
On Reporting Robust and Trustworthy Conclusions from Model
Comparison Studies Involving Neural Networks and Randomness

Odd Erik Gundersen
Norwegian University of Science and Technology

Norway
Aneo AI Research

Norway
odderik@ntnu.no

Saeid Shamsaliei
Norwegian University of Science and Technology

Norway
Aneo AI Research

Norway
saeid.shamsaliei@ntnu.no

Håkon S. Kjærnli
Aneo AI Research

Norway
hakon.slatten.kjernli@aneo.com

Helge Langseth
Norwegian University of Science and Technology

Norway
Aneo AI Research

Norway
helge.langseth@ntnu.no

ABSTRACT
The performance of neural networks differ when the only difference
is the seed initializing the pseudo-random number generator that
generates random numbers for their training. In this paper we are
concerned with how random initialization affect the conclusions
that we draw from experiments with neural networks. We run a
high number of repeated experiments using state of the art models
for time-series prediction and image classification to investigate this
statistical phenomenon. Our investigations show that erroneous
conclusions can easily be drawn from such experiments. Based on
these observations we propose several measures that will improve
the robustness and trustworthiness of conclusions inferred from
model comparison studies with small absolute effect sizes.

CCS CONCEPTS
• Computing methodologies→Machine learning.

KEYWORDS
Neural networks, deep learning, reproducibility, random initializa-
tion, robust conclusions.

ACM Reference Format:
Odd Erik Gundersen, Saeid Shamsaliei, Håkon S. Kjærnli, and Helge
Langseth. 2023. On Reporting Robust and Trustworthy Conclusions from
Model Comparison Studies Involving Neural Networks and Randomness.
In 2023 ACM Conference on Reproducibility and Replicability (ACM REP ’23),
June 27–29, 2023, Santa Cruz, CA, USA. ACM, New York, NY, USA, 25 pages.
https://doi.org/10.1145/3589806.3600044

This work is licensed under a Creative Commons Attribution International
4.0 License.

ACM REP ’23, June 27–29, 2023, Santa Cruz, CA, USA
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0176-4/23/06.
https://doi.org/10.1145/3589806.3600044

1 INTRODUCTION
Conclusions drawn from empirical studies in artificial intelligence
can be affected by many different factors, see [13] for an overview.
Empirical studies involving deep neural networks are especially
exposed to factors related to randomness. Algorithmic factors are
model design choices that introduce stochasticity by design while
implementation factors are introduced by the software used to im-
plement an algorithm and the hardware that the experiments run
on [33, 46]. Different laboratories typically use different hardware
and software stacks, which means that the implementation factors
are varied in inter-laboratory studies where independent research
re-execute code from the experiments originally conducted by some-
one else.

Scientific knowledge is gained through repeated observations
or repeated experiments. Repetition is required to avoid drawing
conclusions based on spurious results, as results of empirical stud-
ies vary for many different reasons. In many domains, the condi-
tions of a study changes every time one repeats an experiment no
matter how careful the procedures are carried out. Hence, proper
methodology in domains seeking to obtain an accurate and precise
estimation of a variable of interest does not consider conclusions
from empirical studies to be robust unless variation is accounted
for. For example, analytical chemistry distinguishes between inter-
and intra-laboratory variation [29] while medicine discriminate
between inter- and intra-observer variation [15]. Studies must ac-
count for variation not only between laboratories and observers
but also within a laboratory and for the same observer in order for
the conclusions drawn from these studies to be considered robust.

One source of variation in neural networks is the initialization of
the weights controlling the signal strength between neurons before
learning starts [11]. All other things equal, the errors on hold-out
data will vary for neural networks trained from random initializa-
tions of their weights, see Figure 1. The cause of this difference in
performance is stochastic gradient descent or one of its variants
that is used to train the neural networks [4]. The loss functions
that are optimized are typically non-convex over the networks’

37

https://doi.org/10.1145/3589806.3600044
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3589806.3600044
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3589806.3600044&domain=pdf&date_stamp=2023-06-28

ACM REP ’23, June 27–29, 2023, Santa Cruz, CA, USA Gundersen et al.

Figure 1: The performance of the two models N-BEAT (blue)
and DeepAR (green) on the data-set exchange_rate measured
using MAPE (𝑥-axis). The merits of a model depends on the
random initialization seed, and each blue (green) curve is a
kernel density estimate for MAPE using N-BEAT (DeepAR)
based on 5 random seeds; a total of 1000 curves are shown
per model. Green lines are plotted on the reverse 𝑦-axis to
improve visibility. The two red curves give KDEs based on 100
random seeds. The actual MAPE values for these 100 seeds
for both models are given as semi-transparent circles for
reference. Notice that the variability between the different
KDE plots within one model (different curves of same color)
is comparably larger than the variability between the models
(the two red curves). This indicates that if one wants to draw
conclusions regarding which model is better on this dataset,
the variability due to random initializations will heavily
influence the results, and the validity of the analysis may be
jeopardized if care is not taken. Further details about this
experiment are given in Section 3 and we discuss our findings
in Section 4.

weights, and they are complex with multiple saddle points and (lo-
cal) minima. Therefore, stochastic gradient descent may converge
at different stationary points depending on the hyperparameters of
the optimization function used and the exact initialization of the
weights. Other sources of variation relying on the seed used to ini-
tialize the pseudo-random number generator are the initialization
of the hyperparameter optimization algorithm, stochastic layers
in the neural network, such as Dropout, data shuffling and batch
ordering of data [13].

Random initialization has been exploited by, for example, Wen-
zel et al. [45] to increase the robustness and allow for uncertainty
quantification in deep ensembles [25]. It has also been exploited in
pruning, which is a technique for removing unnecessary weights
from neural networks to identify subnetworks that reach test ac-
curacy comparable to the original network in a similar number of
iterations when trained in isolation [10].

Lately, however, several empirical studies on neural networks
have shown how methodological weaknesses can lead to false con-
clusions being drawn because of variation not being properly ac-
counted for. Reimers and Gurevych [38] analyzed LSTM-networks

for sequence tagging and showed that initialization seeds could
result in statistically significant differences (𝑝 < 10−4) in state-
of-the-art-systems. Melis et al. [27] investigated the evaluation of
neural language models and found that standard LSTM models out-
perform more recent models under the same conditions when they
control for hyperparameters and unlimited computing resources.
Further investigations show that results vary significantly when
they control for non-deterministic ordering of floating-point oper-
ations in linear algebra routines, different initialization seeds and
the validation and tests being finite samples of an infinite popula-
tion. Similarly, Lucic et al. [26] found that none of the algorithms
proposed to improve the original generative adversarial network
performed better when tested under the same conditions, taking
hyper-parameter search and network initialization into account.

Henderson et al. [18] investigated challenges related to repro-
ducing results in deep reinforcement learning. Both random ini-
tialization of the deep neural networks and randomness in the
environment affected the results. Bouthillier et al. [6] showed that
the variation in performance caused by the initialization of deep
neural networks for image classification could lead to false con-
clusions unless properly controlled for in the experimental design.
Zhuang et al. [46] analyzed both algoritmic and implementation fac-
tors and found that model performance on certain parts of the data
distribution is far more sensitive to the introduction of randomness
than the top-line metrics such as top-1 accuracy. They also found
that the cost of ensuring determinism varies dramatically between
neural network architectures and hardware types with overhead
up to 741%. Bouthillier et al. [5] modelled the whole benchmarking
process for neural networks and found noticeable variance in per-
formance caused by data sampling, parameter initialization, and
hyperparameter design. Gundersen et al. [14] found that execut-
ing the exact same experiment while varying the implementation
factors could lead to the wrong conclusions at the 95% confidence
level when classifying handwritten letters from the MNIST dataset
using a simple convolutional neural network.

Hence, artificial intelligence, at the very least deep learning,
does not go clear of the so-called reproducibility crisis [2, 12, 21]
reported in other sciences such as psychology [28, 30] and medicine
[36]. Given the prevalence of deep learning [3], this is a severe
issue for research in artificial intelligence that is recognized by the
community [12, 16, 35].

In this paper, we investigate how initializing pseudo-random
number generators with different seeds affect the conclusions that
can be drawn. We conduct experiments where we vary the initial-
ization seed before conducting experiments on different state-of-
the-art deep neural networks, and we make several observations.
Based on these observations, we suggest remedies to reduce the
chance of drawing erroneous conclusions from empirical studies
involving deep neural networks.

2 ADVERSARIAL MODEL COMPARISON
As prior work, we investigate model comparison; it is a common
methodology in research on artificial intelligence and used in most
scientific articles on deep learning. In model comparison studies,
the relative performance of different models (i.e. network architec-
tures, such as DeepAR or DenseNet) are compared when executed

38

On Reporting Robust and Trustworthy Conclusions from Model Comparison Studies ACM REP ’23, June 27–29, 2023, Santa Cruz, CA, USA

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95

ResNet 23.1 10.5 8.0 6.4 5.3 4.6 4.0 3.5 3.0 2.6 2.3 2.0 1.7 1.4 1.2 0.9 0.7 0.5 0.2

MobileNet 13.4 11.3 8.8 6.6 5.3 4.5 3.9 3.4 2.9 2.6 2.2 2.0 1.7 1.4 1.2 0.9 0.7 0.5 0.2

DenseNet 46.4 38.3 16.1 12.8 4.5 3.1 2.5 2.1 1.9 1.7 1.5 1.4 1.3 1.2 1.0 0.9 0.6 0.4 0.2

0.1

1

10

100

C
o

h
e

n
's

 d
 -

 s
ta

n
d

ar
d

iz
e

d
 e

ff
e

ct
 s

iz
e

 (
b

y
si

ze
 o

f
T

an
d

 W
) Size (n)

ResNet MobileNet DenseNet

Figure 2: The standardized effect size (Cohen’s d) tells how
many standard deviations lie between the two means for the
best performing seed replicates, T𝑛 , and the worst perform-
ing seed replicates, W𝑛 , for the image classification task.
Note the log scale.

on the same tasks under the same conditions. When their absolute
effect size measured using a performance metric is large, distin-
guishing between these models is not a problem. However, when
the performance relies on non-determinism and the absolute effect
size is small (models have similar performance), deciding which
model performs better requires care.

As randomness is such an important tool when training neu-
ral networks, controlling for the variation it introduces becomes
important to understand the results of experiments. When draw-
ing a random value, a pseudorandom number generator (PRNG)
is invoked. The numbers provided by the PRNG are not actually
random. If a specific initialization seed is set, the PRNG will draw
the same sequence of numbers every time, but if an initialization
seed is not set, a default seed, such as current time, will be used and
seemingly random numbers will be provided by the PRNG. Given
the sensitivity of neural networks to randomness, keeping track
of which initialization seeds are used in testing becomes impor-
tant. Deciding to use stochasticity when training neural networks
is a design choice, and therefore an algorithmic factor, while the
selection of which exact seed to use is an implementation factor
[13, 33, 46].

Prior work shows that a single initialization seed is not enough to
draw robust conclusions and indicates that more seeds are needed.
Pham et al. [33] suggests that the testing can stop when the proba-
bility of a model being better than another one is higher than 75%,
meaning that one can end up with not true findings in 25% of tests.
What would it take to give more confident and concrete advice? We
seek to answer the following research question: Given that two
deep learning models being compared have the same performance,
how many different initialization seeds must be tested to decide that
we cannot distinguish between their performances?

We formulate the research question in an adversarial manner.
Let us consider a situation where we want to compare two models,
A and B, that objectively have the same performance, but where an

adversarial agent promotes model A when comparing it to model
B. Whether the adversarial agent is Mother Nature that has setup
such a situation by chance or it is designed by an actor with bad
intentions is not relevant. The reason for formulating the problem
in an adversarial manner is to facilitate an analysis of how we can
increase the probability of reaching a true conclusion about the
performance of deep neural networks in worst case scenarios.

Initialization seed 𝑠 is an element of a set of initialization seeds
S, that is 𝑠 ∈ S. All other things being equal, the performance, 𝑝 ,
of a model,𝑚, that is trained and tested on data, 𝑑 , is a function of
the initialization seed, 𝑠 , that has been used to initialize the model:
𝑝 = 𝑓 (𝑚,𝑑, 𝑠) for some deterministic, yet unknown, function 𝑓 .
Note that the dataset 𝑑 is divided into training, validation and test
sets, so that 𝑝 is achieved on a hold-out set and not trained and
tested on the same data. Given a set of initialization seeds S that
have been used to initialize a model𝑚 that is subsequently trained
and tested on dataset 𝑑 , we achieve a set P of performances, that is
P = {𝑓 (𝑚,𝑑, 𝑠)}𝑠∈S . According to the terminology of Bouthillier
et al. [6] and Vaux et al. [43], a model𝑚 that is initialized using
intialization seed 𝑠 and trained and tested on a dataset 𝑑 is a seed
replicate while a model𝑚 initialized using the set of intialization
seeds S and trained and tested on a dataset 𝑑 is a dataset replicate.

For each dataset replicate, the seed replicates can be sorted on
performance. The subset of 𝑛 top performing seed replicates for
model𝑚 is T𝑛

𝑚 , while the subset of 𝑛 worst performing seed repli-
cates isW𝑛

𝑚 . Now, the bad actor who wants to promote model 𝐴
by comparing it against the baseline model 𝐵 could compare T𝑛

𝐴
against W𝑛

𝐵
. Reimers and Gurevych [38] found that for some mod-

els𝐴 and 𝐵, the performance in a sequence tagging task would differ
significantly at confidence level 𝛼 = 10−3 when comparing T 1

𝐴
with

W1
𝐵
, that is, when comparing the best seed replicate against the

worst seed replicate. In this way, the model that the bad actor wants
to promote can be shown to perform better than the baseline model
at a high confidence level. Given the high confidence level, the
conclusion, although false, would appear to be strongly supported.
It is important to note that they calculated the confidence level
based on the model performance on each test sample in the test
dataset. They did not, however, calculate the confidence level based
on the variation in performance on the whole testset caused by
varying the initialization seeds. The difference is important as it
explains why performance has to be measured on more than one
initialization seed. The question is how many initialization seeds
are required to get a good representation of the actual performance.

3 EXPERIMENTS
As our objective is to analyze the variation of results given different
initialization seeds, we train and test deep neural network models
using 100 different seeds, S = {0, 1, . . . , 99}. Hyper-parameters and
the training setups are identical for each seed replicate. All models
are trained using the same software stack on the same hardware.
Hence, the only variation that is introduced is the initialization
seeds that are used to initialize the PRNGs. We conduct experi-
ments for two different tasks: times-series forecasting and image
classification. The code needed to reproduce our results is available
in a public repository.1

1https://github.com/TronderEnergi/deepts

39

https://github.com/TronderEnergi/deepts

ACM REP ’23, June 27–29, 2023, Santa Cruz, CA, USA Gundersen et al.

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95

ResNet 1.20 1.05 0.94 0.85 0.77 0.70 0.64 0.58 0.53 0.48 0.43 0.39 0.34 0.30 0.26 0.21 0.17 0.12 0.06

MobileNet 1.66 1.50 1.35 1.21 1.09 1.00 0.90 0.82 0.75 0.68 0.61 0.55 0.49 0.43 0.36 0.30 0.24 0.17 0.09

DenseNet 2.42 2.28 2.15 2.04 1.77 1.54 1.35 1.20 1.08 0.97 0.88 0.80 0.73 0.66 0.59 0.51 0.38 0.25 0.13

0.0%

0.5%

1.0%

1.5%

2.0%

2.5%

3.0%

A
b

so
lu

te
 e

ff
e

ct
 s

iz
e

 (
b

y
si

ze
 o

f
T

an
d

 W
)

Size (n)

ResNet MobileNet DenseNet

Figure 3: The absolute effect size is the magnitude of the dif-
ference between two groups. Here the two means are for the
best performing seed replicates, T𝑛 , and the worst perform-
ing seed replicates,W𝑛 , for the image classification task.

3.1 Time-series Forecasting
We benchmark five deep learning time-series forecasting models on
four datasets. The forecasting models are DeepAR [40], DeepFactor
[44], DeepState [37], N-BEATS [31] and LSTM [19]. The first four
models are implemented in the popular GluonTS2 library [1], but
as GluonTS did not provide a default implementation of a plain
LSTM, we implemented one on top of it. As our goal was to in-
vestigate how the random seeds used for initialization affects the
performance, and not necessarily to reproduce state of the art per-
formance of the models, we did not spend computational resources
on hyper-parameter search. Instead we relied on the default hyper-
parameters defined by GluonTS whenever possible. All training
was done using GPUs except for DeepState, which we were unable
to run on our GPU setup. As a consequence, the computational
burden of DeepState was decreased by the following changes to the
hyperparameters: the length of the conditioning range was set to
the prediction length and the cardinality of the model was set equal
to the number of unique sequences in the data-set. The supporting
material details the hyperparameters of each model.

The four datasets we examine are electricity [9], exchange_rate
[24], traffic_nips, [8] and solar_nips3, see the supporting material
for a more detailed description of the datasets. MAPE (defined for
a forecasting-period of 𝑇 as 1

𝑇

∑𝑇
𝑡=1 |

𝑦𝑡−�̂�𝑡
𝑦𝑡

|, where 𝑦𝑡 is the actual
value and 𝑦𝑡 is the predicted value at time 𝑡) was calculated for
all test data. MAPE was chosen as it is normalized and allows for
comparison between different datasets.

3.2 Image Classification
We benchmark three deep learning image classification models
on one dataset. The image classification models we used were
DenseNet [20], ResNet [17] and MobileNet [41], and the dataset
was CIFAR10 [23]. We used the hyperparameters reported in the

2We used GLuonTS 0.5.0 for the experiments.
3https://www.nrel.gov/grid/solar-power-data.html

Figure 4: A statistical test comparing whether T𝑛 andW𝑛 are
from the same distribution results in statistical significance
for all models and all datasets even with 𝑛 as large as 𝑛 ∼ 80.
The reported 𝑝 values are from a one-sided two-sample t-test.

original papers for DenseNet and ResNet to ensure that we get mod-
els with good performance given limited computation resources.
The hyperparameters for MobileNet were found experimentally
and chosen so that the model size was similar to the other two.
Each seed replicate was trained for 300 epochs and evaluated using
standard accuracy.

4 RESULTS AND DISCUSSION
Average performance: Table 1 and Table 2 show the average
MAPE for the time-series forecasting task and the accuracy for the
image classification task, respectively. Asmentioned above, our goal
is not to achieve state of the art performance for all the models, but
to have a broad spectrum of results to analyze the effect of network
initialization. As can be seen from Table 1, the performance on the
time-series forecasting task vary quite a lot with some of the results
such as electricity and traffic being reasonable given that we use a
different performance metric and longer forecasting horizons than
what is reported in the literature [32]. The results of DenseNet are
comparable (slightly better) than those reported by Huang et al.
[20].

Effect size: Figure 2 shows the standardized effect size4 for the
best performing seed replicates, T𝑛 , with the worst performing
seed replicates, W𝑛 , for the image classification task. Note that
we compare T𝑛 and W𝑛 , both containing seed replicates from the
same model. The accuracy estimated from T𝑛 is optimistic, while
the seed replicates W𝑛 are pessimistic. Cohen’s criteria for large,
medium and small effect sizes are 0.8 or greater, 0.5 and 0.2. When
both groups contain less than 80% of the seed replicas, the effect
size is considered large, meaning that the performance difference
between the models represented by T andW is large. The absolute

4Cohen’s 𝑑 or standardized effect size tells how many standard deviations lie between
two means, expressed as 𝑑 =

𝑥1−𝑥2
𝜏

, where the 𝑥 𝑗 are the means and 𝜏 is the pooled
standard deviation.

40

https://www.nrel.gov/grid/solar-power-data.html

On Reporting Robust and Trustworthy Conclusions from Model Comparison Studies ACM REP ’23, June 27–29, 2023, Santa Cruz, CA, USA

Figure 5: Best vs worst: Trying to prove that LSTMs perform better than DeepAR (left) or vice versa (right). For both experiments
the 𝑛 best seed replicates were from the preferred model were compared to the 𝑛 worst for the baseline. 𝑝-values for the
one-sided t-test are reported. By carefully selecting S we can conclude that LSTMs are better than DeepAR for all datasets
(𝑝 ≤ 10−3), and also that DeepAR is better than LSTM for all datasets except solar. 𝑝-values smaller than 10−10 are set to 10−10 to
make the figures clearer.

electricity exchange_rate traffic_nips solar_nips
LSTM 0.118 ± 0.011 0.030 ± 0.012 0.152 ± 0.008 0.386 ± 0.016
N-BEATS 0.129 ± 0.004 0.020 ± 0.005 0.248 ± 0.012 0.439 ± 0.003
DeepAR 0.102 ± 0.005 0.019 ± 0.014 0.156 ± 0.011 1.112 ± 0.084
DeepFactor 6.215 ± 1.290 10.06 ± 0.191 2.933 ± 0.582 3.589 ± 1.345
DeepState 0.621 ± 0.217 0.013 ± 0.001 1.023 ± 0.310 1.912 ± 0.627

Table 1: Average MAPE score ± one standard deviation for 100 seed replicates for 100 epochs (lowest error in bold).

Figure 6: An adversarial agent trying to prove that DeepAR performs better than LSTM using a one-sided test (𝛼 = 10−3). The
same seeds are used for both the preferred model and the baseline. Left: The adversarial can still succeed by cherry-picking the
seeds where the differences between the models are the largest. The 𝑥-axis gives the size of S, while the 𝑦-axis shows whether a
dataset can be extracted to make sure that it will show that the preferred model is indeed better. The results for electricity are
hidden below those from exchange. Results obtained using a t-test. Middle: Instead of opportunistically selecting S, the set of
seeds is a sample of size 𝑛 sampled without replacement from the possible seeds {0, . . . , 99}, and ensuring that the same set
S was used for both models. The sampling of S was repeated 10.000 times, and the fraction of samples that lead to rejection
is given on the 𝑦-axis. Results obtained using a t-test. Right: Exactly the same setup as in the middle panel, but now using a
Brunner-Munzel test.

effect size is the magnitude of the difference between two groups.
Figure 3 shows the absolute effect size for the three image classifi-
cation algorithms. The absolute effect size between T 5

𝐷𝑒𝑛𝑠𝑒𝑁𝑒𝑡
and

W5
𝐷𝑒𝑛𝑠𝑒𝑁𝑒𝑡

is 2.42% and it is considered extremely large by the
standardized effect size. Additionally, the 99.9 confidence intervals

do not overlap for any of the groups with less than 80 seed replicas,
see Figure 10 in Appendix B. In an adversarial model comparison
study where two groups of seed replicas with very good or bad
seeds are compared – whether it is by chance or by bad actor de-
sign – the study can therefore conclude with high confidence that

41

ACM REP ’23, June 27–29, 2023, Santa Cruz, CA, USA Gundersen et al.

Figure 7: KDE plots: Comparison of KDE based on 5, 10, 15, 20 and 25 seeds sampled from a population of 100 seeds, together
with all 100 seeds for MAPE of DeepAR on Electricity (left) and accuracy of Densnet on CIFAR 10 (right).

CIFAR10
DenseNet 0.931 ± 0.008
ResNet 0.879 ± 0.003
MobileNet 0.851 ± 0.004

Table 2: Image classification accuracy ± one standard devi-
ation for 100 seed replicates for 300 epochs of three DNNs
with comparable number of hyperparameters.

the performance of T 5
𝐷𝑒𝑛𝑠𝑒𝑁𝑒𝑡

is better than the performance of
W5

𝐷𝑒𝑛𝑠𝑒𝑁𝑒𝑡
.

We can also see that the degree of variation does not depend
on the performance of the model. DenseNet has by far the best
performance, refer to Table 2, but it also varies the most. MobileNet
has the worst average performance, but the absolute effect size
varies more than for ResNet. The results for the time-series models
are similar and can be found in the supplementary materials.

Selecting random seeds freely: Figure 4 shows the effect of
the "best vs. worst" on the time-series forecasting task. See Figure 9
in the appendix for the same scenario on the image classification
task. We compare the best 𝑛 seed replicates with the worst 𝑛 seed
replicates out of 100; all from the same dataset using the samemodel.
The 𝑥-axis gives 𝑛, the 𝑦-axis gives the 𝑝-value of the hypothesis
test 𝐻0: The two sequences have the same mean vs. 𝐻1: They do not.
We used a two-sided t-test, and the dashed line gives the line for
𝛼 = 10−3. As can be seen, even with more than 𝑛 = 80 of the 100
seeds represented in each group, the test will with high significance
say the means are different. This establishes that seed variation
is important, and that one by cherry-picking seeds can get very
significant results of effects that are not really there. Hence, the
search space is so difficult in all these runs that initialization will
have a significant effect on performance.

Figure 5 shows the effect of the "Best vs. worst" setup when
comparing the two models LSTM and DeepAR on the same dataset:
We compare the best 𝑛 examples out of 100 seed replicates from

LSTM to the worst 𝑛 seed replicates of DeepAR (left) or vice versa
(right). The 𝑥-axis gives 𝑛, the number of seed selected in S, 𝑦-axis
gives the 𝑝-value of the hypothesis test 𝐻0: The two sequences have
the same mean vs. 𝐻1: The LSTM is better (left) / DeepAR is better
(right). In this scenario, the adversarial agent seeks to prove that
one model is better than the other, and use a one-sided t-test to
validate the difference. The line indicates 𝛼 = 10−3. The results are
as expected from Table 1: DeepAR is clearly better than LSTMs on
electricity and exchange_rate, yet the adversarial will be able to
conclude otherwise in some instances (for carefully selected S of
specific values of 𝑛). The difference between the two is smaller for
traffic, yet with LSTMs appearing slightly better. LSTMs are clearly
better than DeepAR on solar, and the adversarial agent is unable to
provide results showing otherwise.
Observation 1: Selecting random seeds freely when comparing
models can lead to untrustworthy results.
Models compared using same set of seeds: From the results

above it seems clear that one should not be allowed to cherry-pick
the seeds separately for each model. A slightly more restricted
approach is to say there should be the same set of seeds S used
for both models that are to be compared. The left part of Figure 6
shows the results when we initially have a pool of 100 seeds out of
which we have selected a subset of size 𝑛, and let this subset play
the role of S. As long as no constraints are put on S, meaning that
as long as the same set of seeds is used for both models we are free
to choose exactly what seeds to include, an adversarial agent can
then of course optimize which seeds to use. This is done simply by
choosing those seeds where the two models’ performances differ
the most in the preferred direction. In Figure 6 (left) the aim is to
show (using a one-sided t-test, rejection-level 𝛼 = 10−3) that the
mean performance of DeepAR is better than that of LSTM. The
𝑥-axis gives the size of S, the 𝑦-axis show if the test is significant
(𝑦 = 1) or not (𝑦 = 0). As can be seen, the adversarial agent can
easily promote DeepAR for the datasets exchange and electricity
(the latter curve hidden below the former), and also for some 𝑛

42

On Reporting Robust and Trustworthy Conclusions from Model Comparison Studies ACM REP ’23, June 27–29, 2023, Santa Cruz, CA, USA

devise a test to indicate that DeepAR is indeed the better also on
traffic.
Observation 2: Enforcing the same set of seeds to be used for
all models when comparing them is not enough to ensure a fair
comparison.
Using a predefined set of seeds: Finally, one way to constrain

the adversarial agent further is to not only force both models to be
evaluated using the same set of seeds, but also to define what that
set of seeds should be used, e.g., {0, 1, . . . , 𝑛−1}. This is investigated
in the middle panel of Figure 6. Here we choose a random seed set
of size 𝑛 (𝑛 given on the 𝑥-axis) and report on the𝑦-axis the fraction
of experiments out of 10.000 repetitions where DeepAR is found to
be better than LSTM (again using a one-sided t-test with 𝛼 = 10−3).
This approach prevents the adversarial from promoting DeepAR as
better on exchange. We can also see that we for instance choose
𝑛 = 20, the probability that a fixed S will reveal that DeepAR is
better on electricity is very close to 1.0 and about 0.4 for exchange.
Results comparing other models are given in the appendix.
Observation 3: Prescribing exactly which initialization seeds to
use when comparing models will increase the difficulty and cost for
an adversarial agent to influence the results.
Using the t-test: The analysis so far has been based on t-tests,

meaning that we had to (implicitly) assume that each data sample is
from a Gaussian distribution. However, this assumption is not met
in our data. (Qualitative evidence for this claim based on KDE plots
can be found in the appendix, see Figure 11-12). We examine this
further in the right panel of Figure 6. The setup is identical to the
middle panel of the same figure, but we have now exchanged the
t-test for a Brunner-Munzel test [7]. The test strength, i.e., the ability
to expose two models as providing different results when they in
fact are, is particularly eye-catching: notice how the strength is
improved by changing to a non-parametric test for both electricity
and exchange-rate.
Observation 4: A non-parametric test like the Brunner-Munzel
test should be used when comparing models, because the often-
considered t-test is vulnerable to outliers.
Number of seeds to use: In order to identify the number of

seeds that must be tested to decide that we cannot distinguish
between two models, we sample 𝑛 seed replicates from the dataset
replicates and test whether they come from distributions with the
same mean using the Brunner-Munzel test. See Figure 8 for details.
The figure shows that the fraction of rejection crosses the dashed
line (𝛼 = 0.001) for all time-series forecasting models when 𝑛 = 25,
and thus indicates the number of seeds that must be tested for the
test to be trusted. Figure 13, found in the appendix, shows that
𝑛 = 10 for 𝛼 = 0.05. The results from the image classification
task supports this finding. These can be seen in Figure 14, also in
the appendix. Qualitative support for this finding can be found in
Figure 7. The figure shows kernel density estimation (KDE) plots
over the performance when varying the number of seed replicates.
The KDE plots were selected subjectively to show the diversity of
the results. Both five and ten seeds can be very misleading while 25
gives a better approximation of the actual distribution. We mean
that the additional plots provided in the appendix, Figures 11 and
12, clearly show how superior to KDE plots are to illustrate the

Figure 8: We repeatedly sample two independent sets of seed
candidates of the same size learned from using the same
model on the same dataset, then test if the two samples come
from distributions with the same mean using a two-sided
Brunner-Munzel test. The 𝑥-axis gives the number of seed
candidates in each sample, the 𝑦-axis the fraction (out of
10.000 repetitions), where the two sets were found to be sig-
nificantly different (𝛼 = 10−3); note the log-scale. The dashed
line at 𝑝 = 𝛼 = 10−3 indicates the rejection level, and thus the
fraction of rejections we theoretically expect.

variation in performance caused initialization seeds when compared
to tables with confidence interval and error bars in bar charts.
Observation 5: Even when using a predefined set of seeds and a
non-parametric hypothesis test like Brunner-Munzel (𝛼 = 10−3),
more than 𝑛 = 25 seeds are needed for the test to reliably conclude
that two indistinguishable models are indeed performing on an
equal footing.

5 CONCLUSIONS AND RECOMMENDATIONS
Our experiments support the claims made in prior works that one
must be careful when drawing conclusions based on model com-
parison experiments in deep learning.

As pointed out by Ioannidis [22], the smaller the effect sizes are,
the less likely the research findings are to be correct. This holds
true for model comparison studies as well. Our study shows that
conclusions can easily be forced by a bad actor when the difference
in performances are small. We show that the gap between the best
and worst performing seed replicates can be more than 2% even
for well-performing models and for five seed replicates. This tells
us that we should not fully trust results when the effect sizes are
small – unless variation caused by random initialization is given
proper treatment.

Furthermore, our results clearly indicate that initialization seeds
should not be selected freely in model comparison studies. This is
also in line with the observations by Ioannidis [22], who states that
the greater the flexibility in design and analytical modes (i.e. hyper-
parameter settings) are, the less likely are the research findings to
be true. We found that it is not enough just to restrict the models to
be compared using the same set of seeds; the set of seeds should be
pre-defined. This increases the effort required to force false results.

43

ACM REP ’23, June 27–29, 2023, Santa Cruz, CA, USA Gundersen et al.

Finally, we showed how reporting sensitivity to variation could
be improved by visualizing the variation in performance using KDE
plots. We find that such plots provide more information of how
sensitive a result is to variation. Both compared to only reporting
variation by mean performance and variance numerically, which
is most commonly the case for model comparison studies, but also
when error bars are used, as suggested by Pineau [34].

Based on our observations, the following should be done to reach
robust and trustworthy conclusions for model comparison studies
involving neural networks and randomness:

(1) use a predefined set of seeds {0, 1, . . . 𝑛 − 1},
(2) test with a non-parametric hypothesis test like the Brunner-

Munzel,
(3) use KDE plots to visualize the variation in performance

caused by initialization seeds,
(4) evaluate more than 𝑛 = 25 seeds for confirmation studies

(testing with 𝛼 = 10−3) when effect sizes are small (less than
2.5%).

Item number 4 above is the answer to our research question.
However, following these recommendations will not solve all prob-
lems. For example, fixing the set of seeds will potentially bias the
models in random ways, as the performance of a seed replicate is
a function of the optimization algorithm, dataset, and model [10].
Also, there is a trade-off between computational resources and the
reliability of results, as mentioned by Melis et al. [27]. To reduce
the computational demand, using 𝑛 = 10 and testing at 𝛼 = .05
will reduce the probability of false findings compared to using even
smaller values of 𝑛, albeit reduce the strength of the claims when
they cannot be made more robust. However, for many deep learning
studies, it is practically impossible for most labs to run even 𝑛 = 10
experiments only to increase reliability of the findings. Thus, we
avoid making hard recommendations for the number of random
seeds that should be used for studies. It is still important to properly
understand how sensitive the performance of neural networks is
to random initialization. Typically, in order for papers proposing
new deep learning algorithms to be accepted at top AI conferences,
clear wins when compared to state-of-the-art baselines are required
[42]. As our investigation shows, statistically significant "wins" do
not necessarily lead to true conclusions. Hence, we should avoid
requiring clear wins for a paper to be publishable. New ideas should
be accepted based on other properties as well, such as efficiency,
explainability, robustness, reliability and so on. Also when clear
wins are declared, whether randomness could affect the results
should be discussed.

One could argue that focusing only on initialization seeds is a
limitation of this work. The sources of variation are many, and
their impact on performance is significant. It is no use in removing
just one of them [46] and adding more sources of variation to an
imperfect estimator approaches the ideal estimator faster and better
[5]. However, we argue that a proper understanding of initialization
seeds has clear advantages over the other implementation factors.
This is because experiments in most academic settings are mostly
conducted in the same laboratory using the same software stack and
hardware platform and using one implementation of all baselines.
Controlling for all implementation factors requires a huge effort,

so it is practically impossible for most research groups. Evaluat-
ing intialization seeds requires less effort while providing insights
into the sensitivity of the algorithms to variation. Hence, it is a
reasonable proxy, at least for exploratory studies, which entails
most empirical studies of deep learning. Confirmatory studies re-
quire more care, but fewer such studies will be conducted precisely
because of the computational costs.

REFERENCES
[1] Alexander Alexandrov, Konstantinos Benidis, Michael Bohlke-Schneider, Valentin

Flunkert, Jan Gasthaus, Tim Januschowski, Danielle C. Maddix, Syama Ranga-
puram, David Salinas, Jasper Schulz, Lorenzo Stella, Ali Caner Türkmen, and
Yuyang Wang. 2020. GluonTS: Probabilistic and Neural Time Series Mod-
eling in Python. Journal of Machine Learning Research 21, 116 (2020), 1–6.
http://jmlr.org/papers/v21/19-820.html

[2] Monya Baker. 2016. 1,500 scientists lift the lid on reproducibility. Nature 533,
7604 (may 2016), 452–454. https://doi.org/10.1038/533452a

[3] Yoshua Bengio, Yann Lecun, and Geoffrey Hinton. 2021. Deep learning for AI.
Commun. ACM 64, 7 (2021), 58–65.

[4] Léon Bottou et al. 1998. Online learning and stochastic approximations. On-line
learning in neural networks 17, 9 (1998), 142.

[5] Xavier Bouthillier, Pierre Delaunay, Mirko Bronzi, Assya Trofimov, Brennan
Nichyporuk, Justin Szeto, Nazanin Mohammadi Sepahvand, Edward Raff, Kanika
Madan, Vikram Voleti, et al. 2021. Accounting for variance in machine learning
benchmarks. Proceedings of Machine Learning and Systems 3 (2021), 747–769.

[6] Xavier Bouthillier, César Laurent, and Pascal Vincent. 2019. Unreproducible
Research is Reproducible. In Proceedings of the 36th International Conference on
Machine Learning (Proceedings of Machine Learning Research, Vol. 97). PMLR,
725–734.

[7] Edgar Brunner and Ullrich Munzel. 2000. The Nonparametric Behrens-Fisher
Problem: Asymptotic Theory and a Small-Sample Approximation. Biometrical
Journal 42, 1 (2000), 17–25.

[8] Marco Cuturi. 2011. Fast global alignment kernels. In Proceedings of the 28th
international conference on machine learning (ICML-11). 929–936.

[9] Dheeru Dua and Casey Graff. 2019. UCI Machine Learning Repository. http:
//archive.ics.uci.edu/ml

[10] Jonathan Frankle and Michael Carbin. 2019. The Lottery Ticket Hypothe-
sis: Finding Sparse, Trainable Neural Networks. In 7th International Confer-
ence on Learning Representations, ICLR 2019. OpenReview.net, 42 pages. https:
//openreview.net/forum?id=rJl-b3RcF7

[11] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. 2016. Deep Learning. MIT
Press. http://www.deeplearningbook.org.

[12] Odd Erik Gundersen. 2020. The Reproducibility Crisis Is Real. AI Magazine 41, 3
(2020), 103–106.

[13] Odd Erik Gundersen, Kevin Coakley, Christine Kirkpatrick, and Yolanda
Gil. 2023. Sources of Irreproducibility in Machine Learning: A Review.
arXiv:2204.07610 [cs.LG]

[14] Odd Erik Gundersen, Saeid Shamsaliei, and Richard Juul Isdahl. 2022. Do machine
learning platforms provide out-of-the-box reproducibility? Future Generation
Computer Systems 126 (2022), 34–47.

[15] Michael Haber, Huiman X Barnhart, Jingli Song, and James Gruden. 2005. Ob-
server variability: a new approach in evaluating interobserver agreement. Journal
of Data Science 3, 1 (2005), 69–83. https://doi.org/10.6339/JDS.2005.03(1).181

[16] Benjamin Haibe-Kains, George Alexandru Adam, Ahmed Hosny, Farnoosh Kho-
dakarami, Levi Waldron, Bo Wang, Chris McIntosh, Anna Goldenberg, Anshul
Kundaje, Casey S Greene, et al. 2020. Transparency and reproducibility in artificial
intelligence. Nature 586, 7829 (2020), E14–E16.

[17] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep Residual
Learning for Image Recognition. In 2016 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR). 770–778. https://doi.org/10.1109/CVPR.2016.90

[18] Peter Henderson, Riashat Islam, Philip Bachman, Joelle Pineau, Doina Precup,
and David Meger. 2018. Deep reinforcement learning that matters. In Proceedings
of the AAAI conference on artificial intelligence. AAAI Press, Article 392, 8 pages.

[19] Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long short-termmemory. Neural
computation 9, 8 (1997), 1735–1780.

[20] Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger.
2017. Densely connected convolutional networks. In Proceedings of the IEEE
conference on computer vision and pattern recognition. 4700–4708.

[21] Matthew Hutson. 2018. Artificial intelligence faces reproducibility crisis. Science
(2018).

[22] John PA Ioannidis. 2005. Why most published research findings are false. PLoS
medicine 2, 8 (2005), e124.

[23] Alex Krizhevsky. 2009. Learning multiple layers of features from tiny images.
Technical report, CIFAR.

44

http://jmlr.org/papers/v21/19-820.html
https://doi.org/10.1038/533452a
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
https://openreview.net/forum?id=rJl-b3RcF7
https://openreview.net/forum?id=rJl-b3RcF7
https://arxiv.org/abs/2204.07610
https://doi.org/10.6339/JDS.2005.03(1).181
https://doi.org/10.1109/CVPR.2016.90

On Reporting Robust and Trustworthy Conclusions from Model Comparison Studies ACM REP ’23, June 27–29, 2023, Santa Cruz, CA, USA

[24] Guokun Lai, Wei-Cheng Chang, Yiming Yang, and Hanxiao Liu. 2018. Modeling
long-and short-term temporal patterns with deep neural networks. In The 41st
International ACM SIGIR Conference on Research & Development in Information
Retrieval. 95–104.

[25] Balaji Lakshminarayanan, Alexander Pritzel, and Charles Blundell. 2017. Sim-
ple and Scalable Predictive Uncertainty Estimation using Deep Ensembles. In
Advances in Neural Information Processing Systems, I. Guyon, U. V. Luxburg,
S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (Eds.),
Vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper/2017/file/
9ef2ed4b7fd2c810847ffa5fa85bce38-Paper.pdf

[26] Mario Lucic, Karol Kurach, Marcin Michalski, Sylvain Gelly, and Olivier Bous-
quet. 2018. Are GANs created equal? A large-scale study. In Advances in neural
information processing systems. 700–709.

[27] Gábor Melis, Chris Dyer, and Phil Blunsom. 2018. On the State of the Art of
Evaluation in Neural Language Models. In International Conference on Learning
Representations.

[28] Taciano L Milfont and Richard A Klein. 2018. Replication and reproducibility
in cross-cultural psychology. Journal of Cross-Cultural Psychology 49, 5 (2018),
735–750.

[29] J.N. Miller and J.C. Miller. 2018. Statistics and Chemometrics for Analytical Chem-
istry. Pearson Education, London, England.

[30] Open Science Collaboration. 2015. Estimating the reproducibility of psychological
science. Science 349, 6251 (2015), aac4716.

[31] Boris N. Oreshkin, Dmitri Carpov, Nicolas Chapados, and Yoshua Bengio. 2020. N-
BEATS: Neural basis expansion analysis for interpretable time series forecasting.
In International Conference on Learning Representations. https://openreview.net/
forum?id=r1ecqn4YwB

[32] Boris N. Oreshkin, Grzegorz Dudek, Paweł Pełka, and Ekaterina Turkina. 2021.
N-BEATS neural network for mid-term electricity load forecasting. Applied
Energy 293 (2021), 116918. https://doi.org/10.1016/j.apenergy.2021.116918

[33] Hung Viet Pham, Shangshu Qian, Jiannan Wang, Thibaud Lutellier, Jonathan
Rosenthal, Lin Tan, Yaoliang Yu, and Nachiappan Nagappan. 2020. Problems and
opportunities in training deep learning software systems: An analysis of vari-
ance. In Proceedings of the 35th IEEE/ACM International Conference on Automated
Software Engineering. 771–783.

[34] Joelle Pineau. 2020. The machine learning reproducibility checklist. URL:
https://www.cs.mcgill.ca/ ˜jpineau/ReproducibilityChecklist.pdf (2020).

[35] Joelle Pineau, Philippe Vincent-Lamarre, Koustuv Sinha, Vincent Larivière, Alina
Beygelzimer, Florence d‚ÄôAlché Buc, Emily Fox, and Hugo Larochelle. 2021. Im-
proving reproducibility in machine learning research: a report from the NeurIPS
2019 reproducibility program. Journal of Machine Learning Research 22 (2021).

[36] Florian Prinz, Thomas Schlange, and Khusru Asadullah. 2011. Believe it or not:
how much can we rely on published data on potential drug targets? Nature
reviews Drug discovery 10, 9 (2011), 712–712.

[37] Syama Sundar Rangapuram, Matthias W Seeger, Jan Gasthaus, Lorenzo Stella,
Yuyang Wang, and Tim Januschowski. 2018. Deep State Space Models for Time
Series Forecasting. In Advances in Neural Information Processing Systems 31,
S. Bengio, H.Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett
(Eds.). Curran Associates, Inc., 7785–7794. http://papers.nips.cc/paper/8004-deep-
state-space-models-for-time-series-forecasting.pdf

[38] Nils Reimers and Iryna Gurevych. 2017. Reporting Score Distributions Makes
a Difference: Performance Study of LSTM-networks for Sequence Tagging. In
Proceedings of the 2017 Conference on Empirical Methods in Natural Language
Processing. 338–348.

[39] David Salinas, Michael Bohlke-Schneider, Laurent Callot, Roberto Medico, and
Jan Gasthaus. 2019. High-dimensional multivariate forecasting with low-rank
Gaussian copula processes. In Proceedings of the 33rd International Conference on
Neural Information Processing Systems. 6827–6837.

[40] David Salinas, Valentin Flunkert, Jan Gasthaus, and Tim Januschowski. 2020.
DeepAR: Probabilistic forecasting with autoregressive recurrent networks. Inter-
national Journal of Forecasting 36, 3 (2020), 1181–1191.

[41] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-
Chieh Chen. 2018. MobileNetV2: Inverted residuals and linear bottlenecks. In
Proceedings of the IEEE conference on computer vision and pattern recognition.
4510–4520.

[42] David Sculley, Jasper Snoek, Alex Wiltschko, and Ali Rahimi. 2018. Winner’s
curse? On pace, progress, and empirical rigor. In ICLR 2018 Workshop Track.

[43] David L Vaux, Fiona Fidler, and Geoff Cumming. 2012. Replicates and re-
peats?what is the difference and is it significant? A brief discussion of statistics
and experimental design. EMBO reports 13, 4 (2012), 291–296.

[44] Yuyang Wang, Alex Smola, Danielle C. Maddix, Jan Gasthaus, Dean Foster, and
Tim Januschowski. 2019. Deep Factors for Forecasting. arXiv e-prints, Article
arXiv:1905.12417 (May 2019), arXiv:1905.12417 pages. arXiv:1905.12417 [stat.ML]

[45] Florian Wenzel, Jasper Snoek, Dustin Tran, and Rodolphe Jenatton. 2020. Hy-
perparameter Ensembles for Robustness and Uncertainty Quantification. In
Advances in Neural Information Processing Systems, H. Larochelle, M. Ran-
zato, R. Hadsell, M. F. Balcan, and H. Lin (Eds.), Vol. 33. Curran As-
sociates, Inc., 6514–6527. https://proceedings.neurips.cc/paper/2020/file/
481fbfa59da2581098e841b7afc122f1-Paper.pdf

[46] Donglin Zhuang, Xingyao Zhang, Shuaiwen Song, and Sara Hooker. 2022. Ran-
domness in neural network training: Characterizing the impact of tooling. Pro-
ceedings of Machine Learning and Systems 4 (2022), 316–336.

45

https://proceedings.neurips.cc/paper/2017/file/9ef2ed4b7fd2c810847ffa5fa85bce38-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/9ef2ed4b7fd2c810847ffa5fa85bce38-Paper.pdf
https://openreview.net/forum?id=r1ecqn4YwB
https://openreview.net/forum?id=r1ecqn4YwB
https://doi.org/10.1016/j.apenergy.2021.116918
http://papers.nips.cc/paper/8004-deep-state-space-models-for-time-series-forecasting.pdf
http://papers.nips.cc/paper/8004-deep-state-space-models-for-time-series-forecasting.pdf
https://arxiv.org/abs/1905.12417
https://proceedings.neurips.cc/paper/2020/file/481fbfa59da2581098e841b7afc122f1-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/481fbfa59da2581098e841b7afc122f1-Paper.pdf

ACM REP ’23, June 27–29, 2023, Santa Cruz, CA, USA Gundersen et al.

A APPENDIX A: EXPERIMENT SETUP
This section contains more details on models and datasets used in
the forecasting and image classification tasks.

A.1 Forecasting models
The models were trained for 100 epochs on a GPU (except for
DeepState which we had to train on the CPU).

DeepAR [40] is a probabilistic model utilizing a single autore-
gressive LSTM for all timeseries in a data-set. The output of the
LSTM is fed through two different dense layers, outputting the
mean and variance of a Gaussian distribution. When producing
predictions, the history of the timeseries is fed into the model, a
sample is then drawn from the produced distribution and then fed
back into the model to produce the next prediction. DeepAR in
GluonTS uses a student-T distribution instead of a Gaussian.

DeepFactor [44] consists of a deep global model and a local
model. The global model encodes timeseries into𝐾deepfactor global
factors using an LSTM, that are then combined through a linear
combination to produce the "fixed effect" of the model. The local
model provides the "random effect" to the model and can be any
classical probabilistic method for timeseries forecasting. The fixed
and random effects are then combined, through a freely defined
function, to parameterize the sampling distribution. In GluonTS this
model is implemented with one global LSTM producing the mean
of the distribution, while one local LSTM producing the variance.
These two LSTM models have different architectures and receive
different inputs. This is similar to the DF-RNN proposed in the
paper.

DeepState [37] is a probabilistic model using an LSTM to pro-
duce time-varying parameters of a state-space model. More specifi-
cally, the LSTM receives the covariates of the timeseries as input
and produces the state space parameters. Predictions are produced
by using the posterior of the latent state, together with the transi-
tion equation and observation model of the state-space model. New
parameters for the state-space model is computed by continuing to
unroll the LSTM, which can then be used to sample a prediction
for the next time step.

N-BEATS [31] is a pure deep learning model for time series fore-
casting producing point forecasts. The model consists of a number
of stacks, and the final forecast of the model is produced by taking
the sum of each stack forecast. Each stack is made up of several
blocks which has two outputs: "back-cast" (the estimate of the input
to the block) and "forecast". In each stack, the back-cast of block
𝑁 will be subtracted from the input to block 𝑁 + 1. This allows
subsequent blocks to focus on the part of the signal that has not
been learned by the previous blocks. The forecasts from a single
stack is the sum of the stack’s internal blocks. we used a single
module of NBEAT and not the ensemble. The reason is that the
ensemble implementation crashed.

LSTM [19] is a recurrent architecture. The LSTM has encoder-
decoder architecture with 2 layers, 40 nodes and we set the dropout
to 0.1. The input features are the same as the DeepAR model.

A.2 Image classification models
In order to select image classification models, we chose models
with close to state-of-the-art performance along with having a

small number of learnable parameters, so that we are able to train
100 seed replicates for 300 epochs.

ResNet [17] makes use of residual learning framework which
allows to train considerably deeper networks. Authors show that
this approach is also easier to optimize since it alleviates vanish-
ing gradients. For our experiments, we used the hyperparameters
mentioned in the paper for the variation ResNet110. This model
has 1.7M learnable parameters

DenseNet [20] pushes the idea of short connections further and
connects each layer to every other proceeding layer. Due to the
dense connection, DenseNet requires less computation and fewer
parameters to achieve high accuracy. We used the same hyperpa-
rameters as mentioned in the original paper and chose the model
with growth rate of 12 and depth of 40 which has approximately 1
million learnable parameters.

MobileNetV2 [41] is a mobile architecture which is based on
inverted residual structure and made use of lightweight depthwise
convolutions in the intermediate expansion layers and removed
non-linearities in the narrow layers. Due to small network size and
low complexity cost, this network is suitable for mobile devices. We
use an architecture similar to what is implemented in Tensorflow
library which has 2.2M parameters.

A.3 Forecasting Data
For Electricity and Exchange Rate, we use the same pre-processing
as in [24] while PEMS-SF Data Set and Solar Power were pre-
processed as in [39]. These datasets corresponds to the electricity,
exchange rate, traffic_nips and solar_nips data-sets provided as part
of GluonTS.

Electricity [9] is the electricity consumption of 370 measuring
points, sampled every 15 minutes.

Exchange Rate [24] is the daily exchange rate between USD
and eight different currencies including Australia, British, Canada,
Switzerland, China, Japan, New Zealand and Singapore from 1990
to 2016.

PEMS-SF [8] is the hourly occupancy rate, measured as a number
between 0 and 1, of 963 car lanes in San Francisco bay area freeways.
The measurements cover the period from Jan. 1st 2008 to Mar. 30th
2009 and are sampled every 10 minutes.

Solar Power5 captues the solar power production of 137 plants
in Alabama in 2016, sampled every 10 minutes and provided by the
National Renewable Energy Laboratory.

A.4 Image Classification Data
CIFAR10 [23] is an image classification dataset with 10 classes and
6000 colored images per class. It has 50000 training and 10000 test
images. This dataset is labeled subset of the 80 million tiny images.
In our experiments, no data augmentation were done as we wanted
to reduce the sources of variation.

A.5 Experiment Setup: Time-series Forecasting
Hardware

GPU: NVIDIA Tesla K80
CPU: Intel(R) Xeon(R) CPU E5-2690 v3 @ 2.60GHz
Cores: 6

5From: https://www.nrel.gov/grid/solar-power-data.html.

46

On Reporting Robust and Trustworthy Conclusions from Model Comparison Studies ACM REP ’23, June 27–29, 2023, Santa Cruz, CA, USA

RAM: 65 GiB
Software

OS: Ubuntu 18.04.4 LTS
Python: 3.7.7
Python packages:

• GluonTS 0.5.0
• Keras-Preprocessing 1.1.2
• matplotlib 3.2.2
• mxnet-cu101 1.6.0
• numpy 1.18.5
• pandas 1.0.5
• scipy 1.4.1
• tensorflow 2.3.0

A.6 Experiment Setup: Image Classification
Hardware

GPU: NVIDIA Tesla V100-PCIE-32GB
CPU: Intel(R) Xeon(R) Gold 6240 CPU @ 2.60GHz
Cores: 8
RAM: 65 GiB

Software
OS: Ubuntu 18.04.5 LTS
Docker Image: ray-ml:1.3.0-gpu
Additional Python packages:

• tensorflow-datasets 4.4.0

A.7 Experiment Setup: Hyperparameters

DeepAR
Number of layers: 2
Number of cells: 40
Dropout: 0.1
Number of parallel sample: 100
Output distribution: StudentT

DeepState
Number of layers: 2
Number of cells: 40
Dropout: 0.1
Number of parallel sample: 100
Number of periods to train: 4

DeepFactor
Number of factors: 10
Number of layer global: 1
Number of layer local: 1
Number of hidden global: 50
Number of hidden local: 5
Number of parallel sample: 100
Embedding dimension: 10
Output distribution: StudentT

N-BEATS
Number of stacks: 30
Expansion coefficient lengths: 32
Stack type: Generic
Sharing weights between stacks: False
Number of block layers: 4
Number of blocks: 1
Width: 512

LSTM
Number of layers: 2
Number of cells: 40
Dropout: 0.1

DenseNet
Depth: 40
Number of dense blocks: 3
Growth rate: 12
Number of filters: 16
Weight decay: 1E-4
Dropout: 0.2
Batch size: 64
Learning rate:

• Epochs 0 to 150: 0.1
• Epochs 150 to 225: 0.01
• Epochs 225 to 300: 0.001

ResNet
Version: ResNet110
Dropout: 0
L2 regularization: 1E-6
Batch size: 128
Learning rate:

• Iterations 0 to 400: 0.01
• Iterations 400 to 32000: 0.1
• Iterations 32000 to 48000: 0.01
• From iterations 48000: 0.001

MobileNetV2
Alpha: 1
Depth multiplier: 1
Batch size: 128
Dropout: 0.25
Number of bottlenecks: 7
Momentum: 0.9
Learning rate:

• Epochs 0 to 5: 2E-2
• Epochs 5 to 50: 1E-2
• Epochs 50 to 100: 8E-3
• Epochs 100 to 150: 4E-3
• Epochs 150 to 200: 2E-3
• Epochs 200 to 300: 1E-3

47

ACM REP ’23, June 27–29, 2023, Santa Cruz, CA, USA Gundersen et al.

B APPENDIX B: ADDITIONAL RESULTS

Figure 9: A statistical test comparing whether 𝐵𝑛 and𝑊 𝑛 are from the same distribution results in statistical significance for all
models and all datasets even with 𝑛 as large as 𝑛 ∼ 80. The reported 𝑝 values are from a one-sided two-sample t-test.

48

On Reporting Robust and Trustworthy Conclusions from Model Comparison Studies ACM REP ’23, June 27–29, 2023, Santa Cruz, CA, USA

-10%

-5%

0%

5%

10%

15%

20%

25%

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95

D
is

ta
nv

e
be

tw
ee

n
ov

er
la

p
of

 B
 a

nd
 W

Size (n) of B and W

DeepAR

electricity exchange traffic solar

-40%

-20%

0%

20%

40%

60%

80%

100%

120%

140%

160%

180%

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95

D
is

ta
nv

e
be

tw
ee

n
ov

er
la

p
of

 B
 a

nd
 W

Size (n) of B and W

DeepState

electricity exchange traffic solar

-100%

-50%

0%

50%

100%

150%

200%

250%

300%

350%

400%

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95

D
is

ta
nv

e
be

tw
ee

n
ov

er
la

p
of

 B
 a

nd
 W

Size (n) of B and W

DeepFactor

electricity exchange traffic solar

-1%

0%

1%

2%

3%

4%

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95

LSTM

electricity exchange traffic solar

-2%

-1%

0%

1%

2%

3%

4%

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95D
is

ta
nv

e
be

tw
ee

n
ov

er
la

p
of

 B
 a

nd
 W

Size (n) of B and W

N-BEATS

electricity exchange traffic solar

Figure 10: The gap between the confidence intervals (99.9% level) of 𝐵𝑛 and𝑊𝑛 for all time-series forecasting models. This
figure shows the gap, 𝐺𝑛 , between the 99.9% confidence intervals (CI) of the true accuracy estimated from the best performing
seed replicates, 𝐵𝑛 , when compared to the worst performing seed replicates,𝑊 𝑛 , for the image classification task. Note that we
compare 𝐵𝑛 and𝑊 𝑛 who are seed replicates of the same model. In this way we compare models that we know have the same
performance (as they are the same model).

49

ACM REP ’23, June 27–29, 2023, Santa Cruz, CA, USA Gundersen et al.

D
ee

p
A

R
D

ee
p

St
at

e
D

ee
p

Fa
ct

o
r

N
B

EA
TS

LS
TM

Figure 11: KDE plot of the MAPE scores for all 100 seed replicates shown for all five models and all four datasets.

Figure 12: KDE plot of the accuracy of DenseNet, MobileNet and ResNet on image classification task on CIFAR10.

50

On Reporting Robust and Trustworthy Conclusions from Model Comparison Studies ACM REP ’23, June 27–29, 2023, Santa Cruz, CA, USA

Figure 13: Time-series forecasting: We repeatedly sample two independent sets of seed candidates of the same size learned from
using the same model on the same dataset, then test if the two samples come from distributions with the same mean using a
two-sided Brunner-Munzel test. The 𝑥-axis gives the number of seed candidates in each sample, the 𝑦-axis the fraction (out of
10.000 repetitions), where the two sets were found to be significantly different. The dashed line indicates the rejection level, and
thus the fraction of rejections we theoretically expect. Left: Rejection level 𝑝 = 𝛼 = 0.05. Right: Rejection level 𝑝 = 𝛼 = 10−3.
Note the log-scale.

Figure 14: Image classification: We repeatedly sample two independent sets of seed candidates of the same size learned from
using the same model on the same dataset, then test if the two samples come from distributions with the same mean using a
two-sided Brunner-Munzel test. The 𝑥-axis gives the number of seed candidates in each sample, the 𝑦-axis the fraction (out of
10.000 repetitions), where the two sets were found to be significantly different. The dashed line indicates the rejection level, and
thus the fraction of rejections we theoretically expect. Left: Rejection level 𝑝 = 𝛼 = 0.05. Right: Rejection level 𝑝 = 𝛼 = 10−3.
Note the log-scale.

51

ACM REP ’23, June 27–29, 2023, Santa Cruz, CA, USA Gundersen et al.

Figure 15: An adversarial trying to prove that DeepAR performs better than DeepFactor using a one-sided test (𝛼 = 10−3). The
same seeds are used for both the preferred model and the baseline. Left: Instead of opportunistically selecting S, the set of seeds
is a sample of size 𝑛 sampled without replacement from the possible seeds {0, . . . , 99}, and ensuring that the same set S was used
for both models. The sampling of S was repeated 10.000 times, and the fraction of samples that lead to rejection is given on the
𝑦-axis. Results obtained using a t-test. Right: Exactly the same setup as in the left panel, but now using a Brunner-Munzel test.

Figure 16: An adversarial trying to prove that DeepAR performs better than DeepState using a one-sided test (𝛼 = 10−3). The
same seeds are used for both the preferred model and the baseline. Left: Instead of opportunistically selecting S, the set of seeds
is a sample of size 𝑛 sampled without replacement from the possible seeds {0, . . . , 99}, and ensuring that the same set S was used
for both models. The sampling of S was repeated 10.000 times, and the fraction of samples that lead to rejection is given on the
𝑦-axis. Results obtained using a t-test. Right: Exactly the same setup as in the left panel, but now using a Brunner-Munzel test.

52

On Reporting Robust and Trustworthy Conclusions from Model Comparison Studies ACM REP ’23, June 27–29, 2023, Santa Cruz, CA, USA

Figure 17: An adversarial trying to prove that DeepAR performs better than N-BEATS using a one-sided test (𝛼 = 10−3). The
same seeds are used for both the preferred model and the baseline. Left: Instead of opportunistically selecting S, the set of seeds
is a sample of size 𝑛 sampled without replacement from the possible seeds {0, . . . , 99}, and ensuring that the same set S was used
for both models. The sampling of S was repeated 10.000 times, and the fraction of samples that lead to rejection is given on the
𝑦-axis. Results obtained using a t-test. Right: Exactly the same setup as in the left panel, but now using a Brunner-Munzel test.

Figure 18: An adversarial trying to prove that DeepFactor performs better than DeepAR using a one-sided test (𝛼 = 10−3). The
same seeds are used for both the preferred model and the baseline. Left: Instead of opportunistically selecting S, the set of seeds
is a sample of size 𝑛 sampled without replacement from the possible seeds {0, . . . , 99}, and ensuring that the same set S was used
for both models. The sampling of S was repeated 10.000 times, and the fraction of samples that lead to rejection is given on the
𝑦-axis. Results obtained using a t-test. Right: Exactly the same setup as in the left panel, but now using a Brunner-Munzel test.

53

ACM REP ’23, June 27–29, 2023, Santa Cruz, CA, USA Gundersen et al.

Figure 19: An adversarial trying to prove that DeepFactor performs better than DeepState using a one-sided test (𝛼 = 10−3). The
same seeds are used for both the preferred model and the baseline. Left: Instead of opportunistically selecting S, the set of seeds
is a sample of size 𝑛 sampled without replacement from the possible seeds {0, . . . , 99}, and ensuring that the same set S was used
for both models. The sampling of S was repeated 10.000 times, and the fraction of samples that lead to rejection is given on the
𝑦-axis. Results obtained using a t-test. Right: Exactly the same setup as in the left panel, but now using a Brunner-Munzel test.

Figure 20: An adversarial trying to prove that DeepFactor performs better than LSTM using a one-sided test (𝛼 = 10−3). The same
seeds are used for both the preferred model and the baseline. Left: Instead of opportunistically selecting S, the set of seeds is a
sample of size 𝑛 sampled without replacement from the possible seeds {0, . . . , 99}, and ensuring that the same set S was used for
both models. The sampling of S was repeated 10.000 times, and the fraction of samples that lead to rejection is given on the
𝑦-axis. Results obtained using a t-test. Right: Exactly the same setup as in the left panel, but now using a Brunner-Munzel test.

54

On Reporting Robust and Trustworthy Conclusions from Model Comparison Studies ACM REP ’23, June 27–29, 2023, Santa Cruz, CA, USA

Figure 21: An adversarial trying to prove that DeepFactor performs better than N-BEATS using a one-sided test (𝛼 = 10−3). The
same seeds are used for both the preferred model and the baseline. Left: Instead of opportunistically selecting S, the set of seeds
is a sample of size 𝑛 sampled without replacement from the possible seeds {0, . . . , 99}, and ensuring that the same set S was used
for both models. The sampling of S was repeated 10.000 times, and the fraction of samples that lead to rejection is given on the
𝑦-axis. Results obtained using a t-test. Right: Exactly the same setup as in the left panel, but now using a Brunner-Munzel test.

Figure 22: An adversarial trying to prove that DeepState performs better than DeepAR using a one-sided test (𝛼 = 10−3). The
same seeds are used for both the preferred model and the baseline. Left: Instead of opportunistically selecting S, the set of seeds
is a sample of size 𝑛 sampled without replacement from the possible seeds {0, . . . , 99}, and ensuring that the same set S was used
for both models. The sampling of S was repeated 10.000 times, and the fraction of samples that lead to rejection is given on the
𝑦-axis. Results obtained using a t-test. Right: Exactly the same setup as in the left panel, but now using a Brunner-Munzel test.

55

ACM REP ’23, June 27–29, 2023, Santa Cruz, CA, USA Gundersen et al.

Figure 23: An adversarial trying to prove that DeepState performs better than DeepFactor using a one-sided test (𝛼 = 10−3). The
same seeds are used for both the preferred model and the baseline. Left: Instead of opportunistically selecting S, the set of seeds
is a sample of size 𝑛 sampled without replacement from the possible seeds {0, . . . , 99}, and ensuring that the same set S was used
for both models. The sampling of S was repeated 10.000 times, and the fraction of samples that lead to rejection is given on the
𝑦-axis. Results obtained using a t-test. Right: Exactly the same setup as in the left panel, but now using a Brunner-Munzel test.

Figure 24: An adversarial trying to prove that DeepState performs better than LSTM using a one-sided test (𝛼 = 10−3). The same
seeds are used for both the preferred model and the baseline. Left: Instead of opportunistically selecting S, the set of seeds is a
sample of size 𝑛 sampled without replacement from the possible seeds {0, . . . , 99}, and ensuring that the same set S was used for
both models. The sampling of S was repeated 10.000 times, and the fraction of samples that lead to rejection is given on the
𝑦-axis. Results obtained using a t-test. Right: Exactly the same setup as in the left panel, but now using a Brunner-Munzel test.

56

On Reporting Robust and Trustworthy Conclusions from Model Comparison Studies ACM REP ’23, June 27–29, 2023, Santa Cruz, CA, USA

Figure 25: An adversarial trying to prove that DeepState performs better than N-BEATS using a one-sided test (𝛼 = 10−3). The
same seeds are used for both the preferred model and the baseline. Left: Instead of opportunistically selecting S, the set of seeds
is a sample of size 𝑛 sampled without replacement from the possible seeds {0, . . . , 99}, and ensuring that the same set S was used
for both models. The sampling of S was repeated 10.000 times, and the fraction of samples that lead to rejection is given on the
𝑦-axis. Results obtained using a t-test. Right: Exactly the same setup as in the left panel, but now using a Brunner-Munzel test.

Figure 26: An adversarial trying to prove that LSTM performs better than DeepAR using a one-sided test (𝛼 = 10−3). The same
seeds are used for both the preferred model and the baseline. Left: Instead of opportunistically selecting S, the set of seeds is a
sample of size 𝑛 sampled without replacement from the possible seeds {0, . . . , 99}, and ensuring that the same set S was used for
both models. The sampling of S was repeated 10.000 times, and the fraction of samples that lead to rejection is given on the
𝑦-axis. Results obtained using a t-test. Right: Exactly the same setup as in the left panel, but now using a Brunner-Munzel test.

57

ACM REP ’23, June 27–29, 2023, Santa Cruz, CA, USA Gundersen et al.

Figure 27: An adversarial trying to prove that LSTM performs better than DeepFactor using a one-sided test (𝛼 = 10−3). The same
seeds are used for both the preferred model and the baseline. Left: Instead of opportunistically selecting S, the set of seeds is a
sample of size 𝑛 sampled without replacement from the possible seeds {0, . . . , 99}, and ensuring that the same set S was used for
both models. The sampling of S was repeated 10.000 times, and the fraction of samples that lead to rejection is given on the
𝑦-axis. Results obtained using a t-test. Right: Exactly the same setup as in the left panel, but now using a Brunner-Munzel test.

Figure 28: An adversarial trying to prove that LSTM performs better than DeepState using a one-sided test (𝛼 = 10−3). The same
seeds are used for both the preferred model and the baseline. Left: Instead of opportunistically selecting S, the set of seeds is a
sample of size 𝑛 sampled without replacement from the possible seeds {0, . . . , 99}, and ensuring that the same set S was used for
both models. The sampling of S was repeated 10.000 times, and the fraction of samples that lead to rejection is given on the
𝑦-axis. Results obtained using a t-test. Right: Exactly the same setup as in the left panel, but now using a Brunner-Munzel test.

58

On Reporting Robust and Trustworthy Conclusions from Model Comparison Studies ACM REP ’23, June 27–29, 2023, Santa Cruz, CA, USA

Figure 29: An adversarial trying to prove that LSTM performs better than N-BEATS using a one-sided test (𝛼 = 10−3). The same
seeds are used for both the preferred model and the baseline. Left: Instead of opportunistically selecting S, the set of seeds is a
sample of size 𝑛 sampled without replacement from the possible seeds {0, . . . , 99}, and ensuring that the same set S was used for
both models. The sampling of S was repeated 10.000 times, and the fraction of samples that lead to rejection is given on the
𝑦-axis. Results obtained using a t-test. Right: Exactly the same setup as in the left panel, but now using a Brunner-Munzel test.

Figure 30: An adversarial trying to prove that N-BEATS performs better than DeepAR using a one-sided test (𝛼 = 10−3). The
same seeds are used for both the preferred model and the baseline. Left: Instead of opportunistically selecting S, the set of seeds
is a sample of size 𝑛 sampled without replacement from the possible seeds {0, . . . , 99}, and ensuring that the same set S was used
for both models. The sampling of S was repeated 10.000 times, and the fraction of samples that lead to rejection is given on the
𝑦-axis. Results obtained using a t-test. Right: Exactly the same setup as in the left panel, but now using a Brunner-Munzel test.

59

ACM REP ’23, June 27–29, 2023, Santa Cruz, CA, USA Gundersen et al.

Figure 31: An adversarial trying to prove that N-BEATS performs better than DeepFactor using a one-sided test (𝛼 = 10−3). The
same seeds are used for both the preferred model and the baseline. Left: Instead of opportunistically selecting S, the set of seeds
is a sample of size 𝑛 sampled without replacement from the possible seeds {0, . . . , 99}, and ensuring that the same set S was used
for both models. The sampling of S was repeated 10.000 times, and the fraction of samples that lead to rejection is given on the
𝑦-axis. Results obtained using a t-test. Right: Exactly the same setup as in the left panel, but now using a Brunner-Munzel test.

Figure 32: An adversarial trying to prove that N-BEATS performs better than DeepState using a one-sided test (𝛼 = 10−3). The
same seeds are used for both the preferred model and the baseline. Left: Instead of opportunistically selecting S, the set of seeds
is a sample of size 𝑛 sampled without replacement from the possible seeds {0, . . . , 99}, and ensuring that the same set S was used
for both models. The sampling of S was repeated 10.000 times, and the fraction of samples that lead to rejection is given on the
𝑦-axis. Results obtained using a t-test. Right: Exactly the same setup as in the left panel, but now using a Brunner-Munzel test.

60

On Reporting Robust and Trustworthy Conclusions from Model Comparison Studies ACM REP ’23, June 27–29, 2023, Santa Cruz, CA, USA

Figure 33: An adversarial trying to prove that N-BEATS performs better than LSTM using a one-sided test (𝛼 = 10−3). The same
seeds are used for both the preferred model and the baseline. Left: Instead of opportunistically selecting S, the set of seeds is a
sample of size 𝑛 sampled without replacement from the possible seeds {0, . . . , 99}, and ensuring that the same set S was used for
both models. The sampling of S was repeated 10.000 times, and the fraction of samples that lead to rejection is given on the
𝑦-axis. Results obtained using a t-test. Right: Exactly the same setup as in the left panel, but now using a Brunner-Munzel test.

61

	Abstract
	1 Introduction
	2 Adversarial Model Comparison
	3 Experiments
	3.1 Time-series Forecasting
	3.2 Image Classification

	4 Results and Discussion
	5 Conclusions and Recommendations
	References
	A Appendix A: Experiment Setup
	A.1 Forecasting models
	A.2 Image classification models
	A.3 Forecasting Data
	A.4 Image Classification Data
	A.5 Experiment Setup: Time-series Forecasting
	A.6 Experiment Setup: Image Classification
	A.7 Experiment Setup: Hyperparameters

	B Appendix B: Additional results

