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Abstract

Flexible robots, capable of manipulating objects in unstructured environments un-
der changing conditions, will lead to a paradigm shift in automation. Such robotic
solutions can potentially transform entire industries currently subject to very little
or no automation and they will eventually also have a profound impact on our daily
lives.

Today’s robotic solutions are not good at coping with large degrees of variability.
These are highly specialized machines that typically operate in structured environ-
ments, which is designed to cater to the robot’s strengths. The robots’ inability to
handle unstructured environments and cluttered scenery makes them unsuited for
many real-world manipulation tasks. Many of these tasks are inherently cluttered
and subject to large variations, such as tasks involving manipulation of raw mater-
ials or sorting of objects. Furthermore, automating these tasks requires developing
highly specialized machinery that comes with costly and long development cycles.
This is a limiting factor in today’s application of robotics to automation.

To handle unstructured and cluttered domains robots need to sense and reason
about their environment in order to select and execute an appropriate action, given
the situation. This necessitates a visual processing system capable of extracting
relevant information from the environment at high speeds.

The goal of this thesis has been to contribute towards the development of a visual
processing system suitable for real-world robotic manipulation tasks. We approach
this goal by first considering the task of open-loop grasping. To predict precise,
collision-free grasps, the system needs to extract precise features in the face of
noisy data. Further, robotic grasping is a highly relevant automation task across
many industries and there is a need for a robust grasping system, which can handle
noisy data and large variability in the appearance of objects.

The result of our work is a visual processing system that can be trained to process
large point clouds by sequential focusing of attention. By learning to attend to
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iv Abstract

the relevant parts of the volume, the proposed system can extract high-precision
features from large volumes at high speeds.

In our work on grasping, we consider the task of bin-picking of fish, which is a
difficult task, subject to clutter and noisy depth measurements. With the proposed
visual processing system we achieve a 95 % grasp success rate on this task and
the system is able to successfully correct its’ own mistakes by trying again. Fur-
ther, the system is trained solely on synthetically generated data sets and a generic
pipeline for generation of such data sets for grasping has been developed. We en-
vision that this approach might enable significantly shorter development cycles for
new robotic applications and enable easy repurposing of robots for new tasks. In
turn, we hope that this can open up for more automation in domains previously
less suited for automation, such as producers dealing with smaller quanta or more
varied materials or raw-materials or productions subject to seasonal variability.

The proposed system can process arbitrarily large volumes with a processing speed
of 15 Hz. This indicates that the system can be used for closed-loop control, which
can enable learning of more complex robot actions and sequences of actions. In
this thesis we present the results of preliminary tests that were designed to test
the system’s capabilities in real-time applications. In these tests we considered
two simple visual servoing tasks and trained the system with behavioural cloning.
Through these two experiments, the system has proven capable of learning how to
effectively summarize the contents of larger volumes through the attention mech-
anism and use this summary for subsequent decision making. When dealing with
sequences of actions it is also able to infer the context based on the observations
and shift its’ focus of attention upon completion of a sub-task. However, these are
only preliminary tests and the limits of the current system for tasks involving more
complex relationships between objects and long-term memory are still unknown.
Further, more research is needed in order to achieve robust robotic control-policies
based on the extracted features, as the trained policies in this work suffer from the
distribution shift-problem typical when training with behavioral cloning.
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Chapter 1

Introduction

This chapter aims to motivate the research presented in this thesis and to define the
scope of the work. A brief overview of the contributions is given, followed by an
outline of the remainder of the thesis.

1.1 Motivation
As the field of robotics continue to advance, the robots’ increasing capabilities are
making a significant impact across diverse industries. Worldwide, more than 3.5
million robots are tirelessly performing tasks like stacking items on pallets, weld-
ing, painting and assembling [1]. These robots are reliable, accurate and posses
endurance vastly superior to their human counterparts. However, as of yet, robots
are not cleaning our houses for us or helping out in the kitchen. In general, robots
are rarely seen working next to humans, although robotic assistants could help
many of us in our daily lives, assisting with heavy lifting and tedious tasks.

While many robots are much stronger than humans and better able to follow spe-
cified trajectories, they still fall short when tasked with mundane work humans
find trivial. They struggle when faced with the unstructured and ever-changing
real-world we humans handle so easily. As we humans act in these environments,
we sense the world around us while continuously and effortlessly filtering relevant
from irrelevant information. With our nuanced understanding of the intricate dy-
namics of the world and the intricate interactions at play, we are able to make
quick judgements when faced with new situations. These are capabilities that
are difficult to replicate in machines. Therefore, the robots of today are for the
most part confined to domains where the environment can be tailored to better suit
their strengths. Typical examples are the manufacturing and logistics industries.

1



2 Introduction

If, however, robots were to acquire these human-like capabilities, the potential
use-cases for robotics would explode. If this were the case, robots could work
alongside humans, helping us with repetitive, hazardous, heavy or in general less
desirable tasks, even as they arise, without the need for reprogramming. This is
in stark contrast to the typical robotic solution found in the industry today. This is
often a highly specialized machine, which is doing the same thing over and over
again, only capable of handling ever so slight variations in its working conditions.

If robots are to make the transition from the controlled environments of e.g., car
factories and warehouses to the unstructured environments our daily lives, they
need to be able to act accordingly to different and constantly changing conditions.
This entails sensing the environment, recognizing situations and, in light of the
given task, selecting and executing the appropriate action. Acquiring this capab-
ility of acting in accordance with situations is a continuum, with different tasks
requiring various amounts of high-level reasoning and long-term planning capab-
ilities. Reducing the gap between robotic and human capabilities is a very large
topic.

1.1.1 The scope of this work

Broadly, the work presented in this thesis aims at contributing to the realization
of flexible robots capable of performing tasks in unstructured and dynamic real-
world environments. We consider visuomotor tasks, which can be loosely defined
as manipulation tasks requiring precision that can be performed by humans without
involving complex reasoning or long-term planning. As steps towards this goal we
define our research objectives.

Research objective 1: Visual processing for generic robotic applications

A good visual processing system for robotic applications should have the following
attributes: 1) high-speed processing, 2) high-resolution input, 3) coverage of large
work spaces. In practice, designing a visual processing system without trading off
one of these attributes for the other two can be difficult. The result of processing
the raw visual input should be a descriptive representation of the robot’s work-
space containing all information necessary to perform the task at hand.

The work in this thesis aims to contribute towards the design of such a visual
processing system, well suited for generic robotic applications.

Research objective 2: Robust task-specific grasping

Pick-and-place operations remain a relevant task for automation, especially in do-
mains subject to clutter and high variability. The most critical part of a pick-
and-place operation is typically the picking part. In order to successfully pick an
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object, the robot needs to correctly parse the scene and effectively manipulate the
object without damaging the object, neighbouring objects, the robot itself or the
environment.

In this work we aim to contribute towards designing a system for generic picking
applications. By generic, we do not mean a system capable of picking anything
out of the box, but rather a system that can be deployed in a wide variety of ap-
plications and be trained to perform a specific task. This could for instance entail
picking of certain objects in a specific way. The system should be robust to real-
life noise and clutter and be compatible with domains subject to large variations in
the appearance of objects. Further, the robot should be able to work in conditions
tailored to human workers without need for modification of the environment. This
would make for easier deployment and repurposing in line with research object-
ive 3. As grasping is inherently linked to visual processing and parsing of scenes,
the grasping domain also serves as a test-bed for the development of a visual pro-
cessing system, the subject of research question 1.

Research objective 3: Repurposable robotic solutions

Development cycles for robotic solutions are costly. Typically, automated solu-
tions are developed with a goal of automating one, highly specific task. In order to
justify these costly development cycles, therefore, there has to be a need over time
for a machine that is only capable of performing this single task. This effectively
excludes a wide variety of industries subject to more varied tasks and producers
dealing with smaller quanta or more varied materials or raw-materials or produc-
tions subject to seasonal variability. Flexible robots that, if necessary, can be easily
repurposed for new tasks could significantly reduce the risk of investment in ro-
botics and thereby enable more automation in these domains.

In this work we consider repurposing of robots between similar tasks, such as
repurposing of a pick-and-place robot for a new pick-and-place task, handling a
different raw-material. We contribute towards this research objective by consider-
ing two approaches to repurposing of robots: 1) Less costly development cycles
with quick repurposing of robots by robotic experts in cooperation with domain
experts. 2) In-situ repurposing of robots by domain experts without involvement
of robotic experts.

1.2 Contributions at a glance
The long-term goal of the research presented in this work is to enable flexible
robotic solutions, capable of performing tasks in unstructured and dynamic envir-
onments.
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As a step towards this larger goal, we initially focus our research on the problem of
robotic grasping. There is a need for robust grasping solutions in the industry and
grasping can simultaneously serve as a useful test-bed for some of the components
which needs to be in place for the larger, more capable system. Specifically, we
used the grasping domain to explore feature extraction from visual input, which is
tightly coupled with input representations and inference speeds.

To successfully grasp objects in cluttered environments, a robot needs a visual
processing system capable of differentiating between graspable and non-graspable
objects and parts of objects, which is robust to real-world, noisy data. As such, it
needs to reason about the environment in relation to its own gripper, e.g., "where
does the gripper fit", in order to avoid collisions. We view open-loop grasping of
objects as a special case of reasoning about the space of possibility conditioned
on a task and the geometry of the end-effector, which is fundamental to robotic
manipulation in general.

Further, we show how the visual processing system initially used for grasping
can be modified to enable more complex robotic control, i.e., closed-loop visual
servoing.

The contributions of this work can be summarized as follows:

• Grasp detection with sliding windows: In papers A and C we demonstrate
how 3D-Convolutional Neural Networks (CNNs) with small receptive fields
can be used to predict precise, collision-free grasps for the challenging task
of bin-picking of fish. This is a very cluttered domain subject to noisy data
with large variations in the appearance objects and variations in the raw-
materials. In paper B we demonstrate how 2D-CNNs can be used in a similar
domain, bin picking of small, reflective steel parts.

• Improved grasping by learning where to look: In paper D we demonstrate
how some of the issues related to small receptive fields and slow inference
speeds in papers A and C can be mitigated by training a neural network
to attend only to task relevant parts of a scene. The attending is done by
sequentially deploying a small 3D-CNN at select positions in the volume,
and the system produces precise grasps at high inference speeds. We also
demonstrate that the attention mechanism functions as a filtering mechanism
making the system robust to out-of-distribution (OOD) examples.

• Extending to closed loop control: In chapter 3.2 we demonstrate how the
proposed grasping network of paper D can be used for closed loop control.
We modify the network to predict velocities, rather than grasps, and train
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a model on two simple example tasks to motivate the use of the proposed
visual processing system for closed-loop control.

We highlight the focus of our research in Fig. 1.1 on the following page. The
figure is complementary to the bullet list above and shows the overall progress of
the research through incremental improvements to the visual processing system
with robotic grasping as test-bed.
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Figure 1.1: i) An example task, with a volume visualized in 2D as viewed from the side.
The goal is to pick one of the graspable objects, with valid grasps visualized by transparent
grippers. ii) Grasp prediction with sliding windows. A neural network processes all parts
of the volume independently and looks for valid grasps at each location. The grasp, which
the network is most certain of is attempted by the robot. iii) Grasp prediction with atten-
tion. The neural network decides where to look in the volume and predicts a single grasp
based on what it has seen. iv) Closed-loop control with attention. The neural network
decides where to look in the volume and predicts an end-effector velocity based on what
it has seen, steering the robot towards the object in real-time.
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view in: IEEE Transactions on Robotics (2023), [5]



8 Introduction

1.4 Outline
The remainder of this thesis is structured as follows:

Chapter 2 outlines relevant background material from the literature and intro-
duces concepts central to the work presented in this thesis. This includes
topics from computer vision, robotics and learning for robotic control. Fur-
ther, this chapter seeks to put the work of this thesis into context with the
current state-of-the-art in the field.

Chapter 3 presents the contributions of this thesis. This chapter is split into two
sections. In the first, Sec. 3.1, we introduce and expand upon our published
research on grasping. In the second, Sec. 3.2, we discuss how to extend
our approach to grasping for closed-loop robotic control. In this section, we
present unpublished qualitative results of preliminary experiments.

Chapter 4 discusses the progress made towards the research questions, and pos-
sible future directions for the proposed methods in this thesis at a high level.

Chapter 5 concludes the work presented in this thesis.

Chapter 6 contains reprints of the papers on which this thesis is based.



Chapter 2

Background

This chapter seeks to outline relevant background material from the literature and
to introduce concepts central to the work presented in this thesis.

2.1 Computer vision
Computer vision is an essential ingredient in today’s robotic applications. By giv-
ing robots the ability to sense their surroundings, it empowers them to recognize
different situations and respond appropriately to them. Computer vision is con-
cerned with the task of acquiring visual information from the world and analyzing
it to extract relevant information with regards to some specific application. Be-
sides robotics, computer vision has numerous applications across many domains,
ranging from augmented reality, e.g., putting dog ears on selfies, to medical ima-
ging, e.g., assisting in diagnosis and analysis of X-rays and MRI-scans.

The year 2012, is by many regarded as the beginning of the deep learning (DL)
revolution in computer vision. That year, the ImageNet Large Scale Visual Re-
cognition Challenge [6] was won by a deep convolutional neural network (CNN)
called AlexNet [7], which beat the competition by a large margin. This effectively
showed that deep neural networks (DNNs), i.e., neural networks with many hidden
layers, could learn end-to-end how to extract progressively higher level features
from unstructured, high dimensional images when trained directly as a classifier.
Prior to this revolution, traditional computer vision systems were often based on
hand-crafted feature extractors, such as SIFT and HOG [8, 9], to reduce the di-
mensionality of the input space for a subsequent machine learning (ML) algorithm
(e.g., SVM or kNN).

When trained on huge and varied data sets, the feature extractors learnt by CNNs

9
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have been shown to generalize well to new image analysis tasks. However, neural
networks are notoriously data hungry, and when faced with a new problem without
access to a large labeled training set, it can be difficult to train DNNs from scratch.
In practice, therefore, it is common to do transfer learning either by pre-training
the DNNs on a large available data set such as ImageNet [10] or by starting with
a pre-trained model, available in many deep learning libraries [11, 12]. However,
transfer learning works best when the data the model is pre-trained on is similar
to the data the model is fine-tuned on. Therefore, when working with very dif-
ferent images from, say, ImageNet, or when working with other input formats,
like 3D-data, transfer learning might not be possible. In such cases, unsupervised
pre-training of the CNN feature extractors can be an option. There are several
ways of going about this type of pre-training, and two broad categories are: 1) Au-
toencoders (AE), where a neural network is trained to compress and subsequently
reconstruct the input from the compressed encoding [13]. 2) Contrastive learning,
where a neural network is trained explicitly to encode "similar" inputs in similar
parts of the encoded latent space (e.g. [14]).

2.2 Computer vision for robotics
Images can provide rich information about a robots surroundings, and in robot-
ics therefore, computer vision is used to capture the environment state. As robots
are expected to interact with their environment, computer vision for robotics is
more tightly coupled with the physical world than pure computer vision systems.
E.g., if a robot is supposed to manipulate an object, it is not sufficient to know
where the object is in terms of pixels, but rather in terms of its position and ori-
entation relative to the robot. Therefore, in addition to regular RGB-cameras, the
use of 3D-sensors has become widespread. These 3D-sensors can capture geomet-
ric information by measuring the distance from the camera to points in the scene.
Different technologies exists for 3D-data acquisition, some commonly used in ro-
botics are: Structured light projection, time-of-flight (ToF), stereo vision (tradi-
tional feature matching based, and learning based) and light detection and ranging
(LiDAR). Different sensors can have different properties, such as precision, max
viewing distance, compatibility with reflective or textureless objects, compatibility
with dynamic scenes and interference with other sensors and therefore, the choice
of sensor will depend on the application.

2.2.1 Representation and processing of 3D data

Data acquired from different sensors can be represented in different formats. For
color data, RGB images are typically used, and this format can be extended with
3D data by adding an extra channel containing the depth information, the result
being an RGB-D image. One large advantage of these representations is that they
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can be processed using well proven 2D convolutional neural networks (2D-CNNs)
developed for computer vision (e.g. [15, 16]). Additionally, both acquisition and
processing of these formats can be done relatively fast, which is often a require-
ment in robotic applications. Further, there are several available data sets, which
could potentially be used for pre-training [17]. However, for applications requiring
high resolution inputs, the input space can become very high dimensional as the
number of pixels increase. Further, if the work-space of the robot is large, it can be
difficult to fit the entire scene within the frame of a single image, while maintain-
ing the required resolution. Additionally, when working with images directly, the
appearance of objects in the images will be inherently linked to the platform used
for acquisition. For instance, the appearance of an object will be affected by the
viewing angle of the camera relative to the object, the distance between the camera
and the object, other objects in the line-of-sight of the camera and the object, and
the intrinsic parameters of the camera. Therefore, trained computer vision mod-
els for robotics based on image data are largely platform-specific, and can not be
transferred directly between different types of robots.

Point clouds offer a compact way of representing 3D data. A point cloud is simply
a list of all the 3D measurements acquired from the scene

pcl =




x0 y0 z0 r0 g0 b0
x1 y1 z1 r1 g1 b1
...

...
...

...
...

...
xN yN zN rN gN bN


 , (2.1)

where xi, yi, zi describes the location of point i and ri, gi, bi describes its color.
As such, point clouds can be easily constructed based on data acquired from mul-
tiple sensors from different views, providing dense coverage of the work space of a
robot in arbitrary resolution. By representing the acquired data in a fixed coordin-
ate system, the state of the scene can be captured in a way that is less dependent
on the location(s) and type(s) of sensor(s) used. However, because point clouds
are large unordered sets, they cannot be processed using traditional CNNs. Point
cloud processing with neural networks is an active area of research and has seen
many breakthroughs in recent years [18, 19, 20, 21, 22], but the field has not yet
converged to a "standard" architecture for feature extraction, such as CNNs have
been for RGB-images.

CNNs can be used on 3D-data by discretizing space into voxel grids where each
voxel can be viewed as a 3D-pixel [23, 24]. Typically, occupancy grids are con-
structed by assigning each voxel with a value of 1 if occupied and 0 otherwise.
Alternatively, truncated signed distance functions (TSDF) can be constructed by
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assigning a real value to each voxel representing the distance to the closest occu-
pied point in space. Like 2D-CNNs, 3D-CNNs are well proven and have been used
successfully in many different applications such as 3D-object classification [23]
and detection [24], analysis of medical data [25] and video analysis [26]. How-
ever, 3D-CNNs are computationally expensive with a memory consumption that
grows cubically with resolution. This introduces a trade-off between the size and
resolution of the input volume that can be processed by 3D-CNNs and in practice
this has until recently made them unsuitable for real-time applications. However,
in most real world applications, only a small part of the input space is occupied,
meaning that most of the computation and memory is spent on processing of empty
space. Recent works seeks to address this issue by exploiting the sparse nature of
3D data [27, 28, 29, 30]

2.2.2 The recurrent attention model

A drawback of CNNs is that the amount of compute needed to process an input
scales linearly with the input’s size. Further, the larger the input gets, the more data
is typically needed in order to train the CNNs, to make sure they become sensitive
to the things that matter in the input, and invariant to the rest.

In 2014, Mnih et al. proposed the Recurrent Attention Model (RAM) [31]. In
their work, they propose processing of arbitrarily sized input images with a small
CNN with a fixed input size. E.g., they process 60 × 60 pixel images with a
CNN with an input receptive field of 12 × 12 pixels. They are able to to this by
training the model to focus its attention on the important parts of the input and
subsequently predict the correct label based on what it has seen. Specifically, the
model processes the input sequentially, by repeatedly extracting 12×12 sized crops
from the image and building up an internal representation of the input in the state
of a recurrent neural network (RNN). The model is trained jointly to both learn an
optimal processing strategy, i.e., where to look, and to predict the correct label for
the input. This approach effectively decouples the computation needs from the size
of the input. Further, they show that the model is able to ignore distractions and
clutter, by focusing its attention on the important part of the input, outperforming
CNNs tested on the same data sets. They emphasize the generality of their model
by training it for multiple tasks, including a simple video game, and explicitly state
that it can be applied to robotics. Additionally, a desirable property of the RAM is
that it is easier to explain the behaviour of the model than typical CNNs, because
one can visualize what parts of the input the model attends to, and thus what it
bases its predictions on.

In 2016, Haque et al. extended the RAM to a significantly higher-dimensional
domain, demonstrating that RAMs can be used to process point cloud videos for
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person identification, extending the attention mechanism to focusing in both 3D-
locations in space and 4D-locations in space and time [32].

2.3 Learning for robotic control
Computer vision can be applied to robotics for both open-loop and closed-loop
control. Robotic grasping is typically done in an open-loop fashion. In such cases,
grasps are predicted from, e.g., RGB-D images and the robot performs the pre-
dicted grasps "blindly", i.e., without visual feedback. Deep learning based systems
have been shown to be very effective in this domain, enabling high success rates
when grasping novel objects in cluttered scenes [33].

Deep learning is also being applied to closed-loop robotic control from visual data.
Unlike open-loop systems, these systems can potentially handle dynamic scenery
and account for disturbances during execution by observing the robot while per-
forming the action. In these cases, the neural networks take observations of the
environment as input, e.g., RGB images, and are tasked with predicting appropri-
ate actions. These actions can for instance be motor torques or target end-effector
velocities or positions. In general, the goal of learning for robotic control is to
learn a policy πθ, i.e., a state-to-action-mapping, parameterized by the learnable
parameters θ, typically, the weights of a neural network. In this work we follow
the notation of [34], where at ∼ πθ(at|st), refers to the sampling of action, at, at
time step t, from the stochastic policy πθ, given the observed state st.

Two common approaches to learning of robotic policies are imitation learning (IL)
and reinforcement learning (RL) [34]. IL is concerned with learning robotic be-
haviours by imitating an expert. In a typical setup, the expert demonstrates how
to perform a task by teleoperating (i.e., remote controlling) the robot, while fol-
lowing his/hers expert policy π∗. The result is a data set of states (observations),
and corresponding actions and the goal of IL is to learn a new policy πθ which
matches the expert’s from the collected data set. One of the simplest approaches
to IL is behavioural cloning (BC) [35]. In BC, the policy is trained with regular
supervised learning by minimizing e.g., the negative log-likelihood (NLL) loss for
discrete action spaces, or mean squared error (MSE) for continuous action spaces,
between the expert’s actions, π∗(st), given state st and the learnt distribution over
actions πθ(st). In practice, however, BC often fails [36]. This is because the ac-
tion the robot takes when in a state st at some point in time t, directly influences
the state it will see next, st+1. Therefore, while running the learnt policy, πθ, on
the robot at test-time, it will encounter a set of observations conditioned on πθ,
rather then observations conditioned on the expert policy π∗. This leads to a dis-
tribution shift between the distribution over observations seen during training and
the distribution over observations seen at test-time. During execution, the robot
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will initially find itself in a familiar part of state space, but as time progresses and
the robot takes slightly different actions than the expert, given the same states, it
might eventually find itself in parts of the state space not covered in the training
data. When this happens, the policy will likely produce even less accurate actions,
which leads to compounding errors that can grow quadratically over time [37].
This is a large problem with BC, and learning from offline data in general. In prac-
tice, in some applications the problem can be mitigated to some degree by gath-
ering large amounts of data and by ensuring the training sets contains corrective
actions, incentivizing the model to stay in the known parts of state space. This can
be done by explicitly adding corrective actions for known critical states [38], by
having humans provide corrective actions during demonstration by injecting noise
into the experts policy [39] or by iteratively deploying the trained policy, having
humans demonstrating corrective actions for encountered failure states [40].

Reinforcement learning considers the problem of learning of policies through trial
and error [34]. In RL, an agent is trained without labelled training data, but
rather with a reward function, providing rewards for desired behaviour and punish-
ments (negative reward) for unwanted behaviour. In online RL, the training data is
gathered by following the policy of the agent, and therefore, the distribution shift
problem that arises in IL is not an issue in online RL.

2.4 Relation to state of the art
The work presented in this thesis revolves around two central topics: Learning
for robotic grasping (3.1) and learning for closed-loop robotic control (3.2). This
section aims to put the thesis into context with the current state-of-the-art wrt.
these two topics1.

2.4.1 The current state-of-the-art in robotic grasping

Early works on grasping were often based on object recognition and 3D pose es-
timation of known objects [41, 42, 43] followed by a grasp planning step or lever-
aged databases of CAD-models at test-time [44]. However, resent work typically
favor deep learning based approaches.

Deep learning for robotic grasp prediction is often based on RGB-D images. Typ-
ically, a grasp is predicted in image space and is represented as an oriented rect-
angle [45]. The position of a grasp is represented by the position of a center pixel
and optionally an offset from this pixel. The orientation is defined by the orienta-
tion of the rectangle and the image plane [46, 33, 47, 48, 49]. These approaches
are well-proven and have demonstrated high accuracies and generalization to novel

1The following paragraphs are to some degree based the background section of paper D.
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objects.

Other works predict grasps in 3D space. In these cases, the input is typically
represented as occupancy grids, TSDFs, or point clouds. Despite slow inference
speeds, 3D-CNNs can be used in a sliding window fashion on today’s hardware,
given a constrained volume [50]. However, multi-step methods are more common,
which only process partial volumes with the 3D-CNNs e.g., after an initial seg-
mentation step [51]. One of the earliest works employing 3D-CNNs for grasping
was published in 2016 by Varley et al. [52] and they used a 3D-CNN for shape
completion after a prior segmentation step for subsequent meshing and grasp plan-
ning with a simulator [53]. In [54], a set of candidate grasps is sampled uniformly
from the point cloud, avoiding the need for voxelization of the entire work area by
voxelizing only a subregion centered around each grasp candidate. Subsequently,
the voxelized candidate grasps are projected along three axes before the grasp qual-
ity of the candidate is estimated by a 2D convolutional neural network. In [55],
candidate grasps are sampled based on a set of heuristics, and the points within the
closing area of the gripper for a given candidate grasp (i.e. the ones expected to
come into contact with the gripper when closing) are transformed to local gripper
coordinates and evaluated by a PointNet architecture [18], circumventing the need
for voxelization, which inherently leads to resolution loss.

In [56], 6 degrees of freedom (DoF) grasps are predicted directly from a partial
point cloud containing only the object which should be grasped. They train a
variational autoencoder (VAE) with a PointNet++ [19] architecture so that they
can sample 6 DoF grasps for a given object from latent space. They also employ
an iterative refinement step to further improve the grasp quality.

A number of recent works have explored the use of attention in the context of ro-
botic manipulation and grasping [57, 58, 59, 60, 61, 62]. In these works, different
attention-based, systems are proposed that can learn to "zoom in" on the relevant
parts of the scene with increasing resolution before predicting an action. In [62],
James et al. propose a "coarse-to-fine" attention mechanism for 3D voxel grids. In
their work, they first voxelize the entire work space for the robot in a coarse resol-
ution voxel grid and task their model with selecting one of the input voxels as the
focus of attention for the next step. On the subsequent step, a new, finer resolution
voxel grid is created centered at the selected voxel and this process continues for a
number of steps. On the final step the model predicts a 6D next-best pose for the
end-effector, which is given as input to a low-level control agent.
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2.4.2 Our work on grasping

While the focus of most related work is on training of grasping policies which
generalize well to grasping of novel objects, the goal of our research has been
to create a generic system for grasping of known objects. I.e., creating a system
which can be deployed in a wide variety of factories and be trained for grasping of
the specific types of objects which are expected to be seen.

Domain differences

Most related work considers rather controlled environments with objects lying sin-
gulated or in a pile on a table or in shallow bins with sloped walls, e.g., [44, 16,
63, 52, 51, 54, 55]. In such cases, collision free grasps can often be found by pre-
dicting top down-grasps and by e.g., picking objects along the edge of a pile. In
contrast, our focus has been on making the system compatible with difficult real-
life scenarios. This entails being robust to real-life clutter, occlusion, sensor noise
and obstacles while handling both rigid and deformable objects subject to intra-
class variations. As the main test-bed for our approach therefore, we chose the
problem of picking of fish lying in fish crates, which is a challenging domain for
a few reasons. Visually, a box of fish is densely cluttered. Being deformable, fish
can be forced into a wide variety of poses and configurations with fish overlapping
and occluding each other. Further, the semi-translucent plastic fish crates coupled
with water-films, blood and the reflective surface of the fish themselves with both
very dark and very bright textures leads to noisy depth data. Typically, depth im-
ages of fish in fish crates have both large patches of missing measurements and the
acquired measurements can be very inaccurate. Additionally, grasping of fish is
a very unforgiving domain wrt. grasp placement. Even when grasping singulated
fish on a table, grasps have to be placed precisely, close to the fish’s center of mass
and with the fingers almost touching the table. Because of the slippery nature of
the fish, the fish will slide up into the gripper upon closing if a grasp is placed
correctly, but if misplaced, the fish will slide out of the gripper when lifted. This
expected movement of the graspable object upon closing of the gripper is atypical
wrt. related work on open-loop grasping. When lying in a bin, grasps have to be
placed even more meticulously. Often, a grasp can only succeed if the fingers of
the gripper are slid in-between other fish. If a fish is lying in a sharp corner, the
grasp must be placed such that the gripper slightly touches the bottom and the side
of the box at the same time.

Technical differences

In our papers A and C we propose the use of sliding window 3D-CNNs for grasp-
ing in the fish-picking domain described above. We propose end-to-end supervised
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training of mappings from voxel grids directly to 6 DoF grasps and to the best of
our knowledge, our paper was among the first to propose this in the literature.
Around the same time (2016) and towards the same end, Varley et al. [52] also
employed a 3D-CNN, however, it was used for shape completion for subsequent
meshing and grasp planning.

In our paper B, we consider a different domain subject to similar noisy depth data:
Grasping of small reflective machined parts (19mm to 30mm). In this work, we
propose an approach for generation of realistic looking simulated depth data for
reflective objects and train a multi-resolution 2D-CNN for sliding window grasp
detection in this domain.

In our work in paper D, we employ an attention mechanism, based on the RAM
of Mnih et al. [31], with a network structure very similar to Haque et al. [32], in
order to find viable grasps for large, high-resolution volumes in real-time. We test
the system in the challenging fish-picking domain and achieve a grasp success rate
of 95%, beating our previous approach (paper C) with 15 percentage points. Our
approach with attention in voxel grids for grasping is similar to the system of James
et al. [62] from 2022, and was developed independently from and approximately
simultaneously as theirs.

2.4.3 Learning for robotic control

Most related works on grasping are not intended for, and do not extend naturally
to, closed-loop control, which is a key motivating factor for the design choices
made in our work. In our work in paper D we do not aim to find all valid grasps for
a scene, but rather a single “action” in correspondence with the “state-to-action”
mapping needed for closed-loop control. While the model of paper D was only
tested in the fish-grasping application, the paper hypothesized about the possibility
of altering the proposed system for real-time robotic control, and this is further
expanded upon in Sec. 3.2 of this thesis. We therefore include some selected
background works on learning for robotic control to highlight how our work ties
in with the current state-of-the-art in this field.

In the visual servoing literature, the state on which the learnt policy πθ bases its ac-
tions is often represented as RGB images. Recently, impressive results have been
demonstrated on a variety of tasks [64, 65, 66, 67], such as zero-shot task general-
ization for complex sequences of actions [66]. These works addresses some of the
difficult open research questions in imitation learning, such as the distributional
shift (described in Sec. 2.3), dealing with long time-horizons and generalization
to unseen tasks.

As these methods are based on imitation and/or reinforcement learning, they suf-
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fer from the curse of dimensionality. Essentially, in RL the problem is that as the
state space grows, the number of data points needed for learning grows exponen-
tially. In practice therefore, exploring for optimal control in high-dimensional state
spaces can become infeasible. To combat this it is common to try to keep the di-
mensionality of the state-space for the RL-algorithms small. This can be done by,
e.g., doing principal component analysis (PCA) on the state space [68], or more
typically, by ensuring that the RL-algorithms are provided with small, descript-
ive states through transfer learning or unsupervised pre-training. Alternatively, the
algorithms can be trained on the raw inputs while simultaneously being trained
on auxiliary tasks such as open-loop predictions and/or input-reconstruction tasks
(VAEs), which incentivizes the policy to encode the raw image features mean-
ingfully. Further, most works reduce the state space by working with quite coarse
input images, e.g. 80×64, 128×128, 150×150, 160×120 [64, 65, 66, 67]. Inher-
ently, all of these methods for state-space reduction introduces a trade-off between
the information the state contains, and the dimensionality of the state-space.

In this context, we propose the use of RAMs as a way of extracting features from
large point clouds, which can provide small descriptive state spaces for learning
of robotic policies. We argue that RAMs are well suited for this task as the atten-
tion mechanism can learn to efficiently mask out distractions while maintaining
high resolution information about task-relevant parts of the volume, as shown by
[31, 32]. Additionally, the RAM has the desired property of decoupling inference
speeds from the size of the input, which is crucial when working with large point
clouds subject to real-time constraints.

In Sec. 3.2, we demonstrate that the proposed system of paper D can be modified
for real-time robotic control on simple robotic tasks. To the best of our knowledge,
this thesis represents one of few examples in the literature of employing RAMs for
robotic control, with real-time manipulation of objects directly from large point
clouds containing millions of points. The work we have found most similar to
ours is the work of James et al. [62]



Chapter 3

Contributions

This chapter presents the contributions of this thesis and it is split into two sections.
In the first, Sec. 3.1, we introduce and expand upon our published research on
grasping. In the second, Sec. 3.2, we discuss how to extend our approach to
grasping for closed-loop robotic control. In this section, we present unpublished
qualitative results of preliminary experiments.

3.1 Grasping
The aim of our work on grasping has been to find a combination of input repres-
entation and feature extraction pipeline that can be used for robotic applications in
general. Towards this goal we try to solve a real world automation task, which is
currently only done by humans in today’s industry.

We chose picking of fish as the main test-case for our approach to grasping. Work-
ing with fish is challenging because it is difficult to get good depth measurements
of fish using typical 3D-sensors. The specularity of the wet fish skin combined
with the dark backs and light bellies of the fish leads to under- and over-exposure,
which in turn leads to missing depth data in addition to the overall quite noisy
measurements. Because fish are soft-body objects, the position and orientation of
the fish body cannot be inferred by simply observing, e.g., the head of the fish.
Therefore, precise feature extraction is the only way to know the full state of the
fish. In sum, grasping of fish serves as a good baseline for our work and we con-
sider success in this domain as a proof-of-concept of the proposed system.

In all our works on grasping we train neural networks for the task of grasp predic-
tion. With neural networks being notoriously data hungry, and to avoid spending
the bulk of our time gathering and labelling data, we rely on simulation and syn-
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thetic data generation to create the data sets needed for training. Because it is easier
to simulate realistic looking depth images than color images, we limit ourselves to
working solely with depth data in all our experiments. We do however believe
that color data contains valuable information that the neural networks could learn
to utilize in order to predict even more precise grasps. It is, for instance, easy to
distinguish the head-end from the tail-end of a fish with color information, while
it can be quite difficult to do so in a colorless point cloud subject to noise. This
can in turn affect grasp performance, as knowledge about the position of the head
and tail of the fish could provide information about the fish’ center of mass. How-
ever, the convenience of being able to generate a lot of training data, especially
in the early phase of the research period when the data needs of our application
was unclear, led us to focus on depth data alone. Intuitively, this also makes the
amount of data needed for training smaller, as the neural networks only have to be
sensitive or invariant to different geometric features and noise, not, e.g., lighting
conditions, different shadows, inter-/intra-class color variations and so on.
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3.1.1 Grasping with sliding windows

This section summarizes our work on grasp detection with sliding windows. In
this context, sliding windows refer to the act of "sliding" a detector, i.e., neural
network, over an image or a volume, processing each location in the input inde-
pendently. For instance, sliding a 2D-CNN over a 32 × 32 image will yield an
output with 32× 32 = 1024 detection-results1.

Grasping with sliding windows was done in three of our papers. In papers A and
C we train 3D-CNNs and in paper B we train a 2D-CNN for the task of grasp
detection in a cluttered and noisy environment. The 3D-CNNs are trained and
tested on the fish-picking task, while the 2D-CNN is tested on a similar task, bin-
picking of reflective steel cylinders. In both cases the main challenge is low quality
depth data, see Fig 3.1.

Figure 3.1: Left: The box of reflective cylinders used when testing in paper B. Right: An
example depth image from the test set, visualized as a surface plot.

Data acquisition and pre-processing

The data for all real world experiments presented in this section was acquired
with the use of depth sensors based on structured light projection. In paper C, a
realsense SR300 was used, while a Zivid camera was used in paper B. In paper A,
training and testing was done entirely in simulation.

By assuming a stationary scene, several images with different exposures can be
combined (HDR), and temporal filtering can be done on the results of multiple
images to get more accurate depth data. These techniques were used in paper B.
However, because we would like our system to be extendable to dynamic scenes,
we try to tackle the problem with noisy data mainly by the use of multiple view-

1Assuming a stride of 1 and that the input is padded.
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points. Specular hightlights on reflective objects are dependent on the viewing
angle, i.e., the position of the camera relative to the objects, and more depth data
can therefore be acquired from the scene by taking multiple images from different
locations at the same time. In paper C we take 4 images from 4 different positions
by attaching the camera to the robotic arm and moving it in a known pattern, com-
bining the depth data acquired from all positions into a single point cloud. This
approach can be used in dynamic scenes by swapping the camera on the robot
for a calibrated camera rig trigging several cameras simultaneously (see 3.1.2). A
drawback of this approach is that the noise, in the form of wrong depth measure-
ments, from all depth acquisitions are accumulated in the resulting point cloud.
This noise often manifests itself as points in mid-air, or "thick" surfaces in the
point cloud. However, with sufficient overlap between the different depth images,
we find that this can be combated to some degree by voxelizing the volume and
setting a suitable threshold for what counts as an occupied voxel.

In addition to combating missing data because of specular highlights and reflec-
tions, the multi-view solution helps mitigate issues regarding occlusion. Objects
which are occluded from one viewing angle might be visible from another and in a
bin-picking setting it can be difficult to, e.g., get good depth measurements of the
insides of all 4 sides of the box from one viewing angle.

Generating training data in simulation

To generate the data needed for training we implemented a simulator based on
the Unity Engine [69]. In the simulator the physics of the objects were simu-
lated while the objects were poured into the bin, and depth images were rendered
of the scenes when the objects had come to rest. Grasps were not labelled per
scene, but rather, a set of candidate grasps were labelled beforehand, in relation
to the 3D models of fish and cylinders. When the objects had come to rest and
the images were rendered, the candidate grasps for each object were evaluated,
and the ones which didn’t collide with the environment were kept as valid grasps
for the current scene. Examples of non-valid grasps were also needed to train
the classifier/grasp-detection heads of the neural networks and these were simply
sampled in the volumes in locations not containing a valid grasp.

Discussion and Results

The neural networks trained in papers A, B and C were all trained as convolutional
sliding window grasp detectors. Meaning that a small receptive field was slid
over an input image (in the 2D case) or voxelized volume (in the 3D cases) and
at each location the neural network predicted the probability of the input patch
containing a valid grasp. Additionally, the networks output an offset from the
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center pixel/voxel and the orientation of the grasps, and together this constitutes
the full predicted grasp pose. The 2D-CNN of paper B predict the 5 DoF pose of a
suction gripper, while the 3D-CNNs of papers A and C predict the 6 DoF pose of a
jaw gripper. For more details on the specific architectures we refer to the original
work.

Importantly, in the sliding window approach to grasping, each location in the input
is processed independently from the others. The result is a list of grasps, one grasp
per input patch, with corresponding estimated probabilities of that patch actually
containing a valid grasp. In order to select the best grasp for a scene, one simply
selects the grasp with the highest predicted probability in this list. This means
that the systems cannot reason about the bigger picture and perform tasks like,
e.g., "pick the biggest fish in the pile". However, working with small receptive
fields independently can be advantageous in some cases, because the state space
the neural network needs to consider is reduced. When sliding a 3D receptive
field over a volume, only the geometry within some 3D cube is processed by the
neural network. The smaller this cube is, the less variability is expected, which
in turn should make it easier for a neural network to learn a reasonable mapping
from input to grasp pose. Similarly, when sliding a small 2D receptive field over a
depth image, the state space is reduced by reducing the size of the receptive field,
but only in the image plane (x- and y-dimensions). The depth information in the
z-dimension (the direction the camera is pointing) is not affected by changes in the
size of the receptive field. Therefore, 2D-CNNs can be affected by irrelevant fore-
ground and background objects which CNNs, in general, are known to be sensitive
to [70].

We posit that all the information needed to predict a collision free grasp for an
object is available in a confined region around the grasp point, where the size of
this region is given by the size of the gripper used.

We find that both 2D-CNNs and 3D-CNNs can be used to predict grasps with re-
latively small receptive fields in our considered domains. However, both of the
networks make mistakes when tested on the real robot. Out of the two approaches,
we find the 3D-CNN of paper C’s errors easier to explain. In general, the 3D-CNN
is very good at avoiding collisions with the observable part of the environment.
It also recognizes the orientation of the fish well, and predicts precise grasp ori-
entations and off-sets, placing the grasps precisely on the visible part of the fish.
However, for the fish picking case, the receptive field is not large enough to de-
termine the center of mass of the fish accurately. The neural network ends up
processing the different parts of the body of the fish independently and because a
large part of the fish has an almost cylindrical shape, the neural network is unable
to distinguish a part which is too close to the head- or tail-end from a part suitable
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for grasping. Therefore the fish is often grasped too close to the head or tail, which
leads to the fish sliding out of the gripper.

Interacting with the environment by picking fish one by one inevitably introduces
a distribution shift in the test time data vs. the training data in the sense that the
configuration of fish in the box after a few picks will differ from the distribution
of fish in the training set. This happens because the state of the scene at test time
becomes conditioned on the policy of the grasping network, while the simulated
data is simply generated with different numbers of fish in the box. However, be-
cause the 3D-CNN processes small receptive fields independently, it is agnostic to
the global state of the scene, i.e., the environment state. And because the space of
observable states seems to be sufficiently covered in the training data, the neural
network works well, also in scenarios which are unlikely to have occurred in the
training data (see Fig. 3.2)

Figure 3.2: An unlikely case of an empty box with two fish lying on the sides of the box.
The neural network, being unaware of the global state of the scene, picks these fish like
any other fish within its small receptive field.

The main caveat of using 3D-CNNs for robotics is that voxelization introduces
a trade-off between the size and the resolution of the input volume. This leads to
slow inference speeds, which makes sliding window 3D-CNNs unsuited for closed
loop robotic control. The network trained in paper C uses more than 2 seconds to
predict grasps for a volume of 1.1m × 0.6m × 0.4m with a resolution of 5 mm

voxel ,
excluding the time needed for pre-processing.

The 2D-CNN is also quite good at predicting grasp poses relative to the steel cyl-
inders. It seemingly is able to infer the pose of the parts and as such it is able to
predict good grasps, even in the face of missing depth measurements at the grasp
position, which is often the case, see Fig 3.3. However, in our experiments, the
network is unable to consistently predict collision free grasps, even if the obstacles
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it collides with are within the receptive field of the network. The reasons for this
are less clear, but it is likely a combination of several factors. There might be
issues with the architecture of the neural network and it is also likely that the syn-
thetic training data differs too much from the real data distribution indicated by a
large drop in performance between the synthetic validation data and the real robot
experiments. Additionally, where the receptive field was relatively small in rela-
tion to the graspable objects in the fish-picking case, the opposite is the true for the
cylinder picking case. Meaning, that many cylinders fit within the receptive field
of the 2D-CNN, e.g., more than 10, contrasted with the fish-picking case where the
receptive field was too small to cover a single fish. This means that the network
needs to be invariant to large amounts of background clutter. With this many ob-
jects visible to the network at the same time, inaccurate simulation of the physics
and interaction between the different objects can also come into play and lead to
differences in the simulated and real data distributions. With the simulator being
simplified, it is therefore likely that there are parts of the state-space visible to the
neural network at test time which are out of the training distribution.

Figure 3.3: Left: The neural network is able to predict grasps (white ball represents con-
tact point and the red arrow the approach vector) by inferring the pose of the parts. Right:
The robot performing a grasp.

Conclusion

In this work, we experiment with the use of sliding window approaches for pre-
dicting 5 and 6 DoF grasps directly from 2D depth images and 3D volumes in
cluttered and noisy domains. In particular, we find that 3D-CNNs are capable
of learning good mappings from volumes to grasps, demonstrating good implicit
obstacle avoidance and robustness to the type of noise typically seen in 3D-data.
However, there is a trade-off between the size and resolution of the input volume
which leads to slow inference speeds even for moderately sized volumes. As such,
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3D-CNNs are not practical to apply in a sliding window fashion for large input
volumes.
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3.1.2 Grasping with attention

In section 3.1.1 we concluded that 3D-CNNs are able to learn good grasps which
avoid collisions, directly from a voxel grid. Additionally, training on synthetic data
sets seems to sufficiently cover the input space for networks with small receptive
fields, allowing the system to work on real data and unseen states. However, em-
ploying 3D-CNNs in a sliding window fashion leads to slow inference speeds and
a neural network which lacks global context awareness, making it unsuitable for
more complex tasks, beyond detection. In paper D we address these issues and
move towards a more flexible grasping architecture, which can be extended to
general robotic control.

Volumes are often sparsely populated. Let’s consider a typical automation task:
Pick and place operations. In these settings, usually, the work space of the robot
will contain a table, some objects lying either on the table, or in some sort of
container, e.g., a box, and the task is to move these objects to another destination,
perhaps assembling something from the picked objects. Depending on what part
of the task the robot is currently performing, different parts of the volume might
be of importance. If the robot is about to reach into a box to pick a small object,
then the immediate area around the object’s location is most important in order
to avoid collision and pick the object successfully. When the object is picked,
however, the part of the volume where the object used to be is suddenly irrelevant.
The important part for the next step is the destination where the object should be
placed.

In general, the entire workspace of a robot does not need to be processed with
the same amount of scrutiny. Some parts might be irrelevant, while millimeter
precision is needed in others. The challenge is that there is no way of knowing
which parts of the volume that are of importance in advance. However, there
might be some areas of the volume that are more likely to be of importance than
others. For instance, consider the table in front of the robot in the pick-and-place
case. It is more likely that an object-to-be-picked is lying somewhere on the table,
than being under it or floating in mid air. Perhaps the object is usually located to
the left of the robot, while the destination for the placement is usually located to
the right. In such cases, searching over the surface of the table might be a good
idea. Different optimal search strategies might exist for different cases, and this
can be learnt from data.

In section 2.2.2 we introduced the Recurrent Attention Model as proposed by Mnih
et al. in 2014 [31]. In their work they trained a RAM on the "60x60 Cluttered
Translated MNIST" data set which consists of 28 × 28 pixel handwritten digits
pasted on a larger 60 × 60 pixel image with added noise. The resulting data set
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consists of sparsely populated binary images subject to noise, which are analogous
to slices in a voxel grid. They demonstrate that the RAM is able to successfully
focus its attention on the relevant parts of the input, ignoring clutter and classifying
the correct digit.

In paper D we propose using a RAM for grasping of fish in large volumes. The net-
work processes large volumes by sequentially attending to small regions of space
and building up an internal representation of the scene with a network structure
very similar to [32]. Then, the network predicts a probability distribution over
grasps, given the internalized representation. We achieve a higher success rate on
the comparable fish-picking task of paper C and simultaneously achieve inference
speeds compatible with closed loop control.

Further, as discussed in 3.1.1, the sliding window approaches to grasping lack
global context awareness, and as such, do not extend naturally to more complex
robotic tasks. In contrast, in paper D, we aim to condense the relevant information
in the input volume into a global task-relevant feature vector and use this vector
to predict a single grasp for the entire volume. This is in correspondence with the
“state-to-action” mapping needed for closed-loop control.

The Recurrent Attention Model for Grasping

The neural network of paper D uses a 3D-CNN with similar structure to the one
used in paper C as a feature extractor. However, instead of sliding the feature ex-
tractor over the entire volume, the 3D-CNN functions as a virtual sensor which the
RAM can deploy at different locations in the volume to encode the content of the
volume at that location. The RAM processes the volume sequentially by deploying
the virtual sensor at different locations, building up an internal representation of
the work space, conditioned on the task at hand, see Fig. 3.4.

Initially, the network receives the raw, unfiltered, point cloud, and deploys the
virtual sensor at a random location l0 in the volume. A 15cm × 15cm × 15cm
sized crop centered at the location l0 is extracted, voxelized, and encoded with
the 3D-CNN into a 256-dimensional feature vector, z0. The RAM receives this
encoded feature vector z0, together with the location of the volume it encodes,
l0, and outputs the next sensor deployment location, l1. A new crop is extracted,
centered at location l1, and this process continues for a fixed number of time-steps,
N , where N = 10 in paper D. During this sequential processing of the point cloud,
the RAM can accumulate information about the seen locations in the volume in the
state of a Long Short-Term Memory (LSTM) cell. Lastly, on the final time-step,
the model predicts a grasp based on the accumulated state of the scene.

Because extraction of crops from a point cloud is a non-differentiable operation,



3.1. Grasping 29

Figure 3.4: The RAM processes the input volume sequentially by deploying a virtual
sensor at locations lt in the volume, extracting crops xt. At each time step, t, a new
location, lt+1, for the deployment of the virtual sensor at the next time step is predicted,
based on the current accumulated state of the scene, ht. On the final time step, N , the
accumulated state, containing information about the content and locations of each crop, is
used to predict a valid grasp for the volume, ĝ. The RAM also estimates the value of the
accumulated state V̂ (ht), which can be interpreted as how likely it is that the network has
seen a valid grasp.

the attention mechanism is trained with RL. The aim for the policy is to predict
positions in the volume, in which to deploy the virtual sensor, that are likely to
contain a graspable object. On each time-step, t, during the sequential processing
of the point cloud, the attention-head of the RAM receives the accumulated state of
the scene and predicts the parameters of a 3D-Gaussian. The predicted distribution
is sampled to produce the next the location in which to deploy the virtual sensor,
lt+1. The attention mechanism has an actor-critic structure, with the critic head
predicting the expected sum of discounted rewards, and is trained with Proximal
Policy Optimization (PPO) [71]. To enable faster learning, a dense reward signal
was designed based on the labeled grasps for the point clouds. On each time
step, t, the agent was rewarded with a reward of rt = 1 if at least one labeled
grasp was within the receptive field of the deployed sensor at the location lt, and 0
otherwise. This, essentially, incentivizes the model to search for valid grasps, and
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upon finding one, to keep the focus of attention on that part of the volume as it
collects more reward for keeping the grasp within the receptive field.

In order to minimize the number of parameters to train with RL, the 3D-CNN
encoder is trained separately as a variational autoencoder (VAE) and stays fixed
during training of the RAM, similarly as in [32].

A separate grasp prediction-head receives the accumulated state of the scene and
predicts a probability distribution over valid grasps on the final time-step. In the
previous work of papers A, B and C, this was framed as a regression problem,
where 9-dimensional vectors representing grasp poses were optimized with the
mean-squared-error-loss (MSE) between the predictions and the targets. This is
equivalent to fitting a Gaussian distribution, and it proved to be a reasonable ap-
proximation in the case with small 3D receptive fields. However, with the size
of the receptive field in this work, and in general when the RAM makes predic-
tions based on the accumulated state of the scene, this distribution is assumed to
be multimodal. Meaning, that there might exist several valid grasps given the cur-
rent state, while the average of these grasps might not be a valid grasp. Therefore,
the grasp prediction head in paper D is designed as a Mixture Density Network
(MDN) [72], which predicts the parameters of a mixture of Gaussians. In addition
to predicting the 6 DoF pose of the grasps, the network also predicts the gripper
opening for each grasp. For more details we refer to the original work in paper D.

Generating training data in simulation

As in the previous work, the neural networks in paper D are trained on synthet-
ically generated data for picking of fish in a bin. The data generating procedures
of papers A, B and C relied on 3D-models with predefined candidate grasps la-
belled relative to the objects. After physics simulation, these candidate grasps
were pruned for each object to remove the candidate grasps that were invalid for
the particular simulated run. While this approach ensures that all remaining grasps
are valid, it does not ensure that all graspable objects in the current scene contains
a grasp (as there might exist a valid grasp for an object not in the candidate grasps).
While this is fine when training sliding window detectors, it is not ideal when train-
ing a RAM. Because the RAM can attend freely to all parts of a given point cloud,
all possible grasps for that point cloud should be labeled to avoid noisy gradients.
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Figure 3.5: We employ an evolutionary algorithm to find the valid grasps for a scene. For
each fish, the EA tries to evolve an optimal grasp by iteratively replacing the least fit grasps
with modified versions of the most fit ones. The fingers of the gripper are approximated by
four rays (in yellow) which checks for collisions and is used to evaluate a grasps fitness.
Here the algorithm is run with rendered grippers for the entire population for visualization
purposes. In the top row, read from left to right, you can see the algorithm finding a valid
grasp for the first fish and moving on to searching for grasps for the next fish. This process
continues, and the bottom right image shows the resulting valid grasps for this box of fish.

To find all valid grasps for a given scene we assume that each graspable fish has
one optimal grasp and employ an Evolutionary Algorithm (EA) in order to find
this optimal grasp, see Fig. 3.5. If the EA is unable to find the grasp, the fish is
defined as not graspable. The fitness of a grasp was evaluated based on a set of
task-specific heuristics which included the distance from the grasp to the object’s
centre of mass, the orientation of the grasp relative to the part of the object between
the fingers, and the extent of collision between the gripper and the environment or
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other objects. As boxes of fish often are tightly packed, we find that allowing for
different amounts of collisions between the fingers and the fish, and the fingers and
the environment is crucial to the algorithm finding good grasps.

The sliding window 3D-CNN of paper C could be expected to work well on boxes
of fish lying in configurations not seen in the training data, because small parts of
the volume were processed independently. The same does not necessarily apply
when processing unseen types of inputs with the RAM, which has global context
awareness. The RAM might learn that fish are unlikely to be located in some
areas of the volume by training on the synthetic distribution, while this might not
be the case for the real distribution. Therefore, we attempt to make the synthetic
boxes of fish as similar to real boxes of fish as possible. However, at test-time, the
robots actions will influence future distributions because of the sequential picking
of fish, and this cannot be simulated beforehand. The robot will pick the fish
it considers to be most likely to contain a valid grasp first (as measured by the
estimated value of the current state by the critic), and as the robot picks fish out of
the box one by one, it will bias boxes with fewer fish in them towards containing
"more difficult" grasps. To address this issue we make assumptions about which
types of grasps that might be considered "more difficult" by the model, and bias
boxes with few fish in them towards containing more of these types of grasps.
We assume the most difficult grasps would be the ones, where very precise grasp
placement is required in order to grasp the fish and avoid collisions. Therefore, in
order to address the possible distribution shift between the synthetic and real data,
we ensure that simulated boxes with few fish in them are biased towards containing
fish close to the walls and corners of the box.

During training of the RAM we augment the point clouds with ±180 degree ro-
tations around the world-z-axis, ±15 degrees on the other other two, left-right-
flipping, and random translations of ±200 mm on the x- and y-axis and ±50 mm
on the z-axis. Additionally, random point-noise was added to all points.

To create the data set for training of the 3D-CNN as a VAE, different crops were
extracted from the synthetic point clouds. They were extracted from random loc-
ations in the volumes, but with a bias towards the parts of the volumes containing
valid grasps. This was done on the intuition that it is most important for the 3D-
CNN to encode the regions surrounding valid grasps precisely. Random rotations
and random amounts of point noise were added before voxelizing the crops into
32× 32× 32 voxel grids,
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Discussion and Results

In paper D we improved the data acquisition pipeline from paper C and calib-
rated an inward facing camera rig with 6 Intel Realsense D415 cameras with over-
lapping field of views (FOV) covering the robots work area. To further improve
processing speeds, no global pre-processing of the point cloud was done, but a
suitable threshold for what counts as an occupied voxel, as discussed in 3.1.1, was
used locally, when voxelizing the small crop extracted by the virtual sensor. Com-
bined with the RAMs inference speed, which is decoupled from the size of the
input volume, the result is a system which can process point clouds with more
than 6 million points, at a speed of 15 Hz, including acquisition times. This indic-
ates that the proposed system can be used for closed-loop control, which is the key
motivation for this approach to grasping.

For the case of open-loop grasping of fish, fast inference speeds enables us to pro-
cess the same point cloud several times independently and select the grasp which
the RAM is most certain of, as estimated by the critic-head. Because multiple in-
ferences on the same input can be done in parallel without need for re-acquisition
of data from the camera rig with subsequent data transfer to the GPU, we can
process each point cloud 150 times without affecting the speed of the experiment.
Because of the stochastic nature of the policy and the random initial deployment
position for the virtual sensor, this will yield 150 different grasp predictions.

The result of the experiments done in paper D is a grasp success rate of 95 %
and a task success rate of 100 % (succeeding on second try for grasps that were
unsuccessful on the first and emptying all boxes) on the fish-picking task. An
example of a predicted grasp from our experiments is shown in Fig. 3.6.

The RAM is able to search the volume to find graspable fish and predict successful
grasps based on the seen parts of the volume. In a domain subject to noisy inputs,
where the gripper is supposed to be very close to obstacles, often slightly touching
the walls of the box, it demonstrates impressive implicit collision avoidance (see
Fig. 3.7). During the entire main experiment, and the initial debugging phase with
several differently trained models, it never predicted grasps which would collide
severely with the environment.

Notably, in the data set, which the model was trained on, the simulated boxes
never contained more than 15 fish, while in the experiments of paper D, the boxes
were filled with 30 fish. This means that about half of the predicted grasps in
the experiments were predicted based on an environment state which was OOD
wrt. the training data. Additionally, the real-world point clouds are subject to
distractions never seen in simulation, such as the robot itself and the camera-rig.
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Figure 3.6: An example of a point cloud from the experiments conducted in paper D.
The overlaid boxes shows the regions of the volume which the RAM attends to, and a
3D-model of the gripper shows the predicted grasp. Top left: The robot performing the
task

The attention mechanism, however, seems to be effectively filtering out all of these
distractions and by simply attending to the surface of the pile it is agnostic to the
number of fish under the surface.

The grasp prediction head seems to have learnt a good multi-modal distribution
over grasps. It does not appear to affect the precision of the predicted grasps when
several fish are visible within the receptive field of the encoder2.

In the experiments of paper D, the robot automatically stopped picking upon empty-
ing the boxes because the critic-head predicted a low value for the state, i.e., the
processed volumes were unlikely to contain valid grasps. Keeping in mind that
each empty box was processed 150 times in order to actively search for grasps,
this indicates some robustness and that the critic has learnt a good value function.

The attention head appears to have learnt to process the volume from left to right
in its search for graspable fish. If it encounters what it believes to be a graspable
part of a fish, it will keep its attention on it, predicting the remaining virtual sensor
deployment locations around the same location. If, by chance, the initial random
sensor deployment location happens to contain a graspable fish, the same happens,

2With the receptive field being of size 15cm×15cm×15cm, usually no more than two graspable
parts of fish are visible at the same time.
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Figure 3.7: The robot performing a grasp predicted by the RAM. Often, as hypothesised
in Sec. 3.1.2, after a few picks, the remaining fish in a box are lying along the walls.
In these cases, the trained model consistently displays good obstacle avoidance, slightly
touching the side and the bottom, as it has to, in order to grasp successfully.

and the RAM focuses its attention on the graspable part of that particular fish for
all time steps. This is sub-optimal wrt. the actual goal of the system, which is to
predict precise grasps, as there might exist an even better grasp somewhere else
in the volume, or more information which could be useful for the already chosen
grasp. However, it is expected behaviour with the designed dense reward signal
rewarding the agent per time step for keeping the graspable part of a fish within
the receptive field.

Most of the errors observed are as a result of slightly imprecise grasp placements
either along the long axis of the fish or in the approach direction of the grasp. In
these cases, respectively, the fish are grasped either too far from their center of
mass, or they are not sufficiently inserted into the gripper, and the result in both
cases is that the fish slips out during transport. This likely happens because the
grasp prediction head lacks the information needed to infer the full pose of the
fish. The policy head is rewarded for deploying the virtual sensor on the graspable
part of a fish, not for deploying it in all the locations which could be useful to
predict a precise grasp for that fish. For instance, it could be useful for the grasp
prediction head to know the position of the head and the tail of a fish in order
to find the center of mass precisely. However, as attending to these parts of the
volume is not incentivized in any way for the attention policy, these things are not
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seen by the network and thus unknown also for the grasp prediction head. The
solution to this is to modify the reward function. There are several ways of doing
this, especially when training in simulation where the full state of the scene is
known, and could be used to design a different dense reward signal. However, the
most general solution would be to design a sparse reward signal directly coupled
to the actual goal of the task, i.e., the quality of the predicted grasps, at the cost of
longer training times.

Figure 3.8: Top row: One of the failed picks from paper D. Bottom row: The next pre-
dicted grasp which successfully picks the fish. Inset image on both rows: The point cloud
visualizing the sequential processing with a set of boxes and the predicted grasp with a
3D-model. As shown, in both cases the RAM attends to the inside of the box, moving
from the bottom left corner, up towards the top right, where it finds the fish.

Even if the learnt attention policy isn’t optimal wrt. the task of precise grasp
placement, the end-result is very good on the challenging task of bin-picking of
fish. Even when a grasp fails, the stochastic nature of the policy allows the robot
to "try again" and in the experiments of paper D, it never makes the same mistake
twice. A failure case is shown in Fig. 3.8. In this case, the last fish in the box
is lying in a rare configuration in one of the corners of the box. Additionally, the
fish is lying with its belly up, making it more difficult to pick the fish because this
part is very soft (in general a grasp closing only on the belly of a fish will likely
fail, while a grasp closing on the more firm back of a fish has a larger chance
of success). On the first attempt, the robot attempts a grasp, but as the fish isn’t
inserted far enough into the gripper, the gripper ends up "pinching" the belly and
the fish slides out when the robot retracts. On the second attempt, even though the
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state of the box hasn’t changed much, the RAM is able to predict a grasp which
successfully picks the fish.

Both the RAM and the separately trained 3D-CNN encoder were trained entirely
on synthetically generated data. A total of 2000 point clouds were created with
the total number of grasps in the data set counting 9887. Considering that all
parameters were trained from scratch, this is not a very large training set, by
computer vision standards. We hypothesise that the stochastic sampling of the
volume combined with the internal state of the RAM makes the network some-
what robust to over-training, because the network never truly visits the same state
twice. Additionally, the augmentations done to the point clouds during training
removes unwanted biases in the training set, both forcing the RAM to learn where
to look based on what it has already seen, and ensuring that the input space is suf-
ficiently covered for the grasp prediction head to learn good mappings from voxels
to grasps. Depending on the complexity of a given task, this opens up the possib-
ility for training of RAMs on real data, removing the need for realistic simulated
data and labels, which could be costly to obtain.

Conclusion

By learning to attend to the relevant parts of the volume we achieve a grasp success
rate of 95 % on the fish picking task, similar to the one in paper C, an increase of 15
percentage points relative to the results of paper C. Additionally, the robot recovers
from its errors and successfully empties all boxes in our experiments. With this,
we demonstrate that the RAM can be used for robotic grasping with large point
clouds in a cluttered domain.

Where the sliding window approaches described in section 3.1.1 were robust to
OOD-states because they were unaware of the full state of the scene, the RAM
displays robustness to unseen states while maintaining global context awareness,
which makes the system suitable for more complex tasks. Simultaneously, we
achieve processing speeds which could enable processing at 15 Hz for point clouds
with more than 6 million points. This leads us to believe that the RAM is well
suited as a feature extractor for robotic applications dealing with point clouds in
general, as it is fast, can keep fine detail about some areas of the work space,
while on the other hand, filtering out distractions and being robust to noisy depth
measurements.
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3.2 Closed-Loop Control
In section 3.1 we tackled the problem of grasp detection. In the presented works,
grasps were predicted based on the state of the scene as captured by depth cam-
eras, and the predicted grasps were performed by the robot in an open-loop fashion.
With this approach to grasping there is a fundamental underlying assumption: That
everything is lying perfectly still, i.e., that the scenes are static. While true initially
for many pick and place tasks, it might not be true as soon as the gripper comes
into contact with the objects it is going to grasp. Indeed, in paper D, one of the
main reasons why grasps fail is movement in the box between the time of grasp
prediction and closing of the gripper. When this happens, the state of the environ-
ment, and thus the conditions on which the predicted grasps were based, changes.
The robot, however, unaware of this state change, continues towards the predicted
grasp and attempts to pick the object based on outdated information about the ob-
jects whereabouts. This is a fundamental limitation of the open-loop approach to
robotic control and if we want a system that is able to react to changes in the scene
we need to close the loop.

Often times, robots need to be able to operate in dynamic and unpredictable en-
vironments, and in such cases, closed-loop control is essential. With closed-loop
control, the robot continuously senses its environment, i.e., acquires new data from
the depth cameras, which enables it to respond to changes in the scene and perform
more complex tasks, such as, e.g., pushing and pulling of objects. This feedback
from the environment during execution of a task gives the robot the means to com-
pensate for errors and disturbances as they occur during execution.

In particular, in this section we re-purpose the RAM of Sec. 3.1.2 for the task
of visual servoing. We modify the architecture of paper D and use the modified
RAM to predict end-effector velocities, rather than grasps, directly from the point
cloud data. We chose to work with velocities as a wide variety of robotic manip-
ulation tasks can be described by sequences of velocities. However, the system
has limitations, as it has no notion of force or torque it cannot perform tasks like
e.g., apply x Newtons of pressure to an object. However, by working with velo-
cities the training pipeline becomes independent of the dynamics of any specific
robotic platform. This makes it easier to create training data in simulation, as in
previous work. We assume that the robot controller is able to follow the given
velocity commands with little error and take care when creating the data sets to
simulate velocities and accelerations that are well within the limits for the robot.
Further, working with velocities also makes it easy to create data sets without sim-
ulation, through demonstration by teleoperation with a handheld controller without
the need for haptic feedback.
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In Sec. 3.1.2 we concluded that the RAM has several desirable properties which
makes it well suited as a feature extractor for generic robotic manipulation. These
properties can be summarized as follows:

• It can process large point clouds at relatively high speeds.

• It has global context awareness and can learn a mapping from arbitrarily
sized volumes to a single action.

• It can extract precise features which keeps fine detail about areas of interest.

• It can ignore irrelevant parts of the volume which can make it easier for a
model to generalize to OOD-states.

• It is robust to sensor noise and missing values in depth data.

In the following sections, preliminary, unpublished work is presented to demon-
strate how the RAM can be used for closed-loop control. In contrast to the the
work in section 3.1, which focused on an unsolved real world automation case, the
following work focuses on simpler "toy examples" to explore the capabilities and
limitations of the proposed system.

In particular, the research in this section addresses the following:

• How to modify the proposed RAM architecture for closed loop control.

• How to reward the attention mechanism for processing of point clouds for
robotic control.

• Is the RAM able to attend to multiple objects and infer velocities based on
relative distances?

• Is the RAM able to select what it should focus on based the current state of
the environment?

• Can the high correlation between subsequent point clouds be exploited to
enable faster control loops?

In order to address the outlined research questions, we design two simple example
tasks for the robot to execute. The following two sections are dedicated to specific
subsets of the research questions, with each section aimed at solving one of the
designed example tasks.
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In Sec. 3.2.1 a task is designed such that the robot has to steer the end-effector to a
specific position, with the gripper placed over a block as if to grasp the block. The
section is aimed at addressing the first three questions listed above.

In Sec. 3.2.2 the task from the previous section is extended to a pick and place
task, where the block has to be picked up and placed on top of a larger cube. This
section primarily addresses the last two questions listed above, but also touches
upon the other questions.

Caveat: In the following sections, qualitative results are presented based on pre-
liminary tests and experiments. However, we find it helpful to include these ex-
periments in the thesis as they highlight the motivations and future direction of the
research.
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3.2.1 Visual servoing in large point clouds with the recurrent attention model

In this section we design a simple RAM for the task of predicting end-effector
velocities directly from point clouds. The RAM processes point clouds similarly
as discussed in Sec 3.1.2, by predicting locations in the volume in which to deploy
a virtual sensor. As before, it processes the point cloud by deploying the virtual
sensor, i.e., attending, to a total of N = 10 locations, building up an internal
representation of the scene in the state of an LSTM. On the final time step during
the sequential processing, the model predicts a 3D end-effector velocity which is
sent directly as a velocity command to the robot. In order to test the proposed
system, we consider a simple task, where the robot has to position its gripper over
a block, shown in Fig. 3.9.

Figure 3.9: The test setup for the experiment in this section. The task for the robot is
to position its gripper over the block, so that if the gripper is closed, the object would be
grasped successfully.

When doing visual servoing from, essentially, a point cloud video, there is high
correlation between consecutive point clouds, which could be exploited by the
model. However, in the work presented in this section, we process each point
cloud independently and by doing so, we can train the model with simple super-
vised learning, i.e., behavioural cloning (BC), from static, labelled, point clouds.
We expect that it is easier to cover the space of possible inputs and outputs in the
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training data when learning a mapping from point clouds to actions rather than
sets of point clouds to trajectories. In turn, this should make it easier to avoid
over-fitting and significantly reduce the time needed for training. There are, how-
ever, good arguments for keeping information about the state of the scene between
consecutive point clouds, and we address this in Sec. 3.2.2.

The main difference between the work of this section and the work presented in
Sec. 3.1.2 is the processing speed requirements. In this work we aim for a control
loop of 10 Hz, meaning that the total time spent on data acquisition, data transfer
and processing has to take less than 0.1 seconds.

In the work of paper D, the processing speeds of the RAM could be exploited by
processing each point cloud 150 times before attempting a grasp based on the most
certain prediction. This was necessary because, given the limited receptive field of
the virtual sensor and the size of the volume the model needed to search over, no
attention policy could be learnt which would guarantee that the graspable object
was found every time. The fast processing speeds, however, allowed us to rely on
the stochasticity of the model and the initial random sensor deployment location to
find all graspable objects. When doing visual servoing, the RAMs fast processing
speeds are needed in order to meet the speed requirements for closed-loop control,
and thus we cannot afford to process each point cloud several times. Therefore,
the RAM needs to learn an attention policy which can reliably find the objects of
interest, every time it processes the volume. In order to enable this, the model
needs a larger receptive field, so it can cover the volume in as few as 10 processing
steps. However, at the same time it needs the extracted crops to have high enough
resolution to allow for precise robotic control.

Based on these criteria we modify the virtual sensor. Following [31] and [32]
we modify the virtual sensor, so that when deployed at location lt in the volume,
it extracts, not one, but two crops, centered on lt at different scales, xfocus and
xcontext. The crop with the smallest receptive field, xfocus has a size of 30cm ×
30cm× 30cm, while the one with the larges receptive field, xcontext, has a size of
90cm×90cm×90cm. Both of these extracted crops are voxelized into voxel grids
of size 30× 30× 30, yielding a resolution of 1cm/voxel for xfocus and a coarser
resolution 3cm/voxel for xcontext. Given the size of the work-space of the robot,
the two extracted crops together should enable the RAM to extract the information
necessary, both for finding the objects of interest and to precisely control the robot.

The goal for the RAM in this work is two-fold: 1) Find an optimal policy for
deployment of the virtual sensor in the volume. 2) Predict precise end-effector ve-
locities given the set of partial observations of the volume. In contrast to the work
presented in Sec. 3.1.2, where the 3D-CNN encoder was trained separately, in this
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work, we train the entire model from scratch. Additionally, in this work, we do not
hand-design a dense reward signal, but rather use a sparse reward signal directly
coupled to the level of success on the velocity prediction task. Therefore, in order
to simplify training and to avoid complex weighting of different losses, in this work
we essentially train two models in parallel. One model, the attention network, is
trained to find the optimal attention policy π∗ for deployment of the virtual sensor,
and the other, the velocity network, is trained to predict the end-effector velocities,
see Fig. 3.10. As discussed, the attention network needs a large receptive field in
order to effectively search the volume, and similarly, the velocity prediction net-
work needs a high resolution input in order to predict precise velocities. Thus, the
attention network, the model tasked with learning the optimal policy for extraction
of crops π(lt+1|sπ), does so based on the state, sπ = (xcontextt , lt, h

π
t−1), where

xcontextt is the large receptive field extracted by the virtual sensor on location lt
at time step t, and hπt−1 is the hidden state of the LSTM of the attention network
from the previous time-step. Similarly, the velocity prediction network predicts
the velocity of the end-effector, ŷt = fvel(x

focus
t , lt, h

fvel
t−1), based on the small re-

ceptive field extracted by the virtual sensor, xfocust and the hidden state, hfvelt−1 , of
a separate LSTM-cell. Both networks have Multi Layer Perceptron (MLP)-heads,
where the attention network predicts the parameters of a Gaussian distribution and
the velocity prediction network predicts a 3D velocity vector.

In summary, two separate networks, the attention and the velocity prediction net-
works, predict the next sensor deployment location lt+1 and the velocity for the
end-effector ŷt. This separation of responsibilities allows for easier training with
different gradient signals. We do stress, however, that for more advanced tasks,
the attention network should have access to the high resolution features as well, as
the coarse resolution of xcontext might limit the attention networks ability to know
what it is focusing on.

The velocity prediction network predicts a 3D vector representing the velocity of
the end-effector. In this preliminary work we keep the orientation of the gripper
fixed. The network is trained with the MSE-loss between the true and predicted
velocities, which is fine in this case because the target policy for the robot is known
to be unimodal (see Sec. 3.2.1).

The attention network is trained with the standard REINFORCE algorithm [73],
as in [31], and in contrast to paper D, without a critic. A sparse reward is given
at the final time step N = 10, and is calculated as the clamped negative l1-loss
between the predicted and labelled velocities, rt=N = min(c,−|y − ŷ|), where c
is the clamping threshold. As such, the reward for the policy is directly coupled to
how well the velocity prediction network is able to predict correctly, and a perfect
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Figure 3.10: In this work we decouple the velocity prediction task from the task of learn-
ing to sequentially process the volume, meaning that no parameters are shared between
the two tasks. We train two networks simultaneously, where the attention network (green)
predicts the next position to deploy the virtual sensor, lt+1, while the velocity network
(red) predicts the end-effector velocity v̂ on the last time-step N , based on the sequence
of observations. The attention network takes the largest receptive field, xcontext

t , as input
and the velocity network takes the smallest, xfocus

t . Both networks keep their own accu-
mulated states of the scene, hπ

t and hvel
t , respectively.

velocity prediction would yield a reward of 0, and an erroneous prediction would
yield a negative reward. The complete advantage for the policy for each time step
is calculated as the discounted sum of future rewards.

Generating training data in simulation

In order to test the proposed system, we design a simple task, where the robot has
to position its gripper over a block, as shown in Fig. 3.9. The model is trained on
a synthetically generated data set of point clouds and corresponding end-effector
velocities. The target velocities are given based on the relative position between
the end-effector and the target block. In order to achieve the given task, the RAM
needs to find and encode the sub-volume containing the block together with its
location, and find and encode the sub-volume containing the gripper together with
its location. Subsequently, it needs to infer the relative distances between the ob-
jects to predict an appropriate velocity for the end-effector. Additionally, the RAM
needs to reason about obstacles in the robots path and adjust its predictions in or-
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der to avoid collisions. To test the RAMs capability of detecting and avoiding
obstacles, we consider two types of simple obstacles: 1) A plank placed horizont-
ally between the robots end-effector and the target block. 2) The robot base. In
order to avoid collision with the plank, the RAM needs to adjust the predicted ve-
locity in order to pass over it. Similarly, the robots own base might be an obstacle
if the object and end-effector are located on opposite sides of the base, and the
RAM needs to adjust the prediction to go around the base to avoid collision.

Figure 3.11: The data sets used for training were generated in simulation. The velocity
for the end-effector is given by the relative position between the target block and the end
effector. Left: The virtual robot regulating towards a way-point above the target block.
Right: The velocity given by the controller would lead to a collision with the plank, and is
adjusted so that the end-effecor passes over.

The experimental setup is designed in such a way that the environment state has the
Markov property, meaning that the correct velocity for any point cloud is directly
observable from that point cloud alone. Additionally, as there is only one target
block in each scene, there is only one correct velocity for each point cloud. In
simulation, the velocity for the end-effector, i.e., the labels for the training set,
are simply set by a proportional (P-)controller, regulating towards a target pose
based on the error in position et = target_post − ef_post. Initially, the target
position for the regulator is set 10cm above the block as a way-point, and when the
end-effector comes within a threshold distance of this way-point, the final target
position is set. The final target position is set such that if the gripper is closed, the
object would be secured in the gripper, i.e., equal to the way-point position, off-set
by −10cm in the world z direction. If the velocity, as given by the P-controller
would lead to a collision with the plank, the velocity is simply off-set so that the
gripper passes over (see Fig.3.11). Similarly, if the velocity given by the controller
would lead to a collision with the robot base, the velocity is adjusted so that the
gripper passes around the base, in front of the robot. During simulation, point-
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cloud-velocity-pairs were extracted at 2 Hz to create a data set of 20 000 training
examples, and the velocities were clamped at a conservative speed.

Discussion and Results

To test the proposed system, the camera rig of paper D was used to acquire a
point cloud with more than 6 million points. The point cloud was given without
pre-processing to the RAM, which in turn predicted velocities which were sent
directly to the robot as velocity commands. With this setup, we achieve a 10 Hz
control loop.

The attention network π has learnt to process the volume in front of the robot
from left to right. It starts on the left side of the table and moves step by step
to the right, tracing down the center line of the table. When one of the objects
of interest (either the gripper or the target block) comes into view of the large
receptive field xcontextt , the attention deviates from the center line and is focused
around the object of interest for a varying number of time steps. Subsequently,
the attention returns to the center line of the table in search for other objects of
interest. If not already observed near the first object, the same thing happens when
the second object comes into view of the large receptive field. Interestingly, the
attention never leaves the surface of the table, and is always placed at a height
which ensures that the small receptive field, xfocust , both encapsulates the surface
of the table and, if present, the gripper. An example is shown in Fig. 3.12 and
more examples are given in Appendix A. The model seems to have learnt a robust
policy, which successfully locates the objects of interest in our experiments.
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Figure 3.12: The RAM has learned to process the volume from left to right with the
receptive field of the focus network placed on the table surface. The red arrow indicates
the predicted velocity towards the graspable object. (The point clouds are cropped and
subsampled for visualization.)
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When the model is allowed to control the robot at test time, it is able to steer
the robot directly towards the target block and place the target block between the
fingers of the gripper, see Fig. 3.13. However, it sometimes spends more time on
the final part of the trajectory than the robot does in simulation, i.e., when placing
the gripper around the target block on the way to the final target position. Because
the robot has no notion of its own speed and predicts velocities directly from a set
of samples taken from a noisy point cloud, it is subject varying amounts of jerky
movement. As the gripper opening only has a 0.5cm clearing between the fingers
and the target block on both sides, very little jerky movement is tolerated in the
final phase of the trajectory. The model therefore, keeps regulating the gripper
back and forth sometimes, before deciding to go down. However, considering the
noisy input, and that the target object is to some degree occluded by the gripper,
the velocity prediction network has learnt to predict, to us, surprisingly precise
velocities based on the extracted set of observations from the point cloud. By
doing so consistently, it also confirms that the attention network has learnt a robust
policy for processing of the volume, as the velocity network would not be able
to predict precise velocities without observing the objects. Some examples of
predicted velocities for different environment states are visualized in Fig. 3.14.

Figure 3.13: The robot executing the task at test-time. The robot is able to consistently
place the gripper over the target block, when the block is moved around in the work space.

The model has also learnt to try to avoid collisions, although it does not always
succeed (see Fig. 3.15). The model consistently adjusts the predicted velocities to
account for the obstacles, but not always sufficiently, especially when navigating
around the robot base or very close to the plank. This could likely be improved
by having larger margins when avoiding collisions in simulation during data gen-
eration. In simulation, the end-effector always takes the shortest path around the
obstacles, which leaves very little room for error for the robot. Additionally, the
controller in simulation accounts for the obstacles from the very beginning of a
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Figure 3.14: The red arrow indicates the predicted velocity towards the graspable object.
(The point clouds are cropped and subsampled for visualization.)

trajectory (i.e., when still far away from the obstacle), slightly adjusting the velo-
city in order to closely pass by the obstacles. The result is that the robot very rarely
gets close to the plank while still being close to the table, and similarly, the robot
rarely gets close to its own base when the target block is located on the opposite
side of the base initially. In fact, the only time this happens in the training data is
when, by chance, the initial conditions of the scene happens to be such that this is
the case. E.g., the end-effector is instantiated very close to the plank and close to
the table, with the object on the other side of the plank. In the extreme case, when
the gripper is almost touching the plank, the correct velocity to predict would be
one pointing directly upward, or perhaps slightly in the opposite direction of the
plank and the object. However, as the robot in simulation never gets this close to
the obstacles, it never needs to take these types of corrective action and, thus, these
types of examples do not exist in the training data. Therefore, during execution,
as the errors in the velocity networks predictions compound over time, we get a
distribution shift. There are several ways of addressing this issue, and the simplest
solution would be to sample these difficult environment states more often in sim-
ulation. Alternatively noise can be added to the simulated trajectories similar to
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DART [40], with the result in both cases being training examples in the data set
for corrective actions. Another approach would be to do online RL either in the
real world or in simulation in order to fine tune the velocity prediction network.

Figure 3.15: Avoiding obstacles. Left: The model tries to avoid colliding with the plank
by predicting the velocity visualized by the red arrow. This velocity, however, might still
lead to collision, or just barely miss, and as such, the model should ideally predict a larger
z-component to be on the safe side. Right: The model has also learnt to adjust the velocity
in order to avoid colliding with the robot base, but the end-effector, in general, ends up
passing a bit too close too the base. (The point clouds are cropped and subsampled for
visualization.)

For the simple example task tested in this experiment, the model shows quite good
data efficiency. The data set the model was trained on was gathered by capturing
point clouds at 2 Hz while the robot was executing the task in simulation. This only
amounts to about 2,8 hours of real-time simulation which indicates that it might
be feasible to gather the needed amounts of training data in the real world. It is
impractical to create new simulations for each new scenario, and for more physics
dependent tasks than the one considered in this work it can be very difficult to make
the simulators accurate enough. The possibility of learning from demonstrations
in the real world, e.g., by teleoperation, is therefore appealing. However, the data
needs will vary with the complexity of the tasks, and simulation will likely remain
a very useful tool during further development.

Conclusion

In conclusion, the attention network has learnt to process the input volume effect-
ively in a way that enables the robot to complete the task. It consistently finds
the gripper, target block and obstacles, and these are the only things affecting the
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labels in the training set. We achieve a 10 Hz control loop when processing each
point cloud independently, and hypothesize that even faster control loops can be
enabled by exploiting the high correlation between subsequent point clouds.

The velocity network has learnt a robust mapping from the observations given
by the attention network to velocities when no obstacles are present. The model
is capable of remembering positions, inferring relative distances and predicting
the correct velocities. However, the robot is not always successful in avoiding
collisions, because of the distributional shift introduced at test-time by following
the robots policy. We do, however, not take this as a evidence against the use of
RAMs for robotic control, as it is a known problem with offline training of agents
in general.
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3.2.2 Visual servoing using the recurrent attention model with
memory through time

In this section, we further motivate the use of the RAM for closed loop control,
by demonstrating that the model can learn to exploit object permanence, and thus
enable even faster control loops than shown in Sec. 3.2.1. By keeping memory
through time, the model can make assumption about the likely positions of objects
of interest, based on their positions in the previous point clouds, thereby allowing
for fewer processing steps per point cloud and overall faster processing.

Figure 3.16: The test setup for the experiment conducted in this section. The goal for the
robot is to pick up the small wooden block and place it on the larger blue cube.

Inspired by the data efficiency shown by the model trained in Sec. 3.2.1, we choose
to train the model in this section using only real world data gathered by teleopera-
tion of the real robot, i.e., learning from demonstration. Similarly as in the previous
section, the goal is to predict velocities directly from the point clouds and we con-
sider a simple pick and place task as a test bed for our approach. In this case, a
block should be picked up and placed on a larger cube, with both objects being
located at random positions on a table. The test setup for the experiment presented
in this section is shown in Fig. 3.16. A small experiment was done, where 100
trajectories were demonstrated with the teleoperated robot and 75 of these were
used to train a RAM and 25 were kept for validation. The main objective of the
experiment was to train the attention mechanism to attend to the important parts of
the volume, given the current sub-task, by keeping memory through time. The sec-
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ondary objective was to do imitation learning on the demonstrated trajectories. We
hypothesize that the filtering effect of the attention network might encourage the
velocity prediction network to learn a good mapping from point clouds to velocit-
ies, even with very little data, as the network has nothing else to base its decisions
on but the extracted, task-relevant parts of the volume.

We do a few changes to the architecture of Sec. 3.2.1 and a block diagram is
shown in Fig. 3.17. The main difference however, is that we no longer reset the
hidden states of the LSTMs between processing of different point clouds. This
enables the model to remember the locations of objects from the previous point
cloud when processing the next. Thus, it can exploit object permanence, i.e., the
high correlation between consecutive point clouds, and process each point cloud in
fewer steps. Specifically, in this experiment we reduce the number of processing
steps per point cloud, from N = 10 in the previous section, to N = 5.

Figure 3.17: The architecture of the model trained in this work. The encoders are shaded
to indicate that these are trained separately.

In this work we no longer assume that the target policy for the velocity prediction
network is unimodal. Because we are training on real demonstrated trajectories,
this can no longer be guaranteed and, in general, different operators may teleop-
erate the robot differently, and the same operator might also act differently each
time he or she visits the same state. Therefore, we swap the simple MLP used to
regress velocities in section 3.2.1 for an MDN-head similar to the one used to pre-
dict grasps in paper D. This allows the network to predict a multimodal probability
distribution over possible velocities given very similar or equal states.
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We also modify the attention network, which predicts the next virtual sensor de-
ployment location, by swapping the Gaussian policy head for the more expressive
MDN. To solve the given pick and place task, the attention network initially needs
to attend to the gripper and the target block, and upon closing the gripper, it needs
to shift its attention towards the drop point, indicated by a larger cube. As the
model in this work needs to attend to several objects we hypothesize that it can be-
nefit from a multimodal policy. Especially in "transition phases", where the model
needs to keep its attention on what it is doing at the moment, e.g., grasping the
block, while at the same having to explore the volume to figure out the next action,
e.g., find the large cube.

In this work, we add a critic head to the attention network, similarly as in Sec.
3.1.2. The critic estimates the value of the current state at time step t, i.e., the
expected sum of future rewards, V̂ (hπt ), given the hidden state of the attention net-
works LSTM, hπt−1, which crucially is not reset, so that it can contain information
from previously processed point clouds.

The attention network is trained with PPO, similarly as in paper D, with the excep-
tion that we do not reset the LSTM-state. Like in the previous section, the velocity
prediction network is trained supervised, through behavioural cloning and we keep
the orientation of the gripper fixed.

In the experiment described in this section, the model is allowed to deploy the vir-
tual sensor on N = 5 different locations per point cloud. On every N th processing
step, a velocity is predicted, and a new point cloud is acquired from the camera rig.
Subsequently, on every N +1th processing step, the model proceeds to process the
new point cloud, and this processing cycle goes on indefinitely. Initially, we let the
attention network "get its bearings" by processing the first 8 point clouds without
involving the velocity prediction network. This allows the attention network to de-
ploy the virtual sensor at 40 different locations in order to search for the important
parts of the volume. This can be done in less than 0.5 seconds when not voxelizing
or doing inference on the small receptive field with the velocity network. We find
that this effectively eliminates undesired erratic behaviour of the robot in the very
beginning of a new trajectory.

The encoders in this work are 3D-CNNs similar to the ones used in Sec. 3.2.1, and
are trained separately as VAEs, like the encoder in paper D. In this work, the large
crop extracted by the virtual sensor, xcontextt , is encoded as a 256-dimensional
feature vector, zcontextt = encπ(x

context
t ). Similarly, the smaller, high resolution,

crop is encoded by zfocust = encvel(x
focus
t ). The extracted crops for the context

and focus encoders have resolutions of 12mm/voxel and 6mm/voxel, yielding
receptive fields of 38.4cm and 19.2cm respectively. These receptive fields are sig-
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nificantly smaller than the ones used in Sec. 3.2.1. In the previous section, because
each point cloud was processed independently, we had to make sure that the net-
work could cover the entire work space of the robot with attention in only N = 10
processing steps. This was accomplished by setting the size of the receptive field
for the attention network relatively large. In this experiment, however, we can al-
low for smaller receptive fields as the model can keep memory through time and,
as such, does not need to process the entire point cloud every time. The large re-
ceptive field in this work is therefore more comparable to the small receptive field
in Sec. 3.2.1.

Small receptive fields for the 3D-CNNs lead to higher resolution inputs or faster
inference speeds, both of which are beneficial properties for robotic control. An-
other reason to keep the receptive fields small is to reduce the risk of over-training
on the limited amounts of training data. With only 75 demonstrated trajectories
used for training, we have only visited a very small sub-set of the total number of
possible environment states. As a receptive field is increased, a larger and larger
portion of this state is visible to the encoder, and we hypothesize that this could
lead to over-training on the seen environment states. By keeping the receptive
fields small, we ensure that the full environment state, e.g., containing informa-
tion about distances between objects and the configuration of the robot arm, does
not affect the encoding of small regions of the volume. The encoders job, should
rather be to encode small regions precisely, while the complete model with access
to many encoded sub-volumes and their locations should be able to approximate
the environment state. The model as a whole could still over-train, however, but the
stochastic sampling of the volume and the accumulated hidden state of the LSTMs
ensures that the model never truly sees the exact same state twice, which might
help mitigate the issue.

Both encoders, encπ and encvel, are trained as VAEs on programmatically ex-
tracted crops from the point clouds acquired through teleoperation. In order to
make sure that the encoders are able to encode "the most important parts" of the
volumes well, we take biased samples from the point clouds when building the
data sets used to trained them. We specifically consider the parts of volumes close
to gripper actions, i.e., locations where the gripper was opened or closed. On the
assumption that the location where a gripper action occurred is of interest in the
time leading up to that gripper action, e.g. that the graspable object is lying still,
we bias our sampler towards sampling around that location in the time leading up
to that gripper action. In our case, the result is a data set biased towards containing
extracted crops of both the graspable object and the drop position with the gripper
approaching at varying distances. The sampler is also biased towards sampling
around the current location of the gripper in addition to sampling random loca-
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tions spanning the entire work space for the robot. Before voxelizing and creating
the data sets for the VAEs we do heavy augmentations with ±180 degree rotations
around the world-z-axis, ±20 degrees around the x- and y-axis, random flipping
along the x- and y- axis3, varying amounts of point noise, point sub-sampling and
point duplication with additional noise added to the duplicates.

Data acquisition

We collect training and validation data by demonstrating the task by teleoperating
the robot with a virtual reality controller. During teleoperation, point clouds were
gathered at 30 Hz from a camera rig similar to the one used in Sec. 3.2.1. These
point clouds were stored with the corresponding target end-effector velocities, an-
gular velocities and gripper actions, and together they constituted the demonstrated
trajectories.

The task was demonstrated starting from different initial conditions, one of which
is shown in Fig. 3.16. We also demonstrate some recovery trajectories starting
from initial conditions based on likely failure states, i.e., states the robot is likely
to end up in which would not be covered by simply demonstrating the task. An
example of this would be that we start a demonstration with the gripper touching
the table next to the wooden block.

A total of 100 trajectories were demonstrated, and 75 of these were used for train-
ing, and the remaining 25 were used for validation. With the test setup being ap-
proximately bilaterally symmetric, we double size of the training set with left-right
flip augmentation. We also apply small random shifts in the point clouds of up to
±10cm on all axes during training. A side effect of this is that the robot base and
table are offset in the volume in ways which will not be seen by the network at test
time. We do, however, hypothesize that these shifts will keep the networks, and
particularly the attention network, from over-training on the exact locations of the
objects. As the target velocities are dependent on the relative distance between the
objects, rather than the absolute positions of the objects, the random shifts should
not affect the training labels.

The data acquired when demonstrating the trajectories were gathered at 30 Hz,
while the target for the control loop is to run at 15 Hz. Therefore, during train-
ing, we stride through the time dimension with a stride of 2 and simulate varying
amounts of jerky movement by randomly skipping forwards or backwards by up
to 15 time-steps, i.e., ±0.5 seconds.

3Although the gripper is not perfectly symmetrical, we treat it as such.
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Reward

The attention network in this experiment was trained with a dense reward signal in
order to decouple the performance of the attention network from the performance
of the velocity prediction network. This allowed for investigation of the main
objective of the experiment separately, namely the performance of the attention
mechanism with memory through time.

We assume that a sequence of actions consists of a set of independent sub-tasks.
I.e., that the picking part of a pick and place task can be executed without focusing
on the placing part. With this assumption we design a reward function which re-
wards the model for observing the robotic gripper and the next target position. In
this experiment, the next target position would be the wooden block while execut-
ing the part of a trajectory leading up to a grasp, and upon closing of the gripper,
the next target position would be the drop point for the wooden block, the blue
cube. We assume that all objects, except for the gripper, are stationary and this
allows us to find these target positions, ltargett , based on the demonstrated traject-
ories. We define gripper actions, as earlier, as the points in a trajectory where the
gripper is opened or closed. Specifically we set

ltargett = lgripper action
i , ti−1 < t ≤ ti, (3.1)

where lgripper action
i is the location where gripper action i occurred (e.g., the loca-

tion where the gripper was opened or closed), and ti is the time at which gripper
action i occurred.

In this case, we encourage the model to observe only its own gripper and the part
of the volume where next gripper action occurs, and ignore everything else. By
doing so, we ensure that the accumulated state of the scene in the velocity predic-
tion network contains only the information relevant to predicting the velocity. At
any point in time t, there are two interest points in the volume, the current loca-
tion of the gripper lgrippert and the location of the next gripper action, ltargett . We
design the reward function so that the optimal policy would be to alternate between
observing these two interest points:

rt = rseen(lt, l
gripper
t ) ∗ (1−G) + rseen(lt, l

target
t ) ∗G (3.2)

In Eq. 3.2, G determines if the agent gets a reward for observing the gripper or
the current target position by having G = 1 if the gripper was seen last and G = 0
otherwise. rseen determines the amount of reward the agent gets for attending in
the vicinity of the correct interest point and is given by
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Figure 3.18: The reward rt plotted as a function of the distance between the location of
attention lt and the location of an interest point lip. Here, s controls the threshold for when
maximum reward is given, and ϵ controls how the reward decays with distance.

rseen(lt, lip) = min(1, exp−d(lt, lip)− s

ϵ
), (3.3)

where d is the euclidean distance between the location of the deployed virtual
sensor, lt and the interest point, lip, s is the threshold for how close to the actual
interest point the attention needs to be placed in order to get the maximum reward
and ϵ controls how the reward decays with distance. The result is a reward of 1
if the location of attention is close enough to the location of the interest point to
regard the interest point as "seen" by the network and then it decays towards zero
with distance. A plot of how the reward changes with distance is shown in Fig.
3.18.

Discussion and Results

By reducing the number of processing steps, i.e., sensor deployment locations, per
point cloud we achieve a control loop running at 15 Hz. The attention network
has learned to attend to the gripper and target locations, and an example from the
validation set is shown in Fig. 3.19. The network is able to find the objects of
interest quickly, and also tracks them well through time. It has learnt to focus
solely on the gripper and the next target position, i.e., one sub-task at the time, as
incentivized by the reward function. When the gripper closes in on the graspable
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object, the model "goes looking for" the drop point, as seen in Fig. 3.19, and upon
closing of the grasp it switches its attention from the location of grasping, towards
the drop point.

Figure 3.19: An example of the network processing one of the trajectories from the val-
idation set. The small receptive field of the virtual sensor is visualized with small cubes.
Notice how, upon completing the grasp of the wooden block in subplot 7, the attention
wanders off to the right, to find the drop position where the block should be placed. (The
point clouds are cropped and subsampled for visualization.)

Although the velocity network is presented only with the information it needs by
the attention network (e.i., the gripper, and the next target position), it fails to
predict correct velocities consistently. Ironically, the main pressure point seems to
be to regulate precisely over the graspable wooden block, the part which worked
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very well in the work presented in Sec. 3.2.1. It does however accomplish the
entire task from time to time, and a successful execution is shown in Fig. 3.20 and
a failed attempt is shown in Fig. 3.21.

Figure 3.20: An example of a successful execution of the task. The robot picks up the
wooden block and drops it on the target cube.

There are several potential reasons why the velocity network has not learned a
reliable mapping from observations to velocities, even performing worse than the
network of Sec. 3.2.1. One factor, likely affecting the results to a large degree,
is the size of, and variation in, the training data set. It is likely that the network
has seen too few examples of different environment states and that the ones it
has seen are too similar for the network to learn a good mapping. For instance,
with 75 demonstrated trajectories, there are only 75 different initial conditions.
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This only very sparsely covers the space of possibilities for different locations and
rotations of the three objects, and can make it hard for the network to generalize.
In the previous experiment, the state space was likely much better covered because
the initial conditions were more uniformly sampled in simulation and because the
trajectories were only sampled at 2 Hz.

If the environment state-space is not sufficiently covered in the training data, one
needs to make sure that the robot stays close to the familiar states visited during
demonstration. If this isn’t enforced, errors will compound over time leading the
robot into OOD states as the robot executes the task, similarly as discussed in 3.2.1.
This issue becomes more severe in this work because the network considers both
the current observation and the running history of the previous observations as
encoded in the hidden state of the LSTM. As the robot executes the task, it needn’t
take long before the model encounters an unseen combination of where the end
effector currently is and where it has been. Like in the previous experiment, the
issue arises from training on a data set which lacks examples of corrective actions.
A possible solution to this is to extend the data set with these types of examples
either by demonstrating how to recover from typical failure cases directly or with
methods like DART [40] and DAGGER [39] or alternatively with on-policy fine
tuning with RL.

The network does sometimes take corrective actions, typically when it encounters
one of the expected failure states, for which specific recovery trajectories were
demonstrated as described in Sec. 3.2.2. Sometimes, this leads to a successful
recovery, but other times the robot fails to achieve the task despite the corrective
action bringing the end-effector into a presumably familiar environment state. An
example of this is shown in Fig. 3.21, where the robot goes down too quickly
and ends up next to, rather than over, the wooden block. In this case, the model
correctly guides the end-effector back up over the wooden block, only to go down
again too early and collide with the object. The robot keeps repeating this mo-
tion, alternating between going up and down only to collide with the block over
and over while pushing the block across the table. In this case, it seems plausible
that the initial corrective action brought the robot back into a well explored part
of the environment state space. When it still fails, this indicates that the velocity
network weights the history of previous observations too much when taking the
next action, as only the combination of the observed environment state and the
accumulated history together should constitute an unfamiliar observation. This is
further indicated by the, in general, very smooth robot motion observed, resulting
from very similar predictions made at subsequent time steps. This is in contrast to
the very jerky motion observed in Sec. 3.2.1, where the robot relied solely on the
current observations. A pragmatic approach to solving this issue for the problem
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in this experiment would be to reset the state of the velocity network per point
cloud, like in the previous experiment. In this particular case, the velocity network
does not need memory through time to accomplish the task as all the information it
needs is provided by the attention network’s correct sensor deployment locations.
This solution, however, would limit the model to only working with static scenery,
as the model would lose the possibility of inferring the velocities of objects by
tracking them through time. Again, an effective solution addressing the issue of
ODD-states directly could be to use DAGGER [39], as this would effectively ap-
pend the data set with corrective actions for the combinations of environment states
and histories, thereby teaching the network to correctly weight the current envir-
onment states vs. the history in such cases.

A related concern is that the network could be able to fit the training data simply
by observing the current end-effector velocity and use this as the estimate for the
next velocity. The model could achieve this simply by observing the gripper, and
it would likely lead to a very good fit as the velocity changes very little from frame
to frame. However, this doesn’t seem to be what the model has learnt, as the robot
often successfully completes the task, and only fails when regulating very close to
the target positions. We speculate that it is easy for the model to learn a mapping to
velocities from the xyz locations of the end-effector and target positions, and these
positions are more or less given to the model by the attention network through
the precise placement of the virtual sensor. It is possibly more difficult for the
model to predict the current velocity for the end-effector because the end-effector
doesn’t move much from frame to frame when new point clouds are acquired at
15 Hz. Additionally, the precise position of the end-effector at a given time is not
known to the model, as the volume is only stochastically sampled in the vicinity
of the gripper. Coupled with the lossy compression introduced by the encoder, the
only way the model could estimate the velocity then is by relying on longer term
memory to do the calculations. However, in the future, the current end-effector
state (velocity, angular velocity and gripper opening) will likely be given to the
model as an input, as this is useful information for the model. The velocity head
will then have to be changed, e.g., to predicting delta velocities.

The encoders were also trained on the point clouds collected during the 75 demon-
strated training trajectories. Although more diverse data sets were created for the
unsupervised learning by means of heavy augmentation, the input space for the
encoders is likely not sufficiently covered in the training data. Further, training the
encoders as VAEs might not necessarily emphasize precise encoding of the parts
of the input that are most important for the given task. This, in turn, could make
it more difficult for the velocity network to generalize from few examples, as it
needs to learn how to decode the entangled latent space of the encoders. A well
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structured latent space for the encoders could therefore also improve the model,
one from which the end-effector and target poses are easily inferable. As both the
gripper and target poses are known in this case, one could, for instance, train the
encoders with auxiliary objectives trying to predict these poses directly.

The above-mentioned issues with the velocity network are largely known issues
with imitation learning and behavioural cloning in general, mentioned in Sec. 2.3.
While it has not been the focus of this work to address these fundamental problems
with behavioral cloning, we hypothesized that the filtering effect of the attention
network could allow the model to learn the correct mapping, even from very little
data. To some extent, it seems that this has happened. The model seems to base the
predicted velocity on the relative positions of the end-effector and the target posi-
tion. However, it is not able to do so very precisely, which leads to a distribution
shift and the robot ending ut in unrecoverable states.

Conclusion

In conclusion, by letting the attention network have memory through time we
achieve a control loop running at 15 Hz with arbitrarily sized, high resolution
volumes as input. In this preliminary experiment, the attention network has suc-
cessfully learnt to find the objects of interest, and to keep track of them through
time. The network has learnt, as incentivized by a designed reward function, to
focus its attention on one sub-task at the time, and switch its focus of attention to
the next sub-task upon completing the first.

The velocity network has not learnt a robust mapping from observations to ve-
locities. The reasons for failure seems to be poor coverage of the environment
state-space during demonstration coupled with the distributional shift problem,
common when doing behavioural cloning. However, the robot successfully com-
pletes the whole task from time to time, sometimes several times in a row, despite
being trained only on very little and highly correlated data. We hypothesize that
more, and crucially, more diverse training data would improve the performance of
the model when trained using behavioral cloning. Alternatively, online RL could
be used for fine-tuning, which would eliminate the distributional shift problem
entirely.

In summary, the model has proven capable of extracting precise information (in
Sec. 3.1.2) and achieves fast inference speeds when processing large, high resolu-
tion volumes. Therefore, we conclude that RAMs are a viable approach to feature
extraction for robotic learning in applications requiring high fidelity inputs. How-
ever, more work is needed on how to successfully train a robot policy from human
demonstrations.
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Figure 3.21: An example of a failed attempt. In this case, the robot loses height too
quickly and ends up in a state next to the wooden block and never recovers. Even though
it correctly goes back up, it misses again on both the second and third attempt at grasping,
and ends up crashing into and pushing the block around.



Chapter 4

Discussion

The work presented in this thesis has aimed at contributing to the realization of
robots capable of performing tasks in unstructured and dynamic real-world envir-
onments.

This chapter discusses the contributions of the thesis relative to the research object-
ives (defined in Sec. 1.1.1) and outlines possible future directions for the research.

4.1 Visual processing for generic robotic applications
The result of our work towards a generic visual processing system for robotics is
an approach based on processing of point clouds with attention. A few variants of
the proposed visual processing system have been applied to grasping of fish and
to two simple visual servoing tasks. In this section we downplay the role of these
differences and focus on the overall approach to visual processing and discuss
whether or not it is a viable approach suitable for generic robotic manipulation
tasks.

A multitude of different sensors can be combined to produce high-resolution point
clouds with coverage of arbitrarily sized volumes. As such, the point cloud repres-
entation on its own has properties that are desirable for a visual processing system.
The challenge lies in effective processing of this representation. The processing
needs to be fast and able to extract precise features from the raw point cloud that
are relevant to the task at hand.

The proposed system aims to enable this type of processing by making two core
assumptions: 1) The entire volume is not of equal importance when executing a
manipulation task or sub-task. 2) When observing objects at a sufficiently high fre-
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quency, their positions in the volume remain nearly unchanged. In most relevant
automation settings, we judge these assumptions as reasonable. When manipulat-
ing an object, the immediate region surrounding the object is of particular interest,
as well as the region surrounding the gripper. However, a significant part of the
volume might still be of importance to the task, in the sense that it needs to be
searched over in order to find the object which should be manipulated. However, in
this case, the model can learn to exploit prior knowledge of the domain to narrow
down the search space, by e.g., only considering parts of the volume containing
horizontal surfaces. Further, by viewing such manipulation tasks as consisting of
sub-tasks, e.g., first search for the object, then manipulate the object, the model
can leverage assumption number two upon finding the object and limit the search
space to the immediate region where the object was found for future time-steps.
For this assumption to hold true when objects in the scene are moving, it is a re-
quirement that the acquisition and processing speeds are sufficient relative to the
movement of the objects. As such, the assumptions on which the proposed system
is based do not exclude many relevant automation tasks.

The proposed system has proven capable of extracting precise enough features to
enable grasping of fish with high success rates. In order to do this it needs to reason
about its own gripper in relation to the environment and the task at hand. The
fish-picking task is difficult because successful grasping often entails sliding the
gripper in between fish lying tightly packed together or placing the gripper so that
it slightly touches the wall and bottom of the box. This calls for precise predictions
if collisions and damaging of the raw material is to be avoided. Further, it is a very
cluttered domain, subject to large variations in the appearance of the objects due
to noisy depth data and the slippery and deformable nature of the fish. Success in
this domain, therefore indicates that the proposed system is capable of extracting
precise features under quite challenging conditions. However, the fish-picking
domain is still quite narrow. Although there is some variation in the raw-material,
all the fish are of the same species, and roughly the same size. Therefore, more
work needs to be done to see how well the system tackles larger variations, e.g., the
number of different types of objects of different sizes it can handle simultaneously.

The fish-picking task is a task subject to most of the types of noise typically seen
when working with depth data. However, the reflective fish skin, semi-translucent
box and water coated surfaces makes the amount of noise more severe in this
domain than many others dealing with surfaces that scatter light more diffusely. As
such, the system has demonstrated some robustness to the types of noise expected
to be seen when working with point clouds in general.

By successfully picking fish, the proposed system demonstrated a capability of ex-
tracting precise local features from the point cloud. For instance, when attending
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to a location containing a fish, the model is able to predict a precise, collision-free
grasp for that fish. However, such a collision-free grasp can be derived from the
current location of attention alone, without involving memory. A general purpose
visual processing system needs to be able to extract such precise local features
from several locations in the volume and accumulate the information in memory
for subsequent decision making based on the whole context. In Sec. 3.2 we ex-
plored these capabilities in a laboratory setting through two experiments. In the
first experiment, the system proved capable of summarizing information by learn-
ing to precisely use visual servoing to position the gripper over a target block. This
task could only be achieved by finding and encoding each object and their locations
in memory, and subsequently predicting an appropriate velocity based on their re-
lative distances. The model was also able to infer whether or not there were any
obstacles in the predicted path, and adjust its behaviour. However it did not learn a
robotic policy which avoided collisions consistently, likely mainly because of the
distribution shift problem. In the second experiment, the model demonstrated that
it can infer context by observing the scene and shift its focus of attention appropri-
ately for execution of the current sub-task. In the tested pick-and-place setting, it
initially, during the picking stage, attended to the gripper and the graspable object.
Upon picking of the object it learned to shift its focus of attention towards the loc-
ation where the picked object should be placed. In both of theses experiments, as
well as in the fish-picking case, the attention network effectively found the relev-
ant parts of the volume, and filtered out distractions. These are very encouraging
results. However, ultimately, whether or not the current capabilities of the system
are sufficient for it to be applied to a given automation task will depend on the
complexity of that task. More research is needed to find the limits of the current
system for tasks involving more complex relationships between objects and long-
term memory. Additionally, a complete robotic system needs to both extract the
relevant information from the scene, and act appropriately based on this informa-
tion. While the main focus of this thesis has been on the former, there is no clear
distinction between these two steps when training end-to-end for robotic control.
Therefore, more work needs to be done in order to learn good robotic policies
based on the extracted features. This is a large topic which is only briefly touched
upon in this work and our initial attempts have led to either jerky motion or poor
generalization.

Closed-loop control, enables robotic solutions to recover from errors and respond
to disturbances. It also opens for the possibility of working in dynamic scenery,
subject to movements. To be compatible with dynamic scenery, a robot’s visual
processing system should be able to precisely capture the velocities and acceler-
ations of objects. This capability was not explicitly tested in our work, however
in Sec. 3.2.2 we argued that it could be difficult for the model to infer velocities
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precisely. To do this, the current model needs to precisely encode the positions of
objects over time, and because of the high processing speeds, rely on rather long-
term memory to infer their velocities and accelerations. This can be difficult for
the model to learn in practice. For dynamic scenery therefore, it could be better to
swap the 3D-CNN encoder for a 4D-CNN encoder. By doing this, the model can
attend to regions of space, and encode the content of that region for the last few
time-steps. As such, it would be able to encode not only the object at that loca-
tion, but also that object’s speed and perhaps its’ acceleration with a sufficiently
large time-window. This ability, however, would likely come at a significant cost
in terms of processing speed.

With regards to future research directions, there are many possibilities. The pro-
posed system is composed by modules and evaluating each part’s contribution and
iterating on the architecture could lead to better results. Some examples are: Test-
ing different sensors for point cloud acquisition, testing point-based encoders vs.
CNNs vs. sparse CNNs, and swapping the LSTM for a transformer [74]. An-
other interesting topic for future research is pre-training of the model for generic
robotic manipulation tasks. This can likely lead to faster training and possibly also
better performance on several tasks, assuming that features extracted for, e.g., col-
lision avoidance, finding graspable parts of objects and optimal processing of the
volume, are to some degree transferable between the tasks.

4.2 Robust task-specific grasping solution
In our research we have worked towards designing a system that can be applied
for different pick-and-place applications across several industries. Different tasks
might entail different types of handling, even of the same object. Further, fol-
lowing research objective 3, no large modifications to the working environment
should be needed in order to deploy or re-deploy the robot. Therefore, the robot
also needs to be able to operate in a wide variety of environments, perhaps using
different types of grippers for different task. Making a robotic solution that is cap-
able of all this out-of-the-box is difficult. Our approach has therefore been to create
a generic system for grasping which can be made task-specific through training on
task-specific data sets. As task-specific data sets can be costly to obtain, we have
also developed a pipeline for synthetic generation of such data sets.

The resulting system for grasping was presented in Sec. 3.1.2, and it was tested in
the fish-picking domain. As discussed in the previous section (Sec. 4.1) this is a
difficult domain where precise, collision-free grasps must be predicted from point
clouds subject to large amounts of clutter and noise.

The results on the fish-picking task are promising. The model achieves a 95 %
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grasp success rate and corrects its own mistakes when a grasp fails. Further,
it demonstrates robustness to out-of-distribution-states by successfully emptying
boxes with twice as many fish at test-time compared to those seen during training.
It also exhibits high inference speeds, with the overall speed of operation limited
by the robot’s ability to move the fish without them sliding out of the gripper.

The fish-picking task was chosen because it is a difficult picking task, and no sim-
plifications were made in our experiment, by, e.g., patting the fish dry or swapping
the fish crate for one with less sharp corners, made by a different material. Hand-
ling of fish in piles is not something that is done by robots in today’s industry. It is
a particularly difficult task because of the atypical amounts of noise, and because
the gripper has to touch other objects and obstacles in order to successfully grasp
the fish. As no parts of the designed system were tailored to this specific task,
we view the good performance displayed in this domain as an indication that the
system might be used successfully in other domains as well. As the fish-picking
task was designed to be difficult, many tasks, even within the fishing industry are
to some degree "easier" than the tested case. For instance, in reality, the fish piles
at processing factories are often much larger, and the containers rarely have as
sharp corners as the ones found in the box in the experiments. As such, the colli-
sion avoidance capabilities of the proposed system can actually be less relevant in
some industry cases. The ability to process large, cluttered work-spaces, however,
is often highly relevant. Additionally, the fresh fish or frozen fish1 typically seen
in the industry are much firmer than the fish used in the experiments. Working
with firmer fish will likely improve the grasp success rates as some of the errors
in the experiments were due to the softness of the belly of the fish. Further, once
lifted, a firmer fish is more likely to stay in the gripper which will also eliminate
some of the errors seen. Thus, although the complete system is only tested on one
test-case, we believe that the developed system has many more application areas
because of the properties of the chosen test-case.

However, two important properties of the proposed system are not yet sufficiently
tested: The systems ability to handle large variations in the sizes of the graspable
objects and its ability to utilize color information. In many settings, these two
properties are very important, e.g., in sorting applications. However, as the feature
extractors are based on CNNs, we hypothesize that these things can be handled
by the model. CNNs are very well proven as capable of extracting features for
classification purposes from color data and object sizes are also derivable from
voxel grids. However, the model’s ability to discern fine details will be limited by
the resolution of the discretizised volume. With more variation in the input, more

1Some processing steps in the industry only work if the fish holds a temperature of about -2◦,
-3◦C, precisely because of the texture change in the fish muscle.
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data will also be needed for training, and it should be noted that it is more difficult
to simulate realistic looking color images than depth images.

With regards to future research directions for the grasping system, many of the
ones listed in the previous section regarding the overall visual processing system
are relevant. Further, as discussed in Sec. 3.1.2, the designed reward signal could
be improved upon by coupling it more tightly with the success on the actual grasp-
ing task. Additionally, because the system already displays a quite high grasp
success rate, a small, labelled, real-world validation set covering some typical ex-
amples and edge cases could be very useful in squeezing out the remaining per-
centage points.

4.3 Repurposable robotic solutions
Through the experiments on fish-picking it has been demonstrated that the pro-
posed grasping system can be trained solely on synthetic data and perform well in
the real world. Whether this would be possible or not was not known when the
work on this dissertation began. Such training can possibly enable significantly
cheaper development cycles for robotic solutions. In order to repurpose the ro-
bot trained for picking of fish for some other task, say, picking of bananas, one
simply has to generate a new data set containing examples of how to pick bananas,
and retrain the model. This is done by 3D-scanning some representative bananas,
tweaking the physics parameters in simulation and adjusting the parameters of the
evolutionary algorithm generating the labelled grasps. This is potentially done in
only a few days. With some unlabelled examples of real point clouds of bana-
nas for validation, one can quickly make an educated guess to whether or not the
approach is viable without hampering a potentially active production line2. Factor-
ies and productions subject to varying tasks can potentially keep many differently
trained models for the same physical robot, switching models based on what pro-
cessing is done, e.g., on a daily basis. While this approach is limited in terms of
applicability, we hope that it, in the short-term, might enable increased automation
in domains where costly development cycles cannot be justified.

Relying on simulation has some drawbacks. There might be applications where
simulating realistic physics or realistic looking sensory data is difficult. Addi-
tionally, if the robot needs to work in a dynamic environment subject to changing
operating conditions within the work-space, this might need to be explicitly pro-
grammed in the simulator and randomized over during data set generation, which
can be tedious. Further, it can be difficult in some cases to define a fitness function

2Do to restrictions during the pandemic, this is actually the way that the fish-picking system was
trained, with the development being done almost entirely without access to the robot.
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for the evolutionary algorithm that ensures good grasps in all scenarios for large
domains. However, in many cases, setting up an environment with some paramet-
ers to randomize over and tweaking the fitness function is a substantially faster way
of gathering large data sets, than through acquisition in real life and subsequent
manual annotation. And as the simulator is applied in different domains it will
mature, and contain more and more relevant functionality for following automa-
tion tasks. Further, labelling of grasps with an evolutionary algorithm, as opposed
to, e.g., models based on grasp quality, provides a flexible labelling framework as
the fitness function can take advantage of the entire known state of the simulator.
By designing a fitness function relative to the geometry of a 3D-model and adding
simple conditional statements, data sets can be created where different objects are
grasped in different ways and some objects are grasped before others. This can
be very useful in many automation tasks, as objects often have to be grasped in a
certain way fitting of a subsequent task e.g. in assembly operations. However, the
current simulator has limitations which makes it difficult to use for more complex
manipulation tasks. Specifically, the physics simulation is not accurate enough,
e.g., to model the intricate interactions between the soft gripper and the objects and
use this as a basis for evaluating grasps. However, others, like NVIDIA [75], are
developing general purpose simulators for robotics, and it is quite safe to assume
that the number of domains where synthetic data generation can be applicable will
continue to grow in the future.

In the long-term, a more elegant solution to repurposing of robots would be through
in-situ learning from demonstration. This would remove the need for continued
development of simulators and it would enable users to repurpose robots without
involving robotic experts. In Sec. 3.2.1, the proposed visual processing system
demonstrated the capability of learning a simple visual-servoing task after less
than 3 hours of "demonstrations" in simulation (these could just as easily have
been provided through teleoperation). However, it was not able to robustly execute
the second, more complex task, in Sec. 3.2.2, after training on real demonstrated
trajectories and we hypothesized that this was largely caused by an under-explored
state-space. Despite the performance in the second experiment, we find these res-
ults encouraging. By working to some degree with direct behavioural cloning from
small data sets, we hypothesize that the visual processing system can be compat-
ible with imitation learning. We believe that it can work substantially better with
larger data sets and more sophisticated training. Learning from demonstration and
offline reinforcement learning are active areas of research where rapid advances
are made. We believe that the advances made in those fields can be applied for
learning of better robotic policies with a RAM based visual processing system.

During the research period we have developed the necessary infrastructure for
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demonstration and gathering of data and future research will focus more on the
above mentioned issues with learning from demonstration. An interesting avenue
for future research which might enable subsequent learning from demonstration
is pre-training of the model on a multitude of tasks in simulation. Intuitively, if
a good attention mechanism coupled with a robust mapping from observations to
actions is learnt in simulation, then the learning from demonstration part could
largely be used only to infer the goal of the task. This might require some archi-
tectural changes to the model, and this will be the focus of future work.



Chapter 5

Conclusions

The larger goal of this work has been to contribute towards the realization of flex-
ible robotic solutions capable of operating in unstructured and cluttered environ-
ments. To this end we defined the following research objectives:

Research objective 1: Visual processing for generic robotic applications

Research objective 2: Robust task specific grasping

Research objective 3: Repurposable robotic solutions

To address these research objectives, we considered real-world automation cases in
domains subject to noise and clutter. The main test-bed has been the challenging
task of bin-picking of fish. This is a task subject to noisy depth measurements
and large variation in the appearance of objects where precise grasps have to be
predicted in order to avoid collisions and to successfully pick the objects. We
consider success in this domain as a proof-of-concept of the proposed system.

Through our work on grasping, we find that sliding window 3D-CNNs can be used
to detect 6 DoF grasps directly from 3D occupancy grids. We find that they are
capable of learning collision-free grasps, while being robust to the types of noise
typically seen in 3D-data. Further, by processing small 3D regions independently
with restricted receptive fields, we find that we can sufficiently cover the input
space for the CNNs with synthetically generated data sets for the model to transfer
to the real world.

We leverage the strengths of 3D-CNNs and generalize the visual processing sys-
tem by employing a RAM [31], that processes large point clouds by sequentially
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deploying a 3D-CNN at select locations in the volume while accumulating the
information from each location in the state of an LSTM.

When applied to the fish-picking task, the system achieves a grasp success rate of
95 % after training solely on synthetic data and it is able to successfully correct
its’ own mistakes by trying again. Further, it demonstrates robustness to out-of-
distribution-states by successfully emptying boxes with twice as many fish at test-
time compared to those seen during training. The attention mechanism seems to be
effectively filtering out distractions, while the 3D-CNN encoder enables prediction
of precise, collision-free grasps in the face of noise and clutter.

In line with research objective 3, none of the design decisions made during de-
velopment of the system were based of the particular domain used for testing, i.e.
bin-picking of fish. Therefore, the system is easily repurposable for similar tasks
by retraining the model with a different data set. A generic pipeline for generating
such data sets for robotic grasping has been developed, based on 3D-scanning of
objects with a subsequent evolutionary algorithm for labeling them with grasps.

The proposed visual processing system is designed so that it is capable of reducing
arbitrarily sized volumes to single outputs with a processing speed of 15 Hz. As
such, the system can be used to learn a state-to-action mapping for use in closed-
loop control settings, enabling more complex robotic actions and sequences of
actions. Through preliminary experiments on simple visual servoing tasks, the
system has proven capable of inferring relative distances between objects and reas-
oning about simple obstacles. When trained to use visual servoing to position the
gripper over a target block, the model is able to do this, albeit with somewhat jerky
motion. It achieves this by continuously predicting end-effector velocities directly
from point clouds with more than 6 million points. We view this as evidence for
the feasibility of the method.

In the short-term, we hope that the proposed approach to grasping might enable
increased automation in domains that were previously less suitable for it. Further,
we believe that the RAMs unique capability of extracting precise features from
large work spaces in real time makes it ideal for robotic solutions in general. In the
long-term, we think that it can be used for closed-loop robotic control from point
clouds by providing small descriptive state-spaces for robotic policies to operate
on.

In conclusion, we find that 3D-CNNs can be used to find collision-free grasps in
the presence of noisy depth measurements. By combining a 3D-CNN with a re-
current attention model, we find that precise grasps can be found in a difficult case
subject to clutter and noisy input data, by learning to attend to the relevant parts
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of the volume. The resulting system can extract precise features from arbitrarily
large volumes with high processing speeds and preliminary experiments indicate
that the system can be suitable for closed-loop control.
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Grasping Virtual Fish: A Step Towards Robotic Deep Learning from
Demonstration in Virtual Reality

Jonatan S. Dyrstad1 and John Reidar Mathiassen2

Abstract— We present an approach to robotic deep learning
from demonstration in virtual reality, which combines a deep
3D convolutional neural network, for grasp detection from
3D point clouds, with domain randomization to generate a
large training data set. The use of virtual reality (VR) enables
robot learning from demonstration in a virtual environment.
In this environment, a human user can easily and intuitively
demonstrate examples of how to grasp an object, such as a
fish. From a few dozen of these demonstrations, we use domain
randomization to generate a large synthetic training data set
consisting of 76 000 example grasps of fish. After training
the network using this data set, the network is able to guide
a gripper to grasp virtual fish with good success rates. Our
domain randomization approach is a step towards an efficient
way to perform robotic deep learning from demonstration in
virtual reality.

I. INTRODUCTION

In robotics, robust grasping and manipulation of objects
is still a challenging task to automate, in particular for
biological and deformable objects such as fish. Inspired by
the ability of humans to perform such tasks, we investigate
how to efficiently transfer the knowledge of a human to the
robot, via a combination of 1) a virtual reality (VR) interface
for demonstrating the task, 2) domain randomization over
components of the task to generate a large data set, and 3)
deep learning on this large data set. Our hypothesis is that
through our approach, VR can serve as a efficient medium for
demonstrating complex tasks to robots. A first step towards
testing this hypothesis is presented in this paper. We describe
an approach for deep learning from demonstration in VR,
where a human can easily teach a robot how to grasp fish.
Grasping of fish from a box is an example of a challenging
grasping task involving a cluttered scene of multiple highly
deformable objects. In today’s fishing industry, many simple
and repetitive tasks are still performed by human workers due
to difficulties in automating handling of the fish. For tasks
with a large throughput, there exist processing machinery
that moves fish and handles them automatically. Compared
to a robotic solution, these systems are neither compact
nor adaptive. The fish picking task is therefore ideal for
demonstrating the capabilities of our approach applied to
relevant industrial problems.

An essential aspect of learning from demonstration is
the system in which the human teacher demonstrates the
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Fig. 1. The virtual robot is tasked with grasping virtual fish from a box
and placing them in another box. The sensory input to the robot consists of
a virtual 3D camera that generates depth images of the fish in the box.

task. This system should be intuitive and easy to use and
additionally, the teacher should not have to demonstrate the
task many times, which is often necessary when training deep
learning models. Therefore, we have developed a system
where the teacher’s actions are not used directly to train
the robot, but rather used to generate large amounts of
synthetic training data through domain randomization over
relevant components of the grasping task. This enables us
to train a deep neural network (DNN) for grasp detection,
from scratch, using only a few dozen manually-demonstrated
example grasps. In this paper we use our approach to robotic
deep learning from demonstration to create a grasp detector
with success rates that are sufficient to enable improvements
in future research directions. These directions include using
reinforcement learning algorithms to rapidly improve the
performance of the system in VR and later in a real world
scenario.

In this paper, a grasp is defined by the 6 degrees of
freedom (DOF) needed to define a robotic gripper in 3D-
space. This is a simplification and successful grasps in a
real world situation might require good path planning and a
well regulated and agile gripper, capable of holding objects
with different weights, textures and sizes.

Both training and testing of our system has been done
on synthetic data, since this enables efficient development
and testing of our approach. Future work will focus on the
transferability of the features learned on the synthetic data
to data from the real world.

Robot grasping is a field with a lot of research being done.
There are several methodologies applicable to robot grasping
based on visual input, such as learning from demonstration
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Fig. 2. The presented approach to deep learning from demonstration in VR, where a) the user provides a few example grasps by grasping fish from the
box, b) domain randomization is used to generate a large data set based on the few example grasps, c) the deep neural network is trained on the large data
set, and d) the trained deep neural network controls a gripper to grasp virtual fish.

(LfD) and reinforcement learning, based on real or virtual
data. Learning from demonstration is a generic approach [1],
[2], [3] in which a human or virtual teacher demonstrates a
task, e.g. a grasping action specified by a pose and gripper
configuration, with a corresponding state space consisting
of visual information. Based on a set of demonstrations, a
learning algorithm, such as support vector machines (SVM)
and regularized regression [4] or artificial neural networks
[5], [6], [7], [8], [9], [10], learns the mapping between the
visual state and the grasping action. In reinforcement learn-
ing (RL) there is no teacher to demonstrate how to perform
the task, instead there is a reinforcement signal provided to
the learning algorithm. LfD has the advantage of efficiently
discovering state-action mappings that work reasonably, with
the disadvantage that this may require a large data set of
demonstration examples. Contrary to this, RL, e.g. using
artificial neural networks [11], has the disadvantages of slow
learning speed and difficulty of accurately defining a suitable
objective function for more complex tasks. The advantages
of RL are that they do not require a human teacher, and
they are capable of exploring and learning how to perform
potentially beyond the capabilities of a teacher.

Synthetic data generation is a well-known and success-
ful approach to training deep learning systems [13], [14],
prior to applying them to real-world data. In particular, an
approach called domain randomization has been shown to
enable robust training on simulated data that directly works
in the real-world without additional training [15]. Domain
randomization involves randomizing over the relevant com-
ponents of a task. A novelty of our approach for domain
randomization is that it begins with an intuitive virtual reality
interface within which a human teacher can easily provide a
low or moderate number of demonstration examples. These
examples are then used in a domain randomization process
over the camera viewpoints, the physical interactions of the
fish and the box, and the previously demonstrated intent of
the teacher, to generate the large data sets required for deep
learning.

To the best of our knowledge, we present the first work
where a deep learning algorithm has solved robotic grasping
using a 3DCNN, which has previously been successfully ap-

plied to 3D shape recognition [4], [12]. Our main motivation
in working with voxel grid representations of point clouds,
and 3DCNNs to analyze them, is to develop the foundation
for deep learning in robotics applications that are camera-
and viewpoint-agnostic. Hence the 3DCNN can work in
a single voxel image including 3D information obtained
from multiple depth images from multiple cameras and/or
viewpoints. Multiple viewpoints and cameras can provide a
more complete coverage of a scene. A single-view depth
image will have occluded regions, and moving the depth
camera to one or more other locations will provide a better
view of the occluded regions. Fusing these two views into
a single point cloud will provide a more complete view.
The advantage of the 3DCNN approach is thus that can be
invariant or agnostic to the number of views or the number
of cameras that generate the 3D data, and it can work on
the complete view, as long as domain randomization is done
over the types of views that are possible.

Our main contributions are; 1) a novel domain randomiza-
tion approach and its application to learning from demonstra-
tion in virtual reality, 2) using a deep 3D convolutional neural
network (3DCNN) to detect potential grasps and estimate
their pose. We develop and test our contributions in a virtual
reality environment in this paper, as preparation for future
research focusing on development and test in the real world.

II. METHOD

We use a deep 3DCNN to estimate grasps from a point
cloud. We propose the use of VR to generate large amounts
of synthetic training data in order to be able to train a deep
learning model with many parameters. An illustration of our
approach is shown in Fig. 2.

A. User interface for demonstrating the task

A virtual environment was created where a user, using
a virtual reality head mounted display (HMD) and tracked
hand controllers, can enter and demonstrate the task for the
robot as shown in Fig. 2a. The user has a controller in his
hand, which in VR appears to him as a gripper, similar to
the end effector on the robot. The environment was created
with the Unity game engine and the VR-equipment used



the HTC-Vive head-mounted display and hand-held motion
controllers.

Fish are instantiated in mid-air and dropped using sim-
ulated physics that model the deformation and friction
characteristics of the pelagic fish species herring (Clupea
harengus). This ensures that the fish land in natural poses
in a fish box placed in front of the robot. The user’s task is
to grasp the fish and move the fish from this box to another
box, using the gripper in his hand (see Fig. 2a). In this way,
the user gets the impression that he is showing the robot how
to perform the task, in an easy and intuitive way. Since the
user is told to grasp the fish in a way that enables him to
pick it up and place it in a second box, he will naturally use
a grasp that is suited for that task. If e.g. the task had been a
different one, such as placing the fish in a narrow hole, the
user would probably grasp the fish differently. Hence, this
is an effective way of getting the user to demonstrate grasps
that are suitable for a given task. For each fish grasped by
the user, the grasp is logged with regards to its position
and orientation relative to the fish. An example of these
logged grasps can be seen in Fig. 4. This is the demonstration
part of our learning from demonstration (LfD) approach. In
traditional LfD, a large number of demonstration examples
are required. The number of required examples scales with
the number of parameters in the model that is being taught.
Models with very many parameters, such as large neural
networks, may require on the order of tens of thousands of
demonstrations in order to adequately learn the task without
overfitting to the training data. For a user this is clearly too
much work, and an alternative approach is needed to generate
a sufficiently large and realistic training data set.

B. Generating Large Amounts of Synthetic Data by Domain
Randomization

Based on the logged grasps, we propose to use domain
randomization that includes information on the user’s grasp
intent, as a method for generating a large training data set
from a few demonstrations, with no further human super-
vision. As in the previous section, the fish are instantiated
and dropped into the fish box, as shown in Fig. 3a. By
randomizing over the number of fish, and the position and
orientation of each fish before dropping them into the box,
this provides domain randomization over the possible ways
in which fish can realistically be positioned relative to each
other in a box.

Instead of the user demonstrating the grasp for each
randomly generated box of fish, we instantiate all of the
previously logged grasps onto each of the fish in the box, as
shown in Fig. 3b. However, not all of the grasps are valid
for all of the fish, given their current pose and position in
the box (i.e. closeness to the walls etc.). Therefore, for every
fish, all of the logged grasps are automatically checked using
collision heuristics to see if they collide with the environment
or with the other objects in the scene in any way. The ones
that do not are kept and the rest are discarded, resulting in a
set of plausible grasps as shown in Fig. 3c. This three-step
approach provides domain randomization over the possible

ways a user would probably grasp the fish, based on what
know from the previously logged grasps.

An orthographically projected depth image is rendered of
the entire fish box and the list of valid grip vectors are
recorded along with the depth image (an example is shown
in Fig. 7). The field of view and resolution of the virtual
3D camera is such that each pixel in the orthographically
projected depth image can be read as an xyz-coordinate
in millimeters given in camera coordinates (with an offset
of imagewidth/height

2 in the xy-direction). Current 3D cameras,
such as the Microsoft Kinect and Intel RealSense, work by
projecting a light pattern from a projector that is offset from
the actual camera. Because some of the scene is visible
to the camera but occluded to the projector, the result is
depth shadows, areas in the depth image with unknown depth
values. This effect is simulated with the virtual 3D camera as
well. The depth data we generate in simulation can therefore
be thought of as coming from a perfectly calibrated real
3D camera. To provide robust learning, we randomize the
position and orientation of the virtual 3D camera as well, thus
creating variations in the amount of missing data in the depth
images due to the occlusion of the projector illumination.
This is our final component of domain randomization.

C. Neural Networks

The depth images are projected into a voxel grid, and we
use a 3DCNN to estimate grasps from a volume in the voxel
grid, and split the problem up into three sub-problems
• Detecting possible grasp locations
• Finding the precise grip point
• Finding the orientation of the gripper
The architecture of the network is shown in Fig. 5. For a

volume of size 50×50×25, the output is a vector

ŷ =
[
l̂ p̂ d̂1 d̂2 d̂3

]
, (1)

where l̂ ∈ [0,1] estimates the probability of the input volume
containing a valid grasp, p̂ estimates the precise position of
a grasp within the input volume and d̂1, d̂2 and d̂3 estimate
the orientation of the grasp.

The network is fully convolutional and has sliding dense
layers, meaning that the dimensions of the output from the
network is dependent on the dimensions of the input volume.
For larger inputs, the result is a grasp detector, rather than
a classifier, capable of detecting multiple grasps within the
input volume.

The estimations for the three sub problems are output from
the same network and trained jointly because of the high
dependence between the different objectives. The total cost
for training example i is given by

J(i) = αJ(i)C + l(i)(βJ(i)O + γJ(i)P ), (2)

where J(i)C is the classification cost, J(i)O the orientation cost
and J(i)P the position cost, l(i) is the true label for training
example i and the parameters α , β and γ are simple weighing
factors used to prioritize the relative importance of the
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Fig. 3. The domain randomization approach for generating a large data set, by a) dropping a random number of fish in the box, using realistic fish
physics, b) placing each of the logged grasps onto each fish, c) pruning the grasps based on collision heuristics.

different sub-problems. Note that for false examples, no
updates are done to the position and orientation estimators.
For classification of valid grasps, the binary cross entropy
function

J(i)C =−l(i) log(l̂(i))+(1− l(i)) log(1− l̂(i)) (3)

is used, and for regression on the precise grasp point p(i)

within the given volume we use the squared error cost
function

JP =
1
2
||p̂(i)−p(i))||2. (4)

The orientation of the gripper is defined unambiguously with
two three dimensional vectors, each describing a direction
in 3D-space (see Fig. 6). However, for an object like a
fish, which is almost a mirror image of itself along one
axis, there are always two correct answers to any situation
(i.e. an ”overhand” and an ”underhand” grip). To avoid any
contradicting labels in the data set we assume a symmetrical
gripper and can therefore simply reverse the sign of the
vectors on one half of the data manifold. This leads to a
discontinuity which we solve by having two estimates of
one vector, each with the discontinuity at different places
in the data manifold. In this way, one estimate becomes

Fig. 4. The logged grasps after demonstration of three grasps in virtual
reality. As the fish bends and twists, the grips follow, making them valid
for the fish regardless of pose.

increasingly reliable as the other goes towards its uncertain
region. Empirical observations of the training examples in
the data set shows that one of the target vectors defining the
grip orientation (v2 in Fig. 6) draws out a diffuse disk in 3D-
space (as opposed to a sphere). This lets us get away with
two estimates of the vector to avoid discontinuities (d̂1 and
d̂2 in (1)). The variance in the other orientation vector (v1
in Fig. 6) is small (because most of the grasps are pointing
up in camera coordinates) and therefore we only use one
estimate for this vector (d̂3 in (1)). The total orientation cost
for the N = 3 orientation vectors is given by

J(i)O =
N

∑
k=1

1− dot( ˆdk
(i),dk

(i))√
dot( ˆdk

(i), ˆdk
(i))dot(dk

(i),dk
(i))

, (5)

where, dk
(i) and ˆdk

(i) for k ∈ 1,2,3 respectively denote the
true and estimated orientation vectors for training example
i.

D. Preparing Data For Training

During training, the input to the network is a volume of
size 50× 50× 25 and the classification label l(i) is either 1
or 0 (i.e. the volume does or does not contain a valid grasp).
Training examples with true labels are simply created by
cropping volumes of the synthetically created depth images
centered around one of the valid grasp points for that image.
The crop is offset randomly from the middle by some
amount in order to create training vectors for the grip point
estimator as well. Generation of false training examples is
more problematic. The virtual environment outputs a depth
image and some, but not all conceivable grip vectors for the
given image. Thus, there is no way of knowing which parts
of the image that are guaranteed not to contain a valid grasp.
In our experiments we generate false training examples (i.e.
areas with a low probability of containing a grasp), simply
by cropping random parts of the image and labelling them
as false examples. Because the volumes that contain valid
grasp are vastly outnumbered by the volumes that do not,



Fig. 5. The architecture of the 3DCNN consists of stacked convolutional and max pooling layers. The dense layers are swapped for 1×1×1 convolutions
to enable inputs of varying sizes. The activation functions for the feature extraction layers are rectified linear units, and in the top layer, l̂ has a sigmoid
activation function and the rest have linear activations.

Fig. 6. The orientation of the gripper is defined by two vectors v1 (red)
and v2 (blue).

the result is a false-data set with mostly true, but also some
false, negatives.

III. RESULTS

In our experiments, 43 grasps were shown in VR. With
these grasps, 5,000 images were rendered of fish boxes
containing between one and fifteen fish. Randomness was
introduced in the rotation and position of the depth camera
when the images were rendered. From these depth images,
76,000 training examples were cropped where 2/3 of the
data set did not contain a grasp. The input to the network
during testing was a volume of size 197×197×50 and the
the depth images were decimated so that the resolution was
3.6 mm per voxel.

Testing was done in real time with the trained model
attempting to pick fish in the virtual environment as shown
in Fig. 9. Because no paths are output from the network, the
gripper simply approached the estimated grasp point from the
direction given by v1 in Fig. 6. If the gripper could not reach
the grip point because it hit the environment, or if it failed to
capture and hold the fish when the gripper was closed, the
grasp was considered unsuccessful. If several grasps were
detected in the image, the one with the largest detection
certainty, l̂, was chosen.

The neural network was created in Python with the

Fig. 7. An example of a synthetically generated depth image with the
labeled grip vectors overlaid.

Theano1 and Lasagne2 libraries and training was done on
an NVIDIA Titan X GPU.

A. Generated Training Examples
The logic for generation of large amounts of labelled

training data with only a few shown grasps works well. Many
examples were inspected visually and all of the inspected
grasps in the training set look plausible. An example of a
rendered image with labelled grasps is shown in Fig. 7. In
this case, and in general, the labeled grips are good, but the
virtual environment only outputs a subset of all possible grips
in the scene.

The generated depth images with added noise and simu-
lated depth shadows still looks like stylized and ideal depth
data. Visual comparison (not included in this paper) to real
data from the Microsoft Kinect and Intel RealSense depth
cameras, reveals that specular effects are what separates the
real from the synthetic data the most. The large difference in
albedo on different parts of the fish leads to areas in the real
depth images with undefined values which are not present in
the synthetic ones.

B. Testing the Trained Neural Network
The neural network was trained with stochastic batch

gradient decent with momentum, and cross-validated on a

1http://deeplearning.net/software/theano/
2https://lasagne.readthedocs.io/en/latest/



testing set with respect to minimizing the objective function.
This function is however not an exact representation of
grasping success, and our primary test involves testing the
trained network in virtual grasping scenarios that were not
seen during training of the neural network.

The trained network was used to attempt 100 grasps with
1, 5, 10 and 15 fish in the box and the results are shown
in Tab. I. These results show that the performance is similar
regardless of the number of fish in the box. Hence the neural
network handles scenarios with many fish, in overlapping and
challenging conditions, almost equally well as with only a
single fish in the box.

Observations of the grasping attempts during live testing
reveals that most unsuccessful grasps are a result of
• The gripper hitting the environment. For the most part

with the top of the gripper hitting the walls and some-
times with the tip of the fingers hitting the bottom of
the box.

• The fish sliding out of the gripper because the fish was
picked to close to the head or tail.

• The chosen grip was a valid grip, but not the best
candidate in the scene. Meaning, the local grip area was
good, but other fish should have been picked first. E.g.
the gripper sometimes push other fish around on its way
to the grip point changing the state of the box before
arrival.

For almost all fish boxes there are a lot of false positives.
Even with no fish in the box, several valid grasps are often
detected. However, when fish is present, the most certain
grasps are often good. A typical result for a fish box with
the 10 most certain grasps overlaid is shown in Fig. 8.

The detector, grasp point and grasp orientation estimates
are good, and surprisingly good grasps can be found for
almost vertical fish, frozen in mid air, even if this has never
been seen in the data set used for training the neural network.

Fig. 8. The decimated volume input to the network, with the 10 most
certain grasps overlaid. The pink arrow corresponds to v1 in Fig. 6, and the
blue and red ones are the two estimates of v2 in Fig. 6.

TABLE I
GRASP SUCCESSES IN VR

No. of fish in the box 1 5 10 15
Success rate 70 % 74 % 61 % 71 %

Fig. 9. The trained 3DCNN grasping a fish successfully in the virtual
environment.

IV. DISCUSSION AND FUTURE WORK

The results of our work, suggest that our approach to
domain randomization in virtual reality works intuitively
and well. Based on only a few demonstration examples, a
sufficiently large and diverse data set was generated that was
capable of training a large 3D convolutional neural network.
This network was tested on previously unseen scenarios, with
success rates on the order of 70 %. This is good, but not
sufficient for a working system. However, the results are
good enough for us to proceed with implementation of this
system on a real-world robot, and for refining the neural
network using reinforcement learning in virtual reality as
well as in the real world. One may argue that demonstrations
in virtual reality do not prove the validity of our approach.
Contrarily, we may argue that a methodology such as deep
learning already has proven itself capable in transfer learning
to the real world, as long as domain randomization is realistic
[15]. As such, the domain randomization approach and neural
network presented in this paper lay the groundwork for future
implementation in a real-world scenario.

Our hypothesis from the onset is that through our ap-
proach, VR can serve as a efficient medium for demon-
strating complex tasks to robots. A first step towards testing
this hypothesis was presented in this paper, and the results
are promising enough to maintain our hypothesis. However,
more work is needed to develop this further. Future work
will focus on transfer learning to apply what is learned in



VR to a real-world setting of picking fish from a box using an
industrial robot. In addition to what we have presented in this
paper, this may require better modelling of the depth images
of fish. Fish are specularly reflective objects, and therefore
affect the quality of depth images acquired with real 3D
cameras such as the Microsoft Kinect or Intel RealSense.
Accurate modeling of these reflective properties will enable
more accurate training in virtual reality.

Beyond our application to grasping fish, we will also
expand the domain randomization methodology and neural
network architecture presented to the more generic problem
of grasp detection for multiple types of objects and also
to learning from demonstration of more complex task se-
quences.
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Bin Picking of Reflective Steel Parts using a Dual-Resolution
Convolutional Neural Network Trained in a Simulated Environment

Jonatan S. Dyrstad1,2, Marianne Bakken3, Esten I. Grøtli3, Helene Schulerud3 and John Reidar Mathiassen1,∗

Abstract— We consider the case of robotic bin picking of
reflective steel parts, using a structured light 3D camera as a
depth imaging device. In this paper, we present a new method
for bin picking, based on a dual-resolution convolutional neural
network trained entirely in a simulated environment. The dual-
resolution network consists of a high resolution focus network
to compute the grasp and a low resolution context network to
avoid local collisions.The reflectivity of the steel parts result
in depth images that have a lot of missing data. To take this
into account, training of the neural net is done by domain
randomization on a large set of synthetic depth images that
simulate the missing data problems of the real depth images.
We demonstrate both in simulation and in a real-world test that
our method can perform bin picking of reflective steel parts.

I. INTRODUCTION

Bin picking is the problem of grasping objects randomly
placed in a bin. This is a problem that often occurs in
industrial settings where objects come out of a production
line packaged in bulk, without isolating individual objects,
and where the objects are transported to a second production
line that subsequently must isolate and process these objects
individually. Due to the importance and relevance of the
problem, bin picking has been well studied [19], [24]–[26] in
the literature. Challenges in bin picking arise when seeking
to develop a bin picking algorithm that can be automatically
customized for specific objects, and when these objects are
very reflective. We present a method for bin picking that
addresses these two challenges.

The input to the grasp detection network is a depth image
and the output is a set of possible 3D grasps (e.g. 5-DOF or
6-DOF gripper poses). The use of a dual-resolution network
enables both high accuracy in a focus region of interest for
placing the grasp and estimating the grasp pose, as well as
enabling a low-resolution context awareness that e.g. ensures
that the grasps do not collide with other objects in cluttered
scenes. Fig. 1 shows the robot and the Zivid1 3D camera
used in our experiment and the steel parts in our bin picking
case.

We first evaluate our approach on simulated test data
and then demonstrate it in an exemplary real-world scenario
involving bin picking of steel parts using a robot with 5-DOF
placement of a vacuum suction gripper. Training of the neural
network is done entirely on synthetic depth images generated
by domain randomization in a simulated environment. This
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2NTNU, Department of Engineering Cybernetics, Trondheim, Norway
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Fig. 1. Grasping steel parts with a suction gripper (top two images). An
overview of the bin picking setup, including a Zivid 3D camera (A), a UR5
robot (B), a pneumatic suction gripper (C), a bin of reflective steel parts
(D) and a bin (E) for placing the steel parts after picking.

approach is used to generate simulated data for training of
the neural network [23] that will work well in the real world.

Our main contributions are:

• A dual-resolution convolutional neural network for end-
to-end 5-DOF grasp estimation from depth images,
which uses a high resolution focus network to compute
the grasp and a low resolution context network to avoid
local collisions.

• A simulation environment using domain randomization
to automatically generate large data sets for training the
neural network, given known reflectivity and geometric
properties of objects in the bin-picking scenario.

• Demonstrating that the dual-resolution neural network
can be trained entirely in a simulated environment
on specific objects, and be deployed in a robot that
performs bin picking of these objects in the real world.

Although our experiments are done using a suction gripper
on smooth-surfaced metal objects, the methodology of our
contributions should be applicable also for other types of



objects and grippers - as long as these can be simulated.
The rest of the paper is organized as follows: We discuss
related work in Section II. We present our grasping method
in Section III. We then describe our experimental setup and
results in Section IV. The conclusion and suggestions for
future work are in Section V.

II. RELATED WORK

Detecting robot grasps from 3D or depth images is an
active research field, both in terms of using geometry-based
methods [8]–[12], [14] and deep learning [1]–[5], [7], [13],
[20], [21]. Geometry-based methods attempt to match 3D
CAD models to point clouds to compute the object pose
[16]. Some research suggests that primates and humans have
separate neural pathways for object recognition and grasping
[17], and the object detection and pose estimation has often
been treated as an isolated problem separated from grasp se-
lection in the bin-picking literature. Geometry-based methods
have been well explored for pose estimation in bin-picking,
such as Abbeloos et al [24], that uses the popular point
pair feature approach, first presented by Drost et al. [27].
Buchhilz et al. [26] suggests a two-stage approach where the
full object pose is estimated after grasping based on inertial
features. On the other hand, Ellekilde et al. [25] focuses on
the grasp selection alone and proposes a learning framework
to improve on this part. A different approach is to detect a
valid grasp directly from 2D or 3D images without explicit
pose estimation. Domae et al. [19] estimates the graspability
of an object based on depth maps without the assumption
of a 3D model, which makes it applicable to all objects.
Saxena et al. [6] developed a grasp detection algorithm based
on extracted hand-coded features from stereoscopic cameras,
and machine learning (logistic regression). Other hand-coded
feature-based approaches using machine learning have also
been developed [11].

Instead of hand-coding features, one may use deep learn-
ing to extract the relevant features for grasping [3]–[5],
[7]. These works use deep learning on depth images and
output grasping rectangles with center points parameterized
by (x, y) and θ in the plane of the depth image, and use
the depth image values within the rectangle to compute
the distance to that point. For a parallel-plate gripper ap-
proaching perpendicular to the viewing plane of the depth
sensor, this approach works well. In general, this may not
necessarily work, and a full 3D grasp may be required. This
has previously been solved by using deep learning [1]. Here
the 6-DOF grasps are generated randomly within a volume
of interest and a convolutional neural network is used to
evaluate the grasps by inputting multiple projections of a
3D point cloud volume centered at the grasp. Levine et al.
[22] uses a convolutional neural network to learn hand-eye
coordination from a large dataset of grasp attempts with real
robots and a large variation of domestic objects in semi-
cluttered bins. In contrast to Pinto et al. [5] they use the
trained network to servo the gripper in real-time, which
makes it more robust to mistakes and moving objects. Other
approaches [2], [21] also use deep learning to evaluate the

quality of a grasp. This differs from our approach, in which
we use deep learning to compute the 3D grasp itself. In
terms of input-output domain of the neural network, the work
most related to ours is Huang et al. [13], where the output
is the robot hand position, rotation axis and angle of rota-
tion. Our approach differs, in that we use a dual-resolution
convolutional neural network. Dual-resolution networks have
successfully been used to recognize hand gestures from depth
images [15]. Relative to this, our deep learning approach is
novel in that we integrate two resolutions into fully connected
layers before computing the output, whereas [15] integrates
the final output of each resolution.

The use of a dual-resolution network enables both high
accuracy in a focus region of interest, when placing the
grasp and estimating the grasp pose, as well as enabling a
low-resolution context awareness that e.g. ensures that the
grasps do not collide with other objects in cluttered scenes.
This approach is in principle similar to the fast filter-based
bin-picking algorithm in [19], which uses binary and linear
contact and collision filters that consider the geometry of
the gripper, to filter the depth images and thereby locate
4-DOF grasps. The principle differences between our work
and [19], is that we use a neural network to provide end-
to-end training of a 5-DOF (extendable to 6-DOF) grasp
detection network that automatically designs the appropriate
general and nonlinear filters relevant to grasp estimation and
collision, in a way that considers both the geometry of the
gripper as well as the geometry and reflectivity of the objects.

One challenge with deep learning for robot grasping is the
lack of large datasets of labeled training data, especially for
depth images. Pinto et al. [5] collected grasp attempts on a
real robot to train their network. Schwarz et al. [28] take
another approach, and uses pretrained models from object
classification to output bounding boxes and object boundaries
for further grasp detection. Our solution to this problem is
to generate our own labeled depth dataset in a simulated
environment. The benefit of this approach is that it enables
us to do end-to-end learning of the grasp itself, and utilize the
depth data more directly such that we can handle challenging
surfaces.

Generation of realistic looking synthetic images is an ac-
tive research topic and [29] has proposed a method based on
an adversarial network to improve the realism of simulated
images using unlabeled real data.

Compared to the literature (e.g. [21]) our network does
not require singulating or segmentation of the objects before
estimating the grasp. Segmentation is difficult when the
objects are highly reflective, since one is not guaranteed to
have contiguous depth measurements within an object due to
missing data in the depth images. To solve this problem, our
neural network is trained entirely by domain randomization
in a simulated environment that explicitly simulates the
reflectivity of the objects in cluttered scenes by rendering
missing data in the depth images similarly to how missing
data occurs in real 3D images of reflective objects.
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Fig. 3. Architecture of the focus, context and output networks.

III. GRASP POSE DETECTION

We propose the use of a dual-resolution convolutional
neural network for estimation of grasps from depth images.
Combining a high-resolution with a low-resolution image
as input, provides the network with enough information to
accurately place grasps on small objects, and enough of an
overview of the scene to avoid collisions between the gripper
and the local environment.

A. Convolutional Neural Networks

The neural network architecture is illustrated in Fig. 2.
An input depth image I is used to compute a batch of image
patches Ip of size 128× 128. The neural network processes
each of these image patches independently and produces five
outputs for each image patch. The first output d, is the grasp
detector confidence and estimates the probability of a valid
grasp point in the center of the image patch. At test time, the
image patch with the corresponding highest grasp detector
confidence is selected, and from this image patch the neural
network computes the grasp that the virtual or real robot
will perform. Three outputs describe the 3D grasp vector v,
which is an approach vector for the grasp point in camera
coordinates. The last output pz , is the point estimator which
estimates the distance to the grasp point along the z-axis of
the 3D camera, at the x- and y- coordinates of the center of
the depth image patch.

From the depth image patch Ip of size 128×128 pixels, the
central 32× 32 pixels are considered the focus of the grasp
network, and are input to the convolutional focus network
fFN (x;WFN ). A second convolutional network, called the
context network fCN (x;WCN ), takes as input a 4×4 down-
sampled version of Ip. The architecture of the focus and con-
text networks are shown in Fig. 3. Each have convolutional
layers and max-pooling layers and use the rectified linear unit
(ReLu) activation function after each convolutional layer.
The vector outputs from these two networks are concatenated
and input to the output network fON (x;WON ). The output
network has three sub-networks each having two dense
layers, with each sub-network computing one of the three
outputs d, v, and pz . The first dense layer in each sub-
network uses a (ReLu) activation function. The second dense
layer uses a sigmoid activation before the output d, and ReLu
before the outputs v and pz .

B. Training

The neural network was trained end-to-end, supervised on
400 000 synthetically created training examples. Training
was done using the Adam optimizer [18]. One training
example consists of a 128× 128 image patch input Ip with
its corresponding ground-truth output y =

[
d v pz

]
. For

false examples, i.e. image patches not containing a grasp,
the target vector is set to y =

[
0 1 1 1 1

]
. Given the ground-

truth output y, and the output ŷ that the network predicts,
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Fig. 4. The simulated environment, used for generating synthetic data
set for training the neural network and for evaluating its performance on
synthetic depth images.

the cost function is a weighted sum of the detector cost Jd,
point regression cost Jpz

and the vector regression cost Jv,
expressed as

Jtotal(y, ŷ) = αJd(y, ŷ) + βJpz (y, ŷ) + γJv(y, ŷ). (1)

For the grasp detector cost, the cross entropy function is
used, giving

Jd(y, ŷ) = −d ln d̂+ (1− d) ln (1− d̂). (2)

For both the point and vector regression costs, the squared
error cost function is used. Note that for input training images
not containing a valid grasp, we do not have real targets for
the point and vector estimators. Therefore, we mask out the
point and vector costs for false examples by multiplying with
the classification label, giving us the cost functions

Jpz (y, ŷ) =
1

2
d(pz − p̂z)2 (3)

and
Jv(y, ŷ) =

1

2
d‖v − v̂‖22. (4)

C. Simulated Environment for Generating Training Data

There is a need for large amounts of data when training
deep neural networks and hand labelling of a large data set
for the bin picking task would be very time consuming. To
avoid this tedious work, we used a simulated environment,
shown in Fig. 4. Using the Unity3D game engine and its
built-in physics, we created an environment for easy data
generation.

The environment is generic and can be used to create data
sets for 6 DOF grasping tasks from depth images for any type
of rigid object. To generate a data set, a geometric model
of the graspable objects needs to be provided. Additional
information about weight, reflection and friction coefficients
is also needed. Lastly, some valid grasps for each object need
to be set. In our experiments we defined 21 preset grasps for
each of the three types of graspable metal cylinders. The
output from the simulated environment is a depth image

and a list of valid grasps in camera coordinates. The data
is generated as follows:

1) A random number of parts in the range 1 to 30 are
instantiated in mid-air with random orientations.

2) The parts are dropped and allowed to fall to a rest in
random positions in the box or on the table.

3) For each preset grasp on each instance of a part,
perform a check for collision between the gripper and
all other parts and the box. A grasp is a valid grasp if
there is no collision.

4) For each instance of a part with at least one valid
grasp, only a single valid grasp is selected. The grasp is
selected in a manner that favors grasps that are close
to the world z-axis and in the direction towards the
simulated 3D camera.

5) The simulated 3D camera is randomly rotated and
translated before an intensity image Icam and a depth
image Idepth is rendered and saved to disk along with
a single valid grasp for each part in the scene.

The neural network requires a data set of 128×128 image
patches where each patch either has a grasp in the center, or
it has no grasp. The true examples were simply created by
cropping patches from the generated depth image, centered
around each grasp. An equal amount of false examples were
created by cropping random patches from the same image.
This way of creating false examples may lead to some false
negatives. We assume that the number of possible grasps
in the image are outnumbered with a large enough margin
by the number of not possible grasps for this to not impact
training negatively.

D. Synthetic and Real 3D Camera Images

Depth information is in principle invariant to lighting and
texture, which makes it far easier to generate realistic depth
images than RGB-images. However, with a real 3D camera,
noise and missing depth data occurs even in controlled
lighting conditions.

The 3D camera used in the experiments was the Zivid
RGB-D camera based on projection of structured light. The
camera has high resolution (0.1 mm), high speed (10Hz)
and High-dynamic-range (HDR) imaging, which combat the
over/under exposure problem, to some degree. However,
the captured 3D data still suffers from noise and missing
depth data, especially in cluttered scenes with many reflective
surfaces, which leads to under exposure in some areas and
over exposure in others, as shown to the right in Fig. 5.
Additional noise comes as a result of the light from the
projector reflecting off multiple objects before reaching the
camera.

In order to generate realistic looking depth images, we
simulate the missing data in depth images resulting from
the reflectivity of the steel parts. We assume that all other
objects consist of ideal diffuse reflective surfaces and that the
structured light projector is the only light source in the scene.
Because the experiments done with the real 3D camera and
robot are done in controlled surroundings with controlled
lighting conditions, the synthetically created depth images
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Fig. 5. Synthetic images generated with domain randomization, compared to real image of steel parts in a box. The intensity images Iint are used to
mask the depth images Idepth resulting in masked depth images I. The masking is done using randomized masking parameters m1 and m2 for each
image.

should sufficiently approximate real depth images. Domain
randomization over the dynamic range of the depth images
is applied to generate training and test data for the neural
network. This is done by combining an intensity image patch
Ip,int with a depth image patch Ip,depth into an final image
patch Ip defined by

Ip = Ip,depth · I(Ip,int ≥ m1 ∧ Ip,int ≤ m2) + ε (5)

where I(·) is the indicator function and ε is an image of
uniformly-distributed random noise satisfying −1 ≤ ε ≤ 1.
The dynamic range of the 3D camera is randomly adjusted by
setting m1 and m2 to uniformly-distributed random numbers
satisfying m1,min ≤ m1 ≤ m1,max and m2,min ≤ m2 ≤
m2,max. Additionally, we assume m1 � m2, so that m1

corresponds to the minimum level of intensity required to
provide a valid depth measurement, and m2 corresponds
to the maximum level, i.e. camera saturation. Examples of
synthetic images and an example of a real image can be seen
in Fig. 5. The synthetic images show the variations due to
domain randomization over the following variables of the
simulation:

• Number of steel parts
• Size of steel parts
• Position and orientation of steel parts
• Reflectivity of steel parts
• Position and orientation of the 3D camera
• Dynamic range of the 3D camera

In total, this domain randomization is expected to span the
range of scenarios sufficiently that a neural net trained on
synthetic images will work well on real images.

IV. EXPERIMENTS AND RESULTS

A. Procedure for Grasp Evaluation on Synthetic Data

In order to evaluate the performance of the neural network
on a large data set, we tested it on data from a simulation

not used during training, using a simplified simulation of a
suction gripper. The experiment was conducted as follows:

1) A random number of parts in the range 1-30 were
dropped in the box

2) The number of parts present in the scene was noted
before the neural network was used to attempt a grasp.

3) If the grasp was successful:
a) The grasp was logged as successful together with

the number of parts present before the grasp was
attempted.

b) The picked part was removed from the scene,
allowing the remaining parts to move according
to their physics.

c) If the picked part was the last part in the scene:
Go to point 1. Else: Go to point 2.

4) If the grasp was unsuccessful:
a) The grasp was logged as unsuccessful together

with the number of parts present before the grasp
was attempted.

b) The cause of the failure was logged as either:
Gripper collision (the virtual gripper collided
with the environment or other parts) or poor grasp
(outside a set tolerance).

5) Go to point 1.
The experiment in simulation was continued until 12000

parts were picked successfully. The physics of the vacuum
gripper was not simulated, instead the criteria for a valid
grasp were defined by the position of the gripper on the part
and the gripper angle relative to the surface normal on the
contact point.

B. Results of Grasp Evaluation on Synthetic Data

The grasp performance of the neural net tested in the
simulated environment shows that we achieve an overall
success rate of 83 % for the bin picking system, when using
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the dual-resolution network. The success rate varies as a
function of the number of parts remaining in the box (Fig. 6).
Most of the errors made were due to collisions between the
gripper and the environment. If these errors are ignored, i.e.
we evaluate the performance of the system solely on the basis
of correctly placed grasps on the steel parts, the success rate
is 95 %. In a robot bin picking system this issue would be
resolved by implementing a global collision check. It seems
to be a trend that the success rate drops when there are few
objects left in the box. The likely cause of this is that the
network always chooses the most certain grasp in the scene
first, leaving the most uncertain grips for last, e.g. difficult
grasps like a part in the corner of the box that is only partially
viewed by the camera.

C. Evaluation of the Context Network

To evaluate the effect of the context network we tested the
proposed dual-resolution network, which includes the context
network, and a single-resolution network without a context
network. The single-resolution network has the same overall
architecture as the dual-resolution network, with the differ-
ence being that the context network is removed entirely. A
separate training was done on the single-resolution network.
The single-resolution network without the context network
has more picking failures as the number of parts in the box
increase (Fig. 7), compared to the dual-resolution network
with the context network. The number of collision failures
are reduced by up to 34%. When there are few parts in the
box there are few local collisions and the context network
has little effect. As the number of parts in the box increases,
there are potentially more local collision between the gripper
and the parts. Overall, the use of a context network in a dual-
resolution network can improve grasping success by reducing
the number of collisions between the gripper and the parts.

D. Robot Bin Picking Data and Setup

For the bin picking experiments with a real robot we used
reflective steel parts from an industrial automation applica-
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tion. We used a set of 40 cylindrical parts with diameters
varying between 19 mm and 30.7 mm, and lengths varying
between 25.7 mm and 31.7 mm. For these experiments,
a UR5 6-DOF robotic manipulator from Universal Robots
was used. A vacuum gripper with a single suction cup was
attached to the end effector. The suction cup had a diameter
of 10 mm and could be compressed 4-5 mm in the tool
point direction. The design of the gripper puts some physical
limitations on the set of grasps that can be executed without
collision. Even though the dual-resolution neural network in-
corporates local collision checking, global collision checking
for the whole robot arm was not implemented. This could
be solved by running a global collision check (for instance
OpenRAVE) on the suggested grasp before execution.

E. Robot Bin Picking Evaluation Procedure

A box was filled with steel parts of different sizes in a
random manner. An image was captured of the box and used
as input to the system, and the grasp with highest score was
executed with the robot. If a grasp was unsuccessful, either
because of collision or an erroneous grasp estimation, the
part was removed manually. Otherwise, the robot removed
the object by grasping and picking it up and placing it in a
second box. A new image was acquired before attempting
to remove a new part. This continued until the box was
empty. The robot test was conducted on 6 different boxes,
each initialized with 30 parts randomly placed.

F. Comparing Grasp Placement Performance on Simulated
and Real Depth Images

The grasp placement performance of the dual-resolution
network was evaluated on simulated and real depth images.
In this evaluation, only the grasp placement is evaluated, and
other robot system related errors are not considered. There is
good correspondence between the results on simulated and
real depth images. The grasp placement performance on real
depth images has an overall lower success rate, see Fig. 8.
The mean grasp placement success rate for the simulated
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Fig. 9. Real-life bin picking performance, showing the picking success rate
with and without disregarding local collisions, as well as grasp placement
success.

depth images is 95% and 85% for the real depth images. In
both cases there is a decrease in performance towards the
bottom of the box, when there are few parts left. However,
the performance drop on the real depth images is somewhat
higher. This is most likely caused by more missing data in
the real depth images, than in the simulated depth images,
see Fig. 5.

G. Robot Bin Picking Performance

In the performance evaluation of the robot bin picking
system we measure success in several ways, in order to
understand the successes and failures of the system. This
performance evaluation is summarized in Fig. 9. Picking
success is measured by the success rate of the complete
robot system performing a grasp. We also measured the
picking success that could be achieved by disregarding grasps
that could be removed by a global collision check. Finally,
we compare this to grasp placement only. Compared to

the simulation results, the robot has a very low success
rate when picking the last parts in the box. This is mostly
due to collisions between the real gripper and environment,
and these errors stem from some differences between the
physical and the virtual gripper. In addition to collisions,
in the robot test, the failed grasps were due to small errors
in grasp position or angle, resulting in failed grasps due to
lack of suction. This error happened more frequently at the
bottom of the box. The last objects are often the ones which
are most difficult to grasp (e.g. in a corner), Levine et al.
[22] reported a similar trend. Additionally, objects in the
bottom of the box have less depth data due to occlusion.
Also, parts oriented with the opening facing up occurred
more frequently in the real-world test, because of a different
weight distribution than in the simulations. Some differences
between the real-world and the simulation combined lead to
a more challenging test scenario in the real world than in
the simulation. For situations when the real-world and the
simulated environment are more similar, for instance when
there are 21-30 parts in the box, the performance in the real-
world and in simulation are equally good (81% and 82%
picking success rates respectively, see Fig. 9 and Fig. 6). This
result suggests that improvements in the simulation, to more
accurately represent the real 3D camera, robot and gripper,
will result in higher picking success in the real world.

V. CONCLUSION AND FUTURE WORK

In this paper, we presented a method for robotic bin pick-
ing of reflective steel parts. We proposed a dual-resolution
convolutional neural network for 5-DOF grasping, trained
entirely by domain randomization in a simulated environ-
ment. The system was tested on simulated data as well as
in the real-world using a robot with a 5-DOF placement
vacuum gripper. Using a context network improves the grasp
performance by minimizing collisions between the gripper
and the local environment. We demonstrate that training of
the neural net by domain randomization on a large set of
synthetic depth images is an effective and useful approach
when the simulated environment closely resembles the real
world. Future work will focus on more accurately simulating
the 3D camera to improve the model of missing data in the
depth images, and implementing a more accurate model of
the gripper. We will also explore how we can improve the
simulated data through Adversarial Networks.
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Teaching a Robot to Grasp Real Fish by Imitation Learning from a
Human Supervisor in Virtual Reality

Jonatan S. Dyrstad1,2, Elling Ruud Øye1, Annette Stahl2 and John Reidar Mathiassen1,∗

Abstract— We teach a real robot to grasp real fish, by training
a virtual robot exclusively in virtual reality. Our approach
implements robot imitation learning from a human supervisor
in virtual reality. A deep 3D convolutional neural network
computes grasps from a 3D occupancy grid obtained from depth
imaging at multiple viewpoints. In virtual reality, a human
supervisor can easily and intuitively demonstrate examples of
how to grasp an object, such as a fish. From a few dozen of these
demonstrations, we use domain randomization to generate a
large synthetic training data set consisting of 100 000 example
grasps of fish. Using this data set for training purposes, the
network is able to guide a real robot and gripper to grasp
real fish with good success rates. The newly proposed domain
randomization approach constitutes the first step in how to
efficiently perform robot imitation learning from a human
supervisor in virtual reality in a way that transfers well to
the real world.

I. INTRODUCTION

In robotics, robust grasping and manipulation of objects
is still a challenging task to automate, in particular for
biological, non-rigid and deformable objects such as fish.
Inspired by the ability of humans to perform such tasks,
we investigate how to efficiently transfer the knowledge of
a human to the robot, via a combination of 1) a virtual
reality (VR) interface for demonstrating the task, 2) domain
randomization over components of the task to generate a
large synthetic data set, and 3) deep learning on this large
data set. Our hypothesis is that through our approach, VR can
serve as an efficient medium for demonstrating complex tasks
to robots. A first step towards testing this hypothesis was pre-
sented in earlier work [16], where both training and testing
was done entirely in VR. In this paper we take another step,
testing this hypothesis, by demonstrating that a robot trained
entirely in virtual reality can grasp real fish. We describe
an approach where a human supervisor can easily teach a
robot how to grasp fish in a VR environment. Grasping
and picking fish from a box is an example of a challenging
grasping task involving a cluttered scene of multiple highly
deformable objects. In today’s fishing industry, many simple
and repetitive tasks are still performed by human workers
due to difficulties in automating handling of the fish. This
task is therefore ideal for demonstrating the capabilities of
our approach applied to relevant industrial problems.

An essential aspect of imitation learning, from a human
supervisor, is the system in which the human demonstrates
the task. This system should be intuitive and easy to use and
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additionally, the supervisor should not have to demonstrate
the task many times, which is often necessary when training
deep learning models. Therefore, we have developed a sys-
tem where the supervisor’s actions are not used directly to
train the robot, but rather used to generate large amounts of
synthetic training data through domain randomization over
relevant components of the grasping task. This enables us
to train a deep neural network (DNN) for grasp detection,
from scratch, using only a few dozen manually-demonstrated
example grasps.

Training of our system is done exclusively on synthetic
data, since this enables efficient development and testing of
our approach. Testing of the system is done on real data
and with a real robot and gripper. This succeeds in our
case, since domain randomization, over the possible poses
and dimensions of the virtual fish and the parameters of the
virtual 3D camera, ensures that a 3D CNN can perform well
on real data encountered during tests with real fish.

A. Related work

Robot grasping is an active ongoing research field. There
are several methodologies applicable to robot grasping based
on visual input, such as imitation learning and reinforcement
learning, based on real or synthetic data. Imitation learning
is a generic approach [1], [2], [3] in which a human or
algorithmic supervisor demonstrates a task, e.g. a grasping
action specified by a pose and gripper configuration, with a
corresponding state space consisting of visual information.
Based on a set of demonstrations, a learning algorithm, such
as support vector machines (SVM), regularized regression [4]
or artificial neural networks [5], [6], [7], [8], [9], [10], learns
to find or evaluate the mapping between the visual state and
the grasping action. In reinforcement learning (RL) there is
no supervisor to demonstrate how to perform the task, instead
there is a reinforcement signal provided to the learning
algorithm. Imitation learning has the advantage of efficiently
discovering state-action mappings that work reasonably, with
the disadvantage that this may require a large data set of
demonstration examples. Contrary to this, RL, e.g. using
artificial neural networks [11], has the disadvantages of
slow learning speed and difficulty of accurately defining
a suitable objective function for more complex tasks. The
advantages of RL algorithms are that they do not require a
human supervisor, and RL algorithms can potentially learn
to perform beyond the capabilities of a supervisor.

Synthetic data generation is a well-known and successful
approach to training deep learning systems [13], [14], prior to
applying them to real-world data. In particular, an approach
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Fig. 1. A robot is tasked with picking fish from a box. The robot has a
RealSense 3D camera (A) and gripper (B) mounted on its end effector. The
task is to pick fish from a box (C) and place them in a second box (D).

called domain randomization has been shown to enable
robust training on synthetic data that directly works on real-
world data without additional training [15]. Domain random-
ization involves randomizing over the relevant components of
a task to generate synthetic data that has enough variation to
generalize to real data. A novelty of our approach for domain
randomization is that it begins with an intuitive virtual reality
interface where a human supervisor can easily provide a
low or moderate number of demonstration examples. These
examples are then used in a domain randomization process
over the camera viewpoints, projector-camera occlusion, the
physical interactions of the fish and the box, and the pre-
viously demonstrated grasps of the human supervisor. This
enables us to generate the large data sets required for deep
learning, while including the intent of the human supervisor.
In principle, this is similar to the algorithmic supervisor
approach presented in [17]. A few differences between our

work and [17] are: 1) in our work the grasps are placed
by a human supervisor in VR, instead of an algorithmic
supervisor; 2) in our work an end-to-end 3D CNN directly
computes 6-DOF grasps from the input 3D occupancy grid,
whereas [17] uses a GQ-CNN to evaluate multiple randomly-
sampled and pre-aligned parallel-jaw grasps on depth images
and select the grasp with the highest quality.

Our previous work [16] applied 3D convolutional neural
networks (3D CNN) to robot grasping. Previously, 3D CNNs
have been successfully applied to e.g. 3D shape recognition
[4], [12]. Our main motivation in working with volumetric
occupancy grid representations of point clouds, and 3D
CNNs to analyze them, is to develop the foundation for
deep learning in robotics applications that are camera- and
viewpoint-agnostic. Hence the 3D CNN can work in an
occupancy grid that is constructed by integrating 3D informa-
tion obtained from multiple depth images, multiple cameras
and/or multiple viewpoints. Multiple viewpoints and cameras
can provide a more complete coverage of a scene. A single-
view depth image will have occluded regions, and moving
the depth camera to one or more other locations will provide
a better view of the occluded regions. Fusing these two views
into a single occupancy grid will provide a more complete
view. The advantage of the 3D CNN approach is thus that can
be invariant or agnostic to the number of views or the number
of cameras that generate the 3D data, and it can work on the
complete view, as long as domain randomization is done
over the types of views that are possible. Compared to our
previous work [16], we have added domain randomization
over the projector-camera offset, as well as coded an entirely
new implementation of the 3D CNN in TensorFlow [18].

Our main contribution is to show that our approach to
robot imitation learning from a human supervisor in VR
transfers well to the real world, with a low or moderate
number of demonstrations by the human supervisor. This
validates our previous work [16], which was done entirely
in VR.

II. SYSTEM AND TASK DESCRIPTION

Our experiments are carried out on a 6-DOF Denso VS
087 robot arm mounted on a steel platform. An overview of
the system can be seen in Fig. 1. The task is for a robot to
pick up small fish of the species Atlantic herring (Clupea
harengus) out of a box and place them in a second box, so
that each fish can be weighed and processed individually. In
this paper we focus on the first part of this task - grasping
and picking the fish out of the box and placing them in
the second box. A custom two-finger wormdrive gripper was
designed, with compliant 3D-printed finger tips. The gripper
consists of a single stepper motor attached to a 3D-printed
hand. A wormscrew is mounted on the stepper motor axle
and this drives two wormwheels - one for each finger. With
the exception of the stepper motor, the entire gripper is 3D
printed. Fig. 1 shows a closeup of the gripper and how the
fingers are compliant enough to conform to the shape of
small fish. The gripper is controlled by an Arduino, and has
an adjustable gripper opening.
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Fig. 2. The presented approach to robot imitation learning in VR, where a) the human supervisor provides a few example grasps by grasping fish from
the box, b) domain randomization is used to generate a large synthetic data set based on the few example grasps, c) the deep neural network is trained on
the large data set, and d) the grasp output from the trained deep neural network is used to control a gripper to grasp real fish.

An Intel RealSense SR300 depth camera is placed on the
robot end-effector. The robot moves to three different poses
and the camera acquires three depth images that are projected
into an occupancy grid. The occupancy grid is processed by
a 3D CNN implemented in TensorFlow. The output of the 3D
CNN is a grasp certainty for each location in a downsampled
3D grid, and corresponding 6-DOF grasps defined by grasp
placement position and orientation vectors for each location
in that grid. A grasp is selected at the 3D location with the
highest grasp certainty. The robot is commanded to perform
this grasp, by placing the gripper, closing it and picking up
the fish.

III. ROBOT LEARNING

We use a deep 3D CNN to estimate grasps from an
occupancy grid. We propose the use of VR to generate large
amounts of synthetic training data in order to be able to train
a deep learning model with many parameters. An illustration
of our approach is shown in Fig. 2.

A. VR interface for demonstrating the task

A VR interface was created where a user - in this case
a human supervisor - can enter a virtual environment and
demonstrate the task for the robot as shown in Fig. 2a. The
user has a controller in his hand, which in VR appears to him
as a gripper, similar to the gripper mounted on the robot end
effector. The environment was created with the Unity game
engine and the VR-equipment used the HTC-Vive head-
mounted display and hand-held motion controllers.

Fish are instantiated in mid-air and dropped using sim-
ulated physics that model the deformation and friction
characteristics of the pelagic fish species herring (Clupea
harengus). The fish physics were modelled using joints and
colliders in the Unity game engine. Each fish consists of
seven 3-DOF spring-damper revolute joints connecting eight
rigid collider segments that approximate the fish shape. The
coefficients of the spring-damper joints were hand-tuned
until they visually matched the pose and dynamics of real
fish recorded in various static and dynamic deformation
scenarios. For rendering a realistic fish mesh, a neutral-
pose fish mesh was rigged and weight-painted using the
colliders. The purpose of weight painting is to smoothly

deform the continuous neutral-pose fish mesh using a discrete
set of colliders as its ”skeleton”. Friction coefficients of each
collider were hand-tuned to visually match the sliding motion
of real wet fish. This relatively simple physics modelling was
complex enough to provide visually realistic images, while
simple enough to render tens of fish at interactive rates (90
Hz).

Simulated fish physics ensures that the fish land in natural
poses in a fish box placed in front of the robot. The task
of the human supervisor is to grasp the fish and move the
fish from this box to another box, using the gripper in his
hand (see Fig. 2a). In this way, the user gets the impression
that he is showing the robot how to perform the task, in an
easy and intuitive way. Since the user is told to grasp the
fish in a way that enables him to pick it up and place it in
a second box, he will naturally use a grasp that is suited for
that task. If e.g. the task had been a different one, such as
placing the fish in a narrow hole, the user would probably
grasp the fish differently. Hence, this is an effective way of
getting the user to demonstrate grasps that are suitable for
a given task. For each fish grasped by the user, the grasp is
logged with regards to its position and orientation relative
to the fish. An example of these logged grasps can be seen
in Fig. 5. This is the demonstration part of our imitation
learning approach. In traditional imitation learning, a large
number of demonstration examples are required. The number
of required examples scales with the number of parameters
in the model that is being taught. Models with very many
parameters, such as large neural networks, may require on
the order of tens of thousands of demonstrations in order to
adequately learn the task without overfitting to the training
data. For a user this is clearly too much work, and an
alternative approach is needed to generate a sufficiently large
and realistic training data set.

B. Generating large amounts of synthetic data by domain
randomization

Based on the logged grasps, we propose to use domain
randomization that includes information on the human su-
pervisor’s grasp intent, as a method for generating a large
training data set from a few demonstrations, with no further
human supervision. As in the previous section, the fish are
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Fig. 3. Two examples (top row and botom row) illustrating the domain randomization approach for generating a large data set, by a) dropping a random
number of fish in the box, using realistic fish physics, b) placing each of the logged grasps onto each fish, c) pruning the grasps based on collision
heuristics.
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Fig. 4. The architecture of the 3D CNN consists of stacked convolutional layers, with striding (instead of max pooling) used to reduce the output
resolution. The dense layers are swapped for 1× 1× 1 convolutions to enable inputs of varying sizes. The activation functions for the feature extraction
layers are rectified linear units, and in the last layer, l̂ has a sigmoid activation function and the rest have linear activations.

instantiated and dropped into the fish box, as shown in Fig.
3a. By randomizing over the number of fish, and the position
and orientation of each fish before dropping them into the
box, this provides domain randomization over the possible
ways in which fish can realistically be positioned relative to
each other in a box.

Instead of the human supervisor demonstrating the grasp
for each randomly generated box of fish, we instantiate all of
the previously logged grasps onto each of the fish in the box,
as shown in Fig. 3b. However, not all of the grasps are valid
for all of the fish, given their current pose and position in
the box (i.e. closeness to the walls etc.). Therefore, for every
fish, all of the logged grasps are automatically checked using

collision heuristics to see if they collide with the environment
or with the other objects in the scene in any way. The ones
that do not are kept and the rest are discarded, resulting in a
set of plausible grasps as shown in Fig. 3c. This three-step
approach provides domain randomization over the possible
ways a human supervisor would probably grasp the fish,
based on what know from the previously logged grasps.

An orthographically projected depth image is rendered of
the entire fish box and the list of valid grip vectors are
recorded along with the depth image. The field of view and
resolution of the virtual 3D camera is such that each pixel
in the orthographically projected depth image can be read as
an xyz-coordinate in millimeters given in camera coordinates



Fig. 5. The logged grasps after demonstration of two grasps in virtual
reality. As the fish bends and twists, the grasps follow, making them valid
for the fish regardless of pose.

(with an offset of imagewidth/height
2 in the xy-direction).

Some 3D cameras, such as the Intel RealSense SR300, work
by projecting a light pattern from a projector that is offset
from the actual camera. Because some of the scene is visible
to the camera but occluded to the projector, the result is
depth shadows, areas in the depth image with unknown depth
values. This effect is simulated with the virtual 3D camera as
well. The depth data we generate in simulation can therefore
be thought of as coming from a perfectly calibrated real
3D camera. To provide robust learning, we randomize the
position and orientation of the virtual 3D camera and the
offset between the projector and the camera, thus creating
variations in the amount of missing data in the depth images
due to the occlusion of the projector illumination. This is our
final component of domain randomization.

C. Neural network

The depth images are projected into a 3D occupancy grid,
and we use a 3D CNN to estimate grasps from a receptive
field volume in the occupancy grid, and split the problem up
into three sub-problems

• Detecting probable grasp locations
• Estimating the precise grip point
• Estimating the orientation of the gripper
The architecture of the network is shown in Fig. 4. For a

volume of size 31× 31× 31, the output is a vector

ŷ =
[
l̂ p̂ d̂1 d̂2

]
, (1)

where l̂ ∈ [0, 1] is a label that estimates the certainty that the
input volume contains a valid grasp, p̂ estimates the position
of a grasp within the input volume, d̂1 and d̂2 estimate the
orientation of the grasp.

The network is fully convolutional and has sliding dense
layers, meaning that the dimensions of the output from the
network is dependent on the dimensions of the input volume.
For larger inputs, the result is a grasp detector, capable of
detecting multiple grasps within the input volume.

The predictions for the three sub-problems are output from
the same network and trained jointly because of the high

Fig. 6. The orientation of the gripper is defined by two vectors d1 (red)
and d2 (blue). The position p is at the intersection of these two vectors.

dependence between the different objectives. The total cost
for training example i is given by

J (i) = J
(i)
C + l(i)(0.1 · J (i)

O + 0.1 · J (i)
P ), (2)

where J
(i)
C is the classification cost, J

(i)
O the orientation

estimation cost, J
(i)
P the position estimation cost, l(i) is

the true label for training example i. Note that for false
examples, no updates are done to the position and orientation
estimators. For classification of valid grasps, the binary cross
entropy function

J
(i)
C = −l(i) log(l̂(i)) + (1− l(i)) log(1− l̂(i)) (3)

is used, and for regression on the precise grasp point p(i)

within the given volume we use the squared error cost
function

J
(i)
P =

1

2
||p̂(i) − p(i)||2. (4)

The orientation of the gripper is defined unambiguously
with two three dimensional vectors, each describing a direc-
tion in 3D-space (see Fig. 6). The total orientation cost for
the N = 2 orientation vectors is given by

J
(i)
O =

N∑

k=1

1

2
||d̂(i)

k − d
(i)
k ||2, (5)

where dk
(i) and d̂

(i)
k for k ∈ 1, 2 respectively denote the

true and estimated orientation vectors for training example
i.

D. Preparing data for training

During training, the input to the network is a receptive
field volume of size 31 × 31 × 31 and the ground truth
grasp certainty l(i) is either 1 or 0 (i.e. the volume does
or does not contain a valid grasp). Training examples with
true labels are simply created by cropping volumes of the
synthetically created depth images centered around one of
the valid grasp points for that image. The crop is offset
randomly from the middle by some amount in order to
create training vectors for the grip point estimator as well.
In our experiments we generate false training examples (i.e.
areas with a low probability of containing a grasp), simply
by cropping random volumes of the occupancy grid and



Fig. 7. Examples of grasp vectors placed by the 3D CNN in the occupancy grid of synthetic (left) and real (right) data.
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Fig. 8. Examples of predicted grasps on synthetic data, showing the
contents of the receptive field and the predicted grasp vectors.

labelling them as false examples. Because the volumes that
contain valid grasp are vastly outnumbered by the volumes
that do not, the result is a false-data set with mostly true,
but also some false, negatives.

IV. EXPERIMENTS AND RESULTS

A. Generating synthetic data

Domain randomization was used to prepare the synthetic
data set. In our experiments, 35 grasps were shown in

Fig. 9. Examples showing grasping of real fish.

VR. With these grasps, 3334 different random scenes were
generated, each with a random number of fish between 1
and 25. For each of these scenes, 3 depth images were
generated by randomly selecting a viewpoint and projector-
camera offset. The result of this is more than 10000 synthetic
depth images of fish boxes containing between 1 and 25 fish.
From these depth images, 100000 examples were cropped
where 50% of the data set did not contain a grasp.

B. Training the 3D CNN

The data was split into a training set of 100000 examples
and a validation set of 4000 examples. The 3D CNN was
trained with the Adam [19] optimizer on the training set.
Early stopping was used to stop training before the cost
function started increasing on the validation set. After a
few hours the training was stopped, and the 3D CNN was
tested on some synthetic data and visualized to inspect the
outputs of the 3D CNN, before proceeding to real-world
tests. The 3D CNN takes as input an occupancy grid and
outputs grasp certainties and grasps for the entire volume of
the occupancy grid. Examples of a full synthetic occupancy
grid with predicted grasps is shown in Fig. 7 (left), and
examples of two receptive fields with predictions can be seen
in Fig. 8.

C. Experimental protocol

The 3D CNN was evaluated in an experiment with real
fish. The setup included the robot with a box in front of
it, where fish are placed. The fish box also contains some
water. The robot is tasked with picking fish, one at a time,
from that box and placing them into a second box. This
setup is shown in Fig. 1. The goal of the experiment was to
measure the grasping success rate and failure rate, in picking
up the fish from the first box and placing it into the second
box. We also wanted to determine the types of failures. The
experimental protocol was as follows:

1) Place a box of 25 fish in front of the robot.
2) Scan the box and compute the occupancy grid.
3) Detect grasps for the entire occupancy grid and select

the most certain grasp.
4) Attempt the grasp.



5) If successful grasp, goto point 2.
6) If unsuccessful, log the failure type and randomize box:

a) Remove the box from in front of the robot.
b) Pour contents of the box into a second box.
c) Pour contents of the second box back into the

first box.
d) Place the box back in front of the robot.
e) Goto point 2.

The grasping was continued until the box was empty.

D. Failure types

A grasp was judged as a success if a fish was successfully
moved from one box to another. If the robot failed to do so
the grasp was judged as a failure. The two main reasons for
failure were bad grasps and collisions. A failure was logged
in the bad grasps category if:

1) The robot failed to pick up the fish.
2) The fish was dropped during transfer to the second

box.
Collisions were logged in three separate subcategories:

1) Gripper collisions within the 3D CNN’s receptive field.
2) Gripper collisions on approach to an otherwise valid

grasp.
3) Robot and camera collisions.

The category ”NN failures” in Table I excludes the failures
from the second and third collision failure types. These
failures should not be credited to the 3D CNN because the
conditions for success are unobservable for the neural net-
work. Additionally failed grasps where the highest predicted
grasp certainty was less than 0.50 were not included in ’NN
failures’.

E. Real-world test results

Example grasps can be seen in Fig. 9, showing how the
gripper approaches the grasp point, places the grasp and
begins picking up the fish. Fig. 7 (right) shows an occupancy
grid computed during the real-world tests.

The experimental protocol was performed on a total of
seven boxes, and the successes and failures were catego-
rized. The results are summarized quantitatively in Table I.
Referring to that table, we see successes and failures of the
grasping task, as well as the success and failures attributed
to the neural network (NN). There are two boxes that deviate
significantly from the others. Box 2 contained fish that were
not very fresh, resulting in an oily film on the fish and a very
greasy box after repeated randomization of it. This affected
the depth imaging and resulted in more slippery and soft fish
that were difficult to grasp. The average grasp certainty l̂ is
significantly lower for box two, suggesting the quality of the
imaging was affected by the oily film. During the experiment
on box 3, the gripper failed after 19 grasp attempts and a
replacement part had to be 3D printed, and the experiments
continued the next day.

The overall success rate was 74 %, and this increased to
80 % when excluding failures that could not be attributed to
the neural network. On average the successful grasps had a

TABLE I
GRASPING RESULTS ON REAL FISH

Success NN NN Avg.
Box (%) Success Failure success (%) failure l̂

1 71 % 25 10 78 % 7 1.00
2 57 % 25 19 71 % 10 0.84
3 74 % 14 5 74 % 5 1.00
4 86 % 25 4 86 % 4 1.00
5 81 % 25 6 83 % 5 0.99
6 83 % 25 5 96 % 1 0.99
7 76 % 25 8 76 % 8 1.00

All 74 % 164 57 80 % 40 0.97

higher predicted grasp certainty than the unsuccessful ones,
0.98 and 0.92 respectively. This suggests that a threshold on
grasp certainty values could yield better results by minimiz-
ing failed grasp attempts.

V. DISCUSSION AND FUTURE WORK

The results of our work, suggest that our approach to
domain randomization in virtual reality is an efficient method
of transferring knowledge to a robot. Based on only a
few demonstration examples, a sufficiently large and diverse
synthetic data set was generated that was capable of training
a large 3D convolutional neural network. The real-world
experiments showed an overall grasping success rate of 74 %,
which increases to 80 % when considering only the failures
that could be attributed to the neural network. The task of
grasping slippery fish, with a narrow elastomer gripper, is
very unforgiving with respect to grasp placement errors. If
the grasp is placed with a significant offset, in any direction,
from fish’s center of gravity, the probability of the fish sliding
or dropping out of the gripper increases. Therefore the task
requires precise grasp placement. To achieve this at greater
than 80 % success rate, our conclusion is that the receptive
field size will have to be increased. Increasing the receptive
field size will enable the neural network to observe more
of the fish and its pose and position relative to the box and
other fish. These factors can reduce collisions and improve
grasp placement accuracy. This results in a larger 3D CNN.
For example, increasing the receptive field from 31×31×31
to 63 × 63 × 63 will result in an eightfold increase in the
number of parameters in the neural network, and a similar
increase in training time and the required amount of training
data. Considering the limited observations that can be made
within a small receptive field (see Fig. 8) it is understandable
that an larger receptive field may improve the ability of the
neural network to estimate accurate grasp placements. For
this reason, our future work will be focused on increasing
the receptive field size. We will also adjust the dimensions
of the gripper used in the domain randomization, so that it
better matches the dimensions of the actual end-effector and
robot gripper. We expect that this will reduce the number of
errors attributed to collisions with the box. Other avenues of
future work, include learning sequences of actions, such as
patterned packing (i.e. packing fish in a box according to a
predefined number of layers and orientation of the fish in



each layer), without re-grasping the fish after picking it out
of the first box.

Our hypothesis from the onset is that through our ap-
proach, VR can serve as a efficient medium for demon-
strating complex tasks to robots. A step towards testing
this hypothesis was presented in this paper, and the results
are promising enough to maintain our hypothesis. One may
question whether the presented approach is unnecessarily
complex for picking fish, and that we should have compared
it to a baseline, such as antipodal grasp sampling with
automated grasp placement. Investigating this was outside
the scope of this paper, since our focus was on testing our
hypothesis as a step towards more challenging applications
of our approach.

Beyond our application to grasping and handling fish, we
will also expand the domain randomization methodology and
neural network architecture presented to the more generic
problem of grasping and handling multiple types of objects.
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Appendix A

Learnt Attention Policy for
Visual Servoing Experiment 1

Examples of the attention policy learnt in 3.2.1. The learnt policy processes the
volume from left to right, tracing the center line of the table. It deviates from this
center line only to focus on the objects of interest. Two examples are shown in
Figs. A.1 and A.2
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128 Learnt Attention Policy for Visual Servoing Experiment 1

Figure A.1: The red arrow indicates the predicted velocity towards the graspable object.
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Figure A.2: The red arrow indicates the predicted velocity towards the graspable object.
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