−1∑
i=1

(2i)−
k−m−1∑
i=1

i (4.42)

4| Analytical model with class-based storage policy 59

When k is even, instead, the capacity is equal to:

cA = 2

k
2
−1∑

i=1

(2i− 1)−
k−m−1∑
i=1

i (4.43)

These formulas are used to find the actual class A dimension and its capacity, following
always the same procedure.
Similarly, for the total number of cells (NA) within class A:

NA =
k−1∑
i=1

i−
k−m−1∑
i=1

i (4.44)

For the average travel distance, again, it is sufficient to refer to the formulas for a square
grid and k ≤ m and adjust them by removing the distance traveled by the additional
loads.
When k is odd, the average travel distance within class A is:

dA =
1

cA

(k−2∑
i=0

k−2−i∑
j=0

d (i, j)−
k−1
2

−1∑
i=0

d (i, i) − 2

k−1
2∑

i=1

d (i, (i− 1))−
k−m−2∑
j=0

k−j−2∑
i=m

d (i, j)

)
u

(4.45)

In the case of k even, the average travel distance can be estimated as:

dA =
1

cA

(k−2∑
i=0

k−2−i∑
j=0

d (i, j)−
k
2
−1∑

i=0

d (i, i) − 2

k
2
−1∑

i=1

d (i, (i− 1))−
k−m−2∑
j=0

k−j−2∑
i=m

d (i, j)

)
u

(4.46)

The estimation of the value of β for this class is straightforward. The results for k odd
and even are respectively:

βA =
cA − 2

(
k−1
2

− 1
)

cA
(4.47)

βA =
cA − 2

(
k
2
− 1
)

cA
(4.48)

This parameter must be estimated also for class B and for this purpose the rectangular
sub-grid is again subdivided. Because of our assumption, the number of loads requiring
the rectilinear aisle to be open in the rectangular area is equal to the total number of
loads in this area, but then the ones belonging to class A must be subtracted. As regards

60 4| Analytical model with class-based storage policy

the other area, formulas 4.22 and 4.23 can be taken as reference, where k in our case is
equal to m− (k −m) + 1.
From this considerations, the value of β for class B can be devised differently depending
on whether m− (k −m) + 1 is odd or even respectively:

βB =
2
∑m−(k−m)

2
−1

i=1 (2i) − 2
(m−(k−m)

2
− 1
)
+
(
(m− 1)(n−m)−

∑k−m−1
i=1 i

)
cB

(4.49)

βB =
2
∑m−(k−m)+1

2
−1

i=1 (2i− 1) − 2
(m−(k−m)+1

2
− 1
)
+
(
(m− 1)(n−m)−

∑k−m−1
i=1 i

)
cB

(4.50)

Finally, the cycle time and the throughput for each class can be easily computed, followed
by the overall performance of these configurations.

61

5| Design procedure

In this section, we will try to define a design procedure. Several input parameters are
included in the analysis with the aim to find the optimal configuration for different sce-
narios. The optimal solution is defined as the configuration allowing to maximize the
throughput, which coincides with the one allowing to minimize the average cycle time.
The first input parameter analyzed is the percentage of racks dedicated to class A items
(lA). It is a function of the ABC curve and it has a direct consequence on the probability
that a requested load belongs to class A, as already explained in section 1.4.
The analysis focuses on the ABC curves 60/20, 70/20, 80/20 and 90/20. For each of these
possible values, the optimal percentage of racks dedicated to class A (lA∗), which is the
one allowing to minimize the average cycle time, depends on the shape ratio of the grid.
The shape ratio is another input parameter for the design procedure and it is defined as
the ratio between the dimension of the sides of the overall grid:

sr =
n

m
(5.1)

The relationship between the optimal value of lA and the shape ratio of the grid can
be analyzed for each ABC curve. These relationships have been derived starting from
finding the optimal value of lA for various grid capacity values, including 4900m2, 6400m2,
8100m2, 10000m2, and 121000m2.
Figures 5.1 depict the linear regressions fitted to the results obtained using each ABC
curve. Each of these regression lines can be represented respectively through the following
equations:

60/20 : lA
∗ = 0.185 + 0.040 sr (5.2)

70/20 : lA
∗ = 0.156 + 0.030 sr (5.3)

80/20 : lA
∗ = 0.122 + 0.021 sr (5.4)

90/20 : lA
∗ = 0.084 + 0.012 sr (5.5)

62 5| Design procedure

Figure 5.1: Optimal lA vs shape ratio with different ABC curves and square shape

In the analysis, the shape ratio values considered are 1, 2, 3, and 4. These values are used
to compute the corresponding optimal percentages of racks dedicated to class A items
using the equations mentioned above. Tables 5.1-5.4 present the optimal l∗A values, along
with the associated probabilities that a requested load belongs to the class A area, for the
different ABC curves.

5| Design procedure 63

Shape ratio

1 2 3 4

lA∗ 23% 27% 31% 35%

pA∗ 64% 69% 73% 76%

Table 5.1: Optimal lA∗ and relative pA∗ with ABC curve 60/20

Shape ratio

1 2 3 4

lA∗ 19% 22% 25% 28%

pA∗ 69% 73% 76% 78%

Table 5.2: Optimal lA∗ and relative pA∗ with ABC curve 70/20

Shape ratio

1 2 3 4

lA∗ 14% 16% 19% 21%

pA∗ 72% 75% 79% 81%

Table 5.3: Optimal lA∗ and relative pA∗ with ABC curve 80/20

Shape ratio

1 2 3 4

lA∗ 10% 11% 12% 13%

pA∗ 80% 82% 83% 84%

Table 5.4: Optimal lA∗ and relative pA∗ with ABC curve 90/20

The same procedure can be applied when considering a triangular shape for class A.
Similar results can be obtained, and regression lines can be fitted to represent the rela-
tionship between the optimal values and the shape ratios for the different ABC curves.

64 5| Design procedure

The following equations represent the regression lines fitted on the results:

60/20 : lA
∗ = 0.186 + 0.041 sr (5.6)

70/20 : lA
∗ = 0.156 + 0.030 sr (5.7)

80/20 : lA
∗ = 0.123 + 0.021 sr (5.8)

90/20 : lA
∗ = 0.083 + 0.013 sr (5.9)

Figure 5.2 shows the respective regression lines. The optimal values of lA estimated
through the equations are the same already obtained with a class A with a square shape.

5| Design procedure 65

Figure 5.2: Optimal lA vs shape ratio with different ABC curves and triangular shape

66 5| Design procedure

In Figure 5.3 the regression lines are combined in the same plot, respectively considering
a class A with a square shape and a class A with a triangular shape.

Figure 5.3: Optimal relationship between lA and shape ratio vs ABC curve with different
class A shapes

A statistical analysis can be conducted to examine the effect of the various parameters on
the optimal dimension of class A. Data from different ABC curves, grid sizes, and class
A shapes have been combined for this analysis.
Table 5.5 presents the statistical significance of the parameters. It is observed that the
grid size, along with the shape of class A, does not have a significant effect on determining
the optimal value of lA (indicated by large p-values). However, the shape ratio does have
a statistically significant positive effect. This means that as the shape ratio increases, the
optimal value of lA slightly increases as well. More specifically, a unitary increase in the
shape ratio leads to a 2.6 percentage point increase in the optimal value of lA.
Additionally, the effect of the ABC curve is found to be statistically significant. Moving
from an ABC curve with a ratio of 60/20 to an ABC curve with a ratio of 90/20 results
in a reduction of the optimal value of lA.

5| Design procedure 67

Parameter Coefficient
Standard
deviation

t-statistic p-value

Intercept 0.2201 0.0032 69.8650 0.0000 *

Shape ratio 0.0260 0.0007 38.5710 0.0000 *

Grid size 0.0000 0.0000 0.455 0.6490

Triangular shape 0.0006 0.0014 0.423 0.673

ABC 70/20 -0.0547 0.0019 -28.7130 0.0000 *

ABC 80/20 -0.1107 0.0019 -58.0490 0.0000 *

ABC 90/20 -0.1723 0.0019 -90.371 0.0000 *

Table 5.5: Statistical significance of input parameters

Under the assumption that the shape ratio of the area dedicated to load storage can be
chosen, it is important to determine the optimal value of the shape ratio that maximizes
the system’s performance in terms of average cycle time and density.
Considering grids of different sizes, the results in terms of average cycle time are presented
in Figure 5.4. Each plot corresponds to a specific scenario, which is determined by the
combination of a particular ABC curve and either a square or triangular shape for class
A. It is observed that a square grid (shape ratio equal to 1) consistently yields the best
performance across all scenarios.

68 5| Design procedure

Figure 5.4: Average cycle time for different shape ratios

5| Design procedure 69

When considering the density of the grid, the class-based storage policy does not have an
impact on the system’s performance. The only parameter to be taken into consideration
is the shape ratio of the grid. Figure 5.5 illustrates that the layout maximizing the density
is characterized by a shape ratio of 2.
It is important to note that the curve for a shape ratio of 1 (a square grid) is not visualized
because it yields the same density performance as a shape ratio of 4.
This finding suggests a trade-off between density and throughput. A shape ratio of 2
provides the highest density, indicating a more efficient utilization of the available storage
space. However, it may come at the expense of slightly lower throughput.

Figure 5.5: Density for different shape ratios

The shape of class A is the final input in the design procedure. The difference in terms of
average cycle time between a square shape and a triangular shape is so small (less than 1
second) that it cannot be visualized effectively. However, the effect of the class A shape
on the average cycle time has been analyzed by considering various grid dimensions for
each possible system configuration. The findings, including the percentage of cases where
the triangular shape results to be better and the average reduction in cycle time, are
summarized in Table 5.6.

70 5| Design procedure

Scenario % Cases Average reduction (s)

sr = 1, COI 60/20 64% - 0.234

sr = 1, COI 70/20 60% - 0.242

sr = 1, COI 80/20 63% - 0.257

sr = 1, COI 90/20 65% - 0.251

sr = 2, COI 60/20 73% - 0.284

sr = 2, COI 70/20 60% - 0.233

sr = 2, COI 80/20 54% - 0.229

sr = 2, COI 90/20 63% - 0.286

sr = 3, COI 60/20 80% - 0.368

sr = 3, COI 70/20 95% - 0.525

sr = 3, COI 80/20 75% - 0.308

sr = 3, COI 90/20 68% - 0.314

sr = 4, COI 60/20 2% - 0.016

sr = 4, COI 70/20 2% - 0.102

sr = 4, COI 80/20 94% - 0.448

sr = 4, COI 90/20 61% - 0.279

Table 5.6: Triangular shape vs. Square shape performance

The lower average cycle time observed with a triangular shape can be attributed to its
ability to accommodate a class A capacity that is closer to the required capacity. When
defining the dimension of class A based on the optimal percentage of racks to be dedicated
to this area, the result is rounded up to ensure that the actual capacity is at least equal
to the required capacity.
When comparing the effects of increasing the class A dimension by one unit, it is evident
that the increase in capacity is almost twice as significant for a square shape compared
to a triangular shape. This discrepancy in capacity increase contributes to slightly higher
cycle times and lower throughput in systems employing a class A with square shape.
It is important to note that designing a class A with a square shape is generally more
straightforward and requires less effort compared to a triangular shape. This considera-
tion becomes particularly relevant when making a choice between the two shapes, as it

5| Design procedure 71

presents a trade-off between design precision and design complexity. The square shape
offers simplicity and ease of implementation, while the triangular shape provides a closer
match to the required capacity, resulting in slightly improved performance in terms of
average cycle time.

To summarize the main insights from the analysis for designing the system under a class-
based storage policy:

• The implementation of the class-based storage policy does not affect the system’s
density performance. The density is only determined by the shape ratio.

• When allocating a storage area, choosing a shape ratio of 1 or 2 is generally rec-
ommended. A shape ratio of 1 prioritizes high throughput, while a shape ratio of 2
maximizes density.

• The optimal percentage of storage racks dedicated to class A items depends on the
shape ratio and ABC curve, while the shape of class A itself does not significantly
impact the optimal value.

• Designing a class A with a triangular shape can lead to slight improvements in
average cycle time compared to a square shape. However, this improvement is not
statistically significant, and other factors such as operational preferences, ease of
implementation, and system compatibility should be considered when deciding on
the class A shape.

73

6| Random vs. Class-based

In order to assess the effectiveness of different storage policies, a comparison is conducted
between the optimal system configurations with a class-based storage policy and the con-
figuration with a random storage policy.

The case of the random storage policy consists in setting a percentage of racks dedi-
cated for class A items (lA) equal to 100%. Consequently, the associated probability of a
requested load belonging to class A (pA) is also 100%.
To analyze the effect of the storage policies, a triangular shape is adopted, leading to
slight improvements in terms of average cycle time for the class-based storage policy.

This comparison is made considering all possible configurations in terms of shape ra-
tio and ABC curve. By considering various grid sizes, the results are shown in Figure 6.1,
where each subfigure takes into account a specific value of the shape ratio.
The graph clearly demonstrated that system configurations employing the class-based
storage policy consistently outperformed the random storage configuration, regardless of
the specific ABC curve characterizing the items or the shape ratio of the grid.

74 6| Random vs. Class-based

Figure 6.1: Class-based storage vs random storage policy

To provide more precise insights, Table 6.1 summarizes the reduction in average cycle
time achieved by adopting the class-based storage policy compared to the random storage
policy across different configurations.

6| Random vs. Class-based 75

Scenario Average reduction

sr = 1, ABC 60/20 - 37.70%

sr = 1, ABC 70/20 - 52.53%

sr = 1, ABC 80/20 - 71.70%

sr = 1, ABC 90/20 - 111.17%

sr = 2, ABC 60/20 - 43.19%

sr = 2, ABC 70/20 - 59.34%

sr = 2, ABC 80/20 - 79.78%

sr = 2, ABC 90/20 - 123.83%

sr = 3, ABC 60/20 - 50.39%

sr = 3, ABC 70/20 - 68.28%

sr = 3, ABC 80/20 - 91.91%

sr = 3, ABC 90/20 - 137.35%

sr = 4, ABC 60/20 - 54.04%

sr = 4, ABC 70/20 - 73.84%

sr = 4, ABC 80/20 - 102.56%

sr = 4, ABC 90/20 - 150.12%

Table 6.1: Reduction average cycle time in class-based storage policy

Based on the findings, it is evident that the adoption of a class-based storage policy leads
to greater benefits in terms of reducing the average cycle time as both the ABC curve
and shape ratio increase.

It is important to acknowledge that, based on the assumptions made in this study, the
choice of the storage policy does not have any impact on the overall system density.
However, research conducted by Yugang Y. and De Koster (2010) has shown that in sit-
uations involving an infinite number of items, the required storage space in a class-based
storage system is not equal to the average inventory levels. In fact, it is higher due to the
fixed dedicated space for each class and the limited opportunity to share available space.
Consequently, opting for a class-based storage policy results in lower density performance
compared to a randomized allocation.

76 6| Random vs. Class-based

For future advancements, it is recommended to estimate the reduction and evaluate the
trade-off between throughput and density.

77

7| Comparison with literature

In this section, the improvements achievable with the implementation of the new con-
figuration are presented with respect to the systems analyzed in the literature. These
improvements are evaluated in terms of both density and average cycle time.

Density

As already mentioned, the performance of the system in terms of density does not change
whether a class-based storage policy or a random storage policy is implemented. This is
true only under the underlying assumptions of this research.

The most comparable system in the mentioned literature is the virtual aisle configu-
rations investigated by Yalcin et al. (2019b). They achieved densities between 0.89 and
0.94 with a capacity of the system equal on average to 1800 loads.
Considering the same capacity, the new configuration allows for densities respectively of
0.933, 0.936, 0.934 and 0.933 depending on the shape ratio of the grid. Therefore, the
results are very similar.

The only configuration present in the literature outperforming the new proposed sys-
tem in terms of density is the one investigated by Yalcin et al. (2019b) when the virtual
aisle strategy is not adopted. The density achieved is equal to 0.99, but the system has
very low performance in terms of throughput because simultaneous movements are not
allowed.
Compared to RMF systems, our proposed configuration can store a similar number of
loads at almost half the area. The multi-deep RMF system configuration by P. Yang et
al. (2021) achieves a density of 0.5.

78 7| Comparison with literature

Average cycle time

The virtual aisle configurations of Yalcin et al. (2019b) that they considered optimal
achieve an average cycle time of 18.5 seconds. However, the configurations are not di-
rectly comparable as Yalcin et al. assume that loads can move with a speed of 2m/s,
where we have assumed 1m/s, and their configuration has shape ratios equal to sr = 6

and sr = 9. Moreover, they considered 6 and 7 separate I/O locations distributed along
the longest side.

Other configurations with a grid size of 2130m2 that they discard because of too poor
performance have 3 and 4 I/O locations and a shape ratio equal to 1. These configurations
result in average retrieval times respectively of 58 seconds and 63 seconds.
These results are still not directly comparable with the finding of this work because of
the multiple I/O locations, allowing a reduction of the average travel distance.

With the aim to compare the results, it has been assumed that it is possible to model
a square grid with multiple I/O locations simply by combining several smaller grids, re-
ferred to as instances, each one served by an I/O point.
When a number of I/O locations equal to 3 is taken into account the grid can be modeled
combining 3 rectangular instances with sr = 3 and a length of the shortest dimension
that is equal to 1/3 of the original one. When a number of I/O locations equal to 4 is
considered, the grid can be modeled by combining 4 square instances with lengths of both
dimensions equal to 1/2 of the original one. Considering a general grid with dimension
mxm, Figure 7.1 shows the subdivision in the case of 3 I/O points, while the case with 4
I/O points is illustrated in Figure 7.2.

7| Comparison with literature 79

Figure 7.1: Subdivision of the grid with 3 I/O locations

80 7| Comparison with literature

Figure 7.2: Subdivision of the grid with 4 I/O locations

Since loads are retrieved from all the sub-grids simultaneously, the performance of the
overall grid in terms of average retrieval time coincides with the average cycle time of a
smaller grid.

When the random storage policy is implemented the new configuration enables an av-
erage retrieval time of about 26.891 seconds and 19.004 seconds with respectively 3 and
4 I/O locations. The second result is very close to the one obtained by them with the
configurations they considered optimal.
When the class-based is adopted as a storage policy in the new system configuration, it is
possible to achieve average retrieval times far shorter, whatever ABC curve characterizes
the stored items. The results are shown in Table 7.1.

7| Comparison with literature 81

I/O points ABC curve Average cycle time (s)

3 60/20 18.552

3 70/20 16.636

3 80/20 15.201

3 90/20 12.776

4 60/20 14.286

4 70/20 12.998

4 80/20 11.925

4 90/20 10.179

Table 7.1: Average cycle time with 3 and 4 I/O locations

83

8| Conclusions and future

developments

In this chapter, Section 8.1 provides a summary of the primary findings obtained. Section
8.2 addresses the limitations associated with the assumptions made for the purpose of
this analysis, while Section 8.3 outline the potential future developments.

8.1. Conclusions

This work focuses on a new system configuration that has the potential to revolutionize
e-commerce operations. The system leverages a new technology for material handling,
the autonomous wheels recently developed by the company Wheel.me. By combining
elements from Puzzle-based systems (PBS) and Robotic mobile fulfillment (RMF) sys-
tems, along with diagonal movements, this configuration shows significant improvements
in terms of retrieval time, without significant reduction in density.

The previous research has demonstrated promising results. The devised movement pol-
icy and virtual aisle strategy ensure uninterrupted retrieval of loads within the system.
Moreover, the utilization of the fishbone route significantly enhances system performance
compared to traditional aisle configurations.
To further optimize performance, a class-based storage policy has been implemented. This
approach does not impact the high-density achievable while simultaneously reducing cy-
cle times. The most significant improvements in average cycle times deriving from the
adoption of this storage policy are achieved when the SKUs are characterized by an ABC
curve of 90/20.
Regardless of the ABC curve, the system’s best performance in terms of throughput is
obtained by designing a square storage area and dedicating a percentage of storage racks
to class A items ranging between 10% and 23%.

Overall, the new system demonstrates significant improvements. However, it is essen-

84 8| Conclusions and future developments

tial to acknowledge certain limitations, which emphasize the need for further research to
fully explore its potential.

8.2. Limitations

The proposed approach in this work has certain limitations and should be viewed as a
starting point for future research, rather than a ready-to-implement solution.

• The first limitation is the position of the I/O location, which is considered fixed for
the purpose of this analysis. Moreover, the presence of a single I/O point restricts
the system from retrieving more loads at the same time. As already mentioned,
to overcome this limitation, additional I/O locations could be introduced and the
system could be modeled as a combination of multiple instances. The definition of
the optimal combination is to be addressed.

• The proposed movement policy should be seen as a feature of the grid configuration
rather than an optimized algorithm. It does not aim to minimize cycle time, travel
distance, or load movement. Instead, it demonstrates the potential performance
gains of less constrained movement.

• Another limitation comes from the assumption that the required storage space is
equal to the average inventory level. In reality, when dealing with a finite number of
items, the necessary storage space in a class-based storage system would be higher
due to the fixed dedicated space for each class and the lower possibility to share the
available space (Yugang Y. and De Koster (2010)).

• Finally, it is worth noting that no physical dynamic moveable rack system with
autonomous wheels has been implemented yet, as autonomous wheels are a relatively
new technology, while RMF systems and some PBS systems with conveyor belts have
been used in e-commerce warehousing. This is why further research is needed to
address operational aspects such as designing algorithms for communication between
a large number of self-driving racks with autonomous wheels.

8.3. Possible future developments

This study examines a system configuration characterized by a single I/O point, which
leads to high average travel distances within large grids, resulting in reduced throughput.
To mitigate this issue, the entire grid can be conceptualized as a collection of subgrids,

8| Conclusions and future developments 85

each served by its own dedicated I/O location. This has been already shown in Chapter
7.
However, it is necessary to determine an optimal subdivision of the original grid for each
configuration, taking into account the desired number of additional I/O points.
By identifying the most suitable combination, the performance of the system, which can
be evaluated by summing those of the single instances, can be significantly enhanced.

Other space for future exploration lies in the concept of a dynamic I/O location. In-
stead of a fixed I/O point, the position of the I/O location can be adjusted dynamically
based on the load being retrieved.
This dynamic positioning enables the opening of straight virtual aisles, depending on the
specific location of the I/O point at any given time. By managing the I/O location based
on the load requirements, it becomes possible to optimize retrieval operations and mini-
mize travel distances within the grid.

In the longer term, the research could investigate how diagonal aisles can be opened
at any angle with respect to the I/O location, not only 45°, as modeled in this work.
In this sense, it is required to review the constraints of the movement of the loads in the
grid and the allocation of escorts.

In addition to system configuration optimization, further research efforts could be di-
rected toward refining the operational management of the system. This entails developing
strategies for determining the optimal sequence in which loads are retrieved.
By finding the optimal order so that the next load to be picked up is not moved far but is
located in close proximity to the I/O point, the overall retrieval process can be optimized,
resulting in improved efficiency and reduced travel distances.

87

9| Bibliography

Bhaskar, S. et al. (2020). ‘At the epicenter of COVID-19: the tragic failure of the
global supply chain for medical supplies’. Frontiers in public health 8

Bortolini, M. et al. (2015). ‘Diagonal cross-aisles in unit load warehouses to increase
handling performance’. International Journal of Production Economics 170

Bortolini et al. (2018) ’Class-Based storage warehouse design with diagonal cross-aisle’.
Scientific Journal of Logistics, 14.1

Boysen, N., D. Briskorn and S. Emde (2017). ‘Parts-to-picker based order processing
in a rack-moving mobile robots environment’. European Journal of Operational Research
262.2

Boysen, N., R. De Koster and F. Weidinger (2019). ‘Warehousing in the e-commerce
era: A survey’. European Journal of Operational Research 277.2

Bukchin, Y. and T. Raviv (2020). ‘Optimal retrieval in puzzle-based storage systems
with simultaneous load and block movement’ Transportation Science 57.2

De Koster et al. (2007). ’Design and control of warehouse order picking: A literature
review’ European Journal of Operational Research, 182.2

Garnett, P., B. Doherty and T. Heron (2020). ‘Vulnerability of the United Kingdom’s
food supply chains exposed by COVID-19’. Nature Food 1.6

Gharehgozli, A. and N. Zaerpour (2020). ‘Robot scheduling for pod retrieval in a robotic
mobile fulfillment system’. Transportation Research Part E: Logistics and Transportation
Review 142.

88 9| Bibliography

Graves et al. (1977). ’Note—Deriving the Optimal Boundaries for Class-Based Auto-
matic Storage/Retrieval Systems’. Management Science, 35.12

Gu et al. (2007). ’Research on warehouse operation: A comprehensive review’. Eu-
ropean Journal of Operational Research, 177.1

Gue, K.R. (2006). ‘Very high density storage systems’. IIE Transactions 38.1

Gue, K.R. and B.S. Kim (2007). ‘Puzzle-based storage systems’. Naval Research Lo-
gistics 54.5

Gue, K.R. and R.D. Meller (2009). ‘Aisle configurations for unit-load warehouses’. IIE
transactions 41.3

Gue, K.R., K. Furmans et al. (2014). ‘GridStore: A puzzle-based storage system with
decentralized control’. IEEE Transactions on Automation Science and Engineering 11.2

Guthrie, C., S. Fosso-Wamba and J.B. Arnaud (2021). ‘Online consumer resilience dur-
ing a pandemic: An exploratory study of e-commerce behavior before, during and after a
COVID-19 lockdown’. Journal of Retailing and Consumer Services 61

Hausman et al. (1976). ’Optimal Storage Assignment in Automatic Warehousing Sys-
tems’. Management Science, 22.6

Keung, K.L. et al. (2020). ‘Cloud-Based Cyber-Physical Robotic Mobile Fulfillment
Systems: A Case Study of Collision Avoidance’. IEEE Access 8

Kim, H., C. Pais and Z.-J.M. Shen (2020). ‘Item assignment problem in a robotic mo-
bile fulfillment system’. IEEE Transactions on Automation Science and Engineering 17.4

Kota, V.R., D. Taylor and K.R. Gue (2015). ‘Retrieval time performance in puzzle-
based storage systems’. Journal of Manufacturing Technology Management 26.4

Lamballais, T., D. Roy and M.B.M. De Koster (2017). ‘Estimating performance in a
Robotic Mobile Fulfillment System’. European Journal of Operational Research 256.3

Merschformann, M. et al. (2019). ‘Decision rules for robotic mobile fulfillment systems’.

9| Bibliography 89

Operations Research Perspectives 6

Mirzaei, M., R.B.M. De Koster and N. Zaerpour (2017). ‘Modelling load retrievals in
puzzle-based storage systems’. International Journal of Production Research 55.21

Rohit, Kota V, G Don Taylor and K.R. Gue (2010). ‘Retrieval time performance in
puzzle-based storage systems’. IIE Annual Conference. Proceedings

Rosenblatt and Eynan (1989). ’Note—Deriving the Optimal Boundaries for Class-Based
Automatic Storage/Retrieval Systems’. Management Science, 35.12

T., Lamballais, D. Roy and R. De Koster (2020). ‘Inventory allocation in robotic mobile
fulfillment systems’. IISE Transactions 52.1

Thonemann and Brandeau (1998) ’Optimal Storage Assignment Policies for Automated
Storage and Retrieval Systems with Stochastic Demands’. Management Science, 44.1

Wurman, P, R. D’Andrea and M. Mountz (2008). ‘Coordinating hundreds of cooper-
ative, autonomous vehicles in warehouses’. AI magazine 29.1

Xie, L. et al. (2021). ‘Introducing split orders and optimizing operational policies in
robotic mobile fulfillment systems’. European Journal of Operational Research 288.1

Yalcin, A., A. Koberstein and K.-O. Schocke (2019a). ‘An optimal and a heuristic algo-
rithm for the single-item retrieval problem in puzzle-based storage systems with multiple
escorts’. International Journal of Production Research 57.1

Yalcin, A., A. Koberstein and K.-O. Schocke (2019b). ‘Motion and layout planning in a
grid-based early baggage storage system: Heuristic algorithms and a simulation study’.
OR Spectrum 41.3

Yang, P., G. Jin and G. Duan (2021). ‘Modelling and analysis for multi-deep compact
robotic mobile fulfilment system’. International Journal of Production Research

Yang, Xiuqing et al. (2021). ‘Non-traditional layout design for robotic mobile fulfill-
ment system with multiple workstations’. Algorithms 14.7

90 9| Bibliography

Yu, Y. et al. (2017). ’Optimal algorithm for minimizing retrieval time in puzzle-based
storage system with multiple simultaneously movable empty cells.’ Tech. rep. Working
Paper Erasmus University, Rotterdam.

Yugang Y. and De Koster (2010). ’Class-based Storage With a Finite Number of Items’.
IMHRC Proceedings 34.11

Yunfeng, M, C. Haoxun and Y. Yugang (2021). ‘An efficient heuristic for minimizing
the number of moves for the retrieval of a single item in a puzzle-based storage system
with multiple escorts’. European Journal of Operational Research

Zaerpour, N., Y. Yu and R. De Koster (2017a). ‘Response time analysis of a live-cube
compact storage system with two storage classes’. IISE Transactions 49.5

Zaerpour, N., Y. Yu and R. De Koster (2017b). ‘Small is beautiful: A framework for
evaluating and optimizing live-cube compact storage systems’. Transportation Science
51.1

Zou, B. et al. (2017). ‘Assignment rules in robotic mobile fulfilment systems for on-
line retailers’. International Journal of Production Research 55.20

91

List of Figures

1 Autonomous wheels developed by Wheel.me 3

1.1 15-puzzle game . 7
1.2 Movements in PBS . 8
1.3 Single vs. block movement . 10
1.4 Comparison between single and block movement 10
1.5 Simultaneous movement . 11
1.6 Opening of virtual aisles . 12
1.7 Amazon Robotics . 13
1.8 Non-traditional aisle configurations . 15
1.9 Different ABC curves . 18

2.1 Chebyshev distance . 23
2.2 Travel route . 24
2.3 Initial allocation of escorts . 25
2.4 Division of the grid . 26
2.5 Opening of a rectilinear aisle with two RAMs 27
2.6 RLMs performed in different directions . 28
2.7 First CM performed in both scenarios . 29
2.8 Second CM performed in both scenarios 30
2.9 Third CM performed in both scenarios . 31
2.10 Movements required in a square sub-grid 32
2.11 Opening of a rectilinear aisle in the rectangular sub-grid 33
2.12 RLM performed in a rectangular sub-grid 33
2.13 CMs performed in a rectangular sub-grid 34
2.14 Movements required in a rectangular sub-grid 35
2.15 Movements required in a rectangular sub-grid 36

4.1 Travel distance for each load in the grid 42
4.2 Possible shapes for class A . 42
4.3 Class A with square shape in a square grid 44

92 | List of Figures

4.4 Class A with square shape in a rectangular grid 46
4.5 Class A with triangular shape in a square grid 50
4.6 Subdivision of class A for k > m . 53
4.7 Class A with triangular shape in a rectangular grid 56
4.8 Subdivision of class A for k > m . 58

5.1 Optimal lA vs shape ratio with different ABC curves and square shape . . 62
5.2 Optimal lA vs shape ratio with different ABC curves and triangular shape 65
5.3 Optimal relationship between lA and shape ratio vs ABC curve with dif-

ferent class A shapes . 66
5.4 Average cycle time for different shape ratios 68
5.5 Density for different shape ratios . 69

6.1 Class-based storage vs random storage policy 74

7.1 Subdivision of the grid with 3 I/O locations 79
7.2 Subdivision of the grid with 4 I/O locations 80

93

List of Tables

1.1 ABC curves and shape factor . 17
1.2 F (x) for different ABC curves . 19

5.1 Optimal lA∗ and relative pA∗ with ABC curve 60/20 63
5.2 Optimal lA∗ and relative pA∗ with ABC curve 70/20 63
5.3 Optimal lA∗ and relative pA∗ with ABC curve 80/20 63
5.4 Optimal lA∗ and relative pA∗ with ABC curve 90/20 63
5.5 Statistical significance of input parameters 67
5.6 Triangular shape vs. Square shape performance 70

6.1 Reduction average cycle time in class-based storage policy 75

7.1 Average cycle time with 3 and 4 I/O locations 81

	Abstract
	Abstract in lingua italiana
	Acknowledgements
	Contents
	Introduction
	Motivation
	Research questions and method
	Outline

	Theoretical background
	Puzzle-based storage
	Robotic mobile fulfillment systems
	Non-traditional aisle configurations
	Class-based storage policy

	Proposed configuration
	Assumptions
	Movement policy
	Moviment policy for a square grid
	Moviment policy for a rectangular grid

	Analytical model with random storage policy
	Storage capacity and density for a square grid
	Storage capacity and density for a rectangular grid
	Average travel distance
	Average cycle time and throughput
	Value of

	Analytical model with class-based storage policy
	Classes shape
	Average travel distance, cycle time and throughput
	Class A with square shape
	Class A for a square grid
	Class A for a rectangular grid

	Class A with triangular shape
	Class A for a square grid
	Class A for a rectangular grid

	Design procedure
	Random vs. Class-based
	Comparison with literature
	Conclusions and future developments
	Conclusions
	Limitations
	Possible future developments

	Bibliography
	List of Figures
	List of Tables

