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Abstract

The visual characteristics of an object are defined by complex light-matter interac-

tion phenomena. The field of visual computing studies these phenomena in order

to better understand optical properties of real world scenes so that ultimately, the

reality can be approximated and reconstructed by life-like models. These models

can be rooted in theoretical frameworks, or they can be constructed through the

analysis of data, collected to enclose different aspects of the reality. Nowadays,

there is a plethora of sensing techniques, able to capture various dimensions of an

object, such as its spatial distribution, depth, color and reflectance, and even its

aging behaviour.

This thesis pivots around the capture and analysis of spectral and multi-light im-

ages towards the recovery of material properties and appearance attributes, with

a focus on cultural heritage applications. As part of the spectral module, the fol-

lowing techniques are used to measure the electromagnetic fingerprint of materi-

als: reflectance image spectroscopy and microfading. Multi-light imaging records

the interplay between the light and an object, when the former moves at differ-

ent angles in the hemisphere above the latter. The spectral signals and multi-light

image stacks are processed to create prototype representations of a given object,

whereby its color, material and shape are reconstructed.

For cultural heritage, the term reconstruction carries a double meaning. On the one

hand, it refers to the estimation of appearance properties from the analysis of data

and images. On the other hand, it alludes to the restoration of damaged objects.

Artworks have different ages that can date far back in history, as well as an inherent

sensitivity to environmental factors. For this reason, many have incurred losses or

degradation that altered their original appearance when they were first created.

This thesis proposes novel solutions to both meanings of appearance reconstruc-
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tion for a diverse range of cultural heritage objects: bas-reliefs, paintings, draw-

ings, murals. A share of the research outcomes is concerned with the assessment of

shape reconstruction for fluorescent and non-fluorescent objects, relying on poly-

nomial models to explain the multi-light image collections. In addition, character-

ization of material properties is performed using spectral signatures. Then, another

area of research is dedicated to the restoration of artworks. In particular, a color-

consistent method for loss infilling is proposed for the retouching of wall paintings.

Furthermore, this thesis considers the temporal dimension related to light-induced

aging, and integrates it to digitally simulate the past and future appearance of an

artwork, with a method anchored in multivariate algebra. This innovative spatio-

temporal simulation approach bridges the data collected with two spectral capture

techniques, namely microfading and hypespectral imaging.

Finally, this thesis reviews the ethical implications of imaging workflows for cul-

tural heritage applications, from acquisition to storage in digital repositories, pro-

cessing, manipulation and reproduction.
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THE MUSHROOM HUNTERS by Neil Gaiman

Science, as you know, my little one, is the study

of the nature and behaviour of the universe.

It’s based on observation, on experiment, and measurement,

and the formulation of laws to describe the facts revealed.

In the old times, they say, the men came already fitted with brains

designed to follow flesh-beasts at a run,

to hurdle blindly into the unknown,

and then to find their way back home when lost

with a slain antelope to carry between them.

Or, on bad hunting days, nothing.

The women, who did not need to run down prey,

had brains that spotted landmarks and made paths between them

left at the thorn bush and across the scree

and look down in the bole of the half-fallen tree,

because sometimes there are mushrooms.

Before the flint club, or flint butcher’s tools,

The first tool of all was a sling for the baby

to keep our hands free

and something to put the berries and the mushrooms in,

the roots and the good leaves, the seeds and the crawlers.

Then a flint pestle to smash, to crush, to grind or break.
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And sometimes men chased the beasts

into the deep woods,

and never came back.

Some mushrooms will kill you,

while some will show you gods

and some will feed the hunger in our bellies. Identify.
Others will kill us if we eat them raw,

and kill us again if we cook them once,

but if we boil them up in spring water, and pour the water away,

and then boil them once more, and pour the water away,

only then can we eat them safely. Observe.

Observe childbirth, measure the swell of bellies and the shape of breasts,

and through experience discover how to bring babies safely into the world.

Observe everything.

And the mushroom hunters walk the ways they walk

and watch the world, and see what they observe.

And some of them would thrive and lick their lips,

While others clutched their stomachs and expired.

So laws are made and handed down on what is safe. Formulate.

The tools we make to build our lives:

our clothes, our food, our path home. . .

all these things we base on observation,

on experiment, on measurement, on truth.

And science, you remember, is the study

of the nature and behaviour of the universe,

based on observation, experiment, and measurement,

and the formulation of laws to describe these facts.

The race continues. An early scientist

drew beasts upon the walls of caves
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to show her children, now all fat on mushrooms

and on berries, what would be safe to hunt.

The men go running on after beasts.

The scientists walk more slowly, over to the brow of the hill

and down to the water’s edge and past the place where the red clay runs.

They are carrying their babies in the slings they made,

freeing their hands to pick the mushrooms.
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Chapter 1

Introduction

Eu nu strivesc corola de minuni a
lumii
şi nu ucid
cu mintea tainele, ce le-ntâlnesc
în calea mea.

Lucian Blaga

I do not crush the sense of wonder
in the world and I do not murder
in my inquiry
the mystery
that meets me.

English translation by Irina Ciortan

1.1 Motivation and Area of Research
Cultural heritage (CH) is a legacy of the past and a witness of history, which helps

humanity understand its present through the study of previous artistic expressions.

As with all matter, tangible CH undergoes continuous transformation that alters

its original form, which in turn may affect the understanding and interpretation

of the meaning it was intended to convey at the incipient moment of its creation.

Moreover, cultural heritage is at risk of destruction, due to natural and human-

provoked disasters, such as floods [1], earthquakes [2], fires [3, 4] and wars [5].

3



4 Introduction

For this reason, it is crucial to gather as much knowledge as possible and as fast

as possible by documenting and analyzing existing CH. However, this urge ought

to adhere to a certain priority-based selectivity, as excessive digitization has a high

cost to it, and subsequently translates to further depletion of financial [6] and en-

vironmental resources required for the preservation of digital data [7]. Once di-

gitization is accomplished, further actions can be taken towards CH preservation

and conservation. The past decades brought a surge in accessible digitization tech-

niques, concomitant to an increased awareness to CH needs, which has leveraged

the possibilities to capture, study and analyze CH objects. Because visual ap-

pearance entails complex physical phenomena, sensing techniques, although in a

continuous progress, still present numerous challenges especially if they are not

designed with the CH applications in mind.

This PhD thesis falls at the intersection of two scientific fields: visual computing

and heritage science. Visual computing [8] is a collective term that encompasses

all the computational methods that deal with the capture, processing, analysis,

understanding and rendering of visual data. Accordingly, visual computing is a

somewhat multidisciplinary field, an umbrella for the fields of image acquisition,

image processing, computer vision and computer graphics. Similarly, heritage sci-

ence is a generic term, that refers collectively to all the scientific and humanities

investigation methods employed to understand, manage and conserve cultural her-

itage artifacts [9]. Although the term “heritage science” was officially coined by

the House of Lords in 2006 [10], the first scientific study on heritage dates back

to the 19th century, when Sir Humphry Davy analyzed the chemical composition

of the pigments and papyri in the archaeological sites of Pompeii [11] and Her-

culaneum [12], respectively. Davy’s work on heritage was followed up by his

pupil, Michael Faraday, who researched the effects of indoor air pollution on the

chemical degradation of books made of leather. While primarily, heritage science

was associated with the conservation and archaeological sciences, the former has

evolved to a larger sphere of influence, which now includes computer vision ap-

proaches [13] that empower the interpretation of CH. Thus, visual computing can

offer a set of toolboxes to improve and solve current CH needs in a tangential way

to the heritage science approaches [14]. The following CH needs are identified as

topical and pertinent to be addressed with visual computing techniques:

• Documentation - the need to record the present status of conservation of a

tangible cultural heritage object, which includes its visual appearance, to-

wards establishing preservation and conservation policies [15].

• Material analysis and identification - the need to track down the chemical

composition of a work of art, which becomes a fingerprint helpful for un-
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derstanding the artist’s technique, for geographical or historical dating, and

for detection of forgeries. In addition, material analysis plays a role, as a

diagnostic tool, and serves the decision-making process in preventive con-

servation.

• Classification of artistic style - because there are artworks with anonymous

creator or wrongly, if not falsely attributed, it is important to develop tools

that can distinguish between artists and their style [16, 17]. Zooming out,

in the broad perspective of the history of art, it is of interest to differentiate

between art periods as well [18].

• Visualization - the need to render a cultural heritage object and interact

with as many of its dimensions as possible, in a photorealistic [19] or non-

photorealistic instance, and under different lighting and viewing conditions.

With the advent of virtual reality technologies and immersive environments,

the need for visualization has gained increasing attention [20].

• Restoration of damaged and lost art - from a physical restoration point of

view, this translates to the need to retouch a work of art so that the original

artistic intention, together with the aesthetic unity, are reclaimed. Under a

virtual restoration perspective, this need adheres to multiple scenarios. For

instance, it can refer to the possibility to reverse the aging effects of an art-

work, and simulate a digital rejuvenation of its original appearance. In a

conservation-restoration theory, it can create a digital workshop for a re-

storer to practice before an actual physical restoration, by trying out various

materials and retouching methods computationally.

• Ethical digitization, diagnostic, conservation and restoration - beyond artistic

and historical value, CH has an appreciable monetary value as well, and the

numbers of trades and stocks on the art market, especially in the Western

side of the world, speak for themselves. This financial glow may attract

stakeholders who are more interested in profit rather than the wellness and

conservation of the CH artifact. For this reason, it is necessary to estab-

lish ethical guidelines to ensure that the digitized data is collected, reported

and analyzed in an unbiased and truthful manner, and leave no room for

unjustified digital manipulations of the raw data that might tamper with the

subsequent steps in the diagnostic, conservation and restoration of a CH ob-

ject.
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1.2 Research Objectives and Questions
Drawing from the pool of identified CH conservation-restoration needs in the pre-

vious section, this PhD thesis targets three research objectives: 1) digitize CH

objects in a non-invasive way, so as to capture optical properties that characterize

the multilateral appearance of the objects; 2) analyze the visual data to characterize

the material and appearance of the CH object; 3) model the captured and analyzed

data to reconstruct the appearance. Thus, the objectives correspond to three sub-

areas of research: data capture, analysis, and appearance reconstruction. The core

methods for data acquisition and analysis in this thesis revolve around spectral and

multi-light imaging techniques. In particular, the following four research questions

were defined:

• RQ1: How to capture the appearance of artworks in a non-invasive way and

beyond what is visible to the naked eye?

• RQ2: How to extract appearance and material properties based on descriptors

in the color, spectral and multi-light domains?

• RQ3: How to digitally reconstruct, restore and predict the appearance of

artworks using data-driven and physical models?

• RQ4: What are the ethical and legal implications of cultural heritage digit-

ization and virtual restoration given the increasing accessibility of imaging

sensors and the recent take-off of AI techniques?

1.3 Thesis Structure
This dissertation is a compilation of 10 research articles and is organized in two

parts. Part I is an introductory narrative that is meant as a guide for the reader to

understand at a high-level the theoretical concepts and methodologies elaborated

in the articles, and to show how the articles inter-connect and how they contrib-

ute to the formation of an entity (the thesis) that is bigger than the sum of its

parts (articles). Part I is divided into 5 chapters. Chapter 1 introduces the field

of research and highlights the research needs and gaps that this thesis aims to

address. Chapter 2 is a brief overview of the background of the performed re-

search, and brings together theoretical concepts and a review of state-of-the-art

related works. In Chapter 3, the experimental designs throughout the articles are

synthesized, grouping the articles based on methodology and employed datasets.

After a general summary, each article is succinctly described, one by one. Sub-

sequently, Chapter 4 presents a general discussion of the research outcomes of
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this thesis, in the context of the main contributions and novelties proposed. Fi-

nally, Chapter 5 concludes with the main take-aways and reflects upon future

directions of research, that can build on the findings of this thesis while following

the state-of-the-art trends in appearance reconstruction.

Part II is an anthology of the 10 articles (8 published and 2 under peer review)

in their original and full versions. Out of the 8 publications, 4 are published in

journals and 4 in conference proceedings. The remaining 2 were submitted for a

journal and a conference, respectively. The articles are enumerated below, and Fig.

1.1 illustrates with a Venn diagram, the contributions of the articles for the research

tasks addressed in this thesis, and how they relate to the research questions.

List of Publications

P1 Ciortan, I. M., Dulecha T. G., Giachetti, A., Pintus, R., Jaspe-Villanueva A.,

Gobbetti, E. (2018). Artworks in the spotlight: Characterization with a multispec-

tral LED dome. IOP Conference Series: Materials Science and Engineering, 364.

https://doi.org/10.1088/1757-899X/364/1/012025

P2 Ciortan, I. M., Giachetti, A., George, S., & Hardeberg, J. Y. (2021). Fluor-

escence Transformation Imaging. Optics for Arts, Architecture, and Archaeology

VIII, 11784, 156–172. https://doi.org/10.1117/12.2593651

P3 Ciortan, I. M., George, S., & Hardeberg, J. Y. The Influence of Interreflections

on Shape from Fluorescence. (Submitted)

P4 Ciortan, I. M., Poulsson, T. G., George, S., & Hardeberg, J. Y. (2022). Spectral

Classification of Paper Fixatives: A Case Study on Thomas Fearnley’s Drawings,

IS&T Archiving Conference, 19: 89–94. https://doi.org/10.2352/issn.

2168-3204.2022.19.1.18

P5 Ciortan, I. M., Poulsson, T. G., George, S., & Hardeberg, J. Y. (2022). Pre-

dicting Pigment Color Degradation with Time Series Models. Color and Imaging

Conference, 30, 250–257. https://doi.org/10.2352/CIC.2022.30.1.44

P6 Ciortan, I. M., Poulsson, T. G., George, S., & Hardeberg, J. Y. (2023). Tensor

Decomposition for Painting Analysis. Part 1: Pigment Characterization. Heritage

Science, 11(1), 76. https://doi.org/10.1186/s40494-023-00910-x

P7 Ciortan, I. M., Poulsson, T. G., George, S., & Hardeberg, J. Y. (2023). Tensor

Decomposition for Painting Analysis. Part 2: Spatio-temporal Simulation. Herit-

age Science, 11(1), 84. https://doi.org/10.1186/s40494-023-00913-8

P8 Ciortan, I. M., Grillini F., George, S., & Hardeberg, J. Y. Estimating Optical

Properties of Pigments from Color Charts with Multi-contrast Background. (Sub-
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mitted)

P9 Ciortan, I. M., George, S., & Hardeberg, J. Y. (2021). Colour-Balanced Edge-

Guided Digital Inpainting: Applications on Artworks. Sensors, 21(6), Article 6.

https://doi.org/10.3390/s21062091

P10 Ciortan, I. M., George, S., & Hardeberg, J. (2022). Better Sensors, Better

Forgers: An Adversarial Loop. Authenticity Studies. International Journal of

Archaeology and Art, 1(Volume 1, Issue 1), 168-193. https://doi.org/10.

14658/PUPJ-AS-2022-1-12
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Figure 1.1: A Venn diagram illustrating the relationship between the three sub-areas of

research in this thesis and the corresponding publications, which propose solutions to the

four identified research questions. The color coding of the publications follows the RGB

mixing model.
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1.4 Research Design
Broadly, the reasoning that shapes research design can be of two types: inductive

and deductive. In the inductive paradigm, the trajectory to confirming a scientific

theory is built in a bottom-up direction, starting from particular instances to reach a

general formulation [21]. In the deductive logic, hypotheses regarding the general

theory are considered known, so the reasoning searches for the proofs to confirm

the theory in a top-down manner [21]. It is common to link inductive logic with

qualitative research and deductive reasoning with quantitative research [22]. Non-

etheless, it can be argued that the difference between inductive and deductive reas-

oning overcomes the strict dichotomy of qualitative/quantitative and is positioned

in the territory defined by the nature of the experimental variables [23]. On the

one hand, deductive logic better addresses problems in exact sciences with clear

and easy to control variables. On the other hand, inductive reasoning better copes

with complex, multidisciplinary dilemmas in exact sciences, where the involved

variables are intractable and not entirely known in advance [24, 25]. In this thesis,

a combination of inductive and deductive reasoning is employed, i.e. the so-called

mixed methods approach to research [22]. The motivation for juxtaposing both

paradigms lies in the assumption that this design leads to a holistic understanding

and interpretation of the research problem.

The foundation to research design is rooted in the following four philosophical

worldviews [22]: postpositive, constructive, transformative, pragmatic. Postposit-

ivism is a deterministic philosophy, where laws and theories that govern the world

are the cause of all effects, phenomena and manifestations of the real world. Here,

the goal of research is to find evidence that prove the ruling theories. Thus, post-

positivism is based on deductive reasoning, and it supports quantitative or scientific

research method. Opposite to positivism, constructivism relies on the subjective

interpretation of humankind in their interaction with the world to seek meaning and

understanding. This philosophy follows an inductive logic, and is associated with

qualitative or social inquiries. The transformative worldview has a political stand,

and advocates for an open, fair and unbiased research, where marginalized social

groups and categories are included in the research process. Lastly, pragmatism

is a problem-centric philosophy, where the research question guides the methods

employed, which can be a mix of quantitative and qualitative approaches. The in-

tention is to exhaust pluralistic methods to derive knowledge in finding the solution

to the research problem. The pragmatic stance holds accountability of the political

context and social justice [22]. Therefore, it can be claimed that the pragmatic

philosophy, in its openness to the use of multiple methods, circumscribes the other

three systems of beliefs, namely postpositivism, constructivism and transformat-

ive. Because of its multidisciplinarity, this dissertation is dominated by pragmat-
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ism. Nevertheless, being a primarily scientific thesis, it focuses on quantitative

methods, with a postpositivistic lens. At the same time, the opinion and judgement

of CH experts are kept in the loop, while the ethical impact of all actions involved

is reflected upon in a transformative spirit. In section 4.5, the research paradigms

are further discussed in relationship with every article attached to this thesis.

I would like to conclude this chapter with a personal reflection and a joke, gathered

from [21] that exemplifies the inductive reasoning. Even though I’m an advocate

of both deductive and inductive research, I consider that because reality is com-

plex and multi-faceted, only by continuing to observe and explore the world with

an inductive attitude, and from a kaleidoscopic multidisciplinary point of view,

we can formalize and understand phenomena which are yet hidden, or simply a

mystery. It might be that sometimes, deductive research has the pitfall of tuning a

method in biased ways until the desired and known results are reached, whereas in

inductive research, it’s mostly the data that speaks for itself. The following joke,

with detective Sherlock Holmes and Dr Watson as protagonists, shows how we can

solve a detective case, following multiple leads: “Sherlock Holmes and Dr Watson
went on a camping trip. In the middle of the night, Holmes wakes up and give
Dr. Watson a nudge. "Watson,” he says, “look up in the sky and tell me what you
see." Watson replied, "I see millions of stars." "And what do you conclude from
that, Watson?" Watson thinks for a moment. “Well,”, he says, "astronomically,
it tells me that there are millions of galaxies and potentially billions of planets.
Astrologically, I observe that Saturn is in Leo. Horologically, I deduce that the
time is approximately a quarter past three. Theologically, I can see that God is
all-powerful and that we are small and insignificant. Meteorologically, I suspect
that we will have a beautiful day tomorrow. Uh, what does it tell you, Holmes?"
"Watson, you fool. Someone has stolen our tent.”



Chapter 2

Fundamentals

La steaua care-a răsărit
E-o cale-atât de lungă,
Că mii de ani i-au trebuit
Luminii să ne-ajungă.

Mihai Eminescu

’Tis such a long way to the star
Rising above our shore
It took its light to come so far
Thousands of years and more.

English translation by Adrian

George Sahlean

This chapter brings together a short compendium of theoretical notions approached

in this thesis. Thus, it elaborates on the appearance and material properties of cul-

tural heritage objects, state-of-the-art optical techniques for capturing these proper-

ties, and finally, analysis methods towards appearance reconstruction. Then, every

article attached as a research outcome to this thesis, further includes an in-depth

background review for each addressed topic in particular.

2.1 Appearance Representation
The appearance of an object is influenced by the intrinsic characteristics of the

object, and their interaction with the light conditions under which the object is

11
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observed [26]. The intrinsic characteristics refer to the shape and chemical com-

position of an object. The former defines the visibility and interaction of certain

elements on the surface of the object and explains the formation of shadows and

interreflections, whereas the latter determines the spectral signature of a material,

which in turn affects the color. Generally speaking, appearance properties are con-

centrated only on what is visible, i.e. to the range of electromagnetic spectrum of

radiation confined to 400 - 700 nm. Meanwhile, material properties emerge as well

from the light-matter interaction beyond the visible range.

2.1.1 Optical Properties of Materials

Cultural Heritage objects are often made of coloring materials, namely dyes or

pigments [27]. When light collides with a colored material, it can get absorbed,

scattered or transmitted [27]. The higher the absorption of a colorant, the darker it

looks, as there remains less energy for the light to bounce off the surface. When

scattering occurs, the incoming light is redirected from the surface back into the

observation hemisphere. If the light passes through the material without being ab-

sorbed nor scattered, then, the layer behind that of the colorant becomes visible,

which enacts translucency and transparency effects. The optical properties mani-

fest in a wavelength-dependent way, which means that a colored material select-

ively absorbs, scatters and transmits spectral bands of a given light. By knowing

the selective absorption and scattering of a material, it is possible to compute its

spectral reflectance, a measure of how much light is reflected off the surface of the

material. The mathematical expression of reflectance as a function of absorption

and scattering is given by the Kubelka-Munk model [28], detailed in an upcoming

subsection. Fig. 2.1 depicts the absorption, scattering and reflectance of a vermil-

ion pigment, as wavelength-dependent functions.
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Figure 2.1: Absorption, scattering and reflectance factors of a vermilion pigment. Data

from P8, where scattering and absorption were computed from the known measured spec-

tral reflectance, using Kubelka-Munk equations.
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2.1.2 Fluorescence

In addition to reflectance, when excited by short-wavelength light, fluorescent ma-

terials re-emit the light at a higher spectral range [29]. The difference in energy

between the excitation and emission is denominated the Stokes shift [30], after the

Irish physicist, George Stokes who first coined the term fluorescence and observed

its manifestation in various materials. The existence of the two spectra, absorption

of the stimulating radiation source and the luminescence, respectively, dictates the

bispectral nature of fluorescent materials.

Fluorescence is a time-resolved photo-luminescence phenomenon, where an ex-

cited electron returns to its lower-energy ground state by releasing its excess energy

as a photon. This electronic transition process occurs without a change in the elec-

tron spin, thus keeping the electrons in an excited state for a short period of time, of

microseconds order. Fluorescence is similar to the phosphorescence phenomenon,

that is also based on energy transfer, but the latter triggers a change of the electron

spin and so has a longer lifetime and a latency in light re-emission [31]. In other

words, fluorescence happens as long as the activation light source is turned on,

and the re-emission happens almost instantly, at an order of nanoseconds up to mi-

croseconds [27]. Conversely, phosphorescence is delayed more than microsecond

levels, and lingers even after the stimulating light source is turned off.

The bispectral nature of fluorescent materials can be represented graphically in

three ways. The first is to plot the spectral distributions of reflectance, excitation

and emission as a function of wavelength. The second method is to translate each

optical property as a dimension in a 3D plot, the so-called Donaldson matrix [32],

where the luminescence is perceived as a bump. This representation is the one that

best depicts the fact that fluorescence is a low-intensity signal, when compared

with the reflectance. The third method, entitled reradiation matrix, is the one com-

monly used in the field of computer graphics. In the reradiation matrix, the x-axis

represents the wavelengths of incident lights, and the y-axis the wavelengths of the

response recorded from the material. Thus, the values on the diagonal, where the

incident wavelength equals the detecting wavelength, denote the reflectance. The

off-diagonal values in the bottom left corner of the matrix delineate the emission.

Then, the off-diagonal values in the top right corner are zero, because there can

be no emission for incident light’s wavelength longer than the sensing wavelength.

For this reason, the reradiation matrix is a sparse array. Fig. 2.2 illustrates the three

graphical representation methods for a green daylight fluorescent material.
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Figure 2.2: Three representations of a green daylight fluorescent material: spectral plot,

Donaldson matrix, reradiation matrix.

Fluorescent materials for Cultural Heritage

In CH, fluorescent materials are very important from two perspectives: conser-

vation and visual effects. Firstly, several colorants, binding media and varnish

types consist of chemical compounds that have a UV-induced fluorescence. This

can be helpful for the detection of fading red lakes [33], the formation of metallic

soaps [34] or for the segmentation of old varnish from new varnish that typically

indicates interventions or retouchings [35]. Secondly, ever since the 1960s, when

daylight fluorescent pigments were made commercially available, they became

widespread in the art scene, and new tools for artists such as Andy Warhol, Frank

Stella, Herb Aach, Richard Bowman, James Rosenquist [36], Felix DeBoeck [37],

and so on and so forth. Daylight fluorescent pigments are particularly successful

in the art world because of the increased brightness and vividness, which can lead

to special visual effects. For example, in the “Irregular Polygons” paintings’ series

by Frank Stella [38], it has been discovered in a psycho-physical experiment, that

alternating stripes of fluorescent colors with stripes of conventional colors, resul-

ted in an increased perception of depth. In comparison, when only conventional

colors were displayed, the pictures were interpreted as overall flatter.

2.1.3 Kubelka-Munk Model

The Kubelka-Munk model [28] stipulates a mathematical expression (see Eq. 2.1

and 2.2) where the reflectance R(λ) of a colored specimen is a non-linear func-

tion of four variables: absorption K(λ), scattering spectrum S(λ), thickness of

the colored layer X and the reflectance factor of the background Rbg(λ), where λ
refers to the spectral dependencies of these parameters. This is the general expres-

sion, valid for translucent, as well as opaque colored colorants [31]. For the latter,

the equation can be further simplified by removing the variables that character-

ize translucent coatings (thickness and background reflectance) and by assuming

that scattering is so strong that it approaches unity. In this case, the reflectance



2.1. Appearance Representation 15

Ropaque(λ) of the colorant is orchestrated only by the ratio of absorption over

scattering, as in Eq. 2.3.

R(λ) =
1−Rbg(λ)[a(λ)− b(λ) coth(b(λ)S(λ)X)]

a−Rbg(λ) + b(λ) coth(b(λ)S(λ)X)
(2.1)

a(λ) =
K(λ)

S(λ)
+ 1, b(λ) =

√
a(λ)2 − 1 (2.2)

K

S
(λ) =

(1−Ropaque(λ))
2

2Ropaque(λ)
(2.3)

Based on the Kubelka-Munk model, Duncan [39] proposed a linear model to sim-

ulate the mixtures of pigments from the scattering and absorption coefficients. As

formulated in Eq. 2.4, the absorption of the mixture, Kmix, is a sum of the absorp-

tions of each constituent, weighted by their concentrations ci, akin to the overall

scattering coefficient of the mixture Smix.

Kmix =
∑

ciki, Smix =
∑

cisi (2.4)

Thus, the Kubelka-Munk model can be employed to solve forward tasks, such as

simulating the reflectance of colorant mixtures given their optical coefficients and

concentration values, as well as for inverse tasks, such as estimating the optical

properties of colorants and their concentrations from reflectance measurements

[40]. As a preview, in this thesis, P8 uses the Kubelka-Munk model first for the

inverse task, to recover absorption and scattering coefficients of a set of pigments.

Then, it uses the recovered coefficients and combines them with previously known

concentration maps to simulate the reflectance of a painting.

The Kubelka-Munk model works well for describing most of the colored materi-

als, but under the assumption that the material is isotropic, and so it diffuses light

equally in all directions. In addition, the Kubelka-Munk has not yet been fully

defined for fluorescent materials [31]. Nevertheless, it was used for the correc-

tion of the apparent emission spectrum in UV-induced fluorescent images (UVF)

under the opaque assumption [41, 42], which was later extended to translucent

luminescent pigments [43] and also for creating an optical model to characterize

fluorescent dental resins [44].

In particular, Verri et al. [41] point out the importance of correcting for the ap-

parent fluorescence, also known as pseudo-fluorescence [33] that happens when
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non-fluorescent components located in the proximity of fluorescent components

absorb the fluorescence of the latter. For artworks, such an interaction is often

triggered by the degraded varnishes that emit fluorescence and is absorbed by non-

luminescent pigments. Verri et al. exemplify their workflow for UVF images of

the wall paintings from the Mogao caves [45] at the UNESCO Dunhuang site. The

post-capture correction is carried out with a model based on the Kubelka-Munk

theory and adapted for fluorescent spectra, originally proposed by Ramos [46] for

the correction of chlorophyll’s fluorescence in plant leaves. As such, the paint layer

is assumed to be opaque and homogeneous and characterized by two parameters:

the absorption and scattering coefficients. Under the opaque assumption, the ra-

tio of these two coefficients, called remission function, can be measured from the

spectral reflectance. Based on the remission component, a correction factor that

eliminates the absorption of fluorescence by surrounding non-fluorescent elements

is computed. Further on, the initially captured UVF image is divided pixel-wise

by the correction factor resulting in the corrected UVF image, unaffected by the

presence of fluorescence absorbing and scattering media. By visualizing the cor-

rected fluorescent images of the Dunhuang wall paintings, the interpretability of

the materials changed with respect to the uncorrected UVF images: some areas that

appeared luminescent initially lost the fluorescent effect after correction, meaning

that they were apparent emissions caused by the fluorescing binder. Therefore, this

type of correction for UVF images adds precision in material analysis. It is worth

mentioning that even if the authors focused on UVF images, the method can be ex-

trapolated to fluorescent images in general, excited by lights other than UV. This

correction methodology was used in a study on the emissiveness of carmine lake

paints in the presence of lead white [42] that acts as a scattering agent, increasing

the fluorescing effect of the former.

Even though Verri et al. [41] and Clementi et al. [42] found the Kubelka-Munk

model suitable and leading to sufficiently accurate interpretations, both for a mockup

test target and for a painting by Vasari, the authors concluded that the self-absorption

model can not fully describe all the chemical and physical interactions between

fluorophores and other materials in a painting. Moreover, they stress the im-

portance of validating the corrected fluorescence information with measurements

provided by other analytical techniques.

2.1.4 (Bispectral) Bidirectional Reflectance Distribution Function

The optical properties presented so far are presented under the isotropic assump-

tion, meaning that they are not affected when the illumination angle shifts with

respect to the viewing angle. However, most real-world materials are not isotropic

and their appearance change with the illumination-viewing configuration. This

gonio-dependent behaviour is described by the Bidirectional Reflectance Distribu-
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tion Function (BRDF) [26], first formalized by [47], where the spectral reflectance

of a surface is described as a function of the illumination and viewing directions

with respect to the normal (the angle perpendicular to the tangent of a surface):

fr(wo, wi, λ) =
dLo(wo, λ)

dE(λ)
=

dLo(wo, λ)

Li(wi, λ) cos θidwi
[sr−1] (2.5)

In Eq. 2.5, wo and wi represent the outgoing and incident light vectors with respect

to the surface normal, dLo(wo, λ) is the differential of light radiance exiting in the

viewing direction, and dE(λ) is the irradiance received by the surface from the

incoming light. The latter term can be replaced by the product of the incident light

radiance, Li(wi, λ) with the cosine of the angle θi between the incident light and

the surface normal, and the differential of the incident light direction vector.

The simplest instance of a BRDF is given by the Lambertian model [48], which

characterizes isotropic materials, that reflect light equally in all directions, and

have constant appearance regardless of the angle of observation. Even though

Lambertian materials are ideal, they are a good approximation for flat and matte

real-world material. The Spectralon target typically used for white balancing is an

example of what is considered to be a perfect diffuser. In the Lambertian case, by

cancelling out the angular terms, Eq. 2.5 becomes:

fr(λ) =
ρ(λ)

π
[sr−1] (2.6)

where ρ(λ) is the albedo, i.e. the ratio of diffusely reflected to incident electro-

magnetic radiation.

The definition in Eq. 2.5 is valid for opaque and reflective surfaces, and does not

account for transmissive and fluorescent materials. For fluorescent materials, the

bispectral factor needs to be incorporated. Hullin et al. [49] introduced the math-

ematical expression for the bispectral BRDF (BBRDF), by considering the incid-

ent and outgoing wavelengths, λi, and λo:

fr(wo, wi, λo, λi) =
dL2

o(wo, λo)

Li(wi, λi) cos θidwidλi
[sr−1·nm−1] (2.7)

Although fluorescent materials are considered to be isotropic [50], Hulin et al.

[49] discovered a weak directionality. Hence, the expression in Eq. 2.7 is a gen-

eralization that makes no assumption on the directionality of a given fluorescent

object. This is suitable for the characterization of multi-layered objects, where for

instance, the fluorescent layer is covered by a specular coating.
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In P3 of this dissertation, synthetic images of fluorescent objects are created with

a spectral renderer given a bispectral Lambertian definition of the fluorescent ma-

terial.

2.2 Data Capture
A basic setup for an appearance capture system includes an acquisition scene, a

light source, a sensing device that can detect the signal given by the interaction

of the scene with the light, and a geometric arrangement that positions the light

relative to the scene.

2.2.1 Spectroscopy, Colorimetry, Fluorimetry

Spectroscopy is a metrological technique, where the purpose is to measure the in-

teraction between electromagnetic radiation and the atoms and molecules in a ma-

terial, on a per-wavelength basis. This thesis focuses mainly on the spectroscopic

techniques that measure the transfer of energy between a sample and photons re-

leased by ultraviolet, visible and near-infrared light, with emission in the 380 -

1000 nm range of the electromagnetic spectrum. In its basic configuration, a spec-

troscopic technique collects point measurements, without considering the spatial

dimension. To measure the spectral curve, a dispersive element is needed, that

splits either the light or the detected response into narrow-band signals. There are

two types of dispersive elements [31, 29]: the prism and the diffraction grating.

Typically, in a spectroscopic measurement, a broad-band polychromatic illumin-

ation is needed. Then, the sensor typically consists of a single photodiode or an

array of photodiodes, that converts light photons to electrons. Optical instruments

that measure single point spectral reflectance carry the following names: spectro-

photometers, spectroreflectometers or reflectometers [31].

Based on the spectral reflectance of a material, it is possible to reach its colorimet-

ric property, by mathematically integrating with the spectral power distribution of

the light source and the color matching function of a standard observer, as indic-

ated by CIE. This way, the tristimulus values X, Y, Z are obtained computation-

ally. There are instruments that can substitute the mathematical integration with

an optical integration, the so-called colorimeters [29]. By design, a traditional col-

orimeter contains an R, G, B color filter array, attached to the photodetector. The

transformation to X, Y, Z implies simple linear equations, with weighting constants

for the R, G, B responses.

Fluorimeters are the instruments that measure the fluorescence. The most accur-

ate design of a fluorimeter is the one with a double monochromator configuration,

initially proposed by [32], because it captures the bispectral matrix that fully de-

scribes the excitation, emission and reflectance spectra. In a double monochro-
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mator setup, there are two dispersive components: one at the light end to record

excitation, the other at the detector’s end to record emission. An abridged method

to measure fluorescence includes one monochromator, that must be placed between

the detector and the sample [31, 29]. In this setting, the output of the measurement

is the total radiance factor, which represents the sum of the fluorescent and reflect-

ance radiance factors, intertwined. The recovery of each factor individually can be

performed mathematically under given assumptions and prior knowledge about the

material [51]. Tristimulus values of fluorescence can be computed with the same

mathematical integration as for conventional colors, where the total radiance factor

(that encompasses the fluorescent radiance factor) substitutes the plain reflectance

factor [31].

CIE recommends three standard light-sample geometries for measuring spectral

reflectance [29]: 1) bidirectional geometry suitable for the capture of diffuse re-

flectance, noted as 0◦/45◦ or 45◦/0◦, where light and viewing can interchange the

positions based on Helmholtz reciprocity principle; 2) integrating sphere geometry

with diffuse illumination and perpendicular or near-normal viewing angle, d/0◦ or

d/8◦; 3) variable angle geometry, where the incidence-viewing angles have a more

dense distribution, which is especially useful for BRDF measurement. These geo-

metries cover all types of materials. However, in the case of fluorescence, the

integrating sphere design is not recommended, because the color of the fluores-

cent sample might be influenced by the color of the perfect white diffuser of the

integrating sphere [29].

2.2.2 Microfading

Microfading is a spectrophotometric technique that measures the light-induced de-

gradation of colored materials, and is commonly used for non-destructive pigment

aging analysis in CH applications [52]. Microfading is a variant of accelerated

aging techniques, that casts a light with a strong flux over a tiny area (< 1 mm2) of a

sample and measures the spectral curve of the area after a defined unit of time over

a limited exposure in order to assess the lightfastness of the sample. Because of

the small area of measurement, microfading is considered to be a non-destructive

technique and thus suitable for the evaluation of real artworks. Nonetheless, the

technique is arguably regarded as micro-destructive by others [53].

In a microfading experiment, the optical instrument is called a microfadeometer.

The first proposed microfadeometer [52] consists of a spectrophotometer with a

photodiode array, a xenon lamp as light source, arranged in a bidirectional setup

(0◦/45◦). Following the work of [52] and a similar configuration, with variation in

light sources, the next microfadeometers were proposed towards the improvement

of the system’s portability [54, 55] or that of measurements’ accuracy and quality
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[56]. As a result of the increased portability, microfading spectrometry has recently

appeared in numerous CH lightfastness case studies for rock art [57], paintings [58,

59], natural history collections [60], feathers in ornithological and ethnographic

artifacts [61] and tapestries [62].

In most applications, microfading was used to to establish the light sensitivity of

museum materials in order to define and improve display policies. Microfading

also proved to be insightful for a secondary, less common use-case, that of pig-

ment identification based on its un-aged and aged spectral reflectance curves, as

was the case with realgar in the study of Kogou et al. [63]. When justifying suitable

illumination conditions for museum display with the results of accelerated aging

experiments it is often taken for granted that the reciprocity principle of light ex-

posure is obeyed by all museum materials. The reciprocity principle implies that

the light-induced aging of a material is proportional to the total amount of energy

that the material receives, where the contributing parameters, i.e. time or light in-

tensity can switch magnitude [54, 64]. In other words, long exposure of a sample

at low intensity illumination is equivalent to short exposure at high intensity light.

Hence, if the reciprocity principle holds, then the microfading procedure, usually

performed at higher light intensity, can be used to estimate the degradation of an

object for the dimmer light levels of the museum exhibition conditions. However,

Liang et al. [54] found that the reciprocity principle breaks down for orpiment and

Prussian blue pigments, when measured with a microfadeometer that operates at

levels of light 4 times higher than museum exhibition levels. Similarly, del Hoyo-

Melendez and Mecklenburg [64] pointed out that in general, unstable colorants

are more likely to deviate from the reciprocity principle at high intensity illumin-

ation. Notwithstanding these limitations, microfading is still able to provide an

approximation of the evolution of a material’s degradation helpful for conserva-

tion policies [54].

Microfading data collection is incorporated in P5, P6 and P7 of this thesis.

2.2.3 Color, Multispectral and Hyperspectral Imaging

So far, 1D point capture techniques were discussed that ignore the 2D spatial di-

mension beyond the instrument’s aperture size. In this subsection, the focus is

shifted to imaging methods, where color and reflectance are measured for the en-

tire X-Y spatial extent of a sample. If we consider a pixel to be the spatial sub-

division of an image [65], then imaging systems record a signal on a pixel basis.

The output of an imaging system is defined by its sensor and any other optical

component coupled with the sensor. There are mainly two digital sensors most

commonly used for imaging: charge-coupled device (CCD) and complementary

metal-oxide semiconductor (CMOS) [66]. Both of them are built as arrays of pho-
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todiodes. The main difference in the two technologies lies in the way photons are

stored and then, read out to be converted to electrons. For a CCD, the reading

is grouped for a register, i.e. a horizontal line of photons at a time, while CMOS

reads every pixel individually. Thus, if the sensor is monochromatic, and no filter

is attached, the output is a single-channel image, where only gray levels are recor-

ded. To capture color images, typically a Bayer filter array [67] is attached in front

of a monochromatic sensor to capture the trichromatic R, G, B values. Then, for

multi-channel images beyond R, G, B, the Bayer filter array can be substituted by a

spectral filter array in the so-called snapshot multispectral cameras [68] or by a fil-

ter apparatus, with motorized wheel configuration [69] and Liquid Crystal Tunable

Filters (LCTF) [70]. The spectral filters are selective for narrow bands, centered

around a wavelength of interest. The above-mentioned techniques refer to passive

setups where the number of channels is modulated at the detector end. The altern-

ative is to assemble an active system of lights with various spectral distributions,

that multiplex the signal received by the monochromatic sensor [71, 72].

As far as hyperspectral imaging is concerned, for every pixel, a full spectral curve

is collected. For this reason, hyperspectral imaging is also known as reflectance

imaging spectroscopy (RIS) [73]. Typically, a hyperspectral camera includes a

dispersive element, like a prism or grating. Nonetheless, there are hyperspectral

cameras that, similar to the multispectral systems obtain the spectral information

by filtering either the light or the reflected signal before reaching the sensor. Ac-

cording to the classification in [65], the available hyperspectral imaging systems

fall in the following categories: point-based scan (whisker-broom configuration),

line scan (push-broom configuration), spatio-spectral scan, plane scan (also known

as staring), and snapshot camera. A whisker-broom scanner collects one point at a

time, while the sample is moved in an X-Y grid to map the spatial dimension. The

pushbroom scanner senses an array (line) of pixels of the surface at a time and then

either the system or the sample is moved, to gather these lines sequentially over

the surface of the sample [65]. An example of pushbroom hyperspectral imaging

system is HySpex VNIR-1800 camera [74], used in P4, P7, P8 of this thesis. The

spatio-spectral scanner captures wavelength-coded images at different times, and

then superimposes them to build a full spectral representation for each pixel in the

spatial grid (i.e. a spectral cube) [75, 76]. In the plane scan or staring devices,

a 2D image is collected for a single wavelength individually. This is similar to

multispectral imaging setups. Likewise, the snapshot hyperspectral systems are

similar to the snapshot multispectral cameras in that they use a spectral filter array.

However, if the system is called hyperspectral, this presumes a higher resolution

in the spectral dimension than the multispectral case, although the precise number

of recorded spectral bands that makes the distinction between the two systems is

yet an unsettled question [77, 78].
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Multispectral and hyperspectral imaging are more informative to the material prop-

erties than color imaging. For this reason, there have been numerous applications

of multispectral [70, 79, 80, 72] and hyperspectral imaging for CH analysis, in

particular for pigment mapping [81, 82] and identification [83], in paintings and

manuscripts [84], for ink segmentation in historical documents [85], and for the di-

gitization of film and stained glass [86, 87]. Sometimes, in the conservation com-

munity, multispectral is used interchangeably with multimodal imaging, where the

photographs of different imaging techniques with probably different spatial resol-

utions (e.g. color image, X-Ray, infrared) are fused to characterize a CH object

at widely separated parts of the electromagnetic spectrum [77]. However, in this

thesis, multispectral refers to a limited number of images, captured with the same

sensor, along the visible range and its adjacent parts in the ultraviolet and near-

infrared.

Fluorescence Imaging

In fluorescence imaging applications, a filter system to be mounted in front of the

camera’s objective is typically necessary to separate the wavelengths of incidence

from those of detection [51]. The quality of the filters directly affects the quality of

the images in the fluorescence state. In [88], Pereira et al. compare classical dyed

UV blocking filters, that absorb unwanted wavelengths, with interference (also

known as dichroic) filters, made of multiple thin layers of materials with different

refractive indices, and that reflect rather than absorb unwanted wavelengths of the

incident radiation. The former group of filters are prone to exhibit internal fluor-

escence, casting an unwanted secondary source of light to the scene that tampers

with the accuracy of the measurements, while the latter group removes UV radi-

ation more efficiently at the cost of a high angular dependency that needs to be

optimized for. Albeit the need to be placed perpendicularly to the optical axis and

the sub-optimal performance when coupled with a wide angle lens, the interference

filters produce UV fluorescent images of a higher quality than dyed filters, when

subjectively assessed by art UV photographers [88]. The main quality criteria

considered by the experts was the lack of UV radiation present in the fluorescence

images. Apart from the comparison between the filters, the authors in [88] also

include a short list of additional recommendations to ensure high quality fluores-

cence images. In a nutshell, they suggest that using interference filters alone is not

enough. Other filters might be attached as well to cut off undesired light leakage

in the red part (cyan filter) and the blue part (yellow filter) of the electromagnetic

spectrum. Moreover, the need of white balance is emphasized, where daylight

color temperature is recommended, in order to align the appearance of the images

with what a human observer perceives when seeing the fluorescent scene.
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2.2.4 Multi-light Image Collection

A multi-light image collection (MLIC) is captured for lights with different angular

distribution, while the object and the imaging device remain static. To acquire

as much as possible of the light-object interplay, the light distribution should be

dense, and sample the hemisphere. This way, a MLIC can be considered to capture

a 2D slice of the BRDF [89, 90], for a single viewing angle. A MLIC which follows

a hemisphere-like distribution of light is often called Reflectance Transformation

Imaging (RTI), especially in CH.

Because the angular distribution of the light is an essential component, most RTI

systems proposed in the literature compete based on the novelty of the design and

the engineering intelligence of light arrangements. Substantially, there are three

main RTI setups: free-form, where the light is moved freely so as to recreate a

virtual hemisphere [91]; dome, where the lights are fixed and embedded inside a

dome-like construction [19, 92]; robotic where the light source is controlled mech-

anically by a robotic arm [93, 94]. The free-form setup is flexible and practical for

on-site and offline measurements, but lacks perfect reproducibility and repeatab-

ility. For this reason, it is not suitable for CH monitoring applications. On the

contrary, the dome setup is robust thanks to the stationarity of the fixed lights.

Nevertheless, dome setups are tailor-made for a certain object size, and so the lim-

itation here is the extent of the object that can be captured. Lastly, the robotic arm

setups are superior to the other two because they are very customizable, allowing

the acquisition of objects of various dimensions (still within a range defined by the

reach of the robotic arm), while maintaining the rest of the settings (light position,

distance light-object) repeatable. However, in the CH context, the robotic RTI sys-

tems are seen as posing a bigger risk on the object, because if a hardware error

were to happen, collisions might occur.

Several of the recently proposed RTI devices are multispectral in an active con-

figuration (i.e. the lights are filtered or narrow-band LEDs [92, 95], similar to the

design proposed in P1 of this thesis), while other use polychromatic illumination

in addition to a snapshot spectral filter array camera [93]. However, there is a

scarcity of hyperspectral RTI setups. To the best of the author’s knowledge, there

is only one work in the literature that proposed a fully hyperspectral RTI setup,

within a project dedicated to the study of palimpsests and manuscripts [96]. In the

white paper report of this project [97], a hyperspectral MLIC acquisition system is

compared to a computational method to merge monochromatic MLIC with a single

hyperspectral capture. The computational method assumes that spectral material

properties are isotropic, so they do not change with light direction. Hence, the vari-

ation in luminance from the monochromatic MLIC is merged with the chromatic

channel derived from the single hyperspectral capture, to generate a color image
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at every light position captured in the former, by operating in the CIE L*a*b* or

YCbCr color spaces. For the examined manuscripts, the results showed that the

computational approach performed better than the full hyperspectral MLIC acquis-

ition, where at each distinct light position, a hyperspectral image was shot.

Even with limited spectral resolution, color and multispectral MLIC proved useful

in numerous investigations of CH surfaces. To name a few applications: surface

inspection of archaeological findings [98], interactive visualization of numismatics

[99], enhancement of engravings in rock art [100, 101] and inscriptions in cunei-

form tablets [102], material study in historical documents and manuscripts, iden-

tification of retouchings in a gilded icon [103], [104], crack detection in frescoes

[19] and paintings [105].

MLIC for fluorescent materials

Fluorescent materials, due to the Stokes shift and bispectral nature, require addi-

tional filtering and in a MLIC framework, the level of complexity is thus increased.

There are few attempts that exploit the angularity of the light to visualize the relief

of the fluorescent signal [106]. More precisely, Kotoula et al. [106] show the be-

nefits of capturing reflectance transformation imaging in the UV-reflected (UVR)

and UV-fluorescent (UVF) ranges for visualizing traces of conservation on two real

ceramic vases from a museum. The filters proposed in the setup of [106] are off-

the-shelf solutions for UV imaging: for the UVR, the UV-transmitter (Hoya 330

[107]) and, because the DSLR camera has the IR-filer cut off, IR barrier (Schott

[108] BG 38); for the UVF, an UV and IR barrier filters were used. In the UVF RTI

mode, traces of conservation, like previous repair of the ceramics become visible,

because common adhesives become luminescent when lit by the UV light, reveal-

ing details otherwise obscure in the visible light. Actually, the authors in [106]

argue that UVF RTI is basically an efficient way of recording a good practice of

conservators when they visually inspect an artifact with UV light: they position the

light around the artifact, at different raking lights and statically inspect the change

in the appearance of the object at each distinct position of the light. In this way,

UVF RTI becomes a way of documenting this process of dynamic inspection by

stacking together all the static frames at each light direction into a single relight-

able file. In contrast with UVF, the UVR mode highlights the subtle variations in

the surface, such as scratches and smudges, as well as remains of glaze and salt

encrustations. Even though such variations might be revealed as well in the vis-

ibile RTI, the contrast is enhanced under UV reflected light and the variations gain

clarity. This work [106] exposes effectively how the combined forces of RTI and

UV imaging can export useful visualizations for the analysis of CH objects.

Under this topic, P1 in this thesis proposes a dome configuration with multispectral
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lights for the MLIC capture of opaque reflective CH objects, and this setup is

extended for fluorescent objects in P2.

2.3 Multivariate Analysis
A tensor is a multidimensional or multi-way array, with more than two dimensions.

Many of the capture techniques reviewed in the previous section and used in this

thesis have a tensor output: a collection of color or multispectral images with a

discrete sampling in the color and electromagnetic spectrum, respectively; a hy-

perspectral image that characterizes every pixel with a spectral signature; a MLIC

where every pixel is described by photometric variations triggered by a change in

the incident light direction; a time-series of spectral observations gathered with a

microfadeometer. The multidimensionality of these techniques is sketched in Fig.

2.3. The main advantage of a tensor as opposed to its 1D or 2D flattened variants is

the preservation of the multidimensional structure, that hides latent representations

and high-order correlations [109]. For this reason, the tensor is a key data struc-

ture in deep learning techniques and it stands at the core of convolutional neural

networks (CNN) (see last illustration in Fig. 2.3). Mathematical operations with

tensors are carried out in the so-called multivariate or multi-linear algebra.

Hereinafter, this section elaborates on a tensor processing method, which is the

essence of P6 and P7, and then briefly describes the rationale of CNN as a mul-

tivariate method for image formation that relates to P9.

2.3.1 Tensor Decomposition

Tensor decomposition can be perceived as an exploratory analysis method, where

the purpose is to find hidden representations and higher-order correlations in mul-

tidimensional data [109]. This method was engaged successfully in visual data in-

terpretation [110], signal processing [111], and machine learning algorithms [112].

To name a few examples, Zhao et al. [113] used tensor decomposition to denoise

hyperspectral images and then, detect targets of interest for remote sensing applic-

ations, such as pines in a forest or vehicles in a naval airport. Then, Cichocki et al.

[111] illustrated how tensor decomposition is useful for predicting arm movements

from brain electrocortigram signals. As presented in the survey of Panagakis et al.

[109], tensor decomposition brings multiple improvements to deep learning ap-

proaches. One such idea of improvement is the use of tensor decomposition to

project the activation maps in a CNN to a lower dimensional space through, the

so-called tensor contraction layer. The same dimensionality reduction operation

can be inserted at the very end of a CNN, before the prediction output. In this

case, the fully connected layer becomes a tensor regression layer [109]. All these

improvements alleviate the known problem of overparametrization in neural net-
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Figure 2.3: Tensor representations: color images, multispectral image, hyperspectral

cube, MLIC, microfading measurements, feature vectors in a CNN. Here, X and Y refer

to the spatial dimensions of an image, while λ indicates the spectral dimension.

works. Furthermore, directly related to material analysis, in chemometrics, tensor

decomposition was employed to extract in an unsupervised way, the excitation

and emission spectra of fluorophores from a set of spectroscopic measurements of

yoghurt samples [114].

In the remainder of this subsection, mathematical details of a tensor decomposition

algorithm, which underpins P6 and P7, will be elaborated. In parallel, properties

of this multivariate method will be contrasted to those of matrix decomposition, in

the two-dimensional space.

Harshman [115] proposed parallel factor analysis (PARAFAC) as a method to ex-

plain multivariate data collected from user studies in psychometrics. Mathematic-

ally, PARAFAC is a tensor rank decomposition method and can be considered a

generalized expression of the bilinear principal component analysis (PCA) [116]

method [117]. In tensor decomposition methods, the input data can be explained

as a linear combination of basis factors. These factors are also called scores and

loading vectors. As opposed to PCA, the scores and loadings don’t have rotational

freedom in PARAFAC, making the fitted solutions unique. There is room for vari-

ation as far as the order and scale of the factors are concerned. However, similar to

PCA, the scale of the loading vectors is unidentifiable, i.e. not immediately relat-
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able to real units of measure [118]. Such a relation can be established as a scaling

factor with respect to a ground-truth quantitative measurement.

Let us consider a 3D tensor, XM ·K·N , where M , K and N represent the cardinality

of the three dimensions. Then, using three-way decomposition, we can model this

tensor as the outer product of 3 factor matrices, A, B, C:

X̂M ·K·N = AM ·F ⊗BK·F ⊗ CN ·F , (2.8)

where F is the user-defined number of components to split the tensor into. Using

the Kathri-Rao product �, Eq. 2.8 can be rewritten in the following flattened form:

X̂M ·KN = AM ·F × (CN ·F �BK·F )T , (2.9)

where × denotes the conventional matrix multiplication. The flattened array can

then be reshaped to match the original size of the tensor.

A,B,C factors are identified with the alternating least squares algorithm [119]

where the squared residuals between the actual data and the model are minimized

in an iterative fashion. If E is the tensor corresponding to the residuals, defined by

EM ·K·N = X − X̂ , then the loss function is min
A,B,C

E2. Alternating least squares

algorithm implies that the factors A,B,C will be conditionally estimated on each

other. While numerically there is no difference between scores and loadings, it

is common practice to consider that the first factor, A refers to the scores of the

model and B and C to the loadings.

Finding the right number of components F in multi-way decomposition is not

straightforward. Unlike the bilinear case, where the fit for more components in-

cludes the results of a fit with lower component, in the multi-way case, the solu-

tions will be different for a different number of components. Typically, if no previ-

ous knowledge is known about the chemical content of the data, then the number

of components is tested on an empirical basis. Thus, models are fitted for 1 com-

ponent, then 2, and so on and so forth, until the resulting signals become very

noisy and start to lose chemical significance. Moreover, statistical analysis of the

residuals is used to choose between the different models.

This method is employed for the analysis of the microfading data towards pigment

unmixing and spatio-temporal simulation in P6 and P7 of this thesis. In this con-

text, the input tensor is given by the following three dimensions: samples x spectra
x temporal change.

2.3.2 Convolutional Neural Networks

A CNN is a neural network, i.e. a biologically-inspired computational model that

follows principles of the neural activity in the brain, that uses convolutions or
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spatial filtering to extract features from the input data [66]. A convolutional layer

is a fundamental element in the architecture of a CNN, and it is basically a tensor.

A CNN is a data-driven model that learns patterns in the data [66]. Typically, a

CNN is designed as a feedforward neural network, where the mappings follow a

one-way direction from the multidimensional input to the one-dimensional output,

without recurrent connections from output to input in a cyclic pattern. Generally,

CNN architecture consists of sequential layers, where a convolutional layer is fol-

lowed by downsampling, non-linear transformation, and fully connected layers.

The convolutional layer is where the learning of the latent feature space occurs,

by pixel-wise multiplication of the input image with a kernel or sliding window.

There are hyperparameters that are essential in the design of the filtering process:

the kernel size, the stride (steps of iteration over the pixels), the padding (addition

of empty values to reduce the border artifacts) and the depth (number of features

to be computed). The weights of the model that maps the input-output correspond-

ence are updated via backpropagation after each forward pass, based on a cost/loss

function that is supposed to minimize the estimated output from the ground-truth

input. The optimization is typically done with a gradient descent method.

The specific design of a CNN architecture depends on the tasks. For example, for

the image classification task, only an encoder module is inserted before the fully

connected one-dimensional representation, while the image generation task has as

well a decoder module, which is made of deconvolutional layers that are undoing

the convolution process.

There are two main CNN architectures with the scope of image formation: generat-

ive adversarial network (GAN) [120] and variational autoencoder (VAE) [121]. In

a GAN, two neural networks, a generator and a discriminator, are trained in an ad-

versarial setting inspired from game theory, where the purpose is for the generator

to improve based on the feedback of the discriminator, and create fake images that

look realistic. VAE is a probabilistic generative model, with an encoder-decoder

architecture.

2.4 Appearance Reconstruction
This section focuses on the background of specific appearance reconstruction tasks

addressed in this dissertation: appearance properties and relighting, aging simula-

tion, and image inpainting.

2.4.1 Albedo, Shape Estimation and Relighting from MLIC

As mentioned in the previous section, a MLIC can be regarded as a tensor. From

this tensor, appearance attributes, such as normal and albedo, can be extracted in
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an unsupervised way, with decomposition methods [122]. The alternative, and

more common method, is to define a model and apply regression on the MLIC to

find the appearance properties defined by the model. In this sense, a MLIC can be

formalized as a linear system of equations, where on one side we have the intensity

values and on the other side we have the polynomial based on the light direction

vector. The terms and order of the polynomial depend on the assumptions made

with respect to the surface appearance. Woodham [123] proposed the first such

polynomial model, namely the photometric stereo (PS) model, where the material

is assumed to be Lambertian and the polynomial has a first-order and is modelled

as follows:

ρnl = Ik (2.10)

where ρ represents the albedo, n the normal, l the light direction vector, I the

intensity and k the number of images taken at different illumination angles. If we

split the light direction vectors into its x, y, z components, and knowing that the

albedo is a constant that can be computed as the norm of the normal vector, Eq.

2.10 becomes:

n1klx + n2kly + n3klz = Ik (2.11)

In this system of equations, the unknowns are the components of the normal vec-

tors. Thus, there are three unknowns, and in order for the equation system to be

overdetermined and reach a unique solution, there need to be at least three in-

stances of the Eq. 2.11, so at least three images.

However, most of the real objects are not perfectly Lambertian. For these objects, a

second-order polynomial considers more complex appearance effects such as spec-

ularities, shadows or interreflections. In the context of multi-light image collec-

tions, the biquadratic polynomial was first framed in the PTM work by Malzbender

et al. [124], with the following terms:

c1kl
2
x + c2kl

2
y + c3klxly + c4klx + c5kly + c6k = Ik (2.12)

One limitation of the PTM polynomial is that, in case the analyzed object has a

subset of its surface that is perfectly Lambertian, then the regression of the bi-

quadratic polynomial in 2.12 does not directly output the normal vectors. This

limitation is accounted for by the PTM proposed by Drew et al. (PTMD) in [125]:

c1klx + c2kly + c3klz + c4kl
2
z + c5klxly + c6k = Ik (2.13)

where lz =
√

1− l2x − l2y and the normal vectors are given by the first three coef-

ficients, c1k, c2k, and c3k. Simultaneously with the straightforward recovery of the
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normal vectors for the Lambertian parts, PTMD models as well high-frequency

non-Lambertian components (c4k) and low-frequency non-Lambertian compon-

ents (c5k). However, the distinction between the nature of these components (high-

lights, interreflections, shadows) is not trivial. Several solvers for the polynomial

models were proposed in the literature, that rely mostly on multivariate regression

techniques, and differ based on their invariance to outliers (i,e. deviations from

the Lambertian assumption): least-squares regression [123], least-median squares

[125, 126], convex optimization in a low dimensional space [127], sparse Bayesian

regression [128].

These models can be fitted at the image or pixel level, depending on whether the

light positions are available globally or locally, respectively. In this thesis, P2
presents a comparison of the performance of per-pixel and per-image fitting PS

and PTMD models for the normal recovery of reflective and fluorescent objects.

Other models were proposed for the analysis of MLIC, towards shape estimation

and relighting from unmeasured light directions: the cubic polynomial in polar

coordinates called hemispherical harmonics [129], discrete modal decomposition

[130], interpolation methods such as the radial basis function [131] and ultimately

CNNs [132, 133, 105, 134].

For a more detailed review of surface analysis techniques based on MLIC pro-

cessing, the reader can refer to the following surveys and monographs: [135, 19,

134].

2.4.2 Aging Simulation

Appearance of an object is prone to change with the passing of time, as aging oc-

curs. The pace of this alteration depends on the sensitivity of the object’s material

to aging factors, and usually has a direct impact on the visual properties of the ob-

ject. Therefore, aging simulation, the task of modelling the degradation of objects

and their constituent materials is of high importance in the field of appearance. It

can be performed in a forward (predict the future degradation) [136] or inverse

way (undo degradation and restore the past appearance) [137, 138]. The inverse

way is particularly relevant for CH objects, where aging and patina might have

already occurred, and it is of interest to restore the past appearance.

Because aging is a complex phenomenon, the majority of proposed models include

a data-driven component. Given a set of data that captures the behaviour of a

material to specific triggering factors as a function of time (i.e. a time-series), we

can apply multivariate techniques to model the degradation pattern. For example,

in the context of colorant analysis, such data can be collected with the microfading

technique, previously described. A straightforward way to obtain a model for
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the aging pattern is to apply line fitting, where the aging function is defined by

two coefficients, namely the slope and intercept of the line. With this parametric

representation, unmeasured values of the degradation curve can be retrieved. This

method was used in P6 to simulate the spectral fading rates of pigments beyond

the measured data domain.

A more elaborate processing method is to use time-series analysis that, based on a

set of values that characterize a variable temporally, can forecast the future evolu-

tion of the variable by inferring from past observations. Auto-Regressive Moving

Average Models (ARIMA) [139] are a generalized polynomial expression of time-

series models [140], suitable for stationary data, i.e. which neither has a trend, nor

seasonality. Fig. 2.4 outlines a mathematical synopsis of the ARIMA model. The

polynomial expression can be split into three components: the auto-regressive part

that refers to the past values of the time-series, the moving average part that de-

scribes the error of the model as dependent of the previous errors, and a constant

term. To define the number of polynomial terms for each component, three para-

meters or orders need to be defined: p, d, q. The priority is given to d, which is the

order of the derivative transformation enforced on the original data in case it is non-

stationary. The stationarity is typically determined through graphical examination

of the data and its rolling statistcs, or with a statistical test, such as Augmented

Dickey-Fuller [141] and Kwiatkowski-Phillips-Schmidt-Shin [142]. Afterwards,

the data undergoes the first derivative transformation d times until stationarity is

verified.

The following step is to identify the p and q orders. Systematically, this is achieved

through the analysis of the auto-correlation (ACF) and partial-autocorrelation (PACF)

graphical plots, also known as correlograms [140]. The former measures the cor-

relation between the last observation in the time-series and all the previous values,

whereas the latter measures the direct correlation between the last observation and

a specific past value, omitting intermediate correlations. Generally, p is obtained

by counting the significant lags (i.e. time steps) in PACF, and q by counting the

significant lags in the ACF. Exceptions to this thumb rule consist of specific pat-

terns described in the synopsis in Fig. 2.4. Once the three orders of the ARIMA are

established, the polynomial can be fitted with the maximum likelihood estimation

method [143]. The model in Fig. 2.4 is presented for a univariate signal, but AR-

IMA can be employed for multivariate data as well [144, 145]. In P5, univariate

ARIMA is used to predict the change of pigment samples for each color coordinate

individually, based on a set of microfading measurements.

The methods above are primarily designed for the aging simulation of one meas-

urement point at a time. Nevertheless, the overarching goal of aging simulation is

to be modelled for the entire spatial extent of an object. Thus, mapping strategies
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need to be developed to propagate the degradation rate in the 2D. In this sense,

P7 proposes a novel mapping model that combines the temporal information from

microfading with the spatial distribution from a hyperspectral image.

ARIMA (p,d,q)

AR

MA

Constant term

yt time series
εt errors expressed as a time series
α, β coefficients to be estimated based on 
maximum likelihood

p – order of the AR model
q – order of the MA model
d – order of derivative to stationarize the data

ARIMA(0,1,0) random walk model
ARIMA(0,1,1) simple exponential smoothing

Augmented Dickey-Fuller test

• NNull hypothesis: data is non-stationary
• To reject the null hypothesis:

– Significant p-value <0.05
– Test statistic lower than pre-defined critical 

values at 1%, 5%, 10% confidence intervals

AR model
signature:

MA model
signature:

• 1 significant lag in PPACF
• More significant lags, slowly declining in 

ACF

• 1 significant lag in AACF
• More significant lags, slowly declining in 

PACF

Figure 2.4: A synopsis of the ARIMA time-series model.

2.4.3 Image Inpainting

In the previous subsection, the examples of aging simulation approaches relied

on a dataset that showed a temporal evolution of a material. However, aging can

reach dramatic levels to the point that the information of the original appearance is

completely lost. In cases of complete loss, appearance restoration becomes more

challenging, because there is typically no unique solution to infill the missing in-

formation, so the problem can be poorly constrained.

In computer vision, image inpainting is the task of recovering missing informa-

tion in an image by infilling the gap with the original content, preferably without

any noticeable change in appearance [146]. Image inpainting is a particular case

of image restoration, together with denoising, super-resolution and colorization.

Although image inpainting was successfully applied for the virtual restoration of

works of art, the problem of retouching in CH is older than in computer vision,

and is surrounded by a body of theories and practices, mainly because it dealt

primarily with the need for physical restoration and conservation. Only recently,

in the last 20-30 years, with the increasing digitizations and the progress of digital

image restoration techniques, virtual inpainting gained attention in the eyes of art

conservators and restorers.

In the remainder of this subsection, concepts related to the theory of art restoration

created exclusively for CH will be described. Afterwards, two paradigms of im-
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age inpainting will be presented as approaches to physical and digital restoration.

Then, case studies of digital image inpainting techniques applied on CH are briefly

reviewed.

Theory of Art Restoration

Cesare Brandi, the author of the Theory of Restoration [147], claims that “restor-
ation should aim to re-establish the potential oneness of the work of art, as long
as this is possible without committing artistic or historical forgery, and without
erasing every trace of the passage through time of the work of art” (quote taken

from the English translation [148]). The concept of oneness is inspired from the

Gestalt philosophy of perception [66], where the aesthetic unity overshadows the

sum of the parts. In Brandi’s opinion, a lacuna, i.e. an area of loss in an artwork,

is a disruption in the aesthetic interpretation of an artwork because it protrudes as

a silhouette that detaches itself from the rest of the artwork that gets pulled from

the focal plane to the background. Essentially, a lacuna interferes with the aes-

thetic appreciation of an artwork. Therefore, the process of restoration becomes

a process of reintegration of the loss within the artwork, in order to preserve the

“oneness”. Nonetheless, Brandi raises the attention to the fact that such reintegra-

tion “should never be based on sheer imagination”. In addition, he recommends

that any integration should remain discernible, when examining the work of art

from a close distance and that the original materials should be replaced by volatile

substitutes (for example, watercolors in paintings [149]).

Although Brandi’s principles are contextualized to the physical restoration of an

artwork, where there is less freedom of intervention, some if not all of these prin-

ciples can be transferred to the digital restorations. In this sense, digital restora-

tions can also simulate discernible reintegration techniques and take into account

the remarks regarding the retouching material and the Gestalt notions towards aes-

thetic unity. At the same time, digital methods for inpainting should be allowed

to be based on “sheer imagination” or “analogy”[148], as long as it clearly and

openly remains a mere hypothesis, not a certainty, and is backed by a strong sci-

entific rationale (such as deep learning methods).

Discernible Inpainting

Inspired from Brandi’s theory of restoration, four main techniques for discernible

reintegration were proposed [150]: 1) neutral retouching where the missing area

is infilled with a uniform, contiguous color; 2) tratteggio or rigatini, where tiny

dots or parallel vertical lines of (not necessarily primary) colors similar in hue and

chromaticity to the surrounding are drawn in a hatching pattern; 3) selezione cro-
matica or chromatic selection, a regional variant of tratteggio proposed by Baldini
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[151], where brushstrokes of primary colors are superimposed, in a direction that

follows the surrounding structure in the integral part of the artwork (as opposed to

parallel and vertical in trattegio) [152]; 4) astrazione cromatica or chromatic ab-

straction is similar to chromatic selection, albeit the targeted result color is neutral

in tone, approaching an average of the color surrounding the lacuna.

Neutral retouching is not highly recommended [153] as it is considered to con-

taminate the overall chromatic appearance of the painting, as justified by the sim-

ultaneous contrast effect. This results in a retouching that is more intrusive than

recessive [148]. Chromatic abstraction is preferred to tratteggio and chromatic se-

lection when the area of loss is too large [150] and it is difficult to assign the wide

palette of encircling colors. Apart from the neutral reintegration, all the discern-

ible retouching techniques rely on the spatial mixing of the individual brushtrokes

when viewed from a distance, as showcased in Fig. 2.5. This is similar to the

Pointilist color theories behind the Impressionistic art style.

Cappellini et al. [154] engineered a computational tool, ArtShop, that implements

the hatching discernible retouching techniques with the help of digital image pro-

cessing techniques. The coveted functionality of this software was to guide restor-

ers in the process of physical restoration of a painting or fresco by allowing them

to first practice in a digital environment. In the same spirit, Grementieri et al. [155]

addressed the neutral tone reintegration of lacunae in frescoes with a digital im-

age approach. More precisely, the color to be infilled is computed mathematically

by minimizing the perceived local contrast between the lacuna and the surround-

ing regions. These two works stand as proof that there is interest in adopting the

traditional theory of restoration principles in digital image inpainting.

Fig. 2.6 illustrates a chronological series of sequential restorations applied on the

wall painting "The Legend of the True Cross" created by the artist Piero della

Francesca, throughout the 19th and 20th centuries. At the same time, this series

of restorations allows a comparative assessment of the result obtained with three

reintegration techniques: rigatini, neutral and chromatic abstraction.

Mimetic Inpainting

In physical mimetic restoration of CH, the goal is to imitate the original content

of the loss, in a seamless reintegration with the rest of the painting. Although

visually the practice of imitation seems to break the principles of Brandi’s theory

of restoration, this is compensated from a material perspective, where water-based,

modern pigments are used, such as watercolors or gouache, that can be easily

reversed, and are different from the historical, original pigments.

When imitative restoration is desired, one of the encountered challenges is given by
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Figure 2.5: Discernible retouching (impressionistic hatching) examples at Kretzulescu

church, Bucharest (external wall, front entrance), visualized from different distances. The

inpainted areas are meant to make the lacunae look less disruptive from far away, as spatial

mixing occurs. At the same time, from up-close, every line in the hatching is supposed to

be distinguishable.

metamerism, i.e. when a pair of two spectrally distinct materials match colorimet-

rically under a given illuminant or for a given observer, but lose their resemblance

when one of these two conditions change. In the digital image inpainting liter-

ature, the are several approaches dedicated solely to the problem of metamerism

[156, 157, 158]. Their purpose is to help art conservators and restorers to digitally

simulate paint mixtures for replacing a loss and to pick pigments that minimize

metamerism. Staniforth [156] compares reflectance curves for a set of blue pig-

ments and, by considering the overlap between their spectrally selective feature

and the spectral power distribution of common light sources, recommends the best

substitutes for a given condition. Berns et al. [157] introduce an instrumental-

based color-matching software for selecting optimal mixtures of paints, by running

multiple linear regression in a database of pigments characterized by the absorp-

tion over scattering ratio. The pigment mixing is performed using Kubelka-Munk

theory. The method in [157] is improved in terms of computational efficiency

and speed by a subsequent work [158], where the possible substitution palette is

constrained to a subset of only ten paints.



36 Fundamentals

Figure 2.6: Examples of three different discernible restoration techniques, applied on

Piero della Francesca’s wall painting cycle "The Legend of the True Cross", in the church

St. Francis, Arrezzo. Left: rigatini or impressionistic hatching with small brushstrokes.

Middle: neutral retouching. Right: chromatic abstraction. Image courtesy: [152].

Usually, metamerism is disregarded in those general digital image inpainting ap-

plications, where the purpose is not specifically to guide physical restoration. Non-

etheless, there is an impressive corpus of works on image inpainting in the com-

puter vision field, and most of them can be applied, with small adjustments, for

the digital retouching of works of art. Roughly, the image inpainting algorithms

can be divided into three categories [159]: geometry-based, patch-based, and

learning-based. Geometry-based inpainting [160] uses partial differential equa-

tions and total variation to extrapolate the information from the undamaged part to

the missing area. Patch-based techniques exploit texture repetition and similarity

[161, 162] to hallucinate the lost content based on a defined optimization function.

Learning-based methods refer to the recent generative approaches to image syn-

thesis, such as GAN and VAE [163]. Typically, in CH, because of data scarcity,

these methods are currently pre-trained on large datasets of natural images, and

then finetuned to smaller datasets of works of art [164].

In this dissertation, P9 proposes a novel learning-based method with a GAN archi-

tecture for the digital retouching of wall paintings. The proposed method attempts

to imitate the artistic process, “lines first, color palette after, color tones at last” by

ensuring the edge continuity and color consistency in the infilled region.



Chapter 3

Summary of Articles

Veni din întuneric spre mine el,
poetul,
Poetul de spaimă ratat.
Era foarte frumos. Ca la razele
röntgen
I se vedea în trup poezia.
Poezia nescrisă de frică.

Ana Blandiana

He approached me from the
darkness. Him, the poet.
The lost, frightened poet.
He was very beautiful. Just like
X-rays,
You could see the poetry inside his
body.
The poetry unwritten for fear.

English translation by Irina Ciortan

In this chapter, first a general overview of the articles that support this thesis is

presented. The intersection between the topics addressed in the articles is intro-

duced, and organized according to data capture methods and models used for ana-

lyses. Then, the CH objects that serve as datasets and case studies for the articles

37
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are briefly presented. Finally, each article included in this thesis is summarized,

one by one.

3.1 Overview
There are several ways in which the papers in this thesis connect. One of them

is represented by the data capture methods. As can be seen in Fig. 3.1, there are

three groups: color imaging, multispectral and multi-light imaging, and spectro-

metry. While P9 uses a dataset of RGB images of the Dunhuang wall paintings

[165], the analysis in P5 is carried out in the color domain as well. However, the

CIE L*a*b* values in the latter are computed based on the spectrophotometric

data that was collected with the microfadeometer. For this reason, P5 fits better

under the spectrometry group. The spectrometry category can be further split into

two sub-types, namely reflectance image spectroscopy, where spectra is collected

along the spatial dimension, and microfading spectroscopy, where spectra is col-

lected along the temporal dimension. P4, P8, P7 analyze hyperspectral images,

using the HySpex VNIR-1800 system [74], that for every scanned pixel, gives a

full spectral description between 400 and 1000 nm. P6 is an extension of P5 by

modelling the pigment degradation in the spectral domain. P7 combines the point

measurements given by the microfading technique with the hyperspectral image

of the same artwork. P1 and P2 process multi-light image collections of cultural

heritage objects, that were gathered with a dome of multispectral lights and a modi-

fied DSLR trichromatic camera with filters mounted on the lens to select difference

spectral ranges. P2 and P3 focus on the analysis of fluorescent objects. Whereas

the input to the former is real captured data, the latter introduces physically-based

rendered multi-light images of fluorescent surfaces.

Fig. 3.2 shows how the papers are grouped based on the type of model designed

to solve various appearance reconstruction tasks. P3 and P9 employ physically

based representation of materials. P3 uses a bispectral BRDF characterization for

the synthesis of fluorescent surfaces. P8 uses the Kubelka-Munk optical model to

estimate scattering and absorption properties of pigments and simulate in a non-

linear way mixtures of various paints. The rest of the papers use mainly fitting

strategies to extract knowledge from data. P1 and P2 target photometric stereo,

which is essentially regression applied on a set of images taken from a static view-

point, but from dynamic light positions. From this photometric variation, the al-

bedo and shape can be recovered. Nonetheless, in the traditional photometric ste-

reo method, this is performed assuming a Lambertian model for appearance. So

from this point of view, one might argue that this is a hybrid model. However, in

these papers we also include other polynomial functions besides the Lambertian

model, so for simplicity we keep them under data-driven category. Furthermore,
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P1 P2 P3

Multi-light Multispectral Imaging

Fluorescence

P1 P2 P3

Multi-light Multispectral Imaging

Fluorescence

P4 P6P7 P5P8

Spectrometry

MicrofadingHyperspectral Imaging

P4 P6P7 P5P8

Spectrometry

MicrofadingHyperspectral Imaging

P1 P2 P3

Multi-light Multispectral Imaging

Fluorescence

P4 P6P7 P5P8

Spectrometry

MicrofadingHyperspectral Imaging

Color Imaging

P9

Color Imaging

P9

Figure 3.1: Publications grouped by data capture methods.

P5 uses time-series analysis to predict pigment degradation. Then, P6 and P7 use

tensor decomposition to characterize the changing behaviour of pigments towards

the digital rejuvenation and aging simulation of a detail in a painting. In addi-

tion, P9 proposes a learning approach based on generative adversarial networks to

synthesize missing information in damaged wall paintings.

Last but not least, this thesis introduces a reflective essay on the ethical and legal

implications of cultural heritage digitization and artificial intelligence art. This

is not a technical paper and for this reason, it is not included in the diagrams in

Fig. 3.1 and Fig. 3.2. Nonetheless, it overarches the other papers that all deal to a

certain extent with cultural heritage digitization and restoration.

3.2 Datasets and Objects of Study
This thesis analyzes several types of cultural heritage surfaces. Fig. 3.3 presents

an overview of the datasets. Most articles in this thesis explore case studies related

to real CH objects, taking as input on-site digitizations of artworks from cultural

venues and museums. P1 deals with a multi-light image acquisition of a golden

lamina (i.e. a thin plate meant to be attached to another surface) which is an arti-

fact found in an archaeological site in Sardinia, Italy, dated to the 8th-7th century

BC and stored at the National Archaeological Museum of Cagliari. P4 studies two
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Figure 3.2: Publications grouped by the type of model employed to reconstruct appear-

ance properties.

drawings on paper, made by the 19th century Norwegian artist, Thomas Fearnley

and part of the collection of the National Museum of Norway. P5, P6, P7 revolve

around the pastel painting “A Japanese Lantern” by Norwegian painter Oda Krohg,

present as well in the National Museum of Norway. P9 features the wall paintings

of Cave 7 of the Mogao Grottoes from the Dunhuang UNESCO site [45]. The

wall paintings date back to the Mid-Tang Dynasty (AD 766-835), and are rich in

semantics, depict various motifs, such as Buddha statues, bodhisattvas, buildings,

dancing scenes, musical instruments, figurative patterns, etc. Other articles in this

thesis study mockups created in-house to contain specific materials. For instance,

P2 introduces two gesso moulds that contain a UV-induced fluorescent pigment,

P4 adds two targets with common fixatives applied on two different paper sub-

strates, and P8 analyzes mixtures of historical pigments in linseed oil and gum

Arabic paint-outs.
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Figure 3.3: The objects studied in this thesis include real artworks, as well as mockups.

3.3 P1 - Artworks in the Spotlight: Characterization with a Multis-
pectral Dome

This paper proposes an acquisition and processing pipeline for multispectral and

multi-light image collections. The acquisition setup consists of a dome with fixed

light positions and a DSLR camera placed on the top center of the dome. The IR

cut-off filter that comes with the commercial version of the camera was removed

to increase the sensitivity for the NIR range. The dome has 52 light boards, and at

each position, there are three types of LEDs: white that emits in the visible spectral

range, monochromatic UV light with the peak at 395 nm, and a NIR light with the

peak at 850 nm. For each type of light, images are shot sequentially at each light

position, with a short intermediate break to ensure that no signal leaks from the

previous capture. The structure of the dome is made of wood, and was sprayed

with a thick layer of minimally reflective black coating to remove the possibility

of the light being bounced off the dome construction and back on to the object.

In addition, before starting the acquisition process, the dome was covered on the

outside with a black curtain to reduce the amount of stray light. The processing

of the multi-light image collection comprises per-pixel light calibration and flat-

fielding to compensate for the spatial non-uniformity of the light distribution [166].

The system is portable and suitable for on-site acquisitions. In fact, the paper

presents a case study on a cultural heritage artifact from the National Archaeology

Museum in Cagliari, Italy. A golden lamina broken in two fragments was digitally

acquired. Based on the exploration of the MLIC, it was possible to enhance the

visibility of several inscriptions by relighting the surface of the object from un-
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measured light positions, as exemplified in Fig. 3.4. This was supplemented by the

different contrast of the multispectral bands. The shape of the two fragments were

reconstructed by integrating over the normal map in the two spatial dimension to

obtain the gradient field. This enabled the manual reassembly of the two frag-

ments by importing the shapes in a 3D software, as shown in Fig. 3.4. Visualizing

the shape information facilitates the detection of good matching points to virtually

reattach the two parts into one single object.

Figure 3.4: Left: The two fragments of the lamina relighted from a perpendicular light

position, which is originally uncaptured, as it coincides with the camera position in the

acquisition setup. Right: The virtual reassembly of the two fragments by visually matching

shape clues.

3.4 P2 - Fluorescence Transformation Imaging
Objects with a special property are investigated and analyzed in P2, namely fluor-

escence. More precisely, gesso was mixed with a commercial lime pigment, that

presents UV-induced fluorescence. Out of this material, two mockups with vari-

ous geometrical inscriptions and impressions were crafted in a handmade way. The

pigment is green in reflective mode and in fluorescence mode, meaning that there is

an overlap between the spectral distributions of its reflectance and emission. Such

material is susceptible to self interreflections. The purpose of this paper was to

analyze whether the shape reconstruction of the mockups when fluorescence is ac-

tivated is different and better than in normal visible reflectance. As a consequence,

MLICs were captured with the setup presented in paper P1. To ensure that there is

no leak of UV reflectance signal in the images of fluorescence, a Hoya K2 [107]

filter that removes any signal below 500 nm was mounted on the lens. This filter

was coupled with a UV cut-off filter, Hoya Pro1Digital UV filter, to avoid internal

fluorescence of the Hoya K2 filter.

The acquired MLICs were grouped to consider four different light distributions.

Then, each group was fitted to four polynomial models: first-order polynomial

with a global light direction, first-order polynomial with local light direction, second-

order polynomial with local light direction, and first-order polynomial with robust

fitting strategy. The recovered normal maps in each case were compared to the
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ground-truth given by 3D scans of the two mockups, based on visual assessment

and quantitatively, by computing the angular errors between the normal vectors.

Fig. 3.5 shows the ground-truth normal mas of one of the mockups, together with

the reconstructed normal maps for the MLICs in reflective and fluorescent modes.

The results showed that for both mockups, the angular error maps were higher for

the fluorescence mode than for the reflective mode.

Figure 3.5: Normal maps of a green fluorescent mockup: as recovered with a second-

order polynomial from the MLIC in the visible reflective mode (left); as captured with a

structured light scanner (middle); and as recovered with a second-order polynomial from

the MLIC in the UVF mode (right). A normal map encodes the three spatial dimensions

(x, y, z) of the normal vector with an R, G, B encoding. In such representation, the parts

that directly face the viewing point look light blue.

3.5 P3 - The Influence of Interreflections on Shape from Fluor-
escence

The research in P3 was motivated by the results of paper P2. Thus, the aim of P3
was to check whether the interreflections are indeed the reason for the difference

between fluorescent and visible reflectance mode. For this reason, this time, ex-

periments were performed on synthetic data, where the global illuminations effects

(interreflections) can be separated from direct light. Thus, in this paper, a virtual

setup for MLIC capture was simulated in a spectral renderer that supports fluores-

cence. Afterwards, MLICs were rendered for two geometries: one of the mockups

analyzed in P2 and a simpler v-shaped object. These two shapes were covered with

the bispectral BRDF of dayglo materials, measured from commercial post-its, and

they were all rendered as Lambertian surfaces. Afterwards, the normal maps from

each rendered MLIC was estimated with the photometric stereo model. The same

quantitative comparison as in P2 was performed, where the angular errors between

the estimated and reference normal maps were computed.

It was discovered that while the interreflections affect the normal estimation, there

is no major difference between the fluorescent and visible reflectance modes. In
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addition, variations in albedo were more noticeable for the v-shaped object than for

the mockup. Therefore, it would seem that the discrepancies between the reflective

and fluorescent modes in P2 are not due to interreflections. Nonetheless, we have

to keep in mind that there are still differences between the rendered data and the

real capture. First, the fluorescent material in the rendering is not the same as the

one in the mockups, as the latter’s bispectral information was unknown. Secondly,

the variations in the albedo of the real objects is more grainy than for the synthetic

data. Moreover, the real capture might include other physical effects that were not

included in the rendering, such as scattering and self-scattering.

3.6 P4 - Spectral Classification of Paper Fixatives: A Case Study
on Thomas Fearnley’s Drawings

The work in P4 is targeted at material analysis, and it sparked from a real case

study regarding two drawings made by the 19th century Norwegian artist, Thomas

Fearnley. Notwithstanding the different color appearance, as can be perceived in

Fig. 3.6, the two drawings were covered with the same fixative. The role of the

fixative was to protect friable media from smudging and smearing. The origin of

the fixative was previously verified through analytical techniques and documentary

sources regarding the practices of other artists, contemporary to Thomas Fearnley.

Figure 3.6: The two drawings studied in P4 have different color appearance in the area

where the same fixative was applied.
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The research question in this paper was to check whether the spectral signal in

the visible and near-infrared can identify the type of fixative used, and detect the

similarity of the fixative between the two drawings. To this purpose, fragments

of the two drawings were scanned with a hyperspectral imaging system, HySpex

VNIR-1800 [74], with two broad-spectrum tungsten lights, located at 45◦ with

respect to the captured scene. In addition, two mockups, on different substrates,

were designed to include various types of fixatives, of animal and vegetal origin,

in different concentrations. The mockups were scanned with the same setup as the

drawings. Representative regions, corresponding to each material, were averaged

spatially. Then, the mean reflectance of each material, and its first derivative were

compared with all the others to look for similarity, based on spectral correlation

and spectral angle metrics.

The similarity was visualized in the form of confusion matrices, illustrated in Fig.

3.7. For the mockups, the inflection points in the first derivative pointed out to

two groups of fixatives, one defined by rice starch and egg white and another one

defined by milk, sturgeon glue and gelatine. This qualitative grouping was further

confirmed by the spectral metrics. As far as the drawings are concerned, resemb-

lance was found between the areas with fixatives between the two drawings. In ad-

dition, out of the two groups in the mockups, the fixative areas in the two drawings

were found to be spectrally closest to the group that included the milk samples.

Therefore, the results obtained in P4 show that the spectral analysis in the visible

(400 - 750 nm) and near infrared (750 - 1000 nm) can reveal useful characteristics

in the study of paper fixatives. The accuracy and insight of the results could be

further improved by enlarging the range of analysis to short-wave infrared (960 -

2500 nm).

3.7 P5 - Predicting Pigment Color Degradation with Time Series
Models

The input for the analysis in P5 is given by a series of colorimetric measurements

of pigment samples while undergoing accelerated light-induced aging. As shown

in Fig. 3.8, the measurements were collected with a microfadeometer [55], at a

0◦/45◦ geometry. The pigment samples were taken from a fragment in the paint-

ing “A Japanese lantern” by the Norwegian painter, Oda Krohg. The data was split

into training and test set. For each pigment, the time series corresponding to every

color coordinate in the CIE L*a*b* color space was fitted to an auto-regressive

integrated moving average model (ARIMA) [139]. The predictions of the model

were validated against the test set. The research proved that the ARIMA models

were robust to instrumental noise and irregular change patterns in the data. The

bests fits were found for those coordinates of the pigments that were most lightfast.
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Figure 3.7: Confusion matrix, as a visualization method for spectral similarity metrics.

Figure adapted from P4.

This is in agreement with the data stationarity requirement of ARIMA. While sta-

tionarity was enforced in pre-processing for all the measurements, there is room

for fine-tuning the parameters of the models towards finding better fits of those

pigments that are more fugitive.

3.8 P6 - Tensor Decomposition for Painting Analysis. Part 1:
Pigment Characterization

P6 builds on P5, by taking the same set of measurements, only this time, the ana-

lysis is performed in the spectral space. Moreover, P6 is the first part of a series

of two articles, and is continued by P7. Fig. 3.9 illustrates the complete work-

flow shared between the two papers in the series. Essentially, the microfadeometer

used for measuring pigments in P5 is a spectrophotometer, so the data collected

is reflectance. Thus, in P6, the spectrophotometric information is used in com-

bination with the temporal change to characterize the pigments. The methodology

consists in the multivariate analysis technique entitled tensor decomposition. In
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Figure 3.8: Microfading measurement of the painting “A Japanese Lantern”. Image cour-

tesy: Tina Grette Poulsson.

particular, it uses the PARAFAC [115] implementation of the tensor decomposi-

tion technique. In other words, the time series of spectral measurements for each

pigment were arranged into a 3D tensor representation, where the dimensions are

defined by samples, spectra, and fading rate. This tensor was then reduced to a set

of basis factors using parallel factor analysis. According to the chemical meaning-

fulness of the resulting loadings and statistical analysis of the model’s residuals,

the cardinality of the factors was chosen to be 6. Thus, PARAFAC gives the pure

spectra underlying the sample (3rd mode), the concentration of all pure compon-

ents for each sample (1st mode), and the temporal change of every endmember

(2nd mode).
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Once the model was trained, it was tested for new samples believed to be made of

the same materials, and unseen at the calibration stage, by keeping modes 1 and 2

fixed. In addition, the fading rate was approximated with a function that changes

linearly with the time step of the fading process. Consequently, the samples and

their future alteration, beyond the time steps included in the training step, were

predicted by the model. This forecast was checked against several temporal meas-

urements left out in the training procedure.

Moreover, P6 attempts pigment identification by comparing the endmembers ob-

tained with the trilinear decomposition, to spectral libraries. The comparison was

done with the same metrics as in P4, namely spectral angle and spectral correla-

tion. In this case, a new visualization method in the form of a bubble chart was

designed to represent the numerical output of the spectral metrics. The bubble

chart (see Fig. 3.10) allows the visualization of three spectral metrics simultan-

eously. Apart from the two metrics plotted along the x-y axes, another metric

can be incorporated in the size of the bubbles. In this work, x-axis represents the

spectral angle between reflectance curves, y-axis the spectral angle between the

first-derivative curves, and the bubble size is modulated by the spectral correla-

tion of the reflectances. Although the ground-truth with regards to the pigment

chemical composition is unknown, the bubbles show a clear separation between

the various endmembers, as portrayed in Fig. 3.10.

3.9 P7 - Tensor Decomposition for Painting Analysis. Part 2:
Spatio-temporal Simulation

As a continuation of P6, P7 translates the trilinear representation of the microfad-

ing measurements to a hyperspectral image of the same scene (see Fig. 3.11), i.e.

the central lantern in the painting “A Japanese Lantern”. More precisely, abund-

ance maps for the endmembers previously identified are obtained by running least-

squares unmixing in the hyperspectral image (see Fig. 3.9). Using the tensor model

created in P6, the abundances maps are then recomposed with the fading rate and

endmembers to have a complete spatio-temporal description of the scene. The re-

composition is performed in a trilinear way, by multiplying with a tensor product

the abundance maps with the endmembers and their fading rate. Subsequently,

this was used in conjunction with the linear approximation of the fading rate to

digitally rejuvenate and age the central lantern for a range of ±1.19 Mlux hr.
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Figure 3.10: Bubble chart, as a visualization method that allows the simultaneous inspec-

tion of three spectral similarity metrics. Figure adapted from P6.

3.10 P8 - Estimating Optical Properties of Pigments from Color
Charts with Multi-contrast Background

This paper addresses the recovery of pigment scattering and absorption coeffi-

cients from the spectral signal of pigment color charts, drawn on a 4-step gray-

scale gradient. The method used is based on the black and white formulation of

Kubelka-Munk with the distinction that instead of only two substrates, the vari-

ation of the 4-step background in the color charts is used to select the optimal pair

of substrates. The proposed method is compared with two other methods. The first

one is non-linear optimization, which considers a system of equations based on 4

reflectance values contained by the color charts and their description with the gen-
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Figure 3.11: Setup for the in-situ hyperspectral image acquisition of the painting “A Ja-

panese Lantern”.

eral two-constant expression of Kubelka-Munk. The second method is based on

the single-constant simplification of Kubelka-Munk, where the ratio of absorption

over scattering is estimated from a set of opaque patches of the pigments mixed

with linseed oil.

The performance of the three methods was assessed by their accuracy in recon-

structing two reference targets made of mixtures of the estimated pigments. For

these two case studies, the results show that single-constant simplification gives the

best reconstruction, followed by non-linear optimization and the modified black

and white method. A reason for this order might be the difference in binding media

and preparation technique between the color charts (gum Arabic) and the mockup
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(linseed oil). The latter was used for the single-constant simplification. Neverthe-

less, the modified black and white method showed that there is an improvement

when considering more than two substrate intensities.

3.11 P9 - Colour-Balanced Edge-Guided Digital Inpainting: Ap-
plications on Artworks

P9 proposes a novel a edge and color aware method to infill lacunae in color images

of artworks. In particular, this work highlights a case study on a set of images of the

wall paintings from the Dunhuang site [165]. The approach consists in a learning

based technique, where two generative adversarial networks (GANs) are trained

to extract and synthesize structural features and color content, respectively. To

better control the accuracy of the colors, the CIE L*a*b* space rather than RGB

is employed, and priors in the chromatic dimensions are computed by quantizing

the a* and b* values. This color palette is then used in a loss function designed

for the color generator, in order to constrain the network to generate colors that are

close to the priors. This way, a more balanced distribution of generated colors is

ensured. At the same time, the bias intrinsic to the L1 loss to optimize for mean

values is counteracted [167].

The missing regions in the wall paintings are modelled with a random walk, to

reflect the stochasticity of the aging phenomenon in reality. For the learning pro-

cess in GAN [120], the size and pattern of the masks are important because they

defined the resolution of the details to be inpainted. To cover for a wider range of

resolution of the missing details, three morphological operations (dilation, skelet-

onization, medial axis transform) were applied to the original random walk masks,

and they were all input to the reconstruction method. The analysis of the results

and comparison with other state-of-the-art inpainting methods showed the choice

of image quality metric is critical. For instance, using novel CNN-trained ref-

erence quality metrics, our method performs better than others, as opposed to the

output of the traditional metrics such as PSNR or SSIM [168]. Fig. 3.12 showcases

two examples where it is easy to observe by visual assessment that our approach

outperforms the baseline method [169].

3.12 P10 - Better Sensors, Better Forgers: An Adversarial Loop
The last paper in this dissertation, P10 tackles the ethical and legal implications

of cultural heritage digitization in a reflective essay. In particular, connections are

made with the problem of art authenticity examination. P10 poses the following

question: to what extent are current digitization techniques able to detect forgeries?

Then, to what extent the knowledge obtained with the advancement of the sensing
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Figure 3.12: The columns represent in order, from left to right: original image, simulated

deteriorated image with random walk mask, inpainted image with our approach, inpainted

image with the approach of [169]. In the highlighted regions of interest, our approach

outputs more color coherent and sharper results. Figure adapted from P9.

techniques becomes a tool in the hands of the forgers?

The essay is structured in two main parts. In the first part, an overview of art

forensics methods is presented, together with a set of case studies showing how

forgers learned to deceive some of the authenticity examination procedures. The

second part of the essay focuses on the specific issues that digitization brings in

the context of authenticity studies. Thus, it discusses the mechanisms and the ex-

istence of guidelines for digitization, that make the difference between digitization

as a reproduction technique or a creative process that changes the acquired reality.

Then, it continues to stress the importance of digital repositories, by ensuring their

integrity and the accuracy of metadata. Digital data can be manipulated and ed-

ited, which can contaminate diagnostic results, as well as the input to examination

procedures. In this regard, the essay integrates the aspect of the born digital art and

the generative paradigm for creating fake, but realistic images with AI-enabled al-

gorithms, such as GAN [120]. The essay concludes that digital data in the age

of AI-enabled art needs to be treated and examined with extra care. In the end,

it is not surprising that the algorithm behind GAN is based on adversarial learn-

ing, where the generator (the forger) improves by striving to fabricate convincing

realistic imagery for the discriminator (the art detective).
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Chapter 4

Discussion

eu cu lumina mea sporesc a lumii
taină -
şi-ntocmai cum cu razele ei albe
luna
nu micşorează, ci tremurătoare
măreşte şi mai tare taina nopţii,
aşa îmbogăţesc şi eu întunecata
zare
cu largi fiori de sfânt mister
şi tot ce-i neînţeles
se schimbă-n neînţelesuri şi mai
mari
sub ochii mei.

Lucian Blaga

55
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I with my glow enhance world’s
mystery -
exactly how the moon, with her
white rays,
doesn’t diminish, but with a tremor
intensifies night’s magic,
I also enrich the gray horizon
with shivers of dear mystery,
and all that’s poorly understood
changes in bigger mysteries
under my eyes.

English translation by Laura [170]

This chapter discusses the research contributions of this thesis. In the introduction

chapter of this dissertation, several research aims were defined, and here I will re-

flect upon the outcomes of each article in this thesis in connection with the original

research questions. Fig. 4.1 organizes the various research tasks where this thesis

brought a contribution, in the shape of a tree. Similar to the life cycle of leaves, the

level of knowledge regarding the appearance of cultural heritage objects matures

as it transits from image and data capture, to analysis and finally, to synthesis.

The left side of the tree leans more towards the analysis based on color and spec-

tral imaging, while the right side concentrates on the knowledge derivation from

MLIC.

In order to better follow the upcoming discussion, let’s revisit Fig. 1.1 by draw-

ing the connection between the articles in this thesis and the established research

questions, as shown in Fig. 4.2.

4.1 RQ1: How to capture the appearance of artworks in a non-
invasive way and beyond what is visible to the naked eye?

In this thesis, several non-invasive capture methods were proposed depending

either on the appearance reconstruction tasks, or on the particularities of the ma-

terials and objects to be digitized. As such, P1 introduces a portable setup for the

acquisition of multi-spectral multi-light images, that was proved suitable for the

capture of on-site specular and diffuse, opaque cultural heritage objects with low-

relief. The setup consists in a dome of LEDs that emit in the UV, VIS and NIR,

a modified DSLR camera and a set of calibration targets that allow per-pixel light

correction. The main limitation of this setup is given by the maximum size of the

objects that can be captured (20x20 cm), which is constrained by the diameter of

the dome of lights. Building on the setup proposed in P1, P2 introduces a setup to

capture fluorescent materials, through the mounting of a filter system that separates
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Figure 4.1: The efforts of my PhD, as a tree metaphor. The level of understanding of

appearance grows with the tree branches, starting from capture, moving on to analysis

and reconstruction of various appearance attributes and finalising with synthesis based on

physical and data-driven models. The tree is rooted in ethical considerations regarding

cultural heritage digitization and virtual restoration.
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Figure 4.2: Revisiting the research questions and the contributions of this thesis. Several

papers contribute to more than one research question.

the fluorescent signal from the reflective signal. While the case study presented in

P2 shows only the capture of UV-induced visible fluorescence, the setup can be

applied as well to fluorescence excited by the visible spectrum and noticeable in

the NIR, as the camera has sensitivity in that range.

P4 and P7 show practical examples of hyperspectral imaging of museum objects.

P4 uses the horizontal setup, where a translational stage is electronically controlled

to move the objects to be scanned, while P7 uses a vertical arrangement, where a

rotational stage moves the camera as it faces the object. P8 uses the same setup

as P4, with the difference that the scanning is carried out in laboratory, not in-

situ conditions. For this reason, in Fig. 4.2, P8 is assigned to the analysis and

reconstruction bubbles (corresponding to RQ2 and RQ3, respectively) because it
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has a larger contribution there than as a capture method.

In P5 and P6, the temporal dimension of visible light-induced aging in an artwork

is captured with a point-based measurement instrument, namely the microfadeo-

meter. Adequate for on-site experiments, the microfadeometer exposes only a very

small area of the object, 0.5 mm. In addition, the experiment is stopped when the

exposed area reaches a change equivalent to ΔE00 = 2. As a result, it is con-

sidered to be a non-invasive or at most, under a stricter definition, a minimally

invasive technique. Furthermore, the change triggered by the exposure to light is

recorded not only in the color dimension, but spectrally as well.

Limitations

In the proposed works, only a subset of appearance attributes were captured for

non-fluorescent and fluorescent objects. Ideally, a dense spectral BRDF acquisi-

tion and bispectral BRDF would fully capture the effects of light-object interac-

tion. In addition, given a non-uniform surface, such measurements should be done

on a spatial-varying basis. The approaches in P1 and P2 measure only a slice of the

full BRDF, for only one viewpoint. Throughout the articles, the measured spectral

range is limited mainly to the visible range, and only short portions of the ultra-

violet and the near infrared regions, i.e. the invisible range of the electromagnetic

spectrum. For some objects and materials, these ranges are not sufficient to capture

unique, descriptive features, beyond the surface. For instance, in the study of paper

fixatives in P4, data in the short-wave infrared would have been more discrimin-

ative in classifying the different types of fixatives, because short-wave infrared

reaches the molecular properties of a material. In addition, this thesis did not in-

clude capture with other diagnostic analytical methods common in conservation

science. Although a short survey of sensing techniques other than spectral ima-

ging, MLIC and microfading is included in P10, no data was captured with other

methods. In this sense, the X-ray fluorescence technique, that detects chemical ele-

ments, would have been useful to provide a ground-truth to the results regarding

pigment unmixing and identification in P6. In addition, fluorescence spectroscopy

would have been helpful to confirm the presence of the red lake pigment, which is

more troublesome to detect with X-ray fluorescence [33].

4.2 RQ2: How to extract appearance and material properties
based on descriptors in the color, spectral and multi-light
domains?

RQ2 is concerned with the recovery of material and appearance properties as a

result of the analysis of multi-light and multi-spectral images. P1, P2 and P3
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analyze MLIC to recover the albedo and normal maps of the digitized objects

and to achieve relighting from unmeasured light positions (P1). The analysis is

performed with polynomial models fitted on either a local (per-pixel) appearance

profile or global (image level) appearance profile. The appearance profile is a

descriptor that stacks the photometric variation captured in a MLIC. The main

contribution of P2 and P3 is that of being the first to analyze MLIC of fluorescent

objects with non-uniform albedo. In addition, P2 and P3 together, form a dataset

of MLIC of real and synthetic fluorescent objects, the first of its kind. A collateral

research outcome of P3 is the analysis of the effect of interreflections on the shape

reconstruction for concave fluorescent surfaces made of materials that reflect in

the same spectral range they fluoresce, specifically dayglo pigments.

P4, P6 and P8 extract material properties by relying on spectral data. P4 uses two

spectral descriptors to differentiate between fixatives applied to protect friable me-

dia in paper drawings: spectral angle and spectral correlation. The two descriptors

are computed for the reflectance signal and for the first-derivative of the reflect-

ance. In an analogue way, P6 uses the same spectral descriptors to address the

pigment identification task, by comparing endmembers with spectral libraries. A

challenge with spectral metrics is the visualization beyond the numerical repres-

entation. In this sense, P4 and P6 offer two innovative visualization methods to

assess the similarity between material based on spectral descriptors: confusion

matrix and bubble chart. The confusion matrix facilitates the detection of any

grouping trend of the analyzed materials based on a single spectral descriptor. The

bubble chart is three-dimensional, and it permits the simultaneous assessment of

three spectral metrics, where clusters of materials can easily be identified.

P6 introduces the tensor decomposition method, that based on a stack of spectral

microfading measurements of paint samples, it recovers the endmembers, their

abundance and their alteration rate. This is the first attempt in the literature to

extract this knowledge from a set of spectral microfading measurements.

P8 proposes a optimized black and white method of the Kubelka-Munk model to

recover the scattering and absorption coefficients of pigments from color charts.

The novelty of this approach is anchored in the extraction of optical coefficients

based on pigment charts created with a certain binding media, and then the recon-

struction of reflectance for paint mixtures executed with a different binding media.

Because it proposes a method for appearance reconstruction, in addition to the

contribution for RQ2, P8 fits in the reign of RQ3 as well.
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Limitations

There are numerous descriptors that could be computed from visual data, such as

edges, corners, image statistics, texture features, neural features. In this thesis, the

main descriptors used for analysis are the spectral signature and related similarity

metrics in the spectral domain (based on spectral imaging), and the appearance

profile that encodes photometric variation dependent on the incident light posi-

tion (from MLIC). Because of the simplicity of the spectral descriptors, P4 can be

considered to offer a rather superficial solution to the problem of material classi-

fication. In addition, CNN features are used in P9, but because the purpose was

image formation, not material analysis, this article is not considered as a contribu-

tion to RQ2. Furthermore, another main limitation of the pigment analysis method

in P6 is given by the lack of ground truth with respect to the chemical composition

of the microfaded paints, and supplementary validation on control samples and

other objects.

4.3 RQ3: How to digitally reconstruct, restore and predict the
appearance of artworks using data-driven and physical mod-
els?

P1, P2, and P3 bring a contribution to the reconstruction of geometric informa-

tion for low-relief objects. In particular, P1 proposes the virtual reassembly of two

fragments of a golden lamina by exploiting the visualization of depth, extracted

from the normal map. In addition, P1 relights the appearance of the golden lamina

from virtual light positions, excluded from the stack of original measurements. P2
reconstructs the appearance attributes of real fluorescent objects with non-uniform

albedo for different illumination configurations, and compares the recovered nor-

mal maps with the ground-truth shape scanned with a structured light scanner. The

results indicate the best polynomial model and the best illumination configuration,

and highlight as well, that based on the real measurements, the errors are higher

when fluorescence is activated. To complement the real acquisition setup in P2,

P3 recreates the MLIC setup in a virtual environment, constructed in a spectral

renderer, where the fluorescent materials are spectrally rendered as Lambertian,

but considering their bispectral properties. After rendering fluorescent objects in

a fully spectral way, scene interactions and global illuminations effects were ana-

lyzed in relation to the normal map recovery.

Time-series analysis is employed in P5 towards the prediction of future aging of

pigment samples from microfading color data. This is reportedly the first attempt

to apply auto-regressive moving average models to color coordinates. The results

obtained show that ARIMA are robust to modelling non-linear change trends and
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surpass instrumental noise. A limitation of this method is that it treats the change

of each color coordinate as a univariate series, neglecting the inter-correlation.

P7 extends the knowledge derived in P6 regarding pigment properties, from isol-

ated single locations to the spatial level. This is accomplished by connecting the

microfading measurements with a hyperspectral image of the same scene. The link

is achieved through the endmembers, where the abundance maps of the endmem-

bers in the hyperspectral image are obtained with least-squares unmixing. The

abundance maps can then be recomposed into a tensor, where the temporal dimen-

sion that mirrors the spectral degradation is included. As a result, the proposed

method allows for the virtual simulation of the restored and aged versions of the

painting, for a given illuminant at specific amounts of light exposure.

Both models in P5 and P7 revolve around measurements that reflect the current

status of conservation of a painting. This implies that while mathematically, it

is feasible to apply rejuvenation (reverse the fading process), this requires addi-

tional validation from a physical perspective. Moreover, the ARIMA are designed

to be forecast methods. For this reason, no rejuvenation attempt was showed in

P5. However, using the coefficients of the model, together with cross-validation

methods, mathematically it is possible to explore the rejuvenation using ARIMA.

This is suggested as future work as a follow up of this thesis. In addition, the pre-

dictions in both P5 and P7 are based on microfaded data that was collected for a

short period of time, but at very high illumination levels (12.5 Mlux). This most

probably breaks down the reciprocity principle of light exposure according to the

findings in [54, 64]. Hence, it is challenging to make an equivalence between the

proposed simulations in P5, P7 and the museum display conditions where light

levels have considerably lower magnitude and possibly different emission charac-

teristics than in the microfading experiment. This becomes even more problematic

for the digital rejuvenation, as it is not trivial to trace back the precise record of all

the light conditions the artwork was exposed to between its creation and before its

inclusion as an exhibit in the museum collection.

Finally, P8 uses the Kubelka-Munk model to approximate the appearance of uni-

form patches of mixed paints and a painting with complex semantics. The accuracy

of the method is limited by the differences in binding media between the objects

used for the estimation of the optical coefficients and the reconstruction. In ad-

dition, for the painting reconstruction, another impediment is represented by the

ground-truth abundance maps that were obtained with a computational method and

thus, carry with themselves a baseline error.

P9 answers to RQ3 by proposing a generative adversarial approach to imitative

loss restoration in wall paintings. The method is color and structure aware, and it
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uses priors that summarize the color distribution of the dataset to control the bias

towards mean colors. Although the approach is meant to offer seamless reconstruc-

tion, depending on the complexity of the image and the loss area, the retouchings

are not perfectly imitative. Thus, images with more complex semantics (such as

faces) are not reconstructed as fine as those with simpler content. In these cases,

it is mainly the structural elements that do not get recovered rather than the color

information. In addition, the quality of the inpainted images is inversely related to

the extent of the loss.

Limitations

Appearance reconstruction, being an inverse imaging problem comes with many

challenges, and thus limitations of the proposed solutions. Some of these limit-

ations reside in the modelling stage, while others in the quality of the input data.

Thus, a limitation of P2 is given by the lack of a proper image correction workflow

for the MLIC in the fluorescent mode. While the MLIC in conventional reflect-

ive mode contains several calibration targets, including a white diffuse target for

flat-fielding and correcting the light fall-off factor, no such target was used for the

fluorescence mode. The reason for this is the scarcity of calibration targets and

correction workflows for fluorescence in general. Nonetheless, in future work, tar-

gets such as [171] can be used for the calibration of fluorescence images. Also, in

P2, another factor that might affect the quality of the normals’ reconstructions in

the fluorescence mode is the signal-to-noise ratio (SNR). Due to the low-intensity

nature of the fluorescence signal in comparison with reflectance, the SNR is higher

for fluorescence images than for reflectance images. In the current acquisition

setup, the SNR is controlled through a series of pre-processing and calibration

operations (e.g. subtraction of ambient light image) similar for both reflectance

and fluorescence. However, the SNR can be improved in the future by fine-tuning

the acquisition parameters (e.g. integration time, camera aperture size) and/or by

taking multiple captures of the same scene and averaging them.

The performance of the spatio-temporal simulation approach in P7 depends on the

quality of the data captured with a MFT and a hyperspectral camera. In partic-

ular, the microfading requires a careful design of experiment, in that the points

chosen as samples need to include all the variation subtended by the surface to be

mapped. For instance, the white areas in the lantern studied in P7 were not meas-

ured with the MFT, and this affects the accuracy of the material distribution in the

hyperspectral image, and implicitly, the spatio-temporal simulation.
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4.4 RQ4: What are the ethical and legal implications of cul-
tural heritage digitization and virtual restoration given the
increasing accessibility of imaging sensors and the recent
take-off of AI techniques?

This thesis presents digitization methods that, considering the value and fragility of

cultural heritage objects, pose a certain risk. Because all the presented techniques

are non-invasive, the risk is minimal, but present nonetheless. Every digitization

requires the object to be handled and exposed to light. As tackled by some of the

articles, such as P5, P6, P7, light exposure might accelerate the degradation of

sensitive materials. Nevertheless, the capture and analysis is important to better

understand the needs and singularities of an artwork, which helps determine con-

servation and exhibition policies. Although this seems like a vicious circle, the

risks can be mitigated by following acquisition protocols that ensure the quality of

the digitization while protecting the cultural heritage object as much as possible.

Such guidelines are reviewed in P10. In addition to providing a survey of digit-

ization methods, P10 dwells on how the knowledge generated from the analysis

of digitized artifacts can be put to good and bad use, in the context of art forger-

ies. The good use refers to digitization techniques as art forensic methods, while

the bad use entails the increased awareness of forgers who learn how to fool the

diagnostic methods.

Another contribution of P10 is a brief overview of digital AI art methods. The

essay touches on the subject of generative techniques and how they have a direct

implication on virtual restoration or the creation of new paintings in the style of an

artist. AI techniques offer a mimetic solution to the retouching problem, similar

to the proposed technique in P9. Even though Brandi’s “Theory of restoration”

is targeted to the restoration of physical objects, it is interesting to ponder upon

the utility of simulating the hatching techniques for digital restorations methods

as well. Moreover, it is essential to other to ensure through metadata that the

virtual reconstruction outcome is well documented and acknowledged as only a

hypothesis to the real restoration. In conclusion, based on the above mentioned

contributions, RQ4 is answered by the essay elaborated in P10 of this thesis.

Limitations

The ethical and legal considerations in P10 are not exhaustive. For instance, the

ethics of digital restoration is only glanced upon, but not presented with depth. In

addition, the problem of the copyright for AI generated artworks is only discussed

for particular instances and jurisdictions. Being a novel field whatsoever, the copy-

right rules are not yet well defined and standardized when it comes to AI-art tools.
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4.5 Research Paradigms
The articles presented in this dissertation adhere to mainly three of the research

philosophies described in Section 1.4: postpositivistic, pragmatic and transformat-

ive. Fig. 4.3 maps a distribution of the articles in relation to the research paradigms.

Accordingly, P1, P2, P3, P5, P9 have a postpositivistic lens because they use

mathematical models as a hypothesis to approximate the real-world, and then val-

idate the performance of these models based on quantitative comparison with a

ground-truth baseline. The research approach in P8 is postpositivistic as well, but

different to the data-driven models employed in the previously mentioned articles,

it proposes a method with a stronger foundation in physical laws.

P5P5

Postpositivism
- theory-centric

- deductive

P1P1

P8P8

P2P2

P3P3

Pragmatism
- problem-oriented
- multidisciplinary

P6P6

P4P4 P7P7

Transformative
- social, ethical, 
political context

P10P10

P9P9

Figure 4.3: The research paradigms adopted in this thesis.

Although the core of P4, P6, P7 lies in quantitative analysis, because they address

specific case-studies, their research approach is a rather pragmatic one. In addition,

for the task of pigment identification and spatio-temporal simulation in P6 and

P7, the ground-truth is unknown, so these articles rely on subjective assessment

and interpretation, involving multidisciplinary cooperation with the conservation

scientist co-author, to understand the quality of the exploratory data analysis.

Finally, P10 zooms out and from a satellite perspective, takes a transformative

stance on all the research topics addressed in this thesis, and discusses the ethical

and legal implications of CH digitization, analysis and reconstruction.
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4.6 Contributions to the CH field
The methods proposed in this dissertation bring specific contributions to the CH

field, as follows:

• Digitization of CH objects with a wide range of materials, in on-site and off-

site conditions, with multispectral, hyperspectral and RTI imaging setups.

• Documentation and visualization of appearance properties, such as reflect-

ance, fluorescence, albedo, normal map.

• Pigment unmixing, in a semi-supervised way, based on microfading meas-

urements. In other words, repurposing microfading from only assessing

light sensitivity of pigments and establishing exhibition policies, to recover

pure pigments in mixed samples.

• Spatio-temporal simulation of fading mechanisms, where the material

and temporal characterization accomplished with microfading in small samples

is extrapolated to the spatial dimension, by means of hyperspectral imaging.

• Retouching of losses, with an inpainting algorithm that follows a common

artistic process, from first sketching the underdrawings to then applying

color.

• An ethical appraisal of digitization practices, digital data integrity, image

manipulation techniques, and new threats regarding authenticity of CH in

the digital era.



Chapter 5

Conclusion and Perspectives

Atâta linişte-i în jur de-mi pare că
aud cum se izbesc de geamuri
razele de lună.

Lucian Blaga

Such a deep silence surrounds me,
that I think I hear moonbeams
striking on the windows.

English translation

In this last chapter, the overall outcome of this thesis is concluded, and thoughts

regarding follow-up work and potential directions of future research are suggested.

5.1 Conclusions
This PhD dissertation aimed to bring advancements to appearance capture, mater-

ial analysis and appearance reconstruction of cultural heritage objects through the

application of spectral and multi-light imaging techniques.

Indeed, the research conducted in this PhD project brought contributions on mul-

tiple levels. Two acquisition setups were proposed for the multispectral and MLIC

of objects with conventional (P1) and fluorescent materials (P2), respectively. In

this setting, the shape and albedo of the various objects were reconstructed using

67
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polynomial models. The real acquisition MLIC setup was virtually recreated in a

spectral renderer that supports fluorescence to generate a synthetic dataset, similar

to the physically captured data (P3). Based on this synthetic dataset, the influence

of inter-reflections on the shape estimation was evaluated, comparing the cases

of plain versus daylight fluorescent colored scenes. Furthermore, material prop-

erties for paper fixatives and pastel paintings were characterized in the spectral

reflectance domain based on hyperspectral imaging (P4) and microfading data, re-

spectively (P6). The microfading data became the source of two models for aging

simulation. In the first model, the colorimetric degradation of pigment samples

is forecasted by means of univariate time-series analysis (P5). The second model

relies on multivariate tensor analysis (P6, P7) to perform aging simulation and di-

gital rejuvenation for single points (1D) and for a surface (2D). The mapping of

aging effects from 1D to 2D is called spatio-temporal simulation, and was achieved

by merging a set of microfading measurements with a hyperspectral image of the

same scene (P7). Afterwards, this thesis proposed an approach to the determin-

ation of optical properties of paints from pigment color charts, using Kubelka-

Munk model (P8). Eventually, generative adversarial techniques were devised to

conceive a color and structure consistent image inpainting approach for the virtual

infilling of lacunae in wall paintings (P9). Finally, ethical aspects related not only

to generative adversarial networks, but to all CH digitization, image analysis and

synthesis techniques, were debated in a reflective essay (P10).

Therefore, the research outcomes in this thesis proposed novel solutions to several

problems of appearance reconstruction, from the twofold perspective of the visual

computing and CH fields. At the same time, the diversity of the objects included

as case studies proved the versatility of the spectral and multi-light imaging tech-

niques as non-destructive digitization methods of CH. In addition, the use of these

imaging techniques produced a dataset that facilitated the characterization of ma-

terial and appearance properties. Moreover, beyond the findings of this thesis, this

dataset can be further explored, and represents a helpful testbed for future models

and analyses.

5.2 Future Work
The body of work introduced in this dissertation can be continued in various dir-

ections. To begin with, starting from the introduced MLIC dataset of real and

synthetic objects, models tailored to the relighting of fluorescent scenes can be

designed and validated in an objective and subjective way [172]. In connection

with the subjective assessment, another research gap that could be filled is to de-

velop a tone mapping operator specifically optimized for fluorescent scenes. As

highlighted in P3, such best tone mapping operator studies exists for conventional
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colors, but not for fluorescent colors. Furthermore, the approaches to pigment

unmixing and spatio-temporal simulation proposed in the series of articles P6, P7
can be further validated on other artworks and control samples, and complemented

by results gathered from analytical techniques such as microscopical examination,

X-ray fluorescence, and fluorescence spectroscopy. Finally, perhaps the most pop-

ular research topics at the moment are covered by P9 and P10, because of the fast

pace at which AI image restoration are proposed in the literature. In this sense,

there is room for improvement in integrating CH needs and particular scenarios.

For instance, metamerism-aware generative inpainting techniques that operate in

the spectral domain could be very helpful for art restorers and conservators in their

preparation for physical retouching. Related to this, the recently proposed text-

to-image formation algorithms, such as DALL-E 2[173], Midjourney [174] and

Stable Diffusion [175] are highly relevant because they can directly involve art

conservators and restorers in the process of AI-based image inpainting. Basically,

in these methods, the art experts can edit and guide the inpainted result through text

prompts. Due to the attractiveness and topicality of these techniques, in the fol-

lowing subsection, I will briefly demonstrate their basic potential through a series

of examples and personal reflections.

5.3 Perspectives
Recent text-to-image AI models, such as DALL-E 2 [173], Midjourney [174] and

Stable Diffusion [175] open new possibilities towards virtual artwork restoration

and proposing creative image derivates of an artwork. These methods are already

used for image inpainting and outpainting (i.e. extrapolating a scene beyond what

is captured in an image) applications, where the editing is guided by a natural lan-

guage caption. The example of outpainting highlighted on the website of DALL-E

2 [173], shows the girl in Vermeer’s “Girl with Pearl Earring”, surrounded by her

room, filled with details of domestic intimacy (see Fig. 5.1). Of course, this is

mainly a creative endeavour, the visualization of a hypothesis and not an attempt

to claim with certainty a ground-truth that does not exist. For this reason, herein-

after, the results of these text-to-image tools will be referred to as “hallucination”

or “generation” to emphasize the creative rather than the scientific side of the pro-

cess.

Furthermore, these techniques have the potential to show something reminiscent

of the original version of an artwork, in cases where descriptions of the original

appearance exist in the form of text. Fig. 5.2 shows Midjourney’s visual interpret-

ation [174] Vincent van Gogh’s painting “The Bedroom”, based on the artist’s own

description, in his letter addressed to this brother. Thus, the caption used for the

prompt in Midjourney was the following: “The walls are pale violet. The floor is



70 Conclusion and Perspectives

Figure 5.1: Example of outpainting. Is this how the house of the model in Vermeer’s

painting was decorated like? We don’t know, but it’s a possibility, as envisioned by DALL-

E 2. Image courtesy: OpenAI [173].

of red tiles. The wood of the bed and chairs is the yellow of fresh butter, the sheets
and pillows very light greenish-citron. The coverlet scarlet. The window green.
The toilet table orange, the basin blue. The doors lilac. And that is all - there is
nothing in this room with its closed shutters. The squareness of the furniture again
must express inviolable rest. Portraits on the walls, and a mirror and a towel and
some clothes.” [176].

It is interesting that in three out of the four results, together with the fantasized

image, the color palette of the pictures is summarized as well. In its default use, the

Midjourney generates four possible results. Afterwards, it is possible to hallucinate

additional variations of one of the results. While the results respect the colors and

content of the description quite closely, the results is too photorealistic, in the

sense that is resembles more a photography than a painting. To add a painting

style, the words “a painting of a bedroom” were added to the prompt. In the new

results displayed in Fig. 5.3, we can see that the perspective and the content is more

similar to that of the artist. Actually, if we add “a painting of a bedroom in van

Gogh’s style”, then the results approaches even more the current appearance of the

original painting, as it can be visualized in Fig. 5.4. This is probably because in

the training dataset that Midjourney employs to learn text-to-image associations,

there are images of van Gogh’s paintings, which influences the style of the output.

Moreover, because the lilac colors are lost, there is an obvious bias to the images
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Figure 5.2: Left: Midjourney’s hallucination for van Gogh’s description of his painting

“The Bedroom”. Right: variations of the second generated image.

of the current status of the painting. It seems that if we want to approach the

virtual restoration of the painting with Midjourney, the results without indicating

the name of the artist in the prompt remain closest to the original colors (Fig. 5.3).

Sometimes, the hallucinations unlocked by Midjourney can be helpful to visualize

the artist’s original intention (Fig. 5.3). However, as it based on a textual represent-

ation, the creativity can go even beyond the artist’s final rendition of the intended

scene and propose new, original variants that are sometimes triggered by the limit-

ations of the tool in understanding expressions. For instance, when prompting the

van Gogh’s description of the “Starry Night”, “in short the starry sky painted by
night, actually under a gas jet. The sky is aquamarine, the water is royal blue, the
ground is mauve. The town is blue and purple. The gas is yellow and the reflec-
tions are russet gold descending down to green-bronze. On the aquamarine field
of the sky the Great Bear is a sparkling green and pink, whose discreet paleness
contrasts with the brutal gold of the gas. Two colorful figurines of lovers in the
foreground.” [177], the Midjourney algorithm fails to understand that “The Great

Bear” refers to the constellation, and instead paints an actual animal, while still

creating a beautiful and fluid starry landscape (Fig. 5.5).

As with all AI-based techniques, the potential of image synthesis from text and

in general, all generative approaches is huge for computer graphics and computer

vision applications. However, it is accompanied by the risk of these methods to

be used with malevolence. For this reason, it is crucial to regulate these tools

and ensure the positive side of image generation approaches. Of course, when it
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Figure 5.3: Midjourney’s hallucination for van Gogh’s description of his painting “The

Bedroom”, and adding a “A painting of a bedroom” to the prompt.

comes to art, it is not trivial to make the distinction between artistic intention and

words that may carry a negative charge. For instance, Midjourney bans the use of

the word “blood”. This was discovered while trying to see how the tool imagines

“The Scream” of Edward Munch based on his own words (Fig. 5.6: “I was walking
along a path with two friends – the sun was setting – suddenly the sky turned
blood red – I paused, feeling exhausted, and leaned on the fence – there was blood
and tongues of fire above the blue-black fjord and the city – my friends walked
on, and I stood there trembling with anxiety – and I sensed an infinite scream
passing through nature.” [178]. The word “blood” was replaced with “red” for the

prompt to run. In a similar way, DALL-E [173], another platform for text-to-image

generation bans the use of word “dissection”, as discovered by [179]. Would the

results have been more dramatic if the original words had been used? It is difficult

to answer, but what is for sure, is that there is a concern against the misuse of these

AI generated art tools, and there is room for fine-tuning the enforcement of ethics

so that it does not become a technical limitation while shielding the malicious
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Figure 5.4: Midjourney’s hallucination when prompting van Gogh’s description of his

painting “The Bedroom”, and adding a “A painting of a bedroom in van Gogh style” to the

text.

users.

Although at the moment, text-to-image tools are mainly targeted for creative use,

they can be repurposed to better meet the CH needs. This can achieved by includ-

ing conservation scientists, art historians and restorers in the process of prompt

engineering [180] and quality assessment of the results of the tools. For instance,

for natural image inpainting, such a pipeline was proposed by Wang et al. [181],

where the refinement of the restored image is guided by text input, allowing for

specific editing of material and appearance properties, and in the end, the quality

is evaluated by a group of human users. In addition, all inpainted outputs bear

a watermark signature to elucidate that the image is generated by a computer al-

gorithm, and not a digital reproduction of a real scene. To address CH needs, the

work of Wang et al. could be extended by including a dataset of CH images in the

training process, and by letting art conservators and restorers engineer a prompt

according to their desired parameters.
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Figure 5.5: Midjourney’s hallucination for van Gogh’s description of his painting “The

Starry Night”, and adding “a canvas painting” to the prompt. The tool fails to understand

that the “Great Bear” in the artist’s description refers to the constellation, not the animal.
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Figure 5.6: Top: Midjourney’s result for Edward Munch’s description of the scene that in-

spired his painting “The Scream”. Bottom: alert against using the word “blood”, showing

implementation of ethical concerns in the Midjourney platform.
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Abstract. We describe the design and realization of a novel multispectral light dome system
and the associated software control and calibration tools used to process the acquired data,
in a specialized pipeline geared towards the analysis of shape and appearance properties of
cultural heritage items. The current prototype dome, built using easily available electronic and
lighting components, can illuminate a target of size 20cm x 20cm from 52 directions uniformly
distributed in a hemisphere. From each illumination direction, 3 LED lights cover the visible
range of the electromagnetic spectrum, as well as long ultraviolet and near infrared. A dedicated
control system implemented on Arduino boards connected to a controlling PC fully manages
all lighting and a camera to support automated acquisition. The controlling software also
allows real-time adjustment of the LED settings, and provides a live-view of the to-be-captured
scene. We approach per-pixel light calibration by placing dedicated targets in the focal plane:
four black reflective spheres for back-tracing the position of the LED lamps and a planar full-
frame white paper to correct for the non-uniformity of radiance. Once the light calibration
is safeguarded, the multispectral acquisition of an artwork can be completed in a matter of
minutes, resulting in a spot-wise appearance profile, that stores at pixel level the per-frequency
intensity value together with the light direction vector. By performing calibrated acquisition of
multispectral Reflectance Transformation Imaging (RTI), with our analysis system it is possible
to recover surface normals, to characterize matte and specular behavior of materials, and to
explore different surface layers thanks to UV-VIS-IR LED light separation. To demonstrate
the system features we present the outcomes of the on-site capture of metallic artwork at the
National Archaeological Museum of Cagliari, Sardinia.

1. Introduction
Reflectance transformation imaging (RTI) is widely used in the Cultural Heritage field, first
and foremost for documentation purposes [1], as well as for enhancing visibility of details with
small relief [2] and for the extrusion of the three-dimensionality of the real-word object. The
technique is based on capturing multiple images of an object from a fixed viewpoint under
different directional illumination.

The acquisition setup can be quite simple, with a camera on a tripod and a hand-held torch
that is freely moved around the scene, recovering the illumination direction from highlights on
a spherical target (H-RTI). This method is cheap and flexible, but makes light calibration hard
and requires careful manual procedures. The counterpart of H-RTI is the dome-based system
with higher stability and precision, being based on fixed lights equally sampled in the shape
of a hemisphere. Dome solutions are, however, expensive and not too practical to be used for
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on-site acquisitions. In this paper we describe the design of a novel dome solution using low cost
hardware and a reasonably portability making it suitable for both lab and on-site acquisitions.
We describe our hardware and software choices, comparing them with prior work. We finally
demonstrate the suitability of our system for Cultural Heritage applications, by showcasing an
on-site acquisition carried out at the National Archeology Museum of Cagliari, Sardinia.

2. Related work
Several dome solutions have been introduced so far, with different cost requirements, dimensions
and running environments [3, 4]. Schwartz et al. [5] presented a complex hardware design and
the corresponding calibration and processing procedures for the "brute-force" sampling of a 6D
approximation of Bidirectional Texture Functions (BTFs). In addition, their setup is capable
of robustly and precisely reconstructing the mesoscopic material geometry, e.g. displacement
maps, as well as capturing shape and reflectance of complete 3D objects. The system includes
industrial digital video cameras, a rotation stage, LED lamps and projectors. The drawbacks of
this arrangement are the high cost and high difficulty of handling outside the lab environment, as
well as the need of complex calibration procedure due to many different hardware components.
Hameeuw [4] proposed a portable solution extremely easy to use. It is almost a one-click
solution that can provide a straightforward RTI acquisition pipeline. The dome is equipped
with a 5 million pixel camera or a 29 million monochromatic sensor; it mounts 260 white LED
light sources around a 80cm diameter dome. The main design purpose is to make it easy to
assemble/disassemble the dome in less than half an hour. This requirement makes it operable
both in museum collections or other in-situ scenarios. Recently, other domes have been presented
that use both visible and invisible light wavelengths. One example is the Microdome with
multispectral RTI capability presented by the RICH team [6]. It is equipped with 228 different
LED light sources. Those LEDs are divided in five different spectra: ultraviolet (365 nm), blue
(460 nm), red (523 nm), green (623 nm), and infrared (850 nm). A 28 megapixel monochromatic
sensor is mounted on top of the dome.

In order to convert the raw image stack into shape and reflectance parameters or high quality
relighted images, the calibration of light direction and intensity is required. Over the last
decades a lot of methods have been published that deal with different kinds of acquisition setup,
and several, non-ideal types of illuminants[7, 8, 9, 10]. Calibration should provide images and
metadata suitable for the use with RTI processing/relighting pipeline.

In our work we propose an integrated dome solution coupled with our light calibration and
processing software ([11]) able to recover reflectance parameters, relighted images and 3D models
and we demonstrate its usefulness in CH applications.

3. Our system
Our dome (Figure 2) features 156 multi-spectral LEDs evenly distributed across 52 light positions
over a 60cm diameter hemisphere. All the light sources have a wide aperture in order to stretch
the homogeneity of the light intensity as much as possible. The light sources cover 5 bands (see
Figure 1): two narrow in the ultraviolet (centered at 395nm) and infrared (centered at 850nm)
regions and one broad in the visible to collect the RGB signals of the Nikon D810 DSLR camera
with the infrared cut-off filter removed.

The camera is mounted on top of the hemisphere. The dome design has been thought in order
to allow for its use in a fixed setup in an arbitrary orientation. This is achieved by integrating
all the hardware components to the fixed dome structure, including the camera, as presented
in Figure 3. It is possible to scan the objects horizontally, lying on a table by directly placing
the dome on top of the acquisition surface (the most common setup for laboratory experiments
or even on-site acquisitions, given that the cultural heritage objects allow to be moved) or
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vertically, on a wall by mounting it on a tripod or other similar mounting accessory (appropriate
for immutable objects, such as paintings, frescoes, etc.).

The control unit consists of some control boards (Arduino Mega 2560) and three constant
voltage constant current programmable control supply power modules (DP20V2A). The boards
drive the switch (on/off) of the single LEDs in the dome, while the power modules are used to
tune the intensity of the three sets of LEDs (i.e., UV-VIS-IR). The Arduino boards are inter-
connected and can communicate with an external PC via USB cable using a serial protocol. This
protocol allows a PC program to select and turn on one LED at a time; it is mandatory to wait
until a LED is off before sending other commands.

Figure 1. Spectral distribution of the LED spotlights in ultraviolet, visible and near infrared.

Figure 2. Light position distribution of the dome device.

Figure 3. Several snapshots of the dome device.

3.1. Acquisition control software
An user friendly interface has been developed to control the image stack acquisition. The interface
enables the easy control of both dome lights (sending commands to the Arduino according to
the defined protocol) and of the digital camera by using a software library [12] with access to the
camera settings. The GUI allows selection of predefined lights switch and synchronized camera
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Figure 4. The graphical user interface of the dome system transmitting the live-view of a
captured artwork, together with the camera settings.

capture sequences, or individual switches (Figure 4). The user can view in real-time the change
of lights and the illuminated object during the acquisition thanks to the live-view window. The
live-view feature is useful as well to visually check the image quality when adjusting the camera
settings (ISO, shutter speed, aperture, white balance, image format and focus). The camera
settings are optimally configured so as to capture sharp images of the object’s surface.

3.2. Light calibration
The dome calibration method use methods and algorithms presented in [11], specifically adapted
in order to obtain a preliminary estimation of per pixel light direction and reference illumination
in the acquisition region that is then used to correct the image stack acquired during the actual
object capture. This procedure consists in capturing two calibration targets at the same focal
distance used for the object capture: the first includes four glossy spheres at the corners, and
the second is a white Lambertian surface placed perpendicularly to the camera axis (Figure 5).

The image stack obtained capturing the first target is used to estimate per pixel interpolated
light direction from the position of highlights on the spheres, as shown in [11]. The second image
stack is used at the time of object image processing to correct original images with an intensity
correction factors proportional to the measured illumination on the white target.

All these calibration procedures can be easily realized with a custom software tool (RTITool)
freely available at https://github.com/giach68/RTITool. The tool allows semi-automatic sphere
annotation and light direction estimate (Figure 6 (a)) as well as the intensity correction of the
object images based on the reference images of the target (Figure 6 (b)). The tool features also

Figure 5. Target with reflective spheres being placed in the acquisition region for light direction
calibration.
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(a) (b)

Figure 6. Calibration software (RTItool) options for the dome system. (a) light direction
estimation tab with the annotations of the four black reflective spheres; (b) intensity correction
based on the loaded images of the white frame target.

several options for image preprocessing (e.g.undistortion) and on the fly calibration of RTI stacks
based on targets directly added to the imaged scene (white frame and spheres).

The light calibration procedures and the interpolated light direction estimation proved to
be effective in improving the accuracy of quantitative parameters that can be derived from the
image stacks, e.g. normals and albedo [13].

4. Case Study
The dome has been tested on different artworks (paintings, bas-reliefs, coins). In this paper we
present a particularly interesting case study related to an onsite acquisition of a metallic artwork
at the National Archaeology Museum in Cagliari, Sardinia, Italy. The digitized object is an
ancient gold lamina with historical inscriptions. Named ”Lamina del Sulcis”, it consists of two
fragments of an inscription engraved on thin gold leaf ”lamina” (a thin plaque or panel intended
to be affixed to some other surface), that was found in the earliest stratum of the Sulcis tophet
or infant cremation cemetery (West Sardinia). Only 1.4 cm x 1.5 cm x 0.05 cm in size, the whole
lamina is thought to have once been attached to an iron object that has partially damaged its
surface. The text has been dated to the 8th-7th centuries BCE on the basis of its paleographic
features [14]. This makes the object extremely important for the Mediterranean archaeology
[15].

In Figure 7 we show the acquisition setup. Before capturing the object images, the calibration
procedure with the sphere target and the white target has been performed as described in Section
3. In the object acquisition setup, reflective spheres have been placed as well in order to allow a
potential direct calibration from the acquired images. Different acquisition have been performed
using different resolutions.

The RTI processing pipeline described in [11] has been used to extract albedo and normals of
the lamina’s surface, as shown in Figure 9.

Particularly valuable for the analysis of paintings, multispectral signal is also of great
importance for metallic objects, and can increase the amount of information provided for a
particular artwork. Looking at albedo and normal maps obtained with the three different lights
it is possible to see that they capture slightly different information.

From the reflectance properties of the object it is possible to obtain useful information about
it, in this case, for example, reading inscriptions. In [11] we have shown that measures like the
Outlier Direction map (Figure 10), counting the number of incoming light directions causing non
Lambertian reflection in the target object can reveal surface details. Estimating this map from
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Figure 7. The acquisition setup: the dome is placed in order to have the object near the center
of its sphere with its flatter part perpendicular to the camera axis.

(a) (b) (c)

Figure 8. Example captured images with the different ligths. (a) visible. (b) IR. (c) UV.

(a) (b) (c)

(d) (e) (f)

Figure 9. Albedo and normals of the lamina, estimated with Photometric Stereo on Visible
(a,d), IR (b,d) and UV (c,f) images.

PS fitting and mosaicking (manually) image patches in order to obtain an approximate object
reconstruction it is possible to visualize the enhanced inscription as shown in Figure 10. It is
possible to see that the map obtained with the IR images better enhances the characters, possibly
due to the different shape of the specular highlight in the IR frequency reflectance function.

By relighting the image and simulating the appearance of the object from a virtual light
direction, an enhanced visualization of the inscriptions is obtained (see Figure 11). In this case
we performed relighting with Radial Basis Function interpolation as shown in [16], allowing a
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(a) (b)

Figure 10. Outlier Directions maps enhancing local specularity of the surface can enhance
useful detail. In this case the IR-based enhancement results in more readable characters.

good representation of the specular component of the reflectance.
Moreover, the recovery of the normals allows for a 3D reconstruction that further on leads

to the identification of matching points between the two fragments of the lamina. The shape of
the object has been obtained by integrating the input normal vector field. A mask identifies the
object within the normal map images (Figure 9). Two types of integral have been performed. The
first is a one-dimensional integral along the object/mask contour. Since the integral is defined
up to a constant, a random point on the contour is chosen to have depth equal to zero. The
boundary condition of the linear integral is the depth value of this point, which is the first and
last point on the integration curve. Then a surface integral is computed, using the depth of the
contour as the boundary condition. In both cases, an approximation of the second derivatives
of the surface is employed to build a sparse Poisson based linear system, and it has been solved
through a multidimensional Conjugate Gradient method. Figure 12 shows the re-attachment
of the two parts into a whole piece, based on the corresponding points with highest matching
probability.

5. Conclusion
The dome system presented in this paper is a flexible and reliable solution that can be extremely
useful for the digitization of various types of artworks and underlying materials. By our multiple
acquisition experiments both in laboratory and on-site, we have proved that our system is highly
portable and this is thanks to the integrated hardware components that can be controlled by
a single tool. Apart from the all-in-one controlling software, we have showed how the image
stack delivered by the dome is easily compatible with image calibration and visualization tools
developed in previous work for different RTI setups, by adding only minor tweaks. Above all, we

(a) (b)

Figure 11. Lamina images relighted from top center position (lx, ly) = (0,0) and with raking
light from right (lx, ly) = (0,0.85) using Radial Basis Function interpolaton.
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Figure 12. Shaded (left) and textured (right) rendering of the 3D model of the lamina obtained
with 3D stitching of the two meshes recovered by normal map integration.

have seen that the multispectral dome in combination with reflectance fitting algorithms leads
to revealing results for artworks, from detail visibility enhancement to 3D reconstruction and
fragment reassembly.

As future work, we intend to enlarge the portfolio of acquisitions with the dome, by testing
it on more artworks, with other properties than what was covered so far. At the same time, we
are planning to continuously improve the supporting image processing tools, according to new
challenges that may arise, and to extract more visual information based on the multi-light image
stacks captured by the dome.
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ABSTRACT

Fluorescent or luminescent materials absorb light at shorter wavelengths and re-emit at longer wavelengths. In
terms of appearance, this translates to a increased color vividness, as well as a glowing effect. Thanks to these
properties, the study of fluorescent materials is of interest for Cultural Heritage applications, where fluorophores
are incorporated in many pigments and varnishes. This paper proposes a variant to Reflectance Transformation
Imaging (RTI) technique, namely Fluorescence Transformation Imaging (FTI), that handles luminescent objects.
Reflectance Transformation Imaging method outputs a single-camera multi-light image collection of a static scene,
which can be used to model the reflectance of the scene as a polynomial of the illumination directions. Similarly,
Fluorescence Transformation Imaging aims to model the fluorescent signal based on a series of images with fixed
scene and viewpoint and varying incident light directions - what changes with respect to RTI is that fluorescence
is recorded instead of reflected radiation. In the literature, there are works that explore the isotropic property of
fluorescence in low-dimension multi-light imagery methods (such as Photometric Stereo) to model the appearance
of an object with a first-order polynomial. This is based on the assumption that in the fluorescent mode the
object gets closer to a Lambertian surface than in the reflective mode where non-Lambertian effects such as
highlights are more likely to appear. Nonetheless, this assumption stands for single-object scenes, with uniform
albedo and convex geometries. When there are multiple fluorescent objects in the scene, with concavities and
non-uniform fluorescent component, then the fluorescence can become secondary light to the object and become a
source of interreflections. Through quantitative and qualitative analysis, this paper explores the Reflectance and
Fluorescence Transformation Imaging methods and the resulting texture maps towards appearance rendering of
heterogeneous non-flat fluorescent objects.

Keywords: Fluorescence, Reflectance Transformation Imaging, Interreflections, Appearance Rendering

1. INTRODUCTION

Fluorescence is a photoluminescence phenomenon where light is absorbed at lower wavelengths and re-emitted
at longer wavelengths. For classic artworks, this phenomenon is useful for detecting several resin-based aged
varnishes or restorations. At the same time, modern artworks sometimes employ synthetic fluorescent pigments
because of their special appearance properties. To name a few of these properties, highly bright and vivid
colors that reflect more than the incoming light due to self-luminescence, as well as hidden details that gain
visibility when illuminated by specific short-wavelength fluorescence-inducing light installations. For these rea-
sons, fluorescent materials have received a lot of recent attention in the computer graphics and cultural heritage
communities.

Nonetheless, fluorescent objects are challenging to measure, model and render. Due to the shift in the
excitation-emission wavelengths they need to be measured by a bispectrometer, where for each illumination
wavelength, the reflectance and emission response are recorded distinctly for each spectral band. The bispectral
nature of fluorescent materials adds another layer of complexity to bidirectional reflectance distribution functions
used in computer graphics to model the change in appearance with changing viewing angles and changing
illumination angles. For this reason, most of the works make assumptions towards the type of fluorescence
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exhibited by materials (uniform fluorescent composition, not reflecting the same color they fluoresce) to simplify
the appearance modelling.

At the same time, Reflectance Transformation Imaging (RTI) has become an established multi-light image
technique used for 2.5D reconstruction, appearance modelling and relighting with numerous active applications
in the Cultural Heritage community.1–5 The methods designed under the RTI umbrella have been tested for
opaque and diffuse objects, as well as opaque and shiny surfaces. Even though there are a few works on using RTI
for the rendering of translucent6 and fluorescent materials,7 the literature is still scarce on multi-light imagery of
special materials. Moreover, for fluorescent materials, usually a low-dimensionality RTI stack of only 3-4 images
has been investigated.8,9

This work aims to study the appearance of challenging scenes with fluorescent objects: with a heterogeneous
distribution and concentration of fluorescent content; prone to interreflections by being reflective in the same
wavelengths they fluoresce and by containing a mix of convex and concave geometries. For the study, single-
camera multi-light images are collected with traditional Reflection Transformation Imaging and a proposed
Fluorescence Transformation Imaging (FTI) method, and polynomial models are used to recover appearance
coefficients.

2. RELATED WORK

Photometric Stereo and Reflectance Transformation Imaging. Photometric stereo was a method first
proposed by Woodham et al.10 for recovering shape from only few images acquired by a static viewpoint of
a static object scene illuminated by different light directions. This pioneering work was aimed for Lambertian
objects, that are diffuse and flat. The minimally optimal number of images to be acquired was defined as three, so
that the linear system of equations composed by three unknowns (a coefficient for each of the x, y, z components
of the light directions) can be overdetermined and uniquely solved. The coefficients in this case represent the
components of the normal vector.

After photometric stereo was established as an image-based shape recovery technique, other models have
been proposed as an improvement by relaxing the Lambertian assumption. In this sense, a groundbreaking
work was the formulation of Polynomial Texture Maps (PTM) introduced by Malzbender et al.,11 which fit a
multi-light image collection to a quadratic polynomial, where instead of only the normal vector, 6 coefficients are
reconstructed that account for the shape as well as other more complex non-Lambertian appearance phenomena:
interreflections, shadow, highlights. Moreover, they coined a new term - Reflectance Transformation Imaging - as
a general term for referring to the conversion of multi-light image collections to reflectance to maps that describe
a surface appearance. In Drew et al.,12 a modified second-order polynomial with different terms was proposed
as an improvement to the original PTM11 so that in case a purely Lambertian surface is captured, the three
shape-related coefficients can be extracted from the model in a straightforward way without having to apply any
non-linear operation to recover one of them, as it’s the case with.11 In addition, many robust methods have been
designed to handle irregularities that break the Lambertian rule such as shadows and specularities.12–14

Fluorescence-based Photometric Stereo. One of the studies to empirically prove the isotropic property
of fluorescence was carried out by Tominaga et al.,15 where fluorescent samples were measured in a goniometric
fashion. Their findings showed that the fluorescence radiance factor was changing with the variation of incident
light with a trend very close to a cosine function, while there was little change with the viewing angles. The
first works to exploit the Lambertian behaviour of fluorescence in a photometric stereo setup, completed by
Treibitz et al.8 and Sato et al.9 were developed contemporarily. Both these works have similar findings. More
precisely, they show that shape reconstruction from photometric stereo can be improved for fluorescent objects,
because the specularities disappear in the fluorescent state making the surface more diffuse. They separate the
fluorescent signal from the reflective signal through multispectral imaging. In,8 a yellow filter is mounted on
a trichromatic sensor to extract only the fluorescent signal excited by the blue light, while in,9 they isolate
fluorescence by working only with red and green channels. This assumption that fluorescence appears only in
the red and green channels, exploited as well by Fu et al.16 for developing an interreflection removal technique,
is based on the physical properties of fluorescence of absorbing the light at lower wavelengths and re-emitting
at higher wavelengths. However, this assumption perfectly stands in case of complete separation between the



sensitivites of the red, green and blue channels of the CCD sensors, while in the real case the trichromatic Bayer
filter has broad-brand spread in the electromagnetic space. In addition, another aspect this assumption is that
the fluorescence of the object has no overlap between the excitation and emission spectra, which is not true for all
objects. The authors in9 acknowledge this last considerations as limitation of their work. Moreover, they use it
as justification for explaining why their method is prone to be less affected by interreflections: in their fluorescent
state, materials with little to no overlap between their excitation and emission spectra are less likely to be excited
by their own self-emission and thus, there are less mutual illumination effects in the fluorescent state than in the
non-fluorescent reflective state. As pointed out by the authors in,9 this is valid only for simple scenes containing
only one objects. However, in more complex scenes with more objects with both concave and convex geometries,
fluorescent components can become a second, indirect source of illumination for the scene. Especially if these
materials reflect light in the same wavelengths where they fluoresce. Both9 and8 have minimized the problem
of interreflection by studying simple scenes of materials that don’t reflect the color they fluoresce. Under the
same assumption, the work of16 manages to decompose the direct and indirect illumination components from
fluorescent images so that it later feeds the photometric stereo reconstruction only the interreflection-free direct
light component images. Nonetheless, their approach requires homogeneous only materials.

To the best of our knowledge, Koutula et al.7 are the only ones to have exploited the angularity of the light to
visualize the relief of the fluorescent signal in museum ceramic artifacts. More precisely, Kotoula et al.7 show the
benefits of capturing reflectance transformation imaging in the UV-reflected (UVR) and UV-fluorescent (UVF)
ranges for visualizing traces of conservation on two real ceramic vases from a museum. The filters proposed
in their setup are off-the-shelf solutions for UV imaging: for the UVR, the UV-transmitter (HOYA 330) and
IR barrier filter (SCHOTT BG 38); for the UVF, an UV and IR barrier filters were used (B+W 021). In
the UVF RTI mode, traces of conservation, like previous repair of the ceramics become noticeable, because
common adhesives are luminescent when lit by the UV light, revealing details otherwise obscure in the visible
light. Actually, the authors in7 argue that UVF RTI is basically an efficient way of recording a good practice of
conservators when they visually inspect an artifact with UV light: they position the light around the artifact, at
different raking lights and statically inspect the change in the appearance of the object at each distinct position
of the light. In this way, UVF RTI becomes a way of documenting this process of dynamic inspection by stacking
together all the static frames at each light direction into a single relightable file. In contrast with UVF, the UVR
mode highlights the subtle variations in the surface, such as scratches and smudges, as well as traces remains
of glaze and salt encrustations. Even though such variations might be revealed as well in the visibile RTI, the
contrast is enhanced under UV reflected light and the variations gain clarity. Therefore, the paper of7 shows
effectively how the combined forces of RTI and UV imaging can export visualizations and rendering useful for
the analysis of Cultual Heritage objects.

3. MATERIALS AND METHOD

Figure 1: The two fluorescent mockups, as visually and casually inspected by a conservator under visible light
and, respectively, ultraviolet light in uncontrolled conditions.

In this paper, we compare normal and appearance maps recovered with four representations of the Pho-
tometric Stereo model, based on multi-light image collections of two handmade fluorescent objects, shown in



Fig. 1. The fluorescent objects were designed to have complex convex and concave geometries, a heterogeneous
composition and to reflect the same color as they fluoresce. The mockups are made of gesso mould mixed with a
commercial UV-induced lime green, fluorescent pigment. One of the mockups has a higher overall concentration
of the fluorescent pigment and the mixing was done in several iterations until achieving a more homogeneous
material (referred to in the paper as highly fluorescent mockup). The other mockup contains a lower overall
concentration of the fluorescent pigment and it is mixed in a rougher way, having a more heterogeneous compo-
sition (from now on, referred to in the paper as low fluorescent mockup). The two mockups were acquired with
a multispectral light dome system in visible mode and fluorescent mode. Based on the two stack of images for
each mode, surface normals and albedo maps are reconstructed using four methods. In the rest of this section,
a brief theoretical background for these methods is outlined.

A multi-light image collection can be formalized as a system of linear equations, where on one side we have
the intensity values and on the other side we have the polynomial based on the light direction vector. The terms
and order of the polynomial depend on the assumptions made with respect to the surface appearance. In the
case of classic Photometric Stereo (PS),10 the assumption is that the material is perfectly Lambertian and the
polynomial has a first-order and is modelled as follows:

anl = Ik (1)

where a represents the albedo, n the normal, l the light direction vector, I the intensity and k the number of
images taken at different illumination angle. If we split the light direction into the x, y, z components, and given
that the albedo is a constant that can be computed as the norm of the normal vector, eq. 1 becomes:

n1klx+ n2kly + n3klz = Ik (2)

There are 3 unknowns so in order for the system to be determined and reach a unique solution, at 3 equations
are needed, given by the capture of 3 intensity images under varying light directions. To ensure accuracy,
common practice is to acquire more than 3 images, where the overdetermined system is solved with Least-
Squares regression.

Since most of the real-world objects are not perfectly Lambertian, the reconstruction of albedo and normal
maps with classic Photometric Stereo is affected by more complex appearance effects such as specularities,
shadows or interreflections. Many methods that were proposed to extend this limitation focus on extending the
number of parameters of the surface model and/or design robust strategies for solving the system of equations.
The increased complexity of the models requires a higher number of images and hence, a multi-light image
collection. One of the first methods to extend the classic Photometric Stereo, by increasing the number of
modelled coefficients other than normal and albedo, PTM,11 replaced the first-order polynomial with a second-
order polynomial. This results in the recovery of 6 appearance descriptor maps.

One constraint of the PTM polynomial is that in case the analyzed object has a subset of its surface that
is perfectly Lambertian, then the regression of the biquadratic polynomial will not directly output the normal
vectors. This limitation is accounted for by the modified polynomial terms proposed by Drew et al. (PTMD)
in:12

c1klx+ c2kly + c3klz + c4klxly + c5klz
2 + c6k = Ik (3)

where lz =
√
1− lx2 − ly2 and the normal vectors are given by the first three coefficients. Simultaneously

with the straightforward recovery of the normal vectors for Lambertian parts, PTMD models as well high-
frequency and low-frequency non-Lambertian components (4th and 5th coefficients). However, the distinction
between the nature of these components (highlights, interreflection, shadows) is not trivial.

Furthermore, the influence of the outliers can be accounted for with robust fitting strategies that solve the
system of equations bypassing the Least Squares method. For instance, one such approach reformulates the
regression problem as the task of matrix rank minimization,14 assuming that the full set of observations explains
the Lambertian component of the material with a low-rank matrix and the outlier with a sparse matrix. In



Figure 2: Example images from the RTI and FTI collections, illuminated by an angle at 50◦ elevation. From
left to right: mockup with higher and almost uniform fluorescent component in the reflective, then fluorescent
mode; mockup with lower and heterogeneous fluorescent component in the reflective, then fluorescent mode.

addition, a per-pixel estimation of the light directions, was proved to be more effective at estimating surface
normals with polynomial models as opposed to assuming a constant light direction for all the scene.17

In the experimental part of our paper, we discuss the results obtained with four variants of the classic
Photometric Stereo algorithm: the first-order polynomial in Eq. 1, with constant light direction vector and
solved with Least-Squares; the first-order polynomial in Eq. 1, with constant light direction vector and solved
with low-rank matrix minimization;14 the second-order polynomial in Eq. 1, with per-pixel light direction vector
and solved with Least-Squares; the second-order polynomial in Eq. 3 with per-pixel light direction and solved
with Least-Square.

4. RESULTS

4.1 RTI and FTI Data Acquisition

The two fluorescent mockups that contain impressions of convex spherical objects as well as concave patterns
were acquired with a multispectral RTI light dome,4 with lights distributed at different elevation (50◦, 30◦ and
10◦) and azimuth angles. The ambient light was controlled by covering the dome in black non-reflective clothing.
The sensing device was a Nikon D810 RGB camera, with a 50 mm lens. The objects were captured in two
modes (see Fig. 2): reflective mode, under visible light (illuminated by white LEDs), and fluorescent mode,
under ultraviolet light (illuminated by ultraviolet LEDs) in combination with a filter attached to the camera
that separates the fluorescent signal from the UV-reflected signal.

Because filtering individually the visible radiation emitted by each UV LED was impractical, we tested
different filters assembly for filtering the UV-reflected radiation during the fluorescence analysis. Fig. 3 shows
the normalized transmittance curves of the measured filters compared with the spectral power distribution of the
UV LEDs of the dome as reported by the manufacturer. Hoya Pro1Digital UV filter was used for blocking the
internal fluorescence of the tested coloured filters: Nikkon Y44 and Hoya K2. Hoya K2 filter was chosen for the
experiments reported in this paper, cuts wavelengths lower than 500 nm, filtering most of the visible emission
tail of the UV LED.

At each light direction, a picture was shot sequentially, in the visible and fluorescent modes.The multi-
light image collections were converted from the raw signal to linear tiff using dcraw. Afterwards, the stacks
of images were processed with RTItool,18 where firstly, geometric undistortion was applied. Then, the light-
direction vectors were recovered assuming a perspective projection based on the semi-automatic annotation of
the calibration targets (4 glossy spheres). Given the polygonal arrangement of the 4 spheres (enclosing the
object), an interpolation was made between the 4 light direction vector and so, the light directions were locally
estimated for each pixel in the image. In addition to the per-pixel light direction, a constant light direction for
all image can be computed as the average of the 4 light direction vectors estimated from the 4 spheres. Finally,
an appearance profile is generated for the two mockups, where for each pixel, the color information is encoded
for each light direction.

Once the appearance profile is obtained, the surface coefficients are recovered with four fitting models: classic
Photometric Stereo, with constant light direction and Least-Squares fitting (PS-L2),10 Photometric Stereo with



Figure 3: Normalized transmittance curve measured for off-the-shelf fluorescence-pass filters, together with the
spectral distribution of the UV LED light of the dome.

(a) 1 (4 lights) (b) 2 (8 lights) (c) 3 (18 lights) (d) 4 (26 lights)

Figure 4: We use four different light distributions to evaluate the quality of the Reflectance and Fluorescence
Transformation modes. As mirrored on the reflective sphere, in each of the four distributions, the lights are
sampled in approximately radially symmetric way.

per-pixel light direction and Least-Squares fitting (PS-4-L2), Photometric Stereo based on low-rank matrix
minimization (PS-RPCA),14 Polynomial Texture Maps with Drew terms12 with per-pixel light direction and
Least-Squares fitting (PTMD-4-L2). The fitting is performed based on various light distributions (see Fig. 4)
in order to investigate the impact of the number of light directions and their spatial arrangement on the quality
of appearance reconstruction. The 4 light constellations are sampling increasing number of lights at different
elevation angles with approximately opposite azimuth distancing.

4.2 Ground-truth Shape Scanning and Registration

In order to compare the surface normals maps estimated with RTI and FTI, we scan the shape of the mockups
with an off-the-shelf structured light 3D scanner.19 Once the mesh of the surfaces is recovered, we align the two
coordinate systems using mutual information algorithm20 as implemented in Meshlab.21 Mutual information
algorithm optimizes the roto-translation matrix in an iterative fashion based on the statistical similarity between
the normal map obtained with the camera (from RTI anf FTI modes) and various renderings of the 3D model
(normal map, ambient occlusion map and specular map). After alignment has converged, the 3D model is



Figure 5: Albedo of the highly fluorescent (top) and low fluorescent (bottom) mockups. From left to right:
reconstruction with FTI PS-4-L2, FTI PTMD-4-L2, RTI PS-4-L2, RTI PTMD-4-L2 for light configuration 4.
The PS-4-L2 model seems to perform better at discarding the shading effects from the albedo map than PTMD-
4-L2.

rendered with the camera parameters and the transformation matrix using Mitsuba renderer.22 This protocol of
shape-to-image alignment has been employed before in analogous task.23,24

4.3 Quantitative and Qualitative Analysis

Appearance maps, such as albedo and normal maps are recovered from the FTI and RTI multi-light image col-
lections. The albedos of the two mockups reconstructed with PS-4-L2 and PTMD-4-L2 models in the fluorescent
and visible modes are shown in Fig. 5. For both mockups, we can notice that the two models reconstruct a
different albedo, while PS-4-L2 manages to better isolate the shading effects from the reflectance.

Surface normal maps given by RTI and FTI are compared with the normal maps derived from the 3D scans.
Fig. 6 shows a visual comparison of the normal maps recovered with RTI next to the ground-truth ones. While
the normal maps rendered from the 3D scanned models are overall sharper than the RTI surface normals, they
present horizontal line artifacts. Moreover, in the highly fluorescent mockup, fine details of the coin imprint are
better defined in the RTI surface normals. Even though the quality of the 3D scan normals is not impeccable,
they still represent a common reference ground for comparison between the different RTI and FTI modes.

Angular difference is computed between the normal orientation vectors of ground-truth against those recon-
structed with RTI and FTI as arccos(nT

gtn) for each of the 4 light distributions. The results are presented in
the form of box-and-whiskers plots in Fig. 7 and 8, as well as difference maps in the Appendix A. Overall, the
models that consider per-pixel light direction estimation show lower error than the models with constant light
direction. Similarly, the former category exhibit more invariance to the change of number of lights than the
latter.

For the low fluorescent mockup 7, the angular error is higher in the fluorescent mode than it is in the visible
modes for all light configurations, as obtained with PS-L2, PS-RPCA and PS4-L2 models. The lowest median
angular difference is given by the PTMD-4-L2 model, in particular for the 4th light configuration with 10.95◦ for
the visible mode and 11.46◦ for the fluorescent mode. Nevertheless, there is a general high overlap between the
distributions of the angular error difference in visible or fluorescent modes, meaning that the difference between
the two modes is not significantly large for this object. The impact of the light distribution varies according to
the fitting model, but is constant between fluorescent/visbile modes: for PS-L2 and PS-RPCA, it seems that
the best light configuration is configuration 2 (8 lights), while for per-pixel methods, PS-4-L2 and PTMD-4-L2,



Figure 6: Normal maps as rendered from the 3D scan (middle) and as reconstructed with RTI PTMD-4-L2
(top) and FTI PTMD-4-L2 (bottom) based on light configuration 4. From left to right: low fluorescent mockup,
highly fluorescent mockup, rotated detail of the coin imprint from the right upper corner of the highly fluorescent
mockup. The RTI and FTI normal maps manage to render fine elements of the coin imprint (such as the issue year
and the contours of the portrait) more accurately than the 3D scan. Nonetheless, they have poorer estimation
for the elements with higher depth.
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Figure 7: Angular error in degrees (Y-axis) between the ground-truth normal of the low fluorescent mockup and
the normals reconstructed with RTI and FTI methods with varying light distributions (X-axis). The angular
errors were computed only for the area corresponding to the object, background was discarded.

configuration 4 (26 lights). It is noteworthy to point out that in the fluorescent mode, PTMD-4-L2 seems to be
more stable across varying light distributions than it is the case for the visible mode.

The differences between visible and fluorescent modes are more salient for the highly fluorescent object.
Similar to the low fluorescent case, the higher angular differences correspond to the fluorescent mode. Moreover,
this time, given the lower extent of the overlap between the two distributions, the discrepancy between visible
and fluorescent modes is more significant. For the visible mode, the lowest angular error is provided by the
PS-4-L2 and 4th light configuration with a median value of 9.12◦, while for the fluorescent mode the lowest
median angular difference is 17.82◦ given by the PTMD-4-L2 and the same 4th light configuration. A descending
trend is observed for the error as the number of lights increases, which stops at the the 3rd light distribution for
PS-L2 and PS-RPCA, while continues up until the 4th light distribution for PS-4-L2 and PTMD-4-L2.

The fact that, for the given case studies, higher errors correspond to the normals recovered in the fluorescent
mode contravene the expectation given by previous findings in the scientific literature8,9 where due to its pre-
sumable isotropic property, fluorescence is more accurately approximated by the classic photometric stereo model
than signal in the visible light reflective mode. Moreover, the modulation of the angular error with varying light
distributions in the fluorescence mode further indicates the presence of deviations from a perfectly Lambertian
behaviour. It is true that in8 and,9 they exploit the fluorescence mode for objects that are highly specular in
the visible mode, while in our case, the objects are diffuse in the visible mode. In addition,8 and9 work with
single-geometry scenes and objects with uniform albedo that don’t fluoresce the same color they reflect, ensur-
ing the lack of interreflections provoked by the luminescence becoming a secondary light source in the scene.
We specifically designed our mockups to break the above-mentioned assumptions. The results of our proposed
experiments imply that heterogeneous, non-flat and cluttered fluorescent scenes exhibit more non-Lambertian
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Figure 8: Angular error in degrees (Y-axis) between the ground-truth normal of the highly fluorescent mockup
and the normals reconstructed with RTI and FTI methods with varying light distributions (X-axis). The angular
errors were computed only for surface corresponding to the object, background was discarded.

effects in the fluorescent mode. This might be partly explained by the higher number of interreflections provoked
by the luminescence becoming a secondary light that gets reflected by the object (that both reflects and emits
green color).

In an attempt to further assess the presence of non-Lambertian effects in the mockups, we visually compare
the 4th, 5th and 6th coefficient maps in Fig. 9 of the PTMD-4-L2 polynomial, as expressed in Eq. 3, for the
Green color channel, which is the most relevant for investigating the cross-signal between fluorescence and visible
reflectance. The 6th is the constant, ambient term, while the 4th and 5th coefficients model non-Lambertian high
and low frequency effects such as highlights, interreflections and shadows. However, it is not obvious and
immediate how to separate between the various effects. Nonetheless, we can notice that these non-Lambertian
effects are present in visible mode and are definitely not lacking in the fluorescent mode. Moreover, since the
mockups reflect the color that they emit in fluorescence mode, we expect that the mutual illuminations effects
are higher in the fluorescent mode. Indeed, the green channel of the 4th and 5th PTMD-4-L2 coefficients show
more variation in the fluorescent mode than for the visible mode in the case of the high fluorescent mockup.
This is valid for the low fluorescent mockup, spread of differences is overall lessened and more limited to certain
areas like edges and concavities.

However, in order to find out the precise nature and cause of higher angular errors for the normal maps
in the fluorescence method, further investigation is needed, and ideally, validated with synthetic data, where
ground-truth with respect to each outlier (shadows, interreflections and highlights) are known in advance and
can be discarded from the pipeline. We plan to explore these aspects in-depth in future work.



Figure 9: The 4th, 5th and 6th PTMD-4-L2 coefficients for the highly fluorescent (first two rows) and low
fluorescent (last two rows) mockups, plotted for the Green color channel, in both visible and fluorescence modes.
These coefficients model the non-Lambertian behaviour as encoded by the quadratic and constant terms of the
second-order polynomial, as expressed in Eq. 3. Overall, the highest difference between RTI and FTI is registered
by coefficients 4 and 5, while the constant term stays invariant.



5. CONCLUSION

In this work, the estimation of normal and appearance maps of heterogeneous fluorescent scenes with non-flat
geometries and multiple objects have been investigated under a Reflectance and Fluorescence Transformation
Imaging setup. Through qualitative and quantitative analysis of the normal vectors recovered with first and
second-order polynomial models, it was shown that contrary to the expectation given by the presumably ideal
isotropic property of fluorescence, the surface reconstruction error was higher in the fluorescent mode than
in the reflective visible mode. This might be due to the higher number of interreflections provoked by the
luminescence becoming a secondary light that gets reflected by the object (that both reflects and re-emits the same
color). Our findings show that is important to further investigate the appearance of complex fluorescent scenes
with Fluorescence Transformation Imaging, going beyond the assumption of a perfectly Lambertian behaviour
of luminescent materials. This is important for accurate appearance modelling and relighting of real-world
fluorescent materials.
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APPENDIX A. ANGULAR DIFFERENCE MAPS

Angular differences maps between normals from all models and light configurations (Lc) with respect to ground
truth are presented on a scale from 0◦ to 40◦ for the highly fluorescent and low fluorescent mockups.
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Tensor decomposition for painting analysis. 
Part 1: pigment characterization
Irina M. Ciortan1*  , Tina G. Poulsson2, Sony George1   and Jon Y. Hardeberg1 

Abstract 

Photo-sensitive materials tend to change with exposure to light. Often, this change is visible when it affects the 

reflectance of the material in the visible range of the electromagnetic spectrum. In order to understand the photo-

degradation mechanisms and their impact on fugitive materials, high-end scientific analysis is required. In a two-part 

article, we present a multi-modal approach to model fading effects in the spectral, temporal (first part) and spatial 

dimensions (second part). Specifically, we collect data from the same artwork, namely “A Japanese Lantern” by Norwe-

gian artist, Oda Krohg, with two techniques, point-based microfading spectroscopy and hyperspectral imaging. In this 

first part, we focus on characterizing the pigments in the painting based on their spectral and fading characteristics. 

To begin with, using microfading data of a region in the painting, we analyze the color deterioration of the measured 

points. Then, we train a tensor decomposition model to reduce the measured materials to a spectral basis of unmixed 

pigments and, at the same time, to recover the fading rate of these endmembers (i.e. pure, unmixed chemical signals). 

Afterwards, we apply linear regression to predict the fading rate in the future. We validate the quality of these predic-

tions by spectrally comparing them with temporal observations not included in the training part. Furthermore, we 

statistically assess the goodness of our model in explaining new data, collected from another region of the painting. 

Finally, we propose a visual way to explore the artist’s palette, where potential matches between endmembers and 

reference spectral libraries can be evaluated based on three metrics at once.

Keywords Multivariate analysis, Microfading spectroscopy, Color photodegradation, Pastel painting, Bubble chart

Introduction

Light-sensitive pigments may irreversibly change the 

appearance of an artwork after exposure to light. For this 

reason, special research and efforts are dedicated to keep 

in control the exhibition conditions and choose the opti-

mal lighting policy. While traditionally, broad categories 

of materials were established depending on assumed light 

sensitivity, more recently microfading has come into use 

to make more individual assessments. In this way, less 

sensitive objects may be displayed for longer, while the 

most sensitive objects will be better protected.

Furthermore, the degradation of pigments might 

interfere with the accurate recognition of materials in 

paintings. This is because fading might cause the disap-

pearance or transformation of some highly sensitive ele-

ments in the materials. In such cases, state-of-the-art 

non-invasive optical techniques used for the task of pig-

ment identification, such as reflectance imaging spectros-

copy can be helpful to find residual pigments, by sensing 

their known responses to certain incident light [1]. Nev-

ertheless, knowledge of the pigments’ fading behaviour 

can contribute towards their recognition.

The sensitivity to light applies not only to pigments, 

but to all colorants, dyes included and other materi-

als, such as wood. This has a practical implication and 

general applicability in a wide range of fields beyond 
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cultural heritage, such as printing, automotive indus-

tries, fashion and textile, architecture, etc. Because 

photodegradation is such a widespread concern, it has 

even been approached by the computer graphics com-

munity in an attempt to synthesize the spectral aging 

effects of multi-layered surfaces [2].

In this first part of a two-series article, we are pro-

posing an approach based on microfading spectros-

copy, coupled with multivariate data analysis to model 

pigment fading effects along the spectral and temporal 

dimensions. We show the performance of our model on 

a pastel painting, where specific research questions are 

answered.

Related work

Spectroscopic analysis for pigment identification

Spectral response of a pigment to electromagnetic radi-

ation represents a distinctive signature. For this reason, 

the spectroscopic signal is often studied for pigment 

identification tasks. While it is fruitful to operate in 

the reflectance domain [3], some works in the literature 

point out that the absorption spectra [4, 5] or the first-

derivative of the reflectance might be more helpful for 

discriminating pigments with similar composition [6–

8]. Johnston and Feller [4] used the additive property of 

the constituents of a mixture in the absorption domain 

to subtract the absorption spectra of a pigment before 

and after aging. The difference absorption spectrum 

preserved the peaks characteristic of a certain red lake 

pigment that were attenuated in the individual absorp-

tions. Fonseca et  al. [7] designed a decision support 

system to distinguish between plant (madder root) and 

animal (cochineal insects) red lake pigments based on 

inflection points of the reflectance curve and its first-

order derivative. Recently, Gabrieli et al. [8] used deriv-

ative analysis to identify the palette of Rembrandt’s 

“Night Watch”.

Given a spectral library, i.e. a dataset of reference pig-

ments, it is possible to assess the similarity between a 

standard specimen of a pigment and the measurements 

in an artwork, by comparing their reflectances as vec-

tors in the spectral space. The spectral similarity can be 

computed for reflectance or its variants: absorption and 

first derivative [8]. While there are various distance met-

rics that can be used, with spectral angle mapper being 

the most common [8], there are works in the literature 

that argue for the higher performance of spectral correla-

tion mapper [9] and Kullback Leibler pseudo-divergence 

[10]. Nevertheless, to find good matches, it is important 

to design the spectral libraries in such a way that they 

resemble the target in terms of chemical composition, 

concentration and binding media [11].

Pigment unmixing

In the case of image spectroscopy also known as hyper-

spectral imaging, where the spectra is documented at 

every spatial location of an artwork, it becomes feasible 

to map the existence of a pigment in two dimensions 

by thresholding the spectral similarity between a refer-

ence material and the measured painting [8]. In addition, 

hyperspectral imaging also allows for pigment unmixing, 

where traces of an endmember and their abundance are 

found at every spatial location. The pigment identifica-

tion based on the spectral signal can be affected due to 

mixing mechanisms. Thus, it is a common practice to 

perform pigment unmixing before computing spectral 

similarities with a databases. Given a collection of meas-

urements, pigment unmixing finds a set of endmembers, 

and the abundance of all endmembers in each sample. An 

endmember is a pure pigment that forms the basis of a 

palette in a painting, implying that all the other signals 

in the painting can be represented as a mixture of the 

endmembers. Nonetheless, the task of finding the end-

members is not a trivial one because of the nature of mix-

ing mechanisms. There is a lot of literature for material 

unmixing in the remote sensing field, where hyperspec-

tral imagery is used as well [12–14]. However, the spatial 

resolution in remote sensing applications is lower than 

close-range imaging as is the case in the cultural herit-

age field. In the former case, optical mixing occurs, at the 

sensor level, where a pixel is formed by a linear combi-

nation of the radiances of endmembers. Hence, linear 

unmixing models work acceptably for the remote sens-

ing field [13] and examples of known linear unmixing 

methods are pixel purity index (PPI) [15], N-FINDR [16], 

vertex component analysis [17]. PPI is the default unmix-

ing method implemented in the Spectral Hourglass Wiz-

ard functionality of the ENVI software [18], which gave 

good results for painting analysis while complemented by 

experts’ input [8] or automated algorithms to find mean-

ingful spectral features in the endmembers’ reflectance 

[11].

When it comes to close-range reflectance image spec-

troscopy, intimate mixing and layered mixing effects are 

of higher concern. Intimate mixing refers to the het-

erogeneous chemical composition of a material, while 

layered mixing refers to the blended stacks of materi-

als, where due to translucency, the material in the back-

ground has a contribution to the surface material that is 

recorded at pixel level. In these cases, non-linear unmix-

ing models are more appropriate to find the  endmem-

bers. Kubelka-Munk [19] is an example of a non-linear 

model, that describes the physical interaction of turbid 

media and it characterizes a medium with two opti-

cal coefficients, absorption and scattering. Unmixing in 

the Kubelka-Munk space has proven especially effective 
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for the analysis of pigments [20–22]. While physically-

based models such as Kubelka-Munk are accurate and 

offer an analytical solution to the radiative transfer equa-

tion, several data-driven methods for non-linear unmix-

ing were shown to be successful  as well. For instance, 

Kleynhans et al. [23] trained a convolutional neural net-

work to associate 1D spectra of pigments to their labels, 

given a dataset of illuminated manuscripts, scanned 

with a hyperspectral camera and with known chemical 

composition.

A common pre-processing step in the pigment unmix-

ing pipeline is represented by dimensionality reduction 

[24], typically achieved by principal component analy-

sis, non-negative matrix factorization or clustering tech-

niques such as k-means and t-SNE [25]. In several studies, 

tensor decomposition [26], in particular Parallel Fac-

tor Analysis (PARAFAC) [27], also known as canonical 

decomposition [28], was employed to achieve dimension-

ality reduction, clustering and classification of hyper-

spectral images in a trilinear fashion without resorting to 

flattening to a 2D array [29, 30]. The main advantages of 

tensor  (i.e. multidimensional array) analysis over matrix 

processing consist in the preservation of data structure, 

the ability to retrieve latent variables in the multi-linear 

space and the uniqueness of the base factors [31]. Thus, 

operations in the tensor space have a wide applicability 

in signal processing [32] and computer vision tasks [31]. 

Moreover, tensor computation was often been coupled 

with the sparse representations in dictionary learning 

methods towards speech recognition [33] and spectral 

unmixing [34].

In the field of chemometrics, numerous articles stand 

as evidence for the capabilities of PARAFAC [27] to 

extract unique pure spectra in a completely unsupervised 

manner from multi-way data such as fluorescence spec-

troscopy [35, 36], chromatography [37], laser-induced 

breakdown spectroscopy [38] and nuclear magnetic res-

onance spectroscopy [39]. For example, PARAFAC was 

effective in extracting the emission and excitation func-

tions of the fluorophores and their concentration in a set 

of bispectral measurements of sugar samples [36].

Fading analysis of pigments

Beside their spectral reflectance, pigments are also char-

acterized by their lightfastness properties. The behav-

iour of pigments to light exposure is used to judge the 

quality of a pigment by artists, paint manufacturers and 

art historians alike [40]. So much so, that in compendi-

ums describing pigments [41–43], fugitivity to light is 

included to assess the permanence of a pigment. Start-

ing as early as the second half of the nineteenth century 

[44], art historians together with conservation scientists 

designed fading experiments in a controlled environment 

that surpassed visual observation, and quantified the 

light-induced degradation of pigments in the color [45] 

and spectral domain [4]. For instance, Saunders et  al. 

[45] prepared samples of organic pigments following

historical recipes and aged them in an accelerated way

by exposure to artificial daylight fluorescent lamps at an

illuminance of 10,000 lux inside a chamber with constant

temperature and relative humidity levels. They measured

the samples colorimetrically in a gradual way, at every

predefined interval of time during the fading procedure.

The samples were exposed for 3000  h. The CIE �Eab 

color difference was computed to quantify the extent of

the fading. In addition, the color change was compared

to that of ISO blue wool (BW) standards 1–3 [46], that

have increasing lightfastness. This controlled fading

experiment showed that the most fugitive red lake is

brasilwood lake followed by lac lake, cochineal, kermes

madder and alizarin. Moreover, the authors discovered

several important factors that impact the fading: the lake

extraction method (raw, directly from insects as opposed

to colored textile patches), lake precipitation methods

(aluminum, aluminum with calcium carbonate and tin),

pigment concentration, content of ultraviolet radiation in 

the light source.

Several studies investigate the relation between the 

photo-permanence of pigments and the spectral power 

distribution of the light source used in the fading pro-

cess. Earlier on, Saunders et  al. [45] showed that ultra-

violet radiation strongly accelerates the fading pattern of 

organic pigments. The same finding was later confirmed 

by Hattori et al. [47] who noticed that ultraviolet radia-

tion contributed to the fading of blue wool standards 

[46] with a higher share than visible light. As far as the

visible range of the electromagnetic spectrum is con-

cerned, the fading seems to be positively impacted by

the amount of overlap between the absorption of the

pigment and the spectral distribution of incident light

[48]. Saunders et al. [48] were among the first to model

the light-induced color change of red lake pigments as a

function of the incoming wavelength. They adjusted the

fading experiment in [45] by coupling the light source

with seven broad-band filters with peak transmittances

sampled every 50 nm between 400 and 700 nm. Because

red lakes absorb more in the lower wavelengths, their

photo-degradation increases when exposed to light in

the blue side of the spectrum. Lerwill et al. [49] reiterated 

a similar experiment, with an improved setup based on

narrow-band filter for separating the incident light signal

and examining more pigments. While they agreed to the

conclusion of [48], i.e. damage increases with increas-

ing absorption, they found out that Prussian blue is an

exception. In other words, Prussian blue is less affected

by the light it absorbs and more by the light it reflects.
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The impact of the light source spectrum in accelerated 

aging experiments was acknowledged as well by Pintus 

et al. [50]. In an attempt to characterize the formation of 

cadmium soaps in oil paints, they discovered that LED 

light impinged more aging effects than a halogen lamp 

and a natural light source.

It is important to make the distinction between fading 

and other related terms such as light bleaching and pho-

tobleaching. In art conservation and material research, 

the first term is commonly adopted to refer to the process 

of yellowness and stain removal and it has been encoun-

tered in applications on aged paper [51], film artifacts 

[52], textile [53] and teeth enamel [54]. The second term 

is typically used in biology to refer to the process by which 

fluorophores are removed from a molecule through light 

excitation [55]. While photobleaching may relate to the 

light-induced chemical alteration of a colorant that affects 

its color attributes, its meaning is mainly tailored to the 

loss of fluorescence. For this reason, in the current study, 

we use the term fading which covers the general alteration 

of a colorant with exposure to any type of light.

Microfading analysis

Microfading is a fading process performed at a smaller 

scale, that concentrates light over spots of submillimetric 

size, thus minimizing the extent of the damage. For this 

reason, it can be considered an almost non-destructive 

technique and can therefore be applied on real artworks. 

Whitmore et  al. [56] were the first to propose a micro-

fading protocol for measuring real art objects. The non-

invasiveness is ensured by terminating the procedure 

before a noticeable color difference or a maximum num-

ber of iterations is reached.

In the recent years, thanks to the accessibility of port-

able microfadeometers (MFT) such as the one proposed 

by Lojewski [57], there has been an increased interest 

to analyse the light sensitivity of pigments directly on 

artworks. Chan et  al. [58] measured with the MFT the 

litographic print and the painted version (from 1910) of 

“The Scream”, both belonging to Munch museum. The 

most fugitive pigment in both artworks was revealed to 

be vermilion, with a light-sensitivity comparable to that 

of BW 1. The lightfastness analysis inspired the museum 

to design an intermittent display that lowers the display 

time for each artwork. Grimstad et  al. [59] microfaded 

27 paintings of Edvard Munch and similar to [58], they 

noticed that reds are the most sensitive colors, and all of 

these reds contain vermilion. Aambø et al. [60] gathered 

microfaded observations from 63 paper-based artworks 

in the Munch museum collection and discovered intri-

cate light-induced change mechanisms for pigments with 

apparently the same color and/or chemical composition. 

In one case, for two reproductions of a woodcut plate 

supposedly made of the same material, two samples that 

appeared to have the identically same green color showed 

a different fading pattern. This implies the use of two dif-

ferent pigments.

While the study of lightfastness in the color domain 

gives a first intuition on whether similar materials were 

used in a sample, it is the knowledge of the spectral com-

position that adds more precision. Even when a set of 

measurements share one pigment, the photo-degrada-

tion can have different dynamics because of the rest of 

the materials in the mixture. In [60], the red colors were 

found to be the most fugitive, approaching BW 1 fading 

rate, a finding similar to that of [58 and 59]. While ana-

lytical techniques discovered traces of vermilion in all 

the highly sensitive reds in [60], vermilion wasn’t the only 

pigment in the composition. In addition, other red colors 

were found to be more light resistant (BW 2–3 category), 

even though they contained vermilion as well. Moreover, 

other red points, with both similar pigments (vermilion) 

and similar color sensitivity, manifested a slightly differ-

ent change rate. In most of these studies, the microfading 

experiments are usually performed in the visible range of 

the spectrum, which better aligns with the current exhi-

bition conditions in museums and galleries [61].

Method

In many of the above mentioned related articles, the pig-

ment’s composition is sometimes known apriori, and the 

microfading analysis is mainly performed with the pur-

pose of implementing a more or less protective lighting 

policy for artworks displayed in museum exhibitions. To 

the best of our knowledge, there are no works that use 

the microfading analysis in the reverse way, i.e. to use the 

lightfastness behaviour aside from the spectroscopic fea-

tures for characterizing and identifying an unknown pig-

ment. In our work, we propose a linear unmixing method 

based on microfading single-point measurements, by 

modelling changes in the spectral domain and extract-

ing endmembers using multivariate algebra analysis. We 

represent the light-induced measurements as a 3D ten-

sor (samples*time step*spectra), where every sample is 

described by the spectral reflectance at different points in 

time during the photo-degradation process. With trilinear 

tensor decomposition, we are then able to recover chemi-

cally relevant endmembers that best explain the data, their 

concentration in every sample and the temporal change 

provoked by light exposure. While still a linear unmixing 

technique, by preserving the trilinear data structure, the 

tensor decomposition is able to recover more latent vari-

ables than a traditional bilinear setting [31].

Figure  1 shows an overview of our method. Given a 

set of spectral microfading measurements, we create a 

3D array, where the first dimension corresponds to the 
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number of observations, the second dimension corre-

sponds to temporal changes and the third to the spec-

tral reflectance. Then, we use PARAFAC in order to 

retrieve the loadings for each of the three dimensions, 

also called modes in our data representation. The PAR-

AFAC analysis gives the pure spectra underlying the 

sample, the concentration of all pure components for 

each sample, and the degradation rate of every princi-

pal component. Once we get the trained model, we can 

test whether it can explain new samples, unseen at the 

calibration stage, by keeping fixed the loadings corre-

sponding to the spectral composition and the alteration 

rate. Moreover, by using regression on the temporal 

change loadings, we can predict unmeasured future 

values.

Tensor decomposition with parallel factor analysis

PARAFAC is a tensor decomposition method that was 

initially proposed by Harshman [27] to increase inter-

pretability of multivariate data. PARAFAC can be consid-

ered as a generalization of the bilinear PCA method [36] 

in the sense that both methods assume the input data 

can be explained as a linear combination of basis factors. 

These factors are also called scores and loading vectors. 

However, one of the most important aspects is that PAR-

AFAC doesn’t require unfolding the data into bilinear 

form, thus maintaining the structure of the multivariate 

data. This way, there is a one-to-one mapping between 

the effects of a variable and a loading vectors, which is 

relevant for describing an underlying chemical or physi-

cal phenomena. Moreover, PCA doesn’t give an unique 

Fig. 1 The diagram of our method. The module 1 is the core model, where we extract the endmembers and their fading rate with three-way tensor 

decomposition from a collection of microfading observations. Using this trained model, we verify how well we can explain new microfaded data 

(2). Also, we apply regression on the fading rates and extrapolate the behaviour for future temporal modelling (3). Finally, we spectrally compare our 

endmembers with databases of pigments to identify the materials used in the painting (4).
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solution, because all rotations of the orthogonal load-

ing vectors can be good fits of the data. Thus, while PCA 

scores and loadings are still meaningful for deciphering 

the data, it is difficult to draw a direct association with 

pure chemical components. On the contrary, PARAFAC 

loadings have the property of being unique, where the 

unique loadings resemble loyally the actual pure spectra 

in a material [62]. At the same time, the scale of the load-

ing vectors resulting from tensor decomposition is uni-

dentifiable and has no immediate correspondence with 

units of measure unless a scaling factor to a ground-truth 

can be determined [62].

Let XM·K ·N be a 3D tensor, where M is the number of 

samples, K  the number of time steps and N  the number 

of spectral bands of the input microfading data. Then, 

using three-way decomposition, we can model this ten-

sor as the outer product of 3 factor matrices, A, B, C:

where F  is the user-defined number of components to 

split the tensor into. Using the Kathri-Rao product � , 

Eq. 1 can be re-written in the following flattened form:

where × denotes the conventional matrix multiplication. 

The flattened array can then be easily reshaped to the 

original size of the tensor.

The decomposition is solved with the alternating least 

squares algorithm [63] where the objective is to mini-

mize the squared residuals between the actual data and 

the model. If E is the tensor corresponding to the resid-

uals, defined by EM·K ·N = X − X̂ , then the loss func-

tion is min
A,B,C

E2 . Alternating least squares algorithm 

implies that the factors A,B,C will be conditionally 

estimated on each other. To determine A , B and C will 

be initialized and then, the minimization function will 

be solved for A given the B and C priors. Afterwards, 

the same operation is repeated to get B with the previ-

ously fitted A and initialized C . Subsequently, the opti-

mization function is run again for C with the already 

fitted A and B loadings. Finally, based on the values of 

the 3 factors obtained after the first iteration, the least-

square optimization is repeated in the same conditional 

fashion until convergence is reached, i.e. there is negli-

gible improvement in the newly fitted values with 

respect to the previous. While numerically there is no 

difference between scores and loadings, it is common 

practice to consider that the first factor, A refers to the 

scores of the model and B and C to the loadings. In this 

article, C represents the endmembers, A the concentra-

tion of each endmember f = {1 F} in all the input sam-

ples and B the fading rate for each endmember. 

(1)X̂M·K ·N = AM·F ⊗ BK ·F ⊗ CN ·F
,

(2)X̂M·KN = AM·F × (CN ·F � BK ·F )T ,

Moreover, because we are dealing with physical and 

chemical feasible data, the constraints of non-negativ-

ity for A and C are enforced during the decomposition 

process.

The choice of number of components F  is not trivial. 

Typically, if no previous knowledge is known about the 

tensor’s rank, then experiments are done starting from 

a very small number of components in increments of 1. 

For each trained model, residual analysis is performed 

and the chemical meaningfulness of the loadings is inter-

preted. The model that gives the most sensible fitting 

from a chemical point of view and has good residual met-

rics is then selected.

Testing the PARAFAC model for new data

It is possible to test new data based on a trained model. 

Let’s consider a test tensor XW ·K ·N
test with different size in 

the 1st dimension but identical size in the 2nd and 3rd 

dimensions with respect to the tensor used for train-

ing. Then we can fit the new data by keeping the B and 

C loadings fixed in Eq.  1 and solving only for the new 

concentration matrix AW ·F
test  . This makes sense under the 

assumption that the test data has similar chemical con-

tent as the data used for training.

Future modelling

The fading rate Rf  of each pure pigment is given by the 

loadings of the 2nd mode, B . Mathematically, it could be 

approximated by a line equation, implying that the reflec-

tance of a pure pigment changes linearly with time:

where k = {1 K } are the modelled time steps, a the slope 

and b the intercept of the line. Once the slope and inter-

cept are computed, we can replace k in Eq.  3 with val-

ues higher than K  and get the values of the change for 

future times. These new values can then be input in Eq. 2 

to predict the spectra of the original samples for future 

times other than those modelled. If there are samples in 

the original data, for which there are microfading spec-

tra recorded for more than K  time steps included in the 

training model, then the future modelling can be vali-

dated quantitatively. It is important to mention that the 

linear approximation in Eq.  3 is a simplification of the 

real change mechanisms and it assumes that the fad-

ing rate of each pigment evolves independently from 

that of other pigments. However, the fading rate Rf  was 

extracted as one of the factors from the tensor decompo-

sition method, which considers the tandem change of all 

the microfaded measured samples. Thus, it can be argued 

(3)Rf = ak + b,
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that the interaction between pigments is included to a 

certain extent in the fading rate curve.

Pigment identification

The endmembers extracted with our proposed method 

are described spectrally, which facilitates the compari-

son with reference datasets using established distances in 

the spectral domain towards pigment identification. We 

use spectral correlation and spectral angle as comparison 

metrics with databases of known pigments. Given two 

spectra s1, s2 , the spectral angle treats them as vectors 

and computes the angle between these two vectors as the 

inverse cosine function of their dot product:

A smaller angle indicates a smaller difference between 

the spectra. On the other hand, spectral correlation [64] 

computes the similarity of two spectra as the dot product 

of their mean-centered signals:

A higher correlation indicates higher resemblance of the 

two spectra.

Data collection and results

Case study: Oda Krohg’s painting “A Japanese Lantern”

In this article, we show the performance of our method 

on the pastel painting “A Japanese Lantern”, also known 

as “By the Christiania Fjord”. (see Fig.  2) created by the 

Norwegian painter Oda Krohg in 1886 and present in the 

collection of the National Museum of Norway (inven-

tory number NG.M.00879). The painting is made of pas-

tels applied on canvas and it is not very well documented 

from a scientific conservation point of view. Thus, the 

exact materials are unknown, and there is no record of 

the initial color appearance so as to make any immediate 

assumption about visible changes in the current version. 

This leads to the first research objective of our case study: 

to assess the light sensitivity of the painting materials. 

Typically, pastel sticks come in a wide range of hues and 

saturations [65] and are essentially composed of colored 

pigment powders in combination with white pigments, a 

white filler and binder [66]. To achieve a certain desired 

colour, pastel stick might contain a single pigment or a 

mixture [65]. While various binders can be used for 

the  preparation of pastels [66], art conservators assume 

that the ones in Oda Krohg’s painting are soft pastels 

and so, probably mixed with aqueous binder in rather 

(4)
SA = cos−1

∑
s1s2√∑

s2
1

√∑
s2
2

(5)SC =

∑
(s1 − s1)(s2 − s2)√∑

(s1 − s1)2
√∑

(s2 − s2)2

small amount. In terms of artistic technique, soft pastel 

paintings are often built up in layers, which combined 

with the pluralistic composition of pastel sticks, results 

in complex pigment mixing mechanisms. Therefore, the 

second research question for the case study is: can we 

surpass these complex mixing mechanisms and extract 

the pure pigments used in the pastel painting?

In order to address these research questions, two areas 

of interest in the painting were selected by the museum 

conservator for the analysis: the central lantern and the 

lantern in the left upper edge. Stylistically, the latter is 

actually depicting the reflection of the central lantern 

on the window. In particular, the area along the left edge 

is of special interest because it has been partially cov-

ered by the rebate of the frame, which prevented part of 

the pigments in the left lantern being exposed to light. 

Therefore, we are investigating if our approach can 

detect similar materials in the two lanterns.

Microfading data collection

Specific locations on the central and left were faded 

using the microfadeometer provided by FotoNowy 

Institute [67]. The MFT illuminated spots of 0.5  mm 

diameter, with a white LED at an irradiance of 12.585 

MegaLux and a power of 3.44 mW, for a 0 ◦/45◦ 

Fig. 2 Oda Krohg’s painting “A Japanese Lantern”. Pastel on canvas 

(1886). Courtesy of photographers Børre Høstland/Lathion, Jacques, 

National Museum
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geometry, as shown in Fig. 3. The light source was apri-

ori calibrated by the manufacturers with a white stand-

ard card [68] and, as can be seen in the spectral power 

distribution in Fig. 4, it has a stronger emission in the 

middle and right parts of the electromagnetic spec-

trum. The measurement was stopped when the �E00 

color difference with respect to the original reached 2 

units or after 600  s. For this reason, the cardinality of 

the observations is uneven, depending on the sensitivity 

of the pigment: some are measured for 77 s, others for 

600, etc. The L*, a*, b* color coordinates are recorded 

for D65 standard illuminant and CIE 1931 2 ◦ observer 

after every fading iteration. Apart from the color 

change, the instrument records the spectral reflectance 

every 11th second with a spectral resolution of 2.5 nm 

in the 400–730 nm range. To reduce the noise, the 

spectral data was smoothed with a Savitzky-Golay filter 

[69] of order 2 and window size 17, and then further

downsampled. In addition, the spectral range has been

restricted to 440 and 680 nm due to the high noise in

the data at both far ends of the measured spectrum.

As shown in Fig.  5, for the central lantern, 15 loca-

tions were microfaded that cover 5 apparent color groups 

(pink, green, red, pale blue/violet, orange). The mini-

mum common number of recorded spectral changes is 

8 (including the initial reflectance before fading), equiv-

alent to 77 s of light exposure. As far as the left lantern 

is concerned, 5 locations were selected for investigation, 

that correspond to red and dark pink colors. The dark 

pink points have been protected by the painting’s frame, 

which was removed during the microfading measure-

ments. Thus, one hypothesis that we try to verify with 

our model, is whether the dark pink and the red spots 

were initially applied from the same stroke, but they 

now differ in color because fading has occurred in areas 

unprotected by the frame.

Colorimetric analysis

Before diving into the tensor decomposition specifica-

tions and findings, we applied exploratory analysis tech-

niques to get a first-hand overview of the microfading 

data. The straightforward outcome from a microfading 

experiment is the color change of the samples as a func-

tion of time. This is a primary hint to the stability of the 

pigments. Figure 6 depicts the �E00 color difference for 

central lantern points measured with MFT and shows 

how the pink samples have the fastest change rate, while 

the green ones seems to be more stable.

Another immediate analysis from the microfading is to 

assess the color change for a*, b* coordinates, where a∗
+ 

corresponds to the red quadrant in the CIE L*a*b* space, 

a∗
− to green, b∗

+ to yellow, and b∗
− to blue. As shown in 7, 

the change occurs in the negative direction. This entails 

that all samples lose the yellow and red chromatic com-

ponents. It is interesting to note that Red 2 after fading 

has the same a*b* coordinates as Pink 5 before fading.

Specification of PARAFAC model fitting

The microfaded observations of the central lantern 

were structured into a 15*8*81 (samples * time steps * 

spectra) tensor. The three-way array was then decom-

posed using parallel factor analysis (PARAFAC) with 

the Matlab implementation of the N-Way toolbox 

[70]. In Additional file  1, we inserted a code snippet 

to exemplify basic operations. Setting the number of 

components in the PARAFAC analysis is not a trivial 

task. We adopted a trial-and-error approach starting 

from 5 components and stopping where the loadings 

of the endmember resembled impossible reflectances. 

Our rationale was rooted in the typical formulation 

Fig. 3 Microfading measurement setup. Light is incident on the 

surface at 0 ◦ and the colorimeter is collecting the signal at 45◦
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Fig. 4 Spectral power distribution of the white LED of the 

microfadeometer
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of pastels: they are manufactured as saturated color, 

where typically there would be a dominant pure pig-

ment combined with others in smaller quantities. Given 

that samples collected in the microfading experiment 

roughly represent 5 colour groups, we assumed there 

should be at least 5 pure pigments. Figure  8 depicts 

the endmembers extracted when fitting the model with 

5,  6 and 7 components. We can see that in the latter 

case, the spectra become noisier. Also, correlated spec-

tra seem to appear (orange and cyan curves) and the 

orange curve resembles a composite multi-lobe signal 

rather than a realistic reflectance. On the other hand, 

the 5 and 6-component case output smooth and simi-

lar reflectances. Nonetheless, the 6-component case 

introduces an additional component in the red end of 

the spectrum (cyan curve in Fig. 8b), which is a realistic 

reflectance resembling a typical red lake. As a matter of 

fact, in a later subsection 4.7, we will prove that indeed, 

this endmember has a high similarity with a crimson 

carmine lake, when comparing with a reference data-

base of pigments. Thus, we continued the analysis with 

the factors of the tensor decomposition model fitted for 

6 components. The model converged in 1099 iterations, 

retaining 99.99% variance in the data while achieving 

a sum-of-squared residuals of 0.0145. Moreover, the 

histogram of the residuals shows a bell-shaped curve 

around 0 (see Fig.  9), suggesting that the variance fol-

lows a normal distribution, which is a good quality 

indicator of the regression process.

Figure  10 plots the three modes of the resulting 

model: endmembers, fading rate of each endmember, 

and concentration of each endmember in the input 

samples in the central lantern collected with the micro-

fadeometer. In Additional file 1: Figure S1 displays the 

measured and modelled spectra for all the 15 samples, 

at time steps 1 and 8. The endmembers have the same 

color code in the three plots. One of the first comments 

that emerges is that the Pink 1–5 samples seem to be 

predominantly made of the endmember 2 (magenta 

curve), which also fades the most rapidly because it has 

the steepest descent in Fig.  10b. This is in conformity 

with the colorimetric analysis of the color degradation, 

where the Pink samples change most rapidly, reaching 2 

�E00 units before the other samples. Another interest-

ing outcome is given by the concentration of the end-

member in each sample. As the microfading experiment

Fig. 5 Locations measured with the MFT for the left lantern and the central lantern. Courtesy of Børre Høstland, National Museum

Fig. 6 �E00 as a function of time for selected microfaded samples in 

the central lantern, representatives of each colour group
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Fig. 7 The chromatic changes of the microfaded samples in the central lantern. The black square marks the initial value, before fading, while the 

diamond marks the final value, after fading
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Fig. 8 Endmembers obtained when fitting the tensor decomposition model with 5 (a), 6 (b) and 7 (c) components. In the 7 component case, the 

some spectral curves are noisy (cyan and orange curves) and seems to have a mixed rather than pure chemical composition. While both 5 and 6 

component cases give smooth curves and similar members, it seems that the latter is able to extract a different pigment (cyan curve), that with the 

sudden growth close to 600nm, shows the characteristic of an organic red lake pigment
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proceeds, we can infer that the underneath pastel layers 

get revealed as the top layer fades. This effect should be 

stronger for the pigments that are more fugitive. How-

ever, given the composite nature of the pastel sticks, we 

should also take into account that dominant concentra-

tions in a sample hint to the multiple pigments present 

in a single pastel stick.

Future modelling

In the trained model, we included only a subset of the 

measured time steps, which is the minimum number 

of measurements common to all 15 samples. However, 

except Pink 1 sample, there are more measurements 

for the rest of the samples. Hence, another way to vali-

date the goodness of the model is to test how well the 

excluded measurements can be explained by the trained 

model. To this purpose, we need to extend the fad-

ing rates for future time steps. As explained in subsec-

tion  3.3, we generated the fading rate for more than 8 

time steps, by applying linear regression on the loadings 

in Fig. 10b. This gives as a slope and an intercept for the 

temporal change rate of each endmember, that we can 

use to further compute the fading rate for new time steps 

using Eq. 3. Table 1 summarizes the line equations for the 

fading rates of the 6 endmembers and Fig.  11 exempli-

fies the goodness of the linear fit to the changing trend of 

endmember 1.

Using these fits, we generate the fading rate for time 

steps higher than 8 with Eq. 3. Then, we input these new 

values in Eq.  2 to recover  the spectra of the samples. 
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Fig. 9 Histogram of the residuals for the PARAFAC model fitted with 
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Afterwards, we compare the simulated reflectances 

with the measured ones with the root mean square 

error metric (RMSE). The barplot in Fig.  12 shows 

RMSE values for all the simulated time steps available 

for every sample. To be noted that the reconstructions 

for the first 8 time steps are done with the fading rate 

of the trained model, not using the linear approxima-

tion in eq.  3. Overall, the RMSE values are very low, 

proving a good performance of our model in estimating 

the future reflectance of the samples. Nevertheless, it is 

clear from the plot that the error increases with higher 

values of the time steps. This suggests a lower accuracy 

of the line fitting in approximating the fading rate when 

the gap between the modelled and simulated time steps 

is too high, especially for orange samples. It seems that 

the linear regression is most robust for the green sam-

ples. Indeed, Fig.  13 shows the measured and recon-

structed spectra for Green 2 sample at time step 55 

(594 s), which are very similar in shape and only slightly 

vary in amplitude.

Even though the linear regression gives the lowest coef-

ficient of determination for endmember 4’s fading rate 

(see Table  1), the future simulation of the samples with 

a high concentration of endmember 4 (Violet 1, Violet 

2) is not severely affected as the corresponding RMSEs

are among the lowest numbers. The visual analysis of

the reconstructed reflectance of Violet 1 at time step 16

Table 1 Slope, intercept and coefficient of determination for fitting the fading rate of the 6 endmembers to a line

1 2 3 4 5 6

Slope 0.0014 −0.0071 −0.0013 −0.0001 −0.0031 −0.0012

Intercept 0.3474 0.3850 0.3592 0.3539 0.3549 0.3589

R
2 99.26 % 97.17 % 88.90 % 24.91 % 96.06 % 93.98 %

1 2 3 4 5 6 7 8
0.348

0.35

0.352

0.354

0.356

0.358

0.36

Linear:  y = 0.001362*x + 0.3474
            R2 = 0.9926

endmember 1
   linear fit

Fig. 11 Linear regression fit for the fading rate of endmember 1. y

-axis represents the fading rate, while x-axis stands for the time step
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Overall, the RMSE has small values, suggesting that our model is able 

to reconstruct future reflectances with good quality. However, the 

higher the time step values, the larger the RMSE, showing a limitation 

of the linear approximation of the fading rate
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in Fig.  14 confirms the accuracy of the simulation with 

respect to the measurement. However, as previously 

mentioned, the reconstructions further deviate from the 

original for time step 32 (341 s), and especially time step 

55 (594  s). The deviation happens mostly in the region 

600–650 nm, which might also indicate unexplained vari-

ation of the tensor decomposition model in this spectral 

range. In future, other approaches to model the fading 

rate can be implemented towards improvement, such as 

spline interpolation or time-series models [71].

Model validation for the left lantern

In the previous sections we proved that our proposed 

tensor decomposition model is statistically valid and 

works fine for future modelling of the samples with 

the same chemical composition as those included in 

the training stage. Now, we’ll verify the performance of 

our model for unseen microfaded samples, taken from 

the left lantern in the pastel painting (see Fig.  5). It is 

assumed that the same materials were used to render the 

red and pink colors in the central and left lantern, since 

actually the left lantern depicts the reflection of the cen-

tral lantern. If so, then the trained model should be able 

to explain the variance in the left lantern data. To test this 

hypothesis, we arrange the 5 microfaded measurements 

into a three-way tensor, similar to the central lantern, 

which results into a 5*8*81 tensor. Then, we fitted a PAR-

AFAC model to this new data, by keeping fixed the load-

ings of the B (fading rate) and C (endmembers)  factors 

extracted with the previously trained model (for details, 

revise subsection  3.2). The model thus fitted achieved a 

sum of squared residuals of 0.0476. As a result, we obtain 

a new set of loadings, the A factor, (shown in Fig. 15) that 

gives the concentration of the already known endmem-

bers in the left lantern samples. All 5 samples have as 

major constituents endmember 1, 2 and 6, but in differ-

ent proportions. It appears that Red 1–3 samples in the 

left lantern are predominantly made of endmember 1, 

similar to the red samples from the central lantern. On 

the other hand, it seems that the two Dark Pink samples 

are richest in endmember 6. Additional file  1: Figure 

S2  displays the measured and modelled spectra at time 

steps 1 and 8, for the 5 samples in the left lantern.

To assess the quality of the reconstruction, we graphi-

cally analyze the residuals of the model fitted on the test 

data. Figure 16 shows the histogram of the residuals for 

each of the 5 samples, and the surface plots of the residu-

als distributed along the spectral and temporal dimen-

sions. We’d expect the histograms to have a Gaussian 

distribution and the surface plots to be as flat as possible. 

The histogram for Red 1–3 samples are centered around 

0 and fairly symmetric, even though they are slightly 

skewed towards the left. While the magnitude of the left-

side skewedness and asymmetry are more evident for 

the Dark Pink samples, the normal distribution pattern 

does not get disrupted to a far extent. At the same time, 

while the surface plots are not completely flat, show-

ing some variation that the model did not capture from 

the data, the magnitude of this unexplained structure is 

however of a very low order. Thus, the model has statisti-

cal relevance in explaining the left lantern samples, and 

we can conclude that the materials used in the central 

lantern are most likely the same as the ones in the left 

lantern.
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Another research question is whether the 5 samples on 

the left lantern correspond to the same materials, since 

in the painting it looks as if they were part of the same 

strokes. In this regard, it is noteworthy to mention that 

the resulting factor A loadings point to a sensible layering 

pattern of the pastels. Considering that the samples Dark 

Pink 1 and Dark Pink 2 were collected from an area in 

the painting that was covered by the frame, we know they 

were less exposed to less light than the rest of the left lan-

tern. Assuming that all the 5 samples represent the same 

material, the uneven exposure to light would explain 

the difference in the dominant pigment component. For 

instance, if the initial material was made of a layer of end-

member 1 covered by a layer of endmember 6, the fact 

that Red 1–3 samples were exposed to light for a consid-

erably higher extent, would explain why they have less 

concentration of endmember 6 as opposed to Dark Pink 

1 and Dark Pink 2. In addition, this theory can be cor-

roborated by a common artistic practice, namely that of 

covering a base red pigment (endmember 1) with a lake 

glaze (endmember 6) [45]. Even though this theory seems 

plausible, in order to fully validate it, we would need to 

complement our study with analytical data such as XRF, 

that would shed further light on the chemical composi-

tion of the pigments. We plan to pursue such an extended 

analysis in our future work.

Pigment identification

We compared the spectra of our endmembers with three 

reference datasets of known pigments using spectral 

angle and spectral correlation. The first dataset includes 

spectrophotometric measurements of 54 pigments 

combined with various binders: gum Arabic, gum Arabic 

measured with a reflection probe (that discards specu-

larities from the measurement), egg-tempera, acrylic 

and fresco [72]. From here on, this dataset will be called 

FORS-CHO. It is believed that the pastels used in the 

painting are soft, and most probably an aqueous binder 

was used in small quantities. For this reason, out of the 

binders in the FORS-CHO dataset, we chose the pig-

ments bound with gum Arabic (and measured with a 

reflection probe for higher precision), because this pig-

ment-binder combination is considered to be the most 

sensible with respect to the soft pastels in the painting. 

The second dataset consists of hyperspectral measure-

ments with the HySpex camera of a pigment panel, called 

ENST, that was prepared by National Gallery in London 

for the VASARI project [73]. It contains 64 unvarnished 

patches of historical pigments bound with egg-tempera 

and applied on a panel primed with gesso. Even though 

the binder is egg-tempera, which is not typically used 

for the preparation of soft pastels, we still used this data-

set as standard for comparison because it contains a 

higher variety of historical pigments than the first data-

set. Finally, the third reference collection is the only spec-

tral database of pastels applied on paper and measured 

with a spectrophotometer, and it is published by Centore 

[74]. While this database includes both modern brands 

(Blue Earth, Unison, Great American, Mount Vision) 

and historical pastel manufacturers (Girault, Sennelier, 

Schmincke), nowadays all the manufactures most prob-

ably use modern materials for the pastels’ preparation. 

Usually, these recipes are not revealed by the manufac-

turers so the chemical composition is unknown making it 
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difficult to interpret and validate the results in a pigment 

identification task. Nonetheless, we deemed it interesting 

to explore the resemblance with our endmembers espe-

cially because it  is a pastel-to-pastel comparison. To be 

noted that among the pastel manufacturers present in 

this dataset, Girault and Schmincke were already produc-

ing pastels when Oda Krohg painted “A Japanese Lan-

tern” in the late 19th century.

We have to keep in mind that the painting in our study 

has a more intricate formulation than the patches meas-

ured in the three spectral libraries. This is expected to 

negatively impact the quality of the spectral matches [11]. 

While for future work, we plan to collect a spectral ref-

erence dataset of a mockup that is carefully designed to 

mirror the materials and technique of the studied paint-

ing, we are still interested to see if the comparison with 

the currently available libraries leads to sensible matches.

The spectral sampling of the pigments in the reference 

databases varies with the measuring instruments, so they 

were interpolated to align to the sampling of the end-

members. After the interpolation, the spectral metrics 

in Eq.  4 and 5 were computed in a two-folded way: for 

the original reflectance vector and for the first derivative 

of the reflectance. The first derivative better captures the 

inflection points (minima and maxima) of the spectral 

reflectance curve. As a result, the spectral distance com-

parison will be more sensitive to big shifts in reflectance, 

which has more discriminative power than reflectance 

alone for pigment analysis, as proved in previous works 

[8]. In order to simultaneously visualize the similarity 

according to the reflectances, and both spectral metrics, 

we are visualizing the distances with a bubble chart in 

the following way. For each reference dataset, the low-

est 5 spectral angles with respect to the endmembers, are 

chosen for the reflectance and first derivative mode, giv-

ing a total pool of maximum 10 best matches. Then, we 

define a 2D coordinate system of the bubble chart with 

the spectral angle in the reflectance mode as the x−axis 

and the spectral angle in the derivative mode as the y−

axis. We plot each of the 10 best matches in this coor-

dinate system. It can happen that the first derivative and 

reflectance comparisons give overlapping matches. For 

this reason, we actually have less than 10 bubbles plotted 

for each pigment. Furthermore, the diameter of the bub-

bles is scaled with the spectral correlation value between 

of the endmembers with the reflectances in the refer-

ence datasets. We chose to vary the size of the bubbles 

with the diameter instead of the area because previous 

research [75] showed that the human visual system better 

appreciates changes in the diameter of a disk as opposed 

to its area.

Hence, in the bubble chart visualization, an ideal can-

didate would be represented by a big size bubble located 

in the bottom left corner of the chart, which translates 

to the following attributes: big correlation, low spectral 

angle for the reflectance, low spectral angle for the first 

derivative. Figure 17 displays the similarities of our end-

members (1–6) with the pigments in the ENST dataset, 

while Fig. 18 features the FORS-CHO dataset. It is easy 

to notice that overall, the spectral angles computed for 

the first derivative have a higher magnitude than those 

computed in the reflectance mode. This is because the 

first derivative is sensitive to any change of growth in 

the reflectance curve, and so it amplifies the noise of the 

initial signal. At the same time, the values of the spec-

tral metrics are lower for the comparison with the ENST 

library. This might be due to the use of historical reci-

pes in the manufacturing of the ENST target. At a quick 

perusal of the charts, we can see that there is a certain 

clustering of the endmembers, meaning that some end-

members have better matches than others. For instance, 

endmember 1 (red) has closer matches than endmember 

3 (orange) since the candidates for the former are located 

in the bottom left corner, while those of the latter are in 

the top right corner. For endmember 1, we can see that 

the reflectance comparison with ENST suggest the red 
lead pigment as the best match, because it’s situated in 

the left-most corner, while the first derivative spectral 

angle picks red ochre as having the lowest value in the 

y dimension. Interestingly, red lead is designated as the 

best candidate for endmember 1 by the FORS-CHO 

dataset as well, followed by vermilion and red ochre. 

Moreover, we can see that all candidates for the red 

endmember have bubbles of similar size, so in this case, 

spectral correlation does not bring clarification to distin-

guishing between candidates. ENST shows as secondary 

matches vermilion, cadmium red and rose madder, which 

are positioned very close to each other, with cadmium 

red being slightly better than the other two. Following 

the same reasoning, the most valid choices from ENST 

dataset for endmember 2 (pink) seem to be red lead and 

vermilion. Nonetheless, mercuric iodide arises as the best 

match according to the first derivative comparison, but it 

jumps more than 2 orders of magnitude along the x−axis. 

Out of the FORS-CHO pigments, red lead comes atop 

with the highest similarity.

It is interesting to note here several known aging attrib-

utes of the red lead pigment. It has been documented 

[41] that when exposed to sunlight, rain and carbon diox-

ide, red lead can cause the formation of lead carbonate,

giving it a whiter, thus pinkish appearance. Hence, if we

follow the theory that both endmembers are red lead, the

difference in their spectra might be due to this aging phe-

nomena. On the contrary, if we were to judge by inflec-

tion peaks only, endmember 1 and 2 have maxima at 590

nm and, respectively, 587 nm, which were associated to
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vermilion in a previous multi-analytical study of pig-

ments [76]. In the same study, red lead was associated 

with a peak shifted towards 565 nm. However, we believe 

this might be to a great extent influenced by the media 

(the previous study was performed for an illuminated 

manuscript) and the binder. Actually, as we can see in 

Fig.  19, the reference vermilion has a peak at 600nm, 

while red lead reaches its maxima at 578 nm. At the same 

time, the peaks of endmembers 1 and 2 are approximately 

equally distant to the reference red lead and vermilion in 

the ENST dataset.

As far as endmember 3 is concerned, chrome yellow 

surfaces as the most reasonable option from the ENST 

dataset, while FORS-CHO leads to saffron and cobalt 
yellow as best compromise along the two dimensions. By 

studying the reflectance of endmember 3, we can actu-

ally see that it doesn’t have the characteristics of a pure 

orange, because the curve has a depression in the red 

region of the spectrum. This means that the color is shift-

ing to green, which is a well known aging behaviour of the 

chrome yellow pigment [41]. The shift to green of chrome 

yellow has been encountered in other paintings, such 
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as Van Gogh’s “Field with Irises”, as recorded by Geldof 

et al. [77]. Figure 20 displays the reflectance of the aged 

chrome yellow from Van Gogh’s painting together with 

the spectra of our endmember. While we can see that the 

two spectra are similar, it appears that in the case of our 

endmember, the aging is more advanced. However, we 

should keep in mind that it is possible for this accentu-

ated loss of the red color to be rooted in the limitations of 

our model in perfectly unmixing the components. None-

theless, chrome yellow classifies as a feasible option for 

endmember 3 and the shift to green would also explain 

why the spectral metrics give generally higher errors for 

this component.

Top choices for endmember 4 (blue) from ENST seem 

to be cerulean blue, manganese blue and ultramarine 
mixed with lead-white. At the same time, the most simi-

lar pigments from FORS-CHO are Egyptian blue, cobalt 
blue and ultramarine. Regarding endmember 5 (green), 

emerald green, synthetic malachite and Scheele’ s green 

are nominated as the most similar pigments among 

ENST group. On the other hand, cobalt green and mala-
chite are the most salient with respect to the FORS-CHO 

group. As for endmember (violet), it is obvious from the 

sudden and steep growth of the reflectance curve close 

to 600 nm that it is a red lake. Red lakes surface as good 

options from the bubble charts as well. However, a very 
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helpful tool in identifying the actual type of lake is the 

protocol proposed by Fonseca et al.[7]. According to this 

protocol, the presence of two minima between 450–600 

nm prove that it is a carmine lake. Moreover, the proxim-

ity of second minimum to 600 nm, as shown in Fig.  21 

gives additional information about the preparation of the 

carmine lake in that it was precipitated on aluminum.

Out of the comparison with the Centore dataset (See 

Fig. 22), we can see that historic pastel brands emerge 

among top 5 matches for the endmembers: Girault 36 

and Schmincke 042B for endmember 1; Girault 196 

and Sennelier 930 for endmember 2; Girault 195 for 

endmember 3; Sennelier 290 for endmember 4; Girault 

229 and Schmincke 076 H for endmember 5; and lastly 

Schmnicke 048B for endmember 6. While the chemical 

formulation of the pastels included in the Centore data-

base is unknown, it is still possible that historic manu-

facturers might have preserved a formula close to the 

traditional formulations.

With the bubble chart visualization approach, we aim 

to shortlist possible pigments and to alleviate the task 

of conservators of assessing the potential candidates  for 

identification. It is up to the conservator to give weights 

to the two spectral metrics (SA in reflectance or deriva-

tive mode, and SC in reflectance mode). We believe 

with this visualization, it is also easy to spot and discard 

anachronistic pigments (as long as there are no suspi-

cions of forgery), albeit high votes from the spectral met-

rics. For example, titanium yellow could be discarded as 

an option for endmember 3, because it is a pigment that 

was created more than 60 years after the painting was 

created. Nonetheless, pigment identification is a complex 

task, hence multiple data, visualizations and knowledge 

about the pigment aging behaviour should all be weighed 

by an expert. Also, for full validation, analytical data such 

as XRF should be added to the spectral analysis, which 

we plan to collect in the future.
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Discussion

To summarize our results, we showed how microfad-

ing spectrometry can be useful to the analysis of an art-

work beyond assessing pigments’ sensitivity to light and 

summarizing their color degradation. Namely, we use 

the microfading data to perform pigment unmixing and 

identification. Moreover, we model the photodegrada-

tion phenomena in a spectral not only color dimension, 

and for all wavelengths in one go as opposed to a tedi-

ous recovery of the fading rate for each wavelength taken 

separately. This is achieved with multivariate data tech-

niques, such as the tensor decomposition model that 

is the pillar of our work. This model is trained on the 

microfading data and decouples signals to get pure pig-

ments (endmembers) on a spectral basis, together with 

their fading rates. As a byproduct, we can solve the pig-

ment identification task by comparing the endmembers 

with reference spectral datasets of pigments.

While the results look promising, our approach is not 

without limitations. Above all, we lack ground-truth 

to fully validate our results. For the pigment identifica-

tion task, we plan to solve this in the future by collect-

ing XRF data of the painting. In addition, our method 

requires user input, as long as the number of components 
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(endmembers) is concerned. This is common to other tra-

ditional pigment unmixing methods, such as PPI. Indeed, 

with pigment unmixing being such a complex task, we 

believe that art conservators and art historians should 

remain in the loop and ascertain the chemical meaning-

fulness of the endmembers. Moreover, it is important to 

mention that the tensor decomposition is a linear unmix-

ing method that might not manage to capture all the 

non-linearities present in a pastel painting, where both 

intimate and layered mixing mechanisms exist. While the 

accuracy of tensor decomposition for spectral unmixing 

tasks is supported by previous findings in chemical [37] 

and computer vision [31] applications, in future, we plan 

to compare the performance of our approach with that of 

non-linear unmixing models. Finally, although we show 

results for a single case study, our method can be applied 

on any other type of colorant data (ink, dyes, etc.) and 

artworks given a set of overlapping microfading measure-

ments and we intend to test this on mockups and addi-

tional artworks.

Conclusion

In this article, we presented an approach to pigment 

characterization in a painting. Our method is based on a 

tensor decomposition model that, from a set of microfad-

ing measurements, disentangles in one shot, the reflec-

tances of pure pigments, their concentration and their 

fading rate as a function of time.

We statistically validate our model on the training data, 

as well as for unseen, test data. In addition, we compare 

the endmembers with reference datasets of pigments and 

we present our results with a bubble-chart visualization 

that is capable of combining the result of three spectral 

metrics. This way, we ease the decision of art conserva-

tors in shortlisting the best pigment matches.

In conclusion, we showed how microfading, which is 

traditionally used only for assessing sensitivity to light, 

can be useful as well for the task of pigment characteriza-

tion. In this context, it appears that parallel factor analy-

sis shows promising results for pigment unmixing.
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Tensor Decomposition for Painting Analysis.
Part 1: Additional File 1

1. CODE SNIPPET

The following code snippet shows the basics of the tensor decomposition model, implemented in Matlab using N-way
toolbox.

1 % Let T be the 15*8*81 tensor , created from the MFT measurements

2

3 % Options for running the model. In order: convergence; initialization;

4 % plotting options; scaling; showfit; max. iterations.

5 opts = [1e-6, 0, 1, 0, 10, 4000];

6 % Activate constraints for non -negativity for the concentration and the

7 % endmembers.

8 constr = [2,0,2];

9 % Specify number of components and run PARAFAC.

10 Factors = parafac(T,6, opts , constr);

11 % Separate the factors in the 3 loadings A,B,C corresponding to

12 % concentration , fading rate , endmembers.

13 [A,B,C] = fac2let(Factors);

14

15 %Recreate the modelled tensor using Khatri -Rao product

16 M = A*kr(C,B) ’;

17 % Reshape M (15*648) to the original tensor dimensions

18 M = reshape(M, [size(T,1) size(T,2) size(T,3)]);

2. MEASURED VERSUS RECONSTRUCTED SPECTRA

A. Training: Central lantern
Fig. S1 shows the reconstructions of the tensor decomposition model for the spectra used as training, at time steps 1 and
time steps 8 (equivalent to 77 seconds). As it can be seen from the plots, the reconstructions are very loyal to the the
original spectra.
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Fig. S1. The reflectances of the 15 samples in the central lantern, as measured with the microfadeometer and recon-
structed with the tensor decomposition model, trained for 8 time steps.
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B. Test case: Left lantern
Fig. S2 graphically represent the reflectances of the 5 measured point from the left lantern and their reconstruction s with
the model trained with the data from the central lantern. The curves are very similar, implying that the model manages
to explain well the test samples.
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Fig. S2. The reflectances of the 5 samples in the left lantern, as measured with the microfadeometer and reconstructed
with the tensor decomposition model trained on the central lantern.
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Tensor decomposition for painting analysis. 
Part 2: spatio-temporal simulation
Irina M. Ciortan1*  , Tina G. Poulsson2, Sony George1   and Jon Y. Hardeberg1 

Abstract 

In a previous article, we modelled the spectral and temporal dimensions of the photodegradation behaviour of 

pigments in the painting “A Japanese Lantern” by Oda Krohg. In particular, we extracted the endmembers and spectral 

fading rate of pigments by applying tensor decomposition on a time-series of spectroscopic point measurements. 

Now, we capture the same painting with a hyperspectral imaging setup and propose an approach to render the 

fading effects as 2D images. More precisely, from the hyperspectral image, we compute the concentration maps 

of each previously identified endmember with a least-squares unmixing method. Subsequently, by using tensor 

algebra, we multiply the concentration maps with the endmembers and their corresponding fading rate and obtain 

a 4D tensor where each pixel in the image is described by a spectrum and a fading function. This way, we generate 

past and future spatio-temporal simulations of the painting’s appearance by reversing and elevating light exposure, 

respectively.

Keywords Spatio-temporal simulation, Tensor algebra, Microfading, Spectral photodegradation

Introduction

A wide range of materials manifests light-induced 

appearance changes. To name only a few: wood [1], paper 

[2], dyed textiles [3], pigments [4]. For this reason, it is of 

general interest to create models that are able to predict 

future degradation as a function of light exposure. In 

the field of cultural heritage, for older paintings where 

damage has already occurred, there is also an interest to 

reverse these changes, either through physical restoration 

or through digital image processing  techniques. The 

latter are non-invasive methods because there is no 

intervention on the real object, and they offer a good 

playground for the implementation of various scenarios 

of degradation. Thus, digital rejuvenation has been 

employed for the reconstruction of Georges Seurat’s “La 

Grande Jatte” [5], van Huysum’s “Flowers in an Urn” [6], 

Vincent van Gogh’s “Field with Irises near Arles” [7] and 

other drawings and paintings by van Gogh [4]. In some 

of the previous works, the proposed solutions are based 

on physical-based models such as Kubelka–Munk that 

considers the absorption and scattering of pigments, and 

the non-linear mixing of the various pictorial layers [2, 

5, 7]. Other approaches are hybrid, combining physical 

models with data-driven methods [4]. There are also 

purely data-driven approaches, where analytical data and 

measurements of accelerated aging are combined with 

linear regression methods to virtually restore and/or age 

an artwork [7, 8].

Our novel approach for spatio-temporal simulation 

of paintings is also a data-driven method. In a previous 

article [10], we showed how from a set of microfading 

measurements, we created a tensor decomposition 

model and extracted the spectral curve of the pure 

pigments, together with their temporal evolution. Now, 

we link the loadings of the tensor decomposition model 

with a hyperspectral capture of the same scene. More 
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specifically, we unmix the hyperspectral image with the 

endmembers previously obtained by minimizing the least 

square error under a linear mixing assumption. Once the 

concentration maps are retrieved, backward and forward 

spatio-temporal simulations are proposed.

Related work

Microfading analysis

Microfading refers to the accelerated aging process, 

where gradual light-induced changes in color and spectra 

are gathered. While accelerated photodegradation 

of pigments has been studied long before [11, 12], 

usually on mockups, it was not until the introduction 

of microfading that such experiments were performed 

on real objects. The main advantage of microfading is 

its minimal invasiveness. Light is cast over an area so 

small, that the fading effect is almost unperceivable by 

the naked eye, making this technique appropriate for 

the measurement of real artworks. Since the pioneering 

work of Whitmore et al. [13], who was the first to design 

a microfading setup, several other systems with increased 

spectral accuracy and higher portability for in-situ 

handling have been proposed [14–16]. As a consequence, 

microfading has enabled the color degradation analysis 

of a series of artworks from museum collections [17, 

18] and even outdoor rock art specimens [19]. In many

cases, this has determined museums to improve the light

policy and better control the display time of sensitive

artworks, such as Islamic Ardabil carpets [3], natural

history artifacts [20], paintings [18], and heterogeneous

collections including prints, watercolors, curtains [21].

Mapping of photodegradation

The point-based specificity of microfading experiments 

poses a challenge for the holistic visualization of the 

light-induced damage for an artwork’s entire surface. The 

lack of ground-truth regarding the aging of the artwork’s 

surface adds to the complexity of the task. There are 

several publications with a rather artistic approach to 

this challenge, where data from accelerated aging is used 

in combination with image manipulation software  such 

as Photoshop to simulate faded variants of artworks 

in the color domain [22–24]. For instance, Morris and 

Whitmore [22] collect microfading data of mockups that 

include different painting media. They transform the 

spectroscopic data to color coordinates, that are later 

fed to Photoshop to create uniformly colored swatches 

where the evolution of the photo-degradation becomes 

easier to visualize. Moreover, by using the same data and 

procedure, the authors render fading effects for images 

with variation in the spatial content. In particular, the 

spatial structure is taken from scans of real paintings. 

To avoid damage, the paintings are not measured with 

the microfadeometer and so, the color behaviour is 

borrowed from the mockups’ measurement. In addition, 

the authors automate the spatial rendering process in  a 

scientific software, where a look-up table is created from 

the fading measurements of the mockup, connecting a 

color group with its faded variants at all light dosages. 

Hence, when the simulation at a certain dosage is 

queried, the closest corresponding color in the look-up 

table is retrieved. However, no interpolation method is 

applied to fill in the gaps between unmeasured values. 

Hendriks et  al. [23] generated forecasts of the red and 

yellow colors in van Gogh’s “The Bedroom”, given a light 

exposure of up to 30 Mlux hr. The authors incorporated 

microfading data from aged mockups of red lakes and 

chrome yellow paints and based on these, altered the 

image of the painting in Photoshop. In a similar way, 

Brokerhof et  al. [24] made a prognosis of color changes 

for a collection of Dutch city maps from the 17th century, 

by running various light fading scenarios in the same 

image editing software. While in these works the fading 

experiments allowed for high dosages of light, this might 

not be possible when the analysis is performed on real 

artifacts. In these latter cases, the future change could 

be predicted from the set of measured data using linear 

regression [9] or time-series models [25].

Riutort-Mayol et  al. [8] proposed an interpolation 

method based on a multivariate Gaussian process, 

that correlates the set of microfaded points with a 

trichromatic image of the same scene. The Gaussian 

process considers the covariance between the faded spots 

and the pixels in color image based on their similarity 

in the HSV  (hue, saturation, value) color space and 

spatial proximity. This way, the color fading values are 

extrapolated to the entire image, facilitating spatio-

temporal analysis. Moreover, the sign of the partial 

derivative is used to ensure that the temporal change 

function is monotonically increasing. This method was 

applied to predict color changes for Spanish Levantine 

rock art paintings [19]. While potentially, given a 

hyperspectral image, the Gaussian process interpolation 

could be extended to the spectral domain as well, no such 

feasibility prospects were discussed in the papers [8] and 

[19].

Thomas et  al. [9] suggested an interdisciplinary 

approach for the spatial mapping of the color degradation 

in “The Scream” painting in the National Museum  of 

Norway collection. The pigments in the artwork had 

been previously  analysed with, among other methods, 

X-ray fluorescence, and test points for microfading were

chosen based on previous test points. Microfading data

were combined with knowledge of the paintings’ support, 

pigments and surface layer to create digital simulations

of the painting after 10 dose values ranging from 0.5 to

Content courtesy of Springer Nature, terms of use apply. Rights reserved.
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25 MLux hr. Moreover, unrealistic colors were eliminated 

based on color rendering index values.  It was pointed 

out that it is reasonable to extrapolate up to 3 times the 

applied dose. If we assume that 1.5 Mlux hr were applied, 

this allows for projections up to 4.5 Mlux hr. Beyond this 

limit, the authors claim that the model performs less well. 

For many artworks, simulations such as these may not 

be possible, as they require a combination of different 

methods of analysis and data processing that may not be 

viable to carry out for most objects.

Method

Figure 1 displays the workflow of our approach. The first 

and core module is represented by the tensor decomposi-

tion model (thoroughly described in Part 1 of this two-

article series) [10]. This model takes as input a collection 

of microfaded samples, and employs parallel factor analy-

sis (PARAFAC) to find the spectra of the unmixed pig-

ments (endmembers), their concentration in each sample 

and their fading rate. In the second module, we capture 

a hyperspectral image of the same scene to obtain the 

concentration of the endmembers for the full spatial 

dimension, beyond the microfaded points. Then, we can 

reconstruct each pixel in the image as a tensor product 

between the concentration, endmembers and the fading 

rate. This way, we generate spatio-temporal simulations 

of the whole surface, for the time steps included in the 

model. In the third module, we go beyond the measured 

time steps, by applying linear regression on the fading 

rates. As a result, the fading rate of each endmember is 

characterized by two coefficients (slope and intercept) 

and a given time step. Hence, fading rates for past and 

future moments can be computed. In tensor algebra, 

these new fading rates can be multiplied with the end-

member and their concentration maps to render the ana-

lyzed surface backwards and forward in time.

Spatio-temporal modelling

For the sake of brevity, we will not insist here on the 

tensor decomposition model as it was described in the 

“Method”  section of Part 1 of  this article series [10]. 

Thus, we take for granted that matrix C represents the 

endmembers, A the concentration of each endmember 

f = {1 . . . F} in all the input samples and B the fading 

rate for each endmember.

Let  us consider a hyperspectral image HI ·J ·U of the 

same scene from which  the microfading samples were 

collected. Instead of sampling the scene at only few 

locations as the microfadeometer does, the hyperspectral 

image measures the scene holistically, where for every 

pixel at location i, j with i = {1 . . . I} and j = {1 . . . J } its 

reflectance spectrum is recorded with a dense bandwidth 

for a total of U bands. Given the endmembers defined 

by the loadings of factor C of the trained PARAFAC 

model, we can unmix the hyperspectral image assuming 

the same endmembers. The unmixing is formulated as 

a least-square optimization problem, where the linear 

combination of the F  endmembers that best explains 

the image with the minimum sum of squared residuals 

is chosen. The result of the unmixing is given by the 

abundance maps, which are essentially the concentration 

Fig. 1 The diagram of our method. The module (1) is the core model, where we extract the endmembers and their fading rate with three-way 

tensor decomposition from a collection of microfading observations. Then we perform spatio-temporal fading simulation by capturing a 

hyperspectral image of the same microfaded scene (2). We unmix the hyperspectral image to get the concentration map for each endmember, 

and then recompose it as a tensor product with the fading rate for each of the modelled time steps. Finally, we extend the time span of the spatial 

simulations by extrapolating the fading rate for time steps not included in the trained model (3)

Content courtesy of Springer Nature, terms of use apply. Rights reserved.
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of each pure spectrum defined at pixel level. By flattening 

the abundance maps Amap into a matrix of cardinality 

IJ · F  , we can then replace it in Eq. 2 of Part 1 [10] and 

obtain spatial simulations of fading for each k time step 

modelled with PARAFAC:

Then we can reshape H
IJ ·KN
sim  to I · J · K · N  to access the 

fading simulations of the hyperspectral image at each 

time step k.

The loadings of the 2nd mode, B define the fading rate 

of every endmember. In Part 1 [10], Eq. 3 we showed how 

the fading rate can be expressed as a linear function of 

the light exposure. By replacing k in that equation with 

values lower than 1 or higher than K  (the total numbers 

of steps included in the model), we can estimate new 

values for the  fading rate Rf  backward or forward in 

time. These new values can then substitute B in Eq.  1 

to get the spatial simulations for time steps other than 

those measured. It is important to note that while from a 

mathematical standpoint the backward prediction holds, 

from a physical perspective, it is not entirely legitimate, 

as the modelling was achieved with data describing 

only the present and future state of the artwork. Thus, 

in this paper, we present a rather mathematically valid 

modelling of the past appearance.

Data collection and results

Case study: Oda Krohg’s painting “A Japanese Lantern (By 

the Christiania Fjord)”

In this article as well as its prequel, Part 1 [10], we 

show the performance of our method on the painting 

“A Japanese Lantern” created by the Norwegian painter 

Oda Krohg in 1886 and present in the collection of 

the National Museum of Norway (inventory number 

NG.M.00879). The painting is made on canvas, and with 

pastel media. The highlight of the painting, as indicated 

by its title, is the Japanese lantern in the top central part 

(see Fig.  2). The lantern is interesting from a scientific 

point as well, because it has an intricate color composi-

tion. For this reason, in this two-part series of articles, 

the lantern was chosen as the region of interest to char-

acterize the reflectance and lightfastness of the constitu-

ent pigments, based on microfading spectrometry. In this 

article, we present an approach to visualize the fading 

effects for the entire surface of the lantern.

Microfading analysis

In Part 1 [10] of this two-series article, we explained how 

we collected a set of measurements (see Fig.  2) from a 

fragment of the painting, i.e. the lantern in the top cen-

tral part, with a portable microfadeometer (MFT) [26]. 

(1)H
IJ ·KN
sim = AIJ ·F

map × (CN ·F ⊗ BK ·F )T

The temporal evolution of the color coordinates shows 

an overview of the color degradation mechanisms. As it 

emerges from the plots in Fig. 3, the tendency is for the 

colors to darken (the negative change of lightness) and 

desaturate (negative change of chroma). The desaturation 

effect is evident for the pink, red and orange samples. 

However, in the case of the green samples, it seems that 

chroma remains stable. Similarly, the chroma of the vio-

let samples has a rather small shift in comparison to the 

red, pink and orange. In addition, V1 saturates, while V2 

desaturates. This contrasting trend is probably related to 

the underlying materials that albeit similar in color, have 

different spectral composition.

Hyperspectral image capture

The painting was imaged with the HySpex VNIR-1800 

[27]. HySpex VNIR-1800 is a pushbroom hyperspectral 

scanner, with a CMOS sensor that records the spectral 

response every 3.2 nm between 400 and 1000 nm for a 

line of 1800 pixels at a time. In order to acquire a full sur-

face, either the camera or the object needs to be moved 

so that sequential frames are acquired. This results in a 

3D data array with size equal to (number of frames) * 1800 

pixels * 186 spectral bands. In this case, the camera was 

set on a rotational stage, parallel to the painting that 

was held in a vertical position with a motorized easel, as 

shown in Fig. 4. A lens focusing at 1 m was mounted on 

the camera, resulting in a pixel size equivalent to that of 

0.2 mm. The distance between the camera and the paint-

ing was approximately 1 m. To maximize the signal, two 

halogen studio lamps were placed on the left and right 

side of the camera, at 45◦ with respect to the painting. 

To account for the light non-uniformity of the captured 

line and to obtain the reflectance factor, a standard gray 

target with known reflectance of approximately 60% was 

Fig. 2 Locations measured with MFT on the central lantern. The 

samples correspond to five colour groups: pink (P), red (R), green 

(G), orange (O), violet blue (V). Courtesy of Børre Høstland, National 

Museum

Content courtesy of Springer Nature, terms of use apply. Rights reserved.
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placed alongside the painting. Each pixel in the captured 

line is corrected for the dark current noise. Then, to get 

the reflectance factor, the pixels in the region of interest 

are divided by the response of the gray target and mul-

tiplied by the known reflectance of the target. Similar 

to the microfaded data, the hyperspectral signals were 

smoothed with a Savitzky–Golay filter [28] of order 2 and 

window size 17 to reduce the noise.

Due to various constraints related to the in-situ 

measurements and museum logistics, the microfading 

was performed before the hyperspectral imaging. 

Moreover, at the time of the imaging campaign, the 

painting was reframed, whereas it was without frame 

during the microfading experiment. The framing 

includes a thin sheet of Optium acrylic [29] overlaid on 

the painting. The acrylic sheet blocks 99% of the UV 

Fig. 3 Alteration of L*, C* coordinates for the microfaded samples in the central lantern. The black square marks the initial value, before fading, 

while the diamond marks the final value, after fading. The lightness of all samples decreases after fading. While the red, pink and orange sample 

desaturate, the chroma of the green samples keeps constant. Interestingly, the two violet samples have opposite behaviours, where chroma 

increases for V1, whereas it decreases for V2

Fig. 4 In-situ setup for hyperspectral imaging

Content courtesy of Springer Nature, terms of use apply. Rights reserved.
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light, is anti-reflective and is transparent, so it should 

have minimal to no impact on the imaged signal of 

the painting’s reflectance in the visible range. It could 

be implied that during the gap in-between the two 

measurements, some intermediate fading might have 

occurred. Nonetheless, the painting was not on display 

during this period, so there should have been very little 

light exposure mostly due to the reframing after the 

microfading experiment, packing, and setting up for the 

hyperspectral scanning.

Exploratory analysis

In order to get a quick understanding of the hyperspec-

tral image, principal component analysis (PCA) was com-

puted to compress and visualize the significant variation 

in the spectral data for the full spectral range (400–1000 

nm). Before PCA was applied, the data was normalized 

along the spectral dimension with the standard nor-

mal variate preprocessing technique [30], to reduce the 

influence of the spectral signal’s intensity in favour of its 

shape. The data was split into 10 principal components, 

where the components are sorted descendingly by the 

amount of data variance they explain. By nature, prin-

cipal components (PC) are orthogonal, and they could 

suggest distinct materials in the data. However, it is dif-

ficult to give chemical meaning to the spectra of the PC 

especially since the mean-centering in pre-processing 

implies loadings with negative values. Fig.  5a, c display 

false color visualizations of the first 6 principal compo-

nents in the central lantern, where we can see a spatial 

distribution of different materials. We can parallel these 

distributions with the true color rendering of the central 

lantern (Fig. 5b) to attribute more meaning to the com-

ponents. For example, the red in Fig. 5a seems to corre-

spond to the yellow areas in the true color image, while 

green segments the violet-blue strokes and cyan cov-

ers the pink regions. Moreover, the false green color in 

Fig.  5c delineates stripes that overlap with the false red 

color regions in Fig. 5a. Actually, considering the known 

Fig. 5 True color visualization of the central lantern based on the hyperspectral image (b), together with PCA false color renderings (a, c). a R, G, B 

correspond to: PC1—45.23% retained variance, PC2—36.55% variance, PC3—7.3% variance. b R, G, B correspond to the most informative spectral 

bands: 650 nm, 551 nm and 470 nm. c R, G, B correspond to: PC5—2.47% retained variance, PC6—10.97% variance, PC4—5.53% variance
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Fig. 6 Loadings of the two factors (B, C) in our tensor decomposition model, fitted for 6 components
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fact that pastels are usually applied in layers, we could 

hypothesize that PCA manages to separate some of the 

layers in the painting, even though it is difficulty to quan-

tify the order. Nonetheless, if we carefully inspect the 

true color image, we can notice areas of yellow covered 

with green in the top left and right sides of the lantern.

Spatio-temporal spectral fading simulation

One of the advantages given by our tensor decomposition 

model and facilitated by the multi-modal acquisition, is 

the possibility to spatially map the temporal changes trig-

gered by fading. For generating spatio-temporal simu-

lations, we first recover the concentration maps of the 

endmembers (factor C loadings extracted with the PAR-

AFAC model, displayed in Fig.  6b) in the hyperspectral 

image using least-squares method. We enforce the non-

negativity constraint so that we get realistic, positive con-

centrations. Also, we interpolate the spectral sampling of 

the hyperspectral image to match that of the microfading 

data. The resulting abundance maps have the same spa-

tial dimension as the input hyperspectral image, 736 * 790 

(height * width), and are shown in Fig.  7. A clustering 

effect can be noticed, where the same endmember is pre-

sent in contiguous and adjacent regions, which indicates 

that the abundance maps are realistic. The most spatially 

predominant pigment is endmember 1, while the least 

extensive is endmember 6. The uniformity of endmem-

ber 1 seems to confirm the likelihood of our previously 

mentioned layering theory, suggesting the presence of a 

common bottom red layer applied on the central lantern 

before the other colors.

The abundance maps with size 736 * 790 * 6 are then 

flattened to 581,440 * 6 arrays so that they can be 

combined with the fading rate and endmember loadings 

(see Fig. 6) using the Khatri-Rao product, as formulated 

in Eq.  1. The result is a 2D matrix with dimensions 

581,440 * 648, where the second dimension corresponds 

to the number of time steps (8) multiplied by the number 

of wavelengths (81). This is then reshaped to a 4D array 

with size 736 * 790 * 8 * 81, that contains the spectral 

simulations along the 81 wavelengths for the 8 time steps, 

spatially distributed for the entire surface of the central 

lantern. We then separate the images at  each temporal 

slice, and transform them to CIE L*a*b* using CIE 1931 

2 ◦ standard observer and D65 standard illuminant. This

way, we can check whether the degradation pattern of the 

spatio-temporal simulations fits with the findings of the 

colorimetric analysis in “Microfading analysis” section.

Figure  8 shows the �E00 difference between the spa-

tio-temporal simulations at time step 8 and time step 1. 

We would expect that the maximum difference is 2 �E00 

units, since this is the span of the microfading data used 

to train the tensor decomposition model. While, indeed, 

the range is mostly below 2 �E00 units, the maximum dif-

ference reaches 2.5 units for few isolated groups of pixels. 

This can be caused by a number of factors: the imperfec-

tions of our model in finding all the endmembers; the 
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Fig. 7 Abundance maps, estimated with the least-square method, of endmembers 1–6 (previously extracted with the tensor decomposition model 

from the microfading data) in the hyperspectral image of the central lantern. Endmember 1 seems to be the pigment most uniformly distributed. 

This hints to its application as an underneath layer, beneath the rest of the colors
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least-square fitting error in the estimation of the abun-

dance maps; the setup differences between the micro-

fading and hyperspectral measurements that might 

generate a difference of scale when computing the abun-

dance maps. In addition, we graphically represented the 

subtraction of the color coordinates L* and C* between 

the simulations at time step 1 and time step 8. Hence, in 

Fig. 9 the false colors red and green stand for positive and 

negative change, respectively. The previous colorimetric 

analysis (see   “Microfading analysis” section) revealed a 

negative trend for  the  L* and C* coordinates for almost 

all of  the single point measurements. This trend seems 

to be preserved for the spatial simulations as well. None-

theless, we can notice small red areas in Fig. 9, indicating 

a positive change, which is contrary to the colorimetric 

analysis of the individual microfaded samples. This may 

be explained by the fact that those areas in the hyper-

spectral image simulations that change positively in 

the L* and C* coordinates were not measured with the 

microfadeometer. Actually, this raises one potential limi-

tation of our spatio-temporal simulation model: if the 

microfading experiment doesn’t sample the full range of 

the materials spatially present, then the performance and 

accuracy of the model might be affected.

We know that the hyperspectral image was captured 

1  year after the microfading experiment. In this period, 

the painting was not on display. Hence, the exposure 

should have been minimal, mostly occurring during the 

reframing process after the microfading data collection 

and during the hyperspectral scanning. By comparing 

the spatio-temporal simulations with the hyperspectral 

image, it is possible to estimate the amount of light expo-

sure in-between the two measurements. Therefore, we 

computed the �E00 and root mean square error (RMSE) 

between the hyperspectral image and the spatio-tem-

poral simulations for time steps 1–8. According to both 

metrics, the simulation at time step 2 is the one with 

the highest colorimetric and spectral similarity with the 

original image, as shown in Fig. 10. This implies that in 

the gap between the two acquisitions, the painting was 

exposed for approximately 0.0385 Mlux hr. However, 

there are a number of factors other than light expo-

sure that may influence the precision of this result. For 

instance, there were a number of differences between 

the microfading data collection and hyperspectral imag-

ing: the state of the painting (without and with the acrylic 
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2.5

Fig. 8 �E00 between the spatio-temporal simulations at time step 1 

and time step 8, where the exposure is equivalent to 0.027 Mlux hr

Fig. 9 Comparison of the CIE L*, C* coordinates between the spatio-temporal simulations at time step 8 (equivalent to 77 s of light exposure) 

and time step 1. Red depicts a positive change, while green a negative change. The negative difference prevails, which is in agreement with the 

colorimetric analysis of the microfading data (“Exploratory analysis” section)

Content courtesy of Springer Nature, terms of use apply. Rights reserved.



Page 9 of 12Ciortan et al. Heritage Science           (2023) 11:84  

sheet), illumination (LED  vs. halogen) and acquisition 

geometry. In addition, the neutral reference tiles used to 

calibrate the light sources for the two instruments were 

different. Moreover, there is the problem of unidentifiable 

scale of the endmembers extracted with the parallel fac-

tor analysis (see “Tensor decomposition with parallel fac-

tor analysis”  section in Part 1 [10] prequel). To account 

for these variations in magnitude, before computing the 

difference between the simulations with respect to the 

hyperspectral image, we applied normalization in each 

case by division with the maximum values.

Rendering of past and future appearance

In a previous article we derived the linear approximations 

of the fading rates characteristic to each endmember and 

estimated the slope and intercept, (see Eq. 3 and Table 1 

of Part 1) [10]. In addition, the goodness of the linear 

approximations was proved based on a test dataset. To 

visually acknowledge the effect of reversed and increased 

fading, we computed new fading rates for k = {−31 . . . 0} 

and k = {9 . . . 32} , which together with the measured 

k = {1 . . . 8} , cover a light exposure range of ±341 sec-

onds or ±1.19 Mlux hr. The number of 32 time steps 

was inspired from the analysis of future modelling of 

the point measurements in Part 1 [10], section  “Data 

collection and  results”, where the reconstruction error 

was showed to increase proportionally with the extent of 

the temporal range. For this reason, we chose a moderate 

value as a way to cap the amount of error and at the same 

time, achieve the visible effect of aging. Then, we input 

the new fading rates in Eq.  1 and created a total of 64 

hyperspectral images for k = {−31 . . . 32} . In Fig. 11, we 

show sRGB renderings (based on the CIE L*, a*, b* coor-

dinates integrated for D65 illuminant and 2 ◦ observer) 
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Fig. 10 The spatio-temporal simulation at time step 2 is most similar to the hyperspectral image, both colorimetrically and spectrally, with 

an average �E00 of 0.86 and an average RMSE of 0.13. This indicates that light-induced aging happened in-between the two measurements 

(microfading and hyperspectral). However, there are other factors, mainly related to the differences between the two acquisitions setups, that could 

influence the accuracy of this result

Fig. 11 Spatio-temporal sRGB renderings of the lantern, for D65 illuminant and 2 ◦ observer. For simulating the past, we reverse the light exposure, 

up to − 1.19 Mlux hr (equivalent to − 341 s or k = − 31 time steps). Present refers to 0 Mlux hr (k = 1) and future to + 1.19 Mlux hr (k = 32 or + 341 s). 

We can see that the overall appearance turns darker due to photodegradation. Also we can notice the shift to greener hues of the orange colours in 

the center (corresponding to points O1, O2, O3 in the microfaded samples). For a more gradual display of the change, for intermediate time steps, 

please watch the animation in the Additional file 1
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of the past, present and future appearance of the Japa-

nese lantern. The past, simulated for the smallest k can 

be considered a digital rejuvenation and shows a brighter 

and more colorful appearance than the consequent ren-

derings. Indeed, the future appearance (Fig.  11c) looks 

darker and less colorful. This means that the color degra-

dation trend, previously discussed in the case of a sparser 

spatial sampling (Fig. 3) or for a more confined period of 

time (Fig.  9) is consistent for bigger cutouts in the spa-

tio-temporal volume. The animation in Additional file 1 

portrays a more gradual visualization of the change, that 

takes into account the intermediate time steps between 

the past and future simulations in Fig.  11. We chose 

these boundaries for the light exposure k = {−31 . . . 32} 

because they are sufficient to show the aging process. 

Mathematically, we have no clear boundaries and poten-

tially, we could generate simulations far beyond this 

range. However, from a physical point of view, simula-

tions might get unrealistic beyond a certain threshold. 

Defining this threshold requires precise knowledge about 

long-term kinetics of the pigments and a full monitoring 

of the painting’s storage and display conditions, and it is 

out of scope for our current work.

Every 2D rendering for a certain time step has a full 

spectral representation. This facilitates the visualiza-

tion of the degradation for particular wavelengths. For 

instance, Fig. 12 shows the difference between the reju-

venation (− 1.19 Mlux hr) and aged (+ 1.19 Mlux hr) ver-

sions of the lantern, in RGB composite images. Each R, G, 

B channel corresponds to the most representative spec-

tral bands in the long-wave, mid-wave and short-wave 

parts of the visible electromagnetic spectrum according 

to the correlation coefficient metric. These informative 

bands are 650 nm, 551 nm and 470 nm. By visualizing 

the difference hyperspectral image between past and 

future, we can see which wavelengths change most for 

certain areas in the lantern. For example, in the areas sur-

rounding the O1 and O2 microfaded points, we can see 

the predominant color in Fig. 12 is yellow, meaning that 

the most significant shift happens in G and R channels, 

corresponding to 551 nm and 650 nm. A full animation 

highlighting the photodegradation as the per-wavelength 

difference between the rejuvenation and aged simulations 

is included in Additional file 2.

Discussion

To summarize our results, we showed how the fusion 

of microfading spectrometry with reflectance image 

spectrometry can be useful to the analysis of an artwork 

on various levels. First, both acquisition methods enable 

informative preliminary analysis. Microfading gives us 

an overview of the color degradation of the materials, 

while the spatio-spectral dimension of the hyperspectral 

imaging enables principal component analysis that shows 

a distribution of probably distinct materials, even though 

the components have low interpretability with regard to 

the chemical meaningfulness. However, these techniques 

alone have a number of limitations. Microfading doesn’t 

have a spatial component making it a difficult task to 

extrapolate the degradation behaviour to other points 

on a surface. On the other hand, hyperspectral imaging, 

while having a good resolution in the spatial and spectral 

dimensions contains little information about the fading 

mechanisms of the pigments. Also, while pigment 

classification and unmixing techniques can be applied, 

hyperspectral imaging has a limited reach beyond the 

surface layer of a painting. In our case, the hyperspectral 

system is sensitive in the near-infrared region, and able 

to see through several pigments that are transparent 

in the near-infrared. In addition, we can argue that the 

microfading, based on an accelerated aging procedure, 

can  reach  as well layers underneath the superficial 

pictorial layer. In other words, through fading, some 

components disappear, uncovering pigments from 

underneath layers. Seeing beyond the surface turns out to 

be a useful property when it comes to pigment unmixing.

Given all these considerations, by fusing microfading 

data with hyperspectral image analysis we get a more 

holistic representation of an artwork and its constitutive 

pigments together with their fading mechanisms. In other 

words, we get a spatio-spectro-temporal representation.

Towards future validation of our approach, we intend 

to conduct psycho-physical studies where more experts 

could assess if the spatio-temporal simulations look 

realistic. Moreover, because the tensor decomposition 

method is sensitive to the training data, we are aware that 

Fig. 12 RGB image of the difference between past and future 

simulation of the lantern. The R, G, B channels correspond to the most 

informative spectral bands in the ranges 600–700 nm, 500–600 nm, 

400–500 nm, namely 650 nm, 551 nm and 470 nm. The contrast of 

the image is stretched for visualization purposes
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with a limited sampling of the microfading observations, 

some pure pigments might be disregarded, which in turn 

affects the spatial mapping. This could be accounted for 

with a more thorough sampling during the microfad-

ing experiment. In addition, the tensor decomposition 

method is ultimately a linear unmixing method, which 

might not capture all the non-linear mixing mechanisms 

in the current pastel painting. Because this has an impact 

on the spatial representation, non-linear models such as 

Kubelka–Munk are under consideration for further evalu-

ation. Finally, although we show results for a single case 

study, our method can be applied on any other type of col-

orant (ink, dyes, etc.) and artworks given a set of overlap-

ping microfading and hyperspectral measurements.

Conclusion

In this study, we elaborated a method that combines 

microfading spectrometry with hyperspectral image anal-

ysis towards spatio-temporal simulations of an artwork. 

The current approach builds on our previous work, where 

we distilled a time-series of point spectroscopic measure-

ments into the spectral signals of pure pigments and their 

fading functions. In this follow-up article, by coupling the 

basis factors  recovered beforehand with a hyperspectral 

image of the same scene, we are able to render the appear-

ance of the artwork by modulating the amount of light 

exposure. As a result, we can undo the fading and achieve 

a digital rejuvenation. Similarly, we can simulate the future 

photodegradation by virtually increasing the light expo-

sure. Our proposed spatio-temporal simulations have a 

full spectral representation, meaning that they can be ren-

dered for specific wavelengths, as well as adapted to the 

color response of various illuminants.
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Abstract: The virtual inpainting of artworks provides a nondestructive mode of hypothesis visu-
alization, and it is especially attractive when physical restoration raises too many methodological
and ethical concerns. At the same time, in Cultural Heritage applications, the level of details in
virtual reconstruction and their accuracy are crucial. We propose an inpainting algorithm that is
based on generative adversarial network, with two generators: one for edges and another one for
colors. The color generator rebalances chromatically the result by enforcing a loss in the discretized
gamut space of the dataset. This way, our method follows the modus operandi of an artist: edges first,
then color palette, and, at last, color tones. Moreover, we simulate the stochasticity of the lacunae in
artworks with morphological variations of a random walk mask that recreate various degradations,
including craquelure. We showcase the performance of our model on a dataset of digital images of
wall paintings from the Dunhuang UNESCO heritage site. Our proposals of restored images are
visually satisfactory and they are quantitatively comparable to state-of-the-art approaches.

Keywords: inpainting; colorization; generative adversarial networks; dunhuang wall paintings

1. Introduction

Image restoration is a classical task in computer vision, where the objective is to en-
hance the quality of an image, by removing noise, undoing irreversible damage, increasing
the resolution, or recovering lost information. Inpainting, which is also known as image
completion, is one of the instances of the image restoration problems that aims to fill gaps in
a digital image, by reconstructing the color and structural elements. Colorization is highly
related to inpainting, the task of hallucinating colors in black-and-white and neutral-toned
visual material, where the semantics is preserved but the color clues are non-existent. As a
matter of fact, the choice of possible infilling colors is more confined in image completion
cases, since assumptions can be extrapolated from the area surrounding the missing region.

Centuries old artworks with historical and cultural values are among the surfaces
that most suffer from severe degradations due to aging and mishandling. In most cases,
the damage represents a complete lacuna, where ground-truth is missing and/or the
number of unknowns is too high to allow the generation of a fully validated reconstruction.
Retouching the physical objects might result in a risky operation and it is perceived with
very careful and conservative views in the Cultural Heritage (CH) community. Nonetheless,
the desire to visualize the hypothesis of how the undamaged original might have looked
like is still present, and the possibility to do this digitally without altering the original is
very attractive to art conservators. This places CH among the first applications to benefit
from digital inpainting. As a matter of fact, the pioneering work on digital inpainting [1]
was built around the scope of artwork reconstruction.

Traditional solutions to inpainting fill the missing region while using the statistics of
the image and the structure and texture synthesis from the neighbourhood. However, such
traditional approaches require ad-hoc feature engineering and they are seldom semantic-
aware. The take-off of deep learning techniques has leveraged the performance of image
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restoration solutions, including inpainting. End-to-end convolutional neural network
(CNN) models infer complex image understanding processes and they account for low-
level characteristics and high-level semantics of the image in one-go without the need to
break the image and feature computation into sub-components treated as single cases.

The interest for virtually repairing damaged artworks with deep learning approaches
is rising. As a matter of fact, the e-heritage Workshop of the International Conference
on Computer vision in 2019 [2] organized an image restoration challenge for image in-
painting that is tailored to CH scans, releasing a dataset of wall paintings (visualized in
Figure 1 from the Dunhuang cultural site [3]). There are not numerous such attempts in
the computer vision world, partly because CH datasets are yet not perceived as a baseline
in the deep learning community and partly because they are not widespread. For this
reason, most of the deep learning approaches are not made to solve the specific problems
of art images. Moreover, most of the solutions for the CH field are deployed by means of
transfer learning from approaches that were developed for natural images (ImageNet [4],
Places [5]), buildings and streets (Paris Street View [6]), celebrities faces (CelebA [7]), etc.g

Figure 1. Left: Dunhuang dataset visualized in a two dimensional space with Barnes-Hut Stochastic Neighbour Embedding
(BH-SNE) [8]. The clustering is done based on the activations of the first fully connected layer of the pretrained VGG19
network [9] that outputs a vector of 4096 features (color, size, semantics, etc.) for each image. Images are displayed exactly
at their embedded location in the two-dimensional (2D) projection space. Right: color gamut of the Dunhuang dataset. The
L*a*b* coordinates are rendered with the corresponding RGB colour.

In this work, we propose an inpainting algorithm for artworks, where two convolu-
tional models are learned in a generative adversarial fashion: an edge generator and a color
generator. The purpose of the first model is to learn the edges in the missing region based
on a monochrome-only representation of the input image. To complement the structural
information, the second model fills in the gap with color information. It does so by en-
forcing that the infilled chromatic information respects a balanced palette, based on priors
that were computed in the quantized chromatic channels, so that the generator doesn’t get
biased to only overly-used colors. With this workflow, we are traversing the usual steps
that an artwork usually undergoes: first the under-drawings are sketched (edges), then the
main color palette is chosen (priors), and, finally, the color tones are painted. We test our
approach on digital images of the Dunhuang murals, part of an UNESCO heritage site in
North China [3].
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2. Related Work

In this literature review, we only focus on learning-based solutions to digital inpainting.
We start with works on natural images, which are the state-of-the-art in field and, then, we
carry on to cultural heritage applications.

2.1. Deep Learning Approaches for Image Inpainting

The seminal work of Pathak et al. [10] addressed the inpainting of natural images
with an encoder-decoder CNN. The encoder part is based on AlexNet architecture [11],
trained on an input image size of 227 × 227. The missing area amounts to 1/4 of the image
and it is simulated by either a rectangular shaped mask originated at the center or several
rectangular areas randomly positioned. Such solutions that involve rectangular masks
are categorized as region inpainting. By adding the adversarial loss to the L2 Euclidean
reconstruction function, [10] claim a substantially improved accuracy.

The approach of Iizuka et al. [12] is inspired by [10], while adding the following
contribution: holes are simulated by arbitrary forms, as opposed to only rectangular
shapes, a training process in the adversarial fashion that ensures multi-scale resolution and
global as well as local consistency and applications to more challenging data, such as faces.
In order to increase the quality of the resolution, they also use dilated convolution layers,
which allows for increasing the receptive field without placing a burden on the number of
parameters or the computational complexity. These methods are however dependent on
the initialization of the missing pixels and might need post-processing refinements. The
work of Liu et al. [13] proposes an end-to-end inpainting pipeline with partial convolutions
arranged in a U-Net architecture, where convolutions affects only non-hole pixels and
where the mask gets updated after each convolution, by getting thinner and thinner, until its
total disappearance. This way, the content to be infilled is learned only from the contextual
information provided by the valid pixels. Moreover, the masks have no constraints on
the shape and the approach gives good results, even if the missing information is present
around the edges (image extrapolation).

Isola et al. [14] and Shu et al. [15] both employ generative adversarial networks
(GAN) to solve a more general problem, that of "image to image translation”, which can be
adjusted to inpainting as well. In the former paper, the inputs are pairs of images, while the
latter extends the work for cases when pairs of images do not exist by introducing a cycle
consistency loss. The work of [16] offers multiple plausible solutions for the completion
of natural images, faces and buildings and trains in parallel two networks (reconstructive
and generative) supported by the generative adversarial setting.

Inspired by the image-making process from an artist’s perspective "lines first, color
after”, the network that was proposed by Nazeri et al. [17] uses a three-stage GAN network:
firstly, the edges are learned in the missing region from the grayscale input; secondly, the
color information in the missing area is learned from the RGB input; and, thirdly, the joint
edge and color information are trained in conjunction.

There is a body of works that focus on the accurate inpainting of complex struc-
tural information [18–20]. These works exploit landmarks in the geometry of the human
body [18,20] and human faces [19] in order to estimate parsing maps. Parsing maps encode
the components that define the objective structure, together with each part’s labeled loca-
tion that constrain the subsequent color completion step. While these methods go beyond
learning edge information, since they deal with a more specific and geometric definition
of structure, they require a dataset that is uniform and deterministic in its shape repre-
sentations, be it human body, animal body, or human faces. In this sense, the Dunhuang
dataset is rich in content, varying from Buddha representations to architectural elements
and decorative patterns [3].

2.2. Deep Learning Approaches for Paintings Retouching

One of the first attempts to address image restoration problem with a dedicated
interest for paintings and for big missing regions was made by van Noord [21]. The
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method is mainly based on the context encoder of [10], but it uses dilated convolutions
instead and different loss functions. In order to repair damaged wall paintings of the
Dunhuang site, Yu et al. [22] utilize transfer learning from [13] and bring modifications
that adapt to the specificity of the data, such as the use of masks that have a random
walk configuration and, thus, resemble more the stochastic damage process of the wall
paintings surface. More specifically, the dusk-like masks (based on random walk) emulate
deterioration by molds and salty erosion, while jelly-like masks (which is a dilated random
walk) simulate physical damages or sabotages.

Wang et al. [23] offer a method for the digital restoration of Tibetan Thanka murals,
based on Unet Partial Convolution Network. Their main contributions are related to the
mask and training loss design. Thus, they analytically summarize the frequent type of
damage in the murals as scratches and spots and simulate the damage with masks that
contain lines and elliptical shapes with various size parameters and of random distribution.
These masks are similar to the irregular masks that were proposed by [12], while adding
the elliptical elements as variation. Nonetheless, this mask design is tailored to the type of
damage observed in the Thanka murals. Further on, they train their model in two stages:
in the first stage, higher weight is given to losses that characterize per-pixel reconstruction,
while, in the second stage, higher weight is given to perceptual losses.

In their work [24], Wang et al. identify the problems of low-resolution, color dis-
crepancy, and blurriness in image inpainting for general applications, and they stress that
these problems are more critical for CH surfaces. Thus, their methodology is rooted in
the unpaired image-to-image translation implemented with a fully-convolutional Cycle-
GAN architecture [15]. Nonetheless, they bring minor improvements to account for the
above-mentioned problems. They address the high-resolution by diving the symmetrically-
padded input images (8912 × 8912) into patches of the maximum size allowed by memory
(2048 × 2048) and then recompose the patches into a high-resolution image. However, this
results in a loss of local color accuracy that is compensated by adding a color constraint to
the high-resolution mosaic. This constraint is derived from a low resolution reconstruction
with the same network, where the input image is resized to the maximum possible size
(2048 × 2048). The constraint is verified by means of an identity loss. As far as the sharpness
is concerned, it is solved with a Gaussian–Poisson editing in the post-processing stage.

Weber et al. [25] also include refinements in the post-processing stage, by inserting
human expertize in their inpainting solution to the Dunhuang murals and benchmark
dataset [3]. More precisely, they introduce an interactive extension to the Deep Image Prior
(DIP) work [26], where an initial restoration is given by the DIP method, that requires no
training process. Through an interactive tool, the initial restoration is then edited by human
experts, which generates an improved result that is further fed back into the DIP algorithm.
This process continues iteratively until the user is satisfied with the inpainted image. While
such an interactive approach is very attractive, especially because of bridging the domain-
specific expert knowledge with the input provided by computer vision technologies, this
work does not challenge the internal learning mechanisms of a deep-learning model.

2.3. Research Gaps and Contributions

There is still room for improvement for deep learning approaches for artworks in-
painting. Many of the imperative improvements to be made are on color consistency and
high-resolution. For strengthening the color consistency, new losses have been formulated
in the GAN setting, such as identity loss, Wasserstein loss [27], etc. A successful approach
was developed by Zhang et al. [28] for the recolorization of natural images, where the color
accuracy is not verified with an Euclidean distance (that is minimized by the mean value),
but formulated as multinomial classification, where the ground-truth image’s gamut is
represented in a quantized L*a*b* color space. Moreover, each of the discrete values of
the quantized color space receives rebalancing weights to account for the natural images’
bias to desaturated colors (due to the higher frequency of skies and landscapes in the
dataset). A similar color-palette constraint was also used in [29], without the rebalancing
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weights. Even though these color-palette constrained CNN have been developed for the
recolorization tasks, they can be easily adopted in the inpainting task.

Several actions can be taken for reaching sharper results and higher-definition. If
computing power allows, training on bigger image size can help. Otherwise, the result of
the inpainting can be improved by being fed to super-resolution model. The resolution
is increased when the receptive field of a CNN is increased, so dilated convolutions are
good practice, because they expand the receptive field without an echo on the number of
the parameters included in the model [21].

In addition, the size of the receptive field is also affected by the size and shape of the
holes. As a matter of fact, in [30], they studied how the size, shape, and orientation of
masks influence the performance of digital inpainting.

Based on all of these insights, we bring the following contributions in our proposed
model: (1) we complement the edge-guided multi-stage network introduced by [17] with a
color-aware loss that rebalances the chromatic elements to avoid the bias of dull colors from
the core of the gamut; (2) we use four morphological variations of the random-walk mask,
so as to target different receptive fields of the network. While the work of Nazeri et al. [17]
is guided by the principle “lines first, color after”, our work’s underlying principle is “lines
first, color palette after, color tones at last” by resembling even more the modus operandi
of an artist.

3. Method

Our approach to solve inpainting for artworks is both edge and color aware. Building
on the work of [17], we train two generative adversarial networks (see the diagram of
our approach in Figure 2): one that learns the edges in the lacunae (Section 3.2) and a
second one that learns the color information (Section 3.3). The two networks are trained
in a multi-stage fashion: first, separately and then combined, as detailed in in Figure 3.
Contrary to the work of [17], instead of the RGB colour space, we work in the L*a*b*
space, which is a more perceptual chromatic space. Besides enforcing the computation
of the convolutional neural features in a perceptual space, the use of L*a*b* space serves
the scope of rebalancing colors, so that they fit into the overall palette of the dataset. In
order to improve the color coherence, we smooth the effect of L1 loss in GANs—that of
filling in empty spaces with the mean colour of the gamut, which results in inaccurate and
desaturated colors—by adding a color rebalancing loss similar to [28,31].

Figure 2. Our model converts the RGB images to L*a*b* color. The edge generator receives as input only the monochrome
luminance channel and the binary masks of missing pixels (that follow variations of a random walk pattern). Subsequently,
color rarity weights are computed on the a* and b* channels and then used in the loss function of the color generator. The
edge map, the multichannel L*a*b* image and the priors are fed to the color generator.
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Figure 3. Both color and edge generators have the same underlying convolutional architecture, composed of encoder–
decoder blocks and eight residual blocks with dilated convolution in between. Different from [17], we introduce the La∗b∗
loss for the color generator to lower the bias towards mean values of the dataset’s gamut.

3.1. Masks

The performance of learned image completion is influenced by the network activations
and the receptive field, especially when training for a resolution twice or four times the test
image resolution. Based on this insight, we take the following measures to modulate the size
of the receptive field: we incorporate dilated convolutions and we use irregular masks of
different size and orientations. We start with a mask that simulates a random walk: starting
from a random seeding position, each next move is decided by a random choice between
the pixels in the four-connected neighbourhood. There can be multiple seeding positions
and, at the same time, a pixel can be re-traversed multiple times, which decides the overall
spread of the mask. We use the convention 1 values for holes, 0 values for non-hole region.
Each base random walk mask is then further processed into morphological derivates (see
Figure 4) by applying the following operations: dilation, skeletonization and medial axis
transform. The random walk mask was proposed in the Dunhuang challenge [2,3]. This
pattern was adopted in [22], where the authors call the normal random-walk dusk-mask
and the dilated random walk jelly mask, claiming the former to be characteristic of mold
and erosion and the latter of physical damages. Nonetheless, to the best of our knowledge,
we are the first to introduce the skeletonization and medial axis transforms of the random
walk. Through these operations, we are synthesizing a fine craquelure-like structure, a
common aging effect of artworks.
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Figure 4. Random walk (RW) mask (leftmost) with three morphological variations: skeletonization
(RW + SK), medial axis transform (RW + MAT) and dilation (RW + DIL). Besides covering different
areas of missing pixels, these masks simulate various patterns characteristic to artwork degradation:
moist and pest formation, craquelure, and mechanical damage.

3.2. Edge Inpainting Model

The edge model receives three inputs: the Luminance channel of the ground-truth data,
the mask image, and the edge map obtained with the Canny operator from the luminance
channel. The threshold for Canny edge detection was empirically set to 1.1 to discount
as much as possible noise and only select the relevant edges. As sketched in Figure 3, we
preserve the network architecture that was proposed in [17] with dilated convolutions and
residual blocks, followed by spectral normalization. Beside the adversarial loss, the loss
function for the edge hallucinator includes feature-matching loss that compares activation
maps at intermediate layers of the discriminator.

3.3. Color Inpainting Model

The input to the color inpainting model is the masked L*a*b* image and the edge map.
In a first phase, when the color model is trained independently from the edge model, the
edge map is given by the Canny operator. Subsequently, when the two models are jointly
trained, the edge map is inferred by the edge model. The architecture of the network is the
same as in [17], consisting of dilated convolutions and residual blocks, followed by instance
normalization. As in [17], the loss function for the generator includes the adversarial loss,
the L1 distance, the perceptual loss, and the style loss L1, Ladv, Lperc, Lstyle. In addition, we
inserted a new loss term, Lab, which only operates on the chromatic channels.

The Lab loss is computed as multi-class cross-entropy in the quantized ab space be-
tween the target and predicted image, multiplied by color rebalancing priors. The priors
are extracted before the training process, by saving the discretized ab space (where number
of quantiles q = 32) for each training image. Subsequently, these priors are smoothed
with a Gaussian filter and finally, they are mapped to a probability distribution between
[0, 1] in the discretized space of possible colors. This loss is computed separately for a
and b channel, and then averaged as the final Lab loss that contributes to the generator
loss. The full mathematical formulation for the color rebalancing loss can be followed
in Equations (1)–(4). The parameter p was chosen as in [31]. The weight for the losses
are as follows: wL1 = 0.05, wLadv = 0.1, wLperc = 0.1, wLstyle = 250, wLab = 0.9. We did not
completely exclude the L1 distance, instead we opted for a very small weight, since we
want the model to still be aware of the global differences that are provided by L1 norm.

priorsa,b = ((1 − p)(Filtgaussian × qtrain) + p)−1 (1)

la,b = priorsa,b ∗ MCE(qa,b(target), qa,b(pred)) (2)

Lab = mean(la, lb) (3)

LossGC = wL1 L1 + wLadv Ladv + wLstyle Lstyle+

wLperc Lperc + wLab Lab (4)

Finally, the output of the network is rendered from L*a*b* to RGB and merged with
the non-masked original pixels.
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4. Results

4.1. Dataset and Training Specifications

Our model was trained and tested for the Dunhuang dataset, released for the ICCV e-
Heritage workshop challenge [3]. The images represent digital scans of the mural paintings
inside one of the Mogao caves in North China. Generally, the Dunhuang caves were
painted across many centuries by various artists and under various dynasties, covering
more than one artistic style. They display figurative symbols that were taken from Buddhist
mythology. The ICCV e-Heritage challenge released 500 train images with ground-truth
and 100 masked test images, for which the reference has not yet been released to the best of
our knowledge. The images have non-uniform dimensions across the dataset. Therefore,
for our work, we split the available 500 images into 465-10-25 images as base for training-
validation-test experiments. Further on, we cropped the test and validation images in
blocks of 256 × 256 with minimal overlap, so as to take advantage of the full resolution of
the images. This totalled to 5596 ground-truth images for training and 96 for validation.
The test images were left at their original size.

Each image in the training and validation collections was accompanied by a random
walk mask and its 3 morphological variations, so the total training load was 22,384 images.
Meanwhile, for each image in the test set, two base masks plus the derivates were generated,
amounting to a total of 200 images for inference. The masks cover from 0 to 60% of the
image size. The training images were randomly flipped horizontally and vertically with a
random factor that is decided by a binomial distribution.

The model was implemented in PyTorch1.1 [32] and then trained on a single CUDA-
enabled GPU with a memory capacity of 11 GB. Training was performed on images of size
256 × 256, with batch size of 4. The model was optimized with ADAM optimizer [33], and
the hyperparameters β1 and β2 set to 0 and 0.9. We followed the training strategy of [17].
In a first stage, the color generator was trained separately from the edge generator and
then, the input from the edge model was added as input to the color-only based model to
improve the infilling of edges. For the separate training phase of the generators, we set the
learning rate to 10−4 and stopped the training after observing a flatness in the oscillation
of the loss values. Afterwards, for the joint training, we reduced the learning rate to 10−5

to push the weights of the model to update for smaller changes, and continued training
until the losses plateaued. In each case, the discriminators were learned at a rate that was
ten times lower than the generators’ rate. Figure 5 displays the intermediate results of the
jointly trained model on the Dunhuang validation dataset. An interesting highlight of these
intermediate maps are the edge maps, which show how the edge generator is able to infill
structure in the missing regions in a way that follows the edge lines in the original image.

4.2. Qualitative and Quantitative Assessment

The test images were reconstructed at the original resolution. In most of the state-
of-the-art papers on image restoration, the results are presented at the same size as train
size or only slightly bigger. However, in our case, the scaling factor is between two to four
times the training size.

For visual inspection, we selected four images that are displayed in Figure 6, that we
consider challenging cases for inpainting. Figure 7 shows two random walk degradations
over a scene that contains a character (Figure 6a). The first deterioration hides most of
the details of the face and decorations above the head of the character. Faces contain fine
structural details that are challenging for an inpainting task. Our result is able to recover
the details for the aura, the left eye, the lip, and the base of the nose. In the same way, the
second deterioration occludes the palms and fingers that are recovered in the inpainted
image. Nonetheless, a downside of this reconstruction is that the orange wings in the top
center are not completely free from color artifacts.
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Figure 5. Intermediate results generated for a subset of random six images from the validation set
(original size of the images is 256 × 256, scaled to fit in the page). For each of the six instances,
five images are shown, in order from left to right: ground-truth; ground-truth with deterioration;
edge map in the missing region; output inpainted image with both edge and color information as
generated by the network; and, output of the model merged with the non-masked input pixels.

(a) (b) (c) (d)
Figure 6. Ground-truth images selected for discussion. (a) First image (697 × 701 pixels) was chosen
because it contains a face, that we consider a challenging case for inpainting. (b) Second image
(681 × 674) is very color diverse. (c) Third image (828 × 800) is a homogenous colour, where it will
be easy to check for color artifacts in the inpainted result. (d) Fourth image (582 × 841) is a scene
with decorating motifs, where edges reconstruction can be inspected.
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Figure 7. Inpainting results for random walk deterioration with different coverage of the same scene
(ground-truth is Figure 6a). The inpainted images were generated at full resolution, however they
are shrinked for display purposes here. Even though, in the first deteriorated example, the face of the
character is mostly covered, the inpainted version manages to reconstruct some structural details
with good accuracy, such as the aura, the lips and the left eye.

On the other hand, Figures 8 and 9 show an accurate restoration of the color content.
The gap shown in Figure 8 cover distinct color tones from Figure 6b that are well retrieved
in the restored result. Similarly, Figure 9 retouches Figure 6c, which lies as a patch of
homogeneous color where chromatic inaccuracy would be easily detected. However, the
infilling adds color of a hue similar to the original. The last example (Figure 6d) is a
painting of a temple that is rich in structural details. The color coherence is maintained
in the beige roof in the middle of the image, but it shows greenish artifacts in the orange
stripe in the bottom of the image, as depicted in Figure 10.
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Figure 8. Pairs of inpainting results for morphological variations of random walk masks with
different coverage of the same scene (ground-truth is Figure 6b). The colors are well preserved in
the restored version. In the second pair (top third and fourth images), where dilated random walk
deterioration is used, we can notice more blurriness.

Figure 9. Inpainting result for Figure 6c. The restoration does not disrupt the color homogeneity
with respect to the non-corrupted part of the image.

We have quantitatively evaluated the performance of our method with traditional
image quality metrics (IQM), as well as CNN-enhanced IQMs. These metrics are computed
starting from the RGB rendering of the output of our approach in comparison to that of [17]
trained from scratch on our dataset. Out of the traditional IQMs, we present Structural
Similarity Index (SSIM) [34] with a window size 11, Peak Signal-to-Noise Ratio (PSNR),
colorimetric difference with the CIEDE2000 formula [35], as well as the spatial extension of
the CIELAB colorimetric difference (S-CIELAB) [36]. The results in Table 1 are reported
for each mask type. The results are better for the gap that occupies less space in the image.
Accordingly, the metrics indicate that the highest quality of reconstruction is achieved on
holes that simulate craquelure due to the minimal corruption they bring to the original
image. Meanwhile, the lowest performance of the metrics corresponds to the dilated
random walk masks, because of their increased coarseness of the pattern and a higher
take-over of the image. Even though, numerically, our approach does not outperform [17]
for the four traditional IQMs, the differences are not significantly apart. Actually, the
differences between the compared methods for the color metrics quantified as CIEDE2000
and S-CIELAB are under the "just noticeable difference” ΔE unit. Meanwhile, PSNR and
SSIM are known to be low estimators of the human perception and, in addition, they have
very low sensitivity to color (as a matter of fact the input to SSIM is grayscale) and spatial
effects (such as blur or constrast). By visually assessing selected images that are inpainted
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by the two approaches (see Figure 11), we can see that the restoration that is generated with
our approach appears to be more color coherent and sharper in localized areas with respect
to the results obtained with [17]. The pictures in the third and fourth rows, last column
exemplify color hue artifacts where beige color gets replaced with green tones, which are
not produced by the proposed method. We would like to suggest that for the color metrics,
a more meaningful representation than numeric values that are aggregated over all images
and pixels, is actually a distance map, where the chromatic differences are correlated with
their spatial context. As a matter of fact, in order to enforce the above-mentioned visual
hints perceived in Figure 11, we computed Spatial-CIELAB [36] distance maps between
the original, our proposed method and the method in [17]. S-CIELAB computes the color
difference between images, after applying a spatial processing step as a simulation of the
human vision bandpass filtering. This way, instead of considering pixel-only variations, it
measures the color distance on more semantically meaningful spatial patterns. Figure 12
depicts the difference in ΔE error between our approach and [17] based on S-CIELAB
computed for the selected images in Figure 6. We visualize these differences as contour
plots, where positive values (yellow) highlight areas in the images where our method
performs better colorimetrically while negative values (blue) show where the other method
works better. The contour plots display isolines of ΔE differences at specific levels defined
as −2σ, −σ, σ, 2σ, where σ is the standard deviation of each case’s distribution. These
comparisons are consistent with the visual observation of images shown in Figure 11 and
they prove that both models have selective performance. For more visual assessments of
these two approaches, please refer to the Supplementary Material to this article.

Figure 10. Inpainting result for Figure 6d. The beige structure in the middle of the image remains color
coherent in the infilled image. Similarly, the two leftward black poles. However, the reconstruction is
more blurry in the top left corner, which corresponds to a bigger and more contiguous lacuna.
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Table 1. Peak Signal-to-Noise Ratio (PSNR), Structural Similarity Index (SSIM), CIEDE2000, and S-CIELAB metrics between
the ground-truth test images and the inpainted results, presented for each mask type. For PSNR & SSIM, higher values
mean better closer resemblance to the ground-truth. For CIEDE2000 and S-CIELAB, higher values correlate with a higher
colorimetric distance with respect to ground-truth.

Mask Type
Missing

Pixels (%)
PSNR SSIM CIEDE2000 S-CIELAB

Ours [17] Ours [17] Ours [17] Ours [17]

RW 28.42 26.57 26.86 0.74 0.76 4.09 4.05 3.75 3.71

RW + SK 6.93 29.89 30.12 0.81 0.82 3.19 3.10 2.30 2.19

RW + MAT 7.60 29.81 30.04 0.81 0.81 3.21 3.12 2.38 2.26

RW + DIL 31.20 24.75 25.18 0.72 0.73 4.44 4.34 4.24 4.13

Recent works in the field of image quality evaluation have demonstrated the effec-
tivenes of CNN-based IQMs [37–39]. In other words, measuring the similarity in the
feature space extracted by convolutional neural networks is in more agreement with the
human subjective scores than by directly comparing end-level images. In [37], Amirshahi
et al. compute the similarity of feature maps extracted from CNNs (AlexNet and VGG19
networks pretrained on ImageNet dataset). They compute the self-similarity of feature
maps at each convolutional layer and at multiple levels of spatial resolution inspired by the
Pyramid Histogram of Oriented Gradients (PHOG) approach. The final aggregate metric
is given by the geometric mean of the single metrics determined for each convolutional
layer. They test their method on four image quality datasets of natural images with various
distortions and show that the CNN-based self-similarity measure has more correlation with
human subjective scores than PSNR, SSIM, and S-CIELAB metrics. This work is extended
in [38], where CNN feature maps are compared with traditional IQMs (such as PSNR and
SSIM). Similar to [37], the finding is that the CNN-enhancement of IQMs (computed on
CNN feature maps) is significantly more correlated with human perception than their
traditional variant (applied on end-level image). In addition, the performance of all the
proposed CNN metrics is not affected by changing the CNN network [37,38].

Hence, drawing from the insights of [37,38], we validate our method with three
metrics that measure the similarity between features maps that were extracted with the
pretrained AlexNet for the ground-truth and inpainted images; Self-Similarity based on
Pyramid Histogram of Oriented Gradients [37], CNN-enhanced PSNR, and CNN-enhanced
SSIM [38]. Figure 13 displays the global performance of these metrics (pooled from the
intermediate results at each convolutional layer). Based on CNN-enhanced PHOG self-
similarity (Figure 13a), our method slightly outperforms [17] for bigger areas of damage
(RW, RW+DIL). However, the overall values of CNN-enhanced PSNR and SSIM for [17]
are better than ours. Nonetheless, we continue the analysis by exploring the internal
representations of these metrics and study their performance for each convolutional layer.
In this sense, one important finding of [37,38] is the proportionality between the order of the
convolutional layer and the correlation with subjective scores. Thus, the first convolutional
layer, because of embedding lower-level features, is farther away from human perception
than the fifth convolutional layer that embeds higher-level features. Figures 14b,c show that
the CNN-enhanced SSIM and PSNR for convolutional layers 2–5 are better for our method
in comparison with [17], even for larger missing content (RW, RW + DIL). We could further
infer that what draws back the pooled overall results for our method (Figures 13c and 14b)
is explained by the poorer performance of the first convolutional layer only. This suggests
that our method preserves more of the mid-level and higher-level features in restoring the
original images. It is noteworthy to relate these findings with a study on color responsivity
of AlexNet [40], where it is claimed that all layers have color responsivity in a trend
that decreases from first convolutional layer to the fourth one and then rises back in the
fifth layer. Accordingly, the highest color responsivity is given by the first and last layer.
Nonetheless, the first layer deals with a basic encoding of the color signal, while the last
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layer responds to more complex color encodings. Therefore, we could extrapolate that,
based on the higher performance of all CNN-based metrics for the last convolutional layer,
our method handles better complex entanglements between spatial and chromatic signals.

Figure 11. The columns represent in order, from left to right: original image, deteriorated image with
RW mask, inpainted image with our approach, inpainted image with the approach of [17]. In the
highlighted regions of interest, our approach outputs more color coherent and sharper results.

Regarding the performance of all image quality metrics, it is noteworthy to mention
that compression artifacts (the dataset is available as JPEG images) might represent an error
factor in the pipeline. Similarly, the conversion back and forth from RGB to L*a*b* color
space might introduce some numerical loss in the quantitative analysis. This transformation
takes place more times than in the method of [17] due to the way our pipeline is designed.
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Figure 12. Contour plots showing the isolines of difference in ΔE error between images inpainted
with the proposed method minus the method in [17]. For each method, ΔE was computed with the
S-CIELAB distance metric, where the reference was the original, undamaged image. A positive value
(yellow) for the contour plots show areas where our proposed method is more color coherent with the
original, whereas negative values (blue) represent regions where the other algorithm performs better.
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Figure 13. Bar plots showing the overall performance of three CNN-based mage quality metrics
(IQMs) for groups of damage. These metrics measure the similarity of the feature maps given by
the activations of AlexNet (pretrained on ImageNet) for the ground-truth test images and images
inpainted by our approach and [17]. The overall metrics are aggregated as the geometric mean of the
result at each convolutional layer.

It is not trivial to draw a straightforward and fair comparison with other relevant
state-of-the-art models, such as [3,23,25], where the exact dataset, train-test split, and
model implementation are not available to perform a one-to-one mapping to our approach.
So much so, we provide a rough comparison in Table 2, where we outline key aspects
of every method, including the minima and maxima of PSNR and SSIM metrics where
applicable. Letting aside the variations in data, mask type, and precise extent of missing
pixels reported for each method, we can compare these results by identifying their common
purpose: solving the digital inpainting task for Buddhist mural paintings with deep
learning approaches. With these considerations in mind, Wang et al., in [23], simulate
four levels of damage as is our case, even though the ratio of corrupted pixels to non-
corruped pixels per level remains unknown. Compared to the IQMs reported by [23],
our work achieves higher PSNR extremes, while lower SSIM extremes. It seems that the
user input in the interactive Deep Image Prior method of [25] leverages the SSIM to a
value of 0.78 for random-walk type of damage, which is higher than our results for the
RW category (0.74). Nonetheless, [25] pool their results from only 10 images. At the same
time, Yu et al. [22] include no quantitative result, so we are not able to draw any numeric
comparison with their method. While our method does not outperform the SSIM and
PSNR reported by [17,23], it is noteworthy to emphasize that the proposed approach works
selectively better than [17] for certain areas in the image, as presented in the color difference
maps of Figure 12. This selective performance is reinforced by the CNN-based metrics that
prove our method handles better the processing of higher level combinations of spatial and
chromatic features.

It should be stated that our method is not restricted to only wall paintings and it can
be applied to more types of paintings, as long as there is a sufficient dataset of digital color
images to train the model. As far as the simulation of damage is concerned, our approach
can be improved by considering more shapes and sizes for the loss patterns other than the
already explored morphological variations of random walks. Moreover, there are several
configurations of that might limit the performance of the results and that could potentially
be changed and tuned in future work, such as: the input image size for the training process
that could be increased to achieve higher resolution, the number of quantization levels for
the prior color palette fed to the network, and the use of image formats other than JPEG to
mitigate the effect of the compression artifacts.
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Figure 14. Bar plots showing the performance of three CNN-based IQMs for each convolutional layer.
These metrics measure the similarity of the feature maps given by the activations of AlexNet (pre-
trained on ImageNet) for the ground-truth test images and images inpainted by our approach and [17].
Top for each pair: the results for RW damage. Bottom for each pair: results for RW+DIL damage.



Sensors 2021, 21, 2091 18 of 21

Table 2. Rough comparison between our method and other relevant related works solving the restoration of wall paintings.

Approach Dataset Mask Type
Damage
Levels

Nr. Images
Evaluated

Quantitatively

Quantitative Results
PSNR SSIM

Lowest Highest Lowest Highest

Ours Dunhuang
RW, RW + DIL,

RW + MAT, RW + SK 4 200 24.75 29.89 0.72 0.81

Yu et al. [22] Dunhuang
Dusk-like (∼RW),

Jelly-like (∼RW+DIL) 2 - -

Weber et al. [25] Dunhuang RW 1 10 - 0.78

Wang et al. [23] Thanka
Irregular lines

and elliptical shapes 4 1391 21.23 33.12 0.74 0.98
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5. Conclusions

The virtual inpainting of artworks is an attractive application for art restorers as
well as for the general public. Deep learning techniques and, in particular, generative
adversarial networks, open new horizons for increasing accurate and sensible solutions in
this application.

This paper evaluated an inpainting algorithm for a set of digitizations of the Dunhuang
murals. By jointly learning edge and color content, the proposed algorithm is able to
produce results, where these two features are coherent with the original. Moreover, it
accounts for four types of deterioration patterns by employing various irregular mask that
essentially follow a random walk trajectory. The limitations to our model are partially
due to the discrepancy between the (lower) train and (higher) test resolution, partially
due to JPEG compression artifacts and not entirely lossless conversion between RGB and
CIELAB color spaces. Even so, there seems to be a miscoordination between the visual and
quantitative appreciation of our results as a consequence of the imperfect integration of
human perception factors in the existing image quality metrics.

Supplementary Materials: The following are available online at https://www.mdpi.com/1424-822
0/21/6/2091/s1. The damaged test images used for evaluation and the corresponding inpainted
images obtained with our model.
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S-CIELAB Spatial extension of the CIELAB colorimetric difference
JPEG Joint Photographic Experts Group
PHOG Pyramid Histogram of Oriented Gradients
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SSIM Structural Similarity Index Measure
CNN Convolutional Neural Network
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DIP Deep Image Prior
GAN Generative Adversarial Network
IQM Image Quality Metric
MAT Medial Axis Transform
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RW Random Walk
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This essay zooms into the topic of 
art forgeries and how the refinement 
of authentication methods and the 

dissemination of the resulting expert knowledge 
has led to detectives and forgers alike being 
better prepared. Following a brief navigation 
into the mechanics of art forensics, it discusses 
several relevant case studies that display the 
importance of authority delegation in solving 
the puzzle of authentication. 
In art attribution, a consensus needs to be 
reached between the main forgery detection 
“sensors”: the eyes of art historian for stylistic 
diagnostic; the eyes of hardware analytical and 
optical devices that gather scientific evidence; 
the eyes of the scientific experts to interpret the 
latter properly. Particular focus is given to the 
correlated effects activated by the increasing 
popularity of digitization of cultural heritage (CH) 

objects. Digital repositories of cultural heritage 
scientific data have themselves become 
a subject for forgery and contamination. 
This introduces the need to dive into a new 
typology of sensors: forensic software, that 
can identify the alteration of scientific images. 
Nonetheless, software may also be employed 
by forgers to maliciously modify digital data 
in order to influence a certain diagnostic. 
This essay frames all the above-mentioned 
aspects in a cyclic adversarial process, where 
the progress of sensors determines that of 
forgers and vice versa. Finally, ethical and legal 
considerations are explored with respect to the 
prevention of art forgeries and the reciprocal 
influence between researchers and forgers. 
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I. INTRODUCTION

Given the high numbers and turnover that are at stake in the art market, authentication studies 
and forgery detection have sparked the interest of not only the research and scholarship community 
(Craddock 2009, Scott 2007, Khan et alii 2018), but that of the general public as well. So much 
so, that the British Broadcasting Corporation sponsored a documentary/investigation series called 
“Fake or Fortune?”, where a journalist and art dealer investigate cases of authentication of works 
of art (mostly paintings) by resorting to multidisciplinary analyses, so as to track the provenance, 
as well as the stylistic similarities and scientific coherence (BBC 2019). Furthermore, two feature 
movies are conveying different shades of forgeries: Giuseppe Tornatore’s “The Best Offer” 
(2013) and Philip Martin’s “The Forger” (2014). Even though the movies are fictional stories, the 
underlying morals include a big share of reality. The latter is an art heist case whose target is 
Monet’s “Woman with parasol” displayed during a temporary exhibition. The original painting is 
stolen from the museum and replaced with a copy, thus the heist goes unnoticed. The forger 
portrayed in the film is an art-talented thief that has knowledge not only about art history and 
techniques, but also about the scientific methods of painting investigation: he is aware of the 
period substrate investigation, and so he buys a canvas of a lesser-known artist painted in the 
same year as the original “Woman with Parasol”. He then orders historically accurate pigments 
that Monet was known to have used and assumes that the scientists will check the anachronism 
of the materials. Thus, the forger showcases himself as an informed and knowledgeable concealer 
who anticipates the scientific investigation of his fraud. In parallel, “The Best Offer” spotlights a 
famous art expert who works as art auctioneer and abuses his incontestable authority in the field 
to misattribute originals and belittle their value so that they can be sold for an affordable price to a 
friend auctioneer, after which he himself can buy them for his personal collection. Such an original 
painting that gets miscatalogued for a less valuable painting is called “a sleeper” (BBC 2019) and 
exists as a reality in the art market. Moreover, the plot of “The Best Offer” movie reveals how, in 
the end, even an impassible art expert can be deceived if he lets his judgement be fogged by 
emotional interferences.

All the above-mentioned examples introduce several of the key arguments in this essay, as follows.

The dissemination of knowledge on authentication methods to the general public runs the 
risk of this knowledge being imparted to forgers, who can then use it to perfect their concealing 
techniques. Moreover, while keeping the authentication judgements on the objective side, 
scientific investigation is not a stand-alone entity in authentication studies. It has to be supported 
by provenance proofs, an “unbroken chain of custody” and by the confirmations of art historian 
regarding the stylistic and semantic integrity that ascertains the artist’s expression. In addition, 
all this evidence needs to be supported by cooperative ethical and legal measurements in order 
to avoid the contamination of the art market with forgeries. These aspects will be discussed in 
the first part of the essay (section 2).

Moreover, the digital era is bringing new challenges for cultural heritage and adds new layers 
of complexity to modern authentication studies. More than a medium, digital has become a form 
of creative expression and a legacy in its own right, whether it concerns a digitally created object 
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or a digitized rendering of an already existing cultural heritage item. This is an aspect that has 
not escaped the attention of policy-makers. As a matter of fact, the European Framework for 
Action on Cultural Heritage (European Commission 2019) puts forward a definition of its own to 
the digital cultural heritage: “cultural heritage consists of the resources inherited from the past 
in all forms and aspects - tangible, intangible and digital (born digital and digitized), including 
monuments, sites, landscapes, skills, practices, knowledge and expressions of human creativity, 
as well as collections conserved and managed by public and private bodies such as museum, 
libraries and archives”.

The second part of this essay (section 3) will tackle the implications of digitization in matters 
of authentication. In particular, it will showcase how repositories of digitized cultural heritage can 
be altered with software tools in order to support attribution instances. At the same time, it will 
argue to what extent forensic software can be used to recover the digital fingerprint of digital 
scientific data. Furthermore, this essay introduces the term of “reverse-engineering digitization” 
for referring to cases where digitized and born-digital heritage can be used as sources of 
inspiration for real, tangible replicas, where copyright regulations are rather fuzzy. Since new 
artificial intelligence algorithms have been trained to generate realistic-looking paintings, this 
“reverse-engineering digitization” might represent a potential new tool for forgers. Nonetheless, 
software tools can serve both forgers and detectives alike in art authentication studies.

Fig. 1 depicts a graphical representation of the concepts analyzed in this article. Sensors and 
forgers are placed in an adversarial learning loop whereby, competing with each other, they 
push for each other’s progress. This progress is influenced by media used for producing and 
disseminating knowledge. Digital technologies are nowadays essential in this process.

Fig. 1. This essay discusses the adversarial process between sensors and forgers, that mutually improve each other in the context of art authentication 
studies. Particular attention is given to the implications of digital technologies for producing and presenting knowledge, which act as an intermediary 
between the two ends of the adversarial framework. 
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II. BETTER SENSORS, BETTER FORGERS

This section is a brief overview of the reciprocal progress of sensors and forgers, highlighting 
key case studies.

2.1 Better Sensors

In the monograph entitled “Scientific Investigation of Copies, Fakes and Forgeries” (Craddock 
2009), Craddock, a conservation scientist at British Museum, recommends three steps towards 
the study of authenticity: the observation and visual examination, material analysis, and physical 
age determination. Similarly, Brainerd (Brainerd et alii 2007) reiterates these methods as: 
provenance, dating and connoisseurship (Overgaard and Loiselle 2017).

The visual inspection can be magnified by microscopes and enhanced by using light sources 
with different spectral power distributions (infrared, ultraviolet) or placed at different illumination 
angles (raking or grazing angles) (Craddock 2009). The various modulations in light frequency or 
angularity can unveil peculiar elements in a work of art (Ciortan et alii 2018), such as repairs super-
positions of materials or patches of foreign materials, or they can enhance the visibility and legibility 
of inscriptions or signatures in an otherwise poor display condition (Johnson et alii 2014). Because 
certain pigments, binders and varnishes fluoresce under ultraviolet (UV) light, restorations and 
inconsistencies can be detected by having different intensities in the UV fluorescent (UVF) image 
(Douma 2008). Similarly, infrared reflectography (IRR), thanks to the penetration of the infrared (IR) 
light beyond the pictorial layer, reveals under-drawings, as well as changes of mind (pentimenti) 
in the artist’s intention when sketching the painting. The pentimenti are proof of spontaneity and 
genuineness that might not exist in forged paintings, which might be mechanically copied and 
devoid of out-of-the-line creative movements of brushstrokes (Djuric et alii 2018).

For structural analysis of the substrates of works of art, radiographies are a suitable technique 
to visualize the skeletons of ceramics and painting’s canvases, due to the X-Ray absorption that 
varies according to the thickness and atomic density of a material (Newman, 1998, Riederer 
2012). X-Ray images can reveal metallic structures used for reassembling torn ceramics  
(Berg 2018), stitches and sewing in canvas or panel substrates, and it can detect underdrawings 
as well as a hidden painting underneath the visible one (Tum and Middleton 2006). This last 
application is especially relevant for investigating forgeries, since historic substrates might be 
reused in order to trick the dating of the materials. As far as the substrate analysis go, X-ray 
determines the way a canvas is weaved and is an alternative to the manual “thread count” 
device (BBC 2019) used to detect the same source/provider of the canvas (Johnson et alii 2010). 
As an example, Erdmann et alii (2013) compared through computational analyses the weave 
patterns in all the three canvases from Poussin’s Bacchanal series commissioned by Cardinal 
Richelieu in the 17th century. Out of the three paintings, only one, the Triumph of Pan, was 
formerly appreciated as authentic by art experts, while the others were, though not unanimously, 
perceived as copies based on stylistic inconsistencies and doubtful provenance (Erdmann et alii 
2013). The computational analysis of the radiographs executed by Erdmann et alii (2013) showed 
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that all the three paintings belonged to the same bolt of canvas, indicating the authenticity of 
the full series. In the case of the Triumph of Silenus, this discovery was further supported by 
subsequent cleaning and technical examination of the painting (Whitlum-Copper 2021).

An extension of the radiographic technique is the Computed Tomography (CT), which instead 
of framing only a 2D image, captures the X-ray absorption of volumes and can then generate 
cross-sectional X-Ray images from that volumetric data (Bettuzzi et alii 2015). For art forgery 
detection applications, CT is especially informative for non-flat objects such as ceramics, 
sculptures, etc.

Continuing the line of “seeing the unseen”, non-invasive imaging techniques are predominant 
in detecting primary inconsistencies (Simon and Röhrs 2018) and reveal information 
that is not visible to the naked eye with respect to the materials employed in a work of art.  
For example, multispectral digital cameras output a reflectance image for a limited number of 
bands (typically around 30 spectral bands) in the visible and invisible electromagnetic spectrum, 
can isolate restored or overpainted areas, and discriminate between paints with different spectral 
formulations but similar color appearance (Simon and Röhrs 2018; Hameeuw et alii 2017).  
Taking possibilities further, hyperspectral sensors (that can acquire hundreds of channels) allow 
the recovery of a spectral reflectance distribution of the studied material, which can become the 
signature of the painting materials, enabling the detection of anachronic pigments that determine 
a “terminus post quem” for the creation of the artwork. As a matter of fact, hyperspectral imaging 
in combination with classification approaches has proven effective for ink segmentation in old 
documents (Khan et alii 2018; Ciortan et alii 2015), craquelure pattern identification (Deborah et 
alii 2015), pigment mapping, as well as layer separation in Old Masters sketches (Polak et alii 
2017). The benefits of image spectroscopy techniques as opposed to single-point spectroscopic 
instruments such as spectrophotometers is that instead of providing point-based reflectance 
measurement, hyperspectral techniques offer a spatial distribution of the reflectance curve under 
visible as well as invisible light (UV, near IR). In this way they present a map, a holistic image, that 
might prove very helpful for untying the knots in an art forgery case.

Whilst image spectroscopy can offer valuable clues and general overview, its interpretation is 
prone to the use of heuristics and thus contains a certain relativity in ascertaining the authenticity of 
some materials. Therefore, forensic art investigators must resort to more established, quantitative 
methods, that are also used in the field of art conservation diagnosis. X-Ray Fluorescence (XRF) 
and X-ray Fluorescence scanning are elemental techniques that output the chemical elements 
in a material with a high degree of confidence. The former is a single point of capture technique, 
while the latter provides an elemental map over a given area (Saverwyns et alii 2018). XRF is useful 
for identifying pigments in a work of art based on their chemical composition (Newman 1998). 
Alternative names for this technique in the literature are Energy-Dispersive X-ray Fluorescence 
(EDXRF) or Portable-EDXRF (Aydin 2014).

An important proof of authentication is given by dating methods. If a work of art is discovered to 
be anachronistic, then this is a convincing argument against its authenticity. Craddock (Craddock 
2009) analyzes the major techniques for dating: radiocarbon dating (RC), thermoluminescence 
(TL) and dendrochronology. RC specifies the date when an organic raw material constituent 
of a CH artifact, not the artifact itself, has ceased to live. The underlying science gleans from 
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the measurement of one of the isotopes of carbon (carbon-14), which s present in all natural 
materials. Dendrochronology is the method of dating wood-based materials by assessing the 
rings in the wood’s nucleus and it is often used for calibrating and validating the radiocarbon 
technique. TL dates the last time a material was heated. For this reason, TL is intensively used in 
investigating the authenticity of ceramics, by determining the time of manufacture

Recently, there has been a great development in affordable three-dimensional modelling 
technologies, including off-the-shelf digital sensors for acquiring the 3D shape of works of art 
(Karaszewski et alii 2012), as well as software that can create accurate geometric reconstructions 
and simulations. Some of the commonplace 3D acquisition methodologies are Structured Light 
(SL) scanning and Laser Scanning (LS) (Douma 2008). The development of 3D capture sensors 
is connected to the progress of 3D printing technologies, partly because the capture technology 
creates input models for the printing technology. While the benefits of 3D printing have been 
proven for the printing of medical prostheses (Li et alii 2017), it has also had a positive impact 
on cultural heritage through the creation of replicas that have educational, restorative (Ceccarelli 
et alii 2015) or demonstrative (Tissen 2020) purposes (for example, enabling the blind people to 
feel the topography of a painting). The flip side of the coin is the mass production of copies of 
CH artifacts, dangerous for the illicit trade of fake cultural goods: “Trade in faked antiquities is a 
potential concern given developments in 3D printing technologies.” (Ireland and Schofield 2015).

2.2 Better Forgers

In discussing questions of research disclosure by art experts and conservation scientists 
faced with the professional intent of sharing their knowledge to bring advancement in their field 
and at the same time grappling with the danger of fraud and deceit, Craddock (Craddock 2009) 
opens the matter with a quote by Jack Ogden, reported in Beckett: “Do you risk educating 
forgers or having generations of ignorant museum curators?”. Craddock continues by identifying 
four categories of knowledge that, if disclosed, can help the forgers in their fraudulent intents. 
The first one entails the correct materials and techniques employed in the creation of the 
genuine artifact. The second one refers to the scientific and other investigation methods by 
which forgeries can be uncovered. The third category comprises the knowledge behind natural 
aging processes and how their can be discriminated from the forced, artificial aging processes. 
Furthermore, the fourth class of risky information is comprised of the knowledge of how a copy 
can be adjusted to look like an original. Despite analyzing all these categories and providing 
many examples where the divulgence of such information has led to an increased number of 
forgeries on the illicit market, or making forgeries more difficult to unmask, Craddock concludes 
that information suppression is not worth it in the end and the balance of benefits tilts towards 
the detection of forgeries against the refinement of forgeries. In a nutshell, “one does not fight 
fraud with ignorance”.

Nevertheless, one cannot deny the improvement of the forgers triggered by the improvement 
of sensors. The growing amount of knowledge on technology and its diagnostic potential is 
owed to the advancements of detectors and sensors. For instance, in the book “Art: Authenticity, 
Restoration, Forgery” (Scott 2017), Scott reports the findings of Stanish (Stanish 2009) 
concerning the forging of Peruvian pottery. As it seems, the Peruvian local community, who 
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were producing antique ceramics for commercial profit, had learned “by reading the right report” 
what carbon-dating does, and so they mixed in with the present-day clay some 2000 years old 
straws previously found in a nearby archaeological middens. In this way they managed to trick 
the RC. This trick would have been revealed immediately by a TL analysis, since the firing of the 
pottery was performed in current times, 2000 years later than the fabrication of the artificially 
inserted midden straw. Unfortunately, the cost of TL being much higher than RC and much 
higher altogether than the sell price of the so-called “antique” pot, nobody deemed it financially 
worthy to carry out the TL analysis. This is partly because “only in professional circles are these 
scientific tests (n.r.: TL) routinely employed because [...] the cost of ensuring material authenticity 
becomes prohibitive” (Scott 2017).

Other times, forgers rely on the limitations of the art forensic techniques and the weakness of 
the authority delegation mechanisms (see Section 2.3). A relevant case study in this sense is that 
of the forger Brigido Lara reported by Scott (2017). The storyline unfolds like this: Lara and his 
colleagues were arrested in the 1970s for looting ceramics characteristic of the Mesoamerican 
civilization Totonac. Archaeologists and art historians were convinced that the unveiled ceramics 
were originals looted from a Totonac site, even though Lara denied the looting and claimed 
that he was the craftsman behind the pottery. In planning his defense, when in jail, Lara asked 
for a chunk of clay, from which he made a Totonac-like ceramics. He asked for these “test” 
ceramics to be shown to expert archaeologists without them being informed on how, where 
and by whom it was created. On viewing the test ceramics, the archaeologists were once again 
deceived into giving the wrong verdict, thinking that the test ceramic created by Lara in the 
prison cell was a looted Totonac original. However, it was actually a fake, much like the ceramics 
that were previously considered looted. How could the archaeologists be deceived so easily?  
One answer is that Lara had been perfecting already at his forging technique. Nonetheless, to 
this deception also contributed the lack of certainty that could have been provided by TL tests. 
This lack of certainty derived from the material of the pottery of West Mexican area, that had in its 
composition volcanic minerals. Such volcanic minerals produce a saturated TL curve that makes 
it impossible to recover the normal clay firing signal (Scott 2017). In the case of Brigido Lara, 
both artistic and scientific connoisseurship have failed to detect the forged artifacts. 

The Lara case resembles another story, that of the lost-and-found stone heads from some 
of Modigliani’s sculptures. When two stone heads were found in Arno in the 1980s, renowned 
Italian art historians and sculptors - among them historian and writer Cesare Brandi, art historian 
Carlo Giulio Argan, sculptors Corrado Guerin and Carlo Signori - expressed their conviction that 
the two heads were authentic sculptures by Modigliani (Stobart 1984). In reality, it was a practical 
joke designed by Italian students, who themselves created the sculptures with the intention 
of mocking the easily deceitful art world (Stobart 1984), and who quickly acclaimed the bluff. 
Another forger with a sense of humour was Tom Keating (Magnusson 2006) who, when making 
pastiches of other famous artists such as Samuel Palmer, included clues such as contemporary 
messages, misspelled signatures and even distorted shapes that on closer inspection would 
reveal the fake in an almost obvious manner. This was in addition to the fact that he didn’t 
employ historically accurate pigments. For example, in Keating’s pastiche, “Sepham Barn”  
(see Fig. 2), misattributed to Samuel Palmer, a flying bat was eventually compared to a Boeing 707 
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during the 1979 trial R v. Keating (Grant 2015 p. 206), indicating negligent execution overlooked 
by the art dealer. Originally a restorer, Keating declared his intention was to mock the art market, 
not to deceive the scholars who would knowledgeably examine the painting (Grant 2015).

When the different expert authorities fail to reach an agreement between themselves, the 
third-party, in this case the forger, usually wins, at least in an incipient stage. An illustrative 
case where lack of consensus among expert authorities steered to omission of fakes is that 
of the forgers’ couple formed by John Drewe and John Myatt (Carter 2007). They fabricated 
numerous forgeries, without even having considered the right materials or proper techniques. 
Instead, they offered the right provenance proof, since Drewe had access to the archives of main 
cultural institutions that he could tamper with, thus producing a fake chain of custody for the fake 
paintings (Sladen 2010).

Fig. 2. “Sepham Barn”, as painted by 
Tom Patrick Keating. This painting was 
initially attributed to Samuel Palmer. In the 
trial R v. Keating (1979), the bats flying 
by the setting moon were infamously 
compared with a “Boeing 707” as a way 
to humorously criticize the art dealer 
who failed to notice the stylistic fake 
details (Grant 2015 p. 206). Image source: 
(Bonhams, 2007).

2.3 Authority Delegation

The hermeneutics of forgeries and authentication is very intricate, and this entanglement 
was visually described by a mind map (Buskes 2011) based on the considerations of Gladwell 
(2012) on impulsive versus considerate judgement concerning the matter of the fake Kourous 
that the Getty Museum had purchased. The map suggests a non-exhaustive screening process 
when studying the authentication of an art object, composed of six branches: checking the 
reasonableness of the price by comparing it to previous values listed on the art market; comparing 
style, colours and details to other object of the same category that were validated as being 
authentic; use carbon-14 dating; analyzing the materials, their origin and composition; have a 
collaborative judgment formed by a panel of experts and finally screening the sale records and 
the trustworthiness of the seller/auction house.
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Overgaard et alii (2017) characterize the art market as subject to biased authority delegation, 
where “In essence, the art market community has delegated authority over the authentication 
of works of art to the art expert community. In doing so, the art market accepts the authenticity 
of whatever artwork is deemed authentic by art experts”. They introduce two novel concepts 
of authority delegation that are supportive to the pluralism of stakeholders in the authentication 
studies: one-sided and mutual authority delegation. Simply put, the former concept purports 
that one community accepts the theory of the other while in the latter concept, both communities 
accept one another’s theories on certain topics.

Craddock (2009) emphasizes that the stylistic analysis promoted by the art historians should 
be complementary and not in conflict with the scientific investigations. Nickell (2005) also 
encourages a multi-evidential approach in a study of authentication of written documents, where 
the evidence is fused from various sources, including provenance, macroscopic and microscopic 
study, spectral imaging and chemical examinations.

Personal beliefs and religious faith transform authentication studies from objective analysis to 
a subjective, emotionally based judgment that conflicts with authority delegation. For instance, 
art dealers might be so attached to an artist, that when they are faced with a forgery, their 
emotions stand in the way of a clear judgement: “It is a well-known phenomenon in the art world 
that a dealer or curator can become fixated on the idea that they discovered a long-lost work 
of a master. Once one has convinced oneself it is right, it becomes psychologically impossible 
to reject that conclusion and accept it is wrong.” – Brian Sewell as quoted in (Grant 2015 pp. 
210-211). Psychological bias of art dealers was a contributing factor in both Tom Keating’s
case (Grant 2015) and the Knoedler’s Gallery case (Miller 2016), where art dealers were more
inclined to listen to their own intuition rather than to scientific evidence. In an analogous way, the
authentication of religious relics has been a controversial subject, prone to fierce and passionate
debates (Nickell 2007). An illustrative case is the Turin Shroud, where the carbon dating of the
textile proved that the shroud belongs to the medieval period as opposed to the hypothesis that
stated it should be 2000 years old (Di Minno et alii 2016). Another relevant case is that of the
“Dead Sea Scroll” fragments from the collection of the Museum of Bible in Washington DC, that
after several suspicions raised by scholars and after a series of scientific investigations, have
been revealed to be all forgeries (National Geographic 2020). This finding planted doubts about
all the Dead Sea Scrolls fragments that have appeared on the antiquity market after 2002 (Davis
et alii 2017) and as a consequence, multidisciplinary projects such as “The Lying Pen of Scribes”
aim to continue researching on the authenticity of unprovenanced Dead Sea manuscripts (Agder
2019-2014.).

2.4 Towards Prevention of Forgery from an Ethical and Legal Perspective

According to the 1970 UNESCO Convention on the Means of Prohibiting and Preventing 
the Illicit Import, Export and Transfer of Ownership of Cultural Heritage Property (UNESCO 
1970), cultural heritage is “one of the basic elements of civilization and national culture” whose 
authenticity and integrity needs to be protected and legally defended (Lagrange et alii 2018). 
However, UNESCO has a soft power in handling the local management against illicit trade at the 
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level of each member state that is responsible for the cultural heritage property on their territory 
according to their state jurisdiction. As a matter of fact, UNESCO compiled a database of the 
national laws useful to fight the illicit trading of cultural heritage property of the member states 
of the 1970 Convention in order to keep track of the similarities and differences between the 
national jurisdictions as well as the heritage under peril (UNESCO 2003) and push for international 
cooperation. For instance, in Italy, a dedicated body of the military forces was formed to be 
entirely dedicated to the supervision of cultural heritage trade: The Carabinieri Commando for 
the Protection of Cultural Heritage (Carabinieri 2017). Since 1980, the Carabinieri implemented a 
database to help them keep track of illegal records concerning the theft and commercialization 
of removed or fake cultural heritage goods. The “Database of illegally removed cultural artifacts” 
(Carabinieri 2017) has been an important aid for the Carabinieri in conducting a careful analysis of 
criminal phenomenon and enforcing the law concerning the illicit trafficking of cultural property.

Some jurisdictions are radical about the destruction of forged works of art as a measure to 
stop the contamination of the art and research even if this interferes with the property rights of 
the owner. Exemplary in this sense is the story of the fake Chagall (Herman 2014), seemingly 
entitled “Nude 1909-1910”. The owner was a British businessman, who purchased the painting 
after the fall of the Soviet Union and, for this reason, the provenance of the painting in the last 
years prior to its purchase contained dubious and unclear details. The owner appealed to the help 
of the BBC’s “Fake or Fortune” crew. However, all the local tests and experts were reluctant to 
vouch for the genuineness of the painting, so the owner decided to resort to the French Chagall 
Committee, the authoritative body on the painter’s opus. The Committee denied the authenticity 
of the painting, judging that it was a copy of the “Reclining Nude”. The consequences didn’t stop 
with the verdict of forgery. The Committee and its members, out of which two are Chagall’s heirs, 
wanted to proceed with the destruction of the painting and they had the support of the French 
law. More precisely, the moral rights of an artist, also called the inalienable rights are protected 
under the Intellectual Property Code in the French Jurisdiction. This however is clashing with the 
property law defended by the British jurisdiction, to which the owner of the painting is entitled. 
Philip Mould, the art dealer and cohost of the BBC series, argued against this “pro-destruction” 
verdict claiming that it is “anti-academic”. Indeed, forgeries might have an educational, if not 
artistic, value and they can be secured as negative examples or as a threat to forgers, showing 
that even a “perfect” forgery was in the end possible to uncloak. For example, two of the Han 
van Meegeren’s forgeries are on display in a side corridor in the Rijksmuseum (Essential Vermeer 
3.0 2021), therefore not in a top location along with the genuine masterpieces, but admittedly 
exhibited as second-hand art as opposed to being hidden in a deposit.

Nonetheless, Craddock (Craddock 2009) reflects not without a note of disbelief upon the rate 
of success with which the conventions and international agreements such as the 1970 UNESCO 
convention have achieved to diminish the forgeries. The author is reluctant to concede that such 
movements have succeeded to “even slow down the growth in the international traffic in looted 
antiquities, much less stop it. Ultimately, the prices collectors and museums around the world 
have been prepared to pay are just too tempting.”. He considers that forgeries are an evil that 
scholar need to fight by perfecting their knowledge and methods of investigations and by sharing 
these advancements with bona fide community, without being stuck in a stage of isolation and 
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ignorance provoked by the fear of forgery. The fear of forgery is a greater threat than the fear of 
legal action to the traders or illegal cultural property, because once the authenticity is questioned, 
rumours spread fast, the market collapses, and the prices become uninteresting or unworthy.

A simple conclusion of this essay might be that better sensors evolve along with better 
forgers. Primarily they push for better-quality, objective research and smarter detection of past 
and present forged CH objects, leaving less room for subjective and cultural or emotional-driven 
deceptions.

III. ART AUTHENTICATION IN THE DIGITAL ERA

The role of computational techniques and digital image analysis in forgery detection has grown 
so important that recently the term “computational connoisseurship” (Ellis and Johnson 2019) 
has been coined. Ellis and Johnson (2019) showcase in a non-exhaustive way four projects 
where digital tools showed a major contribution to art history and art attribution: canvas thread 
count automation project, historic photographic paper classification, chain line pattern marking 
and in paper drawings, and watermark identification in Rembrandt’s etchings. For this reason, 
the number of research projects dealing with digitization of cultural heritage collections has 
incremented in the past years. For instance, in (Lopatin 2006), the authors agree that digitization 
enhances the visualization of libraries’ collections, supporting the notion that “collections can 
be made accessible, via digital surrogates in an enhanced format that allows searching and 
browsing, to both traditional and new audiences via the Internet”. Such digital surrogates can 
represent a back-up solution for CH at risk. Recent armed conflicts in Syria and Iraq brought the 
CH to the battlefield, provoking direct or collateral damage to world heritage sites (Soderland and 
Lilley 2015). Furthermore, following natural disasters that are less controllable and preventable 
by human intervention, such as the 2019 fire at the Notre-Dame Cathedral in Paris (Metro Game 
Central 2019), digitization provides a memory of the heritage, offering the possibility to restore 
it as it was, if desired. This has been done in the past for the cities of Warsaw and Munich 
(Sorbo 2019; Bevan 2007). While a major purpose of digital surrogates is to document, monitor 
and improve the state of conservation, there are several less noble collateral effects, such as 
commodification of CH objects, and the generation of fakes and replicas. In this context, one 
possible prevention method lies in the separability of access to the CH repositories and expert 
knowledge.

Beyond documentation, many CH digitization campaigns are research-driven, where the main 
purpose is not solely the preservation of the object, instead it is the potential of novel sensing 
technologies to answer questions about the history, material, meaning, creative process and 
verisimilitude associated with a work of art (Books 2012; NTNU 2018). An important aspect of 
the research-driven digitization is the integrity is the integrity of the digital data, which may be 
subject to alteration as it can be altered either during the data capture process or in the post-
processing stage via software tools.

This section starts with a polemic on the nature of the digitization process (subsection 
3.1). The extent of standardization or creative input during the digitization procedure is a first 
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variable influencing the digital data integrity. Subsection 3.2 delves into post-acquisition aspects 
concerning digital data integrity and is followed by a discussion on data access (subsection 3.3). 
Ultimately, in 3.4, the concept of “reverse-engineered digitization” is explained and linked to the 
take-off of computational creative systems.

3.1 CH Digitization: A Mere Protocol or a Creative Process?

There are two main concerns when it comes to a digitization process: ensuring the safety 
and integrity of the CH original objects and at the same time, maximize the quality of the 
collected data. Hence, a big amount of work is tunneled to define quality standards by art 
curators, scientific experts, museum photographers and governance stakeholders in order 
to issue good practice guidelines for CH digitization (Still Image Working Group 2016; Digital 
Transitions 2019; Van Dormolen 2008). For instance, the National Library of Netherlands teamed 
up with the National Archives, under the coverage of the Dutch Ministry of Education, Culture 
and Sports and developed the Metamorfoze quality guidelines (Van Dormolen 2008), defined 
for the photographic digital reproductions of two-dimensional, paper-based artworks and split 
along three axes of quality depending on the rank of importance and complexity of the objects 
studied. The quality parameters are based on universal test targets, scanner reference charts and 
other test charts and gather criteria and tolerance thresholds for evaluation indicators specifying 
among others color accuracy, illumination, white balance, spatial resolution, and dynamic range. 
With the Metamorfoze imaging guidelines, the goal of the institutional triangle was to create a 
“Preservation Master “, which is the first file generated during digitization with a resemblance 
to the original as loyal as possible and used as reference for all other digital derivatives. Similar 
to Metamorfoze, the Federal Agencies Digital Guidelines Initiative (FADGI) Still Image Working 
Group from United States is another example of a collaborative approach channeled towards 
establishing instructions for ensuring the quality of images acquired in CH digitization campaigns 
(Still Image Working Group 2016). They adopt a four-tiered quality classification, building on top 
of the three-layered podium proposed by Metamorfoze. As a wrap-up of the combined efforts 
in this sense, the International Standards Office (ISO) proclaimed a new working group, JWG26 
under the Technical Committee 42 with the scope to “unify metrics, related methods, and tools 
used to specify and measure image quality capability of systems for the recording and evaluation 
of CH materials for archival purposes”.

However, it is not always the case that a collaboration between stakeholders exists so as to 
propose long-term, systematic decisions over fragmentary shortcuts in digitization projects and 
digital resource planning. A survey (Abd Manaf and Ismail 2010) based on structured interviews 
answered by three Malaysian governmental cultural organizations pointed out an insufficiency 
of cross-institutional collaboration which poses a risk for the national heritage because that 
“the implementation of digitization projects is piecemeal basis and their management may not 
facilitate structured implementation of the project [...] Collaborative effort and holistic approach 
across the three studied organizations are not present and they are not merging their efforts 
towards one common goal of preserving the national cultural heritage”.

Another challenge of digitization projects stands in the know-how of handling the software 
and hardware behind sensing systems. As supported by Abd Manaf and Ismail (2010), a poor 
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knowledge of dealing with these systems leads to poor-quality data: “The quality of digital objects 
greatly depends on the staff expertise on utilizing the available technology”. Training is deemed 
to receive specific importance in the generation of research data and the research institutions are 
the ones responsible for filling in the knowledge gaps of operators working with on-site and off-
site CH sensing activities mitigating this digital literacy risk in ensuring the quality and integrity of 
the scientific data produced (Kleppner 2009).

Beyond digitization protocols, the handling of hardware and software in art scanning operates 
partly in a space of subjective choices. How much creativity and subjectivity are undertaken, 
for example, by a museum photographer when digitizing paintings? To answer this question, a 
relevant case is the Bridgeman Art Library, Ltd. v. Corel Corp. court case (Justia US Law 1998), 
handled by the District Court of US. It is perceived as the pioneer case to have first created 
opposing parties among the experts, arguing whether digitization of the two-dimensional public 
domain artworks are mere “slavish reproductions” that lack sufficient creativity and originality 
to be entitled to a copyright of their own or they comprise minimal creativity so as to become 
copyrightable (Petri 2014; Kogan 2012). In the late 90s, the UK Bridgeman Art Library filed a 
lawsuit against the Canadian DVD company, after coming to knowledge that the defendant 
commercially distributed DVDs with two-dimensional images of artworks found in Bridgeman’s 
collection. Even though the paintings in the collection were appropriated to the public domain, the 
plaintiff claimed that their institution was the only one to have had access to perform full-fidelity 
reproductions of the artworks. Moreover, some of the paintings belonged to the Bridgeman’s 
private collection, to which third-party access was claimed to have not been granted at all, 
not even for the exhibition. Regardless of the lack of factual evidence that the photographs 
sold by Corel were the same as those produced by Bridgeman the library lost the case at any 
rate on the account that the photographs “lacked sufficient originality to be copyrightable 
under United Kingdom law”. In other words, they were considered mere faithful reproductions 
of the works of art, without adding novel elements of creativity so as to be deemed de jure 
originals, notwithstanding the position of those who opposed this decision, who are supporters 
of “the sweat of the brow” concept where technical skills and intensive labour behind faithful 
reproductions are worth of a de facto original work.

The decision in the Bridgeman case and the belittling of the digital reproductions of  
two-dimensional works of art by referring to them as “slavish reproductions” has generated 
a buzz in the literature of CH field. One of the reasons for this is the unclear bounds of the 
threshold of originality in the copyright law and the determination of the slavish copy, since they 
were first coined in the mid-19th century (Kogan 2012). According to the 1991 US Supreme 
Court Case Feist Publications, Inc., v. Rural Telephone Service Co. (Kleppner 2009), there are 
two criteria of originality: independent contribution to the work and minimal creativity “[T]he work 
[must have been] independently created by the author (as opposed to copied from other works), 
and... it [must] possess [] at least some minimal degree of creativity”. However, “minimal” does 
not eradicate the subjectivity to the notion and content of creativity. Perhaps it is this relativity 
that opened the controversies. To begin with, the law changes its judgement when pictures 
are taken of three-dimensional art items, as they are considered copyrightable, because the 
choice of angle and shoot perspective necessary for capturing a sculpture for example entails a 
minimal creative choice. At this point one might argue that the technical skill behind photography 
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is very similar regardless of the object having a more or less pronounced three-dimensional 
geometry and relief, and the reason why 2D-like objects seems more simple and less creative 
is simply the history and long practice of 2D photography as opposed to 3D photography. If the 
counter-argument is the fact that one photograph of a 3D object doesn’t reveal a high-fidelity 
reproduction of the object, then does it mean that using a laser scanner that generates a 3D 
model and reconstruction of the object is the equivalent of 2D digitization of 2D-like paintings? 
These are all questions that, to the best of my knowledge, are not yet to be answered in the law 
textbooks and might point out some inconsistencies to the copyright looseness in the digitization 
of public domain artworks.

Kogan (Kogan 2012) revolts against this blurry threshold of originality that names a reproduction 
of a painting “slavish copy” and at the same time an amateur selfie with a painting, taken with a 
point-and-shoot camera, is deemed original and protected by copyright. The author believes that 
museum photographers should be given more credit and that museum’s work in digitization of 
public domain artworks should not be perceived as a “copyfraud“, instead it should be protected 
as an original work. One of Kogan’s most powerful dialectics is the comparison of a 2D painting’s 
digitization with a map instead of comparing it to a transparent window whose only purpose is 
to help the viewer peek into the initial creation of the artist - the way “ordinary viewers” such 
as the judges choose to see it. The author elaborates the map comparison putting it in balance 
with an aerial photo of a city: the same way the aerial photograph correlates each physical 
location and feature of the city into the image coordinate systems stored in photodetector’s on 
the instrument’s sensor, the same way a picture of a painting maps each visual attribute of the 
work of art into another coordinate system and most often this is not a one-to-one mapping.  
Kogan considers that both the aerial capture (actually, areal could be extended to the remote 
sensing field from which photographic techniques are often transferred and applied to CH 
digitization) and the reproduction of the painting are original work, not mere slavish copies.  
In his article, he brings arguments based on the philosophy of the photography and the cultural 
tendencies and habits of viewing photography as a mechanical reproduction, misconceived to 
be purely factual and truth to reality images, ignoring the creative choices that go beyond pure 
technical skills in acquiring photographs and that can play with light and shadow or color filters 
to impinge an artistic reinterpretation of the reality. 

Kogan continues with debates from the visual arts, asserting that “many photographic 
attributes of a photographic reproduction—size, surface texture, interplay with light, etc.—are 
fundamentally different from the pictorial and painterly attributes of the depicted painting” and 
delineating the difference between photographic document and duplicate. While a photographic 
reproduction is a document of the painting, recording the existence of the painting, with 
high-quality equipment and trying to secure as truthful as possible the visual attributes of the 
painting, it cannot capture the exact appearance aspect and it is thus not an exact imitation or 
duplicate. He concludes that in evaluating the independent artistic contribution of Bridgeman’s 
photographers, the judges fell in the trap of ordinary cultural habits, looking to the digitization 
as to see-through photographs and mistaking them for duplicates instead of “documents of the 
world” by overlooking the myriad differences between the painting and its digitization. In response 
to the critiques claiming that the digitization process is protocol-based and formulaic, where the 
same output can be repeated once the recipe and the ingredients are well-written, regardless of 
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the photographer’s creative input, Kogan quotes from the working diary of a former photograph 
of the Metropolitan Museum of Art, Sheldan Collins - who, acknowledging the great complexity 
of CH digitization, agrees that a set of guidelines is necessary, however not comprehensive since 
a great deal of creativity, artistic style and self-expression is required for achieving excellence in 
the documentation: “Photographic technique easily blurs the distinction between the beauty of 
the subject and the beauty of its image. […] Insofar as the photo-documentation of works of art 
necessarily involves distorting and abstracting—lying and beautifying—it partakes of the nature 
of those higher art forms that comment on reality. Here we have a neat paradox: one potential art 
form—photography—remarking on another. It is like holding two mirrors face-to-face. But unlike 
a static mirror reflection, the photographic process has a dynamic mind controlling it, editing and 
selecting which “truths” about a work of art will be formed in the camera’s ground-glass”.

Nevertheless, by striving to prove the creativity of photographic documentations of CH and 
defend the ethics of the cultural institutions and the museum photographers, another aspect 
of ethics might be violated, which is the truthfulness of the images produced. As highlighted in 
Ireland and Schofield (2015), non-photorealistic renderings, interpretations, and visualizations 
in the process of digitization are looked upon as an unethical professional behaviour:  
“Trust, truthfulness and transparency are professional and ethical values. An opinion survey 
showed that local people trusted North American museums to be accurate and authentic. 
Ethical codes for archaeology, museums and archival practice stress professional obligations 
to retain and value authenticity and uphold intellectual integrity by separating factual evidence 
from interpretation and unfounded opinion.”. Therefore, admitting that the digital images are too 
faithful to the original work of art trades their copyright protection, while pretending a high share 
of interpretative and subjective contributions in the imaging process might trade their ethical 
value.

3.2 Integrity of Digital Repositories

As defined in Pelagotti et alii (2020), integrity of digitized artworks implies that no creative 
choices taken in the acquisition process or in the post-processing stage significantly alter the 
data so that they result in a deceiving representation of the real object.

As introduced in the previous section, the separation between facts and interpretative choices 
during the acquisition process ought to be detailed in the metadata files that should accompany 
the images and other file formats generated during digitization. Metadata is “data about data” 
and it is crucial for the preservation of digitized CH, the verification of the data integrity and data 
stewardship, since metadata also includes the selection of the data types, file formats and the 
key to read and decipher these formats. In an overview about digital data aspects, Kleppner 
(2009) follow the definition of metadata provided by the sources of National Science Foundation 
Report on Cyber infrastructure Vision for the 21st Century: metadata “summarize data content, 
context, structure, interrelationships, and provenance (information on history and origins).  
They add relevance, purpose to data, and enable the identification of similar data in different 
data collections.” 

Metadata enables data users to navigate machine-readable data and in the case of CH 
databases, they can retrieve similarities in the CH collections, filter and display them by user-
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selected criteria and draw research conclusions faster than in traditional source browsing. 
Metadata can be useful when format migration needs to happen or when parties other than the 
digital data patron and creator need to work and parse the meaning of the images, a situation 
quite common in interdisciplinary and multi-partner CH projects. Some digitization experts 
prefer to make a distinction between metadata - description of the raw data - and paradata 
- annotation of the processed data (Bentkowska-Kafel et alii 2012), as the main byproduct of 
digitization consists in the analysis and visualization of different layers of data and extracted 
information. In this sense, proposals have been made towards an exhaustive metadata model 
where the intermediate computational data and the software used for the simulations should be 
stored together with the data and their descriptive files (Kleppner 2009). This is in line with the 
FAIR principles (Hagstrom 2014) drafted by the European Commission (2019) and suggesting 
that the CH databases should meet the following adjectives: Findable, Accessible, Interoperable 
and Re-usable. Special attention needs to be given to the metadata of the physical object that 
is being digitized as this metadata is usually associated with the valuable clues related to the 
provenance of the work of art and the provenance is often considered as legal evidence in art 
forgeries determination (Carter 2007). Metadata is for the digitized archives what the physical 
archives of provenance are to real artworks. And like the faked physical archives in John Drewe’s 
case (Sladen 2010) previously mentioned in subsection 2.2, the digital metadata files run the 
same or even greater risk of being altered as the physical records.

Art diagnostic evidence in the form of images is prone to malicious post-processing techniques 
that can alter the original digitization to support or dismiss attributions, as shown in Pelagotti et alii 
(2020). In fact, the manipulation of digital images is of interest to and highly debated by the general 
scientific research community. In the majority of cases, researchers might alter their data only to 
“beautify” its presentation in scientific publications, without openly mentioning it and therefore, 
deceiving the reader. In the minority of cases, images suffer severe manipulations regarding their 
content in order to falsify results in favour of the research performance. For these reasons, a 
set of 12 ethical guidelines has been proposed in 2010 by Cromey (2010), which draws the line 
between what is appropriate and not in the manipulation of scientific digital images. In order to 
ensure truthful and credible pixels, this ethical code recommends among others: the storage of 
the untouched original file, the use of lossless compression file formats and the avoidance to use 
operations such as cloning to obscure local imperfections of the image. What happens though 
when this code of ethics is broken, when the traces to the original image are lost, and so there 
is an interrupted chain of digital custody? Pelagotti et alii (2020) proposes the application of 
multimedia forensic tools on X-ray and Infrared art diagnostic images to retrace any retouching 
performed in post-processing. This approach assumes that forensic algorithms can decode 
any manipulation and provide a timeline of changes with respect to the original image through 
the computation of several computer vision descriptors that quantify entropy at various levels.  
To test this method, the authors artificially simulate pentimenti digital images of two paintings 
by El Greco and Pietro Novelli, using cloning tools like in image editing software where regions 
in the image can be copied and pasted at another location in the image. Notwithstanding a 
preliminary study, Pelagotti et alii (2020) managed to detect the tampering with some of the 
tested forensic tools.
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3.3 Levels of Access for Digital Repositories

As regards the access to the repositories of digitized images of CH research projects, one of 
the main challenges is how a middle way can be reached between the two extremes: the first 
one is the choice of full data retention, completely hiding the digital data, without enabling the 
scholarship to examine it and thus hindering what could potentially be an advance in research 
and the second one is unrestricted open access to high-quality data without any thought of the 
background and intentions of the party who might access it, nor if such an access can open a 
path to further derivative works done in perhaps bad-faith by ill-disposed entities.

The drawback of the first approach is obscuring the transparency of the research projects, 
that could lead to unchecked and unverified data and other errors that might arise due to the 
blindness of single-minded or single-grouped research. This is an obstacle for ensuring data 
integrity. A good research practice would be to have continuous and if possible external other than 
internal peer-reviewed feedback on the research data, its processing, analysis and the computing 
of the results. One could argue that external peer-review is achieved by means of scientific 
publications, yet few publishers have developed a protocol for the upload of supplementary 
material and a method to check its verisimilitude or correctness. Developing such protocols 
would avoid situations where researchers “willing to share their older information online will 
not release more recent or current information due to business competition. Others may not 
wish to draw public attention to substandard work produced under commercial pressure of 
development-driven archaeology. Fear of ’airing dirty linen in public’ inhibits information sharing 
in archaeology elsewhere and in other disciplines. Most of us want to showcase our better work.” 
(Ireland and Schofield 2015). Participatory design principles and agile design methodologies, 
where “technical and project managers work closely with clients, users and other stakeholder 
in an iterative manner so that consultation, testing and feedback are automatically incorporated 
into the design and development process” are encouraged in CH project and considered as 
ethical professional behaviour (Ireland and Schofield 2015).

On the other hand, the second extreme approach is risky if knowledge gets on wrong hands 
and an example in the case of CH, would be the use of knowledge to create forgers and trick 
the detection systems. The same way some researchers are embarrassed to make low-quality 
data publicly available other researchers might want to boast their high-quality experiments and 
results as measure of the quality of their research and hence, as recognition of their success: 
“Evidently, successful digital projects are the result of not only consistent high-level image 
quality, but also convenient access to these digital images through the facilitation of appropriate 
procedures and accepted standards.” (Abd Manaf and Ismail 2010).

However, one shouldn’t fall into the illusion of pride of high-quality image, nor in the caves 
of deception provoked by bad results and publish their research results on different levels of 
representation corresponding to distinct levels of expertise of the intended audience that has or 
can deal with the data and applying protection measures accordingly. For instance, in case of 
online repositories, such protection measures can vary from the specification of licenses where 
rules on how to use the data are negotiated into a legal-binding contract, to password-protected 
data or to the requirement of user registration as a way to inspect and validate the affiliation of the 
user and discover whether the intentions with respect to the data are under fair use principles to 
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developing smarter technologies that impede harvesting and data mining (Ireland and Schofield 
2015) unless for a good research-oriented cause.

Drawing from the ethics of heritage conservation, public ownership and open-access are 
promoted and the righteousness of the public is “tempered only by consideration of privacy, 
confidentiality of commercial information and cultural rights of traditional owners and descendants” 
(Ireland and Schofield 2015). From an ethical point of view, access to CH research data should be 
restricted when it includes sensitive information about a specific group of people and their culture 
(Nicholas and Egan 2012). This is especially relevant for indigenous, community-based cultural 
heritage: “Ethical technologies could be, for example, web pages that allow users to view but not 
download, copy, alter or redistribute digital assets or which restrict access to online information 
deemed culturally sensitive.” (Ireland and Schofield 2015). As an example of an ethical webpage, 
the National Centre for Research and Restoration in French Museums showcases several works 
of art on a webpage (C2RMF 2021), where the viewer can see a painting in high-resolution and 
can browse through its multispectral channels (Aitken et alii 2007), but without being able to 
download the images. Likewise, the BOSCH project allows zoomed in visualization of details 
in the paintings of Hyeronymus Bosch scanned at high resolution, disabling the possibility of 
downloading the pictures from the website (Erdmann et alii 2010).

3.4 Reverse-engineering Digitization

Access to digitized works of art raises the risk of them being replicated and manufactured into 
real objects. This can be seen as a reverse-engineering digitization process. A relevant case of 
reverse-engineering digitization that has got legal attention is Roger v. Koons court case (Artist 
Rights 1992; Copyright in the Visual Arts 1992). The artist Jeff Koons drew his inspiration from a 
black-and-white postcard copyrighted by the photographer Rogers and enacted the subjects of 
the postcard - a couple holding many, seemingly lookalike puppies - by ordering his craftsmen to 
transform the photograph into a sculpture (see Fig. 3). He designed the sculpture without crediting 
the photographer, who, in his turn, filed a copyright lawsuit against Koons. The plaintiff won on 
the ground that the sculpture was an exact imitation of the photograph, especially because of 
being a copy of the artistic expression. Koons claimed in his defense that he brought his own 
artistic contribution and stylistic changes in designing the sculpture (color, decorations) and that 
also his purpose was an intellectual concept devised by himself, that of making a parody of the 
commodification of society. In spite of the defendant’s arguments, the court deemed that Koons 
acted in “bad faith” in pursuing an enactment of the photograph.

Fig. 3. A reverse-engineering digitization 
case. Left: Photograph captured by Rogers. 
Right: Rogers photograph enacted into 
a sculpture by artist Jeff Koons. Image 
source: (Copyright in the Visual Arts 1992).
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The reverse-engineering digitizations have the potential of becoming more widespread now 
that the technologies that facilitate the creation of digital art are getting more diversified and 
advanced. 

The project “Next Rembrandt” (Microsoft, ING 2016) had the goal of resuscitating Rembrandt’s 
style, by creating ex-novo a computer-generated painting in his style. By implementing various 
artificial intelligence (AI) based algorithms, scientists were able to determine the most common 
subject in Rembrandt’s painting (masculine portrait), and to extract common geometric proportions 
as well as color palette. Based on these features, a new, unseen portrait in Rembrandt’s style 
was generated, 3D printed and exhibited in physical format (Microsoft, ING 2016). More recently, 
Yaniv et alii (2019a) created a dataset of artistic faces, by detecting and studying the landmarks of 
faces from existing artist portraits. Starting from the original faces, they augment the dataset by 
inserting variations in artist-specific facial proportions that modulate the level of abstractness of 
the portrait from very realistic to very artistic. One of the results of their method is the generation 
of average portraits (see Fig. 4) given a certain artist (Yaniv et alii 2019b). 

In the above-mentioned cases, handcrafted machine learning techniques were used to 
computer-generate artworks where the important features to be extracted were user-defined. 
In contrast to traditional machine learning, deep learning methods identify the features in an 
automatic way that mimics the neural brain activity. The case of Edmond de “Belamy” artwork 
(see Fig. 5) has created a precedent of a digital-born artwork that was generated with a deep 
learning algorithm and was printed on canvas by a collective French artist group, called Oblivious.

Fig. 4. Average portraits created by 
computing the average facial shape and 
color for various artists included in the 
work of (Yavin et alii 2019a). Image source: 
(Yavin et alii 2019b). 
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This artwork has unfolded many controversies. To begin with, it was sold at Christie’s Art 
Auction in 2018 at an exhilarating price of $432,500. Then, its authorship is very ambiguous, as 
debated in (Epstein et alii 2020). The backbone of the artificial intelligence algorithm that was 
used for generating the digital portrait is called Generative Adversarial Networks (GAN) and was 
proposed by Goodfellow et alii in 2014 (Goodfellow et alii 2014) with the purpose of creating ex 
novo realistic-looking images. When these synthetic images represent human appearance, they 
carry the name of “deep fakes”. 

GAN is a deep learning method, that consists of two convolutional neural network submodules: 
a generator and a discriminator. Given an input dataset, the generator’s objective is to concoct 
new, unseen data that has the same statistics as the input. In the case of visual data, the 
discriminator’s role is to detect that the images fabricated by the generator are fake and are not 
part of the original input dataset. The two submodels are trained in parallel and learn from each 
other in an adversarial way, perfecting their game until the generator creates images that the 
discriminator fails to detect as fake. 

Interestingly, the logic that stands at the core of GAN’s development (and other related 
methods) matches the underlying thesis of “better sensors, better forgers” of the current essay. 
As described in the original GAN paper (Goodfellow et alii 2014): “The generative model can be 
thought of as analogous to a team of counterfeiters, trying to produce fake currency and use it 
without detection, while the discriminative model is analogous to the police, trying to detect the 
counterfeit currency. Competition in this game drives both teams to improve their methods until 
the counterfeits are indistinguishable from the genuine articles”.

Building on GAN, Radford et alii (2015) implemented a network with a certain architecture, 
called Deep Convolutional GAN (DCGAN). AI-artist Barrat (2017) trained the DCGAN model on 
images of Renascent paintings, which resulted in the portrait that is mainly the base of the 
“Edmond Belamy” print. Arguably, the contribution of the Oblivious collective artist (the ones 
who go the full credit and financial remuneration) consists in selecting that specific artwork from 
a pool of other options, preparing it for fabrication, actually manufacturing it and marketing it. 
Furthermore, the authors of Epstein et alii (2020) claim that the success of “Edmond de Belamy” 
is highly linked with the anthropomorphization of the AI which inoculated the idea that the AI 
system acted on its own, while discarding the intellectual work behind the design of the algorithm 
or the creative choice of configuration and dataset to tailor the system to art-creation. By carrying 
out several vignette experiments, Epstein et alii (2020) found that participants were inclined to a 
distributed authorship, giving credit to all the intermediate parts involved in the process that led 
to “Edmond de Belamy” as final product.

One might expect that “Edmond de Belamy” is only the first artworks of the many to come, 
that will write the history of AI-generated art. As a matter of fact, building on GAN, Elgammal 
et alii (2017) invented a new computational creative system to generate art, called Creative 
Adversarial Network (CAN) (Elgammal 2020). This method models two factors that make novel 
art attractive as explained by Martindale’s psychology theory: a new art-piece needs to be 
original and surprising enough so as to contrast with the old, but at the same time this increment 
in contrast with the old needs to have a maximum bound so as not to generate discomfort.  
CAN has created art that was deemed indiscernible from that of contemporary artists, as 
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appreciated by human subjects in a visual Turing test. Mazzone and Elgammal (2019) discuss 
the potential of the new wave of AI-enabled art and share success of exhibitions of artworks 
designed by CAN system. Indeed, in 2021, several AI-art exhibitions were organized that 
featured: GAN generated paintings of horses (Fire Station 2021), which are a metaphor of the 
universal need for persistence and resilience during the covid-19 pandemic (James, Sheng 
2020); AI-art that transcends visual arts and incorporates music as well (NVIDIA 2021); cross-
media artworks that use various computer vision techniques (CVPR 2021). An innovative exhibit 
at GPU Technology Conference 2020 (NVIDIA 2021) was that of the artist collective Oxia Palus 
(2021) who proposed a digital reconstruction of Leonardo Da Vinci’s “Virgin of the Rocks” (see 
Fig. 6) by translating X-ray images to paintings, thus exploiting multispectral images that are 
otherwise used for forgery detection towards an artistic restorative endeavour. Oxia Palus 
(2021) reinterpreted other two lost masterpieces with their multidisciplinary approach: Picasso’s  
“La Femme Perdue” and Rusiñol’s “Parc del Laberint d’Horta”. The latter is on display for 
purchase at Morph Gallery (2021) for approximately $11, 000. On the Morph Gallery’s (2021) 
website, the modus operandi of Oxia Palus, that is “to combine spectroscopic imaging, artificial 
intelligence, and 3D printing to actualize the pentimento” with the purpose “to recreate exacting 
homages to a new breed of fine art” is described as the “NeoMaster Style”.

Fig. 5. “Edmond de Belamy” (print on 
canvas). The first deep learning generated 
artwork, sold in 2018 at Christie’s Art 
Auction for $432,500. The print generated 
many controversies regarding its righteous 
authorship. It is a born-digital artwork 
reverse-engineered to a tangible object. 
Image source: Wikimedia Commons. 
The image belongs to the public domain 
“because, as the work of a computer 
algorithm or artificial intelligence, it has 
no human author in whom copyright is 
vested”.
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Fig. 6. The digital resurrection of Leonardo 
da Vinci’s “Madonna” as portrayed by 
the artist collective Oxia Palus. The 
painting was created using deep learning 
algorithms, X-ray images, edge and color 
maps, style transfer, and manual editing. 
It was exhibited online at GPU Technology 
Conference 2020 Image source:  
(NVIDIA, 2021).

Floridi (2018) highlights the dangerous potential of digital technologies in trespassing 
authenticity and in producing fake works of art. In addition, he debates the importance of 
nomenclature of AI-generated artworks and proposes the name ectype to define the “Next 
Rembrandt” (Microsoft, ING 2016). The etymology of the word is Greek and refers to a copy that 
remains connected to the original because they both share the same archetypal source. Floridi 
(2018) implies that there are two faces to an ectype, original source and production, and that they 
can be in turn authentic or fake. Following this rationale, he states that the “Next Rembrandt” 
is an ectype with inauthentic source, but with genuine production. What about the neomastic 
process of Oxia Palus (Morph Gallery 2021) – are the resurrections of lost masterpieces with 
(partially) authentic source and authentic productions ectypes as well? How much of the original 
source is preserved and how much creative content is added to these lost art reconstructions? 
Probably, future research and debate will make way for answering these questions. Nonetheless, 
while envisioning the future in the light of the digital era, Floridi concludes that even though 
“digital technologies seem to undermine our confidence in the original, genuine, authentic nature 
of what we see and hear”, at the same time “what the digital breaks it can also repair, not unlike 
the endless struggle between software virus and antivirus”.
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IV. DISCUSSION AND CONCLUSION

This essay has explained the adversarial relationship between forgers and sensors. In a broad 
sense, the word “sensors” refers to the full set of technological tools employed by art authentication 
experts to help them gather evidence for a verdict. The digital backdrop and the wave of AI-enabled 
art raise many anthropological, political, ethical, legal considerations but at national and international 
levels. The plethora of advantages that technology can bring to the conservation and preservation 
of CH is undeniable, but it doesn’t come free of side-effects that need to be regulated by clauses, 
conditions and efforts. Researchers and all the CH stakeholders, including the community spaces, 
need to commit to upholding digital data integrity, by respecting ethical and legal norms with 
respect to data collection, archiving, access and stewardship. In their work, pursuers of digital CH 
projects need to discern between bona fide and ill-disposed practitioners and share their research 
outcomes according to established hierarchies of privacy and expertise of involved third parties. 
The fabrication of art using computational creative systems, in particular the systems based on 
Generative Adversarial Network algorithms open unexplored considerations for art authentication 
and attribution. GAN algorithms are actually inspired by the principle of “better sensors, better 
forgers” and their potential in producing artworks that are considered by human viewers as painted 
by artists has already been proved. These methods have prospects as well in the CH reconstruction. 
The subject of AI-enabled art restoration and triggered ethical issues would be a major topic in itself, 
that would definitely be worth looking into in the future. In conclusion, this essay brings the following 
contributions to state-of-the-art: 1) presumably, it is the first attempt to make the analogy between 
an adversarial process from the machine learning field and the relationship of sensors and forgers 
from authentication studies; 2) it presents an overview of acquisition, integrity and access of CH 
digital repositories; 3) it introduces the concept of “reverse-engineering digitization” and anticipates 
the importance of AI-enabled art for matters of art forgeries and attributions.
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