
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f E
ng

in
ee

rin
g

Cy
be

rn
et

ic
s

M
as

te
r’s

 th
es

is

Alexey Siverskiy

Implementing an AAS for a Siemens
motor control system

Master’s thesis in Cybernetics and Robotics
Supervisor: Mary Ann Lundteigen
Co-supervisor: Maria V. Ottermo
June 2023

Alexey Siverskiy

Implementing an AAS for a Siemens
motor control system

Master’s thesis in Cybernetics and Robotics
Supervisor: Mary Ann Lundteigen
Co-supervisor: Maria V. Ottermo
June 2023

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Engineering Cybernetics

Preface

This master thesis was written as part of the study program Cybernetics and Robotics
at the Department of Engineering Cybernetics at the Norwegian University of Sci-
ence and Technology during the spring of 2023.

i

Acknowledgments

My thanks go to my supervisors Mary Ann Lundteigen and Maria Vatshaug Ot-
termo for their feedback and advise.

ii

Executive summary

This master thesis covers the implementation of an Asset Administration Shell
(AAS) for a Siemens Motor Control System (SMCS). The implementation con-
sists of creating the AAS, then establishing a real time communication between
the AAS and SMCS. The AAS is the digital twin for Industry 4.0 systems, and
structures related data elements into sets called submodels.

This thesis will provide an overview of the establishing of basic monitoring and
control of a set of Siemens hardware using the TIA Portal, which was installed on
a local PC, that was connected to the hardware by a PROFINET protocol. A larger
focus will be on the creation of the AAS for the hardware, as well as establishing
communication between the AAS and SMCS. The relevant hardware is a Siemens
motor, a Siemens inverter and a Siemens PLC. The creation of AAS was done with
the AAS Package Explorer and AAS server from the admin-shell-io github. Basic
control of the hardware was created with the TIA Portal. Communication between
the TIA Portal and the AAS was facilitated with the open source tool NodeRED.

The work covered by this thesis has deployed the AAS as a fog-based, centralized
AAS. This thesis discusses these, and other deployment options, and weighs up
these options in regards to the scale of the system. The result entailed being able to
monitor and control the hardware by using the AAS Package Explorer and Blazor
interface.

iii

List of Figures

1 AAS communication types, based on figure from [7]. 10
2 AAS technical concepts overview, from [9] 15
3 Information Model overview of the AAS, derived from [7] and [14]. 16
4 AAS Structure. Based on figure from Source [11]. 16
5 Communication infrastructure overview 17
6 AAS infrastructure overview . 18
7 AAS PE motor overview . 19
8 AAS PE PLC overview . 20
9 AAS PE inverter overview . 21
10 AAS PE: System overview . 22
11 AAS PE: System BOM . 22
12 Hardware overview . 23
13 TIA Portal component overview 24
14 TIA Portal: Main OB1 networks 25
15 TIA Portal emergency stop FB 25
16 TIA Portal emergency stop tags 26
17 TIA Portal motor control FB . 26
18 TIA Portal: HMI screen . 28
19 TIA Portal: Default tag table . 29
20 Communication between NodeRED an TIA Portal 30
21 CSV files content . 30
22 Http PUT request payload format 31
23 NodeRED overview . 32
24 NodeRED: Flow overview . 34
25 AAS Blazor server and client . 39
26 Blazor interface overview . 39
27 AAS PE: Connection to server 40
28 Implemented infrastructure . 43
29 AAS asset change effect on system 44
30 .aasx package alternative 1 . 45
31 .aasx package alternative 2 . 45
32 Several AAS’s in the same .aasx package 46
33 Multiple AAS for same asset . 47
34 Imported IEC CDD submodel 49

iv

35 Attributes of DirectionOfRotation 50
36 Value list of DirectionOfRotation 50
37 Reference alternative 1 . 51
38 Reference alternative 2 . 52
39 Reference alternative 3 . 52
40 Reference alternative 4 . 53
41 An empty .aasx package . 65
42 Data fields with hints . 65
43 Creating a submodel . 66
44 Available plugins in AAS PE . 67
45 Document shelf . 67
46 Bill of Material graph display . 68
47 IEC CDD website . 68
48 Attribute selection . 69
49 Creating concept description . 70
50 Reference to concept description 70
51 Adding thumbnail . 71
52 General reference . 71

List of Tables

1 AAS deployment alternatives . 8
2 Description of various aspects of the AAS 11
3 AAS IM: Abstract classes . 12
4 List of submodel elements from [7]. 14
5 TIA Portal drive configuration summary 27
6 NodeRED server startup arguments 33
7 NodeRED http requests overview 37
8 AAS Blazor server startup arguments 38

Listings

1 VB script that exports data out of TIA 72
2 VB script that imports data in to TIA 73
3 Detect value change . 73
4 Get motor speed . 73

v

5 Get motor speed setpoint . 74
6 Get TIA motor speed . 74
7 Get TIA motor speed setpoint . 74
8 Select . 74
9 Set CSV format . 74
10 Update motor speed . 74
11 Update motor speed setpoint . 74
12 Update motor variables . 75
13 Update PLC variables . 75

vi

Table of content

Preface . i
Acknowledgments . ii
Executive summary . iii
List of figures and tables . iv

1 Introduction 1
1.1 Background . 1
1.2 Objectives . 1
1.3 Approach . 2
1.4 Related works . 3
1.5 Limitations . 4
1.6 Outline . 5

2 Framework 6
2.1 Digital twin . 6
2.2 Asset Administration Shell . 6
2.3 Business/usage view of AAS . 7
2.4 Functional/implementation view of AAS 10

2.4.1 Technical overview . 10
2.4.2 AAS IM . 12
2.4.3 Structure . 13

3 Implementation 17
3.1 AAS infrastructure . 17

3.1.1 AAS for Motor . 18
3.1.2 AAS for PLC . 19
3.1.3 AAS for inverter . 20
3.1.4 AAS for system . 21

3.2 TIA infrastructure . 22
3.2.1 The hardware . 22
3.2.2 The TIA Portal . 23

3.3 Communication infrastructure 29
3.3.1 TIA Portal - NodeRED communication 29
3.3.2 The NodeRED server and editor 31
3.3.3 The AAS Server and repository 36

vii

3.3.4 The AAS Blazor interface and AAS PE 38

4 Provided functionality/results 42

5 Discussion 44
5.1 The composite asset . 44
5.2 Packages and shells . 45
5.3 AAS deployment . 47
5.4 Limitations of the package explorer 48
5.5 Data import from IEC CDD . 49
5.6 Data export out of TIA . 51
5.7 NodeRED - AAS issue . 53

6 Conclusion 55

Nomenclature 56

Bibliography 59

A Functionalities of the Package Explorer 64
A.1 Introduction . 64
A.2 Creating assets and AASs . 64
A.3 Creating submodels and submodel elements 65

A.3.1 Importing plugins . 66
A.3.2 Importing dictionaries 68

A.4 Creating concept descriptions . 69
A.5 Creating thumbnails . 70
A.6 Creating references . 71

B Scripts 72
B.1 TIA Portal scripts . 72
B.2 NodeRED scripts . 73

viii

1 Introduction

1.1 Background

The domain of Information Technology (IT) has in recent times been developing
rapidly, especially compared to Operational Technology (OT). Industrial compa-
nies and existing industrial installations consist of a large variety of OT equipment,
that may be expensive and time consuming to modernize, upgrade or replace. In-
stead, the development of IT can be exploited by existing OT equipment by con-
necting the two domains. This connection may come in the form of a Digital Twin
(DT), which represents some equipment in the real world digitally in the informa-
tion world. DTs are created for a range of reasons including simulation purposes,
design and development purposes, monitoring and control purposes, etc. DTs for
a piece of equipment are created by different actors like the Original Equipment
Manufacturers (OEM), system integrators or the owners of the equipment. When a
large variety of DTs are created by different actors for different purposes, the DTs
are not created in a standardized manner, unless specific effort is made to do so.
For the OT equipment to make the most use of their DTs, an efficient communi-
cation and understanding of the data within the DTs is needed. This prompts the
need for a standardized semantic definition of the data within the DTs. Efforts have
been made by standardization organizations like the International Electrotechnical
Commission (IEC) and ECLASS to provide such standardized semantics for a large
range of equipment and concepts. The ongoing process of integrating DTs into in-
dustrial processes is referred to as the fourth industrial revolution, or Industry 4.0.
A specific DT that is prominent within the concept of Industry 4.0 is the Asset
Administration Shell (AAS), which aims at creating DTs in an interoperable way
with a standaridized data structuring. The AAS intends to structure all equipment
related data in a technology neutral manner, and be conformant to international
standards. As the AAS is an emerging technology, which shows a lot of potential,
it is of interest to see how it can be integrated with an existing system.

1.2 Objectives

The main objective of the master thesis is to explore some of the main concepts of
the AAS and implement it for an existing SMCS. First some basic control of the
system will be established using the TIA Portal, then, using open source software
like the AAS Package Explorer (AAS PE) and the AAS Server, the technology of

1

AAS will be implemented in an additive manner to the SMCS. A bi-directional
real time communication will be established between the SMCS and its AAS. The
main objective is partitioned into the following sub-objectives

• Provide some motivation for the use of AAS and present some of its main
aspects, including the AAS Information Model (AAS IM), the AAS PE and
AAS Server.

• Create the AAS for the existing SMCS in accordance with the AAS IM.
Illustrate the standardized structure and the connection to standardized dic-
tionaries like the IEC Common Data Dictionary (IEC CDD).

• Implement the real time communication between the SMCS and its AAS.
Document the use of the relevant software, like the AAS PE and AAS Server,
as well as the encountered challenges.

• Document the achieved functionality of the implemented AAS and discuss
the deployment method chosen for the AAS and compare it to other deploy-
ment methods.

1.3 Approach

Firstly, the TIA Portal was configured to establish some basic control of the SMCS
through a created Human Machine Interface (HMI). Existing function blocks and
interfaces were taken from Siemens Open Library. Using AAS PE, an AAS was
then created for the Siemens motor, the Siemens inverter, the Siemens PLC and for
the composite piece of equipment that is the system itself. The system was defined
as a composition of the motor, inverter and PLC. The data export out of the TIA
Portal was achieved by creating a Visual Basic (VB) script, which created a Comma
Separated Value (CSV) file, and sent the data to that file. A similar VB script was
created for the import of data back into the TIA Portal, which came from a separate
CSV file. The AAS server was configured to use the a Representational State
Transfer (REST) Application Programming Interface (API), through which data
was read from and written to the previously created AASs. The open source tool
NodeRED was used to connect the CSV files with the AAS Server, and to transform
the data format between CSV and JavaScript Object Notation (JSON), which is
the format of the payload for the REST API. Finally, two types of interfaces for
visualizing data were connected to the AAS Server. One of the interfaces is the

2

AAS PE, through which data could be changed and the SMCS could be controlled.
The other interface was a Blazor interface through which data from the SMCS
could be monitored in real time.

1.4 Related works

The AAS reading guide [1] is a good introduction to the AAS which provides
further references to articles aimed at people with various levels of knowledge re-
garding the AAS. The documents “Usage View of Asset Administration Shell”
[2], “Functional View of the Asset Administration Shell in an Industrie 4.0 Sys-
tem Environment” [3], “Industrie 4.0 Plug-and-Produce for Adaptable Factories:
Example Use Case Definition, Models, and Implementation” [4], “Relationships
between I4.0 Components - Composite Components and Smart Production” [5]
and “An Analysis of Use Cases for the Asset Administration Shell in the Context
of Edge Computing” [6] provide some motivation for the use of AAS. The doc-
uments “Details of the Asset Administration Shell - Part 1” [7], “Details of the
Asset Administration Shell - Part 2” [8], “What is the Asset Administration Shell
from a technical perspective?” [9], “Structure of the Administration Shell” [10]
and “The Structure of the Administration Shell: TRILATERAL PERSPECTIVES
from France, Italy and Germany” [11] give insights into more technical aspects of
the AAS.

Various publications about the implementation of the AAS have served as an in-
spiration to the implementation procedure in this project. In the conference paper
“Asset Administration Shell Generation and Usage for Digital Twins” [12], the au-
thors present a case study where the AAS was implemented on non-destructive
testing equipment. The article “Asset Administration Shell Design Methodology
Using Embedded OPC Unified Architecture Server” [13], presents the implemen-
tation of AAS with the OPC UA information model into an embedded system. In
the article “An Industry 4.0 Asset Administration Shell-Enabled Digital Solution
for Robot-Based Manufacturing Systems” [14], a case study featuring the plug and
produce application scenario is demonstrated, where a proposed AAS solution for
a robot-based manufacturing system is evaluated. In the article “Automated De-
sign and Integration of Asset Administration Shells in Components of Industry
4.0” [15], an analysis of forming AASs is presented for a case study of a virtual
assembly line. The article “Implementing Industry 4.0 Asset Administrative Shells

3

in Mini Factories” [16], presents a methodology for creating an AAS for a mini fac-
tory. In the conference paper “NOVAAS: A Reference Implementation of Industrie
4.0 Asset Administration Shell with best-of-breed practices from IT engineering”
[17], an implementation of the AAS, called NOVAAS is provided with the inten-
tion of contributing to a generic reference implementation of the concept. The
document “PLC Integration into Industry 4.0 Middleware: Function Block Library
for the Interaction with REST and OPC UA Asset Administration Shells” [18],
specifies function blocks for connecting Programmable Logic Controllers (PLCs)
with AASs, with focus on REST/HTTP and OPC UA Based AASs. The function
blocks are compliant with IEC 61131-3, which is a standard the function blocks
in the TIA Portal function block library are compliant with as well. The article
“Toward Industry 4.0 Components: Insights Into and Implementation of Asset Ad-
ministration Shells” [19], provides an implementation example of how an AAS
can be implemented on a manufacturing system using AutomationML. The article
“Toward the Plug-and-Produce Capability for Industry 4.0: An Asset Adminis-
tration Shell Approach” [20], uses the AAS to implement the I4.0 scenario plug
and produce, with focus on AutomationML and OPC UA. The article “Use of As-
set Administration Shell Coupled with ISO 15926 to Facilitate the Exchange of
Equipment Condition and Health Status Data of a Process Plant” [21], describes
the implementation of AAS on a process plant to facilitate a technology neutral
data exchange. Finally, the document “Asset Administration Shell in Manufactur-
ing: Applications and Relationship with Digital Twin” [22], provides a thorough
literature review on publications related to the implementation of the AAS. The
literature review compares amongst other things, the modeling solutions, and used
communication protocols for 29 publications that cover the implementation of the
AAS.

1.5 Limitations

The author has no previous experience with any of the tools used, thus the de-
scribed methods may not be optimal and should not be considered as a guideline,
but rather as an illustrative example of how AAS may be implemented for a SMCS.

The AAS is a new technology and documentation on how to implement the tech-
nology and how to use the AAS-related tools is limited and often presented in a
summarized manner. The tools themselves are still under development. The AAS

4

cover a very large scope, not all of which is considered in this thesis. For example,
no considerations to the security aspect will be made here. The synergy of widely
used communication protocols like the OPC UA and MQTT with the AAS will not
be discussed either.

1.6 Outline

Chapter 2 provides some framework for the AAS. Firstly, some motivation for the
technology is presented by considering it from a usage point of view and present-
ing some use-cases for the AAS. A more technical side of the AAS will then be
presented, including common concepts related to the AAS, the AAS Information
Model (AAS IM) and the structure of the AAS.

Chapter 3 provides details on the creation of the AASs and the establishment of the
real-time communication between the hardware and the AASs. Firstly, the creation
and storage of the AASs is described, followed by an explanation on how the TIA
Portal was used to establish basic control of the connected hardware. Finally, the
data flow between the TIA Portal and the AAS is described.

Chapter 4 presents a brief overview of the achieved functionality.

Chapter 5 discusses the implemented solution with focus on the AAS. Various de-
ployment alternatives of the AAS, as well as some limitations of the implemented
solution are outlined. Functionalities and some encountered limitations of the tools
used are also presented.

Chapter 6 completes the thesis with a summary of the findings.

5

2 Framework

2.1 Digital twin

As large Industrial Internet of Things (IIoT) systems grow, an increasing amount
of components and equipment are connected. As these systems grow in size and
complexity, it becomes important to ensure seamless and effective communication
between the various equipment. The Digital Twin is a key enabler in this endeavor.
A multitude of definitions of a digital twin exists, and variety of digital twins exist
for different use cases and industries. The Industrial Internet Consortium (IIC) de-
fines the digital twin as

Digital Twin: “Digital representation, sufficient to meet the requirements of a set
of use cases.” [23]

The definition is referring to the digital representation of an entity, which the IIC
defines as

Entity: “An item that has a recognizably distinct existence, such as a person, an
organization, a device, a machine tool, a production line, a subsystem or a group
of such items.” [23]

A specific type of DT which is of interest here, is the AAS.

2.2 Asset Administration Shell

The Asset Administration Shell is an implementation of a digital twin for industrial
applications. It was specified and developed by Platform Industrie 4.0, the German
strategic initiative to secure and expand Germany’s leading position in the manu-
facturing industry [24]. The AAS is a digital representation of an asset, which is
described in the IEC62443 standard as

Asset: “Physical or logical object owned by or under the custodial duties of an
organization, having either a perceived or actual value to the organization.” [25]

For the purpose of this document, the terms Entity and Asset are interchangeable.
The term Asset will be used from this point on. The term “entity” will instead be

6

used to describe a specific submodel element of the AAS.

The IIC has developed a reference architecture pertaining to IIoT systems, the
IIRA, which identifies relevant stakeholders of IIoT systems and frames the topics
of interest concerning a system into four viewpoints

• Business viewpoint

• Usage viewpoint

• Functional viewpoint

• Implementation viewpoint

Platform Industrie 4.0 have developed their own reference architecture model, the
RAMI4.0. The PI4.0 and IIC have worked to align the architectures in [23] and
[26]. Several documents released by PI4.0 like “functional view of AAS” [3], and
“usage view of AAS” [2], organize various documents pertaining to the AAS in ac-
cordance with the IIRA viewpoints. Therefore, an attempt at presenting the AAS
in accordance with these viewpoints will be made here. Firstly som business or
usage views of the AAS will be presented, whic will mainly focus on providing
motivation for why the AAS is useful. Thereafter, a more technical aspect og the
AAS will be outlined.

2.3 Business/usage view of AAS

Within manufacturing, the information and functions are associated with assets.
Various software applications will map and model the intrinsic properties of the
assets with respect to the purpose of the software [2]. Then, depending on the soft-
ware, and the purpose, the same asset may have various mappings. Throughout
the lifecycle of an asset, the asset is usually subject to some form of modifica-
tion/change. When such a change occurs, it must be considered and accounted
for with respect to each individual software that has mapped some properties of
the asset. Due to the increasing IT penetration of the manufacturing industry, the
number of software applications and thus the difficulty of performing such changes
is gradually increasing. Information and functions about an asset are also gradu-
ally shared between different stakeholders to larger extents, meaning the amount

7

of information to be exchanged increases rapidly. The modification and replace-
ment of assets is a key topic in the use-case Plug-and-Produce (PnP), which aims at
reducing commissioning times for field devices to speed up installation and main-
tenance of the field devices. The PnP use-case is discussed in detail in the paper
“Industrie 4.0 Plug-and-Produce for Adaptable Factories: Example Use Case Defi-
nition, Models and Implementation” [4]. Making changes to the field devices more
effortless, may increase production flexibility allowing for individualized product
creation. There is a need for a common information model that may apply to all the
various mappings mentioned, which the AAS provides. Monitoring an asset over
its entire lifecycle is useful when performing maintenance or a replacement oper-
ation, since the availability of configuration history or previous operational data
may make such a replacement easier, something the AAS is able to do.

Various deployment alternatives of the AAS from [4] are listed in Table 1, where
the alternatives marked with a star are the deployment alternatives implemented in
this project.

Table 1: AAS deployment alternatives
Deployment views Alternatives

asset-based deployment
fog-based deployment *Physical proximity to asset
cloud-based deployment
Centralized AAS *
Distributed AAS with loose couplingDistribution to multiple nodes
Distributed AAS with aggregating node
Operating system deployment
Hypervisor deploymentVirtualization of AAS’s
Container deployment *
Transition: Role - Type
Transition: Type - Engineering instance
Transition: Engineering instance - Operations instanceLifecycle of AAS

Transition: Node - Node

Another use-case is the “self-optimization” use-case, which concerns improvement
of production flexibility and efficiency in a bottling plant with misaligned produc-
tion stations. The working paper “Structure of the Administration Shell” [10] pro-
vides a description of the use-case. While production is usually directed by a Man-
ufacturing Execution System (MES), this approach struggles with certain failure

8

conditions, like a bottle getting stuck. If a bottle gets stuck in a production station,
the other production stations do not regulate their operation accordingly automati-
cally. The proposed approach of how to achieve the use-case “self-optimization” is
to decentralize the intelligence, by moving it from the MES to the production sta-
tions, as well as increasing the communication between production stations. Since
the various production stations may come from different manufacturers, standard-
ized and vendor-neutral communication protocols, information models and func-
tion specifications are needed, something the AAS provides.

Additional use-cases and how they may benefit from the AAS are discussed in
“An Analysis of Use Cases for the Asset Administration Shell in the Context of
Edge Computing” [6], and “Relationships between I4.0 Components - Composite
Components and Smart Production” [5]. The latter also describes various types
of relationships between assets, including the relationships like “composed of”
and “derived from”. The “derived from” relationship allows AAS instances to
be related to the corresponding AAS template. For example, a manufacturer of
an asset can have an AAS for “Type/development” where internal development
data are filed [10]. The same manufacturer can provide an external AAS to its
customers of “Type/Usage”. For each instance of the asset delivered, an AAS
of “Instance/Usage” may then follow [10]. The delivery of an asset with an at-
tached AAS is illustrated as the “Passive AAS” in Figure 1. The “derived from”
relationship therefore enables the AAS to account for assets over their entire life-
cycle by having multiple AAS for the same asset, and relationships between those
AASs. The “composed of” relationship allows AASs to represent relationships
between assets to form composite assets. These relationships between assets are
implemented by a standardized I4.0 language between the AASs, illustrated as the
“Proactive AAS” in Figure 1. In general, meaningful relationships between assets
are vital in implementing the described use-cases. And as mentioned, since the
assets to be related may come from different manufacturers, standardized commu-
nication and semantic descriptions are needed, which is another motivation for the
AAS.

9

Figure 1: AAS communication types, based on figure from [7].

2.4 Functional/implementation view of AAS

This section will present the AAS from a functional or implementation viewpoint,
with an emphasis on some technical aspects. The technical overview will introduce
some main aspects of the AAS technology, including the AAS information model.
A slightly more detailed view of the AAS IM will then be presented, before taking
a closer look at the structure of the AAS.

2.4.1 Technical overview

The AAS is commonly described as the implementation of a Digital Twin for In-
dustry 4.0. The paper “What is the Asset Administration Shell from a technical
perspective?” [9], describes some technical aspects of the AAS. At its core the
AAS is a technology independent information model that describes how asset re-
lated data should be structured. This information model is given as a UML class
diagram, as can be seen in Figure 3, and is also commonly referred to as the AAS

10

information model, AAS metamodel and AAS information metamodel. In this
document it will be referred to as the AAS Information Model (AAS IM). Addi-
tionally, the AAS derives concrete formats for interoperability from the AAS IM,
like XML, JSON, RDF, OPC UA and AutomationML. Platform Industrie 4.0 pro-
vides a set of rules for performing the mapping from the AAS IM to the concrete
formats in the first part of the Details of The Administration Shell series [7]. The
concept of the AAS has additional aspects like AAS instance data, AAS package
container, AAS server application and AAS API, which are illustrated in Figure
2. Figure 2 is a simplified version of the figure found in [9], which also includes
security aspects of the AAS.

A short description of these various aspects is provided in Table 2.

Table 2: Description of various aspects of the AAS
AAS aspect Description
AAS IM The AAS IM defines the structure and attributes of the AAS in a

technology neutral way. Important components of the AAS IM are
assets, submodels, views, properties, relations and semantics

AAS IM Serial-
izations

The technology neutral AAS IM may be serialized and stored as
schema files for XML, JSON, RDF, AutomationML and OPC UA.
Details on the serialization mappings can be found in the first part
of the details of AAS document [7]

AAS Instance
Data

The AAS instance data is the actual data concerning the asset, its
administration shell, or submodels in the administration shell. The
instance data may be specifications on whether an asset/submodel
is of kind type/instance, it may be identifiers, operations or events

AAS Instance
Data Serializa-
tions

The instance data can be transformed to various serializations like
XML, JSON, RDF, AML or OPC UA nodeset, that can be stored an
accessed again later. An additional serialization format is the AAS
package container

AAS Package
Container

The AAS package container is similar to a .zip file and has the ex-
tension .aasx. It may contain serialized instance data as well as
additional files like images, PDFs, etc

AAS Server Ap-
plication

The serialized data may be loaded and thus instantiated in a server
application, making the data accessible to all clients that connect to
the server

AAS API The clients establish a connection with the server through the AAS
API. The server application provided on the admin-shell-io github
[27] supports the http/REST, MQTT and OPC UA APIs. This is
illustrated as the “Reactive AAS” in Figure 1

11

2.4.2 AAS IM

The UML diagram in Figure 3, covers the most important parts of the AAS IM.
For details on how to read the UML diagram, see the appendix of the part 1 of
details of AAS publication [7]. Some classes in the UML diagram are inheriting
from other abstract classes like Identifiable, Qualifiable, HasSemantics etc. A brief
description of the abstract classes is provided in Table 3.

Table 3: AAS IM: Abstract classes
Abstract class Description
Identifiable An element/class with a globally unique identifier
HasDataSpecification An element/class that provides a global reference to a data

specification template. The template defines a named set
of additional attributes the element/class shall have.

DataSpecificationContent The Data specification content is part of a data speci-
fication template and defines which additional attributes
shall be added to the element instance that references the
data specification template and meta information about the
template itself [7].

HasSemantics An element/class that has a semantic definition. The se-
mantic definition is given in the form of a reference, either
to an external concept description, or a concept description
within the AAS. An external concept description may be
found in IEC CDD or ECLASS

HasKind An element/class that has a modeling kind. The modeling
kind can be either a template or an instance. It is important
to note that this is not the same as AssetKind, which is a
separate class within the AAS IM

Qualifiable A qualifiable element/class can be qualified by one or
more qualifiers, where a qualifier is a type-value-pair that
makes additional statements with respect to the value of
the element/class. The default qualifier kind is a concept
qualifier, which qualifies the semantic definition of the el-
ement/class it is referring to.

Referable An element/class that is referable by its idShort, which is
an identifying string of the element/class within its names-
pace. This id is not globally unique, but it is unique within
the namespace of the element/class.

The AAS IM illustrates that an asset has an administration shell, which consists
of one or more submodels, which consist of one or more submodel elements. The

12

submodel elements may refer to external concept descriptions like ECLASS and
IEC CDD, providing a standardized description of the submodel element, mak-
ing it interpretable for all parties interested in the element. The metamodel also
illustrates that assets/AASs of kind instance and assets/AASs of kind type are dif-
ferentiated.

2.4.3 Structure

The AAS is logically structured into header and body, as illustrated in Figure 4.

The header provides unique identification of assets and AAS’s. The id of the AAS
is the entry point of an API, through which information and functionalities of the
AAS may be accessed. The header also indicates weather the assets are asset types
or asset instances. The body consists of one or more references to submodels. Sub-
models are a collection of one or more submodel elements, which are the actual
carriers of information. A list of the various submodel elements are provided in
Table 4.

The hierarchical structure of submodel elements is arranged based on IEC61360
[11]. The data and functions that the submodel elements refer to however, may
take on various data formats. This shows the AAS’s ability to represent various
proprietary data formats, while at the same time being compliant with standardiza-
tion organizations such as ECLASS or IEC. By way of an API, runtime data may
be passed to the AAS and various data and functions may be accessed.

13

Table 4: List of submodel elements from [7].
Submodel-
element

Description In
AAS
PE

Abst-
ract

Data
ele-
ment

Annotated-
Relationship-
Element

A relationship element that can be annotated with addi-
tional data elements

Yes No No

BasicEvent-
Element

A basic event element Yes No No

Event-
Element

An event element - - - Yes No

DataElement A submodel element that has a value and is not further
composed out of other submodel elements

- - - Yes Yes

Blob A data element that represents a file that is contained with
its source code in the value attribute

Yes No Yes

Capability An implementation independent description of the poten-
tial of an asset to achieve a certain effect in the physical or
virtual world

Yes No No

Entity A submodel element that is used to model entites Yes No No
File An element that represents an address to a file in the form

of a URI
Yes No Yes

Multi-
Language-
Property

An element with a multi-language value Yes No Yes

Operation A submodel element with input and output values Yes No No
Property An element with a single value Yes No Yes
Range An element that defines a range with a min and max value Yes No Yes
Reference-
Element

An element that defines a logical reference to another el-
ement within the same or another AAS. The logical refer-
ence may also be to an external object or entity

Yes No Yes

Relationship-
Element

An element used to define a relationship between two ele-
ments being either referable (see Table 3) or external

Yes No No

Submodel-
Element

An element suitable for the description and differentiation
of assets

- - - Yes No

Submodel-
Element-
Collection

A kind of struct. A logical encapsulation of multiple
named values, with a fixed number of submodel elements

Yes No No

Submodel-
ElementList

An ordered list of submodel elements No No No

14

Fi
gu

re
2:

A
A

S
te

ch
ni

ca
lc

on
ce

pt
s

ov
er

vi
ew

,f
ro

m
[9

]

15

Figure 3: Information Model overview of the AAS, derived from [7] and [14].

Figure 4: AAS Structure. Based on figure from Source [11].

16

3 Implementation

An AAS was to be created for the Siemens motor control system, and communi-
cation was to be established between the system, and its AAS. This chapter will
first delineate the creation of the digital twins for the relevant assets, the result of
which is referred to as the AAS infrastructure. Then, something referred to as the
TIA infrastructure will be outlined. The TIA infrastructure will give a brief in-
troduction on the available hardware, and an overview of how the TIA Portal was
used to establish a connection to the hardware and how control of the hardware
via a HMI screen and the WinCC RunTime environment was established. Finally
the communication infrastructure will be outlined, this entails a description of how
data import/export is established in the TIA Portal, and how it is sent to the AAS
Blazor server and accessed by applications such as the AAS Blazor Interface and
the AAS PE. An overview of the implementation is visualized in Figure 5.

Figure 5: Communication infrastructure overview

3.1 AAS infrastructure

This section will provide an overview of how the creation of AAS’s was accom-
plished. An overview can be seen in Figure 6. AAS’s were created for the Siemens
motor, Siemens inverter and Siemens PLC. Also an AAS was created for the over-
all system, which is a composite asset consisting of the motor, inverter and PLC.
The AAS’s were created with the AAS PE. Some general procedures, that will be

17

reoccurring when creating the different AAS’s, are given in Appendix A.

Figure 6: AAS infrastructure overview

3.1.1 AAS for Motor

Figure 7 shows an overview of the .aasx package that was created for the motor.
The package consists of an asset, an AAS, a set of submodels, a set of concept
descriptions and a set of supplementary files.

The AAS within the package, called “Siemens motor AAS”is provided with a set
of submodel references, shown in light blue in Figure 7. The submodel “Doc-
umentation” contains a data sheet of the motor. The “Nameplate”, “Technical-
Data” and “Identification” submodels contain submodel elements, whose values
were assigned in accordance with the data sheet in the “Documentation” sub-
model. The “RotationalAcMotor IEC CDD” submodel was imported from IEC
CDD. The AAS relations submodel is used to establish a relation between the
“Siemens motor AAS” and “Siemens system AAS”, which will be described sub-
sequently. This relation is illustrated in Figure 6 as the relation between “Motor
AAS” and “System AAS”. The RuntimeVariables submodel contains a submodel

18

Figure 7: AAS PE motor overview

element of type property, called “motor speed”. This property will read data in real
time from the hardware.

3.1.2 AAS for PLC

Figure 8 shows an overview of the .aasx package that was created for the PLC. Like
the .aasx package for the motor, it contains an asset, an AAS, a set of submodels, a
set of concept descriptions and a set of supplementary files.

In reality the PLC consists of a CPU, an analog input module (AI), an analog out-
put module (AQ), a digital input module (DI) and a digital output module (DQ).
An AAS could be created for each of the I/O modules as well as for the CPU, and
be part of a composite AAS, namely an AAS of the PLC. For sake of simplicity
however, the PLC is not considered to be a composite asset but instead is consid-
ered to consist only of the CPU. The “Documentation” submodel contains a data
sheet and a user manual for the CPU, and the submodel elements within the sub-
models “Nameplate”, “TechnicalData” and “Identification” are assigned values in
accordance with these documents. The “AAS relations” submodel contains a re-
lationship element which references the “Siemens system AAS”. This relation is
illustrated in Figure 6 as the relation between “PLC AAS” and “System AAS”. The
“Runtime variables” submodel contains a property called “motor speed setpoint”,

19

Figure 8: AAS PE PLC overview

which will read data in real time from the hardware. The value of this property
will also be sent to the hardware in real time, allowing for a motor speed setpoint
control through the AAS PE.

3.1.3 AAS for inverter

Figure 9 shows an overview of the .aasx package that was created for the inverter.
Like the previous packages, it consists of an asset, an AAS, a set of submodels, a
sert of concept descriptions and a set of supplementary files.

The submodel “Documentation” contains an installation manual and operating in-
structions for the inverter. The values for the submodel elements within the sub-
models “Nameplate”, “TechnicalData” and “Identification” were assigned in accor-
dance with the manuals in the “Documentation” submodel. The submodel “Vari-
ablePowerTransformer IEC CDD” was imported from IEC CDD. The “AAS relations”
submodel is used to establish a relation between the “Siemens inverter AAS” and
the “Siemens system AAS”, illustrated in Figure 6 as the relation between “In-
verter AAS” and “System AAS”. The “RuntimeVariables” submodel is an empty
submodel, that was intended to contain appropriate properties, that for example
describe the output voltage that is sent to the motor in real time. Adding this prop-
erty would require some additional work on the communication infrastructure, and

20

Figure 9: AAS PE inverter overview

would not serve to illustrate anything that is not already illustrated by the runtime
variables “motor speed” and “motor speed setpoint” mentioned earlier. Therefore,
and due to time constraints, the submodel was left empty.

3.1.4 AAS for system

Figure 10 shows an overview of the .aasx package that was created for the entire
system. The package consists of an asset, an AAS, a set of submodels, a set of
concept descriptions and a set of supplementary files.

The “Documentation” submodel contains drawings that illustrate the different as-
sets and their connection to each other. The “AAS relations” submodel contains
three relationship elements, that have references to the “Siemens motor AAS”,
“Siemens PLC AAS” and “Siemens inverter AAS”. These relations are also illus-
trated in Figure 6, by the fact that the relations between the AAS’s are bidirectional.
The “Realtime variables” submodel was intended to contain properties that con-
cern the entire system and that change in real time. The “ElectricAndFluidPlan”
submodel contains some electrical schema drawings of the system, as well as a bill
of material, used to establish relationships between assets. Figure 11 shows that
the various assets are represented by entities within the “Siemens system AAS”.
The Figure also shows AAS PE’s feature of displaying the relations as a graph. In

21

Figure 10: AAS PE: System overview

accordance with Figure 6, entities are created with references to the assets they are
representing, then relationships between the entities are established by relationship
elements within the entities.

Figure 11: AAS PE: System BOM

All of the created .aasx packages were saved in a local repository.

3.2 TIA infrastructure

3.2.1 The hardware

The available hardware is part of the communication infrastructure from Figure 5.
A more detailed view of the hardware block is provided in Figure 12.

22

Figure 12: Hardware overview

The available hardware consists of a Simotics GP motor, a Sendix 5020 encoder,
a Sinamics G120 frequency inverter, a Profinet XC-208 switch and a SIMATIC
S7-1500F PLC consisting of a CPU and analog and digital I/O modules. These
components are connected to a local computer with a PROFINET protocol. The
local computer contains software like the TIA Portal and Simantic WinCC Run-
Time. AAS’s were created only for the motor, the inverter and the PLC.

3.2.2 The TIA Portal

TIA Portal is an engineering platform that allows efficient commission, program-
ming and diagnosing of the connected hardware. It was used to establish a connec-
tion to the hardware as an intermediary step, before sending the data further along
the communication infrastructure. To establish this communication, three devices
had to be added and configured inside the TIA Portal, namely a PC station, a drive
and a PLC. Figure 13 shows the three devices inside the TIA Portal, as well as
the established communication network between them, visualized as the green line
between the devices.

Next, the devices themselves had to be configured to have the desired function-
ality when downloaded to the hardware. The desired functionality is considered
as being able to read and write data in real time between the TIA Portal and the
hardware.

Configuring the PLC
When the PLC is initialized, all the functions within the Organization Block (OB),

23

Figure 13: TIA Portal component overview

which can be found under “PLC 1” in the project tree from Figure 13, will be
compiled and executed. The functions for achieving communication between the
TIA Portal and the hardware, therefore have to be added to the OB. To achieve the
intended functionality, two data blocks (DBs), were added to separate networks
within the OB, as seen in Figure 14.

The internal workings of the “NødstoppFB DB” can be seen in its function block
(FB) in Figure 15.

The function block has the simple functionality of turning the values of “K2” and
“K3” to true, when both “Nødstopp1” and “Nødstopp2” are true. The “Nødstopp1”
and “Nødstopp2” represent two emergency switches, and are assigned to an address
of the PLC, as seen in Figure 16. These addresses are also connected to the two
emergency switches on the hardware. The “K2” and “K3” represent safety con-
tactors that allow signals to be passed on to the inverter and are also assigned to
addresses on the PLC. In essence, the function block enables the PLC to turn on
the inverter when the safety switches are in the appropriate position.

An additional functionality of the PLC was then required, namely that it should
be able to control the motor through the drive. This functionality was added by
inserting an additional DB in network 2 in the OB, called “MotorStyringFB DB”.
The function block of this DB, which is a fbVFD GSeries function block, with
the main purpose of controlling GSeries Variable Frequency Drives, can be seen in
Figure 17.

24

Figure 14: TIA Portal: Main OB1 networks

Figure 15: TIA Portal emergency stop FB

The FB was imported from the Siemens Open Library. With the two DBs added to
the OB, the PLC program within TIA was ready to be compiled and downloaded
to the actual PLC.

Configuring the inverter
The drive in the TIA Portal was configured through the commissioning wizard,
found under “Drive 1” in the project tree inside TIA. A summary of the applied
settings to the drive is provided in Table 5.

After going through the commissioning wizard, the drive program within TIA was

25

Figure 16: TIA Portal emergency stop tags

Figure 17: TIA Portal motor control FB

ready to be downloaded to the actual inverter.

Configuring the PC station

26

Table 5: TIA Portal drive configuration summary
CATEGORY SETTING
Application class: Application class: [1] Standard Drive Control (SDC)

Setpoint specification:
Setpoint specification in the PLC

and the ramp function in the drive

Function modules:

Technology controller: Yes
Basic positioner: No
Extended messaging/monitoring: Yes
Free function blocks: No

Defaults of the setpoints/
command sources:

Macro drive unit: [7] Fieldbus with data set changeover
Telegram configuration: [1] Standard telegram 1, PZD-2/2

Drive settings:
IEC/NEMA mot stds: [0] IEC-Motor (50Hz, SI-units)
Drive unit line supply voltage: 230V

Drive options:
Breaking resistor active: No
Drive filter type motor side: [0] No filter

Motor:

Motor type selection: [1] Induction motor
Motor connection type: Delta
Motor 87 Hz operation: No
Rated motor voltage: 230 Vrms
Rated motor current: 2.20 Arms
Rated motor power: 0.55 kW
Rated motor frequency: 50.00 Hz
Rated motor speed: 1440.0 rpm
Motor cooling type: [0] Natural ventilation
Motor temperature sensor type: [0] No sensor

Motor holding brake:
Motor holding brake configuration:

[0] No motor holding brake available

Important parameters:

Reference speed: 1500.000 rpm
Maximum speed: 1500.000 rpm
Ramp-function generator ramp-up time: 10.000 s
Ramp-function generator ramp-down time: 10.000 s
OFF3 ramp-down time: 0.000 s
Current limit: 3.30 Arms

Drive functions:

Technological application (Standard drive control):
[0] Constant load (linear characteristic)

Motor data identification and rotating measurement:
[2] Identifying motor data (at standstill)

The configuration of the PC station came in the form of creating the HMI screen
seen in Figure 18. The purpose of the HMI screen was to be able to control the
motor by utilizing PLC-tags of the imported “fbVFD GSeries” FB in runtime.

27

Figure 18: TIA Portal: HMI screen

When the WinCC RunTime environment is activated inside the TIA Portal project,
the created HMI screen will appear. It contains an alarm view at the bottom, used
to display various alarms or error messages. It is also used to let the operator
know when data has been imported to, or exported from the TIA Portal. Clicking
on the blue motor will make the “Motor## VFD Control” pop-up window appear.
This control window enables basic operations like starting and stopping the mo-
tor, changing the speed setpoint of the motor, and monitoring the motor speed. The
“Motor speed setpoint” and “Actual motor speed” I/O fields to the right of the HMI
screen, are used to display or change the values, just like the “Motor## VFD Con-
trol” control screen. The I/O fields have an additional function however, namely to
export data. The “Cyclic data Import” I/O field contains a boolean value, connected
to the “Clock 1Hz” PLC-tag, which is part of the default tag-table that is created
when the PLC is added to the project tree. The default tag table is seen in Figure 19.

28

Figure 19: TIA Portal: Default tag table

The boolean value therefore changes every second, and when it does, data is im-
ported. The buttons “Export data” and “Import data” are used to perform the data
import/export manually if needed, and the button “Stop runtime” simply exits run-
time. The creation of the HMI screen concludes the configuration of the TIA Portal
project necessary to achieve basic motor monitoring and control.

3.3 Communication infrastructure

This section will provide an outline of how the communication between the created
TIA Portal project and the created AAS infrastructure was established.

3.3.1 TIA Portal - NodeRED communication

The established communication between the TIA Portal and NodeRED is illus-
trated in Figure 20.

The I/O fields that are responsible for the data export, in the HMI screen mentioned
earlier, are configured to export data when one of the values experience a change.
The I/O field that was responsible for the data import, however, imports data cycli-
cally. Data is exported from the TIA Portal to a local CSV file, referred to as the
“CSV export file”, and data is imported to the TIA Portal from a second local CSV
file, referred to as the “CSV import file”. The content of the CSV files in Figure 21

29

Figure 20: Communication between NodeRED an TIA Portal

show the structure of the imported and exported data.

Figure 21: CSV files content

The TIA Portal exports data on the motor speed and motor speed setpoint, so these
values can be read in real time in the AAS Blazor interface and AAS PE. As Figure
21 shows, the unit of the exported data is %, meaning the value is listed as the %
of its max. The NodeRED server sends data back to the TIA Portal by way of the
“CSV import file”, which contains a value for the motor speed setpoint, such that
the motor speed setpoint can be controlled from external applications like the AAS
PE. The import/export of data in the TIA Portal was accomplished by creating two
Visual Basic scripts, then calling them from the HMI screen. The full scripts can
be found in Appendix B. The “DataExportToAAS” script is called when a value
change on either the motor speed or the motor speed setpoint is detected within
TIA, while the “DataImportFromAAS” script is called every second.

30

3.3.2 The NodeRED server and editor

Figure 21 shows the structure of the exported data from the TIA Portal. Since the
data was to be monitored in real time with applications like AAS Blazor interface or
the AAS PE, the data had to be uploaded to a running AAS Blazor server through
the AAS API, which in this case was the http/REST API. Using the http/REST
API, the data can be uploaded to the AAS Blazor server using the PUT command,
in which case the payload has to be in a JSON format, as shown in Figure 22.

Figure 22: Http PUT request payload format

The left side of the figure shows an example of how the payload could look if an
entire submodel is to be PUT to the AAS Blazor server, and the right side shows
an example of how the payload could look if a submodel element is to be PUT to
the AAS Blazor server. Consequently, the CSV format from Figure 21 had to be
transformed to the JSON format in Figure 22, which was the main motivation for
using NodeRED. NodeRED is a flow-based tool for visual programming used to
wire together hardware devices, APIs and online services. It enables easy control
of data flows and transformation of data between various formats. NodeRED can
be downloaded for Windows from [28], and installation instructions can be found
here [29]. Figure 23 shows a simple overview of the essential pieces of NodeRED.
It consists of a server, through which data will pass. The data will be modified

31

in accordance with a .json repository which the NodeRED server is connected to
upon startup. The content of the .json repository can be visualized and modified in
the NodeRED editor, a web based interface that connects to a running NodeRED
server.

Figure 23: NodeRED overview

NodeRED server
The NodeRED server enables passage of data between different endpoints, as well
as potential altering of the data like transforming the data format. Where the
NodeRED server receives data from, where it sends data to, and all operations on
the data is all described in a .json file which the NodeRED server connects to upon
initiation. The NodeRED server can be started by typing the “node-red” command
in a command window. The command can take a variety of arguments, as shown
in Table 6.

The “node-red” command used in this implementation only used a single argu-
ment, specifying the port numebr. Additional documentation on the NodeRED
server startup arguments can be found on the NodeRED website.

The NodeRED editor
The NodeRED editor allows for creating and modifying flows by inserting nodes
and drawing connections between them and is accessed by going to the address
http://localhost:1881 in a web browser. Note that the port number has to be the
same as the one specified when starting the NodeRED server. An overview of the
total implemented flow can be seen in Figure 24.

32

Table 6: NodeRED server startup arguments

NodeRED start
command template:

node-red [-v] [-?] [- -settings settings.js] [- -userDir DIR]
[- -port PORT] [- -title TITLE] [- -safe]
[flows.json|projectName] [-D X=Y|@file]

NodeRED start
command used: node-red - -port 1881

Arguments Description
-p, - -port PORT Sets the TCP port the runtime listens on.
- -safe Starts NodeRED without starting the flows.
-s, - -settings FILE Sets the settings file to use.
- -title TITLE Set the process window title
-u, - -userDir DIR Sets the user directory to use
-v Enables verbose output
-D X=Y|@file Override individual settings
-?, - -help Shows command-line usage help and exits

flows.json|projectName
Sets the flow file you want to work with, if the Projects

feature is not enabled.

33

Fi
gu

re
24

:N
od

eR
E

D
:F

lo
w

ov
er

vi
ew

34

The flow in Figure 24 is visually separated into four levels. The top level acquires
data from an open AAS Server. The second level acquires data that has been ex-
ported from the TIA Portal. The third level overwrites data from the first level with
data from the second level and then uploads the data back to the AAS Server. The
fourth and final level sends data to the TIA Portal. The levels are also organized in
accordance to the sequence of execution. The top level is the left-most level and is
executed first. The second and fourth levels are executed approximately simulta-
neously, and the third level is executed last. The flow contains a set of gray nodes
with various symbols. All of these nodes, regardless of their symbol are called
link-nodes and their purpose is to provide a cleaner looking flow. Variations have
been made to the symbols for easier illustration of what nodes are linked. For ex-
ample, the “join” node connected to the “Update MotorSpeed” node, receives the
payload from the “GetMotorSpeed” and “GetTIAMotorSpeed” nodes. The beige
colored nodes are “function” nodes that permit creating custom JavaScript code to
achieve additional functionalities. The code within the various function nodes is
provided in Appendix B.

First level
The “Timestamp” node is configured to send a timestamp every second. Upon re-
ceiving the timestamp, the “GetAAS PLC SM RuntimeVariables” node extracts
the complete “Runtime variables” submodel of the AAS of the PLC from the
AAS Blazor server by running a GET request to the address specified in Table 7.
Equally, the “GetAAS motor SM RuntimeVariables” node extracts the complete
“RuntimeVariables” submodel of the AAS of the motor. The two “json” nodes
convert the payloads from the previous nodes to a JavaScript Object, making the
payload easier to manipulate in all the function nodes. The “GetMotorSpeedSet-
point” and “GetMotorSpeed” nodes extract the “motor speed setpoint” and “mo-
tor speed” submodel elements respectively.

Second level
The “join” and “trigger” nodes have the purpose of waiting for the first level to
finish, before the data from the “CSV export file” is read, which is the purpose of
the “ReadFromTIA” node. Since a new timestamp is generated every second, data
from the “CSV export file” is read by the NodeRED server every second also. The
“csv” node then converts the imported csv format to an array of objects, making
the payload easier to manipulate in the function nodes. The “GetTIAMotorSpeed”

35

and “GetTIAMotorSpeedSetpoint” nodes then isolate the “Actual motor speed”
and “Motor speed setpoint” values from the “CSV export file” respectively.

Third level
The upper-most “join” node joins the payloads from the “GetMotorSpeedSetpoint”
and “GetTIAMotorSpeedSetpoint” nodes into a two-element array. The “Update MotorSpeedSetpoint”
node then replaces the value of the “motor speed setpoint” submodel element from
the first level with the value of “Motor speed setpoint” from the second level. Sim-
pler put, the data from the TIA Portal overwrites the data from the AAS Blazor
server. The “select” node then removes the element of the array that came from
the second level. The next “join” node then creates a two-element array of the
complete submodel from the first level and the updated submodel element, before
the “Update PLC variables” function overwrites the submodel element from the
submodel from the first level with the updated submodel element from the third
level. Finally, the updated submodel is sent back to the AAS Blazor server by the
“Upload updated PLC values ToAASServer” node with a PUT request to the ad-
dress listed in Table 7. An identical procedure takes place for the motor speed at
this level as well.

Fourth level
The “join” node joins the payload of the “GetMotorSpeedSetpoint” and the times-
tamp from the first level into a two-element array. The “DetectValueChange”
then compares the payload from the “GetMotorSpeedSetpoint” at two consecutive
timestamps. If the value of the “motor speed setpoint” submodel element from
the AAS Blazor server has changed between two consecutive timestamps, the pay-
load is passed on, otherwise the flow is stopped. The “SetCSV format” and “csv”
change the payload format to the csv format seen in Figure 21. Finally, the “Write-
ToTIA” node sends the data to the “CSV import file”.

3.3.3 The AAS Server and repository

The AAS Blazor server can be downloaded from [27]. It has the purpose of making
the created AAS’s accessible to all clients that connect to the server. When starting
the server, the data path to the repository containing the previously created AAS’s
may be specified. When the server starts, it will instantiate the data of the con-

36

Table 7: NodeRED http requests overview
HTTP request node Command URL
GetAAS PLC SM

RuntimeVariables GET
http://localhost:51310/aas/Siemens PLC AAS/

submodels/Runtime variables/complete
GETAAS motor SM

RuntimeVariables GET
http://localhost:51310/aas/Siemens motor AAS/

submodels/RuntimeVariables/complete
Upload updated PLC

values ToAASServer PUT
http://localhost:51310/aas/Siemens PLC AAS/

submodels
Upload updated motor

values ToAASServer PUT
http://localhost:51310/aas/Siemens motor AAS/

submodels

nected repository, which in this case was the local folder “AASRepository”, where
the created AAS’s were stored. The AAS Blazor server may be started by typing
the “AasxServerBlazor.exe” command in a command window. Table 8 provides an
overview of the various arguments that command may take.

As Table 8 illustrates that some of the arguments allow for specifying what repos-
itory the server should connect to, as well as what API is to be used. The AAS
Blazor server application supports the http/REST, OPC UA and MQTT APIs. The
http/REST API was used in this project, since it had the most thorough and avail-
able documentation, which can be found in [8]. Additional information on the
arguments from Table 8 may be found on the admin-shell-io Github. The left part
of Figure 25 shows how a running Blazor server looks. When provided with the
data path where all the AAS’s are stored, the server loads and instantiates them.

The right side of Figure 25 shows how a client can connect to the server. Using
the “listaas” command, all the AAS’s available on the server will be listed. If a
specific value is to be read with this type of interface, the name of the submodel
element, whose value is to be read, as well as the name of the parent submodel has
to be known. Otherwise, separate commands have to be executed to first list all
the submodels of a specific AAS, the list all the submodel elements of a specific
submodel, then reading the value of a specific submodel element. The rigth side
of Figure 25 shows that the data is not the easiest to read for a human, especially
if multiple commands are to be executed. Thus there is a lack of easy navigation
through the data as well as a limitation in how presentable it is to a human. This
prompts the usage of certain interfaces like the AAS Blazor interfase and the AAS
PE.

37

Table 8: AAS Blazor server startup arguments

AAS Blazor server
start command template

AasxServerBlazor.exe [-h, - -host <host>]
[-p, - -port <port>] [- -https] [- -data-path <data-path>]
[- -rest/- -opc/ - -mqtt] [- -debug-wait]
[- -opc-client-rate <opc-client-rate>]
[- -connect <connect>] [- -proxy-file <proxy-file>]
[- -no-security] [- -edit] [- -name <name>] [- -version]
[-?, -h, - -help]

AAS Blazor server
start command used

AssxServerBlazor.exe - -rest - -no-security
- -data-path AASRepository

Arguments Description
-h, - -host <host> Hosts which the server listens on [default: localhost]
-p, - -port <port> Port which the server listens on [default: 51310]
- -https If set, opens SSL connections
- -data-path <data-path> Path to where the AASXx reside
- -rest If set, starts the REST server
- -opc If set, starts the OPC server
- -mqtt If set, starts the MQTT server
- -debug-wait If set, waits for Debugger to attach
- -opc-client-rate
<opc-client-rate>

If set, starts an OPC client and refreshes on the
given period

- -connect <connect> If set, connects to AAS connect server

- -proxy-file <proxy-file>
If set, parses the proxy information from the

given proxy file
- -no-security If set, no authentication is required
- -edit If set, allows edits in the user interface
- -name <name> Name of the server
- -version Show version information
-?, -h, - -help Show help and usage information

3.3.4 The AAS Blazor interface and AAS PE

Two interfaces that present the AAS data in an easily readable way are the AAS
Blazor interface and the AAS PE. The Blazor interface is a web-based interface
that visualizes AAS data in a structured an easy to read way. It can be opened by
entering the address http://*:5001 in a web browser, where the * indicates the ip
address of the host, which in this case is localhost. The default port is 5001, but
can be changed in the “appsettings.json” file that follows with the download of the
Blazor server. Note that this port is not the port that the server listens on, which
was specified when starting the Blazor server. An overview of the Blazor interface
can be seen in Figure 26.

38

Figure 25: AAS Blazor server and client

Figure 26: Blazor interface overview

In the overview in Figure 26, the left side shows a list of all AAS’s that have been
loaded in the server, similar to the command prompt client from Figure 25. In the
Blazor interface however it is possible to easily expand the various AAS’s, sub-
models and submodel elements to access additional information. When selecting
an AAS, a submodel or a submodel element, information regarding that which has
been selected will appear on the right side of the interface. In Figure 26, the AAS
for the motor has been selected, and information regarding that AAS is displayed,

39

including its id and corresponding asset’s id. The interface provides a url for the
AAS, which when interacted with, will download the corresponding .aasx pack-
age to the computer the interface is opened on. Additional files like images or
documents may also be downloaded through the Blazor interface, if found in the
hierarchy on the left. The Blazor interface also displays changes that happen to the
data on the AAS Blazor server in real time.

In addition to creating AAS’s, the AAS PE can also be used to connect to AAS
servers, and display and edit the AAS’s loaded in the server. After opening the AAS
PE a connection to the Blazor server was established by navigating to “File/AASX
File Repository/(Connect HTTP/REST repository)”, and entering the address the
server is listening on, in this case “http://localhost:51310”. When connected to the
server, the AAS PE will show a list of all the loaded AAS’s in the bottom-left, as
seen in Figure 27.

Figure 27: AAS PE: Connection to server

The shells can then be loaded one by one, enabling the AAS PE to display and edit
the data within them. The AAS PE is able to provide a more detailed overview of
the content of the server than the Blazor interface, especially when enabling the
edit mode in “Workspace/edit”. Additionally, the AAS PE is able to modify data
and upload modified AAS’s back to the connected server, something the Blazor
interface is unable to do. One downside of the AAS PE is that it is a software that
has to be downloaded, whereas the Blazor interface can be accessed by anyone
with a web browser. Another downside of the AAS PE is that it cannot display

40

data changes in real time, like the Blazor interface. If some data has been changed
on for example the “Siemens PLC AAS”, the AAS would have to be manually
reloaded in the AAS PE in order for the change to be visible. Because of the
“AAS relations” submodels that were created in all of the AAS’s, the relationship
element(s) within that submodel may be selected, and the AAS PE will display the
addresses of the two AAS’s concerning the relationship element on the right side
of the interface, as seen in Figure 27. The “jump” button may then be used to load
the related AAS’s.

41

4 Provided functionality/results

The TIA Portal is a common tool within the automation domain. It was configured
to communicate with the connected hardware. The result may represent an exist-
ing brownfield plant. Then, the AAS was implemented in an additive way, without
replacing any of the existing functionality. The existing data was mapped to a tech-
nology neutral format to enable the AAS to monitor and control the hardware. In
larger scale industrial applications, such monitoring may be performed by other
assets of various different manufacturers, increasing interoperability.

The result of the implementation, was a real time bi-directional communication be-
tween the Siemens motor control system and its digital representation, as illustrated
in Figure 5. The digital representation, which came in the form of four AAS’s, as
illustrated in Figure 6, was created by using the AAS PE and stored on the local
lab PC as a local AAS repository. One AAS was created for each asset, where the
AAS contained various data, including static and runtime data.The AAS Blazor
server was running on the local lab PC, a localhost, and was connected to the local
AAS repository. The server API was specified to be the http/REST protocol. Two
local client applications, the Blazor interface and the AAS PE were connected to
the running AAS Blazor server, and were able to read from and write data to the
AAS’s within the local AAS repository. A local NodeRED server was connected
to the running Blazor server through the http/REST API by http GET and http PUT
requests. The NodeRED server was configured to be a intermediary step between
the AAS Blazor server and the TIA Portal. The communication between NodeRED
and the TIA Portal was accomplished by sending data through two separate local
CSV files, one for each direction of data flow. The TIA Portal was configured to be
able to monitor and control the connected Siemens motor control system by way
of a HMI window in the WinCC RT environment. An overview of the resulting
implementation is seen in Figure 28.

For the intended communication to work the following had to be true:

• The switches enabling power to the hardware had to be turned on

• The TIA Portal had to be properly configured to communicate with the hard-
ware

• WinCC RT had to be enabled in TIA

42

Figure 28: Implemented infrastructure

• The NodeRED server had to be running

• The AAS Blazor server had to be running

• The Blazor interface had to be connected to the AAS server

• The AAS PE had to be connected to the server

With that in place the HMI window could monitor and control the Siemens motor
control system (SMCS) in real time. The submodel element “motor speed” of the
AAS “Siemens motor AAS” and the submodel element “motor speed setpoint”
of the AAS “Siemens PLC AAS” could be monitored in real time in the Blazor
interface. It could also be monitored in the AAS PE by manually reloading the
“Siemens motor AAS” and “Siemens PLC AAS” respectively. Additionally, the
value of the submodel element “motor speed setpoint” could be set inside the AAS
PE, to which the SMCS would respond. This without affecting the monitoring and
control of the created HMI window, which could also change the motor speed
setpoint.

43

5 Discussion

5.1 The composite asset

One motivation for creating a composite asset with its own AAS was to see if
some combination of values for the sub-AAS’s could be displayed automatically
in the composite AAS. For example, if various components with their own respec-
tive failure rates are assembled together to form a system, the system would have
its own failure rate, depending on the components used, and their arrangement.
The idea was to see if the composite AAS could reference the sub-AAS’s and per-
form a computation to calculate the system-value. This was achieved by additional
software, NodeRED in this case, which retrieved failure rates from the individual
AAS’s by http GET commands, performed a computation, and sent the system fail-
ure rate to the composite AAS. See Figure 29.

Figure 29: AAS asset change effect on system

If an asset is to be changed out at some point during the system life-cycle, the cor-
responding AAS must be updated or replaced. Depending on the new asset, which
could be from a different manufacturer, the structure of the AAS may be different,
and thus NodeRED may have to be configured manually to retrieve the failure rate

44

of this new asset, by specifying a new address. The failure rates in this case are
arbitrary and were used only as an example.

5.2 Packages and shells

When creating the AAS infrastructure, a .aasx package was created for each AAS,
illustrated in Figure 30.

Figure 30: .aasx package alternative 1

Figure 30 shows the submodel references to the submodel “Documentation”, which
was used in all of the AAS’s. The “Documentation” submodel was imported as a
plugin, and has the same semantics across all the AAS’s. To reduce redundancy,
the references could be set up as seen in Figure 31 instead, where all of the AAS’s
are within the same package and provide references to the same submodel.

Figure 31: .aasx package alternative 2

The first approach is more modular and is perhaps useful when considering the
assets as stand alone assets, making it easier to share information about one of
the assets. The second approach is perhaps useful for the system description, and

45

for reducing redundancy, by providing a reference to just one instance of a sub-
model. The AAS PE allows for creating the AAS with both alternatives, how-
ever, when creating multiple AAS’s within the same .aasx package, only the first
AAS will be available through the http/REST API. The top of Figure 32 shows
the “Siemens motor AAS” and “Siemens inverter AAS” within the same pack-
age. The bottom of the Figure shows the result of connecting to an AAS server
which has instantiated the .aasx package in the top of the Figure. Both the Blazor
interface and the command console yield the same result.

Figure 32: Several AAS’s in the same .aasx package

There was no issues when using the alternative from Figure 30. Regarding re-
dundancy there is another aspect to consider, namely that several submodels may
contain the same submodel elements. When importing the submodels “Technical-
Data” and “Identification” from the available plugins that come with the AAS PE,
both of the submodels contain the submodel element “ManufacturerName”, and
the value in each of these submodel elements can be different. For example, the
values may be filled in as “Siemens” and “SIEMENS”. The redundancy is avoided
by the fact that both of the submodel elements refer to the same concept descrip-
tion. Thus, the strict and standardized structure on the left in Figure 4 is preserved

46

while at the same time allowing for the submodel elements to have various data
formats, as on the right if Figure 4.

5.3 AAS deployment

Concerning the deployment of the AAS, there are some considerations to be made,
as was listed in Table 1. Regarding the “node-distribution”, the implemented strat-
egy was a centralized AAS, meaning there was only one AAS for an asset. An
alternative could have been a distributed solution, where multiple AAS’s exist for
the same asset, illustrated in Figure 33

Figure 33: Multiple AAS for same asset

The multiple AAS’s could have contained data of the asset with respect to some
specific view, like “Real time data” or “Technical data”. The AAS related to the
real time view could for example have been used to access real time data while
the AAS related to the technical data view could have been used for static data.
The distributed solution could be useful for assets that have large amounts of data
in their digital representation. It is also useful if an interested party would like to
access only some of the data, relevant to a specific view, without being overloaded
by other unnecessary data. For the implementation in this project, there was only
small amounts of data added to the AAS’s of the assets, thus a single AAS could
contain all of the data, including static and real-time data. It is a low-complexity
solution, which is easy to administer. The distributed solution could be better suited
for larger projects, where there are multiple interested parties, and it would allow
the different parties to work in parallel with the asset. The distributed solution also
supports further scaling of the system, by way of adding more AAS’s, should new
views arise. It must be noted that having multiple AAS’s representing the same

47

asset could lead to inconsistencies in the data. In the distributed solution, several
AAS’s could end up representing some of the same data of the asset, leading to
occasional race-conditions of service requests, where a client has tried to access
some specific data of the asset.

Regarding the physical proximity of the AAS’s to the assets, a fog-based deploy-
ment was used, where the AAS’s were stored on a local PC connected to the assets
by a PROFINET protocol, and the initiated AAS server was running on a local
IP-address on the same PC. The server could alternatively have been created as
a non-local server in the cloud, as illustrated by the cloud symbol in Figure 28.
Then, any clients connected to the internet could have access to the hardware data,
however appropriate security measures would have to be considered. It may not be
a good idea to let anyone connected to the internet be able to control the motor for
example.

5.4 Limitations of the package explorer

The motivation for using the Blazor interface was to be able to read real time data
from the hardware, although the AAS PE seems to have an option that enables it to
read data in real time as well. When using the AAS PE to connect to a running AAS
server, a list of all the available AAS’s will be provided in the bottom left as seen
in Figure 27. When right clicking on any of the AAS’s in the loaded repository,
there is an option to “Stay connected”, where an update period may be specified
as well. Selecting this option did not have any noticeable effect however, and it is
unclear whether it is due to the functionality of the AAS PE being incomplete or a
user error. During the use of the AAS PE errors could be reported when trying to
save a project, trying to import a submodel or simply when opening the AAS PE.
The error messages can be somewhat difficult to interpret, making it difficult to
troubleshoot. At times the appearance of an error would stop the desired function-
ality, like sometimes when trying to save, the package would not be saved. Other
times, the appearance of an error seemed to have no effect, like when importing
submodels from IEC CDD. Perhaps there is a distinction between critical errors
and warnings that should be made clearer. The AAS PE is however still under de-
velopment, and new versions are posted on the admin-shell-io github.

48

5.5 Data import from IEC CDD

When importing submodels from the IEC CDD as described in Appendix A, the
attributes in the AAS PE are not automatically filled in. As an example, when
exporting the “rotational ac motor” class from IEC CDD and importing it as a sub-
model in the AAS PE, with a specific set of submodel elements, the submodel will
appear in the AAS PE as seen in Figure 34.

Figure 34: Imported IEC CDD submodel

The submodel elements are selected when importing the submodel, and the gray
text are the assigned values. When selecting one of the elements, like “Direc-
tionOfRotation”, Figure 35 shows that not all attributes are filled in automatically.

The semantic ID is created automatically and is referencing a concept description
that is imported alongside the submodel. This id can also be used to look up the
property in the IEC CDD. The valueType, value and ValueID have been filled in
manually, after the import. When searching the IEC CDD with the provided seman-
tic reference, various attributes like definition, dataType etc are indeed provided,
however they have to be manually filled in the AAS PE. The dataType for Direc-
tionOfRotation is specified as an ENUM in IEC CDD, however this alternative
does not exist in the AAS PE in the dropdown menu when selecting the dataType.
It is unclear whether the dropdown menu is a complete list of supported dataTypes,
or if it only a suggestion. The value of DirectionOfRotation comes as a value list in
IEC CDD, which is not directly supported in the AAS PE. As such two attemptes
were made to represent the value of the direction of rotation. The first alternative
simply assigns the value type as a string and the value is set to “biderectional”. The
second alternative, which tries to be more conformant to the IEC CDD, provides a
reference to one of the value terms in the value list, which is seen in Figure 36.

49

Figure 35: Attributes of DirectionOfRotation

Figure 36: Value list of DirectionOfRotation

The provided reference is referencing the value term “reversible” from IEC CDD.
As long as a reference to the semantics is provided, and it is possible to establish a
connection with the IEC CDD, the attributes in the AAS PE do not have to be filled
in. If an internet connection will not always be available, it may be a good idea to
fill in the attributes within the AAS PE as well.

50

5.6 Data export out of TIA

The available asset-data was dependent on and limited to pre-existing documen-
tation and functions, like the “fbVFD GSeries” function block from the Siemens
Open library, which made certain data like the motor speed and motor speed set-
point easily available through configured PLC-tags in the TIA Portal. For a com-
plete implementation of an AAS, a deeper knowledge about extracting data from
the assets may be necessary. As an example, data was first exported in a differ-
ent way out of the TIA Portal, without using PLC-tags and a HMI window. After
adding the necessary component to the TIA Portal as described earlier, the com-
missioning view under “Drive” in the project tree will access a large range of pa-
rameters, including motor speed and motor speed setpoint, that can be monitored
in real time, and a built in function of the TIA Portal allowed these parameters to be
exported in a CSV format. The exporting could not happen in real time however.
After extracting data out of the TIA Portal, considerations about where in the AAS
and in what AAS the data should be stored needed to be made. For this project, the
motor speed was stored in the AAS for the motor and the motor speed setpoint was
stored in the AAS for the PLC. An argument could be made for important values to
show as duplicates within the AAS for the system as well as within the AAS for the
individual components. Figures 37, 38, 39 and 40 show four different alternatives
on how the system AAS could reference the same “RuntimeVariables” submodel
that the motor AAS is referencing. This way, the submodel elements within the
“RuntimeVaribles” submodel could be accessed through the system AAS, as well
as the motor AAS.

Figure 37: Reference alternative 1

51

The first alternative in Figure 37 has the system AAS reference a submodel within
its own package. This submodel could be identical to the “RuntimeVariables” sub-
model from the motor AAS, or it could contain separate submodel elements. While
the “RuntimeVariables” from the motor AAS contains the motor speed, the sub-
model in the system AAS could contain both the motor speed and the motor speed
setpoint.

Figure 38: Reference alternative 2

The second alternative in Figure 38 has the system AAS reference a submodel
within a different package, the AAS motor .aasx package, where the reference is
provided directly to the submodel of interest. The third alternative in Figure 39
provides a reference to the motor AAS instead of directly to the “RuntimeVari-
ables” submodel. The reference is an id that may work as an entry point to access
the submodel.

Figure 39: Reference alternative 3

52

In the system AAS, there is a submodel called “AASRelations” that contains re-
lationship elements to the other AAS’s, “system motor relation” being one of the
relationship elements. The fourth alternative in Figure 40 proposes providing a
reference to the motor AAS, by referencing a relationship element within the same
package. In this project it was concluded that sending duplicates of real time data to
the system AAS as well as to the motor AAS and PLC AAS would be superfluous,
and so even if the “Runtime variables” submodel was initially created within the
system AAS, no data was sent there. Should this feature be necessary, the fourth
alternative in Figure 40 could make it easy for individual submodel elements in the
system AAS to reference various AAS’s, which would allow the system AAS to
keep track of runtime data from different AAS’s.

Figure 40: Reference alternative 4

5.7 NodeRED - AAS issue

With the given implementation a new submodel would occasionally be unintention-
ally created in the AAS’s that received data from NodeRED. This was an empty
submodel that would be created, but no data was later sent to it. The data from
NodeRED is given by the http PUT command which by default updates the pay-
load at the specified address. If no payload exists at the specified address, the PUT
command will work as a POST command, meaning it would create the payload
at the specified address. The payload that came from NodeRED was an entire
submodel, with the format in Figure 22. The suspected reason for this is that oc-

53

casionally the http PUT request and http GET request are processed in the server
simultaneously, which lead to the PUT request creating a new submodel, however
this suspicion has not been tested further, as this was a rare occurrence.

54

6 Conclusion

This thesis has described the implementation of AASs for a SMCS and the im-
plementation of a real time bi-directional communication between the SMCS and
the AASs. The implementation utilized the TIA Portal, and the open source tools
NodeRED, AAS Server and AAS PE. The AASs were deployed as centralized fog-
based AAS and a discussion around alternative deployment strategies for the AAS
has been provided. The AAS-related tools are not fully developed to handle all
aspects of the AAS, like the data type ENUM discussed in Chapter 6, and are cur-
rently under development, however they are sufficient to create and deploy AASs.

As the standardization organizations such as IEC has not implemented standard
semantics concerning all possible assets and concepts, it is inevitable that when
creating an AAS, custom concept descriptions will have to be made. If the intent
of the concept description is to be reused and shared and support the concept of
interoperability, it is recommended that it is created in cooperation with an inter-
national standardization organization.

Future work could encompass the connection of the AAS implementation in this
project with another AAS that represents an asset from a different manufacturer.
This could illustrate the interoperability aspect of the AAS, which is not presented
in this thesis, as all the assets were from the same manufacturer and were able to
communicate with each other by way of the TIA Portal without the use of AAS.

55

Nomenclature

AAS Asset Administration Shell

AAS IM AAS Information Model

AAS PE AAS Package Explorer

AI Analog Input

AML AutomationML

API Application Programming Interface

AQ Analog Output

AutomationML Automation Markup Language

BOM Bill Of Material

CD Concept Description

CPU Central Processing Unit

CSV Comma Separated Value

DB Data Block

DI Digital Input

DQ Digital Output

DT Digital Twin

FB Function Block

HMI Human Machine Interface

I/O Input/Output

I4.0 Industry 4.0

IDTA Industrial Digital Twin Association

IEC International Electrotechnical Commission

56

IEC CDD IEC Common Data Dictionary

IIC Industry IoT Consortium

IIoT Industrial Internet of Things

IIRA Industrial Internet Reference Architecture

IoT Internet of Things

IP Internet Protocol

IT Information Technology

JSON JavaScript Object Notation

MES Manufacturing Execution System

MQTT Message Queueing Telemetry Transport

OB Organization Block

OEM Original Equipment Manufacturer

OPC UA Open Platform Communications Unified Architecture

OT Operational Technology

PI4.0 Platform Industrie 4.0

PLC Programmable Logic Controller

PnP Plug-and-Produce

RAMI4.0 Reference Architecture Model Industrie 4.0

RDF Resource Description Framework

REST Representational State Transfer

SDC Standard Drive Control

SMCS Siemens Motor Control System

SSL Secure Socket Layer

57

TCP Transmission Control Protocol

TIA Portal Totally Integrated Automation Portal

UML Unified Modeling Language

URI Uniform Resource Identifier

URL Uniform Resource Locator

VB Visual Basic

VFD Variable Frequency Drive

XML Extensible Markup Language

ZVEI German Electrical and Electronic Manufacturers’ Association

58

Bibliography

[1] Sten Grüner, Jörg Neidig, Andreas Orzelski, and Stefan Pollmeier. Asset
Administration Shell Reading Guide. Frankfurt, Germany: Industrial Digital
Twin Association, 2022. URL: https://industrialdigitaltwin.org/
en/content-hub/downloads.

[2] Annerose Braune, Christian Diedrich, Sten Grüner, Guido Hüttemann, Math-
ias Klein, Christoph Legat, Mathias Lieske, Ulrich Löwen, Mario Thron,
and Thomas Usländer. Usage View of Asset Administration Shell. Berlin,
Germany: Federal Ministry for Economic Affairs and Energy, 2019. URL:
https://www.plattform-i40.de/IP/Redaktion/EN/Downloads/

Publikation/2019-usage-view-asset-administration-shell.

html.

[3] Torben Miny, Guido Stephan, Thomas Usländer, and Jens Vialkowitsch.
Functional View of the Asset Administration Shell in an Industrie 4.0 System
Environment. Berlin, Germany: Platform Industrie 4.0, 2021. URL: https:
//www.plattform-i40.de/IP/Redaktion/DE/Downloads/Publikation/

Functional-View.html.

[4] Platform Industrie 4.0 and ZVEI. Industrie 4.0 Plug-and-Produce for Adapt-
able Factories: Example Use Case Definition, Models, and Implementa-
tion. Berlin, Germany: Federal Ministry for Economic Affairs and Energy,
2017. URL: https://www.plattform-i40.de/IP/Redaktion/EN/
Downloads/Publikation/Industrie-40-Plug-and-Produce.html.

[5] Platform Industrie 4.0 and ZVEI. Relationships between I4.0 Components
- Composite Components and Smart Production. Berlin, Germany: Federal
Ministry for Economic Affairs and Energy, 2018. URL: https://www.
plattform-i40.de/IP/Redaktion/EN/Downloads/Publikation/

hm-2018-relationship.html.

[6] Marie Platenius-Mohr and Sten Grüner. An Analysis of Use Cases for the
Asset Administration Shell in the Context of Edge Computing. Stuttgart, Ger-
many: IEEE, 2022. URL: https://ieeexplore.ieee.org/document/
9921433.

[7] Platform Industrie 4.0, IDTA, and ZVEI. Details of the Administration Shell.
Part 1 - The exchange of information between partners in the value chain
of Industrie 4.0. 3rd ed. Berlin, Germany: Federal Ministry for Economic

59

https://industrialdigitaltwin.org/en/content-hub/downloads
https://industrialdigitaltwin.org/en/content-hub/downloads
https://www.plattform-i40.de/IP/Redaktion/EN/Downloads/Publikation/2019-usage-view-asset-administration-shell.html
https://www.plattform-i40.de/IP/Redaktion/EN/Downloads/Publikation/2019-usage-view-asset-administration-shell.html
https://www.plattform-i40.de/IP/Redaktion/EN/Downloads/Publikation/2019-usage-view-asset-administration-shell.html
https://www.plattform-i40.de/IP/Redaktion/DE/Downloads/Publikation/Functional-View.html
https://www.plattform-i40.de/IP/Redaktion/DE/Downloads/Publikation/Functional-View.html
https://www.plattform-i40.de/IP/Redaktion/DE/Downloads/Publikation/Functional-View.html
https://www.plattform-i40.de/IP/Redaktion/EN/Downloads/Publikation/Industrie-40-Plug-and-Produce.html
https://www.plattform-i40.de/IP/Redaktion/EN/Downloads/Publikation/Industrie-40-Plug-and-Produce.html
https://www.plattform-i40.de/IP/Redaktion/EN/Downloads/Publikation/hm-2018-relationship.html
https://www.plattform-i40.de/IP/Redaktion/EN/Downloads/Publikation/hm-2018-relationship.html
https://www.plattform-i40.de/IP/Redaktion/EN/Downloads/Publikation/hm-2018-relationship.html
https://ieeexplore.ieee.org/document/9921433
https://ieeexplore.ieee.org/document/9921433

Affairs and Climate Action, 2022. URL: https://www.plattform-i40.
de/IP/Redaktion/EN/Downloads/Publikation/Details_of_the_

Asset_Administration_Shell_Part1_V3.html.

[8] Platform Industrie 4.0 and ZVEI. Details of the Administration Shell. Part
2 - Interoperability at Runtime - Exchanging Information via Application
Programming Interfaces. 1st ed. Berlin, Germany: Federal Ministry for Eco-
nomic Affairs and Energy, 2021. URL: https://www.plattform-i40.
de/IP/Redaktion/EN/Downloads/Publikation/Details_of_the_

Asset_Administration_Shell_Part2_V1.html.

[9] Sebastian Bader, Vanessa Bellinghausen, Birgit Boss, André Braunmandl,
Gerd Brost, Björn Flubacher, Kai Garrels, Michael Hoffmeister, Lutz Jänicke,
Michael Jochem, Andreas Orzelski, Jens Vialkowitsch, Thomas Walloschke,
and Jörg Wende. What is the Asset Administration Shell from a technical per-
spective? Berlin, Germany: Platform Industrie 4.0, 2021. URL: https://
www.plattform-i40.de/IP/Redaktion/EN/Downloads/Publikation/

2021_What-is-the-AAS.html.

[10] Platform Industrie 4.0 and ZVEI. Structure of the Administration Shell. Berlin,
Germany: Federal Ministry for Economic Affairs and Energy, 2016. URL:
https://www.plattform-i40.de/IP/Redaktion/EN/Downloads/

Publikation/structure-of-the-administration-shell.html.

[11] Platform Industrie 4.0, Piano Industria 4.0, and Alliance Industrie du Futur.
The Structure of the Administration Shell: TRILATERAL PERSPECTIVES
from France, Italy and Germany. 2nd ed. Berlin, Germany: Federal Ministry
for Economic Affairs and Energy, 2018. URL: https://www.plattform-
i40.de/IP/Redaktion/EN/Downloads/Publikation/hm- 2018-

trilaterale-coop.html.

[12] Fatih Yallic, Özlem Albayrak, and Perin Ünal. Asset Administration Shell
Generation and Usage for Digital Twins: A Case Study for Non-destructive
Testing. Ankara, Turkey: TEKNOPAR, 2022. URL: https://www.researchgate.
net/publication/365025647_Asset_Administration_Shell_Generation_

and_Usage_for_Digital_Twins_A_Case_Study_for_Non-destructive_

Testing.

[13] Rudolf Pribiš, Lukáš Beňo, and Peter Drahoš. “Asset Administration Shell
Design Methodology Using Embedded OPC Unified Architecture Server”.

60

https://www.plattform-i40.de/IP/Redaktion/EN/Downloads/Publikation/Details_of_the_Asset_Administration_Shell_Part1_V3.html
https://www.plattform-i40.de/IP/Redaktion/EN/Downloads/Publikation/Details_of_the_Asset_Administration_Shell_Part1_V3.html
https://www.plattform-i40.de/IP/Redaktion/EN/Downloads/Publikation/Details_of_the_Asset_Administration_Shell_Part1_V3.html
https://www.plattform-i40.de/IP/Redaktion/EN/Downloads/Publikation/Details_of_the_Asset_Administration_Shell_Part2_V1.html
https://www.plattform-i40.de/IP/Redaktion/EN/Downloads/Publikation/Details_of_the_Asset_Administration_Shell_Part2_V1.html
https://www.plattform-i40.de/IP/Redaktion/EN/Downloads/Publikation/Details_of_the_Asset_Administration_Shell_Part2_V1.html
https://www.plattform-i40.de/IP/Redaktion/EN/Downloads/Publikation/2021_What-is-the-AAS.html
https://www.plattform-i40.de/IP/Redaktion/EN/Downloads/Publikation/2021_What-is-the-AAS.html
https://www.plattform-i40.de/IP/Redaktion/EN/Downloads/Publikation/2021_What-is-the-AAS.html
https://www.plattform-i40.de/IP/Redaktion/EN/Downloads/Publikation/structure-of-the-administration-shell.html
https://www.plattform-i40.de/IP/Redaktion/EN/Downloads/Publikation/structure-of-the-administration-shell.html
https://www.plattform-i40.de/IP/Redaktion/EN/Downloads/Publikation/hm-2018-trilaterale-coop.html
https://www.plattform-i40.de/IP/Redaktion/EN/Downloads/Publikation/hm-2018-trilaterale-coop.html
https://www.plattform-i40.de/IP/Redaktion/EN/Downloads/Publikation/hm-2018-trilaterale-coop.html
https://www.researchgate.net/publication/365025647_Asset_Administration_Shell_Generation_and_Usage_for_Digital_Twins_A_Case_Study_for_Non-destructive_Testing
https://www.researchgate.net/publication/365025647_Asset_Administration_Shell_Generation_and_Usage_for_Digital_Twins_A_Case_Study_for_Non-destructive_Testing
https://www.researchgate.net/publication/365025647_Asset_Administration_Shell_Generation_and_Usage_for_Digital_Twins_A_Case_Study_for_Non-destructive_Testing
https://www.researchgate.net/publication/365025647_Asset_Administration_Shell_Generation_and_Usage_for_Digital_Twins_A_Case_Study_for_Non-destructive_Testing

In: Electronics (2021). URL: https://www.mdpi.com/2079-9292/10/
20/2520.

[14] Xun Ye, Seung Ho Hong, Won Seok Song, Yu Chul Kim, and Xiongfeng
Zhang. An Industry 4.0 Asset Administration Shell-Enabled Digital Solu-
tion for Robot-Based Manufacturing Systems. IEEE, 2021. URL: https:
//ieeexplore.ieee.org/document/9617596.

[15] Jakub Arm, Tomas Benesl, Petr Marcon, Zdenek Bradac, Tizian Schröder,
Alexander Belyaev, Thomas Werner, Vlastimil Braun, Pavel Kamensky, Fran-
tisek Zezulka, Christian Diedrich, and Premysl Dohnal. “Automated Design
and Integration of Asset Administration Shells in Components of Industry
4.0”. In: Sensors (2021). URL: https://www.mdpi.com/1424-8220/21/
6/2004.

[16] Alejandro Seif, Carlos Toro, and Humza Akhtar. “Implementing Industry
4.0 Asset Administrative Shells in Mini Factories”. In: Procedia (2019).
URL: https://www.sciencedirect.com/science/article/pii/
S1877050919313870.

[17] Giovanni Di Orio, Pedro Maló, and J.Barata. NOVAAS: A Reference Im-
plementation of Industrie 4.0 Asset Administration Shell with best-of-breed
practices from IT engineering. Lisbon, Portugal: IEEE, 2019. URL: https:
//www.researchgate.net/publication/336609553_NOVAAS_A_

Reference_Implementation_of_Industrie40_Asset_Administration_

Shell_with_best-of-_breed_practices_from_IT_engineering.

[18] Jonas Gampig, Tarik Terzimehić, and Kirill Dorofeev. PLC Integration into
Industry 4.0 Middleware: Function Block Library for the Interaction with
REST and OPC UA Asset Administration Shells. Vasteras, Sweden: IEEE,
2021. URL: https://ieeexplore.ieee.org/document/9613267.

[19] Xun Ye and Seung Ho Hong. “Towards Industry 4.0 Components: Insights
Into and Implementation of Asset Administration Shells”. In: IEEE Indus-
trial Electronics Magazine (2019). URL: https://ieeexplore.ieee.
org/document/8673850.

[20] Xun Ye, Junhui Jiang, Changdae Lee, Namhyeok Kim, Mengmeng Yu, and
Seung Ho Hong. “Towards the Plug-and-Produce Capability for Industry
4.0: An Asset Administration Shell Approach”. In: IEEE Industrial Elec-

61

https://www.mdpi.com/2079-9292/10/20/2520
https://www.mdpi.com/2079-9292/10/20/2520
https://ieeexplore.ieee.org/document/9617596
https://ieeexplore.ieee.org/document/9617596
https://www.mdpi.com/1424-8220/21/6/2004
https://www.mdpi.com/1424-8220/21/6/2004
https://www.sciencedirect.com/science/article/pii/S1877050919313870
https://www.sciencedirect.com/science/article/pii/S1877050919313870
https://www.researchgate.net/publication/336609553_NOVAAS_A_Reference_Implementation_of_Industrie40_Asset_Administration_Shell_with_best-of-_breed_practices_from_IT_engineering
https://www.researchgate.net/publication/336609553_NOVAAS_A_Reference_Implementation_of_Industrie40_Asset_Administration_Shell_with_best-of-_breed_practices_from_IT_engineering
https://www.researchgate.net/publication/336609553_NOVAAS_A_Reference_Implementation_of_Industrie40_Asset_Administration_Shell_with_best-of-_breed_practices_from_IT_engineering
https://www.researchgate.net/publication/336609553_NOVAAS_A_Reference_Implementation_of_Industrie40_Asset_Administration_Shell_with_best-of-_breed_practices_from_IT_engineering
https://ieeexplore.ieee.org/document/9613267
https://ieeexplore.ieee.org/document/8673850
https://ieeexplore.ieee.org/document/8673850

tronics Magazine (2020). URL: https://ieeexplore.ieee.org/document/
9299411.

[21] Bongcheol Kim, Seyun Kim, Hans Teijgeler, Jaehyeon Lee, Ju Yeon Lee,
Dongyun Lim, Hyo-Won Suh, and Duhwan Mun. “Use of Asset Adminis-
tration Shell Coupled with ISO 15926 to Facilitate the Exchange of Equip-
ment Condition and Health Status Data of a Process Plant”. In: processes
(2022). URL: https://www.mdpi.com/2227-9717/10/10/2155.

[22] Tashnim A. Abdel-Aty, Elisa Negri, and Simone Galparoli. “Asset Admin-
istration Shell in Manufacturing: Applications and Relationship with Digi-
tal Twin”. In: IFAC (2022). URL: https://www.sciencedirect.com/
science/article/pii/S2405896322020997?via%3Dihub.

[23] Birgit Boss, Somayeh Malakuti, Shi-Wan Lin, Thomas Usländer, Erich Clauer,
Michael Hoffmeister, and Ljiljana Stojanovic. Digital Twin and Asset Ad-
ministration Shell Concepts and Application in the Industrial Internet and
Industrie 4.0. An Industrial Internet Consortium and Platform Industrie 4.0
Joint Whitepaper. Platform Industrie 4.0. URL: https://www.plattform-
i40.de/IP/Redaktion/EN/Downloads/Publikation/Digital-

Twin-and-Asset-Administration-Shell-Concepts.html.

[24] Platform Industrie 4.0. “What is Industrie 4.0?” In: (). URL: https://www.
plattform-i40.de/IP/Navigation/EN/Industrie40/WhatIsIndustrie40/

what-is-industrie40.html.

[25] International Electrotechnical Commission. NEK IEC TS 62443-1-1:2009.
Industrial communication networks, Network and system security Part 1-1:
Terminology, concepts and models. Norwegian Electrotechnical Specifica-
tion. Norsk Elektroteknisk Komite, 2009. URL: https://www.standard.
no/nettbutikk/sokeresultater/?search=IEC+TS+62443-1-1&

subscr=1.

[26] Shi-Wan Lin, Brett Murphy, Erich Clauer, Ulrich Loewen, Ralf Neubert,
Gerd Bachmann, Madhusudan Pai, and Martin Hankel. Architecture Align-
ment and Interoperability. Platform Industrie 4.0, 2017. URL: https://
www.plattform-i40.de/IP/Redaktion/EN/Downloads/Publikation/

whitepaper-iic-pi40.html.

[27] AAS Blazor server download. URL: https : / / github . com / admin -
shell-io/aasx-server/releases.

62

https://ieeexplore.ieee.org/document/9299411
https://ieeexplore.ieee.org/document/9299411
https://www.mdpi.com/2227-9717/10/10/2155
https://www.sciencedirect.com/science/article/pii/S2405896322020997?via%3Dihub
https://www.sciencedirect.com/science/article/pii/S2405896322020997?via%3Dihub
https://www.plattform-i40.de/IP/Redaktion/EN/Downloads/Publikation/Digital-Twin-and-Asset-Administration-Shell-Concepts.html
https://www.plattform-i40.de/IP/Redaktion/EN/Downloads/Publikation/Digital-Twin-and-Asset-Administration-Shell-Concepts.html
https://www.plattform-i40.de/IP/Redaktion/EN/Downloads/Publikation/Digital-Twin-and-Asset-Administration-Shell-Concepts.html
https://www.plattform-i40.de/IP/Navigation/EN/Industrie40/WhatIsIndustrie40/what-is-industrie40.html
https://www.plattform-i40.de/IP/Navigation/EN/Industrie40/WhatIsIndustrie40/what-is-industrie40.html
https://www.plattform-i40.de/IP/Navigation/EN/Industrie40/WhatIsIndustrie40/what-is-industrie40.html
https://www.standard.no/nettbutikk/sokeresultater/?search=IEC+TS+62443-1-1&subscr=1
https://www.standard.no/nettbutikk/sokeresultater/?search=IEC+TS+62443-1-1&subscr=1
https://www.standard.no/nettbutikk/sokeresultater/?search=IEC+TS+62443-1-1&subscr=1
https://www.plattform-i40.de/IP/Redaktion/EN/Downloads/Publikation/whitepaper-iic-pi40.html
https://www.plattform-i40.de/IP/Redaktion/EN/Downloads/Publikation/whitepaper-iic-pi40.html
https://www.plattform-i40.de/IP/Redaktion/EN/Downloads/Publikation/whitepaper-iic-pi40.html
https://github.com/admin-shell-io/aasx-server/releases
https://github.com/admin-shell-io/aasx-server/releases

[28] NodeRed windows download. URL: https://nodejs.org/en.

[29] NodeRed installation instructions. URL: https://nodered.org/docs/
getting-started/windows#running-on-windows.

63

https://nodejs.org/en
https://nodered.org/docs/getting-started/windows#running-on-windows
https://nodered.org/docs/getting-started/windows#running-on-windows

A Functionalities of the Package Explorer

A.1 Introduction

This appendix will present some general functionalities of the Asset Administra-
tion Shell Package Explorer. The admin-shell-io gihub website provides a set of
screencasts as a user guide to the AAS. The aspects considered are;

• Creating assets and AASs

• Creating submodels and submodel elements (including import from plugins
and dictionaries)

• Creating concept descriptions

• Creating thumbnails

• Creating references

To be able to edit the package explorer, make sure the “Workspace/Edit” option is
checked.

A.2 Creating assets and AASs

Assets and AASs can be added to a .aasx package by selecting the “Environment”
environment as shown in Figure 41, and clicking “Add Asset” or “Add AAS” re-
spectively.

After adding assets and AASs, they may be selected. The associated data fields
of the selected element like “idShort”, “description” and “DataSpecification”, will
appear on the right side of the package explorer, as seen in Figure 42

Notice the red and blue text fields from Figure 41 and 42. When the “Workspace/Hints”
option is checked, the AAS Package Explorer will provide guiding hints to creating
the AAS. A reference within the created AAS can be made to the appropriate asset.

64

Figure 41: An empty .aasx package

Figure 42: Data fields with hints

A.3 Creating submodels and submodel elements

When selecting an AAS, a submodel can be created by clicking “Create new Sub-
model of kind Template/Instance” as seen in Figure 43

When doing so, a submodel that is independent of any AAS will be added to the
“All Submodels” environment (shown as a gray element in the package explorer),
and a reference to that submodel will be created within the selected AAS (shown
as a blue element in the package explorer). Submodel elements can then be added
by selecting a submodel and adding one of the submodel elements listed in Table 4.

65

Figure 43: Creating a submodel

A.3.1 Importing plugins

Some standardized submodels by IDTA have been created and are downloaded
with the AAS Package from the admin-shell-io github. They provide special func-
tionality and are available through the package explorer as imported plugins by
navigating to “Workspace/Plugins/New Submodel”. Note that the .aasx package
needs to be saved before plugins can be imported. The available plugins in the
2023-02-03.alpha version of the package explorer are shown in Figure 44.

The DocumentShelf plugin provides an interface for adding documents to the .aasx
package. Documents are added by providing their paths, and additional informa-
tion like the document id, the document title etc, are changeable in the provided
interface. The plugin also provides an overview of all the added documents, as
seen in Figure 45

Once the documents are part of the .aasx package they may be viewed from within
the package explorer. The Electric or Fluid Plan plugin has the ability to display
BOM relationships as a graph. Figure 46 illustrates that relationships between cre-
ated entities within the Electric And Fluid Plan submodel represent relationships
between assets.

The created entities provide references to the assets they are representing, and form
relationships between each other by way of relationship elements, where the re-

66

Figure 44: Available plugins in AAS PE

Figure 45: Document shelf

lationship elements are providing references to the entities. The entities can be
self-managed, representing assets that have their own AAS, or co-managed, repre-
senting assets without an AAS.

67

Figure 46: Bill of Material graph display

A.3.2 Importing dictionaries

Submodels and submodel elements can also be imported from dictionaries like
ECLASS or IEC CDD. Finding the desired piece of equipment or concept at the
IEC CDD website, selecting the option “Export/All/Class and superclass”, as seen
in Figure 47, and downloading the .xsl files to a local repository is the first step.

Figure 47: IEC CDD website

In the package explorer, navigating to “File/Import/Import Submodel from Dictio-

68

nary” or “File/Import/Import Submodel Elements from Dictionary”, the window
in Figure 48 will appear.

Figure 48: Attribute selection

In the window, navigating to the repository with the downloaded .xls files, then se-
lecting the attributes to import, adds a submodel with a set of submodel elements to
the .aasx package. A set of concept descriptions are also added to the “ConceptDe-
scriptions” environment, which the imported submodel elements are referencing.
This method of importing usually causes the package explorer to report an error,
however the error does not seem to impede the desired functionality. As the error
messages in the package explorer are somewhat difficult to interpret, the cause of
this error has not been discerned.

A.4 Creating concept descriptions

To provide meaning to the created submodels and submodel elements, they should
reference a concept description with their semantic id. Concept descriptions can be
created in the same way as assets, and AAS, as was seen in Figure 41. Figure 49
illustrates the creation of a property called “myProperty” and a concept description
called “myConceptDescription”.

69

Figure 49: Creating concept description

The property has an arbitrary value. When selecting the concept description, an
embedded data specification in accordance with IEC 61360 can be created, where
amongst other things, a unit can be specified. Figure 50 illustrates that when pro-
viding a reference to “myConceptDescription” in the Semantic id field of “myProp-
erty”, the unit will appear in the property, giving meaning to the value.

Figure 50: Reference to concept description

A.5 Creating thumbnails

For visualization purposes a thumbnail can be added to the .aasx package, which
Figure 51 illustrates.

70

Figure 51: Adding thumbnail

By selecting the “Supplementary files” environment and specifying the source path
to the thumbnail to be used, and checking the “Embed as thumbnail” option, a
thumbnail will be added to the .aasx package. Note that the thumbnail will only
appear once a reference to an asset is created within the AAS.

A.6 Creating references

References in the package explorer are made by specifying what is being refer-
enced, a submodel in the case of Figure 52. The id type and id also need to be
provided when creating a reference. Finally a specification on whether the refer-
ence is local or not is needed.

Figure 52: General reference

Figure 52 shows how the semantic ID of the imported documentation shelf plugin
provides a reference to the admin-shell-io address. The “Add existing” option al-
lows selecting of a local element within the .aasx package, in which case the fields
of the reference will be filled automatically.

71

B Scripts

B.1 TIA Portal scripts

1 Sub DataExportToAAS ()
2 ’ Tip :
3 ’ 1 . Use t h e <CTRL+SPACE> or <CTRL+I> s h o r t c u t t o open a l i s t o f a l l o b j e c t s and f u n c t i o n s
4 ’ 2 . Wr i t e t h e code u s i n g t h e HMI Runtime o b j e c t .
5 ’ Example : HmiRuntime . S c r e e n s (” S c r e e n 1 ”) .
6 ’ 3 . Use t h e <CTRL+J> s h o r t c u t t o c r e a t e an o b j e c t r e f e r e n c e .
7 ’ Wr i t e t h e code as o f t h i s p o s i t i o n :
8 Cons t ForRead ing = 1
9 Cons t F o r W r i t i n g = 2

10 Cons t ForAppending = 8
11
12 Dim F o l d e r P a t h , O b j e c t P a t h , Fi lename , F i l e , Header , Data , Body
13 ’ D ef in e f o l d e r p a t h
14 F o l d e r P a t h = ”C:\ User s\ a l e x e y s i\Documents\M a s t e r T h e s i s\F i n a l\Alexey S i v e r s k i y\TIAImpor tExpor t ”
15
16 ’ C r e a t i n g o b j e c t t h a t c o n t a i n s t h e p a t h t o t h e f o l d e r
17 S e t O b j e c t P a t h = C r e a t e O b j e c t (” S c r i p t i n g . F i l e S y s t e m O b j e c t ”)
18
19 ’ I f t h e f o l d e r does n o t e x i s t , c r e a t e i t
20 I f Not O b j e c t P a t h . F o l d e r E x i s t s (F o l d e r P a t h) Then
21 O b j e c t P a t h . C r e a t e F o l d e r F o l d e r P a t h
22 End I f
23
24 ’ D ef in e name of CSV f i l e t h a t c o n t a i n s t h e e x p o r t e d d a t a
25 F i l ename = ” T IA E xp or t e d D a t a . c sv ”
26
27 ’ C r e a t e o b j e c t t o c o n t r o l f i l e e x i s t e n c e
28 S e t F i l e = C r e a t e O b j e c t (” S c r i p t i n g . F i l e S y s t e m O b j e c t ”)
29
30 ’ I f t h e f i l e e x i s t s , add da ta , o t h e r w i s e c r e a t e i t
31 I f F i l e . F i l e E x i s t s (F o l d e r P a t h & ”\” & Fi l ename) Then
32 ’Add d a t a t o e x c e l f i l e
33 S e t Data = F i l e . O p e n T e x t F i l e (F o l d e r P a t h & ”\” & Fi lename , ForRead ing)
34 Header = Data . ReadLine
35 Data . C lose
36 S e t Data = F i l e . O p e n T e x t F i l e (F o l d e r P a t h & ”\” & Fi lename , F o r W r i t i n g)
37 Data . W r i t e L i n e (Header)
38 Data . W r i t e L i n e (” A c t u a l motor speed ” & ” ; ” & SmartTags (”HMI VFD C o n t r o l DB HMI TAGS rActualSpeed ”)

& ” ; ” & ”%”)
39 Data . W r i t e L i n e (” Motor speed s e t p o i n t ” & ” ; ” & SmartTags (”HMI VFD C o n t r o l DB HMI

TAGS rManualSpeedSP ”) & ” ; ” & ”%”)
40 Data . C lose
41 E l s e
42 S e t Header = F i l e . C r e a t e T e x t F i l e (F o l d e r P a t h & ”\” & Fi l ename)
43 ’ S e t HEADER of Exce l f i l e
44 ’ S e t Header = F i l e . O p e n T e x t F i l e (F o l d e r P a t h & ”\” & Fi lename , 2 , True)
45 ’ Header . W r i t e L i n e (” Name” & ” , ” & ” Value ” & ” , ” & ” Uni t ”)
46 Header . W r i t e L i n e (”Name ; Value ; Un i t ”)
47 Header . C lose
48 End I f
49
50 ShowSystemAlarm ” Data has been e x p o r t e d ! ”
51
52 ’ C l e a r o b j e c t
53 ’ S e t F i l e = Noth ing
54
55 End Sub

Listing 1: VB script that exports data out of TIA

72

1 Sub DataImportFromAAS ()
2 ’ Tip :
3 ’ 1 . Use t h e <CTRL+SPACE> or <CTRL+I> s h o r t c u t t o open a l i s t o f a l l o b j e c t s and f u n c t i o n s
4 ’ 2 . Wr i t e t h e code u s i n g t h e HMI Runtime o b j e c t .
5 ’ Example : HmiRuntime . S c r e e n s (” S c r e e n 1 ”) .
6 ’ 3 . Use t h e <CTRL+J> s h o r t c u t t o c r e a t e an o b j e c t r e f e r e n c e .
7 ’ Wr i t e t h e code as o f t h i s p o s i t i o n :
8
9 Dim l a t e s t S P , speedSP , f so , f i l e , c o n t e n t s , rows , columns , desi redRow , d e s i r e d V a l u e

10
11 S e t l a t e s t S P = SmartTags (” L a t e s t S e t p o i n t I m p o r t ”)
12 S e t speedSP = SmartTags (”HMI VFD C o n t r o l DB HMI TAGS rManualSpeedSP ”)
13 S e t f s o = C r e a t e O b j e c t (” S c r i p t i n g . F i l e S y s t e m O b j e c t ”)
14 S e t f i l e = f s o . O p e n T e x t F i l e (”C:\ Users\ a l e x e y s i\Documents\M a s t e r T h e s i s\F i n a l\Alexey S i v e r s k i y\

TIAImpor tExpor t\TIA Im por t Da t a . c sv ”)
15 c o n t e n t s = f i l e . ReadAl l ()
16 rows = S p l i t (c o n t e n t s , vbCrLf)
17 des i redRow = rows (0)
18 columns = S p l i t (desi redRow , ” ; ”)
19 d e s i r e d V a l u e = columns (1)
20
21 f i l e . C lose ()
22
23 I f (l a t e s t S P . Value <> CSng (d e s i r e d V a l u e)) Then
24 speedSP . Value = CSng (d e s i r e d V a l u e)
25 l a t e s t S P . Value = CSng (d e s i r e d V a l u e)
26 ShowSystemAlarm ” Data has been i m p o r t e d ! ”
27 End I f
28
29 End Sub

Listing 2: VB script that imports data in to TIA

B.2 NodeRED scripts

1 i f (! c o n t e x t . g e t (” p r e v i o u s D a t a F l o w ”)){
2 c o n t e x t . s e t (” p r e v i o u s D a t a F l o w ” , msg . p a y l o a d [1])
3 c o n t e x t . s e t (” p rev iousTimeStamp ” , msg . p a y l o a d [0])
4 }
5
6 v a r p r e v i o u s D a t a F l o w = c o n t e x t . g e t (” p r e v i o u s D a t a F l o w ”)
7 v a r prev iousTimeStamp = c o n t e x t . g e t (” prev iousTimeStamp ”)
8
9 i f (p r e v i o u s D a t a F l o w . v a l u e != msg . p a y l o a d [1] . v a l u e && msg . p a y l o a d [0] − prev iousTimeStamp > 500){

10 msg . p a y l o a d = msg . p a y l o a d [1]
11 c o n t e x t . s e t (” p r e v i o u s D a t a F l o w ” , msg . p a y l o a d [1])
12 c o n t e x t . s e t (” prev iousTimeStamp ” , msg . p a y l o a d [0])
13 r e t u r n msg
14 }

Listing 3: Detect value change

1 msg . p a y l o a d . submode lE lements . f o r E a c h (f u n c t i o n (e l e m e n t) {
2 i f (e l e m e n t . i d S h o r t == ” m o t o r s p e e d ”) {
3 msg . p a y l o a d = msg . p a y l o a d . submode lE lements [msg . p a y l o a d . submode lE lements . indexOf (e l e m e n t)]
4 }
5 }) ;
6 r e t u r n msg ;

Listing 4: Get motor speed

73

1 msg . p a y l o a d . submode lE lements . f o r E a c h (f u n c t i o n (e l e m e n t) {
2 i f (e l e m e n t . i d S h o r t == ” m o t o r s p e e d s e t p o i n t ”)
3 {
4 msg . p a y l o a d = msg . p a y l o a d . submode lE lements [msg . p a y l o a d . submode lE lements . indexOf (e l e m e n t)]
5 }
6 e l s e msg . p a y l o a d = 0 ;
7 }) ;
8 r e t u r n msg ;

Listing 5: Get motor speed setpoint

1 msg . p a y l o a d . f o r E a c h (f u n c t i o n (e l e m e n t) {
2 i f (e l e m e n t . Name == ” A c t u a l motor speed ”) {
3 msg . p a y l o a d = msg . p a y l o a d [msg . p a y l o a d . indexOf (e l e m e n t)]
4 }
5 }) ;
6 r e t u r n msg ;

Listing 6: Get TIA motor speed

1 msg . p a y l o a d . f o r E a c h (f u n c t i o n (e l e m e n t) {
2 i f (e l e m e n t . Name == ” Motor speed s e t p o i n t ”) {
3 msg . p a y l o a d = msg . p a y l o a d [msg . p a y l o a d . indexOf (e l e m e n t)]
4 }
5 }) ;
6 r e t u r n msg ;

Listing 7: Get TIA motor speed setpoint

1 msg . p a y l o a d = msg . p a y l o a d [0]
2 r e t u r n msg ;

Listing 8: Select

1 v a r name = msg . p a y l o a d . i d S h o r t
2 v a r v a l u e = msg . p a y l o a d . v a l u e
3 v a r u n i t = ” ”
4 msg . p a y l o a d = [name , va lue , u n i t]
5 r e t u r n msg ;

Listing 9: Set CSV format

1 v a r v a l u e = msg . p a y l o a d [1] . Value
2 v a r u n i t = msg . p a y l o a d [1] . Un i t
3 / / msg . p a y l o a d [0] . v a l u e = S t r i n g (v a l u e) + ” ” + S t r i n g (u n i t)
4 msg . p a y l o a d [0] . v a l u e = S t r i n g (v a l u e)
5 r e t u r n msg ;

Listing 10: Update motor speed

1 v a r v a l u e = msg . p a y l o a d [1] . Value
2 v a r u n i t = msg . p a y l o a d [1] . Un i t
3 / / msg . p a y l o a d [0] . v a l u e = S t r i n g (v a l u e) + ” ” + S t r i n g (u n i t)
4 msg . p a y l o a d [0] . v a l u e = S t r i n g (v a l u e)
5 r e t u r n msg ;

Listing 11: Update motor speed setpoint

74

1 i f (msg . p a y l o a d [1] . i d S h o r t == ” m o t o r s p e e d s e t p o i n t ”)
2 {
3 msg . p a y l o a d [0] . submode lE lements [0] = msg . p a y l o a d [1]
4 / / msg . p a y l o a d [0] . submode lE lements [1] = msg . p a y l o a d [2]
5 }
6
7 i f (msg . p a y l o a d [1] . i d S h o r t == ” m o t o r s p e e d ”)
8 {
9 / / msg . p a y l o a d [0] . submode lE lements [1] = msg . p a y l o a d [1]

10 msg . p a y l o a d [0] . submode lE lements [0] = msg . p a y l o a d [1]
11 }
12 msg . p a y l o a d = msg . p a y l o a d [0]
13 r e t u r n msg ;

Listing 12: Update motor variables

1 i f (msg . p a y l o a d [1] . i d S h o r t == ” m o t o r s p e e d s e t p o i n t ”)
2 {
3 msg . p a y l o a d [0] . submode lE lements [0] = msg . p a y l o a d [1]
4 / / msg . p a y l o a d [0] . submode lE lements [1] = msg . p a y l o a d [2]
5 }
6
7 i f (msg . p a y l o a d [1] . i d S h o r t == ” m o t o r s p e e d ”)
8 {
9 msg . p a y l o a d [0] . submode lE lements [1] = msg . p a y l o a d [1]

10 msg . p a y l o a d [0] . submode lE lements [0] = msg . p a y l o a d [2]
11 }
12 msg . p a y l o a d = msg . p a y l o a d [0]
13 r e t u r n msg ;

Listing 13: Update PLC variables

75

	Preface
	Acknowledgments
	Executive summary
	List of figures and tables
	Introduction
	Background
	Objectives
	Approach
	Related works
	Limitations
	Outline

	Framework
	Digital twin
	Asset Administration Shell
	Business/usage view of AAS
	Functional/implementation view of AAS
	Technical overview
	AAS IM
	Structure

	Implementation
	AAS infrastructure
	AAS for Motor
	AAS for PLC
	AAS for inverter
	AAS for system

	TIA infrastructure
	The hardware
	The TIA Portal

	Communication infrastructure
	TIA Portal - NodeRED communication
	The NodeRED server and editor
	The AAS Server and repository
	The AAS Blazor interface and AAS PE

	Provided functionality/results
	Discussion
	The composite asset
	Packages and shells
	AAS deployment
	Limitations of the package explorer
	Data import from IEC CDD
	Data export out of TIA
	NodeRED - AAS issue

	Conclusion
	Nomenclature
	Bibliography
	Functionalities of the Package Explorer
	Introduction
	Creating assets and AASs
	Creating submodels and submodel elements
	Importing plugins
	Importing dictionaries

	Creating concept descriptions
	Creating thumbnails
	Creating references

	Scripts
	TIA Portal scripts
	NodeRED scripts

