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1 Introduction

1.1 Measuring demographic and health indicators in low-

and middle-income countries

The United Nations (UN) declared 17 sustainable development goals (SDGs)
in 2015 towards ending poverty and improving socio-economical well-being of
the world population (UN, 2015). Figure 1 is a graphical illustration of the
main target areas. Each target area further breaks down into multiple clearly
defined sub-targets. The progress on each goal is closely monitored by UN in
collaboration with the member countries. The progress on each goal is measured
by a relevant set of indicators (UN, 2015).

This can be a very demanding task in low- and middle-income countries
(LMICs) due to the complete or partial lack of registries collecting data such
as the health incidences, birth and death records as well as demographic infor-
mation. Additionally, various challenges such as the lack of digital infrastructure,
insu�cient resources and competing priorities make it hard to keep record of even
the small amount of existing information (Tervonen et al., 2017). An e�cient way
to fill this gap is to collect more data by directly reaching out to people by using
household surveys.

The Demographic and Health Surveys Program (DHS) (https://dhsprogram.
com) contributes significantly to the data collection. DHS was established by the
U.S. Agency for International Development (USAID) in 1984. Since then it has
been conducting household surveys in more than 90 LMICs. The surveys achieve
high response rates that are over 90 percent in most cases (ICF International,
2023). DHS surveys are the key source of data for approximately 30 di↵erent
SDGs indicators (United Nations, 2023). Figure 2 shows an interview with a
household member during a DHS household survey.

Countries plan and conduct administrative tasks such as political decisions
and budget allocations both on the national and subnational levels. Accordingly,
obtaining estimates representing both the national and sub-national areas is im-
portant. Although the household surveys are helpful for obtaining national and
sub-national estimates of the demographic and health (DH) indicators such as
the vaccination rate (Local Burden of Disease Vaccine Coverage Collaborators,
2021) and neonatal and under five mortality (Wakefield et al., 2019; Golding
et al., 2017), the data is still extremely sparse for in depth analysis in high res-
olution (e.g. 5 by 5 kilometers) across the country. Sparsity of the observations
necessitates borrowing strength during estimation by incorporating data from
neighbouring areas.
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Figure 1: The main target areas for achieving the SDGs declared by the UN.
(United Nations, 2023)

In this thesis we use Bayesian geostatistical models as described in Sections
1.3.1 and 1.3.2. Attention to the spatial dependency structure allows incorporat-
ing small scale variability into the modelling. Data can be flexibly modelled via
di↵erent likelihood models such as binomial, Poisson, Gaussian, and the interac-
tions between the geographical covariates can be captured succesfully even in the
very fine scale.

The research in this thesis uses data from 2014 Kenya (KDHS2014) and 2018
Nigeria (NDHS2018) DHS surveys to analyse the proportion of contraceptive use
among women aged 15-49 in Kenya and prevalence of completion of secondary
education among 20-39 year old women in Nigeria, respectively. High resolution
estimation and prediction through the use of the developed approach in this
thesis contributes directly for monitoring the current states of SDG sub-targets
3.7 and 4.1 and constructing future projections for them. SDG sub-target 3.7
aims to ensure universal access to sexual and reproductive health-care services,
including for family planning, information and education, and the integration
of reproductive health into national strategies and programmes, by 2030 (UN,
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Figure 2: An interview from a DHS household survey (The Demographic and
Health Surveys Program, 2023).

2015). SDG sub-target 4.1 focuses on ensuring that all girls and boys complete
free, equitable and quality primary and secondary education leading to relevant
and e↵ective learning outcomes, by 2030 (UN, 2015).

1.2 DHS data collection and GPS coordinate displacement

DHS Surveys are commonly conducted every five years based on a stratified two-
stage cluster design. Each DHS household cluster center is located within an
urban or rural part of a corresponding first level administrative area. The sur-
vey design is stratified with respect to the administrative regions, crossed by
the urbanization classification (ICF International, 2012). The first stage is the
random selection of a predetermined number of household clusters within each
stratum. The random selection of these enumeration areas are implemented with
probabilities proportional to the number of households in the corresponding clus-
ters. Censuses that are conducted at most every ten years are the basis for the
sampling design. Censuses are rare in time and do not provide detailed informa-
tion. The second stage is the random selection of a set of households from the
corresponding cluster (ICF International, 2012). Each cluster is geographically
referenced by the GPS coordinates of the household cluster centroids.

DHS data sets are semi-public. Access needs to be requested through an
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easy application process. Detailed information about the application procedure
can be found in https://dhsprogram.com/data/new-user-registration.cfm.
The application requires explaining why the data is needed and how it will be
processed, within context of a brief research plan. The survey data sets and the
corresponding GPS data are seperate data sources. The survey data alone can
be used to obtain national and subnational level survey statistics, but it does not
provide finer scale information. If the aim is to conduct high resolution analyses
by geostatistical modelling, as it is in this thesis, then having access to the GPS
coordinates is crucial.

DHS data is published at the cluster level in order to make individual re-
sponses indistinguishable. The GPS coordinates of the cluster centers are ran-
domly displaced to further protect the privacy of the respondents. This is im-
plemented by shifting the true location towards a random angle and up to a
known maximum distance. Such local displacements are referred to as jittering
throughout the thesis. The maximum jittering distances depend on the stratum
that the corresponding cluster center is located within. The default DHS jittering
distance for the locations that are within an urban stratum is 2 kilometers. On
the other hand, 99% of the rural locations are displaced up to 5 kilometers and
the remaining 1% is displaced up to 10 kilometers (Burgert et al., 2013). The
jittering has a potential to create issues that should be both methodologically
and computationally dealt with.

1.3 Geostatistical analysis for demographic and health in-

dicators

1.3.1 Standard geostatistical model

DHS data can be modelled by a standard geostatistical model containing an
intercept, a set of spatial covariates and a spatial random e↵ect, as long as the
positional error in the cluster center coordinates are not taken into account. A
typical DHS survey contains data from a set of small household groups (clusters)
indexed by cluster IDs C = 1, ..., c, and referenced by the jittered GPS coordinates
of the cluster centers sc, across the corresponding spatial domain (country) sc 2
D. Accordingly, the geostatistical model takes the form:

yc | ⌘(sc),� ⇠ ⇡(yc | ⌘(sc),�)
⌘(sc) = x(sc)

T� + u(sc)

where yc is the value of the response variable at cluster c, ⌘(sc) is the linear
predictor at the jittered location sc of cluster c, � is a vector of parameters
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belonging to the corresponding likelihood family ⇡(yc | ⌘(sc),�). The vector �
contains the covariate e↵ect sizes, and x is a spatially varying vector of covariates.

The spatial random e↵ect u(·) is a Gaussian random field (GRF) with a mean
function µ = µ(·) and a Matérn covariance function:

C⌫(s1, s2;�
2
S, ⇢S) = �

2
S
21�⌫

�(⌫)

✓p
8⌫

||s1 � s2||
⇢s

◆⌫

K⌫

✓p
8⌫

||s1 � s2||
⇢s

◆

s1, s2 2 D, where, �2
S is the marginal variance, and ⇢S is the spatial range, with a

smoothness parameter that is fixed to ⌫ = 1. The smoothness parameter is fixed
to 1 for computational simplicity.

1.3.2 Bayesian setup

We include prior information via Bayesian approach to stabilize the inference and
allow a flexible framework.

The models in this thesis contain the spatial random e↵ect as a GRF. Having
a GRF in the model with Matérn covariance function can cause a ridge in the
likelihood for the range and the marginal variance, which might reflect itself as
overfitting by estimating spurious spatial trends (Fuglstad et al., 2019). Simpson
et al. (2017) suggests overcoming the overfitting problem when having GRF in
the model, by assigning priors that shrink the components such as GRF, towards
their base models. Therefore, as proposed by Fuglstad et al. (2019), we use
penalised complexity (PC) priors on the parameters of the Matérn GRF, spatial
range (⇢S) and the marginal variance (�2

S). The PC-priors are formulated via the
hyperparameters (a priori median of range) and �0 (a priori marginal variance)
as P(�S > 1) = 0.05 and P(⇢ > ⇢0) = 0.50, respectively. PC priors penalise
complexity, the distance from the base model, by shrinking the range towards
infinity and the marginal variance towards zero (Fuglstad et al., 2019).

The unobserved true locations s
⇤
c are assigned a uniform prior s

⇤
c ⇠ U(D).

This means that a true location can be anywhere within the jittering radius of
the corresponding DHS cluster center. Using urbanicity was not preferrable since
urbanicity was not very reliable. The DHS data includes urbanicity information
for the corresponding clusters, but urbanicity was not available across the coun-
tries as high resolution raster maps (e.g. in 5 by 5 kilometers resolution). Using
more informative priors may also cause issues. Choice of priors for the unobserved
true locations might be an interesting potential topic for the future research.

The covariate e↵ect sizes in the model are assigned uninformative Gaussian
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prior (� ⇠ Np(0, 25Ip)).

1.3.3 Recent work in the field

There is much interest in mapping DHS indicators on a subnational level, see for
example Gething et al. (2016), Bosco et al. (2017), Steele et al. (2017), Davey
and Deribe (2017), Golding et al. (2017), Osgood-Zimmerman et al. (2018), Utazi
et al. (2018), Graetz et al. (2018), Utazi et al. (2019b), Ganyani et al. (2019),
Utazi et al. (2019a), Mosser et al. (2019), Leasure et al. (2020), Wakefield et al.
(2020), Utazi and Tatem (2021), Local Burden of Disease Vaccine Coverage Col-
laborators (2021), Nguyen et al. (2022), Jasper et al. (2022), Woods et al. (2022),
Wilson and Wakefield (2022), Utazi et al. (2022), Utazi et al. (2023). Following
are two examples for such studies in more detail.

Golding et al. (2017) combined DHS household surveys with various other
data sources to estimate neonatal and under five mortality, which stand for the
probability of death before the age of five, and within the first month of life, per
1000 livebirths, respectively. They implemented Bayesian geostatistical models
to obtain estimates of the two indicators in 5 by 5 kilometers resolution, across
46 countries in Africa.

Local Burden of Disease Vaccine Coverage Collaborators (2021) obtained in-
dividual MCV1 vaccination status data across 101 low- and middle-income coun-
tries by compiling 354 household surveys including the DHS surveys from the In-
stitute for Health Metrics and Evaluation (IHME) Global Health Data Exchange
(GHDx) database (http://ghdx.healthdata.org). They fitted a geostatistical
model with correlated errors across space and time to estimate routine childhood
MCV1 coverage at 5 by 5 kilometers resolution.

The geographical references of DHS household cluster centers are published
as a set of randomly displaced (jittered) GPS coordinates of the true household
cluster centroids. The positional error introduced by jittering has a great poten-
tial to cause the geostatistical analyses to yield adversely a↵ected results, such
as attenuation in covariate e↵ect size estimates and poor predictive performance
(Altay et al., 2022a,b). Golding et al. (2017) and Local Burden of Disease Vaccine
Coverage Collaborators (2021) take the survey design into consideration in terms
of the urbanicity strata, but they do not adress the positional error emerging
from the jittering algorithm of DHS.
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1.4 Handling positional uncertainty

1.4.1 State of the Art

The DHS jittering algorithm displaces the true cluster centers (s⇤c) towards a
random direction and up to a certain maximum jittering distance. The direc-
tion is decided by a random angle chosen from an interval between 0 and 2⇡.
The maximum distance on the other hand, is decided by the stratum that the
corresponding location is located within. Both the displacement angle and the
distance is chosen from a uniform distribution with the corresponding lower and
upper bounds. The DHS random displacement algorithm does not allow the jit-
tered location to land in a di↵erent administrative area (A) than the one that it
was initially located within. The country of interest is divided into K administra-
tive regions. Let A(s) 2 {1, . . . ,K} denote the administrative region of location
s for s 2 D. Then for an urban cluster c, which can be jittered up to 2 km, the
jittering distribution is

⇡U(sc|s⇤c) /
I(A(sc) = A(s⇤c)) · I(d(sc, s⇤c) < 2)

d(sc, s⇤c)
, sc 2 D,

where d(sc, s⇤c) is the distance in kilometers between sc and s⇤c , and I is the
indicator function. Similarly, for a rural cluster c, which can be jittered up
to 5 km except for the 1 percent of clusters jittered up to 10 km, the jittering
distribution is:

⇡R(sc|s⇤c) /
I(A(sc) = A(s⇤c))

d(sc, s⇤c)


99I(d(sc, s⇤c) < 5)

100
+

I(d(sc, s⇤c) < 10)

100

�
, sc 2 D.

Fitting the geostatistical model based on the locations provided by DHS has
a potential to adversely a↵ect the two main components of the model, namely,
the covariates and the spatial random e↵ect. A design matrix with the covariate
values that are extracted at the jittered locations might lead failure in capturing
the true interactions between the raster-and distance-based covariates by causing
a non standard form of measurement error to emerge (Gustafson, 2003). The
geographical rasters usually have high resolution that reflects variability in the
data within distances that are way smaller than the default maximum jittering
distances of DHS. Ignoring jittering translates into ignoring this variation which
then might cause the estimated covariate e↵ect sizes to attenuate towards zero
(Altay et al., 2022b).

Although there have been some methodological developments towards ad-
dressing the positional uncertainty issue in geostatistical analysis, in practice it
is still common to ignore jittering because the few existing methods are either
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computationally demanding, or not flexible enough to accomodate di↵erent types
of likelihoods.

Fanshawe and Diggle (2011) presents an approach to reduce the e↵ects of po-
sitional error in geostatistical model estimation and prediction. They approach
the problem from the measurement error perspective and investigate uncertainty
in the coordinates of data and prediction locations, emerging due to inaccurate
measurements or storage of GPS coordinates. They use a standard geostatistical
model which contains spatial covariates, a GRF and mutually independent Gaus-
sian errors with zero mean and nugget variance. They break down the nugget
variance into two independent processes with respect to two sources of variation,
namely the small scale spatial variation and the measurement error. Then the
model allows accomodating the measurement error as a bivariate normal dis-
tributed positional error. They obtain parameter estimates that are closer to
the true values than the common way of not accounting for the error. On the
other hand, the method focuses on accounting for the positional uncertainty only
in the GRF and uses a Gaussian likelihood, which does not allow estimating
prevalences. They also found that the computations were slow especially when
the positional error is in the data locations, but later it became feasible, with
composite likelihoods by Fronterrè et al. (2018).

Perez-Heydrich et al. (2013) proposes an approach that is based on creat-
ing bu↵er zones around DHS locations with respect to the maximum jittering
distances of the corresponding urbanization strata. The method then uses the
covariate values that are averaged over the bu↵er zone. Perez-Heydrich et al.
(2016) explores this further and finds that averaging the covariates over a 5km
bu↵er zone around DHS cluster centers can moderate the adverse e↵ects of jit-
tering for continuous and categorical rasters. The approach does not address the
attenuation in the covariate e↵ect sizes.

Wilson and Wakefield (2021) suggested using Integrated Nested Laplace Ap-
proximations (INLA) (Rue et al., 2009) within Markov chain Monte Carlo method
(MCMC) to account for the positional uncertainty of DHS cluster centers in hi-
erarchical geostatistical models within Bayesian framework. INLA focuses on
approximate Bayesian inference on the models with latent Gaussian Markov ran-
dom field (GMRF), and the corresponding R-package that provides the functions
needed to implement the approach. The proposed mixed model is constructed
based on the unknown true locations. The issue that the true cluster centers can
be located anywhere within the jittering radius of the observed DHS locations
with equal probability prevents obtaining a fixed set of coordinates. This breaks
the underlying assumption that each observation depends on one linear predic-
tor. Accordingly, the model is not suitable for fitting with INLA. The motivation
behind using INLA within MCMC method in this context is to be able to obtain
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a fixed set of locations by sampling the true locations via MCMC algorithm first,
and then conditioned on them, fitting the model with INLA, iteratively. The
method allows accounting for jittering in both GRF and the spatial covariates,
but the long computation time makes it challenging to apply in practice.

1.4.2 A novel, flexible and fast approach

This thesis presents a fast and flexible computational method that allows ad-
justing for jittering in the GPS coordinates of DHS household cluster centers.
The method allows accounting for jittering either in the spatial random e↵ect,
or in the covariates, or both. The approach allows fitting geostatistical hierar-
chical models with Gaussian, binomial and Poisson likelihoods, within Bayesian
framework. The adjusted geostatistical model can be constructed as follows:

yc | ⌘(sc),� ⇠ ⇡(yc | ⌘(sc),�), sc|s⇤c ⇠ ⇡(sc|s⇤c),
⌘(s⇤) = x(s⇤c)

T� + u(s⇤c), s⇤ 2 D.

This setting allows approaching the unknown true locations as nuisance param-
eters and integrating them out of the joint likelihood function:

⇡(yc, sc|⌘(·)) =
Z

R2

⇡(yc, sc|⌘(·), s⇤c)⇡(s⇤c) ds⇤c

=

Z

R2

⇡(yc|⌘(s⇤c))⇡(sc|s⇤c)⇡(s⇤c) ds⇤c , (1.1)

for c = 1, . . . , C. The model in its new form provides the framework to adress the
positional uncertainty issue in the observed coordinates and allows constructing
the modelling hierarchy under Gaussian, binomial and Poisson likelihoods. The
jittering distribution is known, which means that a true location (s⇤c) can be
located anywhere within the jittering radius of the corresponding observed loca-
tion (sc). The method then constructs an integration grid in polar coordinates
around each DHS cluster center and assigns weights to each point on the grid.
The assigned weights are equal within the five kilometer radius of DHS cluster
centers, and equal but lower outside it.

In the case that an integration point is less distant to the administrative
area border than the maximum jittering distance of the corresponding urbaniza-
tion strata, an additional set of sub-integration points are created around it and
the ones that land across the border are assigned zero weight. Figure 3 shows
the primary and secondary integration points and the corresponding integration
weights, for a single cluster from the Kenya 2014 DHS household survey.
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Figure 3: Illustration of primary (left) and secondary (right) integration weights
for one cluster from Kenya 2014 DHS household survey.

1.5 Computationally e�cient implementation

The method in this thesis requires integrating out the unknown true locations
from the joint likelihood function across an integration grid via Equation (1.1).
Accordingly, implementation of the developed approach relies heavily on making
sure that the computations can be implemented with as low computational cost
as possible. This was achieved by combining the computational benefits of the
sparsity that is provided by the SPDE approach for the high spatial dimension
arising from the integration grids, and the Laplace approximation and auto-
di↵erentiation feature of the Template Model Builder (TMB). Using TMB also
provides flexibility in model construction by its capability of fast computation
with non-Gaussian likelihoods.

1.5.1 Handling the dimensionality of the problem

A Gaussian random field with Matérn covariance is a solution to the following
linear SPDE

(2 ��)(⌧u(s)) = W(s), s 2 D̃,

where  > 0 and ⌧ > 0 are related to marginal variance and range, � is the
Laplacian, W(·) is standard Gaussian white noise, and D̃ � D is an extended
domain to reduce boundary e↵ects. The e↵ective range and marginal variance
are calculated from the SPDE parameters as

⇢S =

p
8


and �

2
S =

1

4⇡⌧22
.
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Accordingly, the continuous GRF over two dimensional domain D̃ 2 R2 can
be approximated by the SPDE approach:

u(s) =
mX

i=1

wi�i(s), (1.2)

where �i(·) are pyramidal basis functions and w = (w1 . . . wm)T are the Gaus-
sian weights w ⇠ Nm(0,Q(✓)�1) with a sparse precision matrix. Due the spar-
sity, the computational cost reduces to the square root of the initial computa-
tional cost, which was cubic in dimensions m. This framework makes it e�cient
to evaluate the continuous GRF via discretization of the continuous surface by
the Delaunay triangulation mesh. In this setting, each observation point (DHS
cluster center) is located on one of the non-intersecting mesh triangles.

An example two dimensional setting is illustrated in Figure 4. The upper left
section of the figure shows how the values of the piece-wise linear basis functions
are assigned based on a single observation point within one of the mesh triangles.
If the point is located inside the triangle, the basis function is evaluated at all
three vertices (nodes). Each value on the nodes is calculated as the ratio of the
area of the smaller triangle that is on the opposite side, to the total area of the
triangle. If the point is located on one of the three nodes, then the value of the
basis function becomes one at that node and zero elsewhere. If it is located along
one of the edges, the basis function values on the nodes at the two ends of the
edge are calculated as the relative distances between the point and the two edges.
The value is zero on the third node.

The upper right section of Figure 4 shows the pyramidal formation of the
piece-wise linear basis functions. The lower left and right sections of Figure 4
show a continuous surface and its approximation by the pyramidal piece-wise
basis functions, respectively (Krainski et al., 2018).

The evaluated values of basis functions form a projection matrix where each
basis function is represented by one column and each observation point (cluster
center) is represented by one row. Accordingly, each row contains three non-zero
values. When the cluster center is located on either one of the vertices or one of
the edges, the corresponding row of the projector matrix has only one value that
is equal to one, or has two non-zero values, respectively (Krainski et al., 2018).
Multiplying the projector matrix by the Gaussian distributed weights, the SPDE
approach yields an approximation of the spatial random e↵ect as a zero mean
Gaussian distribution with a sparse precision matrix. The sparsity supports fast
evaluation of GRF at any number of locations.
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Figure 4: Approximation of a continuous surface by a set of piece-wise linear
pyramidal basis functions (Krainski et al., 2018)

1.5.2 Allowing for flexible observation model

The Template Model Builder (TMB) provides fast computation by combining
the auto-di↵erentiation with the Laplace approximation (Kristensen et al., 2016).
Using TMB requires the objective function, in other words the likelihood ⇡(yc |
⌘c,�) of the hierarchical model, together with the whole Bayesian hierarchical
structure to be defined within a C++ script. TMB approximates the likelihood
in the model using the Laplace approximation constructed based on the second
order Taylor series expansion (Skaug and Fournier, 2006). The TMB function
”MakeADFun” can be run within R and it uses the chain rule of calculus to pre-
compute the first and second order derivatives (Kristensen et al., 2016; Skaug
and Fournier, 2006). The function returns the derivatives together with the ob-
jective function within a list called the core model object. Having the derivatives
pre-computed provides a great computational advantage while maximizing the
Laplace-approximated likelihood. The presented methodology in this thesis ef-
fectively combines all benefits of SPDE approach with the Laplace approximation
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and the autodi↵erentiation of TMB and achieves fast computations. TMB is ac-
cessible within R via the TMB R-package.

1.6 Summary of the Papers

Paper I Altay, U., Paige, J., Riebler, A., and Fuglstad, G.-A. (2022). Fast geo-
statistical inference under positional uncertainty: Analysing DHS house-
hold survey data. arXiv preprint arXiv:2202.11035v2.
In preparation for resubmission.

Paper II Altay, U., Paige, J., Riebler, A., and Fuglstad, G.-A. (2022). Jittering
impacts raster- and distance-based geostatistical analyses of DHS data.
arXiv preprint arXiv:2202.07442v1.
Submitted.

Paper III Altay, U., Paige, J., Riebler, A., and Fuglstad, G.-A. GeoAdjust:
Adjusting for positional uncertainty due to anonymisation in geostatistial
analysis of DHS data.
In preparation for submission.

1.6.1 Paper I: “Fast geostatistical inference under positional uncer-

tainty: Analysing DHS household survey data”

This paper introduces a novel and computationally e�cient approach for geosta-
tistical analysis of DHS household surveys with positional uncertainty in the GPS
coordinates of cluster centers. The method accounts for jittering in the spatial
random e↵ect and it is suitable for geostatistical analysis of Bayesian hierarchical
models with binomial, Gaussian, and Poisson likelihoods. The paper provides
the technical details about the implementation and includes a simulation study
with binomial and Gaussian observation models, where the results of accounting
and not accounting for jittering are compared under various scenarios based on
di↵erent spatial range values and jittering scales. The results showed that the
developed method provided more accurate parameter estimates and better pre-
dictive performance compared to the analysis where jittering is not accounted for.
The improvements in the estimation and prediction got better with the increased
jittering scale.
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1.6.2 Paper II: “Jittering impacts raster- and distance-based geosta-

tistical analyses of DHS data”

This paper extends the first paper, by including raster- and distance-based co-
variates. The improvements in the method allows accounting for jittering either
in the spatial random e↵ect, in the covariates, or in both. The simulation study
analyses the prevalence of completion of secondary education among 20-39 year
old women in Nigeria, based on DHS 2018 Nigeria household survey and compares
the results of not adjusting for jittering, adjusting only in the covariates, and in
both the covariates and the spatial random e↵ect, under di↵erent scenarios. The
results are evaluated in terms of the parameter estimation and prediction perfor-
mances. The analyses in the paper showed that the estimates of the covariate
e↵ect sizes had a tendency to attenuate towards zero, when jittering was not
accounted for. Accounting for jittering prevents this problem and improves the
predictive performance. We also found that the improvement due to accounting
for jittering largely comes from accounting for jittering in the covariates.

1.6.3 Paper III: “GeoAdjust: Adjusting for positional uncertainty in

geostatistial analysis of DHS data”

The R-package GeoAdjust was constructed in order to make our methodology
easily accessible for the scientific community. The package is on CRAN. The
paper is targeted towards applied scientists who want to analyse DHS data in a
geostatistical setting. It provides detailed step by step explanations about the
package functionality and illustrates the analysis of a typical DHS dataset in-
corporating positional uncertainty. The results in the first and second papers
can easily be reproduced using the package without complicated code. GeoAd-
just o↵ers a nice plotting function as well. To my knowledge, this is the first
and only R package for flexibly analysing DHS data by accounting for the posi-
tional uncertainty in the spatial field, as well as the raster- and distance-based
covariates.

References

Altay, U., Paige, J., Riebler, A., and Fuglstad, G.-A. (2022a). Fast geostatistical
inference under positional uncertainty: Analysing DHS household survey data.
arXiv preprint arXiv:2202.11035v2.

Altay, U., Paige, J., Riebler, A., and Fuglstad, G.-A. (2022b). Jittering impacts

14



raster- and distance-based geostatistical analyses of DHS data. arXiv preprint

arXiv:2202.07442v1.

Bosco, C., Alegana, V., Bird, T., Pezzulo, C., Bengtsson, L., Sorichetta, A.,
Steele, J., Hornby, G., Ruktanonchai, C., Ruktanonchai, N., et al. (2017).
Exploring the high-resolution mapping of gender-disaggregated development
indicators. Journal of The Royal Society Interface, 14(129):20160825.

Burgert, C. R., Colston, J., Roy, T., and Zachary, B. (2013). Geographic displace-
ment procedure and georeferenced datarelease policy for the Demographic and
Health Surveys. https://dhsprogram.com/pubs/pdf/SAR7/SAR7.pdf. DHS
Spatial Analysis Reports No. 7.

Davey, G. and Deribe, K. (2017). Precision public health: mapping child mor-
tality in Africa. The Lancet, 390(10108):2126–2128.

Fanshawe, T. and Diggle, P. (2011). Spatial prediction in the presence of posi-
tional error. Environmetrics, 22(2):109–122.
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Abstract

Household survey data from the Demographic and Health Surveys (DHS)

Program is published with GPS coordinates. However, almost all geostatis-

tical analyses of such data ignore that the published GPS coordinates are

randomly displaced (jittered). In this short report, we develop a geostatisti-

cal model that accounts for the positional uncertainty when analysing DHS

surveys, and provide a fast implementation using Template Model Builder.

The key focus is inference with Gaussian random fields under positional

uncertainty, and our approach works for both Gaussian and non-Gaussian

likelihoods. A simulation study with a binomial observation model shows

that the new approach performs equally or better than the common ap-

proach of ignoring jittering, both in terms of more accurate parameter

estimates and improved predictive measures. We demonstrate that the

improvement would be larger under stronger jittering. An analysis of con-

traceptive use in Kenya shows that the approach is fast and easy to use in

practice.

Geospatial analysis, Positional error, Low and Middle Income Countries,
Global Health, Household Survey, Template Model Builder
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1 Introduction

Demographic and health indicators are important for monitoring and evaluating
progress towards achieving the United Nations’ (UN’s) Sustainable Development
Goals (SDGs) (General Assembly of the United Nations, 2015). The DHS pro-
gram has collected over 400 surveys in over 90 countries, and surveys are con-
ducted approximately every fifth year in participating countries. DHS surveys
primarily use a two-stage cluster sampling design. Georeferenced data are only
available based on special permission and a known geographical displacement pro-
cess is applied before releasing the GPS coordinates of the clusters. Here, DHS
aims to balance the risk of disclosure of the respondents while simultaneously
preserving useful information for spatial analyses (Burgert et al., 2013). Urban
clusters are displaced up to 2 km, while 99% of the rural clusters are displaced
up to 5 km, and the remaining 1% up to 10 km. Rural clusters are jittered
more to keep the same level of disclosure risk as for urban clusters (VanWey
et al., 2005). This approach can be criticized as the actual risk of disclosure is
unclear. Alternative procedures exist, which include, for example, location swap-
ping (Zhang et al., 2017), space transformations (Khoshgozaran and Shahabi,
2007) and k-anonymity (Sweeney, 2002). In the field of cyber security so-called
strong protection techniques are proposed, see for example (Gahi et al., 2016).

This short report does not assess the quality of the underlying displacement
process used by DHS, but proposes a novel and fast geostatistical inference ap-
proach to analyse DHS data in the presence of positional uncertainty. In a linear
geostatistical model with a Gaussian likelihood, a simple approach to adjust for
positional error with a known displacement distribution is to adjust the covari-
ances between the observed locations, and assume that after marginalising out
the unknown true locations, the joint distribution is still a Gaussian distribution
(Cressie and Kornak, 2003). However, such approaches do not easily general-
ize to generalized linear models. Fanshawe and Diggle (2011) describe how to
account for positional uncertainty in a hierarchical geostatistical model fitted
through maximum likelihood estimation for the parameters, but found computa-
tional times to be prohibitively slow. Later work demonstrates that inference can
be made faster through a composite likelihood approach in the case of a linear
geostatistical model with a Gaussian likelihood (Fronterrè et al., 2018).

Recently, Wilson and Wakefield (2021) proposed a Bayesian approach for
generalized linear geostatistical models in the context of DHS surveys. Each
iteration in their method is composed of two parts. First, Markov chain Monte
Carlo (MCMC) is used to sample the true locations, then the Integrated Nested
Laplace Approximations (INLA) method (Rue et al., 2009) is applied for inference
conditional on the true locations. This gives an INLA within MCMC approach
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(Gómez-Rubio and Rue, 2018), which for each simulation scenario took around
52 hours to run 1,000 iterations on 398 locations.

Warren et al. (2016a) proposed a “regression calibration (RC)” method for
distance-based analyses that accounts for jittering of DHS clusters by trying
to estimate the true distance covariates. They found that the proposed method
outperformed the naive method in almost all location and spatial density settings.
In another study, Warren et al. (2016b) adressed the issue of incorrectly assigning
areas to the DHS clusters, when clusters are jittered out of the corresponding
true polygons. They proposed a maximum probability covariate (MPC) selection
method which allows selecting the most probable covariates. They recommend
using MPC to maximize the selection probability of the correct covariates. As a
di↵erent approach, Gething et al. (2013) considered the impact of jittering of DHS
clusters from the perspective of spatial interpolation surfaces. They proposed a
geostatistical framework for creating interpolated surfaces based on DHS data.

In this short report, we present a novel approach to fit generalized linear
geostatistical models that accounts for positional uncertainty in the provided
GPS coordinates of the data locations. The key focus is to address the issue of
inference under positional uncertantity when modelling spatial variation using
Gaussian random fields (GRFs). Computation time is a key concern and the
method needs to be accessible to analysts without requiring them to write com-
plex code. We use a quadrature to integrate out the unknown true locations so
that the likelihood of the observation conditional on the latent model is a mix-
ture distribution. The random e↵ects are then integrated out using the Laplace
approximation and automatic di↵erentiation with Template Model Builder TMB,
which supports complex, nonlinear latent models with non-Gaussian responses
(Kristensen et al., 2016). Computationally e�cient inference is ensured by us-
ing the stochastic partial di↵erential equation (SPDE) approach (Lindgren et al.,
2011), which allows the spatial field to be evaluated at any location quickly. We
investigate the performance of the new approach compared to standard practice
of ignoring jittering in a simulation study focusing on the stability of random
e↵ect estimates.

Increasing populations have a potential to create a huge future demand for
the limited resources on food in low- and middle income countries (Le Mouël and
Forslund, 2017; Alexandratos and Bruinsma, 2012). In order to support family
planning policies, as a source of useful insight, we analyse the proportion of
contraceptive use among women aged 15-49 based on data from the 2014 Kenya
Demographic and Health Survey (KDHS2014) (National Bureau of Statistics-
Kenya and ICF International, 2015). This requires a geostatistical model that
can handle a binomial observation model while accounting for jittering.
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Figure 1: Predicted posterior expectations (“pred.”) for the probabilities of using
any contraceptive method (left) and the corresponding coe�cients of variation
(CV) (right) with the new approach. The red points indicate the (jittered) loca-
tions of the C =1,583 clusters in Kenya.

In Section 2, we describe the KDHS2014 data set and outline the model
structure. Section 3 details the proposed method for approximate inference.
Section 4 presents the simulation study and the analysis of contraception use in
Kenya. We end the paper with discussion in Section 5. Supplementary results are
found in the Supplementary Materials, and all R and C++ code is available in
the Github repository https://github.com/umut-altay/Supplementary.git. The
repository includes a data statement which outlines the application procedure to
download the contraception data from DHS.

2 Data and Model Structure

Kenya consists of 47 counties, where every location in Kenya is classified as “ur-
ban” or “rural”. KDHS2014 contains 1,594 observed clusters, where the true
GPS coordinates have been jittered by the standard DHS procedure restricted
so that each GPS location cannot be displaced outside its original county. Af-
ter eliminating clusters whose coordinates did not match with their designated
county or had invalid GPS coordinates, C =1,583 clusters remained. Figure 1
shows the geography together with the estimates which are obtained at the end
of Section 4 from the model that we construct to account for jittering in the
observation locations. Similar figures are available in Section 4 of Supplementary
Materials, for the standard model that does not account for jittering.
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In total, there were 31,079 interviewed women and 17,500 among them re-
ported having used a contraceptive method in 2014. For clusters c = 1, . . . , C,
let nc denote the number of interviewed women aged 15–49, yc the number of
those women who have used contraceptive methods, and sc 2 R2 the jittered
spatial location. The unknown true location is denoted as s⇤c 2 R2. We model
the probability of contraception use at location s⇤ as

logit(r(s⇤)) = µ+ u(s⇤), s⇤ 2 R2
,

where µ is an intercept and u(·) is a GRF with a Matérn covariance function with
marginal variance �2

S, range ⇢S, and fixed smoothness ⌫ = 1. We observe nc indi-
viduals exposed to this risk and use yc|r(s⇤c) ⇠ Binomial(nc, r(s⇤c)) independently
for c = 1, . . . , C.

Under the DHS jittering scheme, for an urban cluster c with a maximum
jittering distance of 2 km, the jittering distribution is

⇡U(sc|s⇤c) /
I(A(sc) = A(s⇤c)) · I(d(sc, s⇤c) < 2)

d(sc, s⇤c)
, sc 2 R2

, (2.1)

where, d(sc, s⇤c) is the distance between s⇤c and sc, I is an indicator function, and
clusters are jittered independently. Similarly, for a rural cluster c, with a maxi-
mum jittering distance of 5 km (and the 1 percent of clusters with a maximum
jittering distance of 10 km), the jittering distribution is

⇡R(sc|s⇤c) /
I(A(sc) = A(s⇤c))

d(sc, s⇤c)


99I(d(sc, s⇤c) < 5)

100
+

I(d(sc, s⇤c) < 10)

100

�
, sc 2 R2

.

(2.2)

The binomial observation model is combined with the location likelihoods in
Equations (2.1) and (2.2) to give the complete observation model. The underlying
latent model is

µ ⇠ N (0, 1000), (u(s⇤1) . . . u(s⇤c))
T|�2

S, ⇢S, s
⇤
1, . . . , s

⇤
C ⇠ N (0,⌃),

where the covariance matrix ⌃ is a function of the unknown true locations
s⇤1, . . . , s

⇤
C and the parameters �2

S and ⇢S. We use the penalised complexity (PC)
prior for Matérn GRFs (Fuglstad et al., 2019) for �2

S and ⇢S with P(�S > 1) = 0.05
and P(⇢ > ⇢0) = 0.50, i.e., ⇢0 is the a priori median range. We use uniform priors
for s⇤c , this e↵ectively implies that all locations s⇤c such that ||sc � s⇤c || < 10 are
considered equally likely for c = 1, . . . , C.
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3 Approximating the Posterior Under Positional

Uncertainty

The SPDE model decomposes the spatial e↵ect into a linear combination of
compactly supported basis functions, u(s) =

PK
i=1 wi�(s), for basis function

�1, . . . ,�K , and where the K-vector of basis weights w = (w1 . . . wK)T follows
a multivariate Gaussian distribution with zero mean and with precision matrix
set so as to approximate a Matérn covariance structure. This results in a highly
sparse precision matrix for the basis weights, and causes the likelihood evalua-
tion to require only O(K3/2

n) operations for K basis elements and n observations
(Lindgren et al., 2011).

We treat the unknown true locations as nuisance parameters, integrating them
out of the likelihood and posterior. Letting � = (µ)T be the vector of fixed e↵ect
coe�cients for the linear predictor ⌘(·), the full likelihood can be factorized into
a product of likelihoods for individual observations: ⇡(y, s1, . . . , sn|w,�,✓L) =Qn

i=1 ⇡(yi, si|w,�,✓L), where ✓L are the parameters of the likelihood. The like-
lihood for an individual observation can then be calculated by integrating over
the distribution of its possible true spatial locations:

⇡(yi, si|w,�,✓L) =

Z

R2

⇡(yi, si|s⇤i ,w,�,✓L)⇡(s
⇤
i |w,�,✓L) ds

⇤
i

=

Z

R2

⇡(yi|⌘(s⇤i ),✓L)⇡(si|s⇤i )⇡(s⇤i ) ds⇤i . (3.1)

Since the integral in (3.1) is two-dimensional, it can be well-approximated for
each i via quadrature. We will integrate by selecting a single integration point at
si, and then building more ‘rings’ of points around si. Letmij denote the number
of integration points for observation i in ring j. Each numerical integration
point, given by s⇤ijk for observation i, ring j, and index k = 1, . . . ,mij has an

associated integration weight given by �ijk. If we assume there are J
i rings in

total (counting s⇤i11 = si as the first ring), then we can approximate the integral
in (3.1) numerically as follows:

Z

R2

⇡(yi|⌘(s⇤i ),✓L)⇡(si|s⇤i )⇡(s⇤i ) ds⇤i =

Z
⇡(yi|⌘(s⇤i ),✓L) d [⇡(si|s⇤i )⇡(s⇤i )]

⇡
JiX

j=1

mijX

k=1

�ijk⇡(yi|⌘(s⇤ijk),✓L), (3.2)

where �ijk /
R
Aijk

⇡(si|s⇤i )⇡(s⇤i ) ds⇤i , and Aijk is the area associated with inte-

gration point s⇤ijk, and is defined in the Supplement in Section 6. We will take
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mi1 = 1, and mij = 15 for all other j > 1 so that there are 1 + 15(J i � 1)
integration points in total. We may assume

P
ij

P
k �ijk = 1 for each i, since

the scaling of these weights cancels in the posterior. Hence, if ⇡(s⇤ijk) is constant
over the support of ⇡(si|s⇤i ), then �ijk /

R
Aijk

⇡(si|s⇤i ) ds⇤i . If, however, it is also
known that observation i lies in spatial region R[i], and ⇡(si|s⇤i ) has any mass
outside of R[i], then the weights are: �ijk /

R
Aijk\R[i] ⇡(si|s

⇤
i ) ds

⇤
i .

If observation i is within jittering distance of the boundary of R[i], then its
integration weights must be adjusted accordingly. For the ijk-th integration re-
gion, we approximate �ijk /

R
Aijk\R[i] ⇡(si|s

⇤
i ) ds⇤i numerically by subdividing

Aijk into a 10⇥10 grid of ‘secondary’ integration regions, each with an associated
secondary integration point at the center of mass of ⇡(si|s⇤i ) on that secondary
integration region. We calculate the center of mass radius by shrinking the mid-
point radial coordinate of the secondary integration regions within the subregions
by an equivalent factor as in Equation 2 of Section 6 in the Supplementary Ma-
terial, except replacing the subregion boundary angles aij2 � aij1 (defined in the
Supplement in Section 6) with (aij2 � aij1)/10. We then scale �ijk depending on
the proportion of associated subintegration points in R[i]. This is equivalent to
assuming that all secondary integration points associated with a given integra-
tion region have approximately equal weight. This adjustment to the weights,
as well as the integration regions and points for an urban cluster in Nairobi, are
depicted in Figure 2. Technical details regarding the generation of the integration
points, weights, and regions, including derivations, are given in Section 6 of the
Supplementary Material.

We implement the above model in C++ using TMB, which integrates out w,
and uses autodi↵erentiation to maximize and takes a Laplace approximation of
the posterior. As a result, the proposed method has the computational advan-
tages of both the SPDE model and of its implementation in TMB. If MP and MS

are respectively the average number of primary integration points per observation
and the number of secondary integration points per primary integration point,
then our method still only requires O(MPMSnK

3/2) = O(nK3/2) computational
operations per likelihood evaluation. The autodi↵erentiation of TMB also helps
to reduce the number of operations required for optimizing the approximated
posterior.

The integration weights before correction for boundary e↵ects, the radial dis-
placement of the integration points, and the number of points per integration
ring are given in Table 5 in Section 6 of the Supplementary Material.
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Figure 2: Primary integration points and their weights for a cluster in Nairobi
(left), and an integration region with associated secondary integration points
(right). The integration region is outlined in blue, and Nairobi is outlined in
black in both plots.

4 Simulation Study and Analysis of

Contraception Use in Kenya

We evaluate the gain when accounting for jittering through a simulation study
where data is generated according to the model described in Section 2. The GRF
is simulated using marginal variance �2

S = 1, spatial ranges ⇢S 2 {160, 340} (km),
and smoothness ⌫ = 1. These ranges correspond to approximately 1/5 and 2/5
of the extent of Kenya in West-East-direction. We fix the true coordinates to
match the C = 1, 583 clusters with reliable location information in KDHS2014,
and set the intercept µ = 0, which corresponds to 50% contraception use. This is
motivated by the fact that contraception use in Kenya has strong spatial varia-
tion, but with a national level around 58% (National Bureau of Statistics-Kenya
and ICF International, 2015). Datasets are generated by simulating yc at loca-
tion s⇤c from a binomial distribution where the success probability is r(s⇤c) and
the number of trials nc = 100 for c = 1, . . . , C. Section 3 in the Supplementary
Material presents the corresponding study with a Gaussian observation model.

For each of the two ranges, we simulate the GRF and responses repeatedly to
give 50 datasets. To each of these datasets we apply two jittering strategies: 1)
standard DHS jittering, and 2) DHS jittering with maximum distances multiplied
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with 4 (termed 4 ⇥ DHS jittering). This gives 200 datasets for the four combi-
nations of ranges (160 km and 340 km) and jittering options. For each dataset
we fit a standard spatial model that assumes locations are correct (Model-S)
and the new model that accounts for positional uncertainty (Model-J). For the
model specification in Section 2, we set the a priori median of range ⇢0 equal
to true range. After fitting the model, we compute the continuous rank proba-
bility score (CRPS) and the logarithmic score (log-score) (Gneiting and Raftery,
2007) for 1,000 evenly distributed prediction locations (shown in Figure 1 in the
Supplementary Material).

Posterior inference is approximately Bayesian using TMB, and parameter
estimates are computed using posterior medians. Table 1 shows that there is
less bias in the parameter estimates when using Model-J than Model-S. The
di↵erence between the two approaches becomes larger for 4 ⇥ DHS jittering than
standard DHS jittering. The positional uncertainty in Model-J gives larger 95%
credible intervals (CIs) for the parameters compared to the Model-S, and the
di↵erence is larger for more jittering.

Figure 3a shows a minor improvement in relative di↵erence in CRPS for the
prediction locations with Model-J compared to Model-S under standard DHS
jittering. For 4 ⇥ DHS jittering, there is a clear improvement. Figure 3b shows
similar behavior for the log-score, but with a less clear di↵erence with ⇢S = 340
km and 4 ⇥ DHS jittering. There were only minor di↵erences in the average
coverage of the predictive distributions as shown in Table 3 in the Supplemen-
tary Material. A corresponding simulation study with a Gaussian observation
model in Section 3 in the Supplementary Materials leads to similar conclusions,
and demonstrates that a nugget variance is overestimated when jittering is not
accounted for.

We apply the new approach to the contraception use dataset described in
Section 2. Model-S and Model-J were estimated in 21 seconds and 8 minutes,
respectively. For the real data analysis we again place a PC prior on the spatial
range parameter, setting the median spatial range to ⇢0 = 160 km. The estimated
contraception use probabilities and coe�cients of variation for Model-J are shown
in Figure 1. The map shows contraception use is high in the southwest direction
and low in northeast. On average CVs are 2.7% higher for Model-J relative to
Model-S and point estimates are nearly indistinguishable; see Section 5 of the
Supplementary Materials for more details and figures for Model-S.
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Table 1: Average biases and average 95% CI lengths of parameter estimates
under Model-J. We use absolute bias for µ and relative bias for ⇢S and �

2
S. The

corresponding values using Model-S are shown in parentheses.

DHS jittering 4xDHS jittering

Parameter Truth Bias CI length Bias CI length

Short range

µ 0 -0.03 (-0.03) 0.79 (0.77) -0.03 (-0.03) 0.84 (0.69)

⇢S 160 -3% (-6%) 69 (65) 7% (-13%) 82 (59)

�
2
S 1 -2% (-2%) 0.34 (0.33) -4% (-7%) 0.37 (0.30)

Long range

µ 0 -0.04 (-0.04) 1.24 (1.23) -0.10 (-0.10) 1.27 (1.18)

⇢S 340 -7% (-9%) 203 (200) -3% (-10%) 221 (199)

�
2
S 1 -7% (-8%) 0.51 (0.50) -9% (-11%) 0.52 (0.48)

(a) Pair-wise relative di↵erences⇣
100⇥ CRPSJ�CRPSS

CRPSS

⌘
in CRPS

(b) Pair-wise absolute di↵erences in Log

Scores

Figure 3: Pair-wise di↵erences in CRPS and Log Scores that are obtained from
Model-J and Model-S for binomial observation model.
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5 Discussions and Conclusions

Our simulation study suggests that accounting for the presence of jittering, or po-
sitional uncertainty, in the geostatistical analysis of DHS data on contraception
use leads to more accurate parameter estimates than a standard geostatistical
analysis. The improvement becomes more pronounced if more jittering is applied
than DHS applies by default. Further, we see slight improvement in predictive
quality under standard DHS jittering, and this improvement becomes clearer for
higher amounts of jittering. Our novel approach represents a major improvement
over existing inference approaches that are suitable for binomial observation mod-
els such as INLA within MCMC, where computation time is measured in days
(Wilson and Wakefield, 2021). The computation time of the new approach is
measured in minutes as compared to days for INLA within MCMC.

In the simulation study we encountered numerical issues when fitting a small
number of the simulations. These occurred when the amount of jittering was
large compared to the spatial range. In the case of range 160 km and 4⇥DHS
jittering, 2 out of 50 model runs crashed. Though, this amount of jittering is
large compared to what is used in practice by DHS, but there is a need for future
investigation into methods that are more stable for higher amounts of positional
uncertainty. The focus of this paper is to present a fast geostatistical model that
accounts for jittering during inference. Our approach supports generalized linear
geostatistical models with a wide variety of non-Gaussian observation models due
to its implementation in TMB. It also is applicable in the context of other known
jittering distributions, such as in cases where the administrative area of a cluster
is known, but the exact location within the area is not. One limitation, however,
is that the computational e�ciency will decrease when large displacements of
coordinates are possible relative to the size of the domain of interest. This is due
to decreasing sparsity in the precision matrix induced by jittering distributions
overlapping with more spatial basis functions. An interesting potential direction
of future research would be to model positional uncertainty when including spa-
tially varying covariates. Furthermore, it would be interesting to investigate the
accuracy of the approach presented in this paper to other jittering strategies such
as swapping and truncating can also be applied (Burgert et al., 2013).

References

Alexandratos, N. and Bruinsma, J. (2012). World agriculture towards 2030/2050:
the 2012 revision.

33



Burgert, C. R., Colston, J., Roy, T., and Zachary, B. (2013). Geographic displace-
ment procedure and georeferenced datarelease policy for the Demographic and
Health Surveys. https://dhsprogram.com/pubs/pdf/SAR7/SAR7.pdf. DHS
Spatial Analysis Reports No. 7.

Cressie, N. and Kornak, J. (2003). Spatial statistics in the presence of location
error with an application to remote sensing of the environment. Statistical

Science, pages 436–456.

Fanshawe, T. and Diggle, P. (2011). Spatial prediction in the presence of posi-
tional error. Environmetrics, 22(2):109–122.
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1 Introduction

This document consists of the supplementary results and materials for our paper
titled ”Fast geostatistical inference under positional uncertainty: Analysing DHS
household survey data”. We used (jittered) 2014 Kenya Demographic and Health
Survey (KDHS2014) clusters for our study. Figure 1 shows them together with
the prediction locations. The rest of the document is structured as follows:

Section 2 presents the supplementary figures of continuous rank probability
score (CRPS) and log-score that are obtained from the simulations with the
binomial observation model.

Section 3 consists of figures and tables of CRPS and log-score that are ob-
tained from the simulations with the Gaussian observation model. Section 4
presents the tables of coverage values that are obtained from the simulations
with both the binomial and Gaussian observation models. Average computation
(model estimation) times that are measured for Model-J during the simulation
study under di↵erent scenarios are also shared in this section. Section 5 shows
the results of additional predictions that are done using the binomial model on
KDHS2014 contraceptive usage data. Section 6 explains how numerical integra-
tions are conducted in our approach.
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Figure 1: Locations that are used for the study, within Kenya. Jittered locations
of the C = 1,583 clusters are indicated by red. Prediction locations are indicated
by blue.

2 Supplementary Results for Binomial Likelihood

This section presents the supplementary results for the simulation study with the
binomial observation model. Figure 2 shows the box-plots of CRPS and log-score
values that are obtained from Model-S and Model-J for the scenarios combining
ranges ⇢S 2 {160, 340} (km) with jittering schemes (DHS and 4xDHS). Smaller
CRPS and log-scores indicate better predictions. Figure 2 shows that Model-J
tends to achieve smaller prediction scores and to make better predictions than
Model-S as the jittering gets larger. Both models react to the increasing spatial
range by providing better predictions.

3 Simulation Study for Gaussian Likelihood

This section presents the results of the simulation study with the Gaussian ob-
servation model. Figure 3 shows the box plots of pair-wise relative di↵erences
in CRPS and the absolute di↵erences in log-score for the prediction locations,
with Model-J compared to Model-S. Figure 4 shows the box-plots of CRPS and
log-score values for the scenarios combining ranges ⇢S 2 {160, 340} (km) and
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Figure 2: Box-plots of CRPS and log-score values that are obtained from Model-S
(boxes with the darker color) and Model-J (boxes with the lighter color) at 1000
prediction locations, for the simulations with the binomial observation model.
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(a) Relative di↵erences (100 ⇤
CRPSJ�CRPSS

CRPSS
) in CRPS

(b) Absolute di↵erences in Log Scores

Figure 3: Box plots of pair-wise di↵erences of the prediction scores that are ob-
tained fromModel-S and Model-J at 1000 prediction locations, for the simulations
with the Gaussian observation model.

jittering schemes (DHS and 4xDHS). Table 1 presents the average biases and
average CI lengths of parameter estimates.

4 Model Estimation Times and Coverage

Table 2 shows the average model estimation times (in minutes) obtained by run-
ning Model-J on di↵erent simulation scenarios. Table 3 shows the coverage values
obtained from each scenario, using both Model-S and Model-J.

5 Additional KDHS2014 Contraceptive Usage Re-

sults

Figure 5 shows the predicted posterior expectations for the probabilities of using
any contraceptive method and the corresponding coe�cients of variation (CV)
for KDHS2014 contraceptive usage data with Model-S. Similar figures for Model-
J are shared in Section 2 of “Fast geostatistical inference under positional un-
certainty: Analysing DHS household survey data” paper. Figure 6 shows the
comparison of the predicted posterior expectations for the probabilities of using
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Figure 4: Box-plots of CRPS and log-scores that are obtained from Model-S
(boxes with the darker color) and Model-J (boxes with the lighter color) at 1000
prediction locations, for the simulations with the Gaussian observation model.
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Table 1: Average biases and average 95% CI lengths of parameter estimates. We
use absolute bias for µ and relative bias for ⇢S, �2

N and �
2
S. The corresponding

values using Model-S are shown in parantheses.

DHS jittering 4xDHS jittering

Parameter Truth Bias CI length Bias CI length

Short range

µ 0 -0.03 (-0.03) 0.80 (0.79) -0.04 (-0.04) 0.86 (0.84)

⇢S 160 -0.6% (-1%) 77 (76) 8% (7%) 89 (89)

�
2
N 0.1 6% (8%) 0.01 (0.01) 11% (38%) 0.02 (0.02)

�
2
S 1 -3% (-3%) 0.35 (0.35) -3% (-4%) 0.37 (0.37)

Long range

µ 0 -0.04 (-0.04) 1.25 (1.25) -0.04 (-0.04) 1.23 (1.23)

⇢S 340 -7% (-7%) 216 (215) -7% (-6%) 220 (222)

�
2
N 0.1 0.7% (1%) 0.01 (0.01) 2% (11%) 0.01 (0.01)

�
2
S 1 -8% (-8%) 0.51 (0.51) -10% (-10%) 0.50 (0.50)

Table 2: Average model estimation times with Model-J (in minutes) during the
simulation study .

Short range Long range

Simulations DHS jittering 4xDHS jittering DHS jittering 4xDHS jittering

Binomial 4.61 9.58 4.60 8.32
Gaussian 4.04 7.32 3.34 6.02

Table 3: Coverage values of Model-J. The corresponding values using Model-S
are shown in the parantheses.

Simulations Range DHS jittering 4xDHS jittering

Gaussian Short 0.92 (0.92) 0.89 (0.89)

Long 0.93 (0.93) 0.92 (0.92)

Binomial Short 0.91 (0.91) 0.87 (0.88)

Long 0.93 (0.93) 0.91 (0.90)
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Figure 5: Predicted posterior expectations (“pred.”) for the probabilities of using
any contraceptive method (left) and the corresponding coe�cients of variation
(CV) (right) for Model-S. The red points indicate the (jittered) locations of the
C = 1, 583 clusters in Kenya.

Table 4: Parameter estimates and corresponding 95% intervals

Median Lower Upper Length

�0 -1.78(-1.76) -2.61(-2.60) -0.97(-0.93) 1.64(1.66)
⇢ 183(188) 143(147) 233(241) 90(94)

�
2
SF 1.74(1.72) 1.43(1.42) 2.11(2.09) 0.68(0.67)

any contraceptive method and the coe�cient of variations that are obtained from
Model-S and Model-J, by using KDHS2014 contraceptive usage data. Coe�cient
of variation values are slightly higher for Model-J compared to Model-S, while
the predicted posterior expectations from both models are very similar to each
other, as it is also mentioned in Section 4 of the main manuscript.

Table 4 shows the parameter estimates and corresponding 95% intervals for
KDHS2014 contraceptive usage data with Model-J. The corresponding values
using Model-S are shown in parantheses.

6 Technical Derivation of Numerical Integration

Procedure

If we take integration points in each ring to be angularly equidistant, and rep-
resent the area associated with the ijk-th integration point (for observation i,
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(a) Scatter plot of predicted poste-

rior expectations for the probabilities

of using any contraceptive method with

Model-S versus Model-J

(b) Scatter plot for the coe�cient of

variation values of the predictions (in

log scale) with Model-S versus Model-J

Figure 6: Scatter plots of the predictions and corresponding uncertainty

integration ring j, and the k-th integration point in the ring) as,

Aijk = {si + (r cos a, r sin a)T : ri(j�1)  r < rij , aij(k�1)  a < aijk},

where ri0 is taken to be 0 for all i, and riJi is Li, then the weights depend
on the probability mass of the jittering distribution in each Aijk. We take the
integration area boundaries as equispaced,

aijk =

(
2⇡
mij

(k � 1) + ⇡
mij

, j mod 2 = 1, j � 5
2⇡
mij

(k � 1), otherwise,

where ⇡
mij

intersperses the integration points for every other ring based on mij ,

the number of integration points for observation i and ring j. Now that each
aijk has been specified for i = 1, . . . , n, j = 1, . . . , J i given J

i the number of
integration rings for observation i, and k = 1, . . . ,mij , the probability mass
of the jittering distribution in Aijk and therefore the integration point weights
depend only on the choice of the radii rij . Since the jittering density distribution
in Equation 1 in the main manuscript is radially symmetric, interspersing the
points along each ring does not influence the integration weights. Our choice of
the rij will depend on whether the observed cluster is urban or rural.

For urban clusters, the jittering process density is continuous on the support
of the density, unlike for the rural clusters. We choose the radii, rij , for any
fixed urban observation i so that the integration weights are equal for each of
the integration points. If the prior density ⇡(s⇤i ) is constant over the support of
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⇡(si|s⇤i ), then ⇡(si|s⇤i ) being uniform when represented in radial coordinates on

[0, 2⇡]⇥[0, Li] implies setting rij =
Li

Pj
j0=0

mij0
PJi

j0=1
mij0

results in equal urban integration

weights in Equation 4 in the main manuscript, with,

�ijk /
rij � ri(j�1)

Li

aijk � aij(k�1)

2⇡
⇡(s⇤ijk),

so that �ijk / rij�ri(j�1)

Li

aijk�aij(k�1)

2⇡ if ⇡(s⇤ijk) is constant.

If si is rural, there is a discontinuity in ⇡(si|s⇤i ) where ||si � s⇤i || = L
0
i for

discontinuity radius L
0
i due to the fact that there is a 0.01 probability of rural

points having a larger maximum jittering distance. We therefore define ‘inner’
and ‘outer’ rings with J

i = J
i
inner + J

i
outer, where the inner rings and outer rings

are inside and outside of the discontinuity radius respectively. For rural DHS
spatial locations, riJi

inner
= L

0
i = 5 and riJi = Li = 10. We choose the inner and

outer ring radii so that the integration points in the inner and outer rings have
equal weights respectively, so that:

rij =

8
>>><

>>>:

Pj
j0=1

mij0

PJi
inner

j0=1
mij0

L
0
i, 1  j  J

i
inner

L
0
i +

Pj

j0=Ji
inner+1

mij0

PJi

j0=Ji
inner+1

mij0
(Li � L

0
i), J

i
inner < j  J

i
.

These ring radii result in the following rural integration weights:

�ijk /

8
<

:

rij�ri(j�1)

mij

✓
99
100

1
rJi

inner

+ 1
100

1
Li

◆
, 1  j  J

i
inner

rij�ri(j�1)

mij

1
100

1
Li
, J

i
inner < j  J

i
.

(6.1)

The 99
100 and 1

100 factors in the above expressions are due to rural clusters having
a probability of 1

100 of being displaced by up to 10 km. We set J
i = 5 for

urban points, and J
i
inner = 5 and J

i
outer = 5 for rural points. Although the rural

outer ring weights are much smaller than the inner weights to the point where
leaving them out and renormalizing the weights would likely not influence the
predictions, and would improve computation times, we choose to include them
for greater precision.

We set each integration point s⇤ijk to be the center of mass of ⇡(si|s⇤i ) within
the associated ijk-th integration area Aijk, with s⇤ijk = (r⇤ij cos((aijk + aijk)/2),

r
⇤
ij sin((aijk + aijk)/2))T , and where,

r
⇤
ij =

ri(j�1) + rij

2

p
2(1� cos(aij2 � aij1))

aij2 � aij1
, (6.2)
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for j > 1 (if j = 1, then r
⇤
ij = 0). A derivation of (6.2) is given in more detail

below.

If observation i is urban, we can calculate the expectation of the horizontal
coordinate, say xij1, for the center of mass of the first integration area in ring j,
and assuming aij0 = 0 and aij1 = 2⇡/mij , as follows:

E[xij1] =

Z rij

ri(j�1)

Z 2⇡/mij

0
rx

Cij

2⇡Dir
da dr

=

Z rij

ri(j�1)

Z 2⇡/mij

0
r cos(a)

Cij

2⇡Di
da dr

=

Z rij

ri(j�1)

r
Cij

2⇡Di
(sin(2⇡/mij)� sin(0)) dr

=
Cij

2⇡Di
sin(2⇡/mij)(r

2
ij � r

2
i(j�1))

=
sin(2⇡/mij)
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where Cij = 2⇡Di
(rij�ri(j�1))(aijk�aij(k�1))

. Similar reasoning yields the following

expectation for E[yij1], where yij1 is the vertical coordinate of the center of mass
of the first integration area for observation i in ring j:

E[yij1] =
1� cos(2⇡/mij)
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2
. (6.4)

We can combine the above two expectations to get the radial displacement of
the center of mass of integration area Aijk, relative to si:

r
⇤
ij =

q
E[xij1]2 + E[yij1]2

=

s
sin(2⇡/mij)2

4⇡2/m2
ij

(rij + ri(j�1))2

4
+

(1� cos(2⇡/mij))2

4⇡2/m2
ij

(rij + ri(j�1))2

4

=
rij + ri(j�1)

2

mij

2⇡

q
sin(2⇡/mij)2 + (1� cos(2⇡/mij))2

=
rij + ri(j�1)

2

mij

2⇡

q
2(1� cos(2⇡/mij)). (6.5)

Due to the radial symmetry of the jittering distribution under a flat prior ⇡(s⇤i ),
we obtain

p
E[xijk]2 + E[yijk]2 =

p
E[xij1]2 + E[yij1]2 for all 1  k  mij .
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If observation i is rural, we must use the rural jittering density taking the
form,

⇡(r) =

8
>><

>>:

99
100

Cij
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+ 1
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(rij�ri(j�1))(aijk�aij(k�1))

and C
0
ij = 2⇡D0

i
(rij�ri(j�1))(aijk�aij(k�1))

. We can

then calculate the expected horizontal coordinate of the integration area with
respect to the rural jittering density in the same way as for the urban density:
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Since (6.5) does not depend on Di, we reach the same result for rural as for
urban integration points for ‘inner’ integration area Aijk:
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Similar lines of reasoning show that the above expression for E[xij1] holds even for
‘outer’ integration areas, and that (6.4) and (6.5) also hold for rural integration
areas (both inner and outer).

Table 5 gives the radial displacement, number of integration points, and in-
tegration weights (uncorrected for potential administrative boundary e↵ects) as
a function of j, the ring index.
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Table 5: For each numerical integration ring, the displacement, number, and
weights of the individual integration points. Weights here have not been corrected
for edge e↵ects, and have been normalized to sum to 1. Displacements are scaled
to match the DHS jittering distribution.

Ring Number Displacement (km) Number of Points Integration Weights

Urban

1 0.00 1 0.0164
2 0.28 15 0.0164
3 0.76 15 0.0164
4 1.25 15 0.0164
5 1.74 15 0.0164

Rural

1 0.00 1 0.0163
2 0.69 15 0.0163
3 1.91 15 0.0163
4 3.13 15 0.0163
5 4.35 15 0.0163
6 5.46 15 0.0001
7 6.45 15 0.0001
8 7.45 15 0.0001
9 8.44 15 0.0001
10 9.43 15 0.0001
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Abstract

Fine-scale covariate rasters are routinely used in geostatistical models for mapping
demographic and health indicators based on household surveys from the Demographic and
Health Surveys (DHS) program. However, the observations in these surveys have GPS
coordinates that are jittered for privacy purposes. We demonstrate the need to account for
this jittering when analysing DHS data and propose a computationally efficient approach.
We analyse the prevalence of completion of secondary education among 20-39 year old women
in Nigeria in 2018 based on the 2018 DHS survey in Nigera, and demonstrate substantial
changes in the estimates of range and fixed effects compared to ignoring jittering. Then
based on a simulation study that mimics the dataset, we demonstrate that accounting for
jittering reduces attenuation in the estimated coefficients and improves predictions.

Keywords: Jittering, DHS surveys, Demographic and health indicators, geostatistical
analysis, Template Model Builder (TMB).

1 Introduction

Fine-scale spatial estimation of demographic and health indicators has become commonplace
(Burstein et al., 2019; Utazi et al., 2019; Local Burden of Disease Vaccine Coverage Collaborators,
2021). This paper is focused on prevalences, which include many important indicators such
as completion of secondary education, neonatal mortality, and vaccination coverage (Fuglstad
et al., 2021). For low- and middle-income countries (LMICs), the household surveys conducted
by the Demographic and Health Surveys (DHS) Program are a crucial data source. Geographic
information in DHS data is given through GPS coordinates, which describe centres of clusters
of households. However, cluster centres are randomly displaced by up to 10 km before being
published in order to protect participants’ privacy (Burgert et al., 2013). We refer to the small
random displacements as jittering of the GPS coordinates.

In global health, it is common practice to ignore jittering and estimate risk using a standard
geostatistical model with a binomial likelihood. The latent spatial variation in risk is modelled as
the combination of raster- and distance-based covariates and a Gaussian random field (GRF).
However, covariate values extracted from rasters can vary widely on the distance scale of jittering.
Using the covariate value at the jittered location instead of the original location induces a
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non-standard form of measurement error (Gustafson, 2003). This may in turn lead to attenuation
of effect estimates and errors in uncertainty. Furthermore, not accounting for the positional
uncertainty for the GRF, artificially reduces estimated spatial dependency and may reduce
predictive power as well (Cressie and Kornak, 2003; Fanshawe and Diggle, 2011; Fronterrè et al.,
2018).

To address uncertainty in covariates, Perez-Heydrich et al. (2013, 2016) suggested 1) to use
regression calibration in the context of distance-based covariates (Warren et al., 2016), and 2)
to average spatial covariates within a 5 km buffer zone for continuous and categorical rasters.
However, this approach does not address the issue of attenuation of associations.

Fanshawe and Diggle (2011) proposed a Bayesian approach to account for positional uncer-
tainty for the GRF, but did not propagate uncertainty in the covariates, and only used Gaussian
likelihoods that are not applicable to prevalences. The approach was also computationally expen-
sive, but Fronterrè et al. (2018) made the approach computationally efficient and demonstrated
its applicability to analyse malnutrition based on DHS data.

Recently, Wilson and Wakefield (2021) formulated a full geostatistical model for DHS data
that includes an observation model for the jittered GPS coordinates, and estimated the model
with integrated nested Laplace approximations (INLA) (Rue et al., 2009) within Markov chain
Monte Carlo (MCMC) (Gómez-Rubio and Rue, 2018). Their approach addresses the effect of
positional uncertainty on both the spatial covariates and the GRF, but was computationally
expensive with 1000 MCMC iterations requiring 52 hours in their simulation study.

Altay et al. (2022) proposed a similar model as Wilson and Wakefield (2021), but used a
more efficient inference scheme with computation time being measured in minutes instead of
hours. Their approach was made possible through an approximation of the likelihood, the SPDE
approach (Lindgren et al., 2011), and Laplace approximations through template model builder
(TMB) (Kristensen et al., 2016).

The simulation study in Altay et al. (2022) revealed that small spatial ranges for the GRF or
larger jittering than the DHS scheme were required to see substantial improvements with the new
approach over ignoring jittering. However, Altay et al. (2022) focused on the impact of jittering
on the GRF, and lacked raster- and distance-based covariates.

Such covariates are far more variable at small spatial scales than a smoothly varying GRF. The
aim of this paper is to extend the approach in Altay et al. (2022) to a full generalized geostatistical
model for prevalence, and to demonstrate that ignoring jittering can lead to attenuation of
associations and reduced predictive power when analysing DHS data. We show this via a spatial
analysis of the prevalence of secondary education completion among women aged 20–39 in 2018
based on the 2018 Nigeria DHS (NDHS2018) (National Population Commission - NPC and ICF,
2019).

The new approach, which adjusts for jittering, and the standard approach, which ignores
jittering, cannot be compared with cross-validation since the true coordinates of the clusters
are not known. Therefore, we construct a simulation study that mimics the NDHS2018 dataset
to perform the comparison in terms of their ability to estimate parameters and to predict risk
at unobserved locations. We use bias and root mean square error (RMSE) to assess parameter
estimation, and RMSE and continuous rank probability score (CRPS) (Gneiting and Raftery,
2007) to assess predictive ability.

In Section 2, we describe the new approach that adjusts for jittering, and discuss its imple-
mentation. In Section 3, we demonstrate the differences between adjusting and not adjusting for
jittering when analysing the prevalence of completion of secondary education among women in
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Nigeria.

Then in Section 4, we evaluate parameter estimation and prediction through the simulation
study that mimics the data in the application. The paper ends with discussion and conclusions
in Section 5. The code used for the paper can be found in the GitHub repository https:
//github.com/umut-altay/GeoAdjust.

2 Adjusting for jittering in a geostatistical model

2.1 Notation for DHS data

For a given country and DHS household survey, C clusters are visited. These clusters constitute
small geographic areas and are collections of households. A total of nc people at risk are observed
and yc  nc individuals have positive outcomes for clusters c = 1, 2, . . . , C, . The reported GPS
coordinates of the cluster centres are sc 2 R2, c = 1, . . . , C. These locations are not the true
GPS coordinates, but the jittered GPS coordinates. Additionally, the urban/rural designation is
known for each visited cluster.

2.2 Geostatistical model

2.2.1 Model for spatial variation in risk

We envision a spatially varying risk, r(·), for the country of interest D ⇢ R2 modelled through

r(s) = logit�1(⌘(s)) = logit�1(x(s)T� + u(s)), s 2 D,

where x(·) is a p-dimensional vector of covariates, � is a p-dimensional vector of covariate effect
sizes, and u(·) is a Matérn GRF. The Matérn covariance function is parametrized as

C⌫(s1, s2;�
2
S, ⇢S) = �

2
S
21�⌫

�(⌫)

✓p
8⌫

||s1 � s2||
⇢s

◆⌫

K⌫

✓p
8⌫

||s1 � s2||
⇢s

◆
, s1, s2 2 D,

where �
2
S is the marginal variance, ⇢S is the spatial range, and the smoothness is fixed to ⌫ = 1.

2.2.2 Unadjusted model

When jittering is ignored, the reported cluster locations s1, . . . , sC are treated as the true locations.
This gives the unadjusted observation model:

yc|rc, nc ⇠ Binomial(nc, rc),

rc = r(sc) = logit�1(⌘(sc)),
(1)

where rc is the risk in cluster c, for c = 1, . . . , C.
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2.2.3 Adjusted model

Let s⇤1, . . . , s
⇤
C 2 D denote the true locations corresponding to the jittered locations s1, . . . , sC .

The adjusted observation model is,

yc|rc, nc ⇠ Binomial(nc, rc), sc|s⇤c ⇠ ⇡Urb[c](sc|s⇤c),
rc|s⇤c = r(s⇤c) = logit�1(⌘(s⇤c)),

(2)

where rc is the risk in cluster c, and Urb[c] 2 {U,R} corresponds to the cluster’s urban (U) or
rural (R) designation, for c = 1, . . . , C. In this observation model, both yc and sc are treated
as observed quantities. The unobserved true locations s

⇤
c are treated as random quantities and

assigned a uniform prior s
⇤
c ⇠ U(D). This implies that we treat all locations s⇤c within the

maximum jittering distance from sc as equally likely a priori.

The jittering distributions ⇡U and ⇡R follow from the (known) DHS jittering scheme. The
country of interest is divided into K administrative regions. Let A(s) 2 {1, . . . ,K} denote the
administrative region of location s for s 2 D. Then for an urban cluster c, which can be jittered
up to 2 km, the jittering distribution is

⇡U(sc|s⇤c) /
I(A(sc) = A(s⇤c)) · I(d(sc, s⇤c) < 2)

d(sc, s⇤c)
, sc 2 D,

where d(sc, s⇤c) is the distance in kilometers between sc and s⇤c , and I is the indicator function.
Similarly, for a rural cluster c, which can be jittered up to 5 km except for the 1 percent of clusters
jittered up to 10 km, the jittering distribution is:

⇡R(sc|s⇤c) /
I(A(sc) = A(s⇤c))

d(sc, s⇤c)


99I(d(sc, s⇤c) < 5)

100
+

I(d(sc, s⇤c) < 10)

100

�
, sc 2 D.

2.2.4 Priors

We assume linear covariate associations, and use the prior � ⇠ Np(0, 25Ip). The range, ⇢S, and
marginal variance, �2

S, of the Matérn GRF is assigned a penalised complexity (PC) prior (Fuglstad
et al., 2019). This requires selecting two hyperparameters: the a priori median of range R0, and
the a priori median of marginal variance V0.

2.3 Implementation

2.3.1 Inference scheme

The observation model in Equation (2) can be written as,

⇡(yc, sc|⌘(·)) =
Z

R2

⇡(yc, sc|⌘(·), s⇤c)⇡(s⇤c) ds⇤c

=

Z

R2

⇡(yc|⌘(s⇤c))⇡Urb[c](sc|s⇤c)⇡(s⇤c) ds⇤c , (3)

for c = 1, . . . , C. This formulation suggests that we can avoid sampling the true locations with
an MCMC approach. Let ✓ = (log(�2

S), log(⇢S)). We propose an empirical Bayes approach:
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• Step 1: Calculate the maximum a posteriori (MAP) estimate, ✓̂, of ✓ using
⇡(✓|y1, . . . , yC , s1, . . . , sC).

• Step 2: Extract inference about � from ⇡(�|y1, . . . , yC , s1, . . . , sC ,✓ = ✓̂).

• Step 3: Estimate risk r(s) at location s using
⇡(r(s)|y1, . . . , yC , s1, . . . , sC ,✓ = ✓̂).

Two key components are combined for rapid inference: the SPDE approach to approximate the
Matérn GRF (Lindgren et al., 2011), and TMB for empirical Bayesian inference (Kristensen et al.,
2016).

2.3.2 SPDE approach

For each cluster c, the true location s⇤c is not known, and the observation model in Equation (3)
involves the spatial field u(·) at all locations that are compatible with the jittered location sc. If
we replace the integral in Equation (3) by a integration scheme using NInt integration points, we
need to evaluate the spatial field at C ·NInt locations. A standard implementation of the Matérn
model would result in a dense C ·NInt ⇥ C ·NInt matrix and make computations infeasible even
for a few locations.

To overcome these issues, the stochastic partial differential equations (SPDE) approach
(Lindgren et al., 2011) provides an approximation to the Matérn GRF that results in a sparse
precision matrix. First, the area of interest is triangulated with a triangulation consisting of m
nodes. Then the GRF u(·) is approximated by

ũ(s) =
mX

i=1

wi�i(s), (4)

where �i(·) are pyramidal basis functions and w = (w1 . . . wm)T are weights for the basis
functions. The SPDE approach results in a distribution w ⇠ Nm(0,Q(✓)�1), where Q(✓) is
sparse.

From Equation (4), the value at any location is a linear transformation ũ(s) = a(s)Tw, s 2 D,
where a(s) 2 Rm is sparse with at most three nonzero elements depending on the location s.
This means that the spatial field can be evaluated at a large number of locations quickly.

The SPDE is given by
(2 ��)(⌧u(s)) = W(s), s 2 D̃,

where  > 0 and ⌧ > 0 are related to marginal variance and range, � is the Laplacian, W(·) is
standard Gaussian white noise, and D̃ � D is an extended domain to reduce boundary effects.
We use Neumann boundary conditions to make the problem well defined, and following Lindgren
et al. (2011), the effective range and marginal variance are calculated from the SPDE parameters
as

⇢S =

p
8


and �

2
S =

1

4⇡⌧22
.

2.3.3 Template Model Builder

We implement the empirical Bayesian inference scheme by employing the built-in auto-differentiation
and Laplace approximations of the Template Model Builder (TMB) R package. TMB allows us
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Table 1: The three approaches considered.
Approach Description

UnAdj Ignore jittering for covariates and spatial effect.
CovAdj Ignore jittering for the spatial effect.
FullAdj Fully adjust for jittering.

to approximate the likelihood in Equation (3) through the integration scheme

⇡(yc, sc|⌘(·)) /
KX

k=1

↵k⇡(yc|⌘(s⇤c,k))⇡Urb[c](sc|s⇤c,k)⇡(s⇤c,k), (5)

where ↵1, . . . ,↵K are integration weights. More details are available in Altay et al. (2022).
Critically, the integration scheme in Equation (5) involves

⌘(s⇤c,k) = x(s⇤c,k)
T� + u(s⇤c,k), k = 1, . . . ,K, c = 1, . . . , C.

Based on the known jittering distribution, we construct the integration scheme with rings of
integration points around each cluster center. The observed cluster center is the first integration
point, and we use 5 and 10 rings for the clusters that are located within urban and rural
administrative areas, respectively. Each ring consists of 15 angularly equidistant integration
points.

Through this paper we consider the three approaches shown in Table 1. FullAdj should be
used if possible, but Altay et al. (2022) found that accounting for jittering in the spatial effect
resulted in: 1) some numerical instability when the positional error grew large enough compared
to the spatial range, and 2) no major changes except under wider jittering distributions than in
the DHS scheme. Thus if CovAdj is more numerically stable or faster than FullAdj, CovAdj may
be preferred. UnAdj ignores jittering and is included as a baseline for comparisons.

3 Analysis of completion of secondary education

Our outcome of interest is completion of secondary education, which is as an indicator of social
well-being and life outcome (Lewin, 2008). Rates vary strongly between women and men, but also
between urban and rural areas. According to (UNESCO, 2019), only 1% of the poorest girls in
low income countries will complete secondary education. If a girl completes secondary education,
the risk of HIV infection is reduced by about 50% (UNAIDS, 2022).

In this section, we model the prevalence of completion of secondary education among 20-39
year old women in Nigeria in 2018 based on the NDHS2018. Our analysis has two aims. First,
to map the spatial variation in the risk of completion of secondary education for women aged
20–39 years in 2018 for 5 km⇥ 5 km pixels and for the admin1 areas. Second, to determine the
associations between the spatial variation in risk and a set of explanatory spatial covariates.

Nigeria is an LMIC with a population of more than 200 million. The first administrative level
(admin1) consists of 37 admin1 areas, which are the 36 states and the federal capital territory,
shown in Figure 1(b). The second administrative level (admin2) is nested within the admin1
areas and consists of the 774 local government areas (LGAs) shown in Figure 1(a). We use the
national boundary, admin1 boundaries and admin2 boundaries specified by GADM version 4.0
(GADM, 2021).
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Table 2: Summary of covariate rasters providing name, description and figure. CityA, Elev,
DistW and UrbR are transformed, while UrbR is not.

Name Description Figure

PopD Population count (250m⇥ 250m) 1(b)
CityA Travel time in minutes (1 km⇥ 1 km) 2(a)
Elev Elevation in meters (1 km⇥ 1 km) 2(b)
DistW Distance to nearest river or lake in degrees (1 km⇥ 1 km) 2(c)
UrbR Urbanicity ratio (250m⇥ 250m) 2(d)

The NDHS2018 has C = 1,380 clusters with jittered GPS coordinates available under the
same jittering distribution as in Section 2.2. For all clusters, the jittering was restricted to stay
within the correct admin2 area. In total, 25,287 women aged 20–39 years were interviewed and
12,911 of these had completed secondary education. We use the notation nc individuals-at-risk,
yc successes, and jittered GPS coordinate sc for c = 1, . . . , C.

(a) Admin2 areas. (b) Population count and admin1 areas.

Figure 1: Maps of Nigeria with a) admin2 areas, and b) admin1 areas and log(1 + x)-transformed
and scaled 100m⇥ 100m population count raster. The red dots are the jittered locations of the
1,380 clusters.

We expect the prevalence of completion of secondary education to be closely related to the
access to educational resources, such as technological infrastructure, schools and teachers. We
consider five spatial covariates: population count (PopD) (World Pop, 2022), travel time to
nearest city (CityA) (Weiss et al., 2018), elevation (Elev) (National Oceanic and Atmospheric
Administration, 2022), distance to nearest river or lake (DistW) (Natural Earth, 2012), and
urbanicity ratio (Pesaresi et al., 2016). For UrbR, we use the original covariate, and for the other
four covaraties, we use a log(1 + x)-transformation and then center and standardize the covariate
rasters accross the pixels. The information about the covariate rasters and figures is summarized
in Table 2.
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(a) (b)

(c) (d)

Figure 2: Covariate rasters for Nigeria: a) travel time to the nearest city center, b) elevation, c)
minimum distance to nearest river or lake, and d) urbanicity ratio. The red dots indicate the
(jittered) locations of C = 1, 380 clusters.

We fit the models UnAdj, CovAdj and FullAdj described in Section 2 using an intercept
and the five covariates described above, and the PC prior on the Matérn GRF specified by
P(�S > 1) = 0.05 and P(⇢S > R0) = 0.50, where R0 = 160 km is a priori median range. Inference
is performed as described in Section 2.3, and Table 3 shows the estimated parameters and their
corresponding credible interval lengths (except for ⇢S and �

2
S, which are fixed to their MAP

estimates). The parameters of the GRF, ⇢S and �
2
S, are estimated lower for UnAdj than CovAdj

and FullAdj.

This suggests that the noisy covariates and the positional uncertainty for the GRF are
interpreted as reduced spatial dependency and reduced spatial signal strength. For PopD and
UrbR, there is a strong attenuation when jittering is ignored. The credible intervals for the
coefficient of UrbR, �UrbR, suggest that �UrbR is not significant at the 95% level for UnAdj,
whereas �UrbR is clearly significant for CovAdj and FullAdj. This suggest that not accounting for
jittering can lead to misleading conclusions. Lastly, CovAdj and FullAdj give similar results, which
indicates that accounting for the jittering in the covariates is more important than accounting for
jittering for the spatial field.
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Table 3: Parameter estimates and the corresponding 95% credible interval lengths in parentheses.
Uncertainty is not computed for ⇢S and �

2
S.

Parameter
Model ⇢S �

2
S µ �DistW �CityA �Elev �PopD �UrbR

UnAdj 68.60 2.00 -2.03 (0.98) 0.96(1.35) -0.39 (0.15) -0.20 (0.77) 0.19 (0.11) -0.22 (0.49)

CovAdj 111.62 1.75 -1.97 (1.14) 0.62 (1.39) -0.41 (0.19) -0.01 (0.71) 0.40 (0.16) -1.53 (0.85)

FullAdj 114.26 1.74 -1.98 (1.11) 0.64 (1.39) -0.41 (0.18) -0.01 (0.71) 0.40 (0.16) -1.54 (0.84)

Figures 3(a) and 3(c) shows the pixel maps of predicted risk from UnAdj and FullAdj,
respectively. Figures 3(b) and 3(d) show the corresponding coefficient of variation (CV) in percent.
Figure 3(e) shows that some areas such as Borno (in the north-east) have up to three times the
risk under the UnAdj approach as under FullAdj. And Figure 3(f) makes it clear that UnAdj
tends to have higher uncertainty than FullAdj.

59



(a) Predictions (UnAdj) (b) Uncertainty (UnAdj)

(c) Predictions (FullAdj) (d) Uncertainty (FullAdj)

(e) Ratio of predictions (f) Ratio of uncertainties

Figure 3: Row 1 and 2 are predicted risk and the CVs, and row 3 shows ratios (UnAdj/FullAdj)
of predictions and CVs. The red dots indicate the (jittered) locations of the 1,380 clusters.

We aggregate point level predictions with respect to population density to produce areal
estimates at the 37 admin1 areas (for more on aggregating point level predictions with respect to
a population, see Paige et al. 2022). Figures 4(a) and 4(c) show the predicted risk for UnAdj and
CovAdj, respectively. And Figures 4(b) and 4(d) show the corresponding CVs. From Figure 4(e),
we see that the point estimates vary from a factor 0.9 to 1.1, and Figure 4(f) shows that some
areas differ with a factor of up to 1.4 in CV.
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(a) UnAdj (b) UnAdj

(c) FullAdj (d) FullAdj

(e) Ratio of aggregated predictions (f) Ratio of aggregated uncertainties

Figure 4: Rows 1 and 2 are predicted risk and CVs for UnAdj and FullAdj respectively at the
admin1 level, and row 3 shows ratios (UnAdj/FullAdj) of predictions and CVs.

The ability to predict risk at unobserved locations for UnAdj, CovAdj and FullAdj cannot be
compared with cross validation. If data is held-out from NDHS2018, we can only evaluate the
models’ abilities to predict risk at a new jittered cluster with unknown true location. Thus we
aim to investigate if the differences we have seen for completion of secondary education in this
section is consistent in a simulation study.
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4 Simulation study

The aim of the simulation study is to compare the parameter estimation and prediction of the
UnAdj, CovAdj and FullAdj approaches under the same design as the NDHS2018 survey used
in Section 3. We fix the number of clusters to C = 1,380, and for each cluster c, we set its true
location s⇤c and number-at-risk nc to the observed location and number-at-risk respectively in
the 2018NDHS, for c = 1, . . . , C.

We assume that the true spatial risk varies as

r(s) = logit�1(x(s)T� + u(s)), s 2 D, (6)

where x(·) is a 6-dimensional spatially varying vector with 1 as the first element and the covariates
DistW, CityA, Elev, PopD, and UrbR as the five last elements,
� = (µ,�DistW,�CityA,�Elev,�PopD,�UrbR)T, and u(·) is a Matérn GRF. We fix the spatial range
⇢S and the marginal variance �

2
S of the GRF to the values estimated using FullAdj in Table 1.

Then we construct three scenarios based on the estimated coefficients under FullAdj in Table 1:

1. SignalLow: � is set to half the estimated value.

2. SignalMed: � is set to the estimated value.

3. SignalHigh: � is set to twice the estimated value.

For each scenario, we generate nsim = 50 simulations by first generating the true risk
surface r(·) using Equation (6). Then, for each cluster c = 1, . . . , C, we simulate response
yc|r(s⇤c), nc ⇠ Binomial(nc, r(s⇤c)) and observed location sc|s⇤c according to the DHS jittering
scheme. For each of these 150 datasets we apply the UnAdj, CovAdj and FullAdj approaches as
in Section 3. The results for CovAdj are provided in the appendices since they exhibit the same
behaviour as FullAdj.

Parameter estimation is evaluated by computing the RMSE, 1
nsim

Pnsim

b=1 (✓̂� ✓)2, and the Bias,
1

nsim

Pnsim

b=1 (✓̂ � ✓), where ✓̂ is the posterior mean (or MAP in the case of ⇢S and �
2
S) and ✓ is the

true value of the coefficient. Predictions are evaluated on a fixed set of 1,000 randomly selected
locations within Nigeria, where we predict ⌘(s) = logit(r(s)) with the posterior median. These
predictions are evaluated by the average RMSE and CRPS defined by

R
R2(F (x)� I(y  x))2dx,

where y is the true value and F (·) is the predictive distribution.

Table 4 shows the Bias and RMSE for parameter estimation for UnAdj and FullAdj for the
SignalMed scenario. The bias we observed in Section 3 for ⇢S and �UrbR is consistent across
simulations. RMSEs for FullAdj is lower or comparable to CovAdj for all parameters. The box
plots in Figure 5 show that the differences are amplified when the strength of the signal of the
spatial covariates is increased in SigHigh and reduced when the signal of the spatial covariates is
decreased in SigLow.
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Table 4: Bias and RMSE for parameter estimation.

Parameter
Model ⇢S �

2
S µ �DistW �CityA �Elev �PopD �UrbR

Bias UnAdj -21.96 0.01 0.37 -0.06 0.06 0.01 -0.16 0.88
FullAdj 9.46 -0.01 0.38 -0.10 0.03 0.01 -0.10 0.44

RMSE UnAdj 23.90 0.09 0.45 0.36 0.08 0.21 0.16 0.89
FullAdj 15.09 0.11 0.45 0.36 0.05 0.17 0.10 0.47

Figure 5: Box plots of estimated ⇢S and �UrbR for SignalLow, SignalMed and SignalHigh. Numbers
written in blue show the number of simulations that ran successfully. The horizontal red lines
show the true parameter value.

Figure 6 shows the variation in RMSE and CRPS across datasets for predictions. We see that
FullAdj and UnAdj perform the same in prediction for SignalLow, FullAdj is slightly better for
SignalMed, and substantially better for SignalHigh. This indicates that the stronger the signal
of the spatial covariates, the larger the gain from adjusting for jittering. The results for other
parameters in all scenarios and for CovAdj can be found in Section B of appendices. One dataset
was excluded in each scenario due to numerical issues with CovAdj or FullAdj.
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Figure 6: Box plots of CRPS and RMSE for predictions for SignalLow, SignalMed and Signal-
High.Numbers written in blue show the number of simulations that ran successfully for all models.

In influential work such as Burstein et al. (2019) and Local Burden of Disease Vaccine Coverage
Collaborators (2021), covariates are resampled to a 5 km ⇥ 5 km grid. This is similar, but slightly
different than the buffer zone approach discussed in Section 1. In Section C of appendices, we
show that this approach does not address the loss of predictive performance.

5 Discussion

Accounting for jittering substantially changed the parameter estimates for the geostatistical
model for risk of completion of secondary education among women aged 20–39 years. The
simulation study demonstrated that these differences were linked to the strength of the signal of
the spatial covariates when explaining the spatial variation. For strong signals, the associations
were attenuated and the predictive power was reduced.

The most important aspect of jittering in the context of geostatistical models for DHS data is
to account for the resulting uncertainty in covariates extracted from rasters or extracted based on
distances. This induces measurement error that may lead to attenuation in associations between
covariates and the responses. Some covariates such as sanitation practices and household assets
can be known exactly (Burgert-Brucker et al., 2016), but these cannot be included when the goal
is prediction since fine-scale rasters are not available.

This work used uniform priors for the unknown true locations. One could expect including
information about population density and urbanicity into the priors would produce more accurate
inference. However, population density maps and urbanicity maps are also modelled surfaces
with biases and uncertainties that are not well understood. This means that evaluation of the
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sensitivity to such maps would have to be investigated, and one would need a way to evaluate
whether such a model works better.

The inference scheme uses empirical Bayes. It is possible to investigate methods such as
INLA, but the implementation in the R package inla does not allow the likelihood to depend on
the latent risk at multiple locations, which is necessary due to the integration points. MCMC
algorithms such as STAN (Stan Development Team, 2020) has the required flexibility, but is
infeasible for thousands of spatial locations.

When analysing completion of secondary education, we found that, for urbanicity, an effect
size of 0 was contained in the 95% credible interval when not adjusting for jittering, and not
contained when adjusting for jittering. This suggests that not accounting for jittering when
analysing DHS data is a practice that can alter conclusions about statistical significance. Since the
proposed approach is fast for spatial analysis, we suggest to use the new approach for analysing
DHS data to avoid the risk of misleading conclusions and reduced predictive power.
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Supplementary materials: Jittering Impacts Raster- and

Distance-based Geostatistical Analyses of DHS Data
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1 Introduction

This document consists of the supplementary results and materials for our paper titled "Jittering
Impacts Raster- and Distance-based Geostatistical Analyses of DHS Data". In the main paper,
we presented the results that are obtained by fitting the models that doesn’t account for jittering
(UnAdj), accounts for jittering only in covariates (CovAdj) and both in covariates and the spatial
random effect (FullAdj), to NDHS2018 survey data. Section 2 shows these results in comparison
with the ones that are obtained from the model that accounts for jittering only in the random
effect (RandAdj). Section 3 presents the supplementary results of the simulation study. Section 4
compares the results based on the smoothed covariates, to the results that are obtained from the
UnAdj and FullAdj models.

2 Additional results for analysis of NDHS2018 data set

This section presents the results that are obtained by fitting UnAdj, CovAdj, RandAdj and
FullAdj models to NDHS2018 survey data.
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Table 1: Parameter estimates and the corresponding 95% credible intervals obtained from fitting
UnAdj, CovAdj, RandAdj and FullAdj models to NDHS-2018 secondary education completion
data for 20-39 years old women. Numbers in the parantheses show the 95% credible interval
lengths for the corresponding parameter estimates (except for the spatial range and the marginal
variance).

Models

Parameter UnAdj CovAdj RandAdj FullAdj

⇢ 68.60 111.62 77.81 114.26
�
2 2.00 1.75 1.94 1.74
µ -2.03 (0.98) -1.97 (1.14) -2.03 (0.99) -1.98 (1.11)

�dist 0.96 (1.35) 0.62 (1.39) 0.93 (1.34) 0.64 (1.39)

�tTime -0.39 (0.15) -0.41 (0.19) -0.38 (0.14) -0.41 (0.18)

�elev -0.20 (0.77) -0.01 (0.71) -0.10 (0.74) -0.01 (0.71)

�pop 0.19 (0.11) 0.40 (0.16) 0.20 (0.11) 0.40 (0.16)

�urb -0.22 (0.49) -1.53 (0.85) -0.24 (0.49) -1.54 (0.84)

3 Supplementary results for the simulation study

This section shows the average bias and RMSE values of the model parameter estimates that are
obtained from the simulation study. Tables 2, 3 and 4 contain the results for SignalLow, SignalMed
and SignalHigh signal strength levels, based on the parameter estimates obtained by fitting the
FullAdj model to NDHS2018 data set. Smoothed model doesn’t account for jittering, but it uses
data from the smoothed versions of covariate rasters. The predictive measures sections of the
tables show the bias and RMSE that are calculated from the predictions with the corresponding
model.
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Table 2: Average bias and RMSE of model parameter estimates across 49 simulations, together
with the average predictive measures (RMSE and CRPS) for UnAdj, Smoothed, RandAdj, CovAdj
and FullAdj models. The results belong to the signal strength level "SignalLow". The values in
the "Parameter" section of the table show the biases for the corresponding parameter estimates,
together with the RMSE in the parantheses .

Unadjusted Adjusted

Model UnAdj Smoothed RandAdj CovAdj FullAdj

Parameter

⇢ -7.19 (13.17) -6.97 (12.94) 0.52 (11.23) -0.64 (11.76) 6.61 (13.53)

�
2 0.03 (0.10) 0.04 (0.10) 0.03 (0.10) 0.03 (0.10) 0.03 (0.10)

µ 0.16 (0.30) 0.11 (0.27) 0.17 (0.30) 0.18 (0.30) 0.18 (0.30

�dist -0.09 (0.39) -0.03 (0.48) -0.09 (0.39) -0.10 (0.38) -0.09 (0.38)

�tTime 0.02 (0.03) -0.13 (0.15) 0.02 (0.03) 0.03 (0.04) 0.02 (0.03)

�elev 0.01 (0.19) -0.01 (0.21) 0.01 (0.19) 0.01 (0.15) 0.01 (0.15)

�pop -0.08 (0.08) 0.12 (0.14) -0.08 (0.08) -0.06 (0.07) -0.06 (0.06)

�urb 0.41 (0.42) -0.94 (1.05) 0.40 (0.42) 0.32 (0.34) 0.29 (0.31)

Predictive measures

RMSE 0.94 0.94 0.94 0.94 0.94
CRPS 0.51 0.51 0.51 0.51 0.50

Table 3: Average bias and RMSE of model parameter estimates across 49 simulations, together
with the average predictive measures (RMSE and CRPS) for UnAdj, Smoothed, RandAdj, CovAdj
and FullAdj models. The results belong to the signal strength level "SignalMed". The values in
the "Parameter" section of the table show the biases for the corresponding parameter estimates,
together with the RMSE in the parantheses .

Unadjusted Adjusted

Model UnAdj Smoothed RandAdj CovAdj FullAdj

Parameter

⇢ -21.96 (23.90) -20.01 (21.85) -14.38 (17.39) 3.85 (12.21) 9.46 (15.09)

�
2 0.01 (0.09) 0.03 (0.10) 0.005 (0.09) -0.01 (0.11) -0.01 (0.11)

µ 0.37 (0.45) 0.26 (0.36) 0.38 (0.45) 0.38 (0.45) 0.38 (0.45

�dist -0.06 (0.36) 0.05 (0.44) -0.08 (0.35) -0.10 (0.36) -0.10 (0.36)

�tTime 0.06 (0.08) -0.24 (0.26) 0.06 (0.07) 0.04 (0.05) 0.03 (0.05)

�elev 0.01 (0.21) -0.02 (0.25) 0.01 (0.20) 0.007 (0.17) 0.01 (0.17)

�pop -0.16 (0.16) 0.26 (0.28) -0.15 (0.16) -0.10 (0.11) -0.10 (0.10)

�urb 0.88 (0.89) -1.71 (1.84) 0.87 (0.88) 0.48 (0.51) 0.44 (0.47)

Predictive measures

RMSE 1.02 1.02 1.02 1.00 1.00
CRPS 0.55 0.57 0.55 0.54 0.54
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Table 4: Average bias and RMSE of model parameter estimates across 49 simulations, together
with the average predictive measures (RMSE and CRPS) for UnAdj, Smoothed, RandAdj, CovAdj
and FullAdj models. The results belong to the signal strength level "SignalHigh". The values in
the "Parameter" section of the table show the biases for the corresponding parameter estimates,
together with the RMSE in the parantheses .

Unadjusted Adjusted

UnAdj Smoothed RandAdj CovAdj FullAdj

Parameter

⇢ -58.59 (59.19) -53.48 (54.08) -52.17 (52.77) 9.41 (16.79) 11.74 (18.44)

�
2 0.26 (0.28) 0.30 (0.32) 0.19 (0.22) -0.02 (0.14) -0.03 (0.14)

µ 0.68 (0.74) 0.36 (0.46) 0.67 (0.73) 0.51 (0.58) 0.52 (0.58)

�dist -0.13 (0.39) 0.02 (0.45) -0.15 (0.39) -0.14 (0.37) -0.15 (0.37)

�tTime 0.16 (0.17) -0.49 (0.50) 0.15 (0.16) 0.04 (0.06) 0.04 (0.05)

�elev 0.001 (0.27) 0.002 (0.31) 0.0009 (0.26) -0.05 (0.21) -0.05 (0.21)

�pop -0.37 (0.37) 0.43 (0.44) -0.36 (0.37) -0.16 (0.16) 0.15 (0.16)

�urb 1.88 (1.90) -3.22 (3.33) 1.85 (1.87) 0.53 (0.57) 0.50 (0.54)

Predictive measures

RMSE 1.35 1.30 1.39 1.16 1.16
CRPS 0.75 0.75 0.90 0.65 0.65

4 Comparison of predictive measures against the smoothed

covariates approach

This section shows the comparison of predictive measures that are obtained by fitting UnAdj,
FullAdj and Smoothed models to the simulated data sets. The new data is simulated according to
three different signal strength levels (SignalLow, SignalMed and SignalHigh, respectively), based
on the parameter estimates from the FullAdj model on NDHS2018 data set. The blue numbers
on top of each boxplot show the total number of simulations (out of 50) that ran without any
numerical instabilities for the corresponding model.
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Figure 1: Box plots of CRPS and RMSE values that are obtained from the predictions with
Smoothed, UnAdj and FullAdj models. SignalLow, SignalMed and SignalHigh indicate three
different signal strength levels, respectively. Numbers written in blue on top of each box plot
show the number of simulations (out of 50 for each level of signal strength) that ran without any
numerical instabilities for the corresponding model.
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Abstract

The R-package GeoAdjust implements fast empirical Bayesian geosta-
tistical inference for household survey data from the Demographic and
Health Surveys Program (DHS) using Template Model Builder (TMB).
DHS household survey data is an important source of data for tracking de-
mographic and health indicators, but positional uncertainty has been inten-
tionally introduced in the GPS coordinates to preserve privacy. GeoAdjust
accounts for such positional uncertainty in geostatistical models containing
both spatial random effects and raster- and distance-based covariates. The
R package supports Gaussian, binomial and Poisson likelihoods with iden-
tity link, logit link, and log link functions respectively. The user defines
the desired model structure by setting a small number of function argu-
ments, and can easily experiment with different hyperparameters for the
priors. GeoAdjust is the first software package that is specifically designed
to address positional uncertainty in the GPS coordinates of point refer-
enced household survey data. The package provides inference for model
parameters and can predict values at unobserved locations.

1 Introduction

In each demographic health survey collected by the DHS program, posi-
tional uncertainty is intentionally introduced in the GPS coordinates of the
household cluster centers as a privacy protection measure(Burgert et al.,
2013).

The random displacement procedure, or jittering scheme, is publicly
known (Burgert et al., 2013). The jittering can be an issue because tradi-
tional geostatistical analyses assume locations are known exactly, and we
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have recently shown that ignoring the positional error in DHS data may lead
to attenuated estimates of the covariate effect sizes and reduced predictive
performance (Altay et al., 2022a,b).

While common practice is to ignore jittering, some approaches have
been put forward to account for it. With respect to the error induced in
spatial covariates, Warren et al. (2016) proposed regression calibration for
distance-based covariates, and Perez-Heydrich et al. (2013, 2016) proposed
using a 5 km moving window (or buffer zone) for raster-based covariates.
However, these approaches do not address the attenuation arising in the
covariate effect sizes when replacing the true covariate with a proxy. With
respect to the error induced in the spatial effect, Fanshawe and Diggle
(2011) proposed a Bayesian approach in the limited setting of no covariates
and Gaussian observation model. Wilson and Wakefield (2021) proposed
a more complex approach using INLA-within-MCMC (Rue et al., 2009;
Gómez-Rubio and Rue, 2018), which could handle the error induced in
both the spatial random effect and in spatial covariates, but computation
time is too extensive for routine use of the approach. None of the mentioned
papers provide an R package for easy application of the methods.

With the package GeoAdjust we address the need for fast, flexible and
user-friendly software to estimate geostatistical models for DHS data sub-
ject to positional uncertainty. GeoAdjust addresses the positional uncer-
tainty by adjusting for jittering both in the spatial random effect and spa-
tial covariates, and achieves fast inference by combining the computational
feasibility of the stochastic partial differential equations (SPDE) approach
(Lindgren et al., 2011) with the autodifferentiation feature of the Template
Model Builder (TMB) R-package (Kristensen et al., 2016a). The R-package
GeoAdjust is on CRAN (R Core Team, 2022) and can be installed by in-
stall.packages("GeoAdjust") command.

2 Geostatistical inference under jittering

We consider a country with spatial domain D ⇢ R2, where C small groups
of households, called clusters, are observed. For clusters c = 1, . . . , C, we
denote the true location by s⇤

c 2 D, and we denote the observed location,
provided by DHS, by sc 2 D. Additionally, each cluster has a known
classification as urban (U) or rural (R). The observed locations are linked
to the true locations via a known jittering distribution ⇡Urb[c](sc|s⇤

c). The
subscript Urb[c] 2 {U,R} is necessary since the DHS uses different jittering
distributions in urban and rural clusters. Urban clusters are jittered up
to 2 km, and rural clusters are jittered up to 5 km with probability 0.99
and jittered up to 10 km with probability 0.01 (Burgert et al., 2013). The
angle and jittering distance are sampled from uniform distributions, but
the boundaries of either the first or the second administrative level are
respected.
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We model responses y1, . . . , yC and observed locations s1, . . . , sC jointly
as

yc | ⌘c,� ⇠ ⇡(yc | ⌘c,�), sc|s⇤
c ⇠ ⇡Urb[c](sc|s⇤

c),

⌘c = ⌘(s⇤
c), (2.1)

for c = 1, . . . , C, where ⇡(yc | ⌘c,�) is the likelihood of yc with linear
predictor ⌘c and likelihood parameter vector �, and ⌘(·) is a Gaussian
random field describing spatial variation. The linear predictor is linked to
the mean of the likelihood family through a link function. The package
implements the identity link in the case of a Gaussian likelihood, the log-
link for Poisson and the logit-link for the binomial likelihood.

The latent spatial variation is modelled as

⌘(s⇤
) = x(s⇤

c)
T� + u(s⇤

c), s⇤ 2 D,

which combines p spatial covariates, x(·)T, with a Matérn Gaussian random
field (GRF), u(·), with fixed smoothness ⌫ = 1. The coefficients of the
covariates are assigned a Gaussian prior � ⇠ Np(0, V Ip), where V is a
fixed variance. The parameters of the Matérn GRF, the spatial range ⇢S
and marginal variance �2

S, are assigned penalized complexity (PC) priors
with P(⇢S > ⇢0) = 0.50 and P(�S > 1) = 0.05 (Fuglstad et al., 2019). We
recommend choosing the median range ⇢0 as the 10% of the diameter of D
to be able to capture the spatial variability at moderate distances.

To complete the specification of the model, we need to assign a prior for
the true cluster locations. We choose a uniform prior s⇤c ⇠ U(D) so that
all s⇤

c compatible with sc are equally likely a priori, c = 1, . . . , C. More
complicated choices taking population density or urban/rural status into
account are possible, but such rasters would have to be estimated and could
be biased and uncertain. GeoAdjust treats the unknown true locations as
nuisance parameters and integrates them out,

⇡(yc, sc|⌘(·)) =
Z

D
⇡(yc, sc|⌘(·), s⇤

c)⇡(s
⇤
c) ds

⇤
c

=

Z

D
⇡(yc|⌘(s⇤

c))⇡Urb[c](sc|s⇤
c)⇡(s

⇤
c) ds

⇤
c . (2.2)

We use the SPDE approach (Lindgren et al., 2011) to describe u(·) and use
the speed and flexibility of autodifferentiation in TMB to perform inference
quickly.

3 Package structure and functionality

GeoAdjust hides the complicated and technical steps in the algorithm from
the user, to make the adjustment for jittering widely accessible. Figure
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Figure 1: GeoAdjust R-package workflow

1 illustrates the structure of GeoAdjust, and how various data inputs are
processed through the package workflow. The main functionality of the
package is described in subsections.

3.1 Triangulation and mesh generation for the re-

gion under study

In GeoAdjust, the GRF u(·) is approximated using the so-called SPDE
approach. This requires the construction of a constrained refined Delaunay
triangulation (CRDT), in other words a mesh, over the country of interest.
The approximated spatial field can then be projected from the mesh nodes
to the cluster centers, by projector matrices (Lindgren et al., 2011). The
function meshCountry creates a triangulation mesh based on the national
borders. It has two key arguments: max.edge is a vector of two values,
where its first and second elements represent the largest allowed triangle
edge lengths for the inner and outer mesh, respectively, and offset stands
for the extension distance outside the country borders.

3.2 Input data preparation

The integration in Equation (2.2) is done numerically and we need a set
of integration points around each jittered survey cluster center. GeoAdjust
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Figure 2: Illustration of primary (left) and secondary (right) in-
tegration weights for one cluster from Kenya 2014 DHS household
survey.

specifies the cluster center itself as the first integration point and builds
either 5 or 10 rings around it, depending on whether it is located in an
urban or a rural stratum, respectively. Each ring contains a set of 15
angularly equidistant primary integration points.

The first 5 rings are called the "inner rings" and the points located
within them are weighted equally. The additional 5 rings are built for
the rural cluster centers and are called the "outer rings". The primary
integration points within them are also assigned equal weights, which are
smaller than the ones assigned for the points within the inner rings. If an
observed cluster location is closer to the nearest subnational border than
the maximum jittering distance, the method deploys a set of secondary
integration points, each with an associate primary integration point, and
assigns zero weight to any that are across the border. The associated pri-
mary integration point weights are adjusted accordingly. Figure 2 shows
the primary and secondary integration points and the corresponding inte-
gration weights, for a single cluster from the Kenya 2014 DHS household
survey with observed location close to an administrative boundary. The
supplementary materials section of (Altay et al., 2022a) provides a detailed
mathematical explanation about the procedure.

The function prepareInput creates the set of integration points and
the corresponding weights with respect to the urbanization strata, and
constructs the urban and rural design matrices by extracting the covariate
values at the coordinates of each integration point. The function returns
a list containing the strata-wise design matrices and response vectors, to-
gether with the sparse matrix components of the SPDE model, and strata-
wise projector matrices. Usage of the function will be shown based on the
NDHS-2018 survey in Section 5.2.

81



3.3 Model parameter estimation

The input list returned by prepareInput function consists of the elements
that will be processed by the autodifferentiation feature of TMB as im-
plemented in the estimateModel function. The function estimateModel
saves the users from writing a complex C++ code to run TMB, and al-
lows estimating model parameters by setting a small number of arguments.
The function is flexible and allows different prior choices for the model
components, via its argument called priors.

The function estimateModel utilizes the C++ script of TMB, which in-
tegrates out the unknown true coordinates by computing the contribution of
each integration point to the joint negative log-likelihood. Internally, once
the TMB function MakeADFun constructs the core model object (Kristensen,
2022), estimateModel uses the optim function to optimize it. Afterwards,
estimateModel extracts the estimated model parameters from the opti-
mized core model object, and draws samples of size, that is controlled by
the argument n.sims of estimateModelfunction, for each covariate effect.
The function draws samples of size n.sims for the spatial random effect
coefficients for each mesh node as well. The samples for the intercept and
the covariate effect sizes are then used for constructing the 95% credible in-
terval lengths as the measure of uncertainty corresponding to the estimated
parameters.

The function estimateModel returns a list of four elements. The list
contains a data frame of the estimated model parameters, together with the
optimized core model object, a matrix containing the drawn samples of size
n.sims for the covariate effect sizes and the random effect coefficients, and
information about the type of the likelihood. The core model object and
the drawn samples can then be passed to the function predRes to generate
predictions at a set of prediction locations.

3.4 Prediction grid construction

Once the model parameters are estimated, the model can be used for
predicting the model outcomes at a new set of locations. The function
gridCountry in GeoAdjust helps with the construction of a set of predic-
tion points. The function creates a raster of a preferred resolution within
the bounding box of the national level shape file, extracts the coordinates
of the cell centers and returns them together with the raster, as the ele-
ments of a list. A code example about the implementation of this function
is given in Section 5.2.

3.5 Prediction

Obtaining predictions at a new set of locations the function predRes re-
quires the optimized core model object, drawn samples of the parameters

82



and the random effect coefficients, triangulation mesh, a list of covariate
rasters, coordinates of the prediction locations and an argument called
"flag" as input arguments. The argument "flag" is used for passing the
likelihood type into the function. The integers 0, 1 and 2 indicate the
Gaussian, binomial and Poisson likelihoods, respectively, and the function
deploys the corresponding link function as outlined before. The package al-
lows the use of any number of covariates, as long as they are in a geospatial
raster layer format. The covariates can be passed into the function within
a single list. The function will extract the values from each one of them at
the prediction locations and form a design matrix.

Internally, predRes combines the sampled covariate effect sizes and the
random effect coefficients with the design matrix and forms one model per
sample, n.sims models in total. Each model predicts outcomes across the
set of prediction locations. Finally, the function calculates the mean, me-
dian, standard deviation, and the upper and lower bounds of 95% credible
intervals of predictions for each prediction point. These results are returned
in a matrix with a number of rows equal to the number of prediction points,
and 5 columns.

4 DHS data acquisition

The data sets of DHS household surveys are semi-public, but access to
them requires application for permission. A step by step guidance to
the application procedure can be found in https://dhsprogram.com/data/
new-user-registration.cfm. The application requires a brief project de-
scription explaining why the data set is needed and how it will be used
within the provided project framework. Sharing the data sets with each
one of the collaborating researchers requires permission as well. Once the
permission is granted, the applicant receives a letter via email, which clearly
states the content of the permission.

5 Preprocessing DHS data

Geospatial analysis of DHS household surveys usually require processing
the individual level responses together with the cluster level information.
Prior to using GeoAdjust, the DHS data needs to be preprocessed and cer-
tain variables need to be extracted. The package uses the clusterID, cluster
center coordinates (both in degrees and in kilometers), administrative area
names in which the clusters are located in, and the Gaussian, binomial
or Poisson outcome variable aggregated from the individual responses into
each cluster center. Two administrative border shape files are used in the
analysis. One of them is the shape file that contains the national (admin0)
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level borders of the country of interest. The second one contains the sub-
national administrative level borders which are respected while jittering.
Shape files of various administrative levels for different countries can be
obtained from the website of "the Database of Global Administrative Ar-
eas (GADM)" (https://gadm.org/data.html). Once downloaded, the files
can be read into R as "SpatialPolygonsDataFrame" objects, see Listing 1
for an example. Finally, if any raster- and distance-based covariates will be
included in the model, they need to be read into R as separate raster layers.
The R code for reading and further processing the administrative borders
shape files and the covariate rasters will be shown in Section 5.2. Once the
preprocessing is done, in other words, all the external data files are read in
and the variables of interest are extracted and stored in a data frame, the
functions meshCountry and prepareInput can be used (see Section 5.2).

5.1 Reading data

The individual responses and the cluster information are often contained
in separate files in different formats. The survey responses are collected
via questionnaires and the answers of the participants to each question
are stored under the corresponding variable names within one large data
file. Descriptions of the variables can be found from DHS recode manuals
such as ICF (2018) and the response of interest can be aggregated into the
cluster centers that is stored in the cluster level data file. The aggregation
step must be adapted to the application. Listing 1 shows how to read the
DHS data into R and set it in the working environment.

1 library(haven)
2 library(rgdal)
3 # Reading DHS data :
4 # path1 : the full path to the individual level data file

(.DTA)
5 # path2 : the path to the folder where the cluster level

file (.shp) is located
6

7 # individual level data (individual survey responses) :
8 individualData = read_dta(path1)
9

10 # cluster level data (clusterID , cluster center
coordinates , strata , etc.)

11 corList = readOGR(dsn = path2 ,layer = "file name")
12

13 # extract cluster level information:
14 smallGeo = data.frame(clusterIdx = corList$DHSCLUST ,
15 urban = corList$URBAN_RURA ,
16 long = as.vector(corList@coords [,1])

,
17 lat = as.vector(corList@coords [,2]),
18 admin1 = corList$ADM1NAME)
19
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20 # extract individual level information:
21 myData = data.frame(clusterIdx = individualData$v001 ,
22 variable1 = individualData$v1,
23 variable2 = individualData$v2)

Listing 1: Loading DHS data into R.

5.2 Example for Nigeria

This section shows extracting and merging individual and cluster level
data, based on Nigeria DHS 2018 (NDHS-2018) household survey. The
example code in this section considers as outcome the completions of sec-
ondary education among 20-39 years old women in Nigeria. Population
density is used as the only covariate and the corresponding raster file
(Nga_ppp_v2c_2015.tif) can be downloaded from WorldPop (World Pop,
2022). The geography of Nigeria and the locations of the clusters are shown
in the left-hand side panel of Figure 3.

This example will use the model

yc|rc, nc ⇠ Binomial(nc, rc), sc|s⇤
c ⇠ ⇡Urb[c](sc|s⇤

c),

rc = r(s⇤
c) = logit

�1
(⌘(s⇤

c)),
(5.1)

where yc is the number of women who completed secondary education, nc

is the number of women interviewed, and rc denotes the risk in cluster c,
for c = 1, . . . , C. The spatially varying risk r(·) = logit

�1
(⌘(·)) is modelled

through the linear predictor

⌘(s⇤
) = �0 + x(s⇤

)�1 + u(s⇤
), s⇤ 2 D,

where �0 is the intercept, x(s⇤
) is the population density, �1 is the effect

of population density, and u(·) is the Matérn GRF with smoothness ⌫ = 1.
The shape file for Nigeria includes a large lake on its north-eastern cor-

ner. Lakes do not have any DHS household clusters within them, therefore
it does not make sense to make any predictions at locations that are within
the lake. Accordingly, we remove the polygon that corresponds to the lake
from the admin2 level shape file. Listing 2 shows reading the administra-
tive area shape files and DHS data and extracting the variables of interest
based on the file and variable names of NDHS-2018.

1 # reading admin0 and admin2 shape files :
2 admin0 = readOGR(dsn = "dataFiles/gadm40_NGA_shp",
3 layer = "gadm40_NGA_0")
4

5 admin2 = readOGR(dsn = "dataFiles/gadm40_NGA_shp",
6 layer = "gadm40_NGA_2")
7

8 # remove the lake
9 admin2 = admin2 [-160,] # Nigeria map has a large lake
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10 # The lake corresponds to polygon
160

11

12 # reading DHS data :
13 corList = readOGR(dsn = "dataFiles/DHS/NG_2018_DHS_

02242022_98_147470/NGGE7BFL",
14 layer = "NGGE7BFL")
15 educationData = read_dta("NGIR7BDT/NGIR7BFL.DTA")
16

17 # extract cluster level information:
18 smallGeo = data.frame(clusterIdx = corList$DHSCLUST ,
19 urban = corList$URBAN_RURA ,
20 long = as.vector(corList@coords [,1])

,
21 lat = as.vector(corList@coords [,2]),
22 admin1 = corList$ADM1NAME)
23

24 # extract individual level information:
25 myData = data.frame(clusterIdx = educationData$v001 , #

cluster ID
26 age = educationData$v012 ,

# age
27 secondaryEducation = educationData$

v106) # v106
28 #v106 : highest education level
29 # 0 : no education
30 # 1 : primary
31 # 2 : secondary
32 # >2 : higher
33

34 # reading the covariate raster:
35 library(raster)
36 r = raster :: raster("Nga_ppp_v2c_2015. tif")

Listing 2: Data preprocessing: loading administrative shapefiles,
DHS data, and covariate data into R for the Nigeria example.

Once the external data files are read into R, the data needs to be orga-
nized with respect to the content of the research. Accordingly, the individ-
ual survey answers contained in the data frame "myData" are first subsetted
with respect to the age interval that we are interested in (20-39), and then
merged with the cluster level information in the data frame "smallGeo".
The merged data are then aggregated into the cluster centers. These steps
can be followed through Listing 3.

1 # subset data with respect to the age interval of interest
:

2 myData = subset(myData , age <= 39 & age >=20)
3

4 # number of 20-39 years old women who completed secondary
education in each household

5 myData$ys = (myData$secondaryEducation >=2)+0
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6

7 # merge the cluster level data with the subsetted
individual level data ,

8 # with respect to the cluster ID:
9 myData = merge(myData , smallGeo , by = "clusterIdx")

10

11 # add number of trials (for binomial response)
12 myData$Ntrials = 1
13

14 # aggregate the survey responses to the cluster centers
15 answers_x = aggregate(myData$ys,
16 by = list(clusterID = myData[, 1]),
17 FUN = sum)
18

19 answers_n= aggregate(myData$ys ,
20 by = list(clusterID = myData[, 1]),
21 FUN = length)
22

23 # merge
24 answers_joint = merge(answers_x, answers_n, by="clusterID"

)
25

26 # now we have the total number of women participants
within the relevant age interval (ns),

27 # for each cluster. We also have the number of women among
those who completed their secondary education (ys)

28 colnames(answers_joint) = c("clusterID", "ys", "ns")

Listing 3: Data preprocessing: subsetting and aggregating.

The main variables that are needed for the analysis are the ID numbers
and coordinates of the cluster centers (both in degrees and in kilometers),
their urbanicity stratum, and the aggregated response variable values. Ac-
cordingly, these are collected into a main data frame as in Listing 4.

1

2 # initial data frame
3 nigeria.data = data.frame(clusterID = corList@data [["

DHSCLUST"]], long = as.vector(corList@coords [,1]), lat
= as.vector(corList@coords [,2]))

4

5 # add ys and ns
6 nigeria.data = merge(nigeria.data , answers_joint , by="

clusterID", all=T)
7

8 # add strata:
9 nigeria.data$urbanRuralDHS = corList@data [["URBAN_RURA"]]

10

11 # add coordinates in kilometers
12 nigeria.data$east = rep(NA , length(nigeria.data$long))
13 nigeria.data$north = rep(NA, length(nigeria.data$long))
14
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15 nigeria.data[,c("east", "north")] = convertDegToKM(nigeria
.data[,c("long", "lat")])

Listing 4: Data preprocessing: collecting data into a data frame.

The DHS jittering scheme is implemented by respecting various levels of
administrative borders in different countries. The function prepareInput
creates the integration points and considers their proximity to the respected
level of administrative borders to decide if a secondary set of points should
also be deployed. In NDHS-2018, jittering is done by respecting the second
administrative level borders in Nigeria. It is important to be sure that the
admin2 level areas that each cluster center is located within can be iden-
tified, in other words, each cluster center matches with one of the areas.
This is the information that will lead the function prepareInput to eval-
uate the proximity of each individual integration point to the borders of
the corresponding particular administrative area. Accordingly, the cluster
centers that do not match with any admin2 areas need to be dropped as
shown in Listing 5.

1 # jittering is done by respecting admin2 borders in
Nigeria.

2 # see if there are cluster centers that doesn ’t match
with any of the admin2 areas:

3

4 # first , add polygon IDs (some shape files may have it
already) :

5 admin2@data [["OBJECTID"]] =1:774 # normally 775, we
removed one (the lake)

6 # this number might be
different in other countries

7

8 # the cluster coordinates:
9 latLon = cbind(nigeria.data[,"long"], nigeria.data[,"lat"

])
10 colnames(latLon) = c("long", "lat")
11

12 # make a SpatialPoints object
13 latLon = SpatialPoints(latLon , proj4string=CRS("+proj=

longlat +datum=WGS84 +no_defs"), bbox = NULL)
14

15 # see if the points (cluster centers) are within the
polygons (admin2 areas) :

16 check1 <- over(latLon , admin2 , returnList = FALSE)
17

18 # drop the rows which don ’t match with none of the admin2
areas.

19 # we will need them to match while creating the
integration points later on.

20

21 # see which ones don ’t return a match :
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Figure 3: Nigeria subnational level map (left) and the triangulation
mesh (right). The red points represent the jittered cluster centers.

22 # which(is.na(check1$NAME_2)) # see the rows that don ’t
match:

23 # [1] 48 122 205 848 857 1116 1122 1287 1328
24

25 # drop the corresponding rows from the main data set :
26 nigeria.data = nigeria.data[-c( 48, 122, 205, 848, 857,

1116, 1122, 1287, 1328) ,]

Listing 5: Data preprocessing: final adjustments.

Besides creating the integration points, the prepareInput function con-
structs the SPDE components and includes them in its returning list. The
function implements this based on the triangulation mesh. This last step
before running prepareInput is illustrated in Listing 6.

1 # transform admin0 into kilometers
2 proj = "+units=km +proj=utm +zone =37 +ellps=clrk80

+towgs84 =-160,-6,-302,0,0,0,0 +
no_defs"

3

4 admin0_trnsfrmd = spTransform(admin0 ,proj)
5

6 library(GeoAdjust)
7 # construct the mesh
8 mesh.s = meshCountry(admin0 = admin0_trnsfrmd ,
9 max.edge = c(25, 50), offset = -.08)

Listing 6: Data preparation: constructing a triangulation mesh with
the meshCountry() function.

Figure 3 shows the subnational (admin2 level) borders within Nigeria,
together with the triangulation mesh that is constructed based on the na-
tional borders.

The function prepareInput saves the package user from various detailed
long coding tasks and reduces the whole process into setting just couple of
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arguments. The covariates in the model need to be passed into the function
as raster layers within a list, via the argument "covariateData". The func-
tion needs the response variable values as well, so that it can construct the
response vectors for the corresponding urban and rural integration points,
separately. This example on NDHS-2018 has a binomial response. Accord-
ingly, we need to pass both the aggregated binomial trials (ns) and the
corresponding aggregated binomial successes (ys) for each cluster center.
Here, ns represents the number of 20-39 years old women per cluster, and
ys is the number of women who reported that their secondary education is
completed, amongst them. If the response was Gaussian or Poisson, then
the list passing to the "response" argument would only contain ys either
as the Gaussian responses or the Poisson counts, respectively. Similarly,
the likelihood type should be set via the argument "likelihood", so that
the function processes the other arguments accordingly. Here, the values
0, 1 and 2 indicates that either Gaussian, binomial or Poisson likelihood is
used in the model, respectively. The argument "jScale" sets the scaling of
the default DHS maximum jittering distances. The function prepareInput
multiplies the default distances by the value set to the argument, and evalu-
ates the approximity of the primary integration points to their correspond-
ing administrative area borders based on the scaled distances. The value 1
indicates that the default distances are in use. Different values can be set
to this argument in order to experiment with them. Listing 7 shows how
the arguments can be set and how the function can be used.

1 # read the covariate raster
2 library(raster)
3 r = raster :: raster("Nga_ppp_v2c_2015. tif")
4

5 # the response variable
6 response = list(ys = nigeria.data$ys, # number of binomial

successes
7 ns = nigeria.data$ns) # number of binomial

trials
8

9 # cluster center coordinates in kilometers
10 locObs =cbind(nigeria.data[["east"]], nigeria.data[["north

"]])
11

12 likelihood = 1 # binomial likelihood
13 # (set 0, 1 or 2 for Gaussian , binomial or

Poisson)
14 jScale = 1 # the maximum DHS jittering distances
15 # can be scaled using this argument
16 # 1 corresponds to the default DHS

jittering
17

18

19 adminMap = admin2 # jittering is done by respecting
admin2
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20 # borders in Nigeria. This may be
different

21 # for other countries. In Kenya ,
admin1 borders

22 # are respected instead.
23

24 inputData = prepareInput(response=response , locObs=locObs ,
25 likelihood = likelihood ,
26 jScale=jScale ,
27 urban = nigeria.data$

urbanRuralDHS ,
28 mesh.s = mesh.s, adminMap=

adminMap , nSubAPerPoint =10, nSubRPerPoint = 10,
29 covariateData=list(r=r))

Listing 7: Data preparation: preparing a list of input objects with
the prepareInput() function.

The content of the input list created by function prepareInput is shown
in Listing 8. The list contains the response vectors (both ns and ys in bino-
mial case), design matrices and the projector matrices all created separately
for the urban and rural strata. The function prepareInput breaks the vec-
tors ns and ys into the urban and rural vectors num_iUrban, num_iRural,
y_iUrban and y_iRural with respect to the urban and rural integration
points. The other elements are the coordinates of the urban and rural inte-
gration points, corresponding urban and rural integration weights, SPDE
components and the likelihood and normalization flags.

1 The final input data list contains the following elements:
2 inputData <- list(num_iUrban , # Total numb. of urban obs

.
3 num_iRural , # Total numb. of rural obs.
4 num_s, # num. of vertices in SPDE mesh
5 y_iUrban , # urban obs in the cluster
6 y_iRural , # rural obs in the cluster
7 n_iUrban , # urban exposures in the cluster
8 n_iRural , # rural exposures in the cluster
9 n_integrationPointsUrban ,#num.of urb.int.

pts.
10 n_integrationPointsRural ,#num.of rur.int.

pts.
11 wUrban = wUrban , # urban weights
12 wRural = wRural , # rural weights
13 X_betaUrban = desMatrixJittUrban , # urb.

des. mat.
14 X_betaRural = desMatrixJittRural , # rur.

des. mat.
15 M0, #=spde[[’param.inla ’]][[’M0 ’]],
16 M1, #=spde[[’param.inla ’]][[’M1 ’]],
17 M2, #=spde[[’param.inla ’]][[’M2 ’]],
18 AprojUrban , # Projection matrix (urban)

91



19 AprojRural , # Projection matrix (rural)
20 options = c(1, ## if 1, use normalization
21 1), ## if 1, run adreport
22 flag1 = 1, # normalization flag.
23 flag2 = flag2 , #(0/1/2 for Gaussian/

Binomial/Poisson)
24 )
25 )

Listing 8: Data preparation: the input list.

6 Model estimation and gridded spatial pre-

diction

6.1 Estimation

The function estimateModel utilizes the MakeADFun function of TMB to
construct a list we will refer to as the core model object, containing the
objective functions with derivatives (Kristensen et al., 2016b), (Kristensen,
2022). Then estimateModel uses optim to optimize the core model object
and estimate the model parameters, without requiring the user to write
any C++ code. The main argument of the function is a list called “data”,
referring to the input list that has just been created above. The argument
nNodes refers to the number of nodes that the triangulation mesh has. The
remaining two other arguments are called options and priors.

The argument options specifies in which of the two model components,
namely, the random effect and covariates, jittering should be accounted for.
Jittering adjustment can be turned on and off either in the random effect or
in covariates or both, by setting the values of “random” and “covariates”
to 1 or 0, respectively.

The argument priors allows the user to specify the parameters of the
Gaussian prior for covariate effect sizes, and of the penalized complexity
(PC) priors for the spatial range and marginal variance. These values
can be passed into the function as a list of six elements, namely, “beta”,
“range”, “Uspatial”, “alphaSpatial”, “UNugget”, and “alphaNug”. The el-
ement beta needs to be a vector of length two. The first and the second
elements of the vector beta are the mean and the standard deviation of
the Gaussian priors that are assigned for the intercept and the covariate
effect sizes. “range” is the a priori median range, and “USpatial” is the
upper “alphaSpatial” percentile of the marginal standard deviation, and
“UNugget” and “alphaNug” are the hyperparameters for the PC-prior on
the nugget variance. The hyperparameters “UNugget” and “alphaNug” pass
into the function as 1 and 0.05, by default, but they are only used in the
calculations when the likelihood is Gaussian. The package user is free to
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fix them to other values as well. Listing 9 shows how the estimateModel
function can be used. The argument “n.sims” controls the number of sam-
ples that will be drawn for each model parameter and each random effect
coefficient.

1 # number of nodes in the mesh:
2 nNodes = mesh.s[[’n’]]
3

4 # estimating the parameters
5 est = estimateModel(data = inputData ,
6 nNodes = nNodes ,
7 options = list(random = 1, covariates = 1), #

account for jittering in random and covariate effects
8 priors = list(beta = c(0,1),
9 range = 114,

10 USpatial = 1, alphaSpatial = 0.05, UNugget = 1,
alphaNug = 0.05) , n.sims = 1000)

Listing 9: Estimating model parameters: using the
estimateModel() function.

estimateModel returns a list of four elements (see Listing 10). Two of
them, namely, obj and draws will be passed into the predRes function for
predictions on a new prediction grid. The element obj is the optimized core
model object. The element draws contains n.sims draws for the effects of
covariates and the random effect. The element likelihood indicates the
likelihood type that is used in the model construction. Finally, the last ele-
ment res contains the estimated model parameters and the lengths of 95%
credible intervals, which are constructed using the sampled values in draws.
The credible interval lengths are calculated within the estimateModel func-
tion as the difference between the 97.5% and 2.5% quantiles of the drawn
samples for the corresponding parameter estimate. The result object res
does not contain CI_Length values for the range and the marginal variance,
as the inference is empirical Bayesian where these parameters are estimated
to fixed values. The model estimates can be printed in a tidy way as in
Listing 10

1 # the output of estimateModel () function:
2 names(est)
3 [1] "res" "obj" "draws" "likelihood"
4

5 print(est)
6

7 GeoAdjust :: estimateModel ()
8 ----------------------------------
9 Likelihood : binomial

10 ----------------------------------
11 parameter estimate 95% CI length
12 range 72.7716 NA
13 sigma 2.2838 NA
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14 beta0 -1.0295 0.7488
15 beta1 0.0079 0.0064
16 ----------------------------------

Listing 10: Estimating model parameters: output.

6.2 Prediction grid

GeoAdjust provides the gridCountry function to create a grid of predic-
tion points with respect to the national borders of the country of interest.
The function has two arguments. The first argument admin0 is the Spa-
tialPolygonsDataFrame object containing the national borders. The second
argument res indicates the resolution in kilometers. Internally, the func-
tion first creates a raster within the bounding box of the admin0 object and
with respect to the chosen resolution. Afterwards, it extracts the coordi-
nates of the cell centroids and constructs a data frame containing the cell
centroid coordinates both in kilometers and degrees. Finally, the function
returns the coordinates and the prediction raster within a list. Having the
prediction raster is necessary to use the function plotPred, which inter-
nally utilizes geom_raster from ggplot2, which is useful for plotting the
predictions and the uncertainty across the country. Listing 11 shows how
gridCountry function can be used.

1 # raster and the prediction coordinates:
2 predComponents = gridCountry(admin0 = admin0 , res = 5)
3

4 names(predComponents)
5 [1] "loc.pred" "predRast"
6

7 # the prediction locations
8 loc.pred = predComponents [["loc.pred"]]
9

10 head(loc.pred)
11 east north long lat
12 1 -3803.287 1825.665 1.838939 13.27084
13 2 -3798.287 1825.665 1.875670 13.27712
14 3 -3793.287 1825.665 1.912420 13.28340
15 4 -3788.287 1825.665 1.949189 13.28967
16 5 -3783.287 1825.665 1.985977 13.29595
17 6 -3778.287 1825.665 2.022784 13.30222
18

19 > dim(loc.pred)
20 [1] 80201 4
21

22 predRast = predComponents [["predRast"]]
23 print(predRast)
24 class : RasterLayer
25 dimensions : 253, 317, 80201 (nrow , ncol , ncell)
26 resolution : 5, 5 (x, y)
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27 extent : -3805.787 , -2220.787 , 563.1654 , 1828.165 (
xmin , xmax , ymin , ymax)

28 crs : +proj=utm +zone =37 +ellps=clrk80 +units=km +
no_defs

Listing 11: Prediction: the gridCountry() function.

6.3 Prediction

The predRes function uses the core model object that is created within
estimateModel to predict the model outcomes at a set of prediction lo-
cations. The function predRes uses two elements from the output list of
estimateModel, namely the core model object (est[["obj"]]) and the ma-
trix containing the sampled covariate effect sizes together with the sampled
random effect coefficients for each mesh node (est[["draws"]]).

In this example we use the cell center coordinates of the prediction raster
which is just constructed by gridCountry function, but it is also possible
for the package users to predict on a custom made grid or any other set of
locations. Please note that, if the package user prefers to use a different
location set, their coordinates need to be passed in kilometers as a matrix
with the corresponding column names "east" and "north", respectively.

The function prepareInput used an argument called "covariateData".
It was a list containing the raster layers of each covariate. The purpose of
the argument there was to extract the covariate values at the integration
points and to create urban and rural design matrices. Similarly, predRes
function uses the same argument with the same name and content, but here
the function creates a design matrix by extracting the covariate values at
the prediction locations.

The argument flag takes one of 0, 1 or 2. The value of this argument
indicates the type of the likelihood that the model includes. The values 0, 1
and 2 indicates the Gaussian, binomial and Poisson likelihoods, respectively.
The function uses the value to decide which link function should be used.
Listing 12 shows the usage of the function prepareInput.

1 predictions = predRes(obj = est[["obj"]] , predCoords =
loc.pred ,

2 draws = est [["draws"]] , nCov =
nCov ,

3 covariateData = covariateData ,
4 mesh.s = mesh.s, flag = 1)
5

6 head(predictions)
7 mean median sd lower upper
8 [1,] 0.2646259 0.2627431 0.03690252 0.196264273 0.3405225
9 [2,] 0.3742580 0.2584815 0.34268884 0.001753274 0.9855895

10 [3,] 0.3707435 0.2601383 0.33634250 0.002157952 0.9826507
11 [4,] 0.3687931 0.2615159 0.33290925 0.002405636 0.9801035
12 [5,] 0.3686910 0.2641275 0.33299652 0.002327227 0.9800920
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13 [6,] 0.3677783 0.2623805 0.33203511 0.002436265 0.9803111
14

15 dim(predictions)
16 [1] 80201 5

Listing 12: Prediction: the predRes() function.

6.4 Plotting the predictions and uncertainty

This section shows how to plot the predicted values and the uncertainty
accross the country map. We will use the predicted median values ob-
tained from predRes function, as the point predictions. The plotted un-
certainties will be the corresponding coefficient of variations calculated
by �

µ ⇥ 100, also obtained from predRes function. GeoAdjust uses the
function plotPred to plot the predictions and the corresponding uncer-
tainty accross the studied country. The first argument pred is the output
of the function predRes which is obtained in Listing 12. The argument
predRaster is the prediction raster that was constructed by gridCountry
function in Listing 11. The arguments admin0, admin1 and admin2 stand
for the SpatialPolygonsDataFrame objects representing the national, first
level subnational and second level subnational administrative borders of
the corresponding country. There might be a need to leave some of the ad-
min2 level polygons uncolored as we did here for the polygon 160 (the lake).
Then the number of the polygon that needs to be excluded can be pass into
the function through the argument rmPoly. The argument doesn’t remove
the polygon from the map. The function still plots the polygon within the
map, but it doesn’t assign colors anywhere within that polygon. The argu-
ments rmPoly and admin2 can be set to NULL if there is no such need. The
administrative borders that are overlaid on the map by this function are
the admin1 level borders (see Figure 4). The argument locObs indicates
the observed locations, or in other words, the DHS cluster centers. The
function plots these as red dots on to the map. The function returns a list
containing two ggplot objects, representing the plots for the predictions
and uncertainty accross the country of interest. Listing 13 shows how to
use the function plotPred.

1 admin1 = readOGR(dsn = "dataFiles/gadm40_NGA_shp",
2 layer = "gadm40_NGA_1")
3

4 plotPred(pred = predictions , predRaster = predRast , admin0
= admin0 ,

5 admin1 = admin1 , admin2 = admin2 , rmPoly = 160,
locObs = locObs)

Listing 13: Plotting: preparation.

Figure 4 shows the predicted risk and the corresponding uncertainty
across Nigeria. Please note that since we assigned "NA" to the points that
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Figure 4: Predicted risk (left) and the CVs (right). The red points
indicate the example survey cluster centers.

overlap with the lake, the north-east corner of the plots are not colored.
This area is the area covered by the lake. This is specific to the geography
of Nigeria and different features like this may need to be considered while
plotting data on the maps of different countries.

7 Summary

GeoAdjust makes it easy to account for jittering, by isolating its user from
complex code while still providing flexible control over the implementation.
It is unique in a sense that it is the only package that specifically targets
the positional uncertainty in the observed locations and also conveys a
functionality emerging from a unique way of approaching to this problem.
The package has a potential to be tested on and developed further for both
areal and point referenced data from different areas involving the positional
uncertainty and geomasking.
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