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Abstract

In this thesis, we study positional uncertainty in the setting of geostatistical modeling.
A central example of positional uncertainty is the application of geographic masking
(geomasking) intended to protect the privacy of data subjects. Geomasking is
applied in Demographic and Health Surveys (DHS) (Burgert et al., 2013), which
collect data on population, health and nutrition in many low and middle income
countries. These data are important for monitoring and facilitating the progress
towards the Sustainable Development Goals, which motivates the study of how pos-
itional uncertainty from geomasking impacts geostatistical inference.

A contribution of this thesis is to summarize the geostatistics-literature on pos-
itional uncertainty. Additionally, we focus on two geomasking strategies, referred
to as disk jittering and donut jittering. To account for the uncertainty these jittering
schemes introduce, we use the computationally efficient numerical approach proposed
by Altay et al. (2022a). We extend the numerical approach to handle donut jittering.
Furthermore, we investigate the accuracy of the method by constructing, implement-
ing and applying a sample-based approach, which demonstrates that the numerical
approach may effectively approximate exact inference under jittering. Subsequently,
we conduct a simulation study to assess the impact of moderate and substantial
jittering on inference with the numerical approach. The results agree with previous
work and expectations from theory, where adjusting for jittering leads to less atten-
uation in estimated covariate coefficients, substantially less biased estimates of the
nugget variance and superior predictive measures. For example, when there are 103

observations and spatial covariates account for 68% of the variation in observations,
we find that adjusting for, relative to ignoring, substantial donut jittering gives a
median prediction root-mean-square error that is 18% lower. Another contribution
of this work is to explore how privacy protection can be evaluated for a given jittering
scheme.

We apply the numerical approach to real data in a case study of vaccination
coverage in Nigeria, demonstrating its applicability to arbitrary geographies and
generalized linear geostatistical models. Due to its favorable qualities and results
from this and previous work, we advocate the use of the numerical approach to
account for positional uncertainty in geostatistical analyses of DHS data and in
other applications with positional uncertainty of comparable scale.
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Chapter 1

Introduction

Analyses of spatial data almost always assume that the recorded spatial locations are
exact. However, there are many situations where this assumption is invalid because
of uncertainty in the spatial locations. Such positional uncertainty could come from
multiple sources, e.g., positional error in maps (Barber et al., 2006), rounding of
coordinates to the nearest grid point for convenience (Cressie and Kornak, 2003),
or intentional masking of locations meant to preserve the privacy of data subjects
(Armstrong et al., 1999; Zandbergen, 2014). In this thesis, we mainly focus on the
latter example of positional uncertainty, which is referred to as geomasking. The idea
underpinning geomasking is that it can be used to strike a balance between making
the spatial locations in datasets broadly available, enabling, e.g., more research on
geographic patterns in the data, while at the same time maintaining the privacy of
data subjects for both ethical and legal reasons (European Parliament, Council of
the European Union, 2016).

The most prominent example of geomasking is perhaps provided by the Demo-
graphic and Health Surveys (DHS) Program, which is a global initiative that has
collected data on health, population and nutrition through more than 400 surveys in
over 90 participating countries, where surveys are typically conducted every 5 years
(The DHS Program, n.d.). In order to preserve the confidentiality of respondents
in DHS datasets, the coordinates of survey clusters are randomly displaced Burgert
et al. (2013). Moreover, the surveys are mainly conducted in low- and middle-income
countries, and are a valuable source of data for both policymakers and researchers
trying to facilitate and monitor the progress towards the Sustainable Development
Goals (SDGs) set forth by the United Nations (UN) (UN, 2015). Consequently,
accurate statistical inference is of great importance when considering this data,
which motivates the study of how positional uncertainty from geomasking impacts
inference. Furthermore, studies have demonstrated that positional uncertainty may
lead to increased bias in parameter estimates and worse predictive measures when
it is ignored (Gabrosek and Cressie, 2002; Cressie and Kornak, 2003; Altay et al.,
2022a,b; Totland, 2022).

Some approaches to account for positional uncertainty have been presented in the
literature of spatial statistics. Cressie and Kornak (2003) adjust for positional error
in a Gaussian observation process by adjusting the mean and covariance function,
and assume that the resulting adjusted process is Gaussian. This assumption
is, however, not true in general and the approach does not easily generalize to
generalized linear geostatistical models. Fanshawe and Diggle (2011) present a
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Introduction

method which accounts for error in prediction and observation locations, where
maximum likelihood estimation is used on a hierarchical geostatistical model. How-
ever, they encounter prohibitive computation times with positional uncertainty
in the observation locations. Later work proposes a remedy for this through a
composite likelihood approach for linear geostatistical models with a Gaussian likeli-
hood (Fronterrè et al., 2018). Wilson and Wakefield (2021) consider the pos-
itional uncertainty in DHS data and develop a computational procedure which
uses integrated nested Laplace approximations (INLA) (Rue et al., 2009) within
a Markov chain Monte Carlo (MCMC) algorithm (Gómez-Rubio and Rue, 2018),
which for each simulation scenario had a computation time of around 52 hours. By
contrast, the novel approach proposed by Altay et al. (2022a) enables fast inference
measured in minutes in the presence of positional uncertainty by using the stochastic
partial differential equation (SPDE) approach (Lindgren et al., 2011) to approx-
imate the spatial field and the Template Model Builder (TMB) (Kristensen et al.,
2016) R-package for fast computations. Furthermore, the approach easily extends to
generalized linear geostatistical models, and has recently been made available as an
R-package (Altay et al., 2023), where Gaussian, Binomial and Poisson observation
likelihoods are supported. This model estimation approach uses numerical inte-
gration to approximate the mixture distribution which arises with positional un-
certainty, and we therefore refer to it as the numerical approach.

Because of the favorable qualities of the numerical approach, a key focus of this
thesis is to further study and develop the method. The numerical approach has
been applied and studied in the context of DHS data and the geomasking strategy
employed there. Altay et al. (2022a) find that using it to account for the geo-
masking in a smoothly varying spatial field leads to equally or better performance
in terms of parameter bias and predictive measures compared to the common appr-
oach of ignoring positional uncertainty. Altay et al. (2022b) introduce raster-based
covariates into the geostatistical model and find that accounting for geomasking
reduces attenuation in the estimated covariate coefficients and improves predictive
measures. Totland (2022) also includes spatial covariates in the numerical approach
and considers a Gaussian linear geostatistical model, for which accounting for pos-
itional uncertainty as opposed to ignoring it is found to give substantially less or
equally biased parameter estimates when there are sufficiently many observations
and the covariate signal is moderately strong.

In this thesis, we aim to study positional uncertainty from a wider perspective
than the application of geomasking in DHS data, and therefore give a detailed
account on relevant previous work on positional uncertainty. We focus on two
types of geomasking strategies, which we collectively refer to as jittering schemes.
Specifically, we consider disk jittering and donut jittering, whose names refer to
the shape of the positional uncertainty distribution. The numerical approach is
previously implemented for disk jittering, so we extend it to handle donut jittering.
Additionally, we develop a sample-based approach for inference under positional
uncertainty, and compare it to the numerical approach, both as an alternative
and as a verification tool. To study the impact of positional uncertainty in geo-
statistical modeling, we apply jittering schemes of varying scale to simulated data
in a simulation study and consider how adjusting for it compares to ignored it with
the numerical approach. We also explore how the privacy protection of a jittering
scheme can be evaluated, to hopefully give data managers a better way to justify

2



the choice of a specific jittering scheme. Finally, we demonstrate an application of
the numerical approach to real data, in a study of vaccination coverage in Nigeria.

To evaluate and compare models, we consider both parameter estimation and
predictive power. Parameter estimation is evaluated through bias, and predictive
power is evaluated with root-mean-square error (RMSE) and continuous ranked
probability score (CRPS) (Gneiting and Raftery, 2007). We do not consider cross-
validation, because the datasets we use for estimation contain observations with
positional uncertainty, which are not the target of prediction. Hence, we in stead
simulate datasets and use the underlying latent process as the target of prediction.

The thesis is structured as follows. Chapter 2 summarizes the traditional geo-
statistical modeling approach without positional uncertainty, in addition to the tools
employed to achieve computationally efficient inference. Then, Chapter 3 gives an
overview of the geostatistics-literature on positional uncertainty and describes the
jittering schemes we focus on. The model which incorporates jittering and our two
methods of model estimation and inference are presented in Chapter 4. In Chapter
5, the sample-based approach is used to investigate the accuracy of the numerical
approach. Chapter 6 contains a simulation study to compare how different jittering
schemes impact inference. The numerical approach is then applied to DHS data in
a case study of prevalences in Chapter 7. Finally, Chapter 8 ends the thesis with
a discussion of the presented material in relation to the objectives set out here,
weaknesses and future work.
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Chapter 2

Background

We present the traditional approach to geostatistical modeling in Section 2.1. Then,
Section 2.2 presents some important MCMC methods that can be used for sample-
based inference. Section 2.3 describes some tools that can be used to achieve comput-
ationally efficient inference. Lastly, Section 2.4 presents the scoring rules we use to
evaluate our estimated models. We remark that Sections 2.1, 2.3 and 2.4 are largely
based on the work of Totland (2022).

2.1 Geostatistical modeling

Geostatistics is a sub-discipline of spatial statistics, where a finite sample of geo-
referenced data is used to study some related, underlying spatially continuous phen-
omenon (Diggle and Ribeiro, 2007). We can model this phenomenon as a spatial
process, or field, which is a family of random variables u = {u(s) : s ∈ D} where
D is the domain under consideration and s is a location in that domain. In the
context of geostatistical modeling, D ⊂ Rd, where d ∈ N+, and u takes on values
in a real-valued state space. In terms of this general categorisation, geostatistical
modeling has seen applications in a diversity of fields, such as ecology, hydrology,
meteorology and environmental sciences (Kyriakidis and Journel, 1999). The first
step in geostatistical modeling is typically to model the distribution of the spatial
field. Then, Gaussian random fields are often particularly appealing.

2.1.1 Gaussian Random Fields

Gaussian random fields (GRFs) play a central role in geostatistical modeling by
providing a powerful yet simple tool for modeling spatial dependence. We define
GRFs in terms of their finite dimensional distribution.

Definition 1 (Gaussian Random Field). For a domain D ⊂ Rd, the random field
u = {u(s) : s ∈ D} is a Gaussian random field if ∀m ≥ 1 and ∀s1, . . . sm ∈ D, the
vector (u(s1), . . . , u(sm))

T has a multivariate Gaussian distribution. ∥

GRFs have the appealing property that they are uniquely determined by a mean
function m : D −→ R and a positive semi-definite covariance function c : D×D −→ R.
A centered GRF has m(s) = 0 ∀s ∈ D. We will exclusively consider centered GRFs
with a Matérn covariance function, which for si, sj ∈ D is given by

5



Background

c(si, sj) = σ2
S

21−ν

Γ(ν)

(√
8ν∥si − sj∥

ρS

)ν

Kν

(√
8ν∥si − sj∥

ρS

)
, (2.1)

where σ2
S is the marginal variance, ρS is the range, ν is the smoothness parameter,

Γ is the gamma function and Kν is the modified Bessel function of second kind
of order ν. This parametrization follows Lindgren et al. (2011) and makes ρS the
distance at which the correlation is approximately 0.1. We note that the Matérn
covariance function only depends on the distance h = ∥si − sj∥ between locations,
so we can equivalently let c(si, sj) = C(h). This property characterizes an isotropic
covariance function.

2.1.2 Bayesian Hierarchical Modeling

In this thesis, we adhere to the theory of Bayesian statistics. This means that
we model both the observed data and any unknown model parameters as random
variables. Now, to construct a Bayesian model, we let θ be the vector of model
parameters, η ∈ Rn be a discretized unobservable latent process, and y ∈ Rn be
the vector of observations which are connected to the discretized latent process,
where n ∈ N+. We model the distributional relationships between these quantities
hierarchically. Specifically, we model

y|η,θ ∼ π(y|η,θ),
η|θ ∼ π(η|θ), (2.2)

θ ∼ π(θ),

where each line in 2.2 represents a layer in the hierarchical model. The first line
represents the observation layer, the second line represents the underlying latent
layer, and the third line represents the parameter prior layer, which encodes any a
priori beliefs about the model. This hierarchical structure characterizes Bayesian
hierarchical models (Cressie and Wikle, 2011, Chapter 2.1), and serves to make the
model easier to understand and modify. Inference with the Bayesian hierarchical
model is based on the posterior, π(η,θ|y), which is the a posteriori distribution
of the unobserved quantities in the model, conditional on what we have observed.
Importantly, Bayes’ rule (Bayes, 1763) gives that

π(η,θ|y) = π(y,η,θ)

π(y)
=

π(y|η,θ)π(η|θ)π(θ)
π(y)

, (2.3)

enabling us to express the posterior (up to a normalizing constant) in terms of the
distributions modeled in (2.2).

We follow the hierarchical approach to construct the standard linear geostatistical
model. First, let y1, . . . yn denote the observations at the corresponding locations
s1, . . . , sn in the domain D ⊂ R2. We model our observations to be composed of a
stochastic latent process, η = {η(s) : s ∈ D}, and a noise process, ε = {ε(s) : s ∈
D}, such that

yi = η(si) + ε(si), i = 1, . . . , n, (2.4)

6
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where we let ε(si) = εi be the measurement error in observation i (also referred to
as the nugget effect or simply the nugget) which is considered to be independent
and identically distributed (iid) to the measurement error in other observations,

ε1, . . . εn | σ2
N

iid∼ N (0, σ2
N).

The latent process is is composed of spatial covariates and a GRF,

η(s) = x(s)Tβ + u(s), s ∈ D, (2.5)

where x(s) = (1, x1(s), . . . , xp−1(s))
T is a p-dimensional vector of deterministic

covariate values, β = (µ, β1, . . . , βp−1)
T is a p-dimensional vector of covariate coeff-

icients, and u is a centered GRF with a Matérn covariance function with marginal
marginal variance σ2

S, range ρS and fixed smoothness ν = 1.
It remains to specify a prior on β and a prior π(θ) on θ = (σ2

N, σ
2
S, ρS)

T. We
let β ∼ Np(0, V Ip) , where V is a fixed positive number which can be set to give a
sufficiently vague or informative prior. For the parameters associated with the GRF
and the nugget variance, we use penalized complexity priors, which are described
in Section 2.1.3. Finally, let y = (y1, . . . , yn)

T and η = (η(s1), . . . , η(sn))
T. The

standard linear geostatistical model can then be presented as a Bayesian hierarchical
model,

y|η, σ2
N ∼ Nn(η, σ

2
NIn),

η|β, σ2
S, ρS ∼ Nn(Xβ,ΣS(σ

2
S, ρS)), (2.6)

β ∼ Np(0, V Ip), θ ∼ π(θ),

where X is an n × p design matrix with i’th row given by x(si) and ΣS(σ
2
S, ρS)

is the n × n covariance matrix arising from the covariance function of the GRF,
with element (i, j) equal to c(si, sj). We note that this model can easily extended
to generalized linear geostatistical models by introducing a link function, g, and
letting E[y|η] = g(η) where the distribution of y|η belongs to an exponential family.
Furthermore, we assume that the observations are conditionally independent given
the discretized latent process and the parameter(s) of the observation layer. That
is,

π(y|η, σ2
N) =

n∏
i=1

π(yi|η(si), σ2
N).

2.1.3 Penalised Complexity Priors

To complete the Bayesian hierarchical model presented in Section 2.1.2, we need
to assign priors to the parameters, θ = (ρS, σ

2
S, σ

2
N)

T. The choice of priors is
often dictated by convenience, e.g., by using conjugate priors for computational
convenience or priors that have previously been used on similar problems in the
literature. Simpson et al. (2017) argue and demonstrate that such “ad hoc” app-
roaches to prior selection can have an unfortunate impact on inference, and, in
an attempt to alleviate the difficulty of prior selection, they propose a principled
approach to constructing penalized complexity (PC) priors.
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In the PC prior framework, model components are considered to be extensions
of less flexible base models. For example, the measurement error component in the
hierarchical model,

ε = (ε1, . . . , εn)
T | σ2

N ∼ Nn(0, σ
2
NIn),

consists of random effects, and a natural base model is the absence of these effects,
i.e., ε|σ2

N = 0. Furthermore, PC priors are constructed from a set of principles. The
principles state that the concept of Occam’s razor should be invoked, namely that
a less complex model should be preferred until there is sufficient support for a more
complex model. The measure of complexity is chosen to be the Kullback-Leibler
divergence (KLD) from the base model. If the probability density function (pdf) of
the base model is given by g and the pdf of the model component is given by f , the
KLD of f from g is given by (Kullback and Leibler, 1951)

DKL(f ∥ g) =
∫
Rm

f(z) log

(
f(z)

g(z)

)
dz, (2.7)

where z ∈ Rm, m ∈ N+. A measure of distance is constructed from (2.7), d(f∥g) =√
2DKL(f ∥ g). Then, a prior is placed on the distance, d, such that the rate of

penalization of deviation from the base model is constant. This amounts to placing
an exponential prior on d,

d ∼ Exp
(
λ̃
)
.

For the measurement error component, d = d(σ2
N), so a prior on, e.g., the nugget

variance, π(σ2
N), can be derived by an ordinary change of variables transformation.

Finally, to completely specify a PC prior, the principle of user-defined scaling
must be applied. That is, the practitioner should be able to control how the prior
mass is distributed through an interpretable scaling parameter, yielding a weakly
informative prior. In terms of the measurement error component one can construct
a PC prior which allows the user to specify (U, α) such that P(σN > U) = α. With
this choice, the prior of ξ = 1/σ2

N can be derived as

π(ξ) =
λ

2
ξ−3/2 exp(−λξ−1/2), ξ > 0, λ < 0,

where λ = − log(α)/U . More details on this derivation can be found in Appendix
A.1 of Simpson et al. (2017).

The spatial field in the hierarchical model is another model component which
needs parameter priors. Fuglstad et al. (2019) develop a joint PC prior for the
range and marginal variance of a GRF with Matérn covariance function with fixed
smoothness parameter. They select a base model with infinite range and zero
marginal variance, and develop a PC prior where the user specifies (ρ0, α1, σ0, α2)
such that

P(ρS < ρ0) = α1 and P(σS > σ0) = α2.

In the following, we will place these prior on the median, i.e., we let α1 = α2 = 0.5,
such that

P(ρS < ρ0) = 0.5 and P(σS > σ0) = 0.5,
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because we want to facilitate interpretability through the general familiarity with
the median.

2.2 MCMC Methods

When priors are defined and data is collected, posteriors are completely determined.
However, geostatistical models such as the one presented in (2.6) are typically
analytically intractable, making approximate inference necessary. If that is the
case, one way to proceed is with sample-based inference by using MCMC methods.
MCMC methods comprise a collection of methods in which Markov chains are used
to sample from a target probability distribution. Without loss of generality, assume
that we want to sample from the marginal distribution of z = (z1, . . . , zm)

T,m ∈ N+,
i.e., the target distribution is π(z). Then, in the MCMC framework, one constructs
an ergodic Markov Chain that has π(z) as its stationary distribution. The theory
of Markov chains and MCMC methods is vast, and the reader is referred to, e.g.,
Robert and Casella (2004) for a comprehensive overview. Here, we shortly present
the most important building blocks for constructing MCMC algorithms.

2.2.1 Gibbs Sampling

MCMC methods are often used because the dimension of z is large, making it
difficult to sample with, e.g., rejection sampling. In MCMC-algorithms, this problem
is solved by dividing the sampling into smaller parts. The Gibbs sampler is the
foremost example of this, where the full conditional distribution of each element
of z is sampled in each iteration of the chain. Specifically, in iteration b, we loop
through the elements of z and sample from

z
(b)
i |z

(b)
1 , z

(b)
2 , . . . , z

(b)
i−1, z

(b−1)
i+1 , . . . , z(b−1)

p , i = 1, . . .m,

where z
(b)
i is element i in z in iteration b of the chain. This of course presupposes

that the full conditionals are available and easy to sample from. It can then be
shown, under mild regularity conditions, that for large values of b,

(z
(b)
1 , z

(b)
2 , . . . , z(b)n ), (z

(b+1)
1 , z

(b+1)
2 , . . . , z(b+1)

p ), etc.,

can be regarded as (correlated) samples drawn from π(z) (Roberts and Smith, 1994).

2.2.2 Metropolis-Hastings Algorithm

The Gibbs sampler can in fact be framed as a special case of a more general
algorithm, namely the Metropolis-Hastings (MH) algorithm, which was first intro-
duced by Metropolis et al. (2004) in a statistical physics context and later generalized
by Hastings (1970). The MH algorithm relies on a proposal distribution q(z′|z) for
proposing new samples of z, and an acceptance probability,

α(z′, z) = min

{
1,

π(z′)q(z|z′)

π(z)q(z′|z)

}
, (2.8)

for deciding whether to accept or reject the newly proposed value z′ at each iteration
of the Markov chain. The MH algorithm is given in Algorithm 1, and it can be shown,
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under simple conditions, that the distribution of the samples it produces converges
to the target, π(z) (Roberts and Smith, 1994).

Algorithm 1 The MH algorithm.

Let B ∈ N+ be the number of iterations
Assign initial values to z(0)

for b = 1, . . . , B do
Sample z′ ∼ q(z′|z(b−1))
Sample u ∼ U[0,1]
if u ≤ α(z′, z(b−1)) then

z(b) ← z′

else
z(b) ← z(b−1)

end if
end for

2.3 Computationally Efficient Inference

Though MCMC methods are flexible and can be applied to nearly any geostatistical
model, they are often computationally intensive. Furthermore, doing likelihood-
based inference with the geostatistical model presented in (2.6) requires the eval-
uation of a multivariate Gaussian density with a dense n × n covariance matrix,
Σ. This entails calculating |Σ| and Σ−1v where v is an n × 1 vector. Typically, a
Cholesky factorization is used to speed up the calculations, but O(n3) operations are
still needed in general. This makes fast inference practically infeasible for standard
approaches when n ∼ 103 and higher. Therefore, additional tools are needed to
ensure computational efficiency. One such tool is the class of Gaussian Markov
random fields, whose spatial sparsity structure can be utilized to develop a comput-
ationally efficient inference scheme.

2.3.1 Gaussian Markov Random Fields

Gaussian Markov random fields (GMRFs) are defined in terms of a graph G and
a precision matrix, which for an n × n covariance matrix Σ, n ≥ 1, is given by
Q = Σ−1. The graph consists of a vertex set, V = {1, . . . , n}, and a set of edges,
E . The graph of a GMRF with V = {1, 2, 3, 4} and E = {{1, 2}, {2, 3}, {2, 4}} is
illustrated in Figure 2.1. Note that the edges are undirected, so an edge connecting
vertex i and vertex j can be written as both {i, j} and {j, i}. We define GMRFs in
line with Rue and Held (2005).

Definition 2 (GMRF). A random vector x = (x1, . . . , xn)
T ∈ Rn, n ≥ 1, is called a

GMRF with respect to the graph G = (V , E) with mean µ ∈ Rm and n× n positive
definite precision matrix Q if

π(x) = (2π)−n/2|Q|1/2 exp
(
−1

2
(x− µ)TQ(x− µ)

)
, x ∈ Rn, (2.9)

10
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Figure 2.1: A graph with four vertices and three edges.

and
Qij ̸= 0 ⇐⇒ {i, j} ∈ E ∀i ̸= j.

∥
By definition, a GMRF has a sparse precision matrix when the graph is sparse.

To illustrate this more clearly, we note that GMRFs exhibit the pairwise Markov
property, namely that

xi ⊥ xj | x−ij, if {i, j} ̸∈ E and i ̸= j,

where x−ij denotes the vector x stripped of element i and j. Furthermore, the
diagonal elements of the precision matrix are given by the relationship Q−1

ii =
Var(xi|x−i) and the off-diagonal elements are given by

Qij√
QiiQjj

= −Corr(xi, xj|x−ij), i ̸= j.

Thus, we know that for a GMRF equipped with the graph in Figure 2.1, x1 and
x4 are conditionally independent given all the other elements of the GMRF, since
there is no direct edge between vertex 1 and vertex 4. Consequently, Q14 = Q41 = 0.
On the other hand, since there is a direct edge between vertex 1 and vertex 2, we
know that Q12 = Q21 ̸= 0. Thus, x1 and x2 are conditionally dependent given all
the other elements of the GMRF. We note the contrast between Q and Σ, namely
that the precision matrix describes the conditional variance structure of x, whereas
the covariance matrix describes the marginal variance structure of x.

It is usually of interest to evaluate the log-density of a GMRF, i.e.,

log π(x) = −n

2
log(2π) + log(|Q1/2|)− 1

2
xTQx.

In practice, this is calculated by computing the Cholesky factorization LLT = Q,
where L is a lower-triangular matrix. The log-density then simplifies to

log π(x) = −n

2
log(2π) +

n∑
i=1

log |Lii| −
1

2
xTLLTx.

There exists numerical techniques such as bandwidth reduction and nested segment-
ation which ensure that L inherits the sparsity of Q, which makes both the comput-
ation of L and the calculation of Lx and LTx quicker. Typically, evaluation of the
log-density requires O(n3/2) operations for Q with two-dimensional spatial sparsity
(Rue and Held, 2005).
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2.3.2 The SPDE Approach

As previously mentioned, inference with GRFs is computationally constrained by
the need to factorize a dense covariance matrix. However, GMRFs (with sufficient
spatial sparsity) do not suffer from this computational limitation. In their article,
Lindgren et al. (2011) aim to take advantage of this, and establish a connection
between GRFs and GMRFs. They propose an approach where a GRF is used in
the modeling process, while computations are done on a corresponding GMRF that
represents the GRF. This approach emerges from an SPDE. Specifically, if we let
u be a centered GRF with a Matérn covariance function as defined in (2.1) with
ν = 1, the approach is based on the fact that u is a stationary solution to the SPDE
given by

(κ2 −∆)(τu(s)) =W(s), s ∈ R2, (2.10)

where

κ =

√
8

ρS
, τ =

1√
4πκσS

, (2.11)

∆ is the Laplacian, andW is standard Gaussian white noise. The operator (κ2−∆)
in Equation (2.10) is a local differential operator in the sense that it only depends on
the value of u in an infinitesimal neighbourhood of s. This implies that the stationary
solution of the SPDE is a Markovian GRF (Simpson et al., 2012). A Markovian
GRF is characterized informally as follows. Let A, B and C be a partition of D such
that B separates A from C, as illustrated in Figure 2.2. Then, if u is a Markovian
GRF,

{u(s) : s ∈ A} ⊥ {u(s) : s ∈ C} | {u(s) : s ∈ B}. (2.12)

That is, the field evaluated on A is independent of the field evaluated on C, cond-
itional on the field evaluated on B, which separates A from C. It is the “local”
character of (2.10) which leads to the spatial Markov structure in the stationary
solutions. In turn, this leads to sparse precision matrices and GMRFs when we
(approximately) solve the SPDE. The reader is referred to Simpson et al. (2012) for
more details on this topic.

Now, we find an approximation to the stochastic weak solution of (2.10) on the

domain D̃ ⊃ D, which necessitates some boundary conditions. We follow Lindgren
et al. (2011) and use a Neumann boundary condition. That is, we solve

(κ2 −∆)(τu(s)) =W(s), s ∈ D̃, ∂nu(s) = 0, s ∈ ∂D̃, (2.13)

where ∂D̃ is the boundary of D̃ and ∂n is the gradient in the direction of the normal
to the boundary, n. The reason why we introduce the extension D̃ of D is to reduce
boundary effects.

A triangulated mesh with K ∈ N+ vertices is constructed on the domain D̃, such
as illustrated in Figure 2.3. Defining the inner product ⟨f, g⟩ =

∫
D̃ f(s)g(s)ds, the

approximation to the stochastic weak solution is found by requiring that

{⟨ϕj, (κ
2 −∆)u⟩, j = 1, . . . , K} d

= {τ−1⟨ϕj,W⟩, j = 1, . . . K}, (2.14)
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Figure 2.2: A partition of the domain, D = A∪B ∪C where B separates A and C.

where “
d
=” denotes equality in distribution and {ϕk}Kk=1 is a specific set of test

functions which we choose to be piecewise linear basis functions, such that ϕk = 1
at vertex k and ϕk = 0 at any other vertex in the mesh. Then, we construct a finite
element representation of u by using the test functions as basis functions,

ũ(s) =
K∑
k=1

ϕk(s)wk, s ∈ D̃, (2.15)

where the weights w = (w1, . . . , wK)
T are multivariate Gaussian-distributed. The

left hand side of Equation (2.14) then becomes {
∑K

k=1wk⟨ϕj, (κ
2 − ∆)ϕk⟩, j =

1, . . . , K}, which can be written as the matrix-vector product Kw, where K is
a K ×K matrix with elements

Kij = ⟨ϕi, (κ
2 −∆)ϕj⟩ = κ2⟨ϕi, ϕj⟩+ ⟨∇ϕi,∇ϕj⟩,

where the second transition follows from an application of Green’s formula and the
Neumann boundary condition.

Next, we define the two K ×K matrices C and G with elements Cij = ⟨ϕi, ϕj⟩
and Gij = ⟨∇ϕi,∇ϕj⟩, respectively. Then, by the properties of standard Gaussian
white noise (Lindgren, 2012, Chapter 2), the right hand side of Equation (2.14) is
distributed as N (0, τ−2C). Thus, the distribution of the weights is given by

w ∼ N (0, τ−2K−1CK−1),

so w has a precision matrix given by Qw = τ 2KC−1K. The matrices C and G are
easily obtained, since their elements are nonzero only for the pairs of basis functions
which share the same triangle in the mesh. Additionally, they do not depend on the
parameters, κ and τ . The matrix C−1 is, however, dense, so the precision matrix of
w is not yet sparse. But, as shown in Appendix C.5 of Lindgren et al. (2011), we can

replace C by the diagonal matrix C̃ (in the construction of K also) with elements

C̃ii = ⟨ϕi, 1⟩. Then Qw will be sparse, and we have a mapping from the parameters
of the GRF u to the sparse precision matrix of its GMRF representation which takes
O(K) operations to compute for any triangulation (Lindgren et al., 2011).

The GMRF representation of u can be used to approximate the latent process
given by Equation (2.5),
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η(s) ≈ η̃(s) = x(s)Tβ +
K∑
k=1

ϕk(s)wk, s ∈ D,

where the domain changes from D̃ to D, because x : D −→ Rp is only defined on D.
This gives the discretized latent process

η̃ = (η̃(s1), . . . , η̃(sn))
T = Xβ +Aw, (2.16)

where A is an n × K projection matrix with elements Aij = ϕj(si), i = 1, . . . n,
j = 1, . . . K. Note that A is sparse, since it has at most 3 non-zero elements per row
by the choice of pyramidal basis functions. Thus, we can use numerical methods for
sparse matrices to avoid the O(nK) cost of calculating Aw if A were dense.

To illustrate the computational gain from applying the SPDE approach, we
consider the cost of evaluating the joint probability density of the geostatistical
model in (2.6). That is, we want to evaluate the joint density

π(y,η,β,θ) = π(y|η, σ2
N) · π(η|β, σ2

S, ρS) · π(β) · π(θ). (2.17)

The first factor on the right hand side of Equation (2.17) requires O(n) operations,
since we need to evaluate a univariate Gaussian density for each of the n observation.
The second factor requires O(n3) operations, since we in general need to factorize
a dense n× n covariance matrix. The last two factors have a constant contribution
to the computational cost (they do not scale with n), so evaluation of the density
in (2.17) requires O(n + n3) = O(n3) operations in total. However, we can use the
approximation provided by the SPDE-approach, and in stead consider

π(y,w,β,θ) = π(y|η̃, σ2
N) · π(w|σ2

S, ρS) · π(β) · π(θ). (2.18)

The first factor on the right hand side of Equation (2.18) still requiresO(n) operations,
while the second factor by Section 2.3.1 now only requires O(K +K3/2) = O(K3/2)
operations. Thus, evaluation of the density in Equation (2.18) requires O(n+K3/2)
operations in total, which is linear as opposed to cubic in the number of observations,
which represents a major reduction in computational cost.

2.3.3 TMB

Applying the SPDE approach to the geostatistical model in (2.6) gives a model
which is parameterized by θ = (σ2

N, σ
2
S, ρS)

T and the random effects z = (β,w)T.
To estimate this model in a computationally efficient manner, we use the R-package
TMB (Kristensen et al., 2016). TMB provides a fast and general framework for
estimation of statistical models, by allowing the user to specify the joint distribution
of the data and the latent variables (random effects) as a C++ template function.
TMB also utilizes C++ libraries such as CppAD to perform automatic differentiation,
making calculation of gradients and the Hessians quick (Kristensen et al., 2016).

We outline the estimation procedure in TMB. Since TMB is rooted in frequentist
inference, we must distinguish between fixed effects and random effects. We treat
θ = (ρS, σ

2
N, σ

2
S)

T as fixed effects, but we will work with ϕ = (log κ, log τ, log σN)
T

instead, due to how priors are defined and because we want to avoid constraints
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Figure 2.3: A triangulated mesh over a rectangular domain. The area outside the
blue boundary is needed to reduce boundary effects.

such as σ2
N > 0 in the optimization routine. Recall that Equation (2.11) gives the

relationship between θ and ϕ. The vector z = (β,w)T denotes the random effects,
which consists of p + K elements, p covariate coefficients and K weights. TMB
produces marginal maximum a posteriori (MMAP) estimates of the fixed effects, ϕ,
by maximizing the marginal posterior of ϕ, π(ϕ|y). We can express the marginal
posterior of the fixed effects as

π(ϕ|y) =
∫

π(ϕ, z|y)dz ∝
∫

π(ϕ, z,y)dz

=

∫
π(y|ϕ, z)π(z|ϕ)π(ϕ)dz

=

∫
exp {log π(y|ϕ, z) + log π(z|ϕ) + log π(ϕ)} dz

=

∫
exp {−f(ϕ, z)} dz =: L∗(ϕ). (2.19)

where f(ϕ, z) = −(log π(y|ϕ, z) + log π(z|ϕ) + log π(ϕ)).
The estimation procedure in TMB consists of a two-step nested optimization

routine. First, given a set of parameter values for ϕ, new modal values are found
for the random effects by nonlinear optimization of

ẑ(ϕ) := argmin
z

f(ϕ, z). (2.20)

Then, L∗(ϕ) as defined in (2.19) is approximated with a Laplace approximation,

L∗(ϕ) ≈ L̃∗(ϕ) = (2π)(p+K)/2|H(ϕ)|1/2 exp{−f(ϕ, ẑ(ϕ))}, (2.21)

where H(ϕ) is the Hessian of f(ϕ, z) with respect to z, denoted by H, evaluated
at z = ẑ(ϕ). The current values of the random effects are inserted into (2.21),

which is optimized to find new modal values ϕ̂ of ϕ. If the maximum gradient
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component of L̃∗(ϕ) at ϕ = ϕ̂ is below some threshold, the estimation procedure
stops. Otherwise, we return to (2.20) and insert the newly found estimates of ϕ.

To ensure computational efficiency, it is important that H is sparse. In that
regard, note that for i, j > 3 + p,

Hij =
∂2f(ϕ, z)

∂wi∂wj

= − ∂2

∂wi∂wj

(log π(y|η, σ2
N) + log π(w|σ2

S, ρS))

= −
[

∂2

∂wi∂wj

(log π(y|η, σ2
N) + (Qw)ij

]
. (2.22)

Thus, Hij = (Qw)ij when π(y|η, σ2
N) does not depend on wi or wj. In that way, H

inherits the sparsity of Qw. TMB has automatic sparsity detection, which utilizes
this effect (Kristensen et al., 2016).

The R-package INLA Rue et al. (2009) can also be used to estimate the model
considered here, and we do precisely this in order to verify the implementation of
a sample-based approach in Appendix C. INLA is amenable to the class of latent
Gaussian models, and estimates the marginal posteriors of model parameters. How-
ever, when we introduce positional uncertainty, the observation likelihood becomes
a mixture distribution which INLA does not have the flexibility to handle. Thus, we
use TMB, which enables the user to manually specify the distribution of the data.
For a comprehensive overview of TMB and a comparison to INLA in the context of
spatial statistics, the reader is referred to Osgood-Zimmerman and Wakefield (2021).

2.4 Scoring Rules

To evaluate the predictive power of estimated models, we use RMSE for point
predictions and CRPS for the predictive distributions. Let ŷ = (ŷ1, . . . , ŷnP

)T denote
a set of point predictions with corresponding true values y = (y1, . . . , ynP

)T. The
RMSE is then given by

RMSE =

√√√√ 1

nP

nP∑
i=1

(ŷi − yi)2.

We prefer the model with lowest RMSE.
For each observation, yi, i = 1 . . . n, let Fi denote the cumulative predictive

distribution obtained from the estimation procedure. The CRPS compares Fi and
yi, and is defined as follows,

CRPS(Fi, yi) =

∫
R
(Fi(x)− I(x ≥ yi))

2dx, (2.23)

where I is the indicator function and lower values of (2.23) are preferred. CRPS
generalizes the absolute error. Specifically, if Fi were deterministic, CRPS(Fi, yi) =
|ŷi − yi|. Additionally, CRPS is a proper scoring rule, which means that if P is the
true cumulative predictive distribution and F is the proposed cumulative predictive
distribution, then EP [CRPS(P, y)] ≤ EP [CRPS(F, y)] where y ∼ P for all P and F
(Gneiting and Raftery, 2007).
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For a given model, we consider the average CRPS over all predictions,

CRPS =
1

nP

nP∑
i=1

CRPS(Fi, yi),

where we prefer the model with lowest average CRPS. In the following, we drop
“average”, when referring to the average CRPS of a model. To calculate CRPS
numerically, samples are drawn from the predictive distributions, and we use the
approximation of (2.23) as it is implemented in the R-package scoringRules (Jordan
et al., 2019).
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Chapter 3

Observations with Positional
Uncertainty

We opened this thesis by noting that the assumption of exact observation locations
may not always be reasonable for a variety of reasons: coordinates could be intention-
ally rounded for convenience, uncertainty in the measured locations could be large
relative to the size of the domain, and masking of the true locations due to privacy
concerns could have been applied. In these scenarios, we do not know the true
locations, i.e., the locations at which the observations are taken. Instead, we only
have access to some related but incorrect counterparts. We say that every unknown
true location, s∗ ∈ D, has an observed counterpart, s ∈ D. Section 3.1 begins by
reviewing proposed approaches to account for positional uncertainty. Then, Section
3.2 gives an overview of geomasking and describes the jittering schemes we focus on
in detail. Finally, Section 3.3 gives some theoretical results.

3.1 Accounting for Positional Uncertainty

3.1.1 Geostatistical Approaches

Positional uncertainty has received some attention in the literature of geostatistics,
starting with the paper of Gabrosek and Cressie (2002), who derive kriging equations
adjusted for location error, and find that, when the location error is large, this
adjustment gives markedly better performance with respect to mean squared predict-
ion error. Cressie and Kornak (2003) continue on this work, and develop more
general kriging equations for geostatistical models with non-constant means. They
discuss two models of positional error, the coordinate positioning (CP) model and
the feature-positioning (FP) model. The CP model is appropriate when we know
the intended sampling location, s, but, in the “attempt” to sample from s, we
“mistakenly” sample from s∗ instead. In this situation, the positional error is
modeled as

s∗ = s+ ϵ,

and we specify the distribution of s∗|s. On the other hand, the FP model is
appropriate when we know the feature from which to sample from, but the location
of the feature is determined with some error. Then, the positional error is modeled
as

s = s∗ + ϵ,
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and we specify the distribution of s|s∗. These two models of positional error are
connected to the theory of measurement error models, in which the CP model
corresponds to the Berkson measurement error model, while the FP model correspond
to the classical measurement error model (Carroll et al., 2006).

Cressie and Kornak (2003) continue with the CP model for positional error, and
calculate the moments of an observation process which is adjusted for positional
error. Using the latent model described in Section 2.1.2, we can analogously define
the adjusted latent process

η∗(s) = x(s+ ϵ)Tβ + u(s+ ϵ), s ∈ D.

The mean function of this process can be calculated as

m∗(s) = E[η∗(s)] =

(∫
x(s+ ϵ)π(ϵ)dϵ

)T

β,

while the stationary covariance function is given by

C∗(h) = Cov[η∗(s), η∗(s+ h)] =

∫ ∫
C(h+ ϵ1 − ϵ2)π(ϵ1)π(ϵ2)dϵ1dϵ2.

They then proceed by assuming that the adjusted spatial process with this mean and
covariance function is a new Gaussian process, and use this assumption to estimate
the model parameters. As they point out, this is a pseudo-likelihood approach,
since the assumption of Gaussianity is not true in general. To make predictions
of the observation process at a desired location s∗0 ∈ D, they consider the class of
linear predictors using the observations which arise from the latent process η∗. This,
combined with the parameter estimates from the pseudo-likelihood approach, gives
kriging adjusted for positional error. In a simulation experiment, they find that this
adjustment leads to more efficient predictions with less mean squared prediction
error. However, the approach has some clear drawbacks, namely the erroneous
assumption that the adjusted observation process is Gaussian and the seemingly
difficult task of extending the approach to generalized geostatistical models.

Fanshawe and Diggle (2011) consider Gaussian geostatistical models such as
(2.6), and specify the positional error model through the conditional distribution
π(s∗|s) and a prior, π(s), which is taken to be uniform over D. We note that this
corresponds to the CP model described above. Specifically, they use a bivariate
Gaussian distribution to model the positional error,

s∗|s ∼ N2(s, δ
2I2), (3.1)

where δ > 0. The resulting likelihood of the observations is evaluated with Monte
Carlo integration. However, computation times are found to be prohibitively long
when there is positional error in the observation locations. Fronterrè et al. (2018)
continue on this work and try to overcome the computational limits by using a
composite likelihood (CL) approach, where only pairs of observations are considered
to depend on each other. Additionally, they apply this approach to DHS data,
and consequently model the positional error in terms of the FP model. In a
simulation study, they find the CL approach to give substantially smaller RMSE
for the parameter estimates. However, the effect of the CL approximation on the
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accuracy of inference is not investigated, and the authors do not discuss how the
approach can be extended to other observation distributions. Additionally, they
approximate the geomasking strategy used in DHS data with the bivariate pos-
itional error model.

Wilson and Wakefield (2021) consider DHS data, and develop an estimation
procedure which applies to latent Gaussian models under positional uncertainty.
Furthermore, the exact geomasking strategy employed in DHS is modeled through
the conditional distribution π(s|s∗), which resembles the FP-model for positional
error. They employ the SPDE approach and use an INLA within MCMC algorithm
(Gómez-Rubio and Rue, 2018) to estimate the model which accounts for positional
error. In each iteration of the algorithm, the unknown true locations are sampled,
before INLA is used to construct marginal posteriors of what corresponds to ϕ and
z in this text (see Section 2.3.3), from which samples are drawn. This method uses
a masterframe of sampling locations. Additionally, the computational time of the
method inhibits fast inference. The paper reports a running time of 52 hours to run
1000 iterations of the INLA within MCMC method for each scenario, mainly owing
to the estimation with INLA in each iteration.

The above presentation highlights the need for a computationally efficient and
flexible approach to inference under positional uncertainty. The numerical approach
presented by Altay et al. (2022a) achieves computationally efficient inference by
using the SPDE approach and TMB, and can easily be extended to generalized
linear geostatistical models. A thorough description of the numerical approach is
given in Section 4.2.

3.1.2 Covariate-specific Approaches

The findings of Altay et al. (2022b) and Totland (2022) indicate that the foremost
concern when doing geostatistical inference under jittering is to account for the
added uncertainty in the spatial covariates, x(s), s ∈ D. Specifically, Altay et al.
(2022b) obtain nearly identical results when only accounting for jittering in the
covariates and when accounting for jittering in both covariates and the spatial field.
This result is reasonable, as the GRF used to model spatial correlation is typically
much smoother and less variable than raster-based covariates at the spatial scale of
jittering. This connects to the discussion of Fanshawe and Diggle (2011), who find
that the local gradient of the underlying surface which we are trying to model may
be important in determining the impact of positional errors.

Some techniques to specifically adjust for positional error in covariates have
been proposed in the context of DHS data. Perez-Heydrich et al. (2016) propose
a regression calibration approach for distance-based covariates, and Warren et al.
(2016) suggest that raster-based covariates can be exchanged with averages of neigh-
borhood buffers. The latter approach clearly does not address the issue of atten-
uation in the covariate coefficients. Furthermore, applying these approaches to the
covariates changes the meaning of the covariate coefficients, β, making the model
more difficult to interpret. Therefore, we do not consider these approaches in the
following, and in stead focus on the numerical approach with adjustment for jittering
in both the spatial covariates and the spatial field.

21



Observations with Positional Uncertainty

3.2 Positional Uncertainty from Geomasking

When geographical data is collected along with other features of, e.g., a household or
an individual, there is often a conflict of interest between making the geo-referenced
data widely available and protecting the privacy of data subjects. This dilemma is
present in areas such as epidemiology (Cassa et al., 2006), environmental studies
(Fronterrè et al., 2018) and demographic and health studies (Burgert et al., 2013).
Geomasking terms the practice of concealing the exact locations of observations
in a dataset by applying a stochastic or deterministic masking procedure. In that
way, geomasking can be used to strike a balance between the competing interests
of privacy protection and the benefits of making the data widely available, such as
allowing more researchers to analyze and produce insights from the geo-referenced
data. The specific choice of geomasking strategy depends on the nature of the data,
for which the risk of disclosure should be compared to the potential consequences
of disclosure.

Armstrong et al. (1999) study geomasking in the context of preserving health
record confidentiality. They find that in stead of using the common approach of
areal aggregation of records, the records can be masked by randomly displacing their
locations within a disk, and that this may give a better trade-off between privacy
protection and utilization of the data. Here, we will study this type of geomasking,
referred to as disk jittering (also referred to as random perturbation and random
direction-random distance method in the literature) in addition to donut jittering
(also referred to as donut masking in the literature), which are closely described
in the following paragraphs. There exists multiple other geomasking strategies to
choose from, and we refer to Zandbergen (2014) for a review on this topic.

In disk jittering, the geographic coordinates of a data point are displaced rand-
omly by uniformly generating an angle between 0 and 2π radians and displacing
the point in the direction of that angle. The displacement distance is uniformly
generated and is restricted to be less than the radius of some circle. This is illustrated
on the left side of Figure 3.1, where the true location (purple point) is randomly
perturbed to a new location (green point) within a disk with radius R2 > 0. We
model disk jittering according to the FP model, i.e., we specify

π(s|s∗) ∝ I(d(s, s∗) < R2)

d(s, s∗)
,

where d(s, s∗) is the distance between s and s∗ in appropriate units. Since we do
Bayesian statistics, we also need to specify a prior on the unknown true location,
π(s∗), which is discussed in Section 4.1. Importantly, the DHS program uses a
combination of disk jittering schemes in their geomasking strategy (Burgert et al.,
2013).

Donut jittering is similar to disk jittering: an angle is uniformly drawn between 0
and 2π radians before the coordinate is displaced in the direction of that angle. The
displacement distance is uniformly drawn such that the jittered point is restricted
to lie within an annulus with inner radius R1 > 0 and outer radius R2 > R1, as is
illustrated on the right side of Figure 3.1. We also model donut jittering according
to the FP model, i.e., we specify
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Figure 3.1: Illustration of disk jittering (left) and donut jittering (right). The true
location (purple) is jittered to a new location (green point). In disk jittering, the
displaced coordinate is restricted to lie within a disk with radius R2, while in donut
jittering, the displaced point is restricted to lie within an annulus with inner radius
R1 and outer radius R2.

π(s|s∗) ∝ I(R1 < d(s, s∗) < R2)

d(s, s∗)
.

Donut jittering has been advocated as a superior alternative to disk jittering on
the basis of better privacy protection (Hampton et al., 2010; Allshouse et al.,
2010). In these papers, privacy protection is quantified with the k-anonymity metric,
which measures the number of individuals a de-identified study object cannot be
distinguished from (Sweeney, 2002). However, the use of this metric by Hampton
et al. (2010) and Allshouse et al. (2010) presupposes that the geomasking strategy is
unknown to the analysts. Thus, their results do not directly apply to the situation
studied in this thesis, where we want to utilize the known geomasking strategy
to improve inference. Therefore, we in stead investigate the privacy protection
properties of different geomasking strategies by considering the posterior of the
unknown true locations (see Section 6.3).

We note that donut and disk jittering may be framed within the same class of
positional error models, where disk jittering is just donut jittering with R1 = 0. In
the following, we refer to different combinations of R1 and R2 as different jittering
schemes, and we may refer to the application of these schemes as jittering of the
observation locations.

3.3 Theoretical Results

Some theoretical results have been developed for geostatistical inference in the
presence of positional uncertainty. Fronterrè et al. (2018) consider the effect geo-
masking has on the spatial covariance structure, and calculate a theoretical vario-
gram in the presence of positional uncertainty. Here, we carefully derive the same
result.
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Observations with Positional Uncertainty

First, the positional error model corresponds to the FP model described in
Section 3.1, and is of the bivariate Gaussian form,

s|s∗ ∼ N2(s
∗, δ2I2), (3.2)

with a positional error variance δ2 > 0. We consider the model given by (2.6), and let
s1, . . . , sn denote the observed locations while s∗1, . . . , s

∗
n denote the corresponding

unknown true locations. Next, we introduce some notation, where we let

vij =
1

2

[
(yi − x(s∗i )

Tβ))− (yj − x(s∗j)
Tβ))

]2
,

uij = ∥si − sj∥, u∗
ij = ∥s∗i − s∗j∥, i, j = 1, . . . n, i ̸= j.

Additionally, we denote the components of the observed and true locations by si =
(si1, si2)

T and s∗i = (s∗i1, s
∗
i2)

T. With this notation, we define the variogram without
positional uncertainty,

γ∗(u∗
ij) = E[vij|u∗

ij] = σ2
N + σ2

S(1− ρ(u∗
ij)),

where ρ(u∗
ij) = σ−2

S C(u∗
ij) is the isotropic correlation function of the GRF. With

positional uncertainty, we do not know u∗
ij, and instead seek to find an expression

for γ(uij) = E[vij|uij]. We assume vij ⊥ uij | u∗
ij. Then, the pdf of of vij|uij is given

by

π(vij|uij) =

∫ ∞

0

π(vij|u∗
ij)π(u

∗
ij|uij)du

∗
ij,

where π(vij|u∗
ij) is the pdf of a scaled chi-squared distribution with 1 degree of

freedom, i.e., vij|u∗
ij ∼ γ∗(u∗

ij)χ
2
1. On the other hand, π(u∗

ij|uij) is the pdf of a Rice

distribution, u∗
ij|uij ∼ Rice(uij,

√
2δ). To see this, we note that, by the positional

error model,

(s∗i1 − s∗j1) | si1, sj1 ∼ N (si1 − sj1, 2δ
2) = N (uij cos θ, 2δ

2),

(s∗i2 − s∗j2) | si2, sj2 ∼ N (si2 − sj2, 2δ
2) = N (uij sin θ, 2δ

2),

where the angle θ ∈ (0, 2π) is illustrated in Figure 3.2. Thus, treating δ and θ as
fixed, we can equivalently write

(s∗i1 − s∗j1) | uij ∼ N (uij cos θ, 2δ
2),

(s∗i1 − s∗j1) | uij ∼ N (uij sin θ, 2δ
2).

Then, by Appendix A of Fronterrè et al. (2018), the random variable

u∗
ij|uij =

√
(s∗i1 − s∗j1)

2 + (s∗i1 − s∗j1)
2 | uij ∼ Rice(uij,

√
2δ).

Now, we can develop an expression for γ(uij) by employing the law of total expectation,

γ(uij) = E[vij|uij] = E
[
E[vij|u∗

ij] | uij

]
= σ2

N + σ2
S

(
1− E

[
ρ(u∗

ij)|uij

])
. (3.3)
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Figure 3.2: Illustration of how the angle θ is constructed in relation to two locations,
s∗i and s∗j .

From (3.3), we see that as the scale of the positional error diminishes, i.e., δ → 0 and
uij → u∗

ij, we retain the true variogram, γ(uij)→ γ∗(u∗
ij). In general, E

[
ρ(u∗

ij|uij)
]

is not available in closed form. However, we can derive a closed form expression for
(3.3) when the covariance function is Gaussian. Specifically, the Gaussian correlation
function is given by

ρ(u∗
ij) = exp

{
−
(

u∗
ij

ρS/
√
8

)2
}
.

Then, one can show (see Appendix A) that

E
[
ρ(u∗

ij) | uij

]
=

1

1 + 4r2
exp

{
−
(

uij

ρS/
√
8 ·
√
1 + 4r2

)2
}
, (3.4)

where r =
√
8δ/ρS. The true variogram is retained if r → 0, while if r → ∞, the

spatial correlation structure is destroyed, and γ(uij) → σ2
N + σ2

S. Furthermore, as
uij → 0, E

[
ρ(u∗

ij) | uij

]
→ (1 + 4r2)−1 ≤ 1, so that γ(0) ≥ σ2

N. Thus, we may infer
that the positional uncertainty in this scenario leads to biased estimates of the spatial
range and the variance of the nugget effect. Specifically, we would expect the spatial
range to be underestimated, because of the diminishing spatial correlation structure,
and the nugget effect to be overestimated, because of the added uncertainty.

We focus on disk and donut jittering in the following chapters as opposed to
positional error models of the bivariate normal form. Additionally, we use a Matérn
covariance function as opposed to a Gaussian one. Nonetheless, the jittering distrib-
utions are similar to the bivariate normal distribution: they are symmetric around
the true location and decay radially outwards from it (from R1 and outwards).
Furthermore, the Gaussian covariance function is a limiting case of the Matérn
covariance function, as ν → ∞. Therefore, we expect the ratio R2/ρS to play a
similar role in our simulations under disk and donut jittering as δ/ρS does here.
Specifically, we expect that increasing the ratio R2/ρS will induce a larger under-
estimation of ρS and a larger overestimation of σ2

N when jittering is ignored.
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Chapter 4

Geostatistical Inference under
Positional Uncertainty

In this chapter, we describe the Gaussian geostatistical model which incorporates
positional uncertainty in Section 4.1. Then, two approaches to estimation and
inference with this model are presented. Section 4.2 describes the numerical appr-
oach, and Section 4.3 describes and constructs the sample-based approach. We
remark Sections 4.1 and 4.2 are largely based on the work of Totland (2022).

4.1 Model Description

In the presence of positional uncertainty, such as jittering, we have a set of true
locations, denoted by s∗1, . . . , s

∗
n ∈ D ⊂ R2, and a corresponding set of jittered

locations, denoted by s1, . . . , sn ∈ D. Figure 4.1 illustrates the application of
disk jittering to a set of (true) locations. Importantly, since the true locations
are unknown, and the observed locations have been displaced randomly, we treat
both s∗i and si, i = 1, . . . n, as random quantities.

The data originates from the true locations, so the observation model given by

yi|η(s∗i ), σ2
N ∼ N (η(s∗i ), σ

2
N), i = 1, . . . n,

with latent model

(η(s∗1), . . . η(s
∗
n))

T|β, σ2
S, ρS, s

∗
1, . . . s

∗
n ∼ N (Xβ,ΣS(σ

2
S, ρS)),

corresponds exactly to the standard geostatistical model described in Section 2.1.2.
However, only the jittered locations, s1, . . . , sn, are known in this setting, so we
need an observation model which incorporates the uncertainty which this adds. To
obtain this, we specify a model for the positional uncertainty through the conditional
distribution of an observed location given its corresponding true location and a prior
on the unknown true location,

si|s∗i ∼ π(si|s∗i ), s∗i ∼ π(s∗i ), i = 1, . . . n. (4.1)

For the prior on the unknown true locations, π(s∗i ), one could, e.g., use the population
density if this is known a priori. Population density maps may be available through
sources such as WorldPop et al. (2018), but these surfaces are modeled surfaces
with inherent bias and uncertainty, which necessities an investigation of the impact
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Geostatistical Inference under Positional Uncertainty

Figure 4.1: An illustration of disk jittering. The points are randomly displaced as
indicated by the arrows. The circle around each point indicates the outer radius of
the jittering disk.

their use would have on inference. We do not consider this further, and in stead
place a uniform prior over the domain of interest, i.e., we let π(s∗i ) ∼ U(D). The
positional error model in (4.1) corresponds to the FP model for positional error
presented in Section 3.1. That is, we view the true locations, s∗1, . . . , s

∗
n, to be the

locations of some features we are interested in, e.g., clusters in a health study,
whose true locations are reported with some error, so that we instead observe
si = s∗i + ϵi, i = 1, . . . , n.

To summarize, the Gaussian model which incorporates positional uncertainty in
the observation locations is given by

yi|η(s∗i ), σ2
N ∼ N (η(s∗i ), σ

2
N), si|s∗i ∼ π(si|s∗i ), i = 1, . . . n,

where the pairs (y1, s1), . . . (yn, sn) represent the observations. We assume that the
observations are conditionally independent, given the latent field and the parameter(s)
in the observation layer,

π(y, s1, . . . , sn|η, σ2
N) =

n∏
i=1

π(yi, si|η, σ2
N). (4.2)

Both the numerical and sample-based approach rely on the SPDE approach
presented in Section 2.3.2. That is, we approximate the latent process by

η(s) ≈ η̃(s) = x(s)Tβ +
K∑
k=1

ϕk(s)wk, s ∈ D.

Using this approximation, the joint likelihood in Equation (4.2) becomes

π(y, s1, . . . , sn|η̃, σ2
N) =

n∏
i=1

π(yi, si|z, σ2
N), (4.3)

where z = (β,w)T are the random effects from Section 2.3.3. The model structure
after applying the SPDE approach is illustrated in Figure 4.2. Here, we follow the
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Figure 4.2: Diagram of the Gaussian geostatistical model with positional un-
certainty, after the SPDE approach has been applied, where η̃∗i = η̃(s∗i ). The directed
edges show dependence relationships and emphasize the hierarchical structure of the
model. Observed quantities are indicated with a grey background.

convention presented by (Cressie and Wikle, 2011, Chapter 2.4), where the directed
edges in the figure emphasize the causal relationships and the modeled distributions.
For example, s∗i “causes” si in that si is a jittered version of s∗i , and we model the
distribution π(si|s∗i ).

4.2 The Numerical Approach to Inference

4.2.1 Numerical Approximation of the Likelihood

To evaluate the likelihood of an individual observation, we express it as an integral
over the unknown true locations,

π(yi, si|η, σ2
N) ≈ π(yi, si|η̃, σ2

N)

=

∫
R2

π(yi, si, s
∗
i |η̃, σ2

N)ds
∗
i

=

∫
R2

π(yi|η̃(s∗i ), σ2
N)π(si|s∗i )π(s∗i )ds∗i ,

(4.4)

where we have used that s∗i is independent of η̃ and σ2
N, and that yi is conditionally

independent of si given η̃(s∗i ) (see Figure 4.2). The integral in (4.4) needs to be
approximated numerically. The numerical integration scheme should be applicable
to both disk and donut jittering schemes, which are described Section 3.2. This
is achieved by dividing the integration area of observation i into a number of j =
1, . . . , R(i) rings, each with mij primary integration points. The division into rings
and primary integration points is illustrated for one observation location in Figure
4.3a. Continuing, the observation likelihood can be approximated as follows,

∫
R2

π(yi|η̃(s∗i ), σ2
N)π(si|s∗i )π(s∗i )ds∗i ≈

R(i)∑
j=1

mij∑
k=1

λijkπ(yi|η̃(s∗ijk), σ2
N),
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where λijk is the integration weight associated with point k in ring j of observation
i, which is given by

λijk ∝
∫
Aijk

π(si|s∗i )π(s∗i )ds∗i ,

where Aijk is the area associated with primary integration point s∗ijk. We may
assume that

∑
ij

∑
k λijk = 1, since the scaling of these weights cancels in the

posterior. Additionally, since we take π(s∗ijk) to be constant over the support of
π(si|s∗i ), we have

λijk ∝
∫
Aijk

π(si|s∗i )ds∗i . (4.5)

The weight λijk is calculated numerically by subdividing Aijk into a 10× 10 grid of
secondary integration regions, each with an associated secondary integration point
and weight. This is illustrated in Figure 4.3b. Importantly, if an observation location
is restricted to lie within some region, e.g., within the same administrative region
as the true location, represented by A[i], the weights become

λijk ∝
∫
Aijk∩A[i]

π(si|s∗i )ds∗i . (4.6)

Consequently, if π(si|s∗i ) has support outside of A[i], i.e., observation i could have
been displaced outside of A[i] if there were no boundary, the affected weights must
be adjusted and all the weights of observation i must be re-normalized.

Both disk and donut jittering fit into this numerical integration scheme. A
derivation of the integration weights under donut jittering is given in Section B
of the Appendices. A corresponding derivation under disk jittering, and technical
details on how primary and secondary integration points are generated under both
disk and donut jittering can be found in Section E of the Appendices of Altay et al.
(2022a). In the continuation, we use mi1 = 1 and mij = 15, j > 1, primary
integration points, and R(i) = 5 rings ∀i for disk jittering schemes. For donut
jittering schemes, we use mij = 10 primary integration points and R(i) = 5 rings
∀i, j. With this choice the number of primary integration points per integration
area is similar across across the donut and disk jittering schemes we compare for a
given outer radius, R2.

The numerical integration scheme enables evaluation of the negative log-likelihood
which is used in TMB, which, in the situation with positional uncertainty, is given
by

f(ϕ, z) = −(log π(y, s1, . . . , sn|ϕ, z) + log π(z|ϕ) + log π(ϕ)). (4.7)

If the average number of primary integration points per observation is given by MP

and the average number of secondary integration points per observation is given by
MS, the evaluation of 4.7 still only requires O(MPMSn + K3/2), making comput-
ationally efficient inference feasible.

Besides increasing the cost of evaluating (4.7), increasing the number of primary
integration points may also contribute to longer running times by resulting in a
less sparse Hessian, H, as defined in Section 2.3.3. This is because more inte-
gration points may lead to contributions from more of the basis functions {ϕk}Kk=1
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Figure 4.3: An illustration of the integration scheme for a disk jittered observation
location. (a) Primary integration points with corresponding weights and (b)
the highlighted region from the left panel with its secondary integration points
and corresponding weights. The black line in both panels is the border of an
administrative area which the jittered location is restricted to lie within.

in the calculations of the observation likelihoods, π(yi, si|η, σ2
N), i = 1, . . . n, since we

potentially select integration points in additional triangles in the mesh, depending
on its resolution. In turn, this means that f(ϕ, z) may depend on more elements of
w, resulting in a less sparse Hessian.

4.2.2 Empirical Bayes Inference

Here, we describe the inference scheme in the numerical approach. The presentation
focuses on the situation with positional uncertainty, but the inference scheme equally
applies to the situation without positional uncertainty (or when it is ignored), where
the conditioning on the observed locations would be removed.

We use TMB to estimate the model, where the data likelihood is evaluated via
the numerical integration scheme described in Section 4.2.1. TMB calculates MMAP
estimates of the parameters ϕ = (log κ, log τ, log σN)

T, as described in Section 2.3.3.
These estimates are transformed to create MMAP estimates of θ = (ρS, σ

2
S, σ

2
N)

T,
through the relationships given in (2.11). Inference with the random effects is based

on π(z|y, s1, . . . sn, ϕ̂), where ϕ̂ contains the MMAP estimates of the parameters.
That is, in stead of considering the exact posterior,

π(z|y, s1, . . . sn) =
∫

π(z|y, s1, . . . sn,ϕ)π(ϕ|y, s1, . . . sn)dϕ, (4.8)

we consider π(z|y, s1, . . . sn, ϕ̂), which essentially amounts to replacing the inte-
gration in (4.8) with a maximization. This characterizes empirical Bayes (EB)
inference, and means that the uncertainty in the parameters is not propagated to the
estimates of the random effects (Carlin and Louis, 2000). Additionally, the approx-
imate posterior of the random effects, z = (β,w)T, is assumed to be Gaussian with
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mean equal to the final modal values of the random effects, ẑ = (β̂, ŵ)T. Specific-
ally, we base inference with the random effects on the approximate posterior given
by

z|y, s1, . . . , sn, ϕ̂ ∼ Np+K

(
ẑ, H−1

zz

)
, (4.9)

where Hzz is the random effects sub-matrix of H evaluated at ϕ = ϕ̂, z = ẑ. The
posterior is used to draw samples of the random effects, which are used to construct
interval and point estimates for z. Point estimates of the random effects are created
by taking the median of the samples.

To measure predictive power, we are interested in predicting the latent process
at a set of nP ∈ N+ prediction locations l1, . . . lnP

∈ D. That is, we want to create
interval and point estimates of ηP = (η(l1), . . . , η(lnP

))T, which has an approximate
EB posterior that can be derived from (4.9). Specifically, let XP be the nP × p
covariate matrix and let AP be the nP ×K projection matrix corresponding to the
prediction locations. Let β′ = β|y, s1, . . . , sn, ϕ̂ and w′ = w|y, s1, . . . , sn, ϕ̂. Then,
the approximate posterior of the discretized latent process is given by

ηP|y, s1, . . . , sn, ϕ̂ ∼ N
(
XPβ̂ +APŵ, Cov(XPβ

′ +APw
′)
)
.

In practice, we draw samples from (4.9) and create point predictions and credible
intervals of the latent process by respectively calculating the mean and quantiles of
the samples of XPβ

′ +APw
′.

4.3 The Sample-based Approach to Inference

Here, we present the sample-based approach to inference under positional uncertainty
in terms of disk and donut jittering. The approach uses an MCMC algorithm to
sample from the posterior of the model described in Section 4.1. The distribut-
ion of the samples from the MCMC algorithm will in theory converge to the exact
posterior of the model. Thus, although computational efficiency may be an issue for
the sample-based approach, it can still be used to investigate the inference of the
numerical approach.

4.3.1 Derivation of Parameter Posterior

To construct the MCMC algorithm, we first define some new notation. Let θ∗ =
(ρS, σ

2
S, σ

2
N, s

∗
1, . . . , s

∗
n)

T. Then, the Gaussian geostatistical model with positional un-
certainty may be presented as

y|z,θ∗ ∼ Nn(Sz, In/τN),

z|θ ∼ Np+K(0,Q
−1
z ),

where τN = σ−2
N and S = [X A] is an n× (p+K) matrix which depends on the true

locations.
Now, our strategy is to construct a collapsed Gibbs sampler (Liu, 1994), where

we sample from the posterior of θ∗ in each iteration, and, once the chain has
converged, sample the random effects, z, from π(z|θ∗,y, s1, . . . , sn). Thus, we need
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to derive an expression for the parameter posterior, π(θ∗|y, s1, . . . , sn), at least up
to a normalizing constant. We divide the derivation of this into three steps.

Step 1: We derive the density of the full conditional distribution of the random
effects,

π(z|θ∗,y, s1, . . . , sn) = π(z|θ∗,y) ∝ π(y|z,θ∗)π(z|θ∗)π(θ∗)

∝ exp

{
−τN

2
(y − Sz)TIn(y − Sz)− 1

2
zTQzz

}
∝ exp

{
−1

2
(z − µC)

TQC(z − µC)

}
, (4.10)

where

QC = Qz + STS · τN, and

µC = Q−1
C STy.

In the first transition of (4.10), we use the fact that the random effects are conditionally
independent of the observed locations, given the true locations and the observations.
We recognize the last line in (4.10) as a Gaussian distribution, i.e.,

z|θ∗,y, s1, . . . , sn ∼ NK+p(µC,Q
−1
C ). (4.11)

Step 2: From the definition of conditional probability, we can write

π(z|θ∗,y, s1, . . . , sn) =
π(z,θ∗,y, s1, . . . , sn)

π(θ∗,y, s1, . . . , sn)
.

Thus, we can integrate z out from the full joint distribution as follows,

π(θ∗,y, s1, . . . , sn) =
π(z,θ∗,y, s1, . . . , sn)

π(z, |θ∗,y, s1, . . . , sn)

=
π(y|z,θ∗)π(z, s1, . . . , sn|θ∗)π(θ∗)

π(z|θ∗,y, s1, . . . , sn)
,

(4.12)

where we in the second transition use that the observations, y, are conditionally
independent of the observed locations given the true locations. Continuing, we
assume the observed locations to be conditionally independent of the coefficients, z,
given the true locations, i.e., we assume

π(z, s1, . . . , sn|θ∗) = π(z|θ∗)π(s1, . . . , sn|θ∗).

Furthermore, there is no dependence between the true locations alone and z, and
the parameters θ give no information about the observed locations. Thus, we can
write Equation (4.12) as
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π(θ∗,y, s1, . . . , sn) =
π(y|z,θ∗)π(z|θ)π(θ∗)

π(z, |θ∗,y, s1, . . . , sn)
·

n∏
i=1

π(si|s∗i ). (4.13)

Using the result of the previous step, we can write (4.13) as

π(θ∗,y, s1, . . . , sn) ∝
|τNIn|

1
2 |Qz|

1
2

|QC|
1
2

exp
{
−τN

2
(y − Sz)TIn(y − Sz)

}
× exp

{
1

2
(z − µC)

TQC(z − µC)

}
× exp

{
−1

2
zTQzz

}
· π(θ∗) ·

n∏
i=1

π(si|s∗i ).

Step 3: Finally, we note that the left hand side in the first line of Equation (4.12)
does not depend on z. Thus, we can use any suitable value for z, e.g., z = µC. With
this choice, we know the posterior distribution of the parameters up to a normalizing
constant,

π(θ∗|y, s1, . . . , sn) ∝ π(θ∗,y, s1, . . . , sn)

∝ τ
n
2
N |Qz|

1
2

|QC|
1
2

exp
{
−τN

2
(y − SµC)

TIn(y − SµS)
}

× exp

{
−1

2
µT

CQzµC

}
· π(θ∗) ·

n∏
i=1

π(si|s∗i ).

4.3.2 MCMC Algorithm

Now that we have determined the posterior density of θ∗ up to a normalizing
constant, we can construct an MCMC algorithm to sample from the posterior
distribution of the model. Just as within TMB, we choose to work with ϕ =
(log κ, log τ, log σN)

T in stead of θ = (ρS, σ
2
S, σ

2
N)

T, since priors are specified in
terms of ϕ and because we avoid constraints on the proposals in the sampler. The
relationship between ϕ and θ are given in (2.11).

The algorithm consists of two Metropolis-within-Gibbs steps (Møller, 2003).
First, new values for ϕ are proposed and either accepted or rejected in an MH
step. Then, the same is done for the true locations, s∗1, . . . s

∗
n. At a regular thinning

interval of t > 0 iterations, the conditional distribution of the random effects, z,
given the data and the current parameters is sampled from the exact distribution
given in (4.11). The MCMC algorithm is outlined in Algorithm 2. When we apply
the algorithm in a simulation setting, we use the parameter values used to simulate
the data as initial values. In the following, we describe the proposal distributions
used in the MH steps.

Sampling of ρS, σ
2
S and σ2

N

Let b denote the current iteration of the MCMC algorithm. Then, the acceptance
probability of the new proposal for ϕ, ϕ(b), becomes
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Algorithm 2 The MCMC algorithm used in the sample-based approach.

Assign integer values to B, the number of iterations, and t, the thinning interval
Assign initial values ϕ(0), s

∗ (0)
1 , . . . , s

∗ (0)
n

for b = 1, . . . , B do
Sample ϕ(b) from π(ϕ|y, s1, . . . sn, s∗ (b−1)

1 , . . . , s
∗ (b−1)
n ) in an MH step

Sample s
∗ (b)
1 , . . . , s

∗ (b)
n from π(s∗1, . . . s

∗
n|y, s1, . . . sn,θ(b)) in an MH step

if b mod t = 0 then
Sample coefficients from π(z|y, s1, . . . sn,θ∗ (b))

end if
end for

α(ϕ(b),ϕ(b−1)) = min

{
1,

π(ϕ(b)|y, s1, . . . sn, s∗ (b−1)
1 , . . . , s

∗ (b−1)
n ) · q(ϕ(b−1)|ϕ(b))

π(ϕ(b−1)|y, s1, . . . sn, s∗ (b−1)
1 , . . . , s

∗ (b−1)
n ) · q(ϕ(b)|ϕ(b−1))

}
,

where q(ϕ(b)|ϕ(b−1)) is the density of the proposal distribution. We use random walk
proposals for ϕ, i.e.,

ϕ(b)|ϕ(b−1) ∼ N3(ϕ
(b−1), diag(v)),

where v is a vector containing the marginal variances for each of the parameter
proposals.

Sampling of s∗1, . . . , s
∗
n

To construct a proposal distribution for the true locations, we use a simplified
observation model,

ySi = x(s∗i )
Tb+ ui + εSi , i = 1, . . . , n,

where εS1, . . . ε
S
n | σ2

NS
iid∼ N (0, σ2

NS). Here, b plays the role of β and ui plays the
role of u(s∗i ), but they are treated as known constants. This implies that the obs-
ervations of this simplified model are conditionally independent, given σ2

NS. Let
yS = (yS1 , . . . , y

S
n)

T. The posterior of each true location in the simplified model is

π(s∗i |s1, . . . , sn,yS, σ2
NS) ∝ π(ySi |s∗i , σ2

NS)π(si|s∗i )π(s∗i )

∝ exp

(
− 1

2σ2
NS

(yi − µi)
2

)
· I(R1 ≤ ri ≤ R2)

ri
, (4.14)

where µi = x(s∗i )
Tb+ ui, ri = d(si, s

∗
i ) is the euclidean distance between si and s∗i

in appropriate units, and R1 and R2 are the inner and outer radius of the jittering
scheme, respectively. We may also restrict the jittered locations to lie within some
administrative region, but we will not study that situation with the sample-based
approach.

We sample from the density in (4.14) with rejection sampling, and use it to
generate proposals for the unknown true locations. That is, the true locations are
independently proposed according to q(s

∗(b)
i |s

∗(b−1)
i ) = π(s∗i |s1, . . . , sn,yS, σ2

NS). In
practice, we set b = β, ui = u(s∗i ) and σ2

NS = σ2
N, since we have access to these

values in a simulation setting.
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Validation of Algorithm Implementation

To validate the implementation of the MCMC algorithm, we apply it to the standard
geostatistical model in (2.6) when there is no positional uncertainty, and compare
its sample-distributions to the posteriors created with INLA for the same model.
The results are illustrated in Section C of the Appendices, and give us confidence
that the MCMC algorithm is correctly implemented.

4.3.3 Sample-based Inference

Inference with the sample-based approach is based on the parameter and random
effect samples generated by the MCMC algorithm, which are approximately distrib-
uted according to the posteriors

θ∗|y, s1, . . . sn and z|y, s1, . . . , sn,θ∗,

respectively, assuming that the algorithm has converged. To assess convergence, we
inspect trace-plots. Based, on the trace-plots, we discard the first nB > 0 samples
as burn-in samples. After discarding the burn-in samples, we create point estimates
of θ and β, by taking the median of their generated posterior samples, minimizing
the absolute error.

As described in Section 4.2.2, we evaluate predictive power by predicting the
latent process at a set of locations. In the sample-based approach, samples of the
posterior latent process at these locations are constructed from the posterior samples
of the random effects (after removing burn-in samples). Point predictions of the
latent process are acquired by taking the mean of samples, minimizing the mean
squared error.
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Chapter 5

Investigating the Accuracy of the
Numerical Approach

Chapter 4 presented two distinct approaches for inference in the presence of pos-
itional uncertainty: the numerical approach and the sample-based approach. Upon
implementation, it became evident that the sample-based approach is considerably
more computationally demanding than the numerical approach, and practically
constrained to scenarios with limited impact of jittering. However, it can be used
to investigate the accuracy of the numerical approach in some selected scenarios,
which is the subject of this chapter. We begin, in Section 5.1, with a description of
the scenarios we have selected for the investigation. Results are presented in Section
5.2. Finally, Section 5.3 gives a discussion of the sample-based approach in relation
the investigation and the path forward.

5.1 Scenario Descriptions

We consider two scenarios, Scenario 1 and Scenario 2. First, we describe the setup
which is shared in both scenarios. We simulate n = 1000 observations from the
model described in Section 4.1 on a rectangular spatial domain, D, measuring 800
km × 600 km. The true locations are sampled uniformly on D, before jittering
is applied. The rectangle, D, is considered to be cut out of Nigeria, as illustrated
in Figure 5.1a, so that we can use existing rasters for Nigeria to construct spatial
covariates. The spatial covariates we consider are gathered from WorldPop et al.
(2018) and are min-max scaled to be between 0 and 1. Specifically, we consider
four covariates that are respectively related to rasters of population count1 (PopC),
terrain elevation 2 (Elev), distance to inland water3 (DistW) and distance to major
road intersections4 (DistR). They are displayed in Figure 6.1 along with histograms
of their pixel values. A further description of the covariates are given in Table 6.1.
In this chapter, we only consider models with covariates Elev, DistW and DistR.
The reason why PopC is excluded, is that its inclusion made adequate sampling of
the true locations infeasible. This is likely because of the covariate’s highly non-
smooth behaviour, which may give posteriors for the unknown true locations that

1https://hub.worldpop.org/geodata/summary?id=6409 (Downloaded: 10-27-2022)
2https://hub.worldpop.org/geodata/summary?id=23424 (Downloaded: 10-27-2022)
3https://hub.worldpop.org/geodata/summary?id=24171 (Downloaded: 10-27-2022)
4https://hub.worldpop.org/geodata/summary?id=17706 (Downloaded: 03-14-2023)
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Figure 5.1: A set of observations (Obs.) over the domain (red rectangle) is displayed
in (a), while the underlying latent process which we want to predict (Lat.) is
displayed in (b).

are strongly peaked and perhaps multimodal, making efficient sampling difficult.
Thus, we consider a vector of covariate coefficients given by

β = (µ, βElev, βDistW, βDistR)
T,

where µ is the intercept and the covariate corresponding to each coefficient is given
in the subscript. We consider equally strong covariates, i.e., β = β(1, 1, 1, 1)T.
Furthermore, we note that the covariate rasters are represented in theWorld Geodetic
System (WGS84), and to represent locations in Nigeria, e.g., in the domain D, we
use the “Minna / Nigeria Mid Belt” projected coordinate system (EPSG, n.d.)
throughout the text.

The spatial marginal variance and the variance of the nugget effect are fixed such
that σ2

S = 1 and σ2
N = 0.1. That is, we study a situation in which the contribution

of the spatial field to the response is most likely in the range ±2, and the variance
of the measurement error is 10 % of the marginal variance of the spatial field. In
both scenarios we take β = 4, which gives covariates that account for 37 % of the
variation in the data on average. This average variation percentage is calculated by
simulating 20 sets of locations uniformly over D and evaluating S2/(S2 + σ2

S + σ2
N),

where S2 is the empirical variance of Xβ, given by

S2 =
1

n− 1

n∑
i=1

[
x(s∗i )

Tβ − 1

n

n∑
j=1

x(s∗j)
Tβ

]2
.

The spatial range and the jittering scheme differ in the two scenarios. In Scenario
1, we consider a spatial range of ρS = 160 (km) and a disk jittering scheme with
R1 = 0 (km) and R2 = 2 (km). In Scenario 2, we consider a spatial range of
ρS = 240 and a donut jittering scheme with R1 = 1 and R2 = 2. The scenarios are
summarized in Table 5.1.

The range was set to ρS = 160 in Scenario 1, because this corresponds to 20%
of the domain width. However, in Scenario 2, this choice of range made the true
locations too computationally intensive to sample. Therefore, we increased the
spatial range to 30% of the domain width, setting ρS = 240, which yielded an
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acceptance probability and an estimated effective sample size (ESS) for the true
locations comparable to that in Scenario 1. The reason why we needed to increase
the range is most likely because it reduces the impact of the jittering (see Section
3.3), making the true locations easier to sample.

Scenario (R1, R2) β ρS σ2
S σ2

N

1 (0, 2) 4 160 1 0.1
2 (1, 2) 4 240 1 0.1

Table 5.1: The two scenarios for which we compare the numerical and sample-based
approach.

In both scenarios, we use a PC prior on the spatial field, with P(ρS < 160) = 0.5
and P(σS > 1) = 0.5. That is, we place the median of the range on 20% of the domain
width, while we place the median of the spatial marginal standard deviation on 1.
This amounts to an a priori expectation that the spatial field’s contribution to the
response is in the range ±2. The measurement error variance is also equipped with a
PC prior, P(σN > 0.986) = 0.01. This choice makes the marginal standard deviation
of the measurement errors approximately equal to 0.3 Simpson et al. (2017). That
is, we a priori expect the measurement error to exhibit a marginal variance that
is approximately 10% of the marginal variance of the spatial field. Furthermore,
for the covariate coefficients we use the prior β ∼ Np(0, 25Ip), since we a priori
expect the covariates, which are min-max scaled, to contribute in the range of ±10
to the response. We note that the true parameter values are known a priori in
this simulation setting. However, it should be possible to justify priors in a similar
manner in a real application, based on domain knowledge.

Finally, we underscore that the selection of scenarios is primarily driven by the
feasibility of constructing an efficient sampler for the true locations. In other words,
our choice is largely influenced by the limitations of the MCMC algorithm employed
in the sample-based approach, where sampling the true locations poses the primary
challenge. As we increase either the covariate signal or the outer jittering radius, or
decrease the spatial range in the described scenarios, the sampling of true locations
becomes exceedingly difficult. Additionally, we found that the choice of v in the
random walk proposals for the parameters had little impact on the sampling of true
locations, and after some testing to maximize the estimated ESS, we ultimately set
v = (0.252, 0.102, 0.052)T in both scenarios.

5.2 Results

In the following, we consider three estimated models. The numerical approach is
used to estimate an adjusted model, denoted by MAdj., which adjusts for jittering,
and a standard model, denoted by MStd., which ignores jittering. Additionally, we
estimate a model with the sample-based approach, which comprises the posterior
samples generated with the MCMC algorithm and any predictions or point estimates
we derive from these samples. The sample-based model is denoted by MSB.
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Parameter log κ log τ log σN s∗

ESS 1002 871 912 158

Table 5.2: The mean ESS of parameters sampled by the MCMC algorithm across
datasets for Scenario 1. The column denoted s∗ refers to the mean ESS over both
the first and second coordinate over all the true locations.
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Figure 5.2: Cross-dataset bias of point estimates of (a) µ, (b) βElev, (c) the spatial
range and (d) the nugget variance for MStd., MAdj. and MSB in Scenario 1.
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5.2.1 Scenario 1

We simulated 10 datasets, for which MAdj., MStd. and MSB were estimated. For
each dataset, the MCMC-algorithm was executed with 20, 000 iterations, which
took around 21 hours to complete on average, where the main computational burden
came from the rejection sampling of the true locations. Samples from the first 1000
iterations were discarded as burn-in samples, based on inspection of trace-plots,
some of which are displayed in Figure D.1 and discussed in Section D.1 in the
Appendices. The acceptance probability of the parameters was on average 19.1%,
while the acceptance probability of the true locations was on average 2.9%. The
estimated ESSs of the parameters and the true locations are summarized in Table
5.2, which were calculated with the effectiveSize function from the coda R-
package (Plummer et al., 2006).

The biases across datasets for the estimates of µ, βElev, ρS and σ2
N are displayed

for MAdj., MStd. and MSB in Figure 5.2. For µ and βElev, MSB exhibits the least
biased estimates across datasets, while MAdj. has less biased estimates than MStd..
There is little difference between the models with respect to the biases of βDistW

and βDistR, which are displayed in Figure D.2. For the estimated nugget variance,
the cross-dataset bias is visibly lower for MAdj. and MSB, compared to MStd.. The
same can not be said for the spatial parameters, where we observe little difference
between the biases corresponding to ρS and σ2

S, where the cross-dataset bias of the
latter is displayed in Figure D.2.

To measure predictive performance, we predict the latent process at set of
regularly spaced points over D, illustrated as a square grid in Figure 5.1b. Specific-
ally, we treat MSB as a base-line, and consider the pair-wise relative difference in
CRPS of MStd. and MAdj., relative to MSB. That is, we consider

100%× CRPSAdj. − CRPSSB

CRPSSB

forMAdj. and likewise forMStd.. The variation in this CRPS-measure across datasets
is displayed in Figure 5.3a, from which we observe a similar spread for both models
(except for two extreme values for MStd.) and superior performance for MAdj. with
respect to the median. We similarly consider the the pair-wise relative difference in
prediction RMSE given by

100%× RMSEAdj. − RMSESB

RMSESB

for MAdj. and likewise for MStd.. The variation in this RMSE-measure across
datasets is displayed in Figure 5.3b, from which we observe a slightly larger spread
for MStd. and superior performance for MAdj. with respect to the median.

To explicitly illustrate how MAdj. and MStd. compare to MSB, we have selected
one of the 10 simulated datasets, for which we display some qualitative plots. Figure
5.4 displays the histograms of spatial range, spatial variance and nugget variance
produced with the sample-based approach, in addition to the true parameter values
and the MMAP estimates of MStd. and MAdj.. The figure is illustrative of the cross-
dataset results in that, for the spatial parameters, MStd. and MAdj. produce similar
estimates, while for the variance of the nugget effect we see that MAdj. is better
at “finding” the mode of the distribution, thereby giving less biased estimates on
average.
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Figure 5.3: (a) Pair-wise relative differences in CRPS and (b) Pair-wise relative
differences in prediction RMSE across datasets for MStd. and MAdj. relative to MSB

in Scenario 1.

For the same dataset, Figure 5.5 displays the posterior distribution of µ and βElev

in MAdj. and MStd., along with corresponding sample-histograms from the MCMC
algorithm. The figure illustrates that MAdj. may give posterior distributions that
are more in-line with that of MSB, whose posteriors converge to the exact posteriors
in theory. Specifically, this indicates that the posteriors of MAdj. are more accurate
in terms of mean and variance compared to the posteriors of MStd.. A corresponding
display for βDistW and βDistR is given in Figure D.3, for which the models give very
similar results.

5.2.2 Scenario 2

We simulated 10 datasets, for which MAdj., MStd. and MSB were estimated. For
each dataset, the MCMC-algorithm was executed with 20, 000 iterations, which took
around 20 hours to complete on average. Samples from the first 1000 iterations were
discarded as burn-in samples, based on inspection of trace-plots, some of which are
displayed in Figure D.4 and discussed in Section D.2 in the Appendices. The average
acceptance probability for proposals of θ was 23.2%, while the average acceptance
probability of the true location proposals was 1.8%. The estimated ESSs of the
parameters and the true locations are summarized in Table 5.3.

Parameter log κ log τ log σN s∗

ESS 930 931 962 105

Table 5.3: The mean ESS of parameters sampled by the MCMC algorithm across
datasets for Scenario 2. The column denoted s∗ refers to the mean ESS over both
the first and second coordinate over all the true locations.

In Figure 5.6, the cross-dataset biases for estimates of µ, βElev, ρS and σ2
N are

displayed in a boxplot, showing the same pattern as in Scenario 1, namely that
the two covariate coefficients and the nugget variance are estimated with less bias
in MAdj. and MSB compared to in MStd.. For the spatial parameters, the models
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Figure 5.4: Sample-histograms of MSB for (a) the spatial range (b) the spatial
variance and (c) the variance of the nugget effect, for a given dataset in Scenario 1.
The true parameter values are given in blue, while the estimates of MStd. and MAdj.

are given in green and red, respectively.

perform similarly across datasets. The bias across datasets corresponding to βDistR,
βDistW and σ2

S displayed in Figure D.5, which shows similar results for all the models.

Figure 5.7a shows the pair-wise relative CRPS across datasets of MAdj. and
MStd., relative to MSB. For this CRPS-measure, we observe superior performance
for MAdj. compared to MStd., which clearly has higher scores on average. Figure
5.7b shows the pair-wise relative prediction RMSE of MAdj. and MStd., relative to
MSB, which also shows improved performance for MAdj. over MStd..

Just as for Scenario 1, we have chosen one of the ten datasets for which we
present some qualitative plots, to explicitly illustrate how MAdj. and MStd. compare
to MSB. Figure 5.8 displays the histograms of the MCMC samples for ρS, σ

2
S and σ2

N

along with vertical lines showing the true parameter values and MMAP estimates
of MStd. and MAdj.. We observe that the point estimates of MStd. and MAdj. are
similar for ρS and σ2

S, while they differ more for σ2
N, where the MAdj. is closer to

the mode of the distribution of MCMC-samples. Figure 5.9 displays the posterior
distributions of µ and βElev for MStd., MAdj. and MSB, where we see that the MAdj.

gives posteriors that are closer to that of MSB, which should resemble the exact
posteriors. Corresponding plots for βDistW and βDistR are given in Figure D.6, for
which the models give very similar posteriors.

5.3 Discussion of Results

In this chapter, we have compared parameter estimates, posteriors and predictive
measures ofMStd., MAdj. andMSB. Due to the difficulty of implementing an efficient
sampler when jittering is present, we restricted our comparison to two scenarios
with moderately strong covariates and a modest jittering scale. Bias-plots across all
datasets show that there is little difference between MAdj. and MStd. with regard to
the spatial parameters, while for the nugget variance and two of the covariate coeff-
icients, MAdj. has visibly lower bias compared to MStd.. In terms of the predictive
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Figure 5.5: The estimated posterior distributions for two of the covariate coefficients
in MStd. (green) and MAdj. (red) for a given dataset in Scenario 1. The histograms
display the sample-based posteriors of MSB.
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Figure 5.6: Cross-dataset biases of point estimates of (a,b) covariate coefficient, (c)
the spatial range and (d) the nugget variance for MStd., MAdj. and MSB in Scenario
2.

44



Discussion of Results

−1.5

−1.0

−0.5

0.0

0.5

1.0

Adjusted Standard
 

R
el

at
iv

e 
C

R
P

S
 d

iff
er

en
ce

 (
%

)

 

(a) CRPS

−1.0

−0.5

0.0

0.5

1.0

Adjusted Standard
 

R
el

at
iv

e 
pr

ed
ic

tio
n 

R
M

S
E

 d
iff

er
en

ce
 (

%
)

 

(b) RMSE

Figure 5.7: (a) Pair-wise relative differences in CRPS and (b) Pair-wise relative
differences in prediction RMSE across datasets for MStd. and MAdj. relative to MSB

in Scenario 2.

measures, MAdj. outperforms MStd. in both scenarios. We expect the difference in
parameter bias and predictive measures between MAdj. and MAdj. to increase with
larger jittering scales and stronger covariates (Altay et al., 2022b; Totland, 2022)

The qualitative plots of parameter posteriors suggest that their exact posteriors
are unimodal in the scenarios considered, which makes the optimization in TMB
suitable to find MMAP estimates. Furthermore, the qualitative plots of covariate
coefficient posteriors display unimodal and close to symmetric distribution, which
indicates that the Gaussian approximation used in the numerical approach is reason-
able in these scenarios.

To summarize, the comparison of MStd., MAdj. and MSB demonstrates that
adjusting for jittering in the numerical approach may lead to more accurate inference
in terms of more accurate posterior distributions of the covariate coefficients and
less biased estimates of the measurement error variance. Additionally, we found the
sample-based approach too computationally intensive for practical use in scenarios
with larger effects of jittering in terms of, e.g., a larger outer jittering radius or
stronger covariates. Consequently, we only consider the numerical approach when
we conduct a simulation study in the next chapter.
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Figure 5.9: The estimated posterior distribution for two of the covariate coefficients
in MStd. (green) and MAdj. (red) for a given dataset in Scenario 2. The histograms
display the sample-based posteriors of MSB.
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Chapter 6

Simulation Study

In Chapter 5, we demonstrated that the numerical approach can be used to approx-
imate the inference of the sample-based approach. Additionally, the numerical appr-
oach is fast and its application is not restricted to scenarios with limited effect
of jittering. Given these qualities, we continue with the numerical approach in
this chapter, and compare MAdj. and MStd. under varying jittering scales and with
strong covariates. Additionally, we want to explore how the jittering schemes can
be evaluated with respect to some measure of privacy protection, so that the choice
of scheme can be properly justified. We proceed by describing the setup of the
simulation study in Section 6.1. Results from the study are presented in Section
6.2. Lastly, we explore how privacy protection can be evaluated in Section 6.3.

6.1 Simulation Setup

First, we describe the setup which is fixed across simulation scenarios. We simulate
observations from the geostatistical model described in Section 4.1 on the same
rectangular domain D as described in Section 5.1. The true locations are sampled
uniformly on D, before jittering is applied. We simulate n = 1000 observations in
each dataset, because DHS datasets are typically of this magnitude (in clusters). We
set the spatial range to 20% of the domain width, namely ρS = 160, while taking
σ2
S = 1 and σ2

N = 0.1. That is, we want the contribution of the spatial field to the
response to most likely be in the range ±2, and the variance of the measurement
error to be 10% of the marginal variance of the spatial field. Furthermore, we use
the full set of covariates presented in Table 6.1, which are displayed in Figure 6.1.
Then, the vector of covariate coefficients is given by

β = (µ, βPopC, βElev, βDistW, βDistR)
T.

All covariates have equal strength, i.e., β = β(1, 1, 1, 1, 1)T, where we set β = 8,
which gives covariates that account for 68% of the variation in the response according
to the calculation procedure described in Section 5.1. That is, we consider a situation
wherein the covariates explain the majority of the variation in the response, which
is motivated by the results of Totland (2022), who finds that the covariates should
explain more than 50% of the variation for the jittering to have a deciding impact
on inference, while very strong covariates explaining ∼ 80% of the variation in the
response could lead to stability issues in the numerical approach. We use the same
priors as described at the end of Section 5.1, for the same reasons as presented there.
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Figure 6.1: Rasters of the spatial covariates used in the simulation study, plotted
along with histograms of their pixel values. The first row displays PopC, the second
row displays Elev, the third displays DistW, and the third row displays DistR. The
red rectangles indicate the areas used in the simulation study.
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Covariate Description Source

PopC
Min-max scaled log(1+ x) transformation of
the population count.

Link

Elev
Min-max scaled log(1+ x) transformation of
terrain elevation once negative values are set
to 0.

Link

DistW
Min-max scaled log(1+ x) transformation of
distance to inland water.

Link

DistR
Min-max scaled distance to major road
intersections.

Link

Table 6.1: Description of covariates used throughout the text. All covariates are
min-max scaled to be between 0 and 1. A link to the source is available in the
digital version of this text.

To study and compare how different models for positional uncertainty impact
the inference with MAdj. and MStd., we consider both disk and donut jittering on a
moderate and substantial jittering scale. Specifically, we consider disk jittering with
(R1, R2) ∈ {(0, 3), (0, 9)} and donut jittering with (R1, R2) ∈ {(1, 3), (3, 9)}. That
is, we let R1 = R2/3 for donut jittering. By comparison, the geomasking strategy
of the 2018 Nigeria DHS (NDHS2018) dataset (which is closely described in Section
7.1) uses disk jittering with R2 = 2 for locations classified as urban, and R2 = 5
locations classified as rural, with a 1% chance of rural clusters being displaced up
to 10 km. With this in mind, we argue that the choice of R2 = 3 adequately
represents the case of moderate jittering, while R2 = 9 adequately represents the
case of substantial jittering for the spatial scale considered here.

6.2 Results

We simulated 50 datasets with the setup described in Section 6.1 and applied all
four jittering schemes to each dataset, giving 50× 4 = 200 datasets with positional
uncertainty. Then, we estimated MStd. and MAdj. with each of the 200 jittered
datasets. In total, this amounted to estimating 200 × 2 = 400 models, which took
around 26 hours in total. Estimating MAdj. took 4.5 minutes on average, while
estimating MStd. took 8.3 seconds on average.

6.2.1 Parameter Estimates

To evaluate MAdj. and MStd. with respect to parameter estimation, we consider both

the relative bias, (θ̂−θ)/θ and the absolute bias, θ̂−θ, where θ̂ is the posterior mean
for covariate coefficients and MMAP estimates for ρS, σ

2
S and σ2

N. Specifically, the
median relative bias corresponding to ρS, σ

2
S and σ2

N and the median absolute bias
corresponding to the elements of β are reported in Table 6.2 for both models under
all jittering schemes. Additionally, Figure 6.2 displays the variation in absolute
bias across datasets in MStd. and MAdj. for ρS, σ

2
S and σ2

N and βElev under the four
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Median Bias
MAdj. MStd.

Scheme Disk Donut Disk Donut
R2 3 9 3 9 3 9 3 9

ρS −0.5% −3.4% −4.3% 0.7% −3.6% −14.7% −7.6% −5.8%
σ2
S −3.5% −7.5% −5.9% −8.2% −3.9% 0.3% −2.2% 7.3%

σ2
N 4.3% 34.5% 15.5% 61.1% 135.9% 342.5% 184.7% 443.6%

µ 0.52 0.32 0.27 0.51 1.17 1.58 1.34 2.64
βPopC −0.15 −1.08 −0.53 −1.54 −2.19 −3.59 −2.62 −5.27
βElev −0.75 −0.09 −0.24 −0.16 −1.08 −0.93 −1.16 −2.19
βDistR −0.19 −0.47 −0.13 −0.56 −0.63 −1.10 −0.71 −1.68
βDistW 0.40 −0.42 0.17 −0.49 0.16 −1.15 −0.15 −1.38

Table 6.2: The median relative bias (in percent) corresponding to estimates of ρS,
σ2
S and σ2

N and the median absolute bias corresponding to the elements of β in MAdj.

and MStd. for all jittering schemes.

jittering schemes.

The cross-dataset biases of the spatial parameters, ρS and σ2
S, are respectively

displayed in Figures 6.2a and 6.2b, which show that the spread and the median bias
are similar for both models under all jittering schemes. However, we do observe from
Table 6.2 that the spatial range is always underestimated in MStd. with more bias
than in MAdj. with respect to the median. This is in line with our expectations from
the theory discussed in Section 3.3, and we see that the effect is amplified with more
jittering (R2 = 9). Nonetheless, the difference may not be of practical importance.
On the other hand, Table 6.2 and Figure 6.2c show a striking difference between the
models in the bias corresponding to σ2

N, where MAdj. has substantially less biased
estimates than MStd.. For example, the median bias in σ2

N is almost 10 times larger
in MStd. when compared to MAdj. under disk jittering with R2 = 9. This result also
agrees with our expectations from the theory discussed in Section 3.3.

For βElev, whose bias across datasets is plotted in Figure 6.2d, MAdj. clearly
exhibits superior performance compared to MStd. across all jittering schemes, where
the difference increases with more jittering (R2 = 9). The biases corresponding
to the other elements of β are displayed in Figure E.1, wherein we see the same
pattern as for βElev, except for the estimates of βDistW when R2 = 3, which are
less biased in MStd. with respect to the absolute value of the median. We observe
that both models tend to underestimate the covariate coefficients (excluding the
intercept), where MStd. underestimates the coefficients more strongly. This suggests
that when jittering is disregarded, it results in more attenuated estimates of the
covariate coefficients, and that using MAdj. can help mitigate the attenuation. This
result aligns with the findings of Totland (2022) and Altay et al. (2022b).

Importantly, some outliers have been removed in the bias plots of the covariate
coefficient estimates in MAdj. to make the figures interpretable. Specifically, two
outliers have been removed for donut jittering with (R1, R2) = (3, 9) and one for
disk jittering with (R1, R2) = (0, 9). We delay the discussion of these outliers to
Chapter 8.
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Figure 6.2: The cross-dataset absolute bias in MAdj. and MStd. corresponding to (a)
the spatial range, ρS, (b) the spatial variance, σ2

S, (c) the nugget variance, σ2
N, and

(d) βElev under all jittering schemes in the simulation study.
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Median Score
MAdj. MStd.

Scheme Disk Donut Disk Donut
R2 3 9 3 9 3 9 3 9

CRPS 0.266 0.282 0.266 0.286 0.281 0.315 0.285 0.344
RMSE 0.458 0.491 0.461 0.503 0.490 0.553 0.500 0.613

Table 6.3: The median CRPS and prediction RMSE of MAdj. and MStd. for all
jittering schemes.

6.2.2 Predictions

We evaluate the predictive power of MStd. and MAdj. by drawing samples of the
posterior latent process as described in Section 4.2.2 at a set of regularly spaced
points over the domain, D. The samples are used to calculate CRPS and prediction
RMSE. Table 6.3 shows that the median CRPS is lower for MAdj. for all jittering
schemes, where the difference between the models is largest for donut jittering with
R2 = 9, where the median CRPS is 17% lower for MAdj. relative to the median
CRPS of MStd.. The variation in CRPS across datasets for MStd. and MAdj. are
displayed in a boxplot in Figure 6.3a, which shows superior performance for MAdj..

We create point predictions by taking the mean over posterior samples of the
latent process, and calculate the prediction RMSE of the models. Table 6.3 shows
that the median prediction RMSE is lower for MAdj. for all jittering schemes, where
the difference between the models is largest for donut jittering with R2 = 9, where
the median RMSE is 18% lower for MAdj. relative to the median RMSE of MStd..
The variation in prediction RMSE across datasets is illustrated in Figure 6.3b as a
boxplot, which shows thatMAdj. outperforms MStd.. For both prediction RMSE and
CRPS, the difference between the models increases with more jittering (R2 = 9),
and the differences are slightly larger under donut jittering compared to under disk
jittering.

We underscore that some outliers have been removed for MAdj. in Figure 6.3
to make the plot interpretable. For both CRPS and prediction RMSE, one outlier
was removed for donut jittering with (R1, R2) = (1, 3), two were removed for donut
jittering with (R1, R2) = (3, 9), three for disk jittering with (R1, R2) = (0, 3) and six
for disk jittering with (R1, R2) = (1, 3), which amounts to 12 outliers in total. That
is, 12/200 = 6% of the simulated datasets resulted in outliers for MAdj.. Based on
these numbers, more outliers occur when the jittering scale increases from R2 = 3
to R2 = 9, and more outliers occur for disk jittering than for donut jittering. We
delay the discussion of these outliers to Chapter 8.

6.3 Evaluating Privacy Protection

The results of the simulation study in Section 6.2 demonstrate how jittering may
lead to erroneous inference if ignored. Furthermore, we observe that the impact of
jittering depends on the specific jittering scheme, where, unsurprisingly, increasing
the jittering scale increases the negative impact on inference, epsecially when it is
ignored. Therefore, the jittering scheme, or more broadly, the geomasking strategy,
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Figure 6.3: Predictive measures of MAdj. and MStd. where (a) displays the CRPS
and (b) displays the prediction RMSE under all jittering schemes in the simulation
study.

should be chosen with care in a specific application, where privacy protection should
be weighted against the scale of the masking. However, to our knowledge, there
exists no widely-agreed-upon approach to compare different geomasking strategies
with respect to privacy protection, at least not when the geomasking strategy is
known. For this reason, we explore some possible approaches for evaluating and
comparing the privacy protection of donut and disk jittering schemes.

6.3.1 Approximating the Complete Posteriors

The k-anonymity metric has been used to evaluate privacy protection of geomasking
strategies (Hampton et al., 2010; Allshouse et al., 2010), but as discussed in Section
3.2, this metric is unsuitable in the situation we consider, where the positional error
model is known. In stead, we try to evaluate the privacy protection of different
jittering schemes by considering the marginal posterior of each true location, which
we refer to as the complete posterior. For i = 1, . . . , n, the complete posterior of a
true location is given by

π(s∗i |y, s1, . . . , sn,θ) =
∫

π(s∗i , z|y, s1, . . . , sn,θ)dz

=

∫
π(s∗i |y, s1, . . . , sn,θ, z)π(z|y, s1, . . . , sn,θ)dz

=

∫ [
π(s∗i ,y, s1, . . . , sn,θ, z)

π(y, s1, . . . , sn,θ, z)

]
π(z|y, s1, . . . , sn,θ)dz (6.1)

To simplify the fraction in the square brackets in the integrand of (6.1), we use the
definition of conditional probability in the numerator and the denominator, and the
dependence relations among the model components, which are illustrated in Figure
4.2. This gives
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π(s∗i ,y, s1, . . . , sn,θ, z)

π(y, s1, . . . , sn,θ, z)
=

π(y, s1, . . . , sn|θ, z, s∗i )π(z|θ)π(θ)π(s∗i )
π(y, s1, . . . , sn|θ, z)π(z|θ)π(θ)

. (6.2)

Furthermore, we assume as before that the observation pairs (yi, si), i = 1, . . . , n,
are conditionally independent given θ, z. We assume that the same is true when we
additionally condition on s∗i , and that π(yj, sj|θ, z, s∗i ) = π(yj, sj|θ, z) when i ̸= j.
This is reasonable, because the jittering happens independently for each observation
and one true location gives no information about any other observed or true location
other than its observed counterpart. Thus, the right hand side of Equation (6.2)
can be further simplified as

π(y, s1, . . . , sn|θ, z, s∗i )π(s∗i )
π(y, s1, . . . , sn|θ, z)

=
π(yi, si|s∗i ,θ, z)π(s∗i ) ·

∏
j ̸=i π(yj, sj|θ, z)∏n

j=1 π(yj, sj|θ, z)

=
π(yi|s∗i ,θ, z)π(si|s∗i )π(s∗i )

π(yi, si|θ, z)
, (6.3)

where π(yi, si|z,θ) can be approximated with the numerical integration scheme
described in Section 4.2.1. Now, we insert the result in the last line of (6.3) into
the square brackets in the integrand of (6.1) and use the fact that π(s∗i ) is constant
over D to obtain

π(s∗i |y, s1, . . . , sn,θ) ∝ π(si|s∗i ) ·
∫ [

π(yi|s∗i ,θ, z)
π(yi, si|z,θ)

]
π(z|y, s1, . . . , sn,θ)dz. (6.4)

The integral in Equation (6.4) can be evaluated with Monte Carlo integration, where
we sample from the EB posterior of the random effects as described in Section 4.2.2.
Thus, the complete posterior of a true location can be approximated by

π(s∗i |y, s1, . . . , sn,θ) ≈ C · π(si|s∗i ) ·
1

J

J∑
j=1

π(yi|s∗i ,θ, z(j))

π(yi, si|z(j),θ)
.

where C is a normalizing constant and J is the number of samples used in the
Monte Carlo integration. To calculate the complete posterior (approximately),

we set θ = θ̂, i.e., the MMAP estimates from MAdj.. The complete posterior is
approximated over a square grid, on which we compare it to the partial posterior,
given by π(s∗i |si), where we only condition on the corresponding observed location.
That is, we compare π(s∗i |y, s1, . . . , sn,θ) to π(s∗i |si).

The complete and partial posterior densities are displayed for one observation in
Figure 6.4 for disk jittering with (R1, R2) = (0, 3) and donut jittering with (R1, R2) =
(1, 3). For both of these jittering schemes, we simulate 10 datasets according to
the setup described in Section 6.1 and calculate the complete posterior of all true
locations in each datasets. The results of this simulation are used in the following
section.
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(a) π(s∗i |si) (b) π(s∗i |y, s1, . . . , sn,θ)

(c) π(s∗i |si) (d) π(s∗i |y, s1, . . . , sn,θ)

Figure 6.4: Panel (a) and (c) display the The distribution of a true location cond-
itional on the observed locations for R1 = 0 and R1 = 1, respectively. In panels
(b) and (d), we additionally condition on the observations and parameters. The
red point in each plot shows the true location, s∗i , while the yellow point shows the
expected true location, s∗i .
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Figure 6.5: Violin plot of the distance-based metric across datasets for disk jittering
(R1 = 0) and donut jittering (R1 = 1).

6.3.2 Investigating Two Metrics

To evaluate the privacy protection of the two jittering schemes, we consider the
expectation of the partial and complete posterior for a given true location. For
the partial posterior, E[s∗i |si] = si, since the distribution is symmetric around the
observed location. For the complete posterior, we numerically calculate

s∗i = E[s∗i |y, s1, . . . , sn,θ]

from the approximated complete posterior. Figures 6.4b and 6.4d display the
expected true location of the complete posterior (yellow point) for one observation.
Further, we consider the distance from these posterior expectations to the unknown
true location. That is, we compare ∥s∗i − s∗i ∥ and ∥si − s∗i ∥. For this purpose we
consider the median of the fraction

∥s∗i − s∗i ∥
∥si − s∗i ∥

, i = 1, . . . , n, (6.5)

over all true locations, which we refer to as the distance-based metric. Figure 6.5
displays the distance-based metric across datasets for the two jittering schemes.
Based on this plot, we learn more about the unknown true location under the donut
jittering scheme than under the disk jittering scheme, with respect to the distance-
based metric. However, we note that fairly little is learned: under the donut jittering
scheme, Figure 6.5 shows that the expectation of the complete posterior is only
around 3% closer to the unknown true location than the expectation of the partial
posterior, with respect to the median. However, the complete posteriors may have
multiple local areas with higher mass that are far apart, as Figure 6.4d illustrates.
This may render the distance-based metric unsuitable to accurately evaluate privacy
protection, since it only considers the global (average) behaviour of the complete
posteriors.

As an alternative approach to evaluate the privacy protection of jittering schemes,
we calculate the KLD of the complete posterior, p(s∗i ) = π(s∗i |y, s1, . . . , sn,θ), from
the partial posterior q(s∗i ) = π(s∗i |si), which we approximate as follows,
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DKL(p ∥ q) =
∫
R2

p(s∗i ) log

(
p(s∗i )

q(s∗i )

)
ds∗i ≈

∑
j∈Gi

p(s∗ij) log

(
p(s∗ij)

q(s∗ij)

)
∆s∗ij,

where Gi is an index set corresponding to a regular grid of square cells over the
support of π(si|s∗i ), s∗ij is the center point of the j’th cell in the grid and ∆s∗ij is
the area of the j’th cell in the grid. The KLD can be interpreted as the amount
of information lost when using q to approximate p (Burnham and Anderson, 2002,
p. 51). Thus, a positive KLD indicates that information has been gained about
the unknown true locations when we transition from the partial to the complete
posterior. For a given dataset, we consider the average KLD over all true locations,
DKL. Across the 10 simulated datasets, we obtain that DKL is 0.057 on average for
disk jittering and 0.045 on average for donut jittering. That is, we obtain that, on
average, DKL is 27% higher for the disk jittering scheme relative to donut jittering
scheme. This could indicate that more is learned about the unknown true locations
under the disk jittering scheme, which is in contrast to the findings with the distance-
based metric, for which donut jittering performed worse.

Using KLD to directly compare jittering schemes in the sense described above
may be unreasonable, because we consider the KLD from different distributions, i.e.,
the distribution q differs between the jittering schemes. Nonetheless, the disagree-
ment between the distance-based and the KLD-based metric may suggest that more
sophisticated methods are needed to adequately compare the privacy protection
provided by different jittering schemes.
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Chapter 7

Case Study

The practical application of geomasking in DHS data is part of the main motivation
for studying positional uncertainty in the context of geostatistical modeling. Prev-
ious work support the use of the numerical approach to adjust for positional un-
certainty in DHS data (Altay et al., 2022a,b; Totland, 2022). Our results speak for
the same. For example, the simulation study in Chapter 6, which considered similar
jittering scales to those employed in many DHS datasets, demonstrated that failing
to adjust for jittering may lead to more attenuated estimates of covariate coeff-
icients and a substantial underestimation of the nugget variance. In this chapter,
we therefore demonstrate a practical use case for the numerical approach by applying
it to geomasked DHS data in a study of vaccination coverage in Nigeria. The data
is described in Section 7.1, before we present the model and results in Section 7.2.

7.1 Data Description

We consider the NDHS2018 dataset, and model the vaccination coverage of the first
dose of measles-containing-vaccine (MCV1) among children under 5 years of age.
With its estimated 223 million residents (UN, Department of Economic and Social
Affairs, 2022), Nigeria has one of the highest measles burdens in the world (Sato
et al., 2022), and collection of data combined with modeling of key indicators such as
vaccination coverage can be crucial for effectively designing policies and distributing
vaccination resources to combat the spread of the illness. Fuglstad et al. (2022) also
analyse MCV1 in Nigeria in a spatial statistics context, and focus on how complex
survey designs can be better utilized in model-based approaches.

The NDHS2018 dataset was sampled in tow stages. First, clusters consisting
of multiple households were sampled, before a fixed number of 30 households were
sampled for each selected cluster. Fieldwork was completed for 1389 of the sampled
clusters (National Population Commission and ICF, 2019). We model MCV1 at the
cluster level, and the locations of the 1379 clusters that were eligible for analysis are
displayed in Figure 7.1. The reported cluster locations contain positional uncertainty
from geomasking (Burgert et al., 2013). The geomasking strategy consists of a
combination of different disk jittering schemes. Specifically, clusters classified as
urban are disk jittered with an outer radius of R2 = 2 (km), while clusters classified
as rural are displaced up to 5 km (R2 = 5), and have a 1% chance of being displaced
up to 10 km (R2 = 10). Additionally, the jittered locations are restricted to lie
within the same administrative region as their true counterparts. For this dataset,
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Figure 7.1: The borders of the 774 mainland admin2 regions in Nigeria. The red
points show the locations of clusters used to study MCV1.

the second administrative level is used, which we refer to as the admin2 level. That
is, a jittered location, s is restricted to lie within the same admin2 region as its
corresponding unknown true location, s∗. The admin2 level of Nigeria is divided
into 774 regions, whose boundaries are displayed in Figure 7.1. We use the shape
file of the admin2 level boundaries which is provided by GADM (2022).

To describe the geomasking strategy mathematically, recall that s∗1, . . . , s
∗
n ∈ D

denote the unknown true locations, while s1, . . . , sn ∈ D denote the corresponding
jittered locations, which we observe. Let Urb[i] ∈ {U,R} indicate whether location
si is urban (U) or rural (R). Then, the positional uncertainty is modeled indep-
endently for each location as

si|s∗i ∼ πUrb[i](si|s∗i ), i = 1 . . . n,

where urban locations are geomasked with disk jittering with R2 = 2,

πU(si|s∗i ) ∝
I(A(si) = A(s∗i )) · I(d(si, s∗i ) < 2)

d(si, s∗i )
, Urb[i] = U.

Here, A(s) is the admin2 region corresponding to location s and d(s, s∗) is the
distance in kilometers between locations s and s∗. Rural clusters, on the other
hand, are geomasked with a “mixture” of two disk jittering schemes,

πR(si|s∗i ) ∝
I(A(si) = A(s∗i )) · I(d(si, s∗i ) < D

(i)
R )

d(si, s∗i )
, Urb[i] = R,

where the D
(i)
R ’s are i.i.d. random variables taking the value 5 with a probability

of 99% and the value 10 with a probability of 1%. A technical description of the
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Figure 7.2: (a) Predictions of MCV1 of MAdj. (Pred.) and (b) corresponding CVs.
(c) Ratios (Adj./Std.) of point predictions and (d) ratios (Adj./Std.) of CVs for
MAdj. and MStd.

integration scheme which is used for rural clusters can be found in Section E of the
Appendices of Altay et al. (2022a).

7.2 Modeling Vaccination Coverage

7.2.1 Model Description

We model MCV1 with the same latent and parameter layer (excluding the nugget
effect) as in the model described in Section 4.1, but, to study prevalence, we use a
binomial observation likelihood and a logit link, such that

yi|ri, ni ∼ Binomial (ni, ri) , si|s∗i ∼ πUrb[i](si|s∗i ),
ri|s∗i = logit−1(η(s∗i )), si ∈ D, i = 1, . . . n,

where ni is the number of children in cluster i, ri is the risk in cluster i and D
denotes the geographical area of Nigeria in the projected coordinate system given
by the “Minna / Nigeria East Belt” projection. Furthermore, we use the same
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MAdj. MStd.

Parameter Estimate 95% CI Estimate 95% CI

ρS 84.95 - 77.85 -
σ2
S 0.69 - 0.75 -

µ −0.97 (−1.56,−0.37) −0.91 (−1.49,−0.34)
βPopC 1.40 (1.08, 1.72) 1.12 (0.82, 1.40)
βElev 0.27 (−0.55, 1.09) 0.27 (−0.52, 1.05)
βDistW 0.004 (−0.52, 0.52) −0.01 (−0.53, 0.50)
βDistR −0.74 (−1.34,−0.13) −0.90 (−1.50,−0.29)

Table 7.1: The parameter estimates of MAdj. and MStd. with 95% credible intervals
(CIs) for the covariate coefficients.

covariates as in the simulation study in Chapter 6, which are described in Table 6.1
and displayed in Figure 6.1.

We use PC priors on the spatial field given by P(ρS < 240) = 0.5 and P(σS >
1) = 0.5, which are respectively chosen as such because 20% of Nigeria’s width at its
widest (from west to east) is approximately 240 km, and we do not expect the spatial
field to contribute with much more than ±2 to the latent process. Furthermore, we
let β ∼ N4(0, 25I4), because we expect the contribution from the min-max scaled
covariates to the latent process to be within the range ±10.

7.2.2 Predictions and Parameter Estimates

Preparing input and estimating both MStd. and MAdj. took around 19 minutes in
total, where the estimation of MStd. took half a minute and the estimation of MAdj.

took around 14 minutes. The predictions of MCV1 for MAdj., i.e., point predictions
of the transformed latent process, logit−1(η), at a set of regularly spaced locations
over Nigeria are displayed in Figure 7.2a along with corresponding coefficients of
variation (CVs) in Figure 7.2b. Corresponding figures for MStd. are not shown,
because they are very similar visually. Additionally, Figure 7.2c displays the ratio
(Adj./Std.) of point predictions, showing that the models give very similar predict-
ions. Figure 7.2d displays the ratio of CVs (Adj./Std.), which reveals that MStd.

generally has larger uncertainty in the predictions.
The MMAP estimates of the spatial parameters, along with point estimates and

credible intervals for the covariate coefficients are given in Table 7.1 for both MAdj.

and MStd.. The table shows that the estimates of ρS and σ2
S are quite similar, though

MAdj. gives a higher range than MStd., which could indicate that spatial correlation
is lost due to jittering when it is not adjusted for. The estimates and credible
intervals of β vary markedly between the models. For both models, only βPopC and
βDistR are considered significantly different from 0 at the 5% level (excluding the
intercept), because their credible intervals do not contain 0. The largest covariate
(in absolute value) is PopC, which has a point estimate that is 25% larger in MAdj.

relative to the estimate in MStd.. Based on the findings in the simulation study,
we interpret this difference as extra attenuation of the covariate coefficient estimate
due to ignoring jittering in MStd..
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Chapter 8

Discussion

Section 3.1.1 presented the existing approaches to account for positional uncertainty
in geostatistical modeling, prior to the numerical approach. The presentation high-
lighted the subtle difference between CP and FP models for positional error, and
made clear the need for a computationally efficient and flexible approach to adjust
for positional error. Section 3.1.2 presented approaches to specifically account for
positional uncertainty in the spatial covariates, which may be the most important
concern in this setting as illustrated by Altay et al. (2022b). Future work should
investigate this topic further for various jittering scales and observation likelihoods.

The numerical approach, described in Section 4.2, was extended to handle donut
jittering by deriving a new expression for the integration weights and implementing
it in code. Inference with the numerical approach is based on several approximations,
such as Laplace approximations in TMB, the approximation of the likelihood with
numerical integration and treating the posterior of the random effect as a multivariate
Gaussian distribution. This motivated an investigation of its accuracy by using a
sample-based method.

A sample-based approach to inference was constructed and implemented as descr-
ibed in Section 4.3. We quickly discovered that the main challenge in this setting
was to efficiently sample the unknown true locations. This set restrictions on the
the number of observations, the spatial range, and the outer and inner jittering
radii which we were able to consider in practice. In Chapter 5, we therefore selected
two specific scenarios for the investigation, one with moderate disk jittering and the
other with moderate donut jittering. Acquiring over 100 ESS of the unknown true
locations in these scenarios still necessitated nearly 20, 000 iterations, taking around
20 hours to complete. The investigation demonstrated that the numerical approach
may effectively approximate exact inference, and that adjusting for jittering may
lead to more accurate inference in terms of the posterior distributions of covariate
coefficients, less biased point estimates of the nugget variance and superior predictive
measures.

Because of the practical restrictions on the sample-based approach, we continued
with the numerical approach to study how moderate and substantial jittering impact
inference in a simulation study in Chapter 6. The results were similar for disk and
donut jittering and aligned with previous work on DHS data. More jittering, in
terms of a larger outer radius, generally gave rise to stronger attenuation in the
point estimates of the covariate coefficients in the standard and adjusted model,
with considerably more attenuated estimates in the standard model. Addition-
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ally, the nugget variance was substantially overestimated in the standard model,
which was expected from the theory described in Section 3.3. For example, under
substantial donut jittering, the median bias was nearly 10 times greater in the
standard model than in the adjusted model. The spatial range was more biased and
always underestimated in the standard model with respect to the median, which
also agrees with the expectations from theory. The predictive measures were, with
the exception of some outlier values, superior for the adjusted model. For example,
under substantial donut jittering, the median CRPS was found to be 17% lower
and the median prediction RMSE was found to be 18% lower when jittering was
adjusted for, relative to ignored.

In the simulation study, certain outlier values for the estimated covariate coeff-
icients and the predictive measures were removed for the adjusted model. The
occurrence of these outliers can be attributed to large estimated uncertainty in the
covariate coefficients for certain datasets. The uncertainty is estimated with the
Hessian of the likelihood which TMB uses in its optimization, implying that the
outliers may arise from a flat likelihood surface, leading to a Hessian close to a
zero matrix. It is plausible that the exact posteriors of the covariate coefficients
exhibit a flat distribution, where multiple values are nearly equally probable. Such
scenarios represent a potential problem for the numerical approach, as it could make
the optimization unstable. Exploring the exact posteriors using the sample-based
approach could have provided valuable insights on this problem, but we were not
able to practically sample the unknown true locations with the setup considered in
the simulation study. Nevertheless, we believe that for a given dataset, numerical
instabilities such as these outliers may be avoided in many cases by increasing the
resolution of the mesh or adjusting priors.

Future work is needed to construct an efficient sampler for the unknown true
locations when the impact of jittering is substantial, e.g., due to a large jittering
scale or strong covariates. We were not able to investigate how the exact posteriors
behave in such scenarios, which is important to assess the suitability of the numerical
approach in, e.g., the context of DHS data. We therefore encourage more work
on developing an efficient sampler for the unknown true locations. Additionally,
a natural line of investigation is to compare the inference of the sample-based
approach, which uses the SPDE approach to approximate the spatial field, to the
inference of a sampler which uses the exact geostatistical model.

We explored how privacy protection can be evaluated by approximating the
full posterior of the unknown true locations with Monte Carlo integration and the
integration procedure employed in the numerical approach. To evaluate privacy
protection, we considered a distance-based and a KLD-based metric. The distance-
based metric may not capture the important local behaviour of the full posterior,
while it is unclear how the KLD-based metric should be calibrated in order to fairly
compare the privacy protection of different jittering schemes. Thus, we encourage
more work on this issue, so that jittering schemes employed for geomasking purposes
can be justified based on a metric measuring privacy protection.

Based on our results from the investigation with the sample-based approach and
the simulation study, in combination with findings of previous work (Altay et al.,
2022a,b; Totland, 2022), we recommend that the numerical approach is used to
adjust for jittering in geostatistical analyses of DHS data and in other applications
with positional uncertainty of a similar spatial scale when there are ∼ 103 obs-
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ervations and raster-based covariates are used. Even if this is not the case, adjusting
for jittering is fast and easy to apply for arbitrary geographies, as we demonstrated in
the case study of vaccination coverage in Chapter 7. Thus, even if the impact of pos-
itional uncertainty is believed to be negligible, the numerical approach may be used
to check if accounting for it leads to considerably different inference. Furthermore,
an R-package has recently been developed (Altay et al., 2023), which makes the
numerical approach with adjustment for positional uncertainty readily available,
minimizing the amount of code and technical knowledge required from the user.

For future lines of work, the sensitivity of inference to the number of primary
and secondary points in the integration scheme should be investigated, as this
could substantially reduce computation times by reducing the number of required
operations and giving a sparser Hessian in the optimization routine. Importantly,
this needs to be investigated in relation to the smoothness of covariates, as this is
likely to have a deciding impact on the adequate number of integration points per
area. Another line of future work is to extend the numerical approach to space-time
models. DHS datasets are typically sampled at regular time intervals, and utilizing
the temporal structure of the data could be valuable for forecasting the development
of, e.g., health indicators.
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Appendices

A Derivation of Variogram under Geomasking

Here, we derive the expression for E
[
ρ(u∗

ij) | uij

]
presented in Equation (3.4). For

ease of notation, let ϕ = ρS/
√
8. We use a change of variables, and define

ũij =
ϕ√

4δ2 + ϕ2
, ũ∗

ij =

√
4δ2 + ϕ2

ϕ
.
Note that ũ∗

ijũij = u∗
ijuij. Then,

E
[
ρ(u∗

ij) | uij

]
=

∫ ∞

0

ρ(u∗
ij) · π(u∗

ij|uij)du
∗
ij (A.1)

=

∫ ∞

0

exp

{
−
(u∗

ij)
2

ϕ2

}
· exp

{
−
(u∗

ij)
2 + u2

ij

4δ2

}
u∗
ij

2δ2
I0

(
u∗
ijuij

2δ2

)
du∗

ij,

where I0 is the modified Bessel function of the first kind, order zero. Here, we have
inserted the Gaussian correlation function and the pdf of a Rice(uij,

√
2δ), whose

expression can be found in Appendix A of Fronterrè et al. (2018). Continuing, we
perform the change of variables in (A.1), which gives

E
[
ρ(u∗

ij) | uij

]
= C̃ ·

∫ ∞

0

exp

{
−
(ũ∗

ij)
2 + ũ2

ij

4δ2

}
ũ∗
ij

2δ2
I0

(
ũ∗
ijũij

2δ2

)
dũ∗

ij, (A.2)

where

C̃ =
ϕ2

ϕ2 + 4δ2
exp

{
−

u2
ij

(ϕ2 + 4δ2)

}
=

1

1 + 4r2
exp

{
−

u2
ij

ϕ2(1 + 4r2)

}
,

where r = δ/ϕ. The integral in (A.2) integrates the pdf of a Rice(ũij, 2δ
2) distribut-

ion over its support, which evaluates to one. Thus,

E
[
ρ(u∗

ij) | uij

]
=

1

1 + 4r2
exp

{
−

u2
ij

ϕ2(1 + 4r2)

}
.

B Derivation of Integration Weights under Donut

Jittering

We derive an expression for the integration weights under donut jittering. For
generality, we allow the inner donut radius, R

(i)
1 > 0, and the outer donut radius,
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R
(i)
2 > R

(i)
2 , to vary between observations, although we treat these as common

for all observations elsewhere in the text. The integration weights depend on the
probability mass of the donut jittering distribution within their corresponding inte-
gration area. Therefore, first, we define the area of the ijk-th integration point
as

Aijk = {si + (r cos a, r sin a)T : ri(j−1) ≤ r < rij, aij(k−1) ≤ a < aijk},

where ri0 = R
(i)
1 and riR(i) = R

(i)
2 , and we let Li = R

(i)
2 −R

(i)
1 . We take the integration

area boundaries as equispaced,

aijk =

{
2π
mij

(k − 1) + π
mij

, j mod 2 = 1,
2π
mij

(k − 1), otherwise,

where π
mij

intersperses the integration points for every other ring based on mij.

Next, we determine the radii rij so the integration weights are equal for each of the
integration points. Specifically, for the outer-most ring, since the density π(si|s∗i ) is
uniform in radial coordinates on (a, r) ∈ [0, 2π]× [0, Li], we have

2πLi∑R(i)

j′=1mij′

=
2π(R

(i)
2 − ri(R(i)−1))

miR(i)

=⇒ ri(R(i)−1) =
R

(i)
1 miR(i) +R

(i)
2

∑R(i)−1
j′=1 mij′∑R(i)

j′=1mij′

.

Then, one can show, e.g., by induction, that this leads to

rij =
R

(i)
1

∑R(i)

j′=j+1 mij′ +R
(i)
2

∑j
j′=1mij′∑R(i)

j′=1mij′

.

The integration weights are given by

λijk ∝
rij − ri(j−1)

Li

aijk − aij(k−1)

2π
.

C Verifying the MCMCAlgorithm Implementation

with INLA

Implementing MCMC samplers often requires a moderate amount of programming,
and it can be challenging to validate the programmed algorithm, since the true
posteriors are, naturally, not available analytically. To verify the implementation
of the MCMC sampler described in Section 4.3, we used the R-package INLA to
estimate marginal posteriors of the model parameters when there is no positional
uncertainty.
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Figure C.1: Marginal posteriors of INLA (red) and the corresponding sample-
distributions of the MCMC algorithm (grey). The true values used to simulate
the data are shown as blue vertical lines.

We considered the geostatistical model given by (2.6) with only an intercept,
β = 1, and otherwise the same parameters and domain as that in Scenario 2 in
Chapter 5. The MCMC algorithm was run for 15, 000 iterations and 1000 burn-in
samples were used. Figure C.1 displays the marginal parameter posteriors produced
by INLA along with the corresponding sample-distributions MCMC algorithm. We
observe that the histograms of the MCMC algorithm match the marginal posteriors
of INLA, which strengthens our confidence in that the implementation of the MCMC
algorithm in the sample-based approach is correct.

D Supplementary Figures to Chapter 5

D.1 Scenario 1

Figure D.1 displays trace-plots for log κ, log τ , log σN and the first coordinate of
a true location, s∗ = (s∗1, s

∗
2)

T for one dataset used in Scenario 1. The trace-plot
in Figure D.1d of the true coordinate illustrates poor mixing, which makes long
chains necessary in order to achieve accurate posteriors. Trace-plots for the other
true coordinates were similar, and are therefore not shown. Nonetheless, the trace-
plots do not give any evidence that the chain has not converged, and 1000 burn-in
samples seems to be more than enough. We do not show trace-plots for more
datasets, because they exhibit very similar behaviour.

Figure D.2 displays the cross-dataset biases of βistW, βDistR and σ2
S in Scenario 1,

for which there are no large difference between MStd., MAdj. and MSB. Figure D.3
displays the posterior distributions of βDistW and βDistR for MAdj., MStd. and MSB

for a given dataset, where we, as expected, observe that there is little difference
between the models.
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Figure D.1: Trace-plots from the MCMC algorithm for one dataset in Scenario 1
for (a) log κ, (b) log τ , (c) log σN and (d) the first coordinate of a true location, s∗1.
The red horizontal lines indicate the true values used to simulate the dataset.

76



Supplementary Figures to Chapter 5

−0.3

−0.2

−0.1

0.0

0.1

Sample−based Adjusted Standard
 

B
ia

s 
of

 D
is

tW

(a) βDistW

−0.25

0.00

0.25

Sample−based Adjusted Standard
 

B
ia

s 
of

 D
is

tR

(b) βDistR

0.0

0.2

0.4

Sample−based Adjusted Standard
 

B
ia

s 
of

 s
pa

tia
l v

ar
ia

nc
e

 

(c) σ2
S

Figure D.2: Cross-dataset biases of point estimates of (a,b) covariate coefficient
estimates and (c) the spatial marginal variance in MAdj., MStd. and MSB in Scenario
1.
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Figure D.3: The estimated posterior distribution for two of the covariate coefficients
in MStd. (green) and MAdj. (red) for a given dataset in Scenario 1. The histograms
display the sample-based posteriors of MSB.
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Figure D.4: Trace-plots from the MCMC algorithm for one dataset in Scenario 2
for (a) log κ, (b) log τ , (c) log σN and (d) the first coordinate of a true location, s∗1.
The red horizontal lines indicate the true values used to simulate the dataset.

D.2 Scenario 2

Figure D.1 displays trace-plots for log κ, log τ , log σN and the first coordinate of one
true location, s∗ = (s∗1, s

∗
2)

T for one dataset used in Scenario 2. The trace-plot in
Figure D.4d of the true coordinate illustrates poor mixing, which makes long chains
necessary in order to achieve accurate posteriors. Trace-plots for the other true
coordinates were similar, and are therefore not shown. The trace-plots do not give
any evidence that the chain has not converged, and 1000 burn-in samples appears
to be more than enough. We do not show trace-plots for more datasets, because
they display very similar behaviour.

Figure D.5 displays the cross-dataset biases of βistW, βDistR and σ2
S in Scenario

2, for which there are no large difference between MStd., MAdj. and MSB. Figure
D.6 displays the posterior distributions of βDistW and βDistR for MStd., MAdj. and
MSB for a given dataset, where we observe that there is little difference between the
models.
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Figure D.5: Cross-dataset biases of point estimates of (a,b) covariate coefficient
estimates and (c) spatial marginal variance for MStd., MAdj. and MSB in Scenario
2.
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Figure D.6: The estimated posterior distribution for two of the covariate coefficients
in MStd. (green) and MAdj. (red) for a given dataset in Scenario 2. The histograms
display the sample-based posteriors of MSB.
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Figure E.1: The cross-dataset biases in MAdj. and MStd. for the covariate coefficients
given by (a) µ, (b) βDistR, (c) βDistW and (d) βPopC, under all jittering schemes in
the simulation study.

E Supplementary Figures to Chapter 6

Figure E.1 displays the cross-dataset bias corresponding to the covariate coefficient
in MAdj. and MStd. that were not shown in the simulation study in Chapter 6. With
the exception of βDistW when R2 = 3, we observe that the covariate coefficients
(excluding the intercept) are underestimated, and more so in MStd. than in MAdj..
This effect is amplified for increased jittering (R2 = 9).
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