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In this paper we study the isomorphism problem for reduced 
twisted group and groupoid Lp-operator algebras. For a 
locally compact group G and a continuous 2-cocycle σ we 
define the reduced σ-twisted Lp-operator algebra F p

λ (G, σ). 
We show that if p ∈ (1, ∞) \ {2}, then two such algebras 
are isometrically isomorphic if and only if the groups are 
topologically isomorphic and the continuous 2-cocyles are 
cohomologous. For a twist E over an étale groupoid G, 
we define the reduced twisted groupoid Lp-operator algebra 
F p
λ (G; E). In the main result of this paper, we show that for 

p ∈ [1, ∞) \ {2} if the groupoids are topologically principal, 
Hausdorff, étale and have a compact unit space, then two 
such algebras are isometrically isomorphic if and only if 
the groupoids are isomorphic and the twists are properly 
isomorphic.
© 2023 The Author(s). Published by Elsevier Inc. This is an 

open access article under the CC BY license (http://
creativecommons .org /licenses /by /4 .0/).

1. Introduction

The study of operators on Hilbert spaces, in particular C∗-algebras, is one of the 
most active fields within functional analysis today and there is enormous literature on 
C∗-algebras. The term C∗-algebra was first coined in 1947 by Segal to describe norm 
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closed self-adjoint subalgebras of the bounded operators on some Hilbert space. A natural 
generalization of this is to consider closed non-selfadjoint algebras and replace the Hilbert 
space, which is an L2-space, with a general Lp-spaces. Given p ∈ [1, ∞], we define an 
Lp-operator algebra to be a Banach algebra that admits an isometric homomorphism to 
the space of bounded linear operators on some Lp-space. Hilbert spaces are very well 
behaved compared with general Lp-spaces and the much more complex geometry of Lp-
spaces due to the lack of inner product when p �= 2 makes Lp-operator algebras usually 
much harder to study, even for Lp-operator algebras that “look” like C∗-algebras. Many 
basic tools available in the C∗-algebra setting fail to hold for Lp-operator algebras. There 
exists for instance no general theory of Lp-operator algebras, and there is no abstract 
characterization of when a Banach algebra is an Lp-operator algebra. For these reasons 
the field has for the most part been studied through examples. However, more recent 
works have approached the field more systematically and abstractly, showing drips of a 
more general theory.

The field of Lp-operator algebras has seen a recent renewal in interest, spurred by 
new ideas and techniques taken from the field of operator algebras. There has been 
especially fruitful research on Lp-operator algebras that look like C∗-algebras, sparked 
by Christopher Phillips studies on the Lp-analogues of the Cuntz algebra On and UHF-
algebras [16,17]. The more complex geometry of the unit ball of Lp-spaces, compared 
to L2-spaces, allows to prove some interesting rigidity results [8]. Besides the rigidity 
results, in [9] it is provided an unexpected solution to Le Merdy’s problem for quotients 
of Lp-operator algebras.

For a locally compact group G, we denote the reduced group Lp-operator algebra 
by F p

λ (G) when p = 2 this is the reduced group C∗-algebra C∗
λ(G). We will therefore 

say F p
λ (G) is the Lp-analogue of the reduced group C∗-algebra. These algebras were 

first introduced by Hertz in the 1970s, under the name p-pseudofunctions. In the last 
decade there has been a renewed interest in these algebras and other group algebras 
on Lp-spaces, in particular of our interest is the result by Gardella and Thiel in [12]
which shows that, for p ∈ (1, ∞) \ {2}, two such algebras are isometrically isomorphic if 
and only if the groups are topological isomorphic. Surprisingly, this contrasts with the 
reduced group C∗-algebras where two non-isomorphic groups can generate isomorphic, 
and hence isometric, algebras.

Another interesting rigidity result comes from Lp-operator algebras associated to étale 
groupoids [7]. Given an étale groupoid one can define the reduced groupoid Lp-operator 
algebra F p

λ (G) so when p = 2 it coincides with the reduced groupoid C∗-algebra defined 
in [18]. In [3], the authors prove that the reduced groupoid Lp-operator algebras of two 
topological principal étale Hausdorff groupoids are isometrically isomorphic if and only 
if the groupoids are isomorphic. We would like to emphasize that even though groups are 
groupoids, the only group satisfying as a groupoid these hypothesis is the trivial group.

In this paper, we will be interested in the Lp-operator algebras arising from the projec-
tive, or twisted, representations of both groups and groupoids. These kind of representa-
tions give rise to very interesting classes of operator algebras, where the noncommutative 
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torus [21] is among the most popular ones. First, given a continuous 2-cocycle σ on a 
locally compact group G we will define the σ-twisted reduced Lp-operator algebra de-
noted by F p

λ (G, σ). For p = 2, this is the σ-twisted reduced group C∗-algebra, which is 
a very well studied C∗-algebra [15]. In the first main result of this paper (Theorem 4.9) 
we will extend the isomorphism result of Gardella and Thiel to the reduced twisted 
group Lp-operator algebra and show that two such algebras (with p ∈ (1, ∞) \ {2}) are 
isometrically isomorphic if and only if the groups are topological isomorphic and the 
2-cocycles are cohomologous. Again, this contrasts with the case when p = 2, where two 
non-cohomologous cocyles on the same group can give rise to isomorphic algebras [20, 
Theorem 2].

Similarly to the group algebra setting, given a normalized continuous cocycle σ on 
a Hausdorff étale groupoid G, one can define the reduced twisted groupoid Lp-operator 
algebra denoted by F p

λ (G, σ), but formally more general, one can define the notion of 
twisted reduced groupoid Lp-operator algebra from a twist, based on Kumjian’s work 
on the groupoid C∗-algebra [14]. For a twist E over an étale groupoid G we define the 
twisted reduced groupoid Lp-operator algebra denoted by F p

λ (G; E). In [19], Renault 
shows that a topologically principal groupoid with a twist can be recovered from its 
twisted reduced groupoid C∗-algebra together with the canonical abelian subalgebra. 
Following Renault’s work in [19] and Choi, Gardella, and Thiel’s [3], we will prove our 
second main result (Theorem 7.19), showing that for a twist E over a topologically 
principal, Hausdorff, étale groupoid G, one can recover the groupoid and the twist from 
the twisted reduced groupoid Lp-operator algebra when p �= 2. This implies that if the 
groupoids are topologically principal Hausdorff, étale and p �= 2, then two such algebras 
are isometrically isomorphic if and only if the groupoids are isomorphic and the twists 
are properly isomorphic.

We would like to mention that even though some of the results and proofs are exten-
sions of the ones in the non-twisted case, they are, in most of the cases, far from being 
trivial and sometimes require more elaborate techniques to prove them (see fo example 
Theorem 5.5 where we use a Fourier decomposition of the Lp-functions of the Mackey 
group of an amenable group to prove that the reduced norm of the twisted algebra of 
the group is the maximal possible norm).

The paper is structured as follows. In Section 2, we give a quick introduction to mea-
sures on Boolean algebras and isometries on Lp-spaces over measure Boolean algebras. 
The key point to all the rigidity results for Lp-operator algebras (for p �= 2) is Lamperti’s 
Theorem, that says that isometries on Lp-spaces are a composition of a scalar multiplica-
tion by a unitary L∞-function and a Boolean algebras transformation in the underlying 
measurable Boolean algebra. In Section 3, given a locally compact group G and a contin-
uous 2-cocycle σ on G, we define the left regular σ-twisted representation of G and define 
the σ-twisted group Lp-operator algebra F p

λ (G, σ). In Section 4, using Lamperti’s Theo-
rem we describe the group of isometries of F p

λ (G, σ) as the Mackey’s group Gσ, and its 
homotopy classes (with respect the operator norm topology) as the group G. This allows 
us to prove the first of our rigidity result (Theorem 4.9). In Section 5, we define the full 
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twisted group Lp-algebra, that is the Lp-operator algebra generated by the direct sum of 
all the twisted representations of the group. We prove that when the group is amenable, 
then the full twisted group Lp-algebra and the reduced twisted group Lp-algebra are 
isometrically isomorphic regardless of the twist. As an example, we define the noncom-
mutative tori Lp-operator algebra as the full twisted Lp-operator algebra over Z2, and 
we show that two noncommutative tori Lp-operator algebras (for p ∈ (1, ∞) \ {2}) are 
isometrically isomorphic if and only if the rotations are congruent with respect to the 
integers. Observe that the situation is different when p = 2 [20]. In Section 6, following 
[18,7,3], given an étale groupoid and a twist (in the sense of [14]), we define the twisted 
groupoid Lp-operator algebra as the completion with respect to the left regular twisted 
representation of Σc(G; E), the compact supported T -equivariant functions on the twist 
E, and will denote it by F p

λ (G; E). By viewing the twist E as the linear complex bundle 
of the groupoid, we can think of Σc(G; E) as the sections of E. In Section 7, we will prove 
the rigidity result for étale groupoids. In order to do so, we will compute the C∗-core 
of F p

λ (G; E), that is the Banach algebras analog of the maximal abelian subalgebras in 
C∗-algebra theory (see [19,14] for example). In contrast with the C∗-algebra case, Lp-
operator algebras (for p �= 2) have a unique C∗-core. This is the key result for proving 
the rigidity result, since this uniqueness of the C∗-core makes that any isometric isomor-
phism between Lp-operator algebras reduces to a C∗-algebra isomorphism between the 
C∗-cores, and hence one can identify the corresponding Weyl groupoids and the Weyl 
twists. Finally, if G is a topologically principal Hausdorff groupoid and E is a twist of G, 
then they can be recovered from the Weyl groupoids and the Weyl twists of F p

λ (E; G), 
respectively. This allows us to prove the second of our rigidity result (Theorem 7.19).

2. Invertible isometries on Lp-spaces

Lamperti’s theorem identifies the invertible isometries on Lp-spaces when p �= 2. In 
our setting we are working on locally compact groups, for which the left Haar measure 
is not necessarily a σ-finite measure. We therefore need Lamperti’s Theorem for the 
more general case of localizable measure spaces, which is given in [12]. The concept of 
a localizable measure is most naturally defined in the setting of measure algebras. We 
will thus start, following [12, Section 2] and [6], by defining the measure algebra and 
measureable function on a measure algebra. For a rigorous and detailed discussion on 
the topics see [5].

Throughout, let A be a Boolean algebra. A is (σ-)complete if every nonempty (count-
able) subset of A has a supremum and infimum. A measure μ on A is map μ : A → [0, ∞]
such that μ(0) = 0, μ(a) > 0 for all a �= 0 and μ(

∨
n∈N an) =

∨
n∈N μ(an) whenever an

are pairwise orthogonal. We say that the measure μ is semi-finite if for every a ∈ A, 
there exists b ∈ A with b ≤ a such that 0 < μ(b) < ∞. A measure algebra is a pair (A, μ)
where A is a σ-complete Boolean algebra and μ is a measure on A. If μ is semi-finite 
and A is complete we say that the measure algebra (A, μ) is localizable.
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Example 2.1. Let (X, Σ, μ) be a measure algebra. The null set N = {E ∈ Σ: μ(E) = 0}
is an σ-ideal in Σ, and it follows that the quotient A = Σ/N is a σ-complete Boolean 
algebra. Furthermore we can define a natural measure induced by this quotient μ̃: A →
[0, ∞] given by μ̃(E +N) = μ(E) for all E ∈ Σ. The induced measure algebra (A, μ̃) is 
called the measure algebra associated with (X, Σ, μ).

Note that the measure space is localizable if and only if the associated measure alge-
bra is localizable [5, 332B]. There is also a natural notion of measurable functions and 
integrals on a measure algebra, as we will define. Let B be the Borel set of R (which 
is also a Boolean algebra). A measurable real function on A is a Boolean homomor-
phism f : B → A which preserves sumprema of countable sets. We follow the notation of 
Fremlin [5] and write {f ∈ E} for f(E) and {f > t} for f(t, ∞). This is to put further 
emphasis on the connection to the usual measure spaces, as we will see in the following 
example.

Example 2.2. Let (X, Σ, μ) be a measure space, let f : X → R be any measurable 
real function and let (A, μ̄) be the measure algebra of (X, Σ, μ). We can then ob-
tain a measurable real function on A from f , denoted f̃ : B → A which is given by 
{f̃ ∈ E} = f−1(E) + N for every Borel subset E ∈ B. This can also be written as 
{f̃ ∈ E} = {x : f(x) ∈ E} +N .

Let (A, μ) be a measure algebra, let L0
R(A) denote the set of all measurable real 

functions on A, and let L0(A) = {f + ig : f, g ∈ L0
R(A)} denote the vector space of 

measurable complex functions on (A, μ). Using that t �→ μ({f > t}) is a decreasing 
function, and hence it is Lebesgue measurable, allows us to define the following norm

‖f‖1 =
∫

|f |dμ =
∞∫
0

μ({|f | > t})dt ,

for all f ∈ L0(A). We can then define the space of integrable functions

L1(A, μ) := {f ∈ L0(A) : ‖f‖1 < ∞} .

Let f ∈ L1
R(A, μ)+ be a positive real function, then we define the integral

∫
fdμ =

∞∫
0

μ({f > t})dt .

This extends linearly to L1(A, μ) in the usual manner. We then define the p-integrable 
functions for p ∈ (1, ∞) as follows

Lp(A, μ) := {f ∈ L0(A) : |f |p ∈ L1(A, μ)} .
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For p = ∞, the norm is given by ‖f‖∞ = inf{t ≥ 0: |f | > t} = 0} and we define

L∞(A, μ) := {f ∈ L0(A) : ‖f‖∞ < ∞}.

Let (A, μ̄) be the measure algebra of some measure space (X, Σ, μ). From Example 2.2
recall that for every measurable function on (X, Σ, μ) we obtain a measurable function 
on (A, μ̄). It turns out that the relation between (X, Σ, μ) and (A, μ̄) is even stronger. 
We can actually identify Lp(A, μ̄) with Lp(X, Σ, μ) for all p ∈ [1, ∞] (Corollary 363I 
and Theorem 366B in [5]). This means that we can apply everything we know about 
Lp(X, Σ, μ) to Lp(A, μ̄).

Localizable measure algebras are in fact the largest class for which the Radon Nikodym 
Theorem is applicable [12, Theorem 2.7.], this allows to prove Lamperti’s Theorem for 
localizable measure algebras which is usually only proved for σ-finite measure spaces.

We define the group of T -valued functions on A as the following

U(L∞(A)) := {f ∈ L0(A) : |f | = 1} = 1} .

This forms a group under pointwise multiplication. We denote the group of Boolean 
automorphisms on A by Aut(A). We denote the group of surjective isometries on 
Lp(A, μ) by Isom(Lp(A, μ)). Following [12, Section 3] we define two families of sur-
jective isometries. For a function f ∈ U(L∞(A)), the map mf : Lp(A, μ) → Lp(A, μ), 
given by mf (ξ) = fξ for all ξ ∈ Lp(A, μ) is a surjective isometry, and for ϕ ∈ Aut(A)
the map uϕ : Lp(A, μ) → Lp(A, μ), given by

uϕ(ξ) := (ϕ ◦ ξ)
(
d(μ ◦ ϕ−1)

dμ

) 1
p

is a surjective isometry on Lp(A, μ). Moreover, given another element φ ∈ Aut(A), we 
have that uϕ ◦ uφ = uϕ◦φ.

And finally Lamperti’s Theorem itself [12, Theorem 3.7].

Theorem 2.3. Let (A, μ) be a localizable measure algebra, let p ∈ [1, ∞) \ {2} and let 
T : Lp(A, μ) → Lp(A, μ) be a surjective isometry, then there exists a unique ϕ ∈ Aut(A)
and f ∈ U(L∞(A)) such that T = mfuϕ. Moreover, given f, g ∈ U(L∞(A)) and 
ϕ, φ ∈ Aut(A), we have

‖mfuϕ −mguφ‖ = max{‖f − g‖∞ , 2δϕ,φ} .

3. The twisted group Lp-operator algebra

A Banach algebra is a Banach space that is also an associative complex algebra such 
that the norm is submultiplicative. We call the Banach algebra unital if it contains a 
multiplicative identity with norm 1. A C∗-algebra is a Banach algebra A, together with an 
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involution such that ‖a∗a‖ = ‖a‖2 for all a ∈ A. By the famous Gelfand-Naimark-Segal 
theorem every C∗-algebra can be isometrically embedded into the algebra of bounded 
operators on a Hilbert space, that is an L2-space. Therefore, one can naturally generalize 
non-selfadjoint operator algebras in the following way.

Definition 3.1. Let A be a Banach algebra, we say that A is an Lp-operator algebra if 
there exists an Lp-space E and an isometric homomorphism A → B(E).

Unlike for C∗-algebras, it is not known any abstract characterization for Lp-operator 
algebras among all the Banach algebras.

Definition 3.2. Let G be a locally compact group. A continuous 2-cocycle is a continuous 
map σ : G ×G → T satisfying the following:

1. σ(x1, x2)σ(x1x2, x3) = σ(x1, x2x3)σ(x2, x3),
2. σ(x, e) = σ(e, x) = 1,

for all x, x1, x2, x3 ∈ G and where e is the unit of G.

Given a continuous 2-cocycle σ we will denote by σ the continuous 2-cocycle given by 
σ(x, y) = σ(x, y) for every x, y ∈ G.

For the rest of the paper, G will denote a locally compact group, and the measure 
will be the left Haar measure. Let σ be a continuous 2-cocycle for G. The σ-twisted 
convolution product is defined as

(f ∗σ g)(x) =
∫
G

f(y)g(y−1x)σ(y, y−1x)dy ,

for f, g ∈ L1(G). Note that (L1(G), ∗σ) forms a Banach algebra, and we will denote this 
algebra by L1(G, σ). L1(G, σ) has an approximate identity (see [2]), and it is unital if 
and only if G is discrete.

We define the σ-twisted left regular representation λσ
p : G → B(Lp(G)) as

λσ
p (y)(ξ)(x) = σ(y, y−1x)ξ(y−1x) ,

for every x, y ∈ G and ξ ∈ Lp(G). Similarly, we have the σ-twisted right regular repre-
sentation ρσp : G → B(Lp(G)) which is given as

ρσp (y)(ξ)(x) = σ(x, y)ξ(xy) ,

for every x, y ∈ G and ξ ∈ Lp(G).
The integrated form of the σ-twisted left regular representation λσ

p : L1(G, σ) →
B(Lp(G)) is defined by
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λσ
p (f)(ξ)(x) =

∫
G

f(y)ξ(y−1x)σ(y, y−1x)dy ,

for every x ∈ G, f ∈ L1(G, σ), ξ ∈ Lp(G).

Proposition 3.3. Let G be a locally compact group and let σ be a continuous 2-cocycle for 
G. Let p ∈ [1, ∞), then we have that

λσ
p (z)ρσp (y) = ρσp (y)λσ

p (z) ,

for all y, z ∈ G.

Proof. Fix y, z ∈ G, and let ξ ∈ Lp(G). Then, writing out the expressions we have

(λσ
p (z)ρσp (y))(ξ)(x) = σ(z, z−1x)σ(z−1x, y)ξ(z−1xy) ,

for every x ∈ G, and

(ρσp (y)λσ
p (z))(ξ)(x) = σ(x, y)σ(z, z−1xy)ξ(z−1xy) .

Setting x1 = z, x2 = z−1x and x3 = y and using (2) in Defintion 3.2, we have that

σ(z, z−1x)σ(x, y) = σ(z−1x, y)σ(z, z−1xy) ,

which can be rewritten to

σ(z, z−1x)σ(z−1x, y) = σ(x, y)σ(z, z−1xy) ,

and the assertion follows. �
Definition 3.4. Let G be a locally compact group and let σ be a continuous 2-cocycle 
on G. Let p ∈ [1, ∞), we define the reduced σ-twisted group Lp-operator algebra as the 
following

F p
λ (G, σ) = λσ

p (L1(G, σ))
‖·‖ ⊆ B(Lp(G)).

We define σ-twisted p-convolvers, CVp(G, σ) = λσ
p (G)′′. Note that by Proposition 3.3, 

the elements in CVp(G, σ) commute with ρσp (x) for x ∈ G.
For a locally compact group G and continuous 2-cocycle on σ for G, we construct the 

Mackey group associated to G and σ, denoted Gσ, which as a topological space is the 
usual product space T ×G, but with product given by

(γ1, x1)(γ2, x2) = (γ1γ2σ(x1, x2), x1x2) ,
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and the inverse given by

(γ, x)−1 =
(
γσ(x−1, x), x−1

)
.

Definition 3.5. Let G be a locally compact group, and let σ, κ be two continuous 2-
cocycles for G, we say that σ is cohomologous to κ, denoted σ ∼ κ, if there exists a 
continuous function γ : G → T such that σ(x1, x2)κ(x1, x2) = γ(x1)γ(x2)γ(x1x2) for all 
x1, x2 ∈ G.

4. Lp-rigidity for the reduced σ-twisted group Lp-operator algebra

In this section we prove one of the main results of this paper (Theorem 4.9), the 
rigidity of the twisted group Lp-operator algebras. We would like to emphasize that even 
though most of the results and proofs in this section are extensions of the analogous 
results in [12, Section 4], we include them because it is not obvious they should work in 
the case of the twisted group Lp-operator algebras, so all the details must be checked.

Let G be a locally compact group, and let σ be a continuous 2-cocycle for G. The 
Banach space of complex-valued Radon measures on G with bounded variation, denoted 
by M(G), becomes a unital Banach algebra under twisted convolution, where the twisted 
convolution product for two measures ν1, ν2 ∈ M(G) is given by∫

G

f(z)d(ν1 ∗σ ν2)(z) :=
∫
G

∫
G

f(xy)σ(x, y)dν1(x)dν2(y) ,

for every f ∈ Cc(G). We will denote the algebra by M(G, σ) and call it the σ-twisted 
algebra of measures. Note that for ν ∈ M(G, σ) the norm can be given by

‖ν‖ = sup
|f |≤1

∣∣∣∣∣∣
∫
G

fdν

∣∣∣∣∣∣ .
Let f ∈ Cc(G) with |f | ≤ 1, we then have that∣∣∣∣∣∣

∫
G

fd(ν1 ∗σ ν2)

∣∣∣∣∣∣ =

∣∣∣∣∣∣
∫
G

∫
G

f(xy)σ(x, y)dν1(x)dν2(y)

∣∣∣∣∣∣
≤

∫
G

∣∣∣∣∣∣
∫
G

f(xy)σ(x, y)dν1(x)

∣∣∣∣∣∣ d|ν2|(y)

≤ ‖ν1‖ ‖ν2‖ .

It follows that ‖ν1 ∗σ ν2‖ ≤ ‖ν1‖ ‖ν2‖. Let ν1, ν2, ν3 ∈ M(G, σ), we then have the follow-
ing:
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∫
G

f(w)d(ν1 ∗σ (ν2 ∗σ ν3))(w) =
∫
G

∫
G

f(xy)σ(x, y)dν1(x)(dν2 ∗σ ν3)(y)

=
∫
G

∫
G

∫
G

f(xyz)σ(x, yz)dν1(x)σ(y, z)dν2(y)dν3(z)

=
∫
G

∫
G

∫
G

f(xyz)σ(x, y)σ(xy, z)dν1(x)dν2(y)dν3(z)

=
∫
G

∫
G

f(xz)σ(x, z)d(ν1 ∗σ ν2)(x)dν3(z)

=
∫
G

f(w)d((ν1 ∗σ ν2) ∗σ ν3)(w) ,

where we used (2) in Definition 3.2 in the third equality. It follows that twisted convo-
lution is associative and submultiplicative. Thus, M(G, σ) is a Banach algebra.

Now given p ∈ [1, ∞), we can then define the left regular representation of M(G, σ)
on Lp(G), denoted by λσ

p , which is given by

λσ
p (ν)(f)(x) =

∫
G

λσ
p (y)(f)(x)dν(y) =

∫
G

f(y−1x)σ(y, y−1x)dν(y) ,

for all ν ∈ M(G, σ), f ∈ Lp(G) and x ∈ G. This is a bounded operator. Indeed, given 
ξ ∈ Lp(G) we have that

∥∥λσ
p (μ)(ξ)

∥∥
p

=
(∫ ∣∣∣∣∫ λσ

p (y)(ξ)(x)dν(y)
∣∣∣∣p dμ(x)

)1/p

≤
∫ (∫ ∣∣λσ

p (y)(ξ)(x)
∣∣p dμ(x)

)1/p

dν(y)

= ‖ξ‖p
∫
G

dν ≤ ‖ξ‖p ‖μ‖M1(G) ,

where the inequality is due to Minkowski’s integral inequality.
Let y ∈ G and let δy be the point mass measure associated with y. Note that λσ

p (δy)ξ =
λσ
p (y)ξ for every ξ ∈ Lp(G).
We denote the Lp-operator algebra generated by the twisted left representation of the 

twisted algebra of measures by Mp
λ(G, σ) := λσ

p (M(G, σ))
‖·‖ ⊆ B(Lp(G)).

Definition 4.1. Let A be a unital Banach algebra. We define the group of invertible 
isometries in A by

U(A) = {v ∈ A : v is invertible and ‖v‖ =
∥∥v−1∥∥ = 1} .
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Remark 4.2. Observe that if π : A → B(E) is a unital isometric representation of A on 
an Lp-space E, then U(A) coincides with π−1(π(A) ∩ Isom(E)).

The first goal of this section is to show that we can algebraically identify the Mackey 
group Gσ with the invertible isometries in CVp(G, σ), analogous to what Gardella and 
Thiel showed in [12]. Let (A, μ) be the Boolean measure algebra associated to (G, μ). Fix 
some element y ∈ G, we write σy(x) = σ(x, y), and note that σy ∈ U(L∞(A)). Recall 
that right multiplication of y induces a Boolean automorphism ry ∈ Aut(A) and note 
that ρp(y) = ury−1 ∈ Isom(Lp(A)). Using notation in Section 2, we therefore have that 
ρσp (y) = mσy

ury−1 ∈ Isom(Lp(A)), which will be important for the next result.

Theorem 4.3. Let G be a locally compact group and let σ be a continuous 2-cocycle. Let 
p ∈ [1, ∞) \ {2}. Then, given v ∈ U(CVp(G, σ)) there exist a unique γ ∈ T and g ∈ G

such that v = γλσ
p (g). Furthermore, given β, γ ∈ T and g, h ∈ G we have

‖γλσ
p (g) − βλσ

p (h)‖ = max{|β − γ|, 2δg,h} . (1)

Proof. Let v ∈ U(CVp(G, σ)). Then v ∈ Isom(Lp(A)), and by Lamperti’s Theorem 
there exists a unique h ∈ U(L∞(A)) and ϕ ∈ Aut(A) such that v = mhuϕ. Since every 
v ∈ U(CVp(G, σ)) commutes with ρσp (y) for every y ∈ G, we have that mσy

ury−1mhuϕ =
mhuϕmσy

ury−1 . By [12, Lemma 3.3 & Lemma 3.4] we can rewrite the equality to

mσy(ry−1◦h)ury−1◦ϕ = mh(ϕ◦σy)uϕ◦ry−1 .

This implies that ry−1 ◦ ϕ = ϕ ◦ ry−1 and σy(ry−1 ◦ h) = h(ϕ ◦ σy). From the first 
equality, it follows by [12, Lemma 4.8] that there exists a unique gv ∈ G such that ϕ = lgv . 
We then have h(lgv ◦σy) = σy(ry−1 ◦h). This implies that h(x)σ(g−1

v x, y) = σ(x, y)h(xy)
for all x ∈ G. Set x = e, then we deduce that

h(y) = h(e)σ(g−1
v , y) = h(e)σ(gv, g−1

v )σ(gv, g−1
v y) .

Now set γv = h(e)σ(g−1
v , gv) and note that γv ∈ T . Then given ξ ∈ Lp(G) we have that 

v(ξ)(x) = γvσ(gv, g−1
v x)ξ(g−1

v x) = γvλ
σ
p (gv)(ξ)(x) for every x ∈ G, as desired. Finally, 

(1) follows from [12, Theorem 3.7]. �
Given a unital Banach algebra A, let U(A)0 denote the connected component of U(A)

in the norm topology that contains the unit of A. This is then a normal subgroup of 
U(A) and we write

π0(U(A)) = U(A)/U(A)0

for the quotient.
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Proposition 4.4. Let G be a locally compact group and let σ be a continuous 2-cocycle. 
For p ∈ [1, ∞) \ {2}, there is a natural group isomorphism Gσ

∼= U(CVp(G, σ)) and 
G ∼= π0(U(CVp(G, σ))) (as discrete groups) given by the maps (γ, y) �→ γλσ

p (y) and 
y �→ [λσ

p (y)] respectively.

Proof. Define Δ: U(CVp(G, σ)) → Gσ by Δ(v) = (γv, gv) where γv ∈ T and gv ∈ G are 
given in the proof of Theorem 4.3. The map is injective, and it is surjective as γλσ

p (y) is in 
CVp(G, σ) for all γ ∈ T and all y ∈ G. It remains to show that this is a homomorphism. 
Let γ1, γ2 ∈ T , and y1, y2 ∈ G, then

(γ1λ
σ
p (y1) ◦ γ2λ

σ
p (y2))(ξ)(x) = (γ1λ

σ
p (y1))(γ2λ

σ
p (y2)(ξ))(x)

= γ1σ(y1, y
−1
1 x)(γ2λ

σ
p (y2)(ξ))(y−1

1 x)

= γ1γ2σ(y1, y
−1
1 x)σ(y2, y

−1
2 y−1

1 x)ξ(y−1
2 y−1

1 x)

= γ1γ2σ(y1, y2)σ(y1y2, (y1y2)−1x)ξ(y−1
2 y−1

1 x)

= γ1γ2σ(y1, y2)λσ
p (y1y2)(ξ)(x) ,

where we used (1) in Definition 3.2 with x1 = y1, x2 = y2 and x3 = (y1y2)−1x. Thus,

Δ(γ1λ
σ
p (y1) ◦ γ2λ

σ
p (y2)) = (γ1γ2σ(y1, y2), y1y2) = (γ1, y1)(γ2, y2)

= Δ(γ1λ
σ
p (y1))Δ(γ2λ

σ
p (y2)) .

Hence Δ is a homomorphism and the assertion follows. Finally, because of (1) we have 
that Δ induces a group isomorphism between G and π0(U(CVp(G, σ))). �
Lemma 4.5. Let G be a locally compact group and let σ be a continuous 2-cocycle. Let 
(fj)j be a contractive approximate identity in L1(G, σ). For p ∈ (1, ∞) \ {2}, then the 
net (λσ

p (fj))j converges weak∗ to 1 in B(Lp(G)).

Proof. The proof follows [12, Lemma 4.2]. Let q be the conjugate exponent of p. We can 
we identify B(Lp(G)) with the dual of Lp(G)⊗̂Lq(G), via the dual pairing (T, f ⊗ g) =
(T (f), g), where T ∈ B(Lp(G)), f ∈ Lp(G), g ∈ Lq(G), see [4, Section 2]. Now, since the 
net is bounded, it suffices to show that (λσ

p (fj), ω) → (1, ω) where ω is a simple tensor 
in Lp(G)⊗̂Lq(G). Let ξ ∈ Lp(G) and η ∈ Lq(G). By assumption we have that (fj)j is 
a contractive approximate identity, and we claim that ‖fj ∗σ ξ − ξ‖p → 0. Indeed, using 
Minkowski’s inequality we have that

‖fj ∗σ ξ − ξ‖p =
(∫ ∣∣∣∣∫ (σ(y, y−1x)ξ(y−1x) − ξ(x))fj(y) dy

∣∣∣∣p dx

)1/p

≤
∫ (∫ ∣∣(σ(y, y−1x)ξ(y−1x) − ξ(x))fj(y)

∣∣p dx

)1/p

dy



E.V. Hetland, E. Ortega / Journal of Functional Analysis 285 (2023) 110037 13
=
∫ (∫ ∣∣(σ(y, y−1x)ξ(y−1x) − ξ(x))

∣∣p dx

)1/p

|fj(y)| dy .

Now given any U ⊆ G we have that

‖fj ∗σ ξ − ξ‖p ≤
∫
U

(∫ ∣∣(σ(y, y−1x)ξ(y−1x) − ξ(x))
∣∣p dx

)1/p

|fj(y)| dy

+
∫

G\U

(∫ ∣∣(σ(y, y−1x)ξ(y−1x) − ξ(x))
∣∣p dx

)1/p

|fj(y)| dy

≤
∫
U

(∫ ∣∣(σ(y, y−1x)ξ(y−1x) − ξ(x))
∣∣p dx

)1/p

|fj(y)| dy

+ 2‖ξ‖p
∫

G\U

|fj(y)| dy .

But now taking U a small neighborhood of the unit of G and big enough j we can 
make ‖fj ∗σ ξ − ξ‖p as small as we want. Thus, ‖fj ∗σ ξ − ξ‖p → 0 as desired.

Then we have that

(λσ
p (fj), ξ ⊗ η) = (fj ∗σ ξ, η) → (ξ, η) = (1, ξ ⊗ η)

and the statement follows. �
Let A be a unital Banach algebra, we define the left multiplier algebra of A as

Ml(A) := {S ∈ B(A) : S(ab) = S(a)b for all a, b ∈ A} .

Since F p
λ (G, σ) has an approximate identity and F p

λ(G, σ) ⊆ B(Lp(G)) is a non degen-
erate subalgebra, it follows from [13, Theorem 4.1] that Ml(F p

λ (G, σ)) has a canonical 
isometric representation as a unital subalgebra in B(Lp(G)).

Proposition 4.6. Let G be a locally compact group and let σ be a continuous 2-cocycle. 
For p ∈ (1, ∞) \ {2}, then there is a natural isometric inclusion

Mp
λ(G, σ) ⊆ Ml(F p

λ (G, σ)) ⊆ CVp(G, σ).

Proof. We will first show the first inclusion. It suffices to show that λσ
p (M(G, σ)) ⊆

Ml(F p
λ (G, σ)) since the latter is closed by the operator norm. Let μ ∈ M(G, σ) and 

let a ∈ F p
λ (G, σ). Then there exists a net (fj) in L1(G, σ) with (λσ

p (fj)) converging to 
a in the operator norm. We have that μ ∗σ fj ∈ L1(G), and it follows from this that 
λσ
p (μ ∗σ fj) ∈ F p

λ (G, σ). Thus λσ
p (μ ∗σ fj) = λσ

p (μ)λσ
p (fj) → λσ

p (μ)a in the operator norm, 
and the inclusion follows.
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We will then show that Ml(F p
λ (G, σ)) ⊆ CVp(G, σ). Let S ∈ Ml(F p

λ (G, σ)), and 
let (fj)j be a contractive approximate identity in L1(G, σ). Note that for every j, 
Sλσ

p (fj) ∈ F p
λ (G, σ). By Lemma 4.5 Sλσ

p (fj) 
w∗
−−→ S and thus Ml(F p

λ (G)) is in the weak∗

closure of F p
λ (G). Since λσ

p (L1(G, σ)) ⊆ CVp(G, σ) and the fact that the commutant 
algebras are weak operator closed, and hence w∗-closed, we deduce that Ml(F p

λ (G, σ)) ⊆
CVp(G, σ). �
Proposition 4.7. Let G be a locally compact group and let σ be a continuous 2-cocycle. For 
p ∈ (1, ∞) \ {2}, let A be a normed closed subalgebra of B(Lp(G)) such that Mp

λ(G, σ) ⊆
A ⊆ CVp(G, σ). Then there are natural group isomorphisms

Δ: Gσ

∼=−→ U(A) and Δ′ : G
∼=−→ π0(U(A))

given by (γ, y) �→ γλσ
p (y) and y �→ [λp(y)], respectively.

Proof. The map Δ: Gσ

∼=−→ U(CVp(G, σ)) is a group isomorphism by Lemma 4.3. 
It is enough to prove that U(Mp

λ(G, σ)) = U(CVp(G, σ)). That U(Mp
λ(G, σ)) �

U(CVp(G, σ)) is clear. On the other side, let v be any element in U(CVp(G, σ)), then by 
Lemma 4.3 we get that v = γλσ

p (y) for some γ ∈ T and y ∈ G. But since λσ
p (y) = λσ

p (δy)
we get that v ∈ Mp

λ(G, σ), and the statement follows. �
To recover the topology of the group, we need to briefly mention some topological 

concepts. Let E be a Banach space and let (Tj)j be a net in B(E). We say that (Tj)j
converges to T in the strong operator topology (SOT) of B(E) if and only if Tj(ξ) con-
verges to T (ξ) in the norm of E for every ξ ∈ E.

Let A be a unital Banach algebra. We need to define the strict operator topology on 
Ml(A) which is the restriction of the strong operator topology of B(A) to Ml(A). In other 
words, for a net (Sj)j in Ml(A), we have that Sj

str−−→ S for some S ∈ Ml(A) if and only 

if Sj(a) 
‖·‖−−→ S(a) for all a ∈ A. We let U(Ml(A))str denote the group U(Ml(A)) with 

the strict topology on Ml(A) restricted to the invertible isometries, then the subgroup of 
the invertible isometries homotopic to the identity U(Ml(A))0 is a closed subgroup, and 
we denote by π0(U(Ml(A)))str for the group π0(U(Ml(A))) endowed with the quotient 
topology.

Proposition 4.8. Let G be a locally compact group and let σ be a continuous 2-cocycle. 
For p ∈ (1, ∞) \ {2}, there are natural isomorphisms as topological groups

Λ: Gσ → U(Ml(F p
λ (G, σ)))str and Λ′ : G → π0(U(Ml(F p

λ (G, σ))))str ,

given by Λ(γ, x) = γλσ
p (x) and Λ′(x) = [λp(x)], respectively.
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Proof. We have the following commutative diagram:

Gσ
Λ ��

(γ,x) 
→x

��

U(Ml(F p
λ (G, σ)))str

v 
→[v]
��

G
Λ′

�� π0(U(Ml((F p
λ (G, σ)))str

.

By Proposition 4.7 and Proposition 4.6 it follows that Λ and Λ′ are group isomorphisms 
(as discrete groups). Since the downward maps in the diagram are quotient maps it 
suffices to show that Λ is a homeomorphism. Let (γj , xj)j be a net in Gσ converging to 

some element (γ, x) ∈ Gσ. Given f ∈ L1(G, σ) we have that (δxj
∗σ f) 

‖·‖1−−→ (δx ∗σ f) in 
L1(G, σ). Since λσ

p is a contractive homomorphism, this implies that γjλσ
p (xj)λσ

p (f) =

γjλ
σ
p (δxj

∗σ f) ‖·‖−−→ γλσ
p (δx∗σ f) = γλσ

p (x)λσ
p (f) in F p

λ (G, σ) for every f ∈ L1(G, σ). Since 
F p
λ (G, σ) is the closure of λσ

p (L1(G, σ)) and the net 
(
γjλ

σ
p (xj)

)
j

is bounded, we deduce 

that γjλσ
p (xj)a 

‖·‖−−→ γλσ
p (x)a for all a ∈ F p

λ (G, σ), and so we have, by the definition of 
the strict topology, that γjλσ

p (xj) 
str−−→ γλσ

p (x) in Ml(F p
λ (G, σ)).

Conversely assume that γjλσ
p (xj) 

str−−→ γλσ
p (x) in Ml(F p

λ (G, σ)). We need to show that 
(γj , xj) → (γ, x) in Gσ, which means we have to show that γj → γ in T and xj → x in 
G.

We will first show that xj → x. Let U be a neighborhood of the unit of G. Choose 
a neighborhood V also containing the unit of G such that V 2V −2 ⊆ U and μ(V ) < ∞. 
This means that χV ∈ Lp(G) for every p ∈ [1, ∞). Note that this implies that λσ

p (χV ) ∈
F p
λ (G, σ) and it follows by the definition of the strict topology that γjλσ

p (xj)λσ
p (χV ) ‖·‖−−→

γλσ
p (x)λσ

p (χV ) in F p
λ (G, σ) and so we have γjλσ

p (xj)λσ
p (χV )χV

‖·‖−−→ γλσ
p (x)λσ

p (χV )χV in 
Lp(G). Observe that

f(z) := λσ
p (χV )(χV )(z) =

∫
G

σ(t, t−1z)χV (t)χV (t−1z)dt ,

defines a function in Lp(G) with supp(f) ⊆ V 2.
If the net converges to x, then every open neighborhood of x will contain the net 

eventually. We will assume that this is not the case, and show that this leads to a contra-
diction. Since U is an arbitrary neighborhood of the unit we assume that xj /∈ xU for all j, 
then xj /∈ xV 2V −2, and thus xjV

2 ∩ xV 2 = Ø, which implies that lxj
(f) and lx(f) have 

disjoint support, which again implies that σ(xj , x
−1
j z)f(x−1

j z) and σ(x, x−1z)f(x−1z)
have disjoint supports. Using these facts we have that



16 E.V. Hetland, E. Ortega / Journal of Functional Analysis 285 (2023) 110037
∥∥γjσ(xj , x
−1
j z)f(x−1

j z) − γσ(x, x−1z)f(x−1z)
∥∥p
p

=
∫

xjV 2

∣∣f(x−1
j z)

∣∣p dz +
∫

sV 2

∣∣f(x−1z)
∣∣p dz > 0,

for all j. But we have already shown that

γjσ(xj , x
−1
j z)f(x−1

j z) = γjλ
σ
p (xj)λσ

p (χV )χV (z) ‖·‖−−→ γλσ
p (x)λσ

p (χV )χV (z)

= γσ(x, x−1z)f(x−1z),

and so we have a contradiction. Thus, for every neighborhood U containing the unit, xj

is eventually in xU for large enough j, and hence xj → x.
Finally it remains to show that γj → γ. We have that∥∥γiλσ

p (x)λσ
p (χV ) − γλσ

p (x)λσ
p (χV )

∥∥ ≤
∥∥γiλσ

p (x)λσ
p (χV ) − γiλ

σ
p (xi)λσ

p (χV )
∥∥

+
∥∥γiλσ

p (xi)λσ
p (χV ) − γλσ

p (x)λσ
p (χV )

∥∥ ,

but then since both terms in the right hand side go to 0 so does the left hand side. 
Then 

∥∥γiλσ
p (x)λσ

p (χV ) − γλσ
p (x)λσ

p (χV )
∥∥ = |γi − γ| 

∥∥λσ
p (x)λσ

p (χV )
∥∥ → 0, so γi → γ, as 

desired. �
Theorem 4.9. Let G and H be two locally compact groups and let σ be a continuous 
2-cocycle for G and κ be a continuous 2-cocycle for H. For p ∈ (1, ∞) \ {2}, then there 
exists an isometric isomorphism between F p

λ (G, σ) and F p
λ (H, κ) if and only if G ∼= H

as topological groups and σ ∼ κ.

Proof. Assume that there is an isometric isomorphism F p
λ (G, σ) → F p

λ (H, κ), this in-
duces an isometric isomorphism

Φ: Ml(F p
λ (G, σ)) → Ml(F p

λ (H,κ)) .

Note that Φ and its inverse are norm continuous and thus strictly continuous, 
then it follows that Φ is a homeomorphism with respect to the strict topology be-
tween Ml(F p

λ (G, σ)) and Ml(F p
λ (H, κ)). We will for the rest of the proof write A =

Ml(F p
λ (G, σ)) and B = Ml(F p

λ (H, κ)). Then Φ induces an isomorphism of the topologi-
cal groups

φ : U(A)str → U(B)str

and it follows that

φ′ : π0(U(A))str → π0(U(B))str
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is an isomorphism of topological groups. By Proposition 4.8 we have the following iso-
morphisms of topological groups

ΛG : Gσ

∼=−→ U(A) and ΛH : Hρ

∼=−→ U(B) .

We thus have the following commuting diagram

Gσ

ΛG ��

(γ,g) 
→g

��

U(A)str

v 
→[v]
��

φ �� U(B)str

u 
→[u]
��

Hρ

ΛH��

(γ,h) 
→h

��
G

Λ′
G �� π0(U(A))str

φ′
�� π0(U(B))str H

Λ′
H��

(2)
where the horizontal maps are isomorphisms of topological groups and the downward 
maps are quotient maps. It follows that G ∼= H as topological groups.

It remains to show κ ∼ σ. We have shown that Gσ
∼= Hκ. Denote this isomorphism by 

ϕ : Gσ → Hκ. Since ϕ is an isomorphism, for every g ∈ G, we have that ϕ(1, g) = (γg, hg)
for some unique γg ∈ T and some hg ∈ H. This induces a continuous map γ : G → T

given by γ(g) := γg, and a map h : G → H given by h(g) := hg. Observe that h is a 
continuous injective homomorphism. By the commutative diagram (2), we also have that 
ϕ(λ, eG) = (λ′, eH) for all λ ∈ T where eG its the unit of G, eH is the unit in H and λ′

is some element in T . This also induces a map π : T → T given by π(λ) = λ′, this is a 
continuous injective homomorphism of the unit circle, and since Φ is linear we deduce 
that λ′ = λ. Now let g1, g2 ∈ G, then

(γ(g1g2), h(g1g2)) = ϕ((1, g1g2))

= ϕ((σ(g1, g2), eG)(1, g1)(1, g2))

= (σ(g1, g2), eH)ϕ(1, g1)ϕ(1, g2)

= (γ(g1)γ(g2)σ(g1, g2), eH)(1, hg1)(1, hg2)

= (γ(g1)γ(g2)σ(g1, g2), eH)(κ(hg1 , hg2), hg1hg2)

= (γ(g1)γ(g2)σ(g1, g2)κ(hg1 , hg2), hg1hg2)

We thus have that γ(g1g2) = γ(g1)γ(g2)σ(g1, g2)κ(g1, g2). Rewriting the expression we 
deduce that σ(g1, g2)κ(g1, g2) = γ(g1)γ(g2)γ(g1g2) which implies that σ ∼ κ.

Conversely assume that G ∼= H, we can without loss of generality assume G = H

and assume that σ ∼ κ, then there exists a continuous map γ : G → T such 
that σ(x1, x2)κ(x1, x2) = γ(x1)γ(x2)γ(x1x2) for every x1, x2 ∈ G. Define the map 
φ : L1(G, σ) → L1(G, κ) by φ(f(x)) = γ(x)f(x). It is easy to see that this is a sur-
jective isometry, and we are going to show that this is also a homomorphism. First note 
that σ(y, y−1x)γ(x) = κ(y, y−1x)γ(y)γ(y−1x). We then have that
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(φ(f1) ∗κ φ(f2))(x) = (γf1 ∗κ γf2)(x)

=
∫
G

f1(y)γ(y)γ(y−1x)κ(y, y−1x)f2(y−1x)dy

= γ(x)(f1 ∗σ f2)(x) = φ((f1 ∗σ f2))(x) ,

for every x ∈ G. So φ is an isometric isomorphism. This induces an isometric isomorphism

φ̃ : (L1(G, σ), ‖·‖Fp
λ (G,σ)) → (L1(G, κ), ‖·‖Fp

λ (H,κ)),

which extends to the closures, thus F p
λ (G, σ) is isometrically isometric to F p

λ (G, κ). �
For p = 2, F 2

λ(G, σ) is the reduced group C∗-algebra usually denoted by C∗
λ(G, σ). 

It is well known that whenever G ∼= H and σ ∼ κ then C∗
λ(G, σ) ∼= C∗

λ(H, κ), however 
the other direction it is not true in general, for example C∗

λ(Z2 × Z2, 1) is isometrically 
isomorphic to C∗

λ(Z4, 1) where 1 denotes the trivial twist, but the groups Z2 × Z2 and 
Z4 are not isomorphic.

5. Twisted Lp-operator algebras of amenable groups

For the trivial twist, Gardella and Thiel showed in [10, Theorem 3.7] that F p(G) and 
F p
λ (G) are isometrically isomorphic if and only if G is amenable (this was also proved 

independently by Phillips). Using this theorem we will prove that if G is amenable, then 
F p(G, σ) ∼= F p

λ (G, σ).
We say that a locally compact group G is amenable if for every ε > 0 and for every 

compact subset K ⊆ G there exists a compact subset F ⊆ G such that μ(FKΔF ) ≤
εμ(F ).

Example 5.1.

1. Every compact group is amenable.
2. The extension of two amenable groups is also amenable. Given a locally compact 

group G and σ a continuous 2-cocycle on G, we have the following short exact 
sequence

1 → T → Gσ → G → 1 .

Therefore, if G is amenable, then the Mackey group Gσ is also amenable.

Let p ∈ [1, ∞), let G be a locally compact group and σ a continuous 2-cocycle for G, 
and E an Lp-space. A σ-projective isometric representation of G is a strongly continuous 
map π : G → U(B(E)) such that
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1. π(x1)π(x2) = σ(x1, x2)π(x1x2) and
2. π(e) = Id.

It is well known that there is a natural bijective correspondence between σ-projective 
isometric representations of G on E and non degenerate σ-projective representations 
L1(G, σ) → B(E). If π is a σ-projective isometric representation, then the induced non 
degenerated representation π : L1(G, σ) → B(E) and f ∈ L1(G, σ) is given by

π(f)(ξ)(x) =
∫
G

f(y)π(y)ξ(x)dy

for all ξ ∈ E and x ∈ G, and it is called the integrated form of π.

Definition 5.2. Let G be a locally compact group, let σ be a continuous 2-cocycle in G
and let p ∈ [1, ∞). We define F p(G, σ) as the full σ-twisted group Lp-operator algebra as 
the completion of L1(G, σ) in the norm

‖f‖Fp := sup{‖ϕ(f)‖ : ϕ : L1(G, σ) → B(E) is a contractive algebra homomorphism} ,

where E ranges over all Lp-spaces.

The argument of [6, Proposition 4.6] shows that this is in fact an Lp-operator algebra.

Remark 5.3. By the argument of [11, Proposition 2.3], the full algebra can equivalently 
be defined as the completion of L1(G, σ) with respect to non-degenerate contractive 
representations.

A σ-projective isometric representation of G induces an isometric representation of 
Gσ. This is done by sending π : G → U(B(Lp(G))) to πσ : Gσ → U(B(Lp(G))) where

πσ(γ, x) := γπ(x) ,

for every (γ, x) ∈ Gσ. We can map Lp(G) isometrically to a subspace of Lp(Gσ) with 
the map j : Lp(G, σ) → Lp(Gσ) given by

j(f)(γ, x) := γf(x) ,

for every (γ, x) ∈ Gσ. By [1, Lemma 3.3], the embedding is isometric and we thus have 
that j(Lp(G)) is a closed subspace of Lp(Gσ) for p ∈ [1, ∞]. For p = 1 the embedding is 
also an algebra homomorphism, and so we have that j(L1(G, σ)) is a closed subalgebra 
of L1(Gσ). By expanding the functions of Lp(Gσ) as Fourier series with respect to the 
second argument we can get an explicit description of the subspace j(Lp(G, σ)). For any 
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ξ ∈ Lp(Gσ) and any x ∈ G we have that γ �→ ξ(γ, x) is a function in Lp(T ) ⊆ Lp(Gσ), 
which means that the Fourier coefficients

ξk(x) =
∫
T

ξ(x, γ)γndγ

are well defined, and that the resulting Fourier series

ξ(γ, x) =
∑
k∈Z

ξk(x)γk

converges in Lp(T ). By [1, Lemma 3.4] we have that

j(Lp(G)) = {ξ ∈ Lp(Gσ) : ξk = 0 for k �= 1}

for p ∈ [1, ∞]. The following proposition is [1, Proposition 3.5].

Proposition 5.4. Let G be a locally compact group and let σ be a continuous 2-cocycle for 
G. Let p ∈ [1, ∞), let ξ ∈ L1(Gσ) and let ζ ∈ Lp(Gσ). Then

(ξ ∗ ζ)(γ, x) =
∑
n∈Z

(ξn ∗σn ζn)(x)γn .

Let f ∈ L1(G, σ). From [1, Lemma 3.3] it follows that

λp(j(f))j(ξ) = j(f) ∗ j(ξ) = j(f ∗σ ξ) = j(λσ
p (f)ξ)

for all ξ ∈ Lp(G), and from the Proposition 5.4 we deduce that 
∥∥λσ

p (f)
∥∥
B(Lp(G)) =

‖λp(j(f))‖B(Lp(Gσ)). It follows that j maps F p
λ (G, σ) isometrically to a closed subalgebra 

of F p
λ (Gσ).

Let π be a σ-projective representation of G on E for some Lp-space E. Let f ∈
L1(G, σ), we have that

πσ(j(f))(ξ) =
∫
G

∫
T

αf(y)απ(y)ξdαdy = π(f)ξ ,

for every ξ ∈ E, which implies that ‖π(f)‖B(E) = ‖πσ(j(f))‖B(E).

Theorem 5.5. Let p ∈ (1, ∞), let G be a locally compact group and let σ be a continuous 
2-cocycle for G. If G is amenable, then there is an isometric isomorphism

F p(G, σ) ∼= F p
λ (G, σ).



E.V. Hetland, E. Ortega / Journal of Functional Analysis 285 (2023) 110037 21
Proof. Assume that G is amenable, since T is compact, this implies that Gσ is 
amenable, and by [10, Theorem 3.7] we have that F p

λ (Gσ) ∼= F p(Gσ). Let f ∈
L1(G, σ), and let π be any σ-projective representation of G on some Lp-space E. We 
want to show that ‖π(f)‖B(E) ≤ ‖λσ

p (f)‖B(Lp(G)). Assume that this is not the case, 
i.e., that ‖π(f)‖B(E) > ‖λσ

p (f)‖B(Lp(G)). Note that π induces a representation πσ of 
Gσ on E and that ‖π(f)‖B(E) = ‖πσ(j(f))‖B(E). We then have, by the definition, 
that ‖πσ(j(f))‖B(Lp(Gσ)) ≤ ‖j(f)‖Fp(Gσ), but since G is amenable ‖j(f)‖Fp(Gσ) =
‖λp(j(f))‖B(Lp(Gσ)). Thus, we have that

‖π(f)‖B(E) > ‖λσ
p (f)‖B(Lp(G))

= ‖λp(j(f))‖B(Lp(Gσ))

= ‖j(f)‖Fp(Gσ)

≥ ‖πσ(j(f))‖B(E) = ‖π(f)‖B(E),

which is a contradiction. It follows that ‖f‖Fp(G,σ) = ‖λσ
p (f)‖ for all f ∈ L1(G, σ). �

Remark 5.6. For p = 1, one can easily deduce, as in [6, Proposition 4.9], that F 1(G, σ) =
F 1
λ(G, σ) = L1(G, σ).

As a consequence of this the reduced twisted group algebra generated by an amenable 
group can be characterized in terms of generators and relations.

Example 5.7. Define the function σ : Z2 × Z2 → T by σθ((m, n), (p, q)) = e2πinpθ for 
some irrational number θ ∈ R \Q. This is a continuous 2-cocycle on Z2 and for p = 2, 
we have that F 2(Z2, σθ) = C∗(Z2, σθ), which is the irrational rotation algebra, denoted 
by Aθ [21]. Analogous to this, we will call F p(Z2, σθ) the p-irrational rotation and denote 
it by Ap

θ. Write Uθ = δ(0,1) and Vθ = δ(0,1), these are the generators of F p(Z2, σθ) and 
we have that UθVθ = e2πiθVθUθ. For p = 2 and θ = 0 we have, by the Gelfand transform, 
that F 2(Z2) ∼= C(T 2), the space of continuous function on the 2-torus. This is why this 
algebra is also known as the non commutative torus.

Note that Z2 is an amenable group and as we have just shown this implies that 
Ap

θ = F p(Z2, σθ) ∼= F p
λ (Z2, σθ). Furthermore, let p ∈ (1, ∞) \{2}. Then, by Theorem 4.9, 

we have that Ap
θ and Ap

φ are isometrically isomorphic if and only if σθ ∼ σφ, that is, if 
there exists a continuous map γ : Z2 → T such that

e2πinpθe−2πinpφ = e2πinp(θ−φ) = γ(m,n)γ(p, q)γ(m + p, n + q).

Note that γ(1, 0)γ(0, 1)γ(1, 1) = 1 and γ(0, 1)γ(1, 0)γ(1, 1) = e2πi(θ−φ), and so 
e2πi(θ−φ) = 1 which means that θ − φ ∈ Z. Conversely, if θ − φ ∈ Z, then setting 
γ ≡ 1 shows that σθ ∼ σφ.
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We would like to recall that when p = 2 we have that Aθ
∼= A1−θ [20], so in this case 

the C∗-algebra and the Lp-operator algebra non commutative torus behave differently. 
This was observed before by Gardella and Thiel.

6. The reduced twisted groupoid Lp-operator algebra

In this section we will define the reduced twisted groupoid Lp-operator algebra along 
the lines of the work of [3,18,22].

6.1. Étale groupoids and twists

A groupoid G is a small category with inverses. We will denote by G(0) the units of 
G and the source and the range of γ ∈ G by s(γ) and r(γ) respectively. Two elements 
α, β ∈ G are composable whenever s(α) = r(β), and we will denote by G(2) the set of 
composable pairs. Every unit can be identified with the identity morphism at the unit, 
so since every γ ∈ G has an inverse γ−1, the unit space is under these identifications the 
subset of G of elements of the form γγ−1. The range map and source map r, s : G → G(0)

are maps given by

r(γ) = γγ−1 and s(γ) = γ−1γ .

For each unit x ∈ G(0), we define

Gx := {γ ∈ G : r(γ) = x} and Gx := {γ ∈ G : s(γ) = x} ,

and Gx
x := Gx ∩ Gx = {γ ∈ G : r(γ) = s(γ) = x} is closed under product and inversion 

and therefore it is a group. We call the group Gx
x the isotropy group at x. One says that 

x has trivial isotropy if Gx
x only contains x. The set G′ = {γ ∈ G : s(γ) = r(γ)} is called 

the isotropy bundle. A topological groupoid is a groupoid G endowed with a topology 
that makes the structure maps continuous. The topology on G(2) is the relative topology 
inherited from the product topology in G × G.

Definition 6.1. A locally compact groupoid G is called étale if the range map r : G → G(0)

is a local homeomorphism.

The trivial examples of étale groupoids are the discrete groups.

Definition 6.2. Let G be a locally compact étale groupoid. G is said to be topological 
principal if the set of points in G(0) with trivial isotropy is dense in G(0). G is said to be 
effective if the interior of G′ is G(0).

If G is a topologically principal and Hausdorff étale groupoid, then G is effective. The 
converse is not necessarily true.
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A subset B ⊆ G is called a bisection if there exists an open subset U ⊆ G containing 
B such that the restriction of the range and source maps to U are local homeomorphism. 
If B is open then we call B an open bisection and the restrictions of the range and source 
maps to B are local homeomorphisms.

Definition 6.3. A semigroup S is called an inverse semigroup if for each s ∈ S there is a 
unique t ∈ S such that

sts = s and tst = t .

We write the element t as s�. The map s �→ s� is called the involution on S.

A partial homeomorphism of a topological space X is a homeomorphism U → V

between open subsets U and V of X. Let X be a compact Hausdorff space. We de-
note by Homeopar(X) the set of partial homeomorphisms of X, which forms an inverse 
semigroup. Let ϕ ∈ Homeopar(X). We denote dom(ϕ) for the domain of ϕ in X.

Let X be a compact Hausdorff space, and let S be an inverse subsemigroup of 
Homeopar(X). The groupoid of germs of S, G(S), is defined as follows: On the set

{(ϕ, x) ∈ S ×X : ϕ ∈ S, x ∈ dom(ϕ)}

we define the following equivalence class where (ϕ, x) ∼ (φ, y) whenever x = y and 
there exists a neighborhood U of x in X such that ϕ�U = φ�U . We write [ϕ, x] for the 
equivalence class of (ϕ, x). Then, G(S) has a natural groupoid structure with r([ϕ, x]) =
ϕ(x) and s([ϕ, x]) = x, multiplication given by

[ϕ, φ(y)][φ, y] = [ϕ ◦ φ, y]

and inverse given by

[ϕ, x]−1 = [ϕ−1, ϕ(x)] .

The groupoid of germs G(S) becomes an étale groupoid under the topology given by 
basic open sets U(U, ϕ) = {[ϕ, x] : x ∈ U} indexed by elements ϕ ∈ S and open subsets 
U ⊆ dom(ϕ). The unit space of G(S) can be canonically identified with X and it is thus 
a compact Hausdorff space. For details see [19, Section 3].

Remark 6.4. Let G be an étale groupoid. Then the open bisections form an inverse 
semigroup denoted by S(G). Note that given two subsets U, V ∈ G composition is given 
by UV = {uv : s(u) = r(v)}. It follows that for two open bisections the composition is 
also an open bisection and that the composition is associative. Given an open bisection 
B we also have BB−1B = B and B−1BB−1 = B−1.
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Remark 6.5. Note that any open bisection B ∈ S(G) defines a homeomorphism 
βB : s(B) → r(B) given by βB(x) = r(Bx) for all x ∈ s(B). Moreover, since the 
set of partial homeomorphisms is an inverse semigroup, the induced map β : S(G) →
Homeopar(G(0)) is an inverse semigroup homomorphism. We let P(G) denote the image 
of β. By [19, Corollary 3.4], the groupoid of germs of P(G) is isomorphic to G if and 
only if G is effective. Moreover, if this is the case, then β identifies S(G) bijectively with 
P(G).

We will follow [22, Chapter 5] in defining the twist.

Definition 6.6. Let G be an étale groupoid. A twist over G is a sequence

G(0) × T
i−→ E π−→ G

where G(0)×T is regarded as a trivial group bundle with fibres T , E is a locally compact 
Hausdorff groupoid, and i and π are continuous groupoid homomorphisms that restrict 
to homeomorphisms of unit spaces, and such that

1. i is injective,
2. E is locally a trivial G-bundle, i.e., every point γ ∈ G has a bisection neighborhood 

U such that there exists a continuous section S : U → E satisfying π ◦ S = idU and 
such that the map (γ, z) �→ i(r(γ), z)S(γ) is a homeomorphism U × T → π−1(U),

3. i(G(0) × T ) is central in E, i.e., i(r(ε), z)ε = εi(s(ε), z) for all ε ∈ E and z ∈ T ; and
4. π−1(G(0)) = i(G(0) × T ).

If E is a twist over G for z ∈ T and ε ∈ E, we write z · ε = i(r(ε), z)ε and ε · z =
εi(s(ε), z). Note that ε · z = z · ε since E is central in G. We identify E(0) with G(0) via 
the map x �→ i(x, 1).

Lemma 6.7. Let G be an étale groupoid and let E be a twist over G. If two elements 
ε, δ ∈ E satisfy π(ε) = π(δ), then there exists z ∈ T such that z · ε = δ.

Notation 6.8. Let δ, ε, γ ∈ E with π(δ) = π(ε) = π(γ). We will use the notation δ =
z(δ, ε) ·ε, where z(δ, ε) is the element z ∈ T such that δ = z ·ε. Note that z(δ, ε) = z(ε, δ), 
and z(ε, δ)z(δ, γ) = z(ε, γ).

Definition 6.9. A normalized continuous 2-cocycle for a topological groupoid is a contin-
uous map σ : G(2) → T satisfying the following:

1. σ(r(γ), γ) = σ(γ, s(γ)) = 1 for all γ ∈ G.
2. σ(α, β)σ(αβ, γ) = σ(β, γ)σ(α, βγ) whenever (α, β), (β, γ) ∈ G(2).
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Definition 6.10. Let σ, ω be two normalized continuous 2-cocycles for G, we say that 
σ is cohomologous to ω, if there exists a continuous function γ : G → T such that 
σ(α, β)ω(α, β) = γ(α)γ(β)γ(αβ) for all (α, β) ∈ G(2).

Example 6.11. Let G be a locally compact étale Hausdorff groupoid. If σ is a continuous 
normalized 2-cocycle on G, then we can make G ×T into a groupoid Eσ. The unit space, 
range and source maps are given as usual, but multiplication is given by (α, z)(β, w) =
(αβ, wzσ(α, β)) and inversion is given by (α, z)−1 = (α, σ(α−1, α)z). The groupoid Eσ
is analogous to the Mackey group Gσ in Section 3. The set inclusion i : G(0) × T → Eσ
and the projection π : Eσ → G given by π(γ, z) = γ are groupoid homomorphisms. One 
can then show that Eσ is a twist over G with respect to i and π.

We can also recover the cohomology class of σ from the twist Eσ → G. Let S be any 
continuous section for σ, i.e., a continuous map S : G → Eσ such that π ◦ S = idG. For 
(α, β) ∈ G(2) we have π

(
S(α)S(β)S(αβ)−1) = r(α), and so there is a unique element 

(dependent on α and β) ω(α, β) ∈ T such that S(α)S(β)S(αβ)−1 = (r(α), ω(α, β)). 
The resulting map ω : G(2) → T is a continuous 2-cocycle. Let S′ be another continuous 
section for σ, and let ω′ be defined as ω, but with respect to S′. Let b : G → T be the 
map satisfying the equality S(α)−1S′(α) = (r(α), b(α)) for all α ∈ G, this is in fact a 
1-cochain. Then ω−1ω′ : G(2) → T given by (ω−1ω′)(α, β) = ω(α, β)−1ω′(α, β) is equal 
to the 2-coboundary obtained from the 1-cochain b. Thus, the cocycle obtained from 
different choices of continuous sections S are cohomologous. If we let S be the continuous 
section given by S(γ) = (γ, 1) for all γ ∈ G, then ω = σ. Thus, the cohomology class of 
σ is equal to the cohomology class obtained from any continuous section G → Eσ.

In general if E is a twist over G that admits a continuous section S : G → E, then 
there is a continuous 2-cocycle defined by S(α)S(β)S(αβ)−1 = i (s(α), σ(α, β)) for all 
(α, β) ∈ G(2), and thus an isomorphism E ∼= Eσ that is equivariant for i and π. In that 
case, E is isomorphic to a twist coming from a continuous 2-cocycle.

6.2. The twisted groupoid Lp-operator algebra

Definition 6.12. Let E be a twist over a locally compact étale groupoid G. We define

Σc(G;E) = {f ∈ Cc(E) : f(z · ε) = zf(ε) for all ε ∈ E , z ∈ T} .

Fix γ ∈ G. For any element δ ∈ π−1(γ) we have a homeomorphism T ∼= π−1(γ) given 
by z �→ z · δ. We define a measure on π−1(γ) by pulling back the Haar measure on T . 
This is independent of the choice of δ ∈ π−1(γ) since the Haar measure on T is rotation 
invariant. For every x ∈ G(0) we endow Ex (Ex) with the measure νx (νx) that agrees 
with the pulled backed copy of the Haar measure on π−1(γ) for each γ ∈ Gx (Gx). Note 
that π−1(γ) has measure 1. We have that Σc(G; E) has a ∗-algebra structure [22, Lemma 
5.1.9].
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Lemma 6.13. Let E be a twist over a locally compact étale groupoid G. Then, Σc(G; E)
forms a complex ∗-algebra with product given by convolution

(f ∗ g)(ε) =
∫
Er(ε)

f(γ)g(γ−1ε)dνr(ε) =
∫
Es(ε)

f(εγ−1)g(γ)dνs(ε) ,

for every f, g ∈ Σc(G; E), and involution given by

h∗(ε) = h(ε−1) ,

for every h ∈ Σc(G; E). Let ε ∈ E, then for any choice of a (not necessarily continuous) 
section S : G → E of π, we have that

(f ∗ g)(ε) =
∑

α∈Gr(ε)

f(S(α))g(S(α)−1ε) =
∑

α∈Gs(ε)

f(εS(α)−1)g(S(α)) , (3)

for f, g ∈ Σc(G; E). There is an isomorphism

Cc(G(0)) ∼= {f ∈ Σc(G,E) : supp(f) ⊆ i(G0 × T )} (4)

that sends f ∈ Cc(G(0)) to f̃ , where f̃(i(x, z)) = zf(x).

Remark 6.14. Each twist E over G determines a complex line bundle Ẽ over G, where 
Ẽ = C × E/ ∼ with (zt, γ) ∼ (z, t · γ). If we denote the corresponding equivalence class 
by [z, γ], then Ẽ is a line bundle over G with respect to the fiber map p : Ẽ → G given 
by p([z, γ]) �→ π(γ). We can regard elements of Σc(G; E) as sections of Ẽ, where the 
corresponding section of f ∈ Σc(G; E) is given by

γ �→ [f(γ̃), γ̃]

for any choice of γ̃ ∈ π−1(γ). This is well defined due to the equivalence relation.

Let p ∈ [1, ∞). We denote the p-integrable T -equivariant functions on Ex as 
Lp(Gx; Ex). For p = ∞, we denote the T -equivariant supremum bounded functions by 
L∞(Gx; Ex).

Lemma 6.15. Let p ∈ [1, ∞], let E be a twist over a locally compact étale groupoid G, and 
let x ∈ G(0). Then Lp(Gx; Ex) and lp(Gx) are isometrically isomorphic.

Proof. Let S : G → E be a section of π. Then for every α ∈ Ex there exists z ∈ T such that 
α = S(π(α))i(x, z). Let f ∈ lp(Gx). Then define the function f̃ ∈ Lp(Gx; Ex) as f̃(α) :=
zf(π(α)), where z ∈ T is given by α = S(π(α))i(x, z) (also denoted z(α, S(π(α))). For 
p ∈ [1, ∞) we have that
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∫
Ex

|f̃(α)|dνx =
∑
γ∈Gx

∫
T

|f̃(z · S(γ))|dz =
∑
γ∈Gx

|f(γ)|
∫
T

|z|dz =
∑
γ∈Gx

|f(γ)|

and for p = ∞ we have that

sup
α∈Ex

|f̃(α)| = sup
γ∈Gx

sup
α∈π−1(γ)

|zf(γ)| = sup
γ∈Gx

|f(γ)| .

It follows that the map is isometric for all p ∈ [1, ∞]. The map f �→ f̃ is clearly injective. 
To show surjectivity, let g ∈ Lp(Gx; Ex). Given α ∈ Ex there exists z ∈ T such that 
α = z · S(π(α)). Then we have that g(α) = zg(S(π(α))) and so the function f ∈ lp(Gx)
given by γ �→ g(S(γ)) for all γ ∈ Gx is such that g(α) = f̃(α) for all α ∈ Ex. Thus, the 
map is an isomorphism and it follows that Lp(Gx; Ex) ∼= lp(Gx). �

Let G be an étale groupoid and E be a twist over G. Given x ∈ G(0), we define the left 
regular representation λx : Σc(G; E) → B(Lp(Gx; Ex)) by extension of the convolution 
formula, that is

λx(f)ξ(ε) =
∫
Ex

f(εγ−1)ξ(γ)dνx ,

for every f ∈ Σc(G; E), ξ ∈ Lp(Gx; Ex) and ε ∈ Ex. We have that

‖λx(f)‖ ≤ ‖f‖I = max{sup
x

∫
Ex

|f(α)|dνx, sup
x

∫
Ex

|f∗(α)|dνx} ,

so λx is bounded. To show this estimate, choose any section S : Ex → Gx of π. We then 
have that

λx(f)ξ(ε) =
∫
Ex

f(εγ−1)ξ(γ)dνx =
∑
α∈Gx

f(εS(α−1))ξ(S(α))

and ∫
Ex

|f(α)|dνx =
∑
γ∈Gx

∫
T

|f(z · S(γ))|dz =
∑
γ∈Gx

|f(S(γ))| ,

and since |f(γ1)| = |f(γ2)| for all γ1, γ2 ∈ Ex with π(γ1) = π(γ2), we have by Lemma 6.15
that

sup
γ∈Ex

|f(γ)| = sup
α∈Gx

|f(S(α))| .

The estimate ‖λx(f)‖ ≤ ‖f‖I then follows as in the proof of [3, Proposition 4.2].
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Definition 6.16. Let p ∈ [1, ∞), and let E be a twist over a locally compact étale groupoid 
G. We define the reduced twisted Lp-operator algebra, denoted F p

λ (G; E), as the completion 
of Σc(G; E) in the norm

‖f‖λ = supx∈G(0) ‖λx(f)‖ .

That F p
λ (G; E) is an Lp-operator algebra follows since Lp(Gx; Ex) is an Lp-space, 

and then λ :=
⊕

x∈G(0) λx is an isometric representation of F p
λ (G; E) on the Lp-space ⊕

x∈G(0) Lp(Gx; Ex). Note that if G(0) is compact, then F p
λ (G; E) is unital with unit 

λ(1G(0)).

Example 6.17. Let G be a locally compact étale groupoid. For the trivial twist E = G ×T , 
the continuous map α �→ (α, 1) is a section for π : G ×T → G. The cocycle obtained from 
this section is the trivial cocyle, and it follows from (3) that F p

λ (G; G × T ) ∼= F p
λ (G), 

where F p
λ (G) is the reduced groupoid Lp-operator algebra defined in [3]. Now, let σ be 

a continuous 2-cocycle for G and let Eσ be the twist over G constructed from σ. We can 
then define the σ-twisted convolution on Cc(G) given by

(f ∗σ g)(γ) =
∑

α∈Gs(γ)

f(γα−1)g(α)σ(γα−1, α) =
∑

α∈Gr(γ)

f(α)g(α−1γ)σ(α, α−1γ)

for f, g ∈ Cc(G) and all γ ∈ G. We denote the complex algebra formed by σ-twisted 
convolution by Cc(G, σ). We can also define an involution product on Cc(G, σ) given by

f∗σ(γ) = σ(γ−1, γ)f(γ−1) .

For p ∈ [1, ∞], we define the mapping λσ
x : Cc(G, σ) → lp(Gx) to be the unique map 

such that λσ
x(f) = f ∗σ ξ for all ξ ∈ Cc(Gx). Then, we define the reduced σ-twisted norm

on Cc(G, σ) by

‖f‖λσ = sup{‖λσ
x(f)‖p : x ∈ G0} .

We denote the completion of Cc(G, σ) with respect to ‖·‖λσ by F p
λ (G, σ).

We have that F p
λ (G; Eσ) and F p

λ (G, σ) are isometrically isomorphic. There is an algebra 
isomorphism Σc(G; Eσ) → Cc(G, σ) that sends f �→ f̃ , where f̃(z, γ) = zf(γ) for every 
(z, γ) ∈ Eσ. One can also show that ‖f‖λσ = ‖f̃‖λ, which means that the isomorphism 
extends isometrically to the closures.

Remark 6.18. Let β, ε ∈ E, we define the point mass function on Lp(Gx; Ex) as follows: 
δβ(ε) = z with π(β) = π(ε) and ε = z · β, otherwise δβ(ε) = 0.

Lemma 6.19. Let p ∈ [1, ∞), and let E be a twist over a locally compact étale groupoid 
G. Let f ∈ Σc(G; E). Then
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‖f‖∞ ≤ ‖f‖λ ≤ ‖f‖I .

Furthermore, if B is a bisection, then for every f with supp(f) ⊆ π−1(B) we have 
that ‖f‖∞ = ‖f‖λ.

Proof. Let f ∈ Σc(G; E). Since ‖λx(f)‖ ≤ ‖f‖I , the second inequality follows immedi-
ately. Let ε ∈ E. For first inequality, we need to show that |f(ε)| ≤ ‖f‖λ. Set x = s(ε), 
then

‖f‖λ ≥ ‖λx(f)‖ ≥ ‖λx(f)δx‖ = ‖
∑
γ∈Gx

f(γ)δγ‖p ≥ |f(ε)| .

If supp(f) ⊆ π−1(B) for a bisection B, then a quick manipulation of terms shows that 
‖f‖I = ‖f‖∞, and it follows that ‖f‖∞ = ‖f‖λ. �
Remark 6.20. Note that G(0) is a bisection, and so for all f ∈ Cc(G(0)) the equality 
‖f‖I = ‖f‖∞ holds.

For the rest of the section fix p ∈ [1, ∞), a twist E over an étale groupoid G and a 
section S : G → E of π.

The identity map Σc(G; E) → C0(E) extends to a linear contractive map j : F p
λ (G; E) →

C0(E) by the previous lemma. Given a ∈ F p
λ (G; Ex) we will write ja for j(a) ∈ C0(E).

Now let q be the dual exponent of p, i.e., 1
p + 1

q = 1 when p �= 1 and q = ∞ when 

p = 1. For x ∈ G(0), using Proposition 6.15 we can identify the dual of Lp(Gx; Ex) with 
Lq(Gx; Ex), with the dual pairing defined as

〈ξ , η〉 =
∑
γ∈Gx

ξ(S(γ))η(S(γ)) ,

for ξ ∈ Lp(Gx; Ex) and η ∈ Lq(Gx; Ex).

Proposition 6.21. The map j : F p
λ (G; E) → C0(E) is injective and we have

ja(α) = 〈λs(α)(a)(δs(α)) , δα〉 ,

for all a ∈ F p
λ (G; E) and all α ∈ E.

Proof. For f ∈ Σc(G; E) and α ∈ E we have that

jf (α) = 〈λs(α)(f)(δs(α)) , δα〉 =
∑
γ∈Gx

λs(α)(f)(δs(α))(S(γ))δα(S(γ))

= λs(α)(f)(δs(α))(S(π(α)))δα(S(π(α)))
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=

⎛⎜⎝ ∫
Es(α)

f(S(π(α))η−1)δs(α)(η)dνs(α)

⎞⎟⎠ δα(S(π(α)))

=

⎛⎝∫
T

f(S(π(α))(z · s(α)))δs(α)(z · s(α))dz

⎞⎠ δα(S(π(α)))

=

⎛⎝∫
T

f(S(π(α)))dz

⎞⎠ δα(S(π(α))) = f(S(π(α)))δα(S(π(α)))

= f(S(π(α)))z(S(π(α)), α) = f(S(π(α)))z(α, S(π(α)))

= f(z(α, S(π(α))) · S(π(α))) = f(α) .

Finally, by continuity this extends to all a ∈ F p
λ (G; Ex). �

Lemma 6.22. Let a ∈ F p
λ (G; E), x ∈ G0 and γ, α ∈ Ex, then

〈λx(a)(δγ) , δα〉 = 〈λr(γ)(a)(δr(γ)) , δαγ−1〉 .

Proof. Let f ∈ Σc(G; E), then

〈λx(f)(δγ) , δα〉 =
∑
β∈Gx

λx(f)(δγ)(S(β))δα(S(β))

= λx(f)(δγ)(S(π(α)))z(α, S(π(α)))

= λx(f)(δγ)(z(α, S(π(α))) · S(π(α)))

= λx(f)(δγ)(α)

= f(αγ−1) = 〈λr(γ)(f)(δr(γ)) , δαγ−1〉.

By continuity this holds for all a ∈ F p
λ (G; E). �

Given a Banach space E and an operator T ∈ B(E) we write by T ′ the adjoint of 
T . The operator T ′ ∈ B(E∗), where E∗ is the dual of E, is determined by 〈x , T ′x∗〉 =
〈Tx , x∗〉 for all x ∈ E and x∗ ∈ E∗ where 〈· , ·〉 represent the dual pairing of E∗ and E. 
Recall that ‖T‖ = ‖T ′‖.

Lemma 6.23. Let x ∈ G(0). For a ∈ F p
λ (G; E), we write λx(a)′ : Lq(Gx; Ex) → Lq(Gx; Ex)

for the adjoint of λx(a). We define the contractive linear maps lx : F p
λ (G; E) → Lp(Gx; Ex)

and rx : F p
λ (G; E) → Lq(Gx; Ex) by

rx(a) := λx(a)′δx and lx(a) := λx(a)δx ,

for a ∈ F p
λ (G, E). Then rx(a)(γ) = ja(γ−1) and lx(a)(γ) = ja(γ) for all γ ∈ Ex.
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Proof. Let x ∈ G(0) and let γ ∈ Ex. For a ∈ F p
λ (G, E) we have by Proposition 6.22 that

lx(a)(γ) = 〈λx(a)(δx) , δγ〉 = ja(γ) .

Similarly, using Lemma 6.22 we have that

rx(a)(γ) = 〈δγ , λx(a)′δx〉 = 〈λx(a)(δγ) , δx〉 = 〈λs(γ−1)(a)(δs(γ−1)) , δγ−1〉 = ja(γ−1) ,

for all γ ∈ Ex. It remains to show that the maps are contractive. We have that ‖lx‖ =
sup{‖lx(a)‖p : ‖a‖λ ≤ 1}. Let f ∈ Σc(G, E). Since

‖lx(f)‖p = ‖λx(f)(δx)‖p = ‖f ∗ δx‖p ≤ ‖f‖λ ‖δx‖p = ‖f‖λ ,

it follows that ‖lx‖ ≤ 1. Similarly, it follows that rx is contractive. �
Proposition 6.24. Let a, b ∈ F p

λ (G; E), γ ∈ E. Then

ja∗b(γ) =
∫
Es(γ)

ja(γα−1)jb(α)dνs(γ) .

Proof. Let x ∈ G(0). First we want to show that ja(γα−1) = rx(δγ−1 ∗ a)(α) for all 
α ∈ Ex. Let f ∈ Σc(G; E), then we have that

rx(δγ−1 ∗ f)(α) = 〈δα , λx(δγ−1 ∗ f)′(δx)〉 = 〈λx(δγ−1 ∗ f)(δα) , δx〉
= 〈λx(δγ−1)λx(f)(δα) , δx〉 = 〈λx(f)(δα) , λx(δγ−1)′(δx)〉
= 〈λx(f)(δα) , δγ〉 = 〈λr(α)(f)(δr(α)) , δγα−1〉 = jf (γα−1) .

Let γ ∈ Ex, we now want to show that λx(a)′δγ(α) = ja(γα−1) for all α ∈ Ex. As 
usual, let f ∈ Σc(G; E). Using Lemma 6.22 in the third step, we have that

λx(a)′δγ(α) = 〈δα , λx(a)′(δγ)〉 = 〈λx(a)(δα) , δγ〉 = 〈λr(α)(a)(δr(α)) , δγα−1〉 = ja(γα−1) .

Combining the two statements we finally have

ja∗b(γ) = 〈λx(a ∗ b)(δx) , δγ〉 = 〈λx(a) (λx(b)(δx)) , δγ〉
= 〈λx(b)(δx) , λx(a)′δγ〉 = 〈lx(b) , rx(δγ−1 ∗ a)〉

=
∑
β∈Gx

lx(b)(S(β))rx(δγ−1 ∗ a)(γS(β)−1)

=
∑
β∈Gx

jb(S(β))ja(γS(β)−1) =
∫
Ex

ja(γα−1)jb(α)dνx ,
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which is well defined since the sum is absolutely convergent as it is given by the dual 
paring of elements in Lp(Gx; Ex) and Lq(Gx; Ex), and the last equality follows from 
(3). �
7. Rigidity of reduced twisted groupoid Lp-operator algebras

A key ingredient to prove the rigidity results of groupoid Lp-operator algebras is the 
C∗-core. The following results of the section come from [3, Sections 2 and 3].

7.1. C∗-cores of Banach algebras

Let A be a unital Banach algebra. An element a of A is called hermitian if 
∥∥eita∥∥ = 1

for all t ∈ R. We denote the set of hermitian elements of A by Ah, which is a closed real 
linear subspace satisfying Ah ∩ iAh = {0}.

If A is a unital C∗-algebra, then Ah consists of the self adjoint elements and A =
Ah + iAh. The Vidav–Palmer theorem shows that the converse also holds. So if A is a 
unital Banach algebra with A = Ah+ iAh, then the real-linear involution x + iy �→ x − iy

is both isometric and an algebra involution that satisfies the C∗-identify. This motivates 
the following definition:

Definition 7.1. Let A be a unital Banach algebra, and let B ⊆ A be a unital closed 
subalgebra. We say that B is a unital C∗-subalgebra of A if B = Bh + iBh.

The following theorem is [3, Theorem 2.9] and will be the backbone of the rigidity 
result.

Theorem 7.2. Let p ∈ [1, ∞), and let A be unital Lp-operator algebra. Set core(A) =
Ah + iAh. Then core(A) is the largest unital C∗-subalgebra of A. If p �= 2, then core(A)
is commutative.

The last statement for p �= 2 is a consequence of Lamperti’s Theorem.

Definition 7.3. Let p ∈ [1, ∞), and let A be a unital Lp-operator algebra. We call the 
algebra core(A) the C∗-core of A.

The C∗-core will play the same role as the maximal abelian subalgebra does for C∗-
algebras, but there are two important differences. Firstly, the C∗-core is unique, which 
will give rise to the rigidity result. Secondly, the C∗-core is very small, and in many 
cases it is too small to carry any useful information about the structure of the algebra. 
The last point is the reason why there will be only considered topologically principal 
groupoids.
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Proposition 7.4. [3, Proposition 2.13] Let p ∈ [1, ∞), and let A and B be two unital Lp-
operator algebras. Let ϕ : A → B be a unital contractive linear map. Then ϕ(core(A)) ⊆
core(B) and ϕ : core(A) → core(B) is a ∗-homomorphism.

Now let A be a unital Lp-operator algebra, with p �= 2, we know from Theorem 7.2 that 
the C∗-core is a commutative unital C∗-subalgebra. We will write XA for its spectrum. 
Recall that the spectrum of a Banach algebra is the set of characters endowed with 
the w∗-topology. For a unital commutative Banach algebra the spectrum is a compact 
Hausdorff space, as is the case for XA, and by the Gelfand transform we can isometrically 
identify the core with C(XA).

We can finally identify the C∗-core of F p
λ (G; E) following the proof of [3, Proposition 

5.1].

Theorem 7.5. Let p ∈ [1, ∞) \ {2}, and let E be a twist over a locally compact étale 
groupoid G with compact unit space. Then core(F p

λ (G; E)) = C(G(0)).

Proof. Let a ∈ core(F p
λ (G; E)). With the map given in Proposition 6.21 we want to show 

that supp(ja) ⊆ i(G(0) × T ). Fix x ∈ G(0). Then λx : F p
λ (G; E) → B(Lp(Gx; Ex)) is a 

contractive representation and it follows from Proposition 7.4 that λx(core(F p
λ (G; E))) ⊆

core(B(Lp(Gx; Ex))) and so by [3, Example 2.11] we have that λx(a) is a multiplication 
operator in B(Lp(Gx; Ex)). Let γ ∈ E and set x = s(γ). Since λx(a) is a multiplication 
operator, we have that λx(a)δx = cδx for some constant c ∈ T . Therefore, given γ /∈
i(G(0) × T ) we have that

ja(γ) = 〈λx(a)δx , δγ〉 = 〈cδx , δγ〉 = c
∑
β∈Gx

δx(S(β))δγ(S(β)) = 0 ,

where S : G → E is a section of π. It follows that supp(ja) ⊆ i(G(0) × T ). By Propo-
sition 6.24 we have that j is a homomorphism. By Proposition 6.21 the map j is 
injective, so a = ja, and using the identity (4) we have that j induces a ∗-isomorphism 
core(F p

λ (G; E)) ∼= C(G(0)). �
Notation 7.6. We will for the rest of the paper omit the map j from notation and just 
write a(γ) for ja(γ), and we will fix a section S : G → E.

7.2. Admissible pairs and the Weyl groupoid

We will denote the subset of continuous non-negative real functions by C(XA)+, this 
is the set of positive hermitian elements in A.

Definition 7.7. Let A be a unital Lp-operator algebra. Given open subsets U, V ⊆ XA, 
and a homeomorphism α : U → V , we say that α is realizable (within A) if there exist 
a, b ∈ A satisfying the following:
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1. For every f ∈ C(XA)+, we have that bfa, afb ∈ C(XA)+,
2. U = {x ∈ XA : ba(x) > 0} and V = {x ∈ XA : ab(x) > 0},
3. for x ∈ U , y ∈ V , f ∈ C0(V ) and g ∈ C0(U) we have that

f(α(x))ba(x) = bfa(x) and g(α−1(y))ab(y) = agb(y) .

We then say that n = (a, b) is an admissible pair that realizes α, and we write αn, Un
and Vn for α, U and V respectively.

The following lemma is straightforward to prove.

Lemma 7.8. Let A be a unital Lp-operator algebra and let n = (a, b) be an admissible 
pair, then given z ∈ C the pair z · n := (za, zb) is an admissible pair.

The admissible pairs will play the role as the Lp-analogue of the normalizers used by 
Renault in [19] in the context of Cartan pairs of C∗-algebras, i.e., the pair (a, b) replaces 
the pair (a, a∗) where a is a normalizer. In our setting of Lp-operator algebras, there are 
a number of difficulties arising from the lack of canonical involution. First we recall some 
of the properties of admissible pairs shown in [3, Proposition 3.2].

Proposition 7.9. Let p ∈ [1, ∞) \ {2}, let A be a unital Lp-operator algebra and let 
n = (a, b) and m = (c, d) be two admissible pairs in A that realize αn and αm, respectively.

1. The inverse of αn is realized by the reverse of n which is defined as n� = (b, a).
2. The product nm = (ac, db) realizes the composition

αn ◦ αm �Um∩α−1
m (Un) : Um ∩ α−1

m (Un) → Un ∩ αn(Vm) .

3. For every f ∈ C(XA), the pair nf = (f, f) is admissible and realizes αnf
= IdU for 

U = supp(f). In particular, the identity map on every open set of XA is realizable.

The following corollary follows from Proposition 7.9.

Corollary 7.10. Let A be a unital Lp-operator algebra, then the set of realizable partial 
homeomorphism on XA, denoted by N(A), is an inverse subsemigroup of Homeopar(XA).

Definition 7.11. Let A be a unital Lp-operator algebra. We define the Weyl groupoid of 
A, denoted by GA, to be the groupoid of germs of N(A).

7.3. The Weyl groupoid of F p
λ (G; E)

Next we will show the relationship between two classes of partial homeomorphisms 
on G(0), the ones induced by open bisections and the ones realized by admissible pairs 
of F p

λ (G; E).
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Given a topological space X, let U ⊆ X be an open set, we say U is a cozero set if 
there exists a continuous function f : X → C such that U = supp(f).

Proposition 7.12. Let p ∈ [1, ∞) \ {2}, and let E be a twist over a locally compact, 
Hausdorff, étale groupoid G with compact unit space. Let B be an open bisection of G
with associated partial homeomorphism βB : s(B) → r(B). Let U ⊆ G(0) be a cozero set. 
Then the restriction of βB to U is realizable by an admissible pair in F p

λ (G; E).

Proof. We can without loss of generality replace B with {γ ∈ B : s(γ) ∈ U} and assume 
s(B) ⊆ U . We then need to prove that βB, given as in Remark 6.5, is realizable by an 
admissible pair in F p

λ (G; E). Let h ∈ C(G(0)) be any function such that supp(h) = s(B). 
Choose a non-vanishing continuous T -equivariant function u : π−1(B) → C. Replace u(γ)
with u(γ)/|u(γ)| and we may assume that |u(γ)| = 1. Define the functions a, b : E → C

as

a(α) =
{
u(α)h(s(α)) ifπ(α) ∈ B

0 otherwise ,
and b(α) =

{
u(α−1)h(r(α)) ifπ(α−1) ∈ B

0 otherwise ,

for all α ∈ E. The functions a and b are T -equivariant. Since both functions a, b have sup-
port on π−1(B) it means the I-norm is equal to the ∞-norm for a and b by Lemma 6.19. 
It follows that a, b ∈ F p

λ (G, E) since they are I-norm limits of elements in Cc(π−1(B)).
We then want to show that n = (a, b) is the admissible pair that realizes βB . First we 

will prove that n satisfy the axioms in Definition 7.7. Let f ∈ C(G(0))+ and let γ ∈ E. 
Then

bfa(γ) =
∫
Es(γ)

b(γα−1)f(r(α))a(α)dνs(α) .

Now, if bfa(γ) �= 0, then there exists an element α ∈ Es(γ) such that b(γα−1)f(r(α))a(α)
�= 0, then π((γα−1)−1) = π(αγ−1) ∈ B and π(α) ∈ B. Since B is an open bisection, the 
range map restricted to B is injective. This then implies that γ−1 = s(α) ∈ G(0). Thus 
it follows that supp(bfa) ⊆ i(G(0) × T ) which means that bfa ∈ C(G(0)). We then need 
to show that bfa is positive. Since

bfa(x) =
∫
Ex

b(α−1)f(x)a(α)dνx =
∫
Ex

|h(x)|2f(x)dνx,

it follows that bfa(x) > 0 for all x ∈ G(0), and hence bfa ∈ C(G(0))+. Similarly one can 
show that afb ∈ C(G(0))+. Thus the first condition of Definition 7.7 holds.

Now, to show the second condition note that from the first condition, it follows that 
ab, ba ∈ C(G(0))+. Let x ∈ s(B). Since B is an open bisection, let α0 ∈ B be the unique 
element such that s(α0) = x and let S(α0) ∈ π−1(α0). Then
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ba(x) =
∫
Ex

b(α−1)a(α)dνx = b(S(α0)−1)a(S(α0)) = |h(x)|2 .

It follows that ba(x) = |h(x)|2. On the other hand if x ∈ G(0) \ s(B), then

ba(x) =
∫
Ex

b(α−1)a(α)dνx = 0 ,

since b(α−1) and a(α) are zero for all α ∈ Ex. Thus, ba = |h|2, and it follows that 
s(B) = supp(h) = supp(ba). Similarly, for x ∈ s(B) we can show that ab(βB(x)) =
|h(x)|2, and for x ∈ G(0) \ s(B) that ab(βB(x)) = 0, and so |h|2 = |ab ◦ βB |. Thus, 
r(B) = βB(s(B)) = supp(ab).

Finally, to show the third condition, let x ∈ s(B) and let f ∈ C0(r(B)). Since B is an 
open bisection, there is a unique element α0 ∈ B such that s(α0) = x. Then we have

bfa(x) =
∫
Ex

b(α−1)f(r(α))a(α)dνx =
∑
γ∈Gx

b(S(α)−1)f(r(α))a(S(α))

= b(S(α0)−1)f(r(α0))a(S(α0)) = f(βB(x))|h(x)|2 = f(βB(x))ba(x) .

Similarly, for y ∈ r(B) and g ∈ C0(s(B)) it follows that g(β−1
B (y))ab(y) = agb(y). Hence 

n = (a, b) is the admissible pair that realizes βB , and the result follows. �
Remark 7.13. If G(0) is metrizable, then every open set is a cozero set. In general we 
have that G(0) is a compact Hausdorff space so we have that for every x ∈ G(0) there 
exists an open cozero neighborhood U of x.

The next proposition makes the “converse” relation. We find an open bisection given 
an admissible pair.

Proposition 7.14. Let p ∈ [1, ∞) \ {2}, and let E be a twist over a topologically principal, 
locally compact, Hausdorff, étale groupoid G with compact unit space. Let n = (a, b) be 
an admissible pair in F p

λ (G; E). Set

Bn = {γ ∈ G : a(S(γ)), b(S(γ)−1) �= 0}.

Then Bn is an open bisection of G and αn = βBn .

We will call Bn the open bisection induced by n.

Proof. First note that if a(γ) = 0, then a(ε) = 0 for all ε ∈ E with π(γ) = π(ε).
Since (a, b) is an admissible pair we have that ba ∈ C0(E)+ with supp(ba) ⊆ i(G(0) ×

T ). Observe that b(γ−1)a(γ) = b(α−1)a(α) for any α, γ ∈ E with π(α) = π(γ). Then 
given x ∈ G(0) we have that



E.V. Hetland, E. Ortega / Journal of Functional Analysis 285 (2023) 110037 37
ba(x) =
∑
γ∈Gx

b(S(γ)−1)a(S(γ)) ≥ 0 .

We claim that b(S(γ)−1)a(S(γ)) ≥ 0 for any γ ∈ G. First, assume that there exists 
γ ∈ G such that Re(b(S(γ)−1)a(S(γ))) < 0. Since a and b are continuous, there is an 
open neighborhood U of S(γ) such that Re(b(ξ−1)a(ξ)) < 0 for all ξ ∈ U . Set V = s(U), 
which is an open subset of G(0). Since G is topological principal, there is a x0 ∈ V with 
trivial isotropy. Let γ0 ∈ π(U) with s(γ0) = x0, and set y = r(γ0). Then, since x0 has 
trivial isotropy, γ0 is the unique element in Gx0 with y as it range. Since

ba(x0) = Re(ba(x0)) =
∫
Ex0

Re(b(ξ−1)a(ξ))dνx0 =
∑

η∈Gx0

Re(b(S(η)−1)a(S(η)))

converges absolutely, the set {η ∈ Gx0 : Re(b(S(η)−1)a(S(η))) �= 0} is at most countable. 
Set t = Re(b(S(γ0)−1)a(S(γ0))) < 0, and choose a neighborhood W of y such that∑

η∈Gx0 ,r(η)∈W\{y}
|Re(b(S(η)−1)a(S(η)))| < |t| = −t . (5)

Choose f ∈ C0(G(0))+ with 0 ≤ f ≤ 1, f(y) = 1 and supp(f) ⊆ W . Then using (5) we 
have that

bfa(x0) =
∫
Ex0

Re(b(ξ−1)f(r(ξ))a(ξ))dνx0 =
∑

η∈Gx0

Re(b(S(η)−1)f(r(η))a(S(η)))

=
∑

η∈Gx0 ,r(η)∈W\{y}
Re(b(S(η)−1)f(r(η))a(S(η))) + Re(b(S(γ0)−1)a(S(γ0)))

≤
∑

η∈Gx0 ,r(η)∈W\{y}
|Re(b(S(η)−1)a(S(η)))| + t < 0 ,

which contradicts condition (1) of Definition 7.7, and thus we have that Re(b(S(γ)−1)×
a(S(γ))) ≥ 0 for all γ ∈ G. Now in a similar way we can prove that Im(b(S(γ)−1)a(S(γ)))
≥ 0 for all γ ∈ G, but since

0 = Im(ba(x)) =
∑
γ∈Gx

Im(b(S(γ)−1)a(S(γ))) ,

for every x ∈ G(0) we have that Im(b(S(γ)−1)a(S(γ))) = 0 for all γ ∈ G. Thus, 
b(S(γ)−1)a(S(γ)) ≥ 0 for every γ ∈ G, as desired.

Let us denote

B = {γ ∈ G : a(S(γ)), b(S(γ)−1) �= 0} .
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Let γ ∈ B. We want to prove that s(γ) ∈ Un and r(γ) ∈ Vn. Set x = s(γ). Then we have 
that

ba(x) =
∑
ξ∈Bx

b(S(ξ)−1)a(S(ξ)) > b(S(γ)−1)a(S(γ)) > 0

which by (2) in Definition 7.7 implies that x ∈ Un. Similarly it follows that y = r(γ) ∈ Vn.
Let γ0 ∈ B and set x = s(γ0). We want to show that r(γ0) = αn(x). Assume that 

r(γ0) �= αn(x). Choose f ∈ C(Vn)+, with f(αn(x)) = 0 and f(r(γ0)) = 1, then

f(αn(x)) = bfa(x)
ba(x) =

∫
Ex

b(ξ−1)f(r(ξ))a(ξ)
ba(x) dνs(γ)

=
∑
γ∈Gx

b(S(γ)−1)f(r(γ))a(S(γ))
ba(x) >

b(S(γ0)−1)a(S(γ0))
ba(x) > 0 .

Define the set T = {γ ∈ G : s(γ) ∈ Un and r(γ) = αn(s(γ))}. We have already shown 
that B ⊆ T , which implies that BB−1 ⊆ TT−1 ⊆ G′ = {γ ∈ G : s(γ) = r(γ)}. We will 
show that BB−1 is open. Let i : E → E denote the inversion map. Since a and b ◦ i are 
continuous functions on E, we know that their supports are open subsets of E. We then 
have that B = π(supp(a) ∩ supp(b ◦ i)) is open since π is an open map. Since G is an 
effective groupoid we have that BB−1 is an open set contained in G(0). Similarly one can 
show that B−1B is an open set contained in G(0). It follows that B is an open bisection.

Fix x ∈ Un. We want to show that there exists γ0 ∈ B with s(γ0) = x. For any x ∈ Un
we have that

0 < ba(x) =
∑
γ∈Gx

b(S(γ))a(S(γ)−1) .

This implies that there exists γ0 ∈ Gx with b(S(γ0))a(S(γ0)−1) > 0, which means that 
γ0 ∈ B and s(γ0) = x.

We thus have that s(B) = Un. It remains to show that αn = βB . Let x ∈ Un, and 
let γ ∈ B be the element such that s(γ) = x. Then βB(x) = r(γ) = αn(x), and the 
proposition follows. �
Theorem 7.15. Let p ∈ [1, ∞) \ {2}, let E a twist over a topologically principal, locally 
compact, Hausdorff, étale groupoid G with compact unit space. Then there is a natural 
identification of groupoids

GFp
λ (G;E)

∼= G.

Proof. By Theorem 7.5 we identify the core of F p
λ (G; E) with C(G(0)). Let A be the 

set of all partial homeomorphisms realized by admissible pairs in F p
λ (G; E) and let B
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be the family of partial homeomorphisms on G(0) induced by open bisections of G. By 
Proposition 7.14 we have that A ⊆ B. The converse holds if every open subset of G(0) is 
a cozero set, which is not the case in general, but it holds locally, i.e., for every x ∈ G(0)

there exists a cozero neighborhood U of x. Using this fact we have by Proposition 7.12
that for every β ∈ B and x ∈ G(0), there exists an open neighborhood U of x such that 
β�U ∈ A. It follows that the groupoids of germs of A and B are isomorphic. The groupoid 
of germs of A is by definition GFp

λ (G;E). By [19, Corollary 3.3], the groupoid of germs of 
B is isomorphic to G, since G is effective. �
Remark 7.16. Explicitly the isomorphism θ : GFp

λ (G;E) → G is given as follows. For 
[αn, x] ∈ GFp

λ (G;E) we let Bn denote the open bisection of the admissible pair n as in 
Proposition 7.14. Then the isomorphism is given by [αn, x] �→ Bnx. See the proof of [19, 
Corollary 3.4] for details.

We observe that the groupoid of germs does not recover the twist, and we only recover 
the groupoid as in [3, Theorem 5.5].

7.4. The Weyl twist and Lp-rigidity

In the previous section we recovered the groupoid from the algebra. In this section 
we will see how to recover the twist E over G from the algebra. We will follow Renault’s 
line of thought in [19], where he recovers the twist in the C∗-algebra setting.

Let A be a unital Lp-operator algebra for p ∈ [1, ∞) \ {2}, and let N(A) denote the
inverse subsemigroup of realizable partial homeomorphisms of XA. We define

EA := {(n, x) ∈ N(A) ×XA : n = (a, b) ∈ N(A), ba(x) > 0}/ ≈ ,

where (n, x) ≈ (m, y) whenever x = y and there exist f, g ∈ C(XA) with f(x), g(x) > 0
such that nfn = ngm. We denote [[n, x]] for the equivalence class of the element (n, x). 
EA has a natural groupoid structure. The range and source map are given by r([[n, x]]) =
αn(x) and s([[n, x]]) = x. Multiplication is given by [[n, αm(x)]][[m, x]] = [[nm, x]], and 
inversion by [[n, x]]−1 = [[n�, αn(x)]]. The unit space is canonically identified with XA. 
The quotient becomes a topological groupoid under the topology with basic open sets 
U(n, U, V ) = {[[z · n, x]] : x ∈ U , z ∈ V } indexed over n ∈ N(A) and open sets U ⊆ Un
where Un is given as in Definition 7.7, and V ⊆ T . We call EA the Weyl twist of A, 
analogous to Renaultś in [19].

First we will show that multiplication is well defined. Let (n, x) ≈ (n′, x) and 
(m, αn(x)) ≈ (m′, αn(x)), where n = (a, b), n′ = (a′, b′), m = (c, d) and m′ = (c′, d′). 
Then there exist f, f ′, g, g′ ∈ C(XA) such that nnf = n′nf ′ and mng = m′ng′ . We want 
to show that (nm, x) ≈ (n′m′, x). Note that nf realizes the identity map on some set 
Unf

⊆ G(0). Since fa(γ) = a(γ)f(r(γ)) = a(f ◦ αm)(γ), we have that nfm = mnf◦αm . 
Using this fact we have the following:
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nnfmng = nmnf◦αmng = nmn(f◦αm)g ,

and so

nmn(f◦αm)g = n′m′n(f ′◦αm)g′ .

It thus follows that (nm, x) ≈ (n′m′, x), and hence multiplication is well defined. To 
show that the groupoid is a topological groupoid, let U ⊆ G(0), then

s−1(U) =
⋃

n∈N(A) : U∩Un =Ø

{[[n, x]] : x ∈ U ∩ Un} ,

which is union of basic open sets and thus open. It follows that the source map is 
continuous.

Proposition 7.17. Let A be a unital Lp-operator algebra for p ∈ [1, ∞) \ {2}. There is an 
injective continuous groupoid homomorphism iA : XA × T → EA given by iA((x, z)) =
[[nf , x]] for f ∈ C(XA) such that f(x) = z, and there is a continuous surjective groupoid 
homomorphism πA : EA → GA given by πA([[n, x]]) = [αn, x].

Proof. Let x ∈ XA, z ∈ T , and let f, g ∈ C(XA) with f(x) = g(x) = z. We then have 
that (nf , x) ≈ (ng, x) since zf(x), zg(x) > 0 and fzg = gzf , and so nfnzg = ngnzf . 
Therefore, iA is well defined.

Let x, y ∈ XA, let z, w ∈ T , and let f, g ∈ C(XA) with f(x) = z and g(y) = w. If 
(nf , x) ≈ (ng, y), then x = y, and there exist f ′, g′ ∈ C(XA) with f ′(x), g′(x) > 0 such 
that nfnf ′ = ngng′ . Therefore, ff ′ = gg′ which implies that zf ′(x) = wg′(x). But since 
f ′(x), g′(x) > 0, this implies that z = w, and so iA is injective.

Now, choose an open set W of EA of the form {[[z · n, x]] : x ∈ U, z ∈ V } for some 
n = (a, b) ∈ N(A) and some open neighborhood U contained in supp(f) and open subset 
V ⊆ T . Then

i−1
A (W ) = {(x, z) ∈ XA × T : [[nh, x]] ∈ W for some h ∈ C(XA) with h(x) = z} .

Observe that if [[nh, x]] ∈ W for some h ∈ C(XA) with h(x) ∈ T , this means that there 
exist f, g ∈ C(XA) with f(x), g(x) > 0 and z ∈ V with nf (z · n) = ngnh. Therefore, 
we have that za(x)f(x) = b(x)h(x) and zb(x)f(x) = b(x)h(x) for every x ∈ (supp g) ∩
(supp h) so a(x) = b(x) for every x ∈ (supp g) ∩ (supp h). Moreover, since (supp g) ∩
(supp h) is an open subset of XA that contains x and with αn(y) = y for every y ∈
(supp g) ∩ (supp h), we have that x ∈ (XA \ {y ∈ XA : αn(y) �= y}) ∩ U =: E. Observe 
that E is an open subset of XA. Then for every x ∈ E, z ∈ V and h ∈ C(XA) with 
supp h ⊆ E, then (z · n, x) ≈ (nh, x) if and only if h(x) = za(x)/|a(x)|. Therefore, 
i−1
A (W ) = {(x, za(x)/|a(x)|) : x ∈ E , z ∈ V } is an open subset of XA × T , as desired.

Now let (n, x) ≈ (m, x), we want to show that (αn, x) ∼ (αm, x). Since (n, x) ≈ (m, x)
we have that there exist f, f ′ ∈ C(XA) with f(x), f ′(x) > 0 such that nnf = mnf ′ . 
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By multiplying with some positive h ∈ C(XA) with h(x) = 1, we can assume that 
supp(f) = supp(f ′). Setting U = supp(f), we have that αn�U = αnnf

= αmnf′ = αm�U . 
Thus, πA is surjective and well defined.

Finally, it is clear that for n ∈ N(A) and U ⊆ Un the preimage of [αn, U ] by πA is 
{[[z · n, U ]] : z ∈ T}, so πA is continuous. �
Proposition 7.18. Let A be a unital Lp-operator algebra for some p ∈ [1, ∞) \ {2}, then 

the sequence XA × T
iA−→ EA πA−−→ GA is exact.

Proof. We need to show that Im(iA) = Ker(πA). First, since for any f, g ∈ C(XA) the 
partial homeomorphism αnf

realized by nf is the identity map on the support of f , we 
have that Im(iA) ⊆ Ker(πA). On the other hand, let [[n, x]] ∈ Ker(πA), then αn �U=
Id �U for some neighborhood of x. Therefore, it is easy to check that (n, x) ≈ (nh, x)
where h ∈ C(XA) with h(x) = a(x)/|a(x)| = b(x)/|b(x)|, so (nh, x) ∈ iA(XA × T ). �
Theorem 7.19. Let p ∈ [1, ∞) \ {2}, let E be a twist over a topological principal, lo-
cally compact, Hausdorff, étale groupoid G with compact unit space. Then, there is an 
isomorphism ϕ : EFp

λ (G;E) → E such that the following diagram

G(0) × T
iFp

λ
(G;E)

��

=
��

EFp
λ (G;E)

ϕ

��

πF
p
λ

(G;E)
�� GFp

λ (G;E)

θ

��
G(0) × T

i �� E π �� G

(6)

commutes, where θ is the groupoid isomorphism given in Remark 7.16.

Proof. By Theorem 7.15 we have that the right vertical arrow is an isomorphism, it 
therefore suffices to define ϕ and show that it is a groupoid homomorphism which com-
mutes in the diagram. Before defining ϕ we need to make the following observations.

Let x ∈ G(0) and n = (a, b) be an admissible pair with ba(x) > 0, and let Bn
be the open bisection in G induced by n given in Proposition 7.14. Then, ba(x) =
b(S(Bnx)−1)a(S(Bnx)) > 0. This means that arg(a(S(Bnx))) = −arg(b(S(Bnx)−1))
and so

a(S(Bnx))/|a(S(Bnx))| = b(S(Bnx)−1)/|b(S(Bnx)−1)| .

Now, let (n, x) ≈ (m, x), where n = (a, b) and m = (c, d). Then, there exist f, g ∈
C(G(0)) with f(x), g(x) > 0 such that nnf = mng, i.e., (af, fb) = (cg, gd) which written 
out gives us the equalities a(S(γ))f(s(γ)) = c(S(γ))g(s(γ)) and b(S(γ)−1)f(r(γ)) =
d(S(γ)−1)g(r(γ)) for all γ ∈ G. Note that Bnnf

= Bmng
. It follows from the above 

equalities that there exists a neighborhood of Bnx where Bm and Bn agree. In particular 
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Bmx = Bnx, and therefore we have that a(S(Bnx))f(x) = c(S(Bnx))g(x) (similarly 
b(S(Bnx)−1)f(x) = d(S(Bnx)−1)g(x)). Rewriting this, we have

a(S(Bnx)) = c(S(Bnx)) · g(x)/f(x) ,

where g(x)/f(x) is a positive constant. This implies that

a(S(Bnx))/|a(S(Bnx))| = c(S(Bnx))/|c(S(Bnx))| .

Similarly it follows that b(S(Bnx)−1)/|b(S(Bnx)−1)| = d(S(Bnx)−1)/|d(S(Bnx)−1)|.
Now, let us define ϕ : EFp

λ (G;E) → E by

[[n, x]] �→ a(S(Bnx))
|a(S(Bnx))| · S(Bnx) ,

where n = (a, b) and x ∈ G(0) with ba(x) > 0. From the previous observations we have 
that ϕ is well defined.

We then need to show that ϕ is a homomorphism. Let n = (a, b) and m = (b, c) be two 
admissible pairs. Pick x ∈ G(0). Then [n, αm(x)][m, x] = [nm, x], where nm = (ac, bd). 
We first need to show that BnBmx = Bnmx. Set γ = BnBmx = Bnαm(x)Bmx. We have 
that

ac(S(γ)) =
∑
η∈Gx

a(S(γ)S(η)−1)c(S(η)) = a(S(Bnαm(x)))c(S(Bmx)) �= 0 .

Similarly, bd(S(γ)−1) �= 0. It follows that BnBmx = Bnmx, and using this we have that

ac(S(Bnmx))
|ac(S(Bnmx))| = a(S(Bnαm(x)))

|a(S(Bnαm(x)))|
c(S(Bmx))
|c(S(Bmx))| .

Thus, ϕ([[n, αm(x)]] · [[m, x]]) = ϕ([[nm, x]]). Moreover,

ϕ([[n, x]]−1) = ϕ([[n�, αn(x)]]) = b(S(Bnx)−1)
|b(S(Bnx)−1)| · S(Bnx)−1 =

= a(S(Bnx))
|a(S(Bnx))| · S(Bnx)−1 =

(
a(S(Bnx))
|a(S(Bnx))| · S(Bnx)

)−1

= ϕ([[n, x]])−1 ,

thus, ϕ is a groupoid homomorphism.
Finally, we need to show that the diagram commutes. Let x ∈ G(0), z ∈ T and let 

f ∈ C(G(0)) be any function such that f(x) = z. Note that [[nf , x]] = iFp
λ (G;E)(x, z). Then, 

we have that ϕ([[nf , x]]) = f(x) · x = i(x, z), as expected. Now let [[n, x]] ∈ EFp
λ (G;E), 

then we have that

π(ϕ([[n, x]])) = π

(
a(S(Bnx)) · S(Bnx)

)
= Bnx = θ([[n, x]]),
|a(S(Bnx))|
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where θ is given as in Remark 7.16. Hence the diagram commutes. �
Similarly to the group of cohomologous cocycles for a locally compact group, one can 

construct a group of isomorphic twists over an étale groupoid. We will follow [22, Section 
5.2] in doing so.

Let G be an étale groupoid and let E and F be two twists over G. Two twists are 
said to be properly isomorphic if there exists a groupoid isomorphism φ such that the 
following diagram

G(0) × T ��

=
��

E

φ

��

�� G

=
��

G(0) × T
i �� F �� G

(7)

commutes. We write [E] for the equivalence class of the twist E over G containing all 
twists over G that are properly isomorphic to E. The collection of equivalence classes of 
proper isomorphic twists on G is denoted by Tw(G).

Let E and E′ be two twists over G. On the set

E×π′

π E′ = {(ε, ε′) ∈ E× E′ : π(ε) = π′(ε′)},

define the following equivalence relation: (ε, ε′) ∼ (δ, δ′) if and only if there exists z ∈ T

such that z · ε = δ and z · ε′ = δ′. The quotient E ∗ E′ = E ×π′
π E′/ ∼ is in fact a twist 

over G given by

G(0) × T
i∗i′−−→ E ∗ E′ π∗π′

−−−→ G

where (i ∗ i)(x, z) = [i(x, z), i′(1, x)] and (π ∗ π′)([ε, ε′]) = π(ε). The collection Tw(G)
forms an abelian group under the group operation given by E +E′ = [E ∗E] and identity 
given by the class of the trivial twist. By [3, Proposition 2.13], an isometric isomorphism 
of two Lp-operator algebra induces an injective C∗-homomorphism of the C∗-cores of 
the algebras. We therefore have the following corollary from Theorem 7.19.

Corollary 7.20. Let p ∈ [1, ∞) \{2}. Let G and H be topological principal, locally compact, 
Hausdorff, étale groupoids with compact unit spaces, let E be a twist over G and F be a 
twist over H . Then there is an isometric isomorphism F p

λ (E; G) ∼= F p
λ (E; H) if and only 

if there is an isomorphism of groupoids G ∼= H , and [E] = [F ] in Tw(G).

There is a group isomorphism between H2(G, T ) [18, Definition 1.16] and the subset 
of Tw(G) consisting of twists by continuous sections [14, Section 4]. We therefore have 
the following corollary, analogous to Theorem 4.9, the main result in Section 4.
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Corollary 7.21. Let p ∈ [1, ∞) \ {2}. Let G and H be topologically principal, locally 
compact, Hausdorff, étale groupoids with compact unit spaces, let σ be a 2-cocycle for G
and ρ be a 2-cocycle for H . Then there is an isometric isomorphism F p

λ (G, σ) ∼= F p
λ (H , ρ)

if and only if there is an isomorphism of groupoids G ∼= H and σ and ρ are cohomologous.

Observe that the above result is far from being a generalization of Theorem 4.9 as 
locally compact groups are neither étale nor topologically principal, and even though 
discrete groups are étale, they are not topological principal. In fact, the only group that 
can be topological principle is the trivial group.
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