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Abstract—Treatment of type 1 diabetes mellitus is signifi-
cantly improved by using commercially available hybrid closed-
loop systems to deliver insulin. These systems, also called arti-
ficial pancreas (AP), use the subcutaneous (SC) route to deliver
insulin. However, meal announcements are necessary due to
the slow insulin absorption from the SC tissue. Thus due to the
need for human intervention, it is called “hybrid closed loop”
AP. In this work, a bi-hormonal AP with intraperitoneal (IP)
infusion is designed to increase the time within the range of 3.9–
10.0 mmol/l and alleviate the burden of meal announcements.
A two-layer controller is designed to provide safe and effective
insulin and glucagon delivery. The primary layer is based on
classical PID controllers for insulin and glucagon, and the
supervisory layer includes four parts: (A) Zone-based control
settings, (B) Extrapolation of sensor data to compensate for
sensor delay in SC tissue, (C) Auto-tuning of the PID parameters
in the primary layer through simulation in an animal model,
and (D) Safety barriers. The controller is designed to prevent
hypoglycemia after meals and during physical activity, as well as
prevent postprandial hyperglycemia. The designed AP achieved
92.5% of the time within the range of 3.9–10.0 mmol/l on a
simulator trained on data from animal experiments. The results
indicate that this two-layer control structure with IP infusions
makes it feasible to achieve a fully automated artificial pancreas
without the need for meal announcements, i.e. without human
intervention.

I. INTRODUCTION

Patients with type 1 diabetes depend on exogenous insulin
since their insulin-producing β-cells are destroyed or are not
able to produce enough insulin. As a result, the body fails to
control the Blood Glucose Level (BGL) [1]. Current diabetes
treatment consists of three stages; First, the BGL must be
measured, then the amount of the necessary hormone must
be determined, and finally, this amount must be injected. The
automated system that can perform these procedures is called
the artificial pancreas (AP). Commercially available AP sys-
tems include a control system to determine the amount of
insulin, a pump for injecting the insulin into the subcutaneous
(SC) tissue, and a blood glucose sensor for measuring the
BGL [2].

Due to the slow insulin absorption from the SC tissue,
most control approaches fail to keep the BGL within the
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desired range when facing an unannounced meal [3]. Notably,
the meal announcements need to be done by the patients
well in advance. Otherwise, a delayed meal announcement
or underestimated size of the meal can cause hyperglycemia
(high BGL). Hyperglycemia is caused by too little (or no)
meal insulin or the meal insulin being given too late relative
to the meal. If hyperglycemia occurs often, the patient
will have a higher risk of microvascular complications and
cardiovascular diseases. Improved glycemic control alleviates
these risks.

On the other hand, an overestimated meal size can cause
hypoglycemia (low BGL). Since hypoglycemia can have
serious short- and long-term implications, it is a critical oc-
currence that must be avoided. As categorized later in Table II
by the American Diabetes Association, the first level of hypo-
glycemia is set at a threshold where neuroendocrine response
starts failing. However, the symptoms can be unrecognized,
and for that reason, the risk of experiencing hypoglycemic
unawareness exists. In the second level, neuroglycopenic
symptoms arise, and immediate actions should be taken. If it
stays untreated, the patient can experience significant changes
in mental and physical functioning, progressing further into
consciousness, seizure, coma, or death [1, Chapter 6].

It has been shown in [3] that the intraperitoneal (IP)
route has a faster insulin absorption than the SC route,
and the AP systems using the IP route do not need the
meal announcements. In addition, bi-hormonal AP systems
are shown to be effective in avoiding hypoglycemia [4].
Bi-hormonal AP uses a second hormone next to insulin
to increase the BGL. This hormone, called glucagon, can
stimulate the breakdown of glycogen into glucose in the liver.
Thus, glucose is accessible in case of need for energy [5].

Several studies have been done in the literature to design
different controller approaches, such as Model predictive
control (MPC) and PID controller for single hormonal SC AP
[6]–[8]. In addition, a few other research groups are focusing
on bi-hormonal SC AP [9]–[11] showing more promising
results than single-hormonal APs. However, few controllers
have been tested and designed for single hormonal IP AP
without meal announcements. This is due to the lack of a sim-
ulator for the IP insulin and glucagon infusion. Nonetheless,
Toffanin et al. in [3] used an MPC approach to control the
BGL for single hormonal IP AP, where they used a modified
version of the SC simulator. The results showed that IP
insulin does not require meal announcement. Huyett et al. in
[12] used a simulator with intravenous (IV) insulin infusion
and assumed that IP and IV insulin infusions have the same



Fig. 1: Block diagram of the proposed two-layer control
structure. The primary layer consists of two PID controllers
for insulin and glucagon infusions. The supervisory layer
manages the safety barriers, extrapolates the sensor data to
compensate for the sensor delay, and modifies the set points
and PID coefficients in accordance with the BGL values. The
inputs to the primary layer are the auto-tuned gains for the
controller, the reference BGL of the active zone, the output
insulin (I), and glucagon (H). After the safety barrier, the
output might be modified, shown by the superscript *. Meal
& Exercises are implemented as glucose infusion rates in
the simulator. The simulator outputs are blood glucose level
(BGL) and the subcutaneously BGL (SC BGL) measurement.

absorption rates. Then, they designed a PID controller for
insulin infusion using the sensors inside the peritoneal cavity.
The results showed significant improvements in simulations.

This paper thereby focuses on designing the control al-
gorithm for a bi-hormonal IP AP. To this end, a two-layer
control structure is developed and tested on the simulator.
As shown in Fig. 1, the primary layer includes two PID
controllers for insulin and glucagon, respectively; at every
instant only one of them is activated by the supervisory
layer depending on the BGL and its derivative. In addition,
reference BGL and PID coefficients are specified by the auto-
tuning algorithm in the supervisory layer. Moreover, the su-
pervisory layer is responsible for safety barriers, emergency
modes, and compensating for sensor delays.

The proposed control structure is tested on a simulator
which was trained/identified based on data from 13 animal
experiments [13]. The controller was exposed to scenarios
aiming for typical real life conditions, e.g., with meals,
physical activity, sleep, and model mismatch (tuning the
controller for a model that does not match perfectly the
simulator it was tested on, e.g., by making a time varying
insulin sensitivity). To the best knowledge of the authors,
the design and test of a bi-hormonal IP AP on a simulator
trained and tested for the IP route is novel.

The paper is structured as follows. First, the simulator used
to develop the control structure is described in Section II.
Then the different stages of the proposed control structure
are presented in Section III. Different metrics are employed
to assess the proposed controller, and they are introduced
in Section IV. The performance of the controller is assisted

in different scenarios in Section V. Finally, these results
are discussed in Section VI, and a conclusion is given in
Section VII.

II. SIMULATOR AND SCENARIOS

The development and evaluation of the proposed con-
trol structure take place in a simulator. To the authors’
best knowledge, the proposed “meta model” in [13] is the
only model available for testing a bi-hormonal IP artificial
pancreas. Other models in the literature are developed for
IP routes, but they are designed only for control purposes
and have simple pharmacokinetics and pharmacodynamics to
serve as a simulator [14], [15]. The meta model is generally
based on physiology, and its parameters are identified empir-
ically through 13 experiments in anesthetized pigs, making
it a suitable option for a simulator.

The control inputs of the meta model are IP insulin and
IP glucagon. IV glucose infusion is used as an additional
input to mimic the intestines in anesthetized pigs that absorb
glucose, but this input is hidden for the controller. It is used
to design challenges (such as meals and exercise) for the
controller.

There are only five parameters that must be identified for
each new subject:

• The insulin-independent glucose uptake rate (α1)
• The liver’s sensitivity to insulin (α2)
• The sensitivity of other organs to insulin (α3)
• The liver’s sensitivity to glucagon (α4)
• The liver’s initial glycogen storage level (α5)
These parameters are unknown to the controller and the

sensitivity parameters (α2, α3, α4) can vary over time. In
[13], the ranges of these parameters are identified based on
the animal experiments as follows:

α2 ∈ [0.57, 5.84], (1a)
α3 ∈ [4.92, 17.22], (1b)
α4 ∈ [6, 20]. (1c)

These ranges are used for challenging the controller with
different scenarios in which the sensitivities vary. The other
parameters of the meta model are population parameters,
which are already identified and known using the information
from the previous experiments on different subjects.

The simulator was combined with a subcutaneous sensor
model that provides a BGL with a time lag as in actual
APs. The inputs and outputs of the simulator are illustrated
around “animal model” in Fig. 1. The meta model is thereby
the basis of the simulator. Insulin and glucagon are the
control inputs, meals and physical activity are unknown to the
system and thus can be seen as disturbances, the individual
parameters are modifiable internal parameters, and actual
BGL and subcutaneous BGL (SC BGL) are the output values.
To simulate the SC BGL time lag, we used a first order
derivative model with parameters (See equation (7) in [16]).
Similar to most commercial AP systems, the sampling time
of 5 min is chosen for the simulator.



A. Sensitivity to Insulin and Glucagon

As mentioned earlier, the sensitivities of the patient to
insulin and glucagon are time-varying parameters. They are
influenced by various hormones and conditions, which can
affect AP performance. Since determining the sensitivity
related to hormones is not straightforward, different modeling
possibilities are presented in this section to provide realistic
challenges to the controller.

To this end, three different modes are introduced in Fig. 2:
The first mode represents the constant value identified during
the 13 animal experiments [13]. The second mode is a
sinusoidal variation representing fluctuations of sensitivities
during the a day. Lastly, a sawtooth profile is used to examine
the reaction of the controller to discontinuities due to e.g., a
replacement of the infusion set, which would typically hap-
pen every 2-3 days in a clinical study. In these simulations,
the frequency was increased to make it even more challenging
for the controller. For modes 2 and 3, a counteracting effect
for insulin sensitivity and glucagon sensitivity is implemented
using a phase shift. For example, for mode 2, a phase shift
of 90◦ is used. The designed scenario ensures the most
significant challenge for the controller because this emulates
the fact that when insulin has a high effect on BGL, the
glucagon will have the lowest effect, and thus the rescue
process is prolonged.

A sinusoidal and sawtooth profile oscillate around a neutral
position. Three different neutral positions cnp are defined,
given by

max: cnp,max = bu − (bu + bl) ·
vr
2

(2a)

cen: cnp,cen = bu − (bu + bl) ·
1

2
, (2b)

min: cnp,min = bl + (bu + bl) ·
vr
2

, (2c)

where b is defined as boundary value with either index u as
upper or index l as lower value of the regions from (1a)–
(1c). The variable vr ∈ [0, 100]% ensures that the sensitivity
always stays within the regions, no matter which setting is
chosen. The amplitude a is defined as

a = (bu − bl) ·
vr
2

. (2d)
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Fig. 2: Visualisation of modes for time-variant hormone
sensitivity (using the insulin sensitivity as an example).

B. Glucose Infusion

As described in [13], the meal and exercises can be
simulated by the glucose infusion rate Rg in anesthetized
pigs. In addition, according to [17], the basal rate of glucose
production in adults is between 2–8 [ mg

min·kg ]. In this paper,
we assumed that the basal glucose infusion rate is 5 [ mg

min·kg ],
and it is constant in the simulations.

For modeling different realistic scenarios of glucose in-
fusion, basal glucose production can be taken as a basis.
To model the food intake of a normal day, different events
such as breakfast, lunch, and dinner, as well as soft drinks,
can be taken into account, with different amounts resulting
in an increase in the glucose infusion rate. Additionally,
physical activities can be modeled by decreasing glucose
production below basal glucose in anesthetized pigs. The
realistic scenario considered to challenge the controller is
shown in Fig. 3. The profile of the glucose infusion rate
through the day is generated based on the intestine model
(”model 2”) proposed in [18].
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Fig. 3: A demonstrative example of an IV glucose infusion
rate in 24 hr to simulate a real-life scenario. Exercise is simu-
lated by reducing the glucose infusion, since it is impossible
to perform exercise in anesthetized pigs. The x-axis shows
the time (in HH:mm format) since the start of the experiment
of the experiment.

III. TWO-LAYER PID CONTROL SCHEME

With the control of the BGL we want to ensure that
the BGL is within the target region most of the time.
Additionally, the requirement is set to lower or increase the
BGL in a safe way. This is because too much glucagon or
insulin injection could lead to a dangerous drop or increase of
the BGL and can cause severe side effects. Furthermore, os-
cillations are unwanted, and the amount of injected glucagon
should be as low as possible. Therefore, a supervisory layer
is implemented to ensure these requirements are met.

There are four different stages implemented in the super-
visory layer. The first stage is sensor data extrapolation, the
second is dividing the BGL into different zones, the third
is the auto-tuning of the PID coefficients in the defined
zones, and the last stage is implementing the safety barriers.
The designed control scheme is shown in Fig. 4, and the
defined stages are explained in more detail in the following
subsection.



Fig. 4: Detailed block diagram of the two-layer PID controller. The white color denotes the supervisory layer, whereas
the blue color represents the primary layer. The four strategies are displayed: (1) Extrapolation. (2) Division into zones.
(3) Auto-Tuning. (4) Safety Barrier. As in Fig. 1 shown, the input is the subcutaneous blood glucose level (SC BGL), the
extrapolated BGL is presented as BGL∗, glucagon (H) and insulin (I) are determined during the process and outputted in
the end.

A. Extrapolation of Sensor Data

SC sensors measurements lag behind the real BGL value
due to physiological delays and their slow dynamics [19]. We
implement the linear extrapolation method in the supervisory
layer to predict the BGL in the next step and compensate for
the sensor delay.

B. Zones

The first stage of the supervisory layer of the controller
splits the BGL into seven zones, as shown in Fig. 5. In
zones 1, 2, and 3, insulin is injected, and in zones 5, 6, and
7, glucagon is injected. Zone 4 is called the “quiet” zone,
where no controller is activated so that neither insulin nor
glucagon can be injected. The first and the last zone are the
emergency zones, where in zone 1, an insulin bolus is given,
and in zone 7, a glucagon bolus is injected. In total, a PID
controller with four sets of coefficients is implemented, two
for the injection of each hormone. Zones 2 and 6 consist of
a more aggressively tuned PID controller, whereas zone 3
and 5 have a less aggressively tuned PID controller, both for
insulin and glucagon respectively. Each zone has a separately
chosen setpoint to allow a smooth transition into the next
zone. To ensure safety, we opted for a target blood glucose
level (BGL) of 6.4 mmol/l. BGLs below this level, falling
into zones 4-7, are classified as low BGL. In such cases, no
insulin is given to allow the BGL to return to the baseline.

C. Auto-Tuning PID controllers

To achieve an optimal performance of the designed PID,
we implement a real-time auto-tuning stage to tune the
PID controller for different individuals and scenarios. This
is done by predicting the BGL for Np samples using the
individually identified meta-model [13] for each subject and
then minimizing the quadratic error of the predicted BGL
with the reference BGL value. The reference BGL value
is selected according to the active zone as provided in the
previous section. The decision variables in the optimization
process are the PID coefficients. Notably, this procedure is
done online and at every sampling time for zones 2,3,5 and

Fig. 5: Division of the BGL into 7 zones with different
control types and actions. The borders of each zone as well
as the setpoints (BGL∗) are illustrated.

6. As explained in the previous section, the reference BGL is
defined separately for the different zones. The cost function
designed for this end is defined as follows:

c =

Np∑
i=1

(G∗
i −GSC,i)

2, (3)

where Np is the prediction horizon, and at time k, c is
the cost for the prediction interval [k, k + Np], G∗ is the
defined reference BGL for the current zone, and GSC,i is
the i step ahead prediction of the BGL using the animal
model at time k + i. In order to estimate the future BGL, a
glucose infusion rate is needed. Here, for the zones 2 and 3
we assumed that the future glucose infusion rate equals the
basal glucose infusion rate (see Section II-B). In contrast, to
achieve a pessimistic prediction, a zero glucose infusion rate
is assumed for the zones 5 and 6 (where the glucagon must
be given).

The optimization problem can have multiple local minima,
resulting in sub-optimal solutions. In order to address this



issue, the initial values given to the optimizer must be chosen
carefully. In this paper, we choose the initial values using a
trial-and-error method performed in multiple simulations for
each zone. In addition, the decision variables are constrained
in different zones to control the aggressiveness of the PID
controller. The selected boundaries and the initial values
are shown in Table I. The interior-point method is used to
minimize the designed cost function (3).

TABLE I: Initial values and boundaries of the PID controller
coefficients for different zones. The values are given in the
format [Kp, Ki, Kd].

Zone Initial Value Lower Boundary Upper Boundary
2 [0.2, 0, 5] [0.1, 0, 1] [0.5, 0, 20]
3 [0.1, 0, 2] [0.01, 0, 0.02] [0.2, 0, 10]
5 [-0.5, -0.01, -8] [-5, -0.01, -10] [-0.1, 0, -0.1]
6 [-1, -0.01, -5] [-10, -0.01, -30] [-1, 0, -5]

D. Safety Barriers
The BGL slope is one of the factors we need to consider

for patient safety since if insufficient glycogen is stored in the
liver, a rapid BGL drop can result in a hypoglycemic event.
Thus, if the slope value exceeds a “dangerous value”, the
designed controller will be turned off to prevent excessive
insulin. Since insulin is only given in zones 2 and 3, this
is the only place where this safety barrier is needed. The
threshold for the slope must be tuned based on the zone.

Furthermore, due to the pharmacokinetics and pharma-
codynamics of the IP insulin, the half-life time of insulin
is 60–100 minutes for IP injections [13]. In other words,
the maximum effect of insulin and maximum drop in BGL
appear 60–100 minutes after injection. Therefore, to prevent a
rapid decrease in BGL in the next 60–100 minutes, additional
safety parameters are used in zones 2 and 3 to stop the
controller from giving more than a specified amount of
insulin. The threshold for the amount of insulin must be
chosen according to the body weight, sensitivity to insulin,
and based on the active zone.

For example, for the pigs with 36 kg of body weight, the
“dangerous slope” is defined as less than -0.01 mmol/L/min
and 0 mmol/L/min for zones 2 and 3, respectively. In
addition, the maximum amount of insulin that can be injected
over a rolling time window of 60 min is set to 1.5 U for zone
2 and 2 U for zone 3. These values are chosen using a trial-
and-error method in the simulations represented in the paper.

IV. PERFORMANCE MEASURES

In order to evaluate the performance of the proposed
control structure, three metrics are defined as follows:

A. Metric 1, Time in Range (TIR)
The Time in Range (TIR) is the first metric used to

assess the controller’s performance, indicating the duration
for which the BGL remains in the desired range. Table II
provides the ideal range, hyperglycemia levels, and hypo-
glycemia levels specified by the American Diabetes Associ-
ation. Evaluating the effectiveness of treatments using Time

above Range (TAR, hyperglycemia) and Time below Range
(TBR, hypoglycemia) is also recommended [1, Chapter 6].

TABLE II: Glycemic targets for adults according to the
American Diabetes Association [1, Chapter 6].

Ranges BGL range
[mmol/L]

Target
[%]

Target
[Time/Day]

Level 2 hyperglycemia >13.9 <5 1h 12min
Level 1 hyperglycemia 10.1 - 13.9 <25 6h
Time in range 3.9 - 10.0 >70 16h 48min
Level 1 hypoglycemia 3.0 - 3.8 <4 58min
Level 2 hypoglycemia <3.0 <1 14min

These glycemic targets can be formulated as

T =

∑N
i=1 Ii
Ns

with Ii =

{
1 for Gi ∈ Range

0 else
(4)

with Ns the total number of steps, T as the resulting target
value for each zone, which depends on the current step i,
has to meet a condition based on the BGL value Gi and
the ranges defined in Table II. This produces five different
values for the zones. It should be noted that the BGL ranges
are defined for humans, while the simulator used in this study
is based on pig data.

B. Metric 2, Amount of Used Insulin and Glucagon

The second metric measures the control energy. For this,
the used amount of insulin and glucagon is calculated to
check how much control input was needed to control the
BGL. Additionally, these values are used as an indicator, if
enough insulin is injected and if the requirement is met that
as little glucagon as possible is injected. This yields

Xused =

N∑
i=1

Xi (5)

where X denotes the placeholder for insulin I and glucagon
H . Xused is the amount of hormone used over the simulation
time, N the total number of control intervals, and Xi the
amount of injected hormone at each sampling interval i.

C. Metric 3, Severity of Hyperglycemia and Hypoglycemia

To compare the severity of hypoglycemia and hyper-
glycemia with different controllers or setups, we consider
the integral of the BGL above or below the defined BGL
thresholds. This threshold is chosen to be Gb,he = 10
mmol/L for hyperglycemia and Gb,ho = 3.9 mmol/L for
hypoglycemia. We defined the severity of hyperglycemia
[min·mmol/L ] as follows.

She =
area

naB
=

QU (G)−QU,b

naB
(6)

where G is the BGL, naB in the number of the samples that
G > Gb,he, QU (G) is integral of the BGL values exceeding
Gb,he, and QU,b = Gb,he · naB · ∆T , in which ∆T is the
sampling time. Similar to She, the severity of hypoglycemia
is defined as follows.

Sho =
QL(Gb,ho)−QL,b

n̄bB
(7)



where n̄bB is the number of the samples that G < Gb,ho,
QL(G) is integral of the BGL values less than Gb,he, and
QL,b = Gb,ho · n̄bB ·∆T .

V. RESULTS

This section presents the results of the proposed control
approach in different scenarios. For a detailed evaluation, we
show the effect of having each of the proposed stages of the
supervisory layer (extrapolation, zones, auto-tuning, safety
barriers), which are added one by one, yielding the final con-
troller with all implemented stages in the end. As explained
in section II, the parameters of the simulator are identified
using the animal experiment conducted on anesthetized pigs.
Then, the effectiveness of the safety barriers and the zone
PID with auto-tuning is assessed on other subjects using the
proposed metrics.

In order to challenge the controller, four sets of
{α1, α2, ..., α5} are identified from four animal experiments,
and the designed controller is performed on them in the
simulator. In addition, three sets of extended simulations with
time-varying sensitivity values (α2, α3, α4) are done on each
of them, resulting in 16 simulations in total. In the extended
simulations, α2, α3, α4 are changing in the sinusoidal shape
with three neutral positions (max, cen, and min) explained
in Section II-A. The effectiveness of the proposed stages in
the designed structure is evaluated in the following sections.

A. Development Stages

As shown in Fig. 4, the input of the controller is repre-
sented by the sensor value. In order to compensate the delay,
sensor data is extrapolated by predicting a future step. Fig. 6
shows an approximation of the extrapolated BGL value to
the actual BGL using the delayed sensor. It can be easily
seen that the extrapolated and actual BGL have almost the
same sinusoidal peaks.

Fig. 6: Extrapolation reduces the time lag of the SC sensors.

A PID controller is chosen as a comparison control struc-
ture, which has the same tuning as zone 3 for insulin infu-
sions and the same tuning as zone 5 for glucagon infusions.
However, the reference BGL for this single-layer PID is set
to 7 mmol/L (middle point of the desired range of 3.9–10
mmol/L) to avoid problems with hypoglycemia. The effect
of the control scheme stages can be seen in Fig. 7, 8 and
9. When looking at Fig. 7, the first stage of the two-layer
controller injects slightly larger amounts of insulin, and the

transition between injecting the hormones is characterized by
small pauses, compared to the single-layer controller.

Auto-tuning significantly increases the use of the control
input, which, however, can also considerably decrease the
average of the BGL (Fig. 8 and 9). The maximum BGL is
noticeably reduced, while the minimum BGL is increased. It
is important to note that these are average values of the results
of 16 simulations. This reduction in the range of the BGL is
also evident from Fig. 7, where the increased aggressiveness
of the controller is noticeable from the inputs.

The increase in aggressiveness due to auto-tuning is also
noticeable in an increase in hypoglycemic events. Therefore,
the safety barrier is implemented for zone 2. This method
shows a negligible effect on the total avoidance of hypo-
glycemic events and reduction of insulin usage. In contrast,
when implemented in zones 2 and 3, the amount of insulin
can be significantly reduced. This also reduces the need for
glucagon injections. However, the activation of safety barrier
for both zones leads to a renewed slight increase in the
average and maximum BGL. The increased course of BGL
is also evident from Fig. 7.

Fig. 7: Comparison of BGL course in 3 stages of proposed
2-layer PID controller (added incrementally) with a single-
layer bi-hormonal (BH) PID controller (tuned like zones 3
and 5 of 2-layer). Zones denote 2nd stage, auto-tuning is
3rd, and safety barrier is 4th (activated for zones 2 and
3). Extrapolation is implemented for each stage since it
represents the first stage. Subplots show insulin and glucagon
control input for each stage.

B. Final Controller
The proposed PID controller includes auto-tuning, time de-

lay compensation through extrapolation, zone-based switch-



Safety Barrier

(Zone 2+3)

BGL min 4

5

6

7

8

9

10

11

12

Zones Extrapolation Auto-Tuning Safety Barrier

(Zone 2)

Safety Barrier

(Zone 2+3)

[m
m

o
l/

l]

Applied Control Strategy

Average BGL

BGL min BGL mean BGL max

Fig. 8: Comparison of the minimum, average and maximum
BGL over the different stages.

32

33

34

35

36

37

38

39

40

60

80

100

120

140

160

180

200

Zones Extrapolation Auto-Tuning Safety Barrier

(Zone 2)

Safety Barrier

(Zone 2+3)

In
su

li
n
 [
U

]

G
lu

ca
g
o
n
 [
μ
g
]

Applied Control Strategy

Total Amount of Control Input Used during Simulation
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for the 16 simulations).

ing, and a safety barrier to limit BGL rate. Table III shows
the performance of the final PID controller for different
sensitivity settings. L2 hypoglycemia and L2 hyperglycemia
can be avoided except for the constant sensitivity setting.
When considering the TIR, a crucial dependence of the ef-
fectiveness of therapy on sensitivity is also apparent. Despite
an increase in the amount of insulin, the greatest proportion
of hyperglycemia occurs for the minimum sensitivity. With
an increase in sensitivity, the TIR and the necessary amount
of glucagon increases, while maximum sensitivity achieves
the smallest BGL range and mean.

For the constant sensitivity values, one data set has the
lowest sensitivity values, leading to hypoglycemic events.
Away from this, less insulin but more glucagon is used, which
results otherwise in the range of the other sensitivity values.

Fig. 10 shows the comparison of the results when the saw-
tooth profile and the sinusoidal profile are evaluated. Here,
the sawtooth profile shows stronger irregularities, which is
due to the fast and abrupt change of the sensitivities. This
means that the extremes are stronger, although they are still
within a satisfactory range.

VI. DISCUSSION

The supervisory layer’s extrapolation compensates for sen-
sor time delay, resulting in a slight minimum BGL increase
and maximum BGL reduction. The zone stage improves
glycemic control, as evident from Fig. 7. However, this
improvement comes with the cost of more tuning parameters

TABLE III: Performance metrics (averaged over different
data sets): The settings min, cen, and max correspond to the
sinusoidal settings, described in Eqs. (2a)–(2c). The constant
setting (con) represents the time-invariant sensitivity values.
L1 describes regular hyperglycemia or hypoglycemia events,
whereas L2 describes severe events. N(She) and N(Sho)
represent the number of hyperglycemic and hypoglycemic
events.

Overall Min Cen Max Con
L2 hyper [%] 0.00 0.00 0.00 0.00 0.00
L1 hyper [%] 6.57 17.66 5.75 0.91 1.94
TIR [%] 92.51 82.34 94.25 99.09 94.35
L1 hypo [%] 0.93 0.00 0.00 0.00 3.71
L2 hypo [%] 0.00 0.00 0.00 0.00 0.00
I [U] 34.40 42.47 33.86 31.49 29.78
H [µg] 152.25 77.81 100.51 151.50 279.17
She [min·mmol/L] 0.53 0.87 0.30 0.35 0.48
N(She) 1.50 2.50 2.25 0.50 0.75
Sho [min·mmol/L] 0.07 0.00 0.00 0.00 0.28
N(Sho) 0.19 0.00 0.00 0.00 0.75
min(BGL) [mmol/L] 4.44 4.70 4.66 4.35 4.07
meanBGL) [mmol/L] 7.22 8.10 7.34 6.82 6.63
max(BGL) [mmol/L] 10.78 11.89 10.74 10.12 10.36

Fig. 10: A final evaluation of the performance of the final
controller where the controller is applied to the two different
sensitivity profiles, where the insulin sensitivity and the
glucagon sensitivity are time-variant as a sinusoidal or a saw-
tooth function. Apart from the sensitivity profiles everything
is identical.

and the complexity of the controller. The tunable parame-
ters must be studied in detail, and sensitivity analysis of
the controller to these parameters should be done before
implementing the designed method in practice, which is kept
for future work. In addition, a high-gain observer can be
incorporated with the controller for better functionality and
safer control, as discussed in [20], [21]. Auto-tuning adjusts
PID parameters automatically for different individuals and
scenarios with time-varying settings, resulting in reduced
minimum and average BGL for all individuals. However,
increased aggressiveness can lead to undershoots close to the
lower limit. A penalty could be added to the cost function



to limit hormone use, but this is not included in the current
simple cost function. Improvements to the auto-tuning stage
are left for future work. The safety barriers in zone 2 and
3 terminate insulin injections early, thus reducing the impact
of increased aggressiveness and control activity from auto-
tuning. Consequently, there is a significant increase in the
minimum BGL, but at the cost of a decrease in mean BGL
and some slight hyperglycemic events.

It is important to note that glucagon is an unstable liquid
that can cause blockage of the infusion set and the pump.
However, in real experiments, we suggest changing the
glucagon infusion set every 24 hours similar to [22].

Overall, the proposed control structure meets the require-
ments specified in Table II. However, the controller’s ef-
fectiveness is heavily influenced by insulin and glucagon
sensitivities. Despite the saw-tooth profile’s discontinuities,
it produces satisfactory control results. The enhanced perfor-
mance and safety of the controller are achieved at the cost
of increased complexity and tuning parameters compared to
the single-layer PID controller.

VII. CONCLUSION

This paper proposes a two-layer PID controller with four
stages to improve glycemic control. The controller compen-
sates for sensor delay, prevents on-off behavior, adjusts PID
coefficients automatically, and adds safety barriers to avoid
hypoglycemia. Auto-tuning predicts future BGL, making the
structure comparable to MPC approaches and computation-
ally efficient for real-time use. The proposed controller is
effective on a complex and well-tuned simulator based on
an animal model, achieving satisfactory results despite time-
varying insulin and glucagon sensitivities. Future studies
can evaluate the framework on a human-based simulator
to determine if similar outcomes can be achieved without
requiring meal announcements.
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