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Abstract

The proximity effect between a superconductor and a normal metal leads to
some of the superconductivity leaking into the normal metal. In the presence of
a magnetic field or applied currents, this means that superconducting vortices
can arise in the normal metal region. We consider superconductor-normal
metal structures and specifically how the superconducting vortices in the
normal-metal region are altered by driving the system out of equilibrium
by injecting quasiparticles, controlled by an external voltage. Using the
quasiclassical formalism we derive the Usadel equation and solve it for three
different geometries, either analytically or numerically. For all three geometries,
we find that the screening currents in the vortices in the normal metal can be
reversed, which is a sign of a voltage-induced paramagnetic Meissner effect.
In addition, we can control this paramagnetic Meissner effect by varying the
external voltage. This suggests a way in which the electromagnetic response
of the proximitzed normal metal can be tuned by driving it out of equilibrium.
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Sammendrag

Proksimitetseffekten mellom en superleder og et normalt metall fører til
at noe av superledningen lekker inn i normalmetallet. Dette betyr at su-
perledende virvler kan oppst̊a i normalmetallomr̊adet. Vi studerer superleder-
normalmetallstrukturer og spesifikt hvordan de superledende virvlene i nor-
malmetallomr̊adet p̊avirkes av å drive systemet ut av likevekt ved å injisere
kvasipartikler, kontrollert av en ekstern spenning. Ved å bruke den kvasiklas-
siske formalismen utleder vi Usadel-ligningen og løser den for tre forskjellige
geometrier, enten analytisk eller numerisk. For alle tre geometriene finner
vi at skjermingsstrømmene i virvlene i normalmetallet kan reverseres, som
et tegn p̊a en spenningsindusert paramagnetisk Meissner-effekt. I tillegg kan
vi kontrollere denne paramagnetiske Meissner-effekten ved å variere den ek-
sterne spenningen. Dermed ser vi at den elektromagnetiske responsen til det
proksimerte normalmetallet kan bli kontrollert ved å drive det ut av likevekt.
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Chapter 1

Motivation and background

1.1 Introduction

1.1.1 Superconductivity

Superconductivity is a phenomenon exhibited by many materials when the temperature
is reduced below a critical temperature Tc, and is characterized by two distinct features.
The first is the absence of any electrical resistivity and the second, known as the Meissner
effect, is the expulsion of magnetic fields from the superconductor. The first discovery
of superconductivity was made by H. K. Onnes in 1911 who cooled down pure mercury
to 4.2 K [1]. He then measured a sudden drop from a finite resistance to one that could
not be measured. The next big discovery for superconductivity was made in 1933 by W.
Meissner and R. Ochsenfeld when they discovered that magnetic flux was totally expelled
from superconductors [2]. However, at this point, there was still no satisfactory theoretical
description of superconductivity. The first steps towards a full theoretical description
were made by F. and H. London in 1935, when they discovered the London equation and
thus described the relationship between magnetic fields, supercurrents and the Meissner
effect [3]. A full phenomenological description was given by V. L. Ginzburg and L. D.
Landau in 1950 using a wavefunction Ψ to describe superconductivity as a second-order
phase transition [4]. Also in 1950, E. Maxwell [5] and C. A. Reynolds et al. [6] discovered
independently that Tc is lower for heavier isotopes of the same element, which is known
as the isotope effect. The relation between superconductors and magnetic fields was
expanded upon in 1957 when A. A. Abrikosov released his findings about how type-II
superconductors enter the mixed state for an intermediate critical field Hc1 containing
vortices with non-superconducting cores [7].

In addition to the isotope effect, it had been known that metals that were good
conductors at high temperatures had a lower critical temperature than metals that
were inferior conductors. The fact that this resistivity is attributed to electron-phonon
scattering, in addition to the isotope effect, pointed towards phonons, i.e., lattice vibrations,
being a crucial ingredient for superconductivity. Finally, a microscopic description was
given by J. Bardeen, L. N. Cooper and J. R. Schrieffer in 1957. They described the
superconducting state as a charged superfluid condensate of bosonic electron pairs, known
as Cooper pairs, with opposite spin which feel an effective attraction due to interactions
mediated by phonons [8]. This was the condensate described by Ginzburg and Landau with

3



4 CHAPTER 1. MOTIVATION AND BACKGROUND

Figure 1.1: Cartoon drawing of BCS superconductivity. Two electrons, in green, move
through a lattice of ions, in red. They each create a distortion in the lattice as the ions are
attracted to the electrons. This allows the other electron to move through the distortion
and as the region has a net positive charge, the electrons lower their energy, leading to a
bound state, protecting them from scattering.

the wavefunction Ψ. While the BCS theory gave a good description of all superconductors
known in the 1950s, it does not give a good description of high-temperature superconductors
which were first discovered by J. G. Bednorz and K. A. Müller in 1986 [9]. The description
of the non-superconducting state out of which high-temperature superconductivity emerges
remains an important open research problem in condensed matter physics.

While a full understanding of BCS superconductivity requires treating the many-body
quantum mechanical problem, one can still get an intuitive understanding of what is
happening. A cartoon figure of the mechanism is shown in Fig. 1.1. Metals consist of
lattices of positively charged ions through which electrons move. As the electrons are
significantly lighter than the ions, they move much faster. Thus when an electron moves
through the lattice, the attraction between the electron and the ions leads to a small
distortion in the lattice. As the ions are heavy, they use a relatively long time to relax
back to their equilibrium positions. Before they have time to relax, another electron
can pass through the distortion caused by the first electron. Because of the attraction
between the ions and the electron, this leads to the electron having a lower energy when
moving in the distortion caused by the first electron. This means that there is an energy
barrier that needs to be surpassed to scatter the electron out of the distortion. The same
also happens for the first electron moving through the distortions caused by the second
electron. Thus the electrons enter a bound state, lowering their energy, and one needs
a finite energy to destroy this bound state and scatter the electrons. While this energy
might be small, it is significant at low temperatures. At higher temperatures, the thermal
energy and vibrations are too large and we get no such bound state. This explains why
BCS superconductivity is observed only at low temperatures.
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1.1.2 Magnetic fields and superconductivity

One of the most interesting effects arising when placing a superconductor in a magnetic field
is the creation of vortices. Vortices typically arise for the so-called type-II superconductors
when the field is larger than the lower critical field Hc1. This was first described by
A. A. Abrikosov in 1957 [7]. He found that when the field is at least of size Hc1, it is
energetically favourable to start forming vortices where a quantized amount of magnetic
field penetrates through the superconductor in each vortex. Supercurrents circulate
around these vortices, screening the rest of the material from the magnetic field. The
vortices distribute themselves as far away from each other as possible which usually
results in a triangular lattice, but according to Abrikosov, this would change to a square
lattice when the field is increased closer to the critical field Hc2, i.e. the field at which
superconductivity vanishes completely. In 1964 W. H. Kleiner et al. [10] found a solution
to the Ginzburg-Landau equations where they showed that the triangular lattice also
has a lower free energy than the square lattice close to Hc2. Thus they showed that the
triangular lattice can be stable for all fields between Hc1 and Hc2. The first experimental
evidence was given by D. Cribier et al. [11], who used neutron diffraction in niobium to
show superconducting vortices that were distributed in a periodic triangular pattern. This
was later shown to also be the case in vanadium by W. Fite and A. G. Redfield [12].

The properties of vortices in superconductors is still a vibrant field of research. In 2000,
L.F. Chiboutaru et al. [13] showed that vortices respect the discrete symmetries of the
sample. They found that for a square sample, four vortices appear at a time, and moreover
that antivortices and giant vortices are generated to conserve the four-fold symmetry.
If one introduces impurities to the sample, one can break the discrete symmetries. I.V.
Grigorieva et al. [14] showed experimentally that defects in a material can lead to the
vortex pattern not respecting the discrete symmetries. The impurities could instead lead
to pinning of vortices, and lead to several vortices merging and forming giant vortices.

As a superconducting vortex with quantized flux is a phenomenon related to super-
conductivity, one would not expect such effects in a normal metal. However, when a
normal metal is placed in contact with a superconductor, some of the superconductivity
leaks from the superconductor to the normal metal. This effect is known as the proximity
effect and induces superconducting properties in the normal metal. The first discovery of
proximity effects was by R. Holm and W. Meissner [15] in 1932 when they found that
a thin normal metal with superconductors on both sides had zero electrical resistance
when a current was passed through. The microscopic description of how proximity effects
appear was given by A. F. Andreev [16] in 1964 when he described a process now known
as Andreev reflections. In this process, an electron moving in the normal metal towards
the superconductor-normal metal interface can tunnel through the barrier and a hole with
opposite spin will be reflected in the normal metal. This leads to an effective charge trans-
fer of 2e, i.e. a Cooper pair is generated or annihilated, and causes anomalous correlations
between the electrons and holes in the normal metal, giving rise to the proximity-induced
superconductivity.

In addition, proximity-induced superconductivity implies that the normal metal will
acquire some of the properties of the superconductor. For instance, the normal metal
can screen a magnetic field penetrating it. This screening was studied by A. D. Zaikin in
1982 [17]. He studied theoretically superconductor-normal metal proximity sandwiches.



6 CHAPTER 1. MOTIVATION AND BACKGROUND

In the clean limit, he found that the current density does not depend on the location
within the normal metal and that the relation between the current density j and the
magnetic vector potential A is non-local. This can lead to a sign flip of the magnetic
field penetrating the normal metal, with an extra screening such that the field at the
superconductor-normal metal interface is half the strength of the applied field and in
the opposite direction. In the dirty limit, he found that the relation is local and thus
he found no such flipping, and that screening of the magnetic field happens only close
to the superconductor interface. W. Belzig et al. [18] studied a similar screening but
instead of a planar geometry, they used a cylindrical one. Specifically, they considered a
superconducting cylinder surrounded by a normal metal and found that in this geometry,
the magnetic field could oscillate inside the normal metal part. When compared to the
planar limit, they found that the cylindrical geometry increased the magnetic susceptibility.
In the limit of a thick normal metal, the magnetic field at the superconductor-normal metal
interface was equal in size and oppositely directed compared to the external magnetic
field in the cylindrical geometry, as opposed to half that value for the planar geometry as
shown by Zaikin.

Applying a magnetic field to a normal metal with proximity-induced superconductivity
can also have other interesting effects. W. Belzig et al. [19] studied normal metals in
proximity to a superconductor. Using full nonlinear magnetic response, they showed that
the magnetization can have hysteric behaviour both in the clean and dirty limit, matching
the experimental results from A. C. Mota et al. [20] and T. Bergmann et al. [21]. F. S.
Bergeret and J. C. Cuevas [22] investigated the critical current in a diffusive SNS junction.
They showed that as the width of the normal metal increases while in a perpendicular
magnetic field, the magnetic field dependence of the critical current changes from a
monotonic decay when the width is smaller than the magnetic length, to the Fraunhofer
pattern in wide junctions. This behaviour was due to the formation of a linear array of
vortices in the normal region as the junction became wider.

The induced vortices in a normal metal are interesting to study on their own because
of the properties they have. D. Roditchev et al. [23] studied vortices in Josephson
junctions, so-called Josephson vortices. By direct observations of the Jospheson vortices
using scanning tunnelling microscopy, they found that the Josephson vortices have a
real core, where the superconductivity is suppressed and the normal state is recovered.
Direct observations of individual vortices can be done in several ways including scanning
tunnelling electron microscopy [24], where one measures the density of states by placing a
conducting tip close to the sample and measuring the current, as well as magneto-optical
imaging [25], where one makes use of the fact that a magnetic field rotates photons. In
addition to observing the vortex cores, D. Roditchev et al. [23] described a way to create
vortices without the use of magnetic fields. Instead, having two superconductors along
a material with currents going the opposite way leads to vortices very similar to the
magnetic ones. This type of non-magnetic vortex was further studied by M. Amundsen et
al. [26] when they investigated the vortex formation in a normal metal square surrounded
by a superconductor with a current flowing. Depending on the applied current, normal
vortices, giant vortices and antivortices could form to respect the discrete symmetries of
the square.

The Meissner effect is one of the most important effects in superconducting materials.
For example, this allows superconductors to levitate above magnets and can be used for
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magnetically levitating trains [27]. Recently, the paramagnetic Meissner effect, where
materials attract magnetic flux instead of expelling, it has been of considerable interest.
Studies of a paramagnetic superconducting state lead all the way back to 1973 when A. G.
Aronov [28] showed that by irradiating a superconductor one can force it out of equilibrium.
Driven far enough from equilibrium this would lead to a paramagnetic state. However, this
was shown to be an unstable state by A. G. Aronov and B. Z. Spivak [29]. More recently,
the focus has been on heterostructures where non-superconducting materials acquire
induced superconducting properties due to the proximity effect from a superconductor.
The main focus has been on triplet components of the superconducting state that are
odd in frequency. Such states were first predicted in superfluids by V. L. Berezinskii in
1974 [30], and are formed in many superconducting systems, such as hybrid structures
and multiband superconductors [31]. In 2001 F. S. Bergeret et al. [32] found that for
a superconductor-ferromagnet bilayer with a homogeneous exchange field, one can get
either a paramagnetic or diamagnetic screening currents caused by the internal magnetic
field, depending on the product of the exchange field and the momentum relaxation
time. However, they did not consider the effects of an external field. J. Linder et
al. [33, 34] showed that one could get purely odd-frequency triplet components in a normal
metal with a spin-active interface connecting it to a superconductor for an interface
resistance above a critical value dependent on the interface spin polarization. Building
on this, T. Yokoyama et al. [35] showed that in a normal metal-superconductor junction
with a spin-active interface, one can get an anomalous Meissner effect which leads to
spatial and temperature-dependent oscillations of the magnetic field in the normal metal,
including a sign change. They showed that this is due to the generation of odd-frequency
pairing at the interface. Another way to control the paramagnetic response is to use
two ferromagnetic layers between the superconductor and normal metal. M. Alidoust et
al. [36] found that due to the odd-frequency triplet superconducting components, this
setup leads to a paramagnetic Meissner effect, and depending on the angle between
the magnetizations in the two ferromagnets, one can tune the size of the paramagnetic
response. The first experimental evidence of a paramagnetic Meissner effect came in 2015
when A. Di Bernardo et al. [37] measured experimentally the magnetic field in Au in a
Au/Ho/Nb trilayer, where the antiferromagnetic Ho layer, which breaks time-reversal
symmetry, can generate odd-frequency components from the conventional even frequency
superconductivity in Nb. They showed that this leads to a paramagnetic Meissner effect
in Au, experimentally verifying the effect arising from odd-frequency superconductivity.
While most of the research has been focused on the net Meissner effect of a material, A.
A. Golubov [38] studied the effect in superconducting vortices. They found that when
applying an external magnetic field, the proximity-induced screening currents around a
vortex in the ferromagnet can change sign depending on the suppression at the interface
between a superconductor and a ferromagnet. However, one does not need magnetic
effects generating odd-frequency triplet components to get a paramagnetic Meissner effect.
J. A. Ouassou et al. [39] showed analytically that for a normal metal placed on top of a
thin film, one can generate a paramagnetic Meissner response by injecting quasiparticles
controlled by an external voltage. These quasiparticles change the distribution function in
the material. As one can create peaks in the density of states larger than the density of
states at the Fermi level at subgap energies in proximitized normal metals, one can tune
the Meissner response to be either paramagnetic or diamagnetic depending on the voltage.
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This thesis will focus on the paramagnetic Meissner effect in superconducting vortices
in a normal metal with induced superconductivity from the proximity effect. However,
differing from most other studies of the paramagnetic Meissner effect, we will not have
any magnetic components in the system. Instead, we drive the system out of equilibrium
to look for a paramagnetic Meissner response. Using the same method of driving the
system out of equilibrium by injecting quasiparticles as J. A. Ouassou et al. [39], we study
how the screening of the magnetic field in superconducting vortices is affected by injecting
these quasiparticles. However, whereas J. A. Ouassou et al. considered the clean limit
using the Eilenberger equation and derived an analytical expression in an ideal case, we
will consider the dirty limit and thus use the Usadel equation and study geometries where
we solve the Usadel equation either analytically or numerically.

1.1.3 Structure of the master’s thesis

This thesis is divided into four chapters and builds upon work done in the project thesis [40]
written in the fall semester. Chapter 1 gives the motivation and theory for what we
are going to study. This chapter is based on the project thesis, where the introduction
is an expanded version, Sec. 1.2 is taken directly from it, while the remaining sections
are shortened versions of what was written in the project thesis. Sec. 1.2 discusses
some general concepts which are useful for this thesis. Then in Sec. 1.3 we derive the
Hamiltonian for a quite general superconducting system, and in Sec. 1.4 we derive the
equations of motion for the Green’s function in this system, culminating in the Usadel
equation. To finish up the chapter, we consider the limit of weak proximity effect to
simplify the Usadel equation and derive an expression for the supercurrent in Sec. 1.5.
In Chapter 2, which contains the results of the project thesis and is taken directly from
it, we consider a cylindrical geometry to study the paramagnetic Meissner effect in a
highly symmetric system. This allows us in Sec 2.1 to solve the linearized Usadel equation
analytically both without an applied magnetic field and for one case with an applied
magnetic field. Then we use these expressions in Sec. 2.2 to find the screening currents
in the presence of a magnetic field and consider the effect of taking the system out of
equilibrium. Chapter 3 presents the main new work done in this master thesis. Here we
solve the Usadel equation numerically for two different square geometries and look for a
reversal of the vortices indicating a paramagnetic Meissner effect. Before we can begin
with the numerical solution, we describe some general numerical techniques we use in
Sec 3.1. Then in Sec. 3.2 we discuss a system with a square normal metal surrounded by
a superconductor on four sides and explain some useful theory for this system. This is
then used to solve the Usadel equation for the system both with and without a magnetic
field in Sec. 3.3. In Sec. 3.4 we consider a system of a thin film of normal metal placed
on top of a type-II superconductor with an applied magnetic field, leading to induced
vortices in the normal metal and discuss some useful theory for this system. In Sec. 3.5
we solve the Usadel equation in the thin film of normal metal, both for an isolated vortex
and for 7 vortices laid out in a hexagonal arrangement. Finally, in Chapter 4 we conclude
the thesis with a summary and outlook.
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1.2 Preamble

1.2.1 Mathematical conventions

The notation and mathematical conventions will usually follow what is standard in physics.
We will use natural units such that Planck’s reduced constant ℏ, the speed of light c,
the vacuum permittivity ϵ0, the vacuum permeability µ0 and Boltzmann’s constant kb
are all set to 1. Scalars will be written in italics a. The complex conjugate of a variable
a = b+ ic will be written as a∗ = b− ic, the transpose of a matrix as AT and the Hermitian
conjugate as A†. Vectors and 2× 2 matrices will, in general, be written in bold font A
and it is clear from context and earlier definitions which it is. A 4 × 4 matrix will be
written in bold with a hat Â while an 8× 8 matrix will be written in bold with a check Ǎ.
Generally, r will denote a spatial variable, p a momentum, t a time, ϵ an energy and σ a
spin unless otherwise specified. Partial derivatives will be written in compact notation
as ∂xf(x, t) = ∂f(x, t)/∂x. Integrals will run over the entire system unless otherwise
specified. We write the commutator as

[A,B]− = AB−BA, (1.2.1)

while the anticommutator is written as

[A,B]+ = AB+BA. (1.2.2)

When working with spins we use the Pauli matrices which are defined as:

σ0 =

[
1 0
0 1

]
, σ1 =

[
0 1
1 0

]
, σ2 =

[
0 −i
i 0

]
, σ3 =

[
1 0
0 −1

]
. (1.2.3)

The Pauli matrices can be collected in a vector called the Pauli vector:

σ = σ1ex + σ2ey + σ3ez. (1.2.4)

Note that while the Pauli matrices σi are 2× 2 matrices they will not be written in bold
to make a clear distinction from the Pauli vector σ. When we work with electrons and
holes and include their spins we need matrices that describe both the electrons and holes,
Nambu space, and that describe the spins, spin space. The matrices in Nambu space
will be labelled τ instead of σ, but are otherwise the same as the spin matrices σ. This
leads us to Nambu-spin space and tensor products of the Pauli matrices which are 4× 4
matrices:

ρ̂1 = τ 1 ⊗ σ1 ρ̂2 = τ 1 ⊗ σ2 ρ̂3 = τ 3 ⊗ σ0. (1.2.5)

We will also be adding and multiplying matrices of different dimensions. This will
be resolved by promoting the smaller matrix A to the corresponding dimension of the
larger matrix by a tensor product with the identity 1 ⊗A, where the identity will not
be explicitly written out. For a scalar P multiplied with a 2× 2 matrix Q living in spin
space and added to a 4× 4 matrix R̂ this will look like:

PQ+R̂ =


P 0 0 0
0 P 0 0
0 0 P 0
0 0 0 P



Q1,1 Q1,2 0 0
Q2,1 Q2,2 0 0
0 0 Q1,1 Q1,2

0 0 Q2,1 Q2,2

+

R1,1 R1,2 R1,3 R1,4

R2,1 R2,2 R2,3 R2,4

R3,1 R3,2 R3,3 R3,4

R4,1 R4,2 R4,3 R4,4

 . (1.2.6)
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1.2.2 Quantum mechanics

In quantum mechanics a state is represented by a vector |φ⟩, called a ket, in Hilbert
space and this has a unique corresponding vector living in the dual Hilbert space ⟨φ|,
called a bra, the Hermitian conjugate of |φ⟩. A physical observable A is represented as a
Hermitian operator acting on |φ⟩. If the system is in state |φ⟩ at time t and we measure
the observable A at time t′ the expectation value is ⟨A⟩ = ⟨φ|eiH(t′−t)Ae−iH(t′−t)|φ⟩ where
e−iHt is the time evolution operator and H is the Hamiltonian.

The states can be represented in position space as the wave function φ(r, t) = ⟨r|φ⟩.
The particularly simple part of working in position space is that for an operator represented
as A in classical mechanics, the transformation p → −i∇ generates the corresponding
operator in the position space representation of quantum mechanics.

To describe many-particle systems it is convenient to work in the number representation
of quantum mechanics, also known as second quantization. Here there exists a vacuum
state |0⟩ and one can add and subtract particles from states by applying creation and
annihilation operators, c†p,σ and cp,σ. For example the operator c†p,σ creates an electron
with momentum p and spin σ. The state

|pσ⟩ = c†p,σ |0⟩ , (1.2.7)

is the one-particle state containing an electron characterized by momentum p and spin σ.
The operator cp,σ is the annihilation operator which removes an electron characterized by
momentum p and spin σ. When acting with cp,σ on the state defined in (1.2.7) we get
back the vacuum state,

cp,σ |pσ⟩ = |0⟩ . (1.2.8)

The vacuum state is defined such that acting on it with any annihilation operator will
give 0,

cp,σ |0⟩ = 0. (1.2.9)

We can also define the number operator

np,σ = c†p,σcp,σ, (1.2.10)

which counts the number of particles in a state with momentum p and spin σ. As electrons
are fermions they obey the Pauli principle and this is incorporated in this description
by (c†p,σ)

2 = 0, i.e., two particles cannot be in the same state. This also means that
(cp,σ)

2 = 0 by Hermitian conjugation.
A many-particle state is built up from superpositions of states on the form

(c†ν1)
n1(c†ν2)

n2 . . . |0⟩ , (1.2.11)

where νi is the quantum numbers for a particle with momentum p and spin σ and ni is
the occupation number of the state labeled by νi. Another consequence of electrons being
fermions is that states are antisymmetric under particle exchange. For a state occupied
by two particles characterized by p, σ and p′, σ′ we have

c†p,σc
†
p′,σ′ |0⟩ = |pσ,p′, σ′⟩ = − |p′σ′,p, σ⟩ = −c†p′,σ′c

†
p,σ |0⟩ . (1.2.12)
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The above relations could also have been derived from demanding that the creation and
annihilation operators satisfy certain anticommutation relations. For quantum numbers
ν1 and ν2 the anticommutation relations are

[cν1 , c
†
ν2
]+ = δν1,ν2 , [cν1 , cν2 ]+ = [c†ν1 , c

†
ν2
]+ = 0. (1.2.13)

Instead of the momentum-spin eigenvector basis, we can use the position-spin eigen-
vector basis. This transformation gives the creation and annihilation operators ψ†

σ(r, t)
and ψσ(r, t), which create and annihilate an electron with spin σ at position r and time t
and are traditionally called field operators. At an equal time t, the field operators satisfy
the same anticommutation relations as the spin-momentum operators,

[ψσ(r, t), ψ
†
σ′(r

′, t)]+ = δσσ′δ(r− r′)

[ψσ(r, t), ψσ′(r′, t)]+ = [ψ†
σ(r, t), ψ

†
σ′(r

′, t)]+ = 0.
(1.2.14)

The representation of a single-particle operator in terms of field operators is

A =
∑
σσ′

∫
d3rψ†

σ(r, t)A(r)ψσ′(r, t), (1.2.15)

where A(r) is the operator in the position representation of ordinary quantum mechanics.
If A does not affect the spin of the particle we in addition have σ = σ′. The Hamiltonian
can be split into two parts, one part called the non-interacting Hamiltonian containing
only single-particle operators and one part called the interacting Hamiltonian containing
the multi-particle operators. For the non-interacting Hamiltonian H0 we get

H0 =

∫
d3r

∑
σ

ψ†
σ(r, t)H0ψσ(r, t), (1.2.16)

where H0 is the non-interacting Hamiltonian in first quantization. For the interacting part
of the Hamiltonian, we need terms that couple at least two electrons. If the interactions
can be described by a potential that is independent of both spin and momentum, V (r, r′)
then we have two possibilities that conserve angular momentum:

Direct interaction: If the two particles interact through V (r, r′) and stay in the
same spin states the interaction is called direct. This gives us a Hamiltonian containing
the product of two number operators nσ(r, t) and nσ′(r′, t):

Hd =
1

2

∫
d3r

∫
d3r′ V (r, r′)

∑
σσ′

ψ†
σ(r, t)ψσ(r, t)ψ

†
σ′(r

′, t)ψσ′(r′, t). (1.2.17)

Spin-exchange interaction: If the two particles interacting through V (r, r′) end up
swapping spin states it is called a spin-exchange interaction. This gives a slightly different
expression for the spin-exchange Hamiltonian:

He = −1

2

∫
d3r

∫
d3r′ V (r, r′)

∑
σσ′

ψ†
σ(r, t)ψσ′(r, t)ψ†

σ(r
′, t)ψσ′(r′, t). (1.2.18)



12 CHAPTER 1. MOTIVATION AND BACKGROUND

To get information about the spin state of a particle we define the spin field operator,
which is just the second quantized version of the Pauli vector

σ(r, t) =
∑
σσ′

ψ†
σ(r, t)σσσ′ψσ′(r, t). (1.2.19)

Taking the expectation value of the spin field operator

s(r, t) = ⟨σ(r, t)⟩ , (1.2.20)

gives us the expected value of the electron spin density.

1.2.3 Green’s functions

To describe the electrons of a material it is useful to know the correlation between electrons
at different points in space and time. The Green’s functions are defined as expectation
values of electron and hole correlations and contain information about the electronic
properties of the material. Here we will use the formalism developed by L. V. Keldysh [41].
A comprehensive review was given by J. Rammer and H. Smith [42]. The Green’s functions
are then defined as

GR
σσ′(r, t; r′, t′) = −i

〈
[ψσ(r, t), ψ

†
σ′(r

′, t′)]+

〉
Θ(t− t′), (1.2.21)

GA
σσ′(r, t; r′, t′) = i

〈
[ψσ(r, t), ψ

†
σ′(r

′, t′)]+

〉
Θ(t′ − t), (1.2.22)

GK
σσ′(r, t; r′, t′) = −i

〈
[ψσ(r, t), ψ

†
σ′(r

′, t′)]−

〉
, (1.2.23)

where ⟨A(t)⟩ denotes the grand canonical average of A(t),

⟨A(t)⟩ =
∑
i,j

⟨i|A(t)Wj |j⟩ ⟨j|i⟩ , (1.2.24)

where |i⟩ and |j⟩ are different states of the system and Wj is the probability of finding
the system in state |j⟩. In equilibrium Wj is [43]

Wj =
e−βEj∑

i ⟨i| e−βEi |i⟩
, (1.2.25)

where Ej is the energy of state |j⟩ measured with respect to the Fermi level and β = 1/T
is the inverse temperature. We see that the retarded Green’s function GR vanishes unless
t > t′. This means that electron creation has to happen first and annihilation afterwards.
For the advanced Green’s function GA it is the opposite, it vanishes if t < t′. So for GA

the electron is annihilated first and then later it is created. Based on this we may conclude
that the retarded Green’s function describes the flow of electrons, while the advanced
Green’s function describes the flow of holes. If we want to calculate the occupation
number we have to look at the Green’s function in the same point in space and time
and with equal spin, i.e. r = r′, t = t′, and σ = σ′. In this case, the anticommutator
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becomes 1 and because of this GR and GA are constant. However, for GK we can use the
anticommutational relation to rewrite the commutator as

−i[ψσ(r, t), ψ
†
σ(r, t)]− = i(2nσ(r, t)− 1), (1.2.26)

where nσ(r, t) = ψ†
σ(r, t)ψσ(r, t) is the number operator for particles with spin σ at position

r at time t. As this is related to the occupation of the states we see that GK contains
information about the non-equilibrium properties of the system, however, this is not the
case for GR and GA. Thus we conclude that GK is the only Green’s function that contains
information about non-equilibrium properties of the system [42, 44].

We also define the anomalous Green’s functions that describe correlations between
electrons at different points in space and time:

FR
σσ′(r, t; r′, t′) = −i ⟨[ψσ(r, t), ψσ′(r′, t′)]+⟩Θ(t− t′), (1.2.27)

FA
σσ′(r, t; r′, t′) = i ⟨[ψσ(r, t), ψσ′(r′, t′)]+⟩Θ(t′ − t), (1.2.28)

FK
σσ′(r, t; r′, t′) = −i ⟨[ψσ(r, t), ψσ′(r′, t′)]−⟩ . (1.2.29)

For most systems, the anomalous Green’s functions will vanish, but importantly for our
study, they are non-zero in superconducting materials. This is due to the formation
of the condensate of Cooper pairs where we have two electrons paired. To get the
related correlations for holes one takes the Hermitian conjugate of the anomalous Green’s
functions.

Since the indices σ and σ′ can be either ↑ or ↓, the Green’s function can be viewed
as components of 2 × 2 matrices in spin space: GR, GA, GK , FR, FA and FK . These
matrices are then used to construct 4× 4 matrices in Nambu-spin space:

ĜR =

[
GR FR

(FR)∗ (GR)∗

]
, (1.2.30)

ĜA =

[
GA FA

(FA)∗ (GA)∗

]
, (1.2.31)

ĜK =

[
GK FK

−(FK)∗ −(GK)∗

]
. (1.2.32)

These three matrices can now be collected in a single 8× 8 matrix in what is known as
Keldysh space [42]:

Ǧ =

[
ĜR ĜK

0 ĜA

]
. (1.2.33)

Collecting all the Green’s functions into one Green’s function in Keldysh space will later
allow us to collect all the equations of motions for the different Green’s functions in one
compact equation for the Green’s function in Keldysh space.
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1.2.4 Quasiclassical approximation

The Green’s function depends on its coordinates in two different ways. The first way is on
the relative coordinate |r− r′|. As we assume that only particles close to the Fermi surface
contribute to physical processes, the Green’s function oscillates on a scale of the Fermi
wavelength λF. The second way is on the system which is under study. The characteristic
length scales in typical systems of interest, such as the superconducting coherence length,
are usually much larger than the Fermi wavelength λF . Thus we can often integrate
out the dependence on the relative coordinate to get a quasiclassical Green’s function
ǧ. When we Fourier transform the relative coordinate the fast oscillations lead to a
sharp peak around the Fermi surface, |p| = pF, which we can then integrate out and only
have a dependence on the direction of transport p̂F. This can not be done in problems
where phase-coherence of the single-electron wave function controls the effect such as
weak localization and persistent current. A review of the topic was given by W. Belzig et
al. [44].

To find this quasiclassical Green’s function ǧ we start by switching to relative and
center of mass coordinates:

rc =
r+ r′

2
, s = r− r′,

tc =
t+ t′

2
, u = t− t′.

(1.2.34)

We now Fourier transform the relative coordinates s and u:

Ǧ(rc,p, tc, ϵ) =

∫
du exp(iϵu)

∫
d3s exp(−ip · s)Ǧ(rc, s, tc, u). (1.2.35)

When the Green’s function depends on the center of mass coordinate rc and time tc in
addition to the momentum p and energy ϵ we say that we are in the mixed representation.
At low temperatures all states with |p| ≪ pf are fully occupied, while states with |p| ≫ pf
are all empty. Conservation of momentum thus implies that only states with momentum
close to pf contribute to physical processes. This means that the Fourier transform leads
to a sharp peak in p at |p| = pF , where pF =

√
2mµ and µ is the chemical potential. We

approximate this peak as a delta function to get

Ǧ(rc,p, tc, ϵ) ≈ −iπδ(|p| − pF)ǧ(rc, p̂F, tc, ϵ), (1.2.36)

where −iπ is a normalization constant. To fix the value of the momentum to the Fermi
momentum pF we introduce the variable ξp = p2 − µ and integrate over this variable

ǧ(rc, p̂F, tc, ϵ) =
i

π

∫
dξp Ǧ(rc,p, tc, ϵ). (1.2.37)

Here we have obtained the quasiclassical Green’s function ǧ. We can express it in terms
of Ǧ(r, t; r′, t′) by putting together all steps performed above:

ǧ(rc, p̂F, tc, ϵ) =
i

π

∫
dξp

∫
du exp(iϵu)

×
∫

d3s exp(−ip · s)Ǧ(rc + s/2, tc + u/2; rc − s/2, tc − u/2).

(1.2.38)
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Thus the quasiclassical Green’s function is a function of the center of mass coordinate
rc and time tc, transport direction at the Fermi surface p̂F and energy ϵ. The prefactor
i is important when we do complex conjugation since it leads to a sign change. As the
quasiclassical Green’s function can be written as

ǧ =

[
ĝR ĝK

0 ĝA

]
, (1.2.39)

the sign structure of Eqs. (1.2.30), (1.2.31) and (1.2.32) is changed and now becomes:

ĝR =

[
gR fR

−(fR)∗ −(gR)∗

]
, (1.2.40)

ĝA =

[
gA fA

−(fA)∗ −(gA)∗

]
, (1.2.41)

ĝK =

[
gK fK

(fK)∗ (gK)∗

]
. (1.2.42)

1.2.5 Bullet and ring product

The bullet product A • B(rc,p, tc, ϵ) of two functions A(r, t, r′, t′) and B(r, t, r′, t′) is
defined as the convolution over the middle spacetime variable and the Fourier transform
of the relative coordinate:

A •B(rc,p, tc, ϵ) =

∫
d3(r− r′) e−ip·(r−r′)

∫
d(t− t′) eiϵ(t−t′)

×
∫

d3r1

∫
dt1A(r, t, r1, t1)B(r1, t1, r

′, t′),

(1.2.43)

where rc = (r+ r′)/2 and tc = (t+ t′)/2. If one of the functions is a function of just 1 or
0 spacetime points the bullet product is the same as the Fourier transform of the relative
coordinate with normal matrix multiplication of A and B. It is shown in J. P. Morten’s
thesis [43] that Eq. (1.2.43) becomes:

A •B(rc,p, tc, ϵ) = e
i
2
(∇A

rc∇
B
p−∇A

p∇B
rc )e

i
2
(∂A

tc
∂B
ϵ −∂A

ϵ ∂B
tc
)A(rc,p, tc, ϵ)B(rc,p, tc, ϵ). (1.2.44)

Here the exponential of the operators should be considered in terms of the Taylor expansion
of the exponential eF =

∑∞
n=0

1
n!
F n. In addition, the superscript tells us which of the

functions we are acting on:

(∇A
rc∇

B
p )AB = (∇rcA)(∇pB). (1.2.45)

If one writes out the exponentials one would see that this is an example of a Moyal
product [45].

We can also separate out the space and momentum derivatives to define the ring
product A ◦B as

A ◦B(rc,p, tc, ϵ) = e
i
2
(∂A

tc
∂B
ϵ −∂A

ϵ ∂B
tc
)A(rc,p, tc, ϵ)B(rc,p, tcϵ). (1.2.46)



16 CHAPTER 1. MOTIVATION AND BACKGROUND

If we are in the stationary case this reduces to normal matrix multiplication and the ring
product is just the Fourier transform. We can now define the bullet product in terms of
the ring product:

A •B(rc,p, tc, ϵ) = e
i
2
(∇A

rc∇
B
p−∇A

p∇B
rc )A ◦B(rc,p, tc, ϵ). (1.2.47)

Note that if we have no dependence on the space coordinate this reduces to the ring
product. If we now expand the exponential we see that we get increasing power in the
derivatives. As we ignore spatial variations on the scale of the Fermi wavelength, λF , we
have that ∇r ∼ L for L≫ λp, whereas ∇p ∼ λF . Thus the expansion of the exponential
is an expansion in λF/L, which is small as L ≫ λF . This allows us to do an expansion
known as the gradient approximation and keep only linear terms in the gradients [46]

A •B = (1 +
i

2
(∇A

rc∇
B
p −∇A

p∇B
rc))A ◦B

= A ◦B+
i

2
{[(∇rcA) ◦ (∇pB)]− [(∇pA) ◦ (∇rcB)]}.

(1.2.48)

We also define bullet and ring commutators and anticommutators as

[A,B]•± = A •B±B •A, (1.2.49)

[A,B]◦± = A ◦B±B ◦A. (1.2.50)

In the gradient approximation, we can combine the bullet commutator and anticommutator
with Eq. (1.2.48) to get:

[A,B]•± = [A,B]◦± +
i

2

(
[∇rcA,∇pB]◦∓ − [∇rcB,∇pA]◦∓

)
. (1.2.51)

This is much simpler than the full bullet commutator and will help simplify the transport
equations that we will derive in chapter 1.4.

1.2.6 Distribution function

The distribution function, ĥ, is a matrix containing information about the energy dis-
tribution of the electrons and holes. One way to obtain ĥ is from the normalization
condition ǧ ◦ ǧ = 1 and it is defined via ĝK = ĝRĥ − ĥĝA. As ĝK is the only Green’s
function that contains information about non-equilibrium properties this means that ĥ
also contains information about non-equilibrium properties. Thus, it is determined by
a kinetic equation which one gets from the Keldysh component of the Usadel equation,
which in a normal metal gives ∇2ĥ = 0 when the normal metal is smaller than the inelastic
scattering length [44, 46]. In the absence of spin-dependent transport it can be written as:

ĥ(ϵ) =

[
h(ϵ)σ0 0

0 −h̃(ϵ)σ0

]
, (1.2.52)

where h̃(ϵ) = h∗(−ϵ). We can also express h(ϵ) as h(ϵ) = 1 − 2n(ϵ), where n(ϵ) is the
occupation number of the electron states with quasiparticle energy ϵ, which in equilibrium
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is just a Fermi-Dirac distribution. Inserting the Fermi-Dirac distribution for n(ϵ) we find
that h(ϵ) in equilibrium at a temperature T is

h(ϵ) = tanh
( ϵ

2T

)
. (1.2.53)

One should note that ϵ is measured with respect to the Fermi level, i.e., an energy ϵ = 0
means that the quasiparticle has the same energy as the Fermi level. If we let T → 0 the
tanh function becomes a step function

h(ϵ) = θ(ϵ)− θ(−ϵ), (1.2.54)

where θ(ϵ) is the Heaviside function.
To go out of equilibrium we can for example apply a voltage in such a way as to create

a two-step distribution function. One way to do this is to have a wire connected to two
reservoirs at voltages ±eV , and connecting the system we wish to study to the middle of
this wire. K. E. Nagaev [47] showed that this leads to a distribution function on the form:

h(ϵ) =

[
tanh

(
ϵ+ eV

2T

)
+ tanh

(
ϵ− eV

2T

)]
/2, (1.2.55)

and this was later confirmed experimentally by H. Pothier et al. [48]. Again taking the
T → 0 limit gives us a step function, but this time a two-step one with steps at ±eV :

h(ϵ) = θ(ϵ− eV )− θ(−ϵ− eV ). (1.2.56)
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1.3 Hamiltonian

When we describe a quantum mechanical system we begin with a Hamiltonian that
contains information about the properties of the system and how they contribute to the
dynamics of the system. This Hamiltonian can be divided into contributions from the
various properties, such as free electrons and superconductivity.

1.3.1 Non-interacting electrons

For particles that do not interact with each other moving in a background electromagnetic
field with scalar potential φ and vector potential A, we know from classical mechanics
that the Hamiltonian is [49]

H0 =
(p− eA)2

2m
+ eφ− µ, (1.3.1)

where we use the convention that e < 0 is the electron charge. The factor −µ means
that we measure all energies relative to the Fermi energy. To get the first quantized
Hamiltonian we do the replacement p → −i∇ and get

H0 = −(∇− ieA)2

2m
+ eφ− µ. (1.3.2)

We now introduce the gauge covariant derivative ∇̃ = ∇− ieA and using Eq. (1.2.16) we
find that the second quantized Hamiltonian is

H0 =

∫
d3r
∑
σ

ψ†
σ(r, t)

{
− 1

2m
∇̃2 + eφ(r, t)− µ

}
ψσ(r, t). (1.3.3)

1.3.2 Superconductivity

When looking at superconductivity we consider electron-electron scattering by some
attractive potential V (r, r′). If we consider direct interactions, the contributions to the
Hamiltonian becomes

Hd =
1

2

∫
d3r d3r′ V (r, r′)

∑
σσ′

ψ†
σ(r, t)ψ

†
σ′(r

′, t)ψσ′(r′, t)ψσ(r, t). (1.3.4)

We now assume that this attraction is very short ranged so we can approximate it by [8, 50]

V (r, r′) = λ(r)δ(r− r′). (1.3.5)

For the potential to be attractive, we need λ(r) < 0. We also introduce the bosonic
operators b(r, t) = ψ↓(r, t)ψ↑(r, t) and note that these operators describe pairs of electrons
with opposite spins, which are known as Cooper pairs. This allows us to write the
superconducting Hamiltonian as

Hd =

∫
d3rλ(r)b†(r, t)b(r, t). (1.3.6)
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As we have that λ(r) < 0, we see that creating Cooper pairs lowers the energy of the
superconductor. Thus, when we are at low temperatures, we expect that there will be
formed many Cooper pairs since the thermal fluctuations are small. The collection of
these pairs is what is referred to as the electronic condensate in a superconductor.

To simplify the superconducting Hamiltonian we do a mean-field approximation,
introducing the mean field

bµ(r, t) = ⟨b(r, t)⟩ , (1.3.7)

and the fluctuation field
bδ(r, t) = b(r, t)− ⟨b(r, t)⟩ . (1.3.8)

In the mean-field approximation, we assume small fluctuations, i.e., |bδ(r, t)| ≪ |bµ(r, t)|,
thus we can ignore terms proportional to b2δ. We also ignore the term containing
b†µ(r, t)bµ(r, t) as it is a constant and just leads to a shift in energy. Defining the super-

conducting order parameter ∆̃(r, t) = λ(r)bµ(r, t) allows us to write the Hamiltonian
as

H∆ =

∫
d3r (∆̃ψ†

↑(r, t)ψ
†
↓(r, t) + ∆̃∗ψ↓(r, t)ψ↑(r, t)). (1.3.9)

We now write ∆̃(r, t) = ∆(r, t)eiv(r,t) for two real functions ∆(r, t) and v(r, t) which are
called the superconducting gap and the superconducting phase. This allows us to do a
gauge transformation to remove the superconducting phase [51]

ψσ(r, t) → eiv(r,t)/2ψσ(r, t),

A(r, t) → A(r, t) +∇v(r, t)/2e,
φ(r, t) → φ(r, t)− ∂tv/2e,

(1.3.10)

and end up with the Hamiltonian 1

H∆ =

∫
d3r∆(r, t)

[
ψ†
↑(r, t)ψ

†
↓(r, t) + ψ↓(r, t)ψ↑(r, t)

]
. (1.3.11)

1.3.3 Impurity scattering

A real material is unlikely to have no impurities and we thus introduce impurities to
our model of the system. In impure superconductors, there can be both magnetic and
non-magnetic impurities. The non-magnetic impurities contribute with an effective
background potential Vimp(r) and using Eq. (1.2.16) we have the following contribution
to the Hamiltonian [42, 43]

Himp =

∫
d3rVimp(r)

∑
σ

ψ†
σ(r, t)ψσ(r, t). (1.3.12)

Magnetic impurities have a spin field s(r, t) which couples to the spin field of an electron
σ(r, t) through a scattering potential Vsf(r) via spin-flip scattering. The corresponding
contribution to the Hamiltonian is

1This will be used for the derivation of the Usadel equation in chapter 1.4. When solving the linearized
Usadel equation we will consider a solution with a phase, but that will be done in a proximitized normal
metal and thus we use ∆ = 0 and the derived Usadel equation still holds for that case.
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Hsf =

∫
d3rVsf(r)σ(r, t) · s(r, t). (1.3.13)

Writing out σ(r, t) in terms of the field operators ψσ(r, t) gives

Hsf =

∫
d3rVsf(r)

∑
σσ′

ψ†
σ(r, t)[σ · s(r, t)]σσ′ψσ′(r, t). (1.3.14)

1.3.4 Total Hamiltonian

For the entire system containing electromagnetic fields, superconductivity and impurity
scattering the total Hamiltonian becomes the sum of Eqs. (1.3.3), (1.3.11), (1.3.12) and
(1.3.14)

H = H0 +H∆ +Himp +Hsf. (1.3.15)
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1.4 Equations of motion

The time evolution of the field operators ψ(r, t) and ψ†(r, t) are governed by the Heisenberg
equation:

i∂tψσ(r, t) = [ψσ(r, t),H]−, i∂tψ
†
σ(r, t) = [ψ†

σ(r, t),H]−. (1.4.1)

Using the Hamiltonian defined in (1.3.15) one can calculate the time evolution for this
system as shown in the project thesis [40]. To simplify the resulting equations we define

B(r, t) = eφ(r, t)− µ+ Vimp(r, t), (1.4.2)

Cσ,σ′(r, t) = − 1

2m
δσσ′∇̃2 + Vsf[σ · s(r, t)]σ,σ′ , (1.4.3)

Dσσ′(r, t) = ∆(r, t)iσ2
σσ′ . (1.4.4)

This allows us to write the time evolution of the field operators as

i∂tψσ(r, t) = B(r, t)ψσ(r, t) +
∑
σ′

Cσσ′(r, t)ψσ′(r, t) +
∑
σ′

Dσσ′(r, t)ψ†
σ′(r, t), (1.4.5)

i∂tψ
†
σ(r, t) = ψ†

σ(r, t)B(r, t) +
∑
σ′

ψ†
σ′(r, t)C

†
σσ′(r, t)−

∑
σ′

ψσ′(r, t)Dσσ′(r, t). (1.4.6)

Here one should note that C† contains differential operators which act on ψ† from the
right. In addition, D is real and antisymmetric so D† = DT = −D which means that the
hermitian conjugate of (1.4.5) reproduces (1.4.6).

These equations for the time evolution of the field operators can be used to calculate
the time evolution of the Green’s functions. If we consider the retarded Green’s function
defined in (1.2.21) we need to take the derivative with respect to both t and t′. Due to the
Heaviside function, we will also get a term with a delta function in time and the resulting
anticommutator gives a delta function in spin and space. Using that C and D can be
written as matrices we get the time evolution of the retarded Green’s function:

i∂tG
R = (B +C)GR −DFR∗

+ δ(r− r′)δ(t− t′), (1.4.7)

−i∂t′GR = GR(B′ +C′†)− FRD′ + δ(r− r′)δ(t− t′). (1.4.8)

The equations for GR∗
, which are needed to formulate the equations for ĜR, are found by

simple complex conjugation.

For the anomalous Green’s function, we get the same equation except that we inter-
change GR and FR and remove the delta functions due to the absence of a Heaviside
function in the definition of FR. This gives time evolution as

i∂tF
R = (B +C)FR −DGR∗

, (1.4.9)

i∂t′F
R = FR(B′ +C′T )−GRD′. (1.4.10)

In Nambu-spin space we can collect Eqs. (1.4.7) and (1.4.9), and Eqs. (1.4.8) and (1.4.10),
along with their complex conjugates in two 4× 4 matrix equations:
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iρ̂3∂tĜ
R = ĤĜR + δ(r− r′)δ(t− t′), (1.4.11)

−i∂t′ĜRρ̂3 = ĜR

¯
Ĥ′ + δ(r− r′)δ(t− t′). (1.4.12)

Here we have defined

Ĥ =

[
B +C −D
−D B +C∗

]
, (1.4.13)

and

¯
Ĥ′ =

[
B′ +C′† −D′

−D′ B +C′T

]
. (1.4.14)

Equations (1.4.11) and (1.4.12) are the Gor’kov equations [52] for the retarded Green’s
function. They are in principle exact, but solving them is in most cases a formidable task.

The same steps can be done for the advanced and Keldysh Green’s function leading to
equations on the same form with the retarded Green’s function replaced by the advanced
and Keldysh Green’s functions. In the case of the Keldysh Green’s function, they are
defined without a Heaviside step function, so these equations will not have a delta function.
Using Eq. (1.2.33) now gives

iρ̂3∂tǦ = ĤǦ+ δ(r− r′)δ(t− t′), (1.4.15)

−i∂t′Ǧρ̂3 = Ǧ
¯
Ĥ′ + δ(r− r′)δ(t− t′). (1.4.16)

These are the Gorkov equations for the Green’s function in Keldysh space and these
give a microscopic way to calculate the Green’s function for a system described by the
Hamiltonian in Eq. (1.3.15). However, in most cases they are very hard to solve as they
depend on 8 coordinates (r, t, r′, t′).

To get equations that are easier to solve, we first want to transform the Gorkov
equations into a form that is more suitable for approximations. We begin by subtracting
the two Gorkov equations (1.4.15) and (1.4.16)

iρ̂3∂tǦ+ i∂t′Ǧρ̂3 = ĤǦ− Ǧ
¯
Ĥ′. (1.4.17)

We now switch to the mixed representation

tc =
t+ t′

2
, rc =

r+ r′

2
,

u = t− t, s = r− r′,
(1.4.18)

and Fourier transform the relative coordinate. This means that the derivative transforms
as

∂t =
1

2
∂tc − iϵ, ∇ =

1

2
∇rc + ip,

∂t′ =
1

2
∂tc + iϵ, ∇′ =

1

2
∇rc − ip.

(1.4.19)
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Putting this back into equation (1.4.17) we can write the equation in terms of commutators
and anticommutators

[ϵρ̂3, Ǧ]− +
i

2
[ρ̂3, ∂tcǦ]+ = ĤǦ− Ǧ

¯
Ĥ′. (1.4.20)

As ϵρ̂3 is independent of time, position and momentum and linear in energy the left-hand
side of this equation can be written as a bullet commutator

[ϵρ̂3, Ǧ]•− = [ϵρ̂3, Ǧ]− +
i

2
[ϵρ̂3, ∂tcǦ]+. (1.4.21)

Now, consider the right-hand side of Eq. (1.4.20). Both B and D depend only on a single
spacetime coordinate. Thus for these contributions, the bullet product is the same as
normal matrix multiplication. For B we get

{ĤǦ− Ǧ
¯
Ĥ′}B = [eφ+ Vimp, Ǧ]•−, (1.4.22)

where µ has dropped out since it is a constant, while for D we get

{ĤǦ− Ǧ
¯
Ĥ′}D = [−∆iρ̂2, Ǧ]•−. (1.4.23)

Due to the complex conjugate structure of C on the diagonal of Ĥ and Ĥ′, we introduce

Â =

[
Aσ0 0
0 −Aσ0

]
, (1.4.24)

and

σ̂ =

[
σ 0
0 σ∗

]
. (1.4.25)

This allows us to write the C contributions as

{ĤǦ− Ǧ
¯
Ĥ′}C =− ip

m
· {∇rcǦ− ie[Â, Ǧ]•−}+

ie

4m
{[∇rc · Â, Ǧ]•+

+ [Â,∇rcǦ]•+ − 2ie[Â2, Ǧ]•−}+ [Vsfs · σ̂, Ǧ]•−.
(1.4.26)

As the differential operators in
¯
Ĥ′ act towards the left, there are no∇2

rc terms as they cancel
out. In addition, p commutes with ∇rc , so those two terms have been added together.
Combining Eqs. (1.4.21), (1.4.22), (1.4.23) and (1.4.26) we get the exact transport equation
for a system described by the Hamiltonian (1.3.15):

p

m
· {∇rcǦ− i[Â, Ǧ]•−} =i[ϵρ̂3 +∆iρ̂2 − eφ− Vimp − Vsfs · σ̂, Ǧ]•−

+
e

4m
{[∇rcÂ, Ǧ]•+ + [Â,∇rcǦ]•+} −

i

2m
[Â2, Ǧ]•−.

(1.4.27)

This equation is much more suitable for approximations than the Gorkov equations (1.4.15)
and (1.4.16). We first do the quasiclassical approximation where we consider all energies
to be small compared to the Fermi energy, which is equivalent to assuming that all
characteristic length scales of the system are much larger than the Fermi wavelength, λF .
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Assuming that these characteristic length scales are of size L, we can make an expansion
in the small parameter η = L/λF . All three terms in the second line of Eq. (1.4.27) are
proportional to η2, while the rest of the terms in (1.4.27) are proportional to η. Thus,
we ignore the three terms on the second line. In the bullet product, we expand the
exponential containing the derivatives with respect to space and momentum. As ∇r ∼ 1

L

and ∇p ∼ λF we see that this expansion is an expansion in η, and we thus only keep
the zeroth order and replace all bullet commutators with ring commutators. Since the
quasiclassical approximation only considers electrons close to the Fermi surface, we replace
p/m by vF and Ǧ(r,p, ϵ, t) by ǧ(r, p̂F, ϵ, t). This gives us the quasiclassical transport
equation:

vF · ∇̃ǧ = i[ϵρ̂3 +∆iρ̂2 − eφ− Vimp − Vsf s · σ̂, ǧ]◦−. (1.4.28)

This equation is known as the Eilenberger equation [44, 53] and is a tremendous sim-
plification when compared to the exact transport equation (1.4.27). We have removed
three non-trivial terms and no longer have an infinite series of differentiations with respect
to r and p. In addition, ǧ is independent of the magnitude of p, so we also have one
less degree of freedom. Finally, in the stationary limit ∂tǧ = 0, the right-hand side of
Eq. (1.4.28) reduces to a regular commutator which further simplifies calculations.

To make further simplifications we consider a material with a relatively high density of
non-magnetic impurities. This leads to the Eilenberger equation (1.4.28) being dominated
by Vimp and the Green’s function becomes nearly isotropic. Thus, we make a first-order
expansion in spherical harmonics:

ǧ(r, p̂F, ϵ, t) = ǧs(r, ϵ, t) + p̂F · ǧp(r, ϵ, t). (1.4.29)

Here the s-wave component ǧs is the isotropic part while the p-wave component ǧp is the
linearized anisotropy with respect to the transport direction p̂F. In this limit, we can
also simplify the expressions for the impurity scattering potential Vimp and the spin-flip
scattering Vsf s · σ̂. To do this, one averages the Green’s function over a large amount
of random, either non-magnetic or magnetic, impurities. This average then leads to the
impurity potentials being replaced by self energies. Introducing the momentum-relaxation
time τ0 and the spin-relaxation time τs it is shown by J. P. Morten [43] and J. Rammer
and H. Smith [42] that the self-energies replacing the impurity potentials are

Vimp → − i

2τ0
ǧs, (1.4.30)

and

Vsf s · σ̂ → − i

2τs
ρ̂3ǧsρ̂3. (1.4.31)

Putting these back into the Eilenberger equation, multiplying by p̂F, only including
the impurity term on the right-hand side of the equation and using the normalization
condition [54]

ǧs ◦ ǧs = 1, (1.4.32)

one can express the anisotropic part of the Green’s function as

ǧp = − vF
2v0

ǧs ◦ ∇̃ǧs. (1.4.33)
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Thus, the isotropic part of the Green’s function captures all the essential physics of the
problem and we only need to solve for it. We use this expression to eliminate ǧp from
Eq. (1.4.29) and introduce vs = 1/2τs and the diffusion coefficient D = 1

3
τ0v

2
F:

iD∇̃ · (ǧs ◦ ∇ǧs) = [ϵρ̂3 +∆iρ̂2 − eφ+ ivsρ̂3ǧsρ̂3, ǧs]
◦
−. (1.4.34)

This equation is known as the Usadel equation [55] and is much simpler to solve than the
Eilenberger equation (1.4.28). While we have gone from a first-order differential equation
to a second-order one, we have also removed the dependency on the direction of the
momentum, such that we have two fewer degrees of freedom.
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1.5 Weak proximity effect

While the Usadel equation describes dirty systems well, solving the full Usadel equation
analytically is still a formidable task. One way to get an equation that is easier to solve
analytically is to derive the so-called linearized Usadel equation [56]. This is a good
description for a normal metal in contact with a superconductor with a resistive interface
between the normal metal and superconductor. This resistivity leads to weak proximity-
induced superconductivity in the normal metal and thus the solution is very close to the
solution for a bulk normal metal. Then we can treat the addition of superconductivity
in the normal metal as a weak perturbation. We will also assume that the system has
been kept in a specific state for a sufficiently long time to be time-independent, that is a
steady-state approximation. In this case, the ring products in Eq. (1.4.34) become normal
matrix products as all higher-order terms contain a derivative with respect to the time
which will be zero.

1.5.1 Linearized Usadel equation

In the time-independent case, the Usadel equation (1.4.34) for a superconducting metal
with an externally applied magnetic field becomes

∇̃ · Ǐ = i[Σ̌, ǧ]− = i

[
[Σ̂, ĝR]− [Σ̂, ĝK ]−

0 [Σ̂, ĝA]−

]
, (1.5.1)

where
Σ̂ = ϵρ̂3 +∆iρ̂2, (1.5.2)

and we have defined the matrix current

Ǐ = −Dǧ∇̃ǧ = −D
[
ĝR∇̃ĝR ĝR∇̃ĝK − ĝK∇̃ĝA

0 ĝA∇̃ĝA

]
. (1.5.3)

The subscript s has been dropped from the isotropic part of the Green’s function, so when
we write ǧ from now on it is the isotropic part ǧs that is meant. One should also note that,
apart from a factor 1/3, the matrix current is the same as the linearized anisotropy of the
Green’s function when comparing with Eq. (1.4.33). This is called the matrix current [57]
since it contains information about all the currents in the system, i.e., electric, energy
and spin currents. Later it will be used to calculate the supercurrent density.

It can be shown that both ĝA and ĝK can be expressed through ĝR [44, 43] as

ĝA = −ρ̂3ĝ
Rρ̂3, (1.5.4)

and

ĝK = ĝRĥ− ĥĝA. (1.5.5)

This means that it is sufficient to find an expression for ĥ as discussed in section 1.2.6
and to solve

−D∇̃ · (ĝR∇̃ĝR) = i[Σ̂, ĝR]−. (1.5.6)
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In a normal metal, where ∆ = 0, the simplest solution to the Usadel equation is

ĝR = ρ̂3, (1.5.7)

as this commutes with Σ̂, the derivative is zero and it respects the normalization condition
ĝR ◦ ĝR = 1.

The idea behind the linearized Usadel equation is that for a normal metal in contact
with a superconductor through a resistive barrier, the solution is almost the same as for a
normal metal, just with a small perturbation. For a superconductor, the BCS solution
is [56]

ĝR
BCS =

[
gBCSσ

0 fBCSiσ
2

−f̃BCSiσ
2 −gBCSσ

0

]
. (1.5.8)

Thus, when we view it as a weak perturbation, we only consider the f terms. In the
normal metal we already have ρ̂3 on the diagonal and the contributions from perturbation
of the diagonal elements are thus ignored. However, the off-diagonal elements are zero
and thus we cannot ignore the perturbations from the f terms. This gives the solution on
the form

ĝR = ρ̂3 + f̂ , (1.5.9)

where

f̂ = antidiag(f,−f,−f̃, f̃) =
[

0 fiσ2

−f̃ iσ2 0

]
, (1.5.10)

and f̃(ϵ, r) = f ∗(−ϵ, r). This limit is called the weak proximity regime. When we linearize
the Usadel equation, we assume that f is small so we can neglect all terms of order
O(f 2). When neglecting O(f 2) terms it is easy to show that this solution also satisfies
the normalization condition (ĝR)2 = 1 as the cross terms cancel and the square of ρ̂3 is 1.

To derive the linearized Usadel equation, we substitute (1.5.9) into (1.5.6) and set
∆ = 0 as we consider a normal metal. Using that the vector potentialA and the gradient∇
commutes in the Coloumb gauge ∇ ·A = 0 and neglecting terms of order f 2 gives

−D

[
0 (∇2f − 4ie(A · ∇)f − 4e2A2f)iσ2

(∇2f̃ + 4ie(A · ∇)f̃ − 4e2A2f̃)iσ2 0

]
= 2iϵ

[
0 fiσ2

f̃ iσ2 0

]
.

(1.5.11)

Since the left-hand side and right-hand side of the equation have the same matrix structure
they are two scalar equations for f and f̃ . Using the Coulomb gauge again, they can be
rewritten as

(∇− 2ieA)2f = −2i
ϵ

D
f, (1.5.12)

(∇+ 2ieA)2f̃ = −2i
ϵ

D
f̃. (1.5.13)

We see that we get Eq. (1.5.13) from Eq. (1.5.12) by taking the complex conjugate and
flipping the sign of ϵ, which is as expected based on the definition of f̃ . Thus we only
need to solve one of the equations. This is the linearized Usadel equation [58] and we see
that it is much simpler than the Usadel equation (1.4.34). We have gone from a matrix
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equation to a single scalar equation, we have removed all ring products so we no longer
have an infinite number of differentiations with respect to time and energy and we have
removed the commutators from the right-hand side. We are left with a partial differential
equation where we have first and second-order derivatives with respect to all 3 spatial
coordinates, but depending on the geometry and symmetries this can also be simplified
even further.

1.5.2 Supercurrent density

The matrix current defined in Eq. (1.5.3) can be used to calculate the supercurrent density
in a system [44]. A full derivation is given in the supplementary information of [59], which
gives

Je = −1

8
eNf

∫ wc

0

dϵReTr(ρ̂3Î
K), (1.5.14)

where Nf is the density of states at the Fermi surface, wc is the Debye frequency as this is
the frequency at which the phonon-mediated attractions stop being attractive, Re means
taking the real part of the expression and Tr is the trace. Let us now consider the matrix
current when ĝK is defined by (1.5.5). From Eq. (1.5.3) we have

ÎK =−D
{
∇ĥ− ĝR(∇ĥ)ĝA + ĝR(∇ĝR)ĥ− ĥĝA∇ĝA

− ieA([ρ̂3, ĥ]− + ĝR[ρ̂3, ĝ
R]−ĥ− ĥĝA[ρ̂3, ĝ

A]− − ĝR[ρ̂3, ĥ]−ĝ
A)
}
.

(1.5.15)

Let us now consider a normal metal with weak proximity-induced superconductivity,
where ĝR is given by Eq. (1.5.9). We also assume a spatially homogeneous distribution
function ∇ĥ = 0, as we will later use the distribution functions defined in section 1.2.6.
This homogeneity means that we assume that all resistive currents are zero. A resistive
current is driven by a gradient in the voltage and implies a gradient in the distribution
function. To simplify Eq. (1.5.15) we need an expression for ĝA. To find this we put
Eq. (1.5.9) into Eq. (1.5.4):

ĝA = −ρ̂3 + f̂(−ϵ). (1.5.16)

Putting (1.5.9) and (1.5.16) back into (1.5.15), using ĥ as defined in (1.2.52) and the
assumption that ∇ĥ = 0, we can calculate the commutators in the matrix current. The
diagonality of ĥ also means that [ρ̂3, ĥ]− = 0, so those terms also drop out. This gives

ÎK =−D
{[

ρ̂3 + f̂(ϵ)
]
∇f̂(ϵ)ĥ− ĥ

[
−ρ̂3 + f̂(−ϵ)

]
∇f̂(−ϵ)

}
+ 2iDeA

{[
ρ̂3 + f̂(ϵ)

]
ρ̂3f̂(ϵ)ĥ− ĥ

[
−ρ̂3 + f̂(−ϵ)

]
ρ̂3f̂(−ϵ)

}
.

(1.5.17)

To calculate the supercurrent from Eq. (1.5.14), we now multiply Eq. (1.5.17) with ρ̂3 and
take the real part of the trace of the resulting matrix. First, we note that f̂ is anti-diagonal
while ρ̂3 and ĥ are diagonal, and a diagonal matrix multiplied with an anti-diagonal
matrix is anti-diagonal and thus has no trace. This means that terms that contain only
one f̂ will not contribute to the trace. We also use that f̂ 2 is diagonal so it commutes with
ĥ which is also diagonal, which allows us to move all the ĥ terms before the f̂ terms. This
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gives

ReTr(ρ̂3Î
K) =−DReTr

{
ρ̂3ĥ

[
diag(f∇f̃, f∇f̃, f̃∇f, f̃∇f)(ϵ)

− diag(f∇f̃, f∇f̃, f̃∇f, f̃∇f)(−ϵ)
]}

+ 2DeAReTr
{
iρ̂3ĥ

[
diag(−ff̃,−ff̃, f̃f, f̃f)(ϵ)

− diag(−ff̃,−ff̃, f̃f, f̃f)(−ϵ)
]}
.

(1.5.18)

We now introduce this back into Eq. (1.5.14), perform the traces, write out h̃(ϵ) = h∗(−ϵ)
and f̃(ϵ) = f ∗(−ϵ) and make use of the fact that we can freely complex conjugate within
Re:

Je =
1

4
eNf

∫ wc

0

dϵ

[
DRe

{
h(ϵ) [f(ϵ)∇f ∗(−ϵ)− f(−ϵ)∇f ∗(ϵ)]

+ h(−ϵ) [f(−ϵ)∇f ∗(ϵ)− f(ϵ)∇f ∗(−ϵ)]
}

+ 2DeARe
{
ih(ϵ) [f(ϵ)f ∗(−ϵ)− f(−ϵ)f ∗(ϵ)]

+ ih(−ϵ) [f(−ϵ)f ∗(ϵ)− f(ϵ)f ∗(−ϵ)]
}]
.

(1.5.19)

Here we see that the second h and f terms in the square brackets in each line are the
same as the first ones, just with a sign change on ϵ. This means that we can merge them
together and integrate from −wc instead of 0. In addition, as we can freely complex
conjugate inside Re we use that f(ϵ)f ∗(−ϵ) = −[f(−ϵ)f ∗(ϵ)]∗. This gives the supercurrent
density

Je =
1

4
eNfD

∫ wc

−wc

dϵ

[
Re
{
h(ϵ) [f(ϵ)∇f ∗(−ϵ)− f(−ϵ)∇f ∗(ϵ)]

}
+ 4eARe

{
ih(ϵ)f(ϵ)f ∗(−ϵ)

}]
.

(1.5.20)

If we now consider an anti-symmetric distribution function as the one defined in (1.2.56),
we can use that the gradient terms are antisymmetric in ϵ. For the last term, we see that
by letting ϵ → −ϵ and taking the complex conjugate within Re, we get back the same
expression. This means that we can simplify the integral to be from 0 to wc and multiply
with a factor of 2. Finally, we get the supercurrent density as

Je =
1

2
eNfD

∫ wc

0

dϵ

[
Re
{
h(ϵ) [f(ϵ)∇f ∗(−ϵ)− f(−ϵ)∇f ∗(ϵ)]

}
+ 4eARe

{
ih(ϵ)f(ϵ)f ∗(−ϵ)

}]
.

(1.5.21)
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Chapter 2

Analytical solution

As the linearized Usadel equation is a scalar partial differential equation it should be
possible to solve analytically, at least for some geometries and applied magnetic fields. In
this chapter, we will study one such geometry consisting of a cylindrical normal metal
surrounded by a superconductor and solve the Usadel equation in the normal metal. We
start by finding these analytical solutions in the normal metal in Sec. 2.1 and then in
Sec. 2.2 we study the screening currents in the normal metal when driven out of equilibrium.
The entirety of this chapter is taken directly from the specialization project [40].

2.1 Cylindrical geometry

2.1.1 Physical system

While the linearized Usadel equation (1.5.12) is a big simplification when compared to
the Usadel equation (1.4.34), it is still hard to solve in general. To simplify, we will now
consider a cylindrically symmetric geometry, where we assume that we have a cylindrical
normal metal of radius R surrounded by a superconductor. We further assume that the
sample is thinner than the inelastic scattering length so that the distribution function
h(ϵ) does not depend on the z-coordinate. For quasiclassical theory to be applicable,
we assume that the system is much larger than the Fermi wavelength, and to be able
to use the Usadel equation we assume that the system is much larger than the elastic
scattering length. Finally, we assume that the superconductor is thicker than the magnetic
penetration and coherence length in all directions, which leads to flux quantization in the
superconductor. When applying a magnetic field we will assume that it is constant in the
normal metal and zero inside the superconductor. This is due to the fact that we have
weakly induced superconductivity in the normal metal, which means that the screening
currents it sets up are weak. In contrast, the superconductor has strong screening currents
so we assume perfect screening. This will give an effective one-dimensional problem where
we can solve the linearized Usadel equation analytically for some applied external fields.
Due to this symmetry, we expect a solution that is cylindrically symmetric around the
middle of the cylinder where we choose r = 0. The setup is shown in Fig. 2.1.

Due to the cylindrical symmetry of the problem, we now perform a change of variables
to cylindrical coordinates, such that r = (r, ϕ, z). This will also change the form of the
derivatives when compared to Cartesian coordinates. The gradient becomes [60]
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∇ = ∂rr̂+
1

r
∂ϕϕ̂+ ∂zẑ. (2.1.1)

We also need the expression for the Laplacian which is

∇2f =
1

r
∂r(r∂rf) +

1

r2
∂2ϕf + ∂2zf. (2.1.2)

Now the linearized Usadel equation (1.5.12) can be written

1

r
∂r(r∂rf) +

1

r2
∂2ϕf + ∂2zf − 4ie(Ar∂rf +

Aϕ

r
∂ϕf + Az∂zf)− 4e2A2f = −2i

ϵ

D
f. (2.1.3)

We can also rewrite the expression for the supercurrent (1.5.20) as

Je =
1

4
eNfD

∫ wc

−wc

dϵ

[
Re

{
h(ϵ)

[
f(ϵ)

{
∂rf

∗(−ϵ)r̂+ 1

r
∂ϕf

∗(−ϵ)ϕ̂+ ∂zf
∗(−ϵ)ẑ

}
− f(−ϵ)

{
∂rf

∗(ϵ)r̂+
1

r
∂ϕf

∗(ϵ)ϕ̂+ ∂zf
∗(ϵ)ẑ

}]}
+ 4eARe

{
ih(ϵ)f(ϵ)f ∗(−ϵ)

}]
.

(2.1.4)

Since the system we are looking at is very thin in the z-direction we assume that f
does not depend on z. In addition, the cylindrical symmetry of the system means that we

R

B

Superconductor

Normal metal

Figure 2.1: The geometry of the problem studied with a normal metal of radius R
surrounded by a superconducting material. The magnetic field points in the z-direction
out of the plane. The superconductor is much larger than shown in this figure.
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assume that f has the form

f(r, ϵ) = f(r, ϵ)exp(inϕ), (2.1.5)

where n is the winding number. The factor exp(inϕ) means that we have assumed a phase
winding of 2πn in the superconducting order parameter when going around the cylinder
once. When n ̸= 0 this means that we have a system with a superconducting vortex1. To
have f(r, ϵ) be well defined in the origin we also need that f(r = 0, ϵ) = 0. This allows us
to simplify Eqs. (2.1.3) and (2.1.4),

1

r
∂r [r∂rf(r, ϵ)]−

n2

r2
f(r, ϵ)− 4ie

[
Ar∂rf(r, ϵ) + in

Aϕ

r
f(r, ϵ)

]
− 4e2A2f(r, ϵ)

= −2i
ϵ

D
f(r, ϵ).

(2.1.6)

Note that the factor exp(inϕ) is common to all terms in the equation and thus drops out
after doing the ϕ derivatives. Equation (2.1.4) becomes:

Je =
1

4
eNfD

∫ wc

−wc

dϵ

[
Re
{
h(ϵ)

[
f(r, ϵ){∂rf ∗(r,−ϵ)r̂+ −in

r
f ∗(r,−ϵ)ϕ̂}

− f(r,−ϵ){∂rf ∗(r, ϵ)r̂+
−in
r
f ∗(r, ϵ)ϕ̂}

]}
+ 4eARe

{
ih(ϵ)f(r, ϵ)f ∗(r,−ϵ)

}]
.

(2.1.7)

Here every term f is multiplied by its complex conjugate f ∗ so the term exp(inϕ) also
drops from this equation after doing the derivatives.

We can now specialize this to the equilibrium and non-equilibrium case at zero
temperature T = 0. If we only consider the integrand of Eq. (2.1.7) at T = 0 we have

Re
{
h(ϵ)

[
(4ieA− 2

in

r
)f(r, ϵ)f ∗(r,−ϵ)ϕ̂

+ {f(r, ϵ)∂rf ∗(r,−ϵ)− f(r,−ϵ)∂rf ∗(r, ϵ)}r̂
]}
.

(2.1.8)

If we now make the change ϵ→ −ϵ we just get a sign change from the f part and a sign
change within the argument of h,

Re
{
− h(−ϵ)

[
(2ieA− in

r
)f(r, ϵ)f ∗(r,−ϵ)ϕ̂

+ {f(r, ϵ)∂rf ∗(r,−ϵ)− f(r,−ϵ)∂rf ∗(r, ϵ)}r̂
]}
.

(2.1.9)

Looking at the equilibrium case where h is given by Eq. (1.2.53) it is also antisymmetric
in ϵ, so the integrand is symmetric in ϵ and we get for the supercurrent

1For n < 0 we would get a winding in the opposite way of a normal vortex. This is what is known as
an anti-vortex and has currents circulating in the opposite direction of a normal vortex [26].
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Je =
1

2
eNfD

∫ wc

0

dϵ

[
Re
{
(2ieA− in

r
)f(r, ϵ)f ∗(r,−ϵ)ϕ̂

+
[
f(r, ϵ)∂rf

∗(r,−ϵ)− f(r,−ϵ)∂rf ∗(r, ϵ)
]
r̂
}]
.

(2.1.10)

If we instead consider a voltage applied as described in section 1.2.6, such that h is
given by Eq. (1.2.55), the integrand is 0 for |ϵ| < eV and symmetric for |ϵ| > eV resulting
in a supercurrent

Je =
1

2
eNfD

∫ wc

eV

dϵ

[
Re
{
(2ieA− in

r
)f(r, ϵ)f ∗(r,−ϵ)ϕ̂

+
[
f(r, ϵ)∂rf

∗(r,−ϵ)− f(r,−ϵ)∂rf ∗(r, ϵ)
]
r̂
}]
.

(2.1.11)

Note that for the equilibrium case, eV = 0, this is equal to Eq. (2.1.10) so that we can in
general use Eq. (2.1.11) to describe both the equilibrium and non-equilibrium case. This
leads to a current density on the form

Je =
1

2
eNfD

∫ wc

eV

dϵ

[
Re
{
2(2ieA− in

r
)f(r, ϵ)f ∗(r,−ϵ)ϕ̂

+
[
f(r, ϵ)∂rf

∗(r,−ϵ)− f(r,−ϵ)∂rf ∗(r, ϵ)
]
r̂
}]
.

(2.1.12)

This is then the form of the supercurrent density when we are in the weak proximity
regime in the normal metal cylinder, where we assume cylindrical symmetry and use the
ansatz in Eq. (2.1.5). When we specify the form of A and find an expression for f from
solving the linearized Usadel equation (2.1.6) we can just plug them into this equation
and find the supercurrent density in the normal metal. The ϕ̂ term is the azimuthal
current which will give the screening currents inside the normal metal, and it will be finite
when we consider a vortex. The r̂ term corresponds to a radial current. One would expect
from the geometry we study that we should not have a radial current and we will later
show that this is in fact the case.

2.1.2 Boundary conditions

As the linearized Usadel equation (2.1.6) is a second-order differential equation we need
two boundary conditions to fully solve it. The first boundary condition is in the middle of
the vortex at r = 0. We assume that the superconductivity is completely destroyed at
r = 0 and f(r, ϵ) should be single-valued so it must disappear at r = 0 due to the freedom
to choose the angle ϕ, and thus we set

f(r = 0, ϵ) = 0, (2.1.13)

which is obviously a solution to equation (2.1.6). The second boundary condition is found
using Kuprianov-Lukichev boundary condition [61] for the normal metal-superconductor
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interface at r = R. According to F. S. Bergeret et al. [56], for the linearized Usadel
equation in the absence of spin-flipping processes at the interface, the Kuprianov-Lukichev
boundary condition reduces to

γ∂rf(R, ϵ) = −fBCS = −sinh

[
artanh

(
∆

ϵ

)]
. (2.1.14)

Here fBCS is the value of f inside the superconductor, ∆ is the superconducting gap and
γ = RbσF is a measure of the interface resistance where Rb is the boundary resistance per
unit area and σN is the conductivity of the normal metal region. To get this expression
we have neglected inverse proximity effects, i.e., the weakening of the superconductivity
inside the superconductor since we have a resistive interface. As we assumed that the
superconducting order parameter has a phase in Eq. (2.1.5), this also means that there
should be a matching of the phases of f and fBCS at the interface, but we have already
done this by the addition of the phase in Eq. (2.1.5).

2.1.3 Without magnetic field

The simplest instance to solve the linearized Usadel equation in our system (2.1.6) is
when A = 0. This is equivalent to having no magnetic field, B = 0. When we have a
superconducting vortex without a magnetic field they are usually referred to as Josephson
vortices. The Josephson vortices can be made by for instance passing a current through a
superconductor on two sides of a normal metal as shown by D. Roditchev et al. [23] or
by passing a current through a superconductor surrounding a normal metal as shown by
M. Amundsen et al. [26]. When we apply the currents, we create a phase winding of 2πn
inside the superconductor which gives rise to the vortex inside the normal metal. This
vortex appears due to the circulation of current there needs to be one point where there is
no current flowing and thus no superconductivity, which is the center of the vortex. This
is different from an Abrikosov vortex where the vortices are made to allow magnetic flux
to penetrate the superconductor in a small area where the superconductivity is destroyed
and currents flow around this area to shield the rest of the superconductor from the
magnetic field. In the case we are studying here, the linearized Usadel equation with
A = 0 becomes:

1

r
∂r(r∂rf(r, ϵ)) =

(
n2

r2
− 2i

ϵ

D

)
f(r, ϵ), (2.1.15)

which has solution

f(r, ϵ) = c1Jn

(√
2i
ϵ

D
r

)
+ c2Yn

(√
2i
ϵ

D
r

)
. (2.1.16)

Here Jn are Bessel’s functions of the first kind given by [60]

Jn(x) =
∞∑
k=0

(−1)k

k!Γ(k + n+ 1)

(x
2

)2k+n

, (2.1.17)

and Yn are Bessel’s functions of the second kind given by [60]

Yα(x) =
Jα(x)cos(απ)− J−α(x)

sin(απ)
, (2.1.18)
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and the limit α → n should be taken for integer values of α.
Most superconducting vortices have a winding number n = 1 as the energy of a vortex

increases as n2. This means it is energetically favourable to split vortices, but we can still
get higher winding numbers due to discrete symmetries [26]. Thus, we will consider the
n = 1 case. In this case, Y1(r) diverges as r → 0. However, we know that f(r, ϵ) is related
to both the pair correlation function and supercurrent, and neither of them diverge as
r → 0. Instead, we use the boundary condition in Eq. (2.1.13) to set c2 = 0. This gives
the solution

f(r, ϵ) = c1J1

(√
2i
ϵ

D
r

)
= c1

∞∑
k=0

(−1)k

k!(k + 1)!

(√
i

2

ϵ

D
r

)2k+1

. (2.1.19)

To determine c1 we use Kuprianov-Lukichev boundary conditions (2.1.14):

c1 = −
√

2
D

iϵ

sinh [artanh(∆/ϵ)][
J0(
√

2iϵ/DR)− J2(
√
2iϵ/DR)

] . (2.1.20)

Here the terms J0 and J2 come from the identity 2∂xJn(x) = Jn−1(x)− Jn+1(x). Inserting
this back into (2.1.19) gives us the solution

f(r, ϵ) = −
√
D

iϵ
sinh

[
artanh

(
∆

ϵ

)]
J1(
√
2iϵ/Dr)[

J0(
√

2iϵ/DR)− J2(
√
2iϵDR)

] . (2.1.21)

Letting ϵ→ −ϵ and taking the complex conjugate we can find an expression for f̃ . We
also notice from Eq. (2.1.17) that taking the complex conjugate of a Bessel function is
the same as taking the complex conjugate of the argument:

f̃(r, ϵ) = −
√
D

iϵ

{
−sinh

[
artanh

(
∆

ϵ

)]}∗
J1(

√
2iϵDr)[

J0(
√

2iϵ/DR)− J2(
√

2iϵ/DR)
] . (2.1.22)

As sinh [artanh(∆/ϵ)] is real for ϵ > ∆ we then have f̃ = −f while it is imaginary for
ϵ < ∆ which then gives f̃ = f due to the complex conjugation. Let us now consider the
product f(r, ϵ)f ∗(r,−ϵ):

f(r, ϵ)f ∗(r,−ϵ) = i
D

ϵ

∣∣∣∣sinh [artanh(∆

ϵ

)]∣∣∣∣2
 J1(

√
2iϵDr)[

J0(
√
2iϵ/DR)− J2(

√
2iϵ/DR)

]


2

.

(2.1.23)
Since the Bessel functions are complex with the given arguments we see that this is complex,
and this will thus contribute to the supercurrent density when multiplying with i and taking
the real part in Eq. (2.1.12). Next consider the term f(r, ϵ)∂rf

∗(r,−ϵ)−f(r,−ϵ)∂rf ∗(r, ϵ).
We use that f̃(r, ϵ) = f ∗(r,−ϵ) = ±f(r, ϵ) where the sign is positive for |ϵ| < ∆ and
negative for |ϵ| > ∆ as seen from comparing Eqs. (2.1.21) and (2.1.22):

f(r, ϵ)∂rf
∗(r,−ϵ)− f(r,−ϵ)∂rf ∗(r, ϵ) =f(r, ϵ)∂rf

∗(r,−ϵ)− [f ∗(r,−ϵ)∂rf(r, ϵ)]∗

=± {f(r, ϵ)∂rf(r, ϵ)− [f(r, ϵ)∂rf(r, ϵ)]
∗} .
(2.1.24)



2.1. CYLINDRICAL GEOMETRY 37

We recognize the second line as being on the form ±(a−a∗) so this is purely imaginary.
Thus, when we calculate the radial current and take the real part, this term drops out
and we get no radial current. This is as expected since we have no sources or drains and
thus a radial current would lead to a buildup or deficit of charge which is not possible
since we have assumed a time-independent solution.

Finally, we will consider the supercurrent density very near the vortex core, r ≪ ξ.
Here we only keep the term in J1 linear in r in Eq. (2.1.23) to get:

f(r, ϵ)f ∗(r,−ϵ) ≈ i
D

ϵ

∣∣∣∣sinh [artanh(∆ϵ )
]∣∣∣∣2 (2iϵ/Dr2)[

J0(
√

2iϵ/DR)− J2(
√
2iϵ/DR)

]2 . (2.1.25)

Inserting this into the expression for the supercurrent (2.1.12) and setting A = 0 and
n = 1 gives:

Je ≈ 2eNfDr

∫ wc

eV

dϵRe

i
∣∣∣∣sinh [artanh(∆ϵ )

]∣∣∣∣2 1[
J0(
√
2iϵ/DR)− J2(

√
2iϵ/DR)

]2
 ϕ̂.

(2.1.26)
Thus we have found an analytic expression for the current close to the vortex core for a
Josephson vortex in a proximitized normal metal that is applicable both in and out of
equilibrium. We note that this is linear in r, thus the current will go to 0 as r → 0 in a
linear manner. This expression can be used in the setup described by M. Amundsen et
al. [26] where the vortices are created while A = 0 due to circulating currents. Since they
considered thin films the currents are so weak that they create a negligible magnetic field.

2.1.4 With magnetic field

Let us again look at the linearized Usadel equation (2.1.6) but this time include a
magnetic field B, which implies that A ̸= 0. Instead, we now consider a vortex created
by a magnetic field. Consider a geometry where we have a cylindrical normal metal of
radius R surrounded by a superconductor as shown in Fig. 2.1. This will be similar to
an Abrikosov vortex in a type II superconductor, but not exactly the same as we are
considering a proximitized normal metal. We approximate the magnetic field as

B(r) =
Φ

πR2
ẑ r < R, (2.1.27)

B(r) = 0 r > R. (2.1.28)

Thus, all of the magnetic field is inside the vortex and is approximately constant within it.
This is due to the fact that we assume weak proximity-induced superconductivity because
of the resistive barrier between the normal metal and superconductor. As a result, the
screening currents are weak and this is all consistent with using the linearized Usadel
equation inside the normal metal. Inside the superconductor, the magnetic field is zero
since we assume that the superconductor has perfect screening for simplicity, i.e., only
an infinitely thin layer around the superconductor has circulating currents. Outside of
this layer the phase winding of the superconductor and the choice of vector potential will
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cancel out so there are no circulating currents. To find a suitable vector potential A we
use

B(r) = ∇×A = (
1

r
∂ϕAz − ∂zAϕ)r̂+ (∂zAr − ∂rAz)ϕ̂+

1

r
(∂r(rAϕ)− ∂ϕAz)ẑ. (2.1.29)

Using this equation we see that a possible choice of A is

A(r) =
Φr

2πR2
ϕ̂ r < R, (2.1.30)

A(r) =
Φ

2πr
ϕ̂ r > R. (2.1.31)

The choice for r > R is natural as the line integral of A around a closed curve l is the
same as the magnetic flux through that surface Σ enclosed by l. Using Faraday’s law and
Stoke’s theorem we have

ΦB =

∫∫
Σ

B · n̂ dΣ =

∮
l

A · dl. (2.1.32)

For a circle at radius r we get

ΦB =

∫ 2π

0

Φ

2πr
rdϕ = Φ. (2.1.33)

No matter how large we make r, as long as we have r > R we enclose the same flux which
fits correctly with our choice of B(r).

In the case r < R the linearized Usadel equation (2.1.6) becomes

1

r
∂r(r∂rf(r, ϵ))−

n2

r2
f(r, ϵ)+2en

Φ

πR2
f(r, ϵ)−e2

(
Φr

πR2

)2

f(r, ϵ) = −2i
ϵ

D
f(r, ϵ). (2.1.34)

To simplify this equation we can make use of the fact that flux quantization leads to

Φ =
nℏπ
e

=
nπ

e
, (2.1.35)

where n is an integer, such that we can write Eq. (2.1.34) as

1

r
∂r(r∂rf(r, ϵ))−

n2

r2
f(r, ϵ) +

2n2

R2
f(r, ϵ)− n2r2

R4
f(r, ϵ) = −2i

ϵ

D
f(r, ϵ). (2.1.36)

This has solution

f(r, ϵ) = e−
n
2

r2

R2 rn
[
c1U

(
1

2
− i

ϵR2

2nD
, 1 + n, n

r2

R2

)
+ c2L

(
−1

2
+ i

ϵR2

2nD
, n, n

r2

R2

)]
,

(2.1.37)

where U(a, b, z) is the confluent hypergeometric function and L(a, b, z) is the Laguerre
function [60]. As U(a, b, z) has a branch cut in the complex z-plane for Re(z) ∈ (−∞, 0]
we use Eq. (2.1.13) to set c1 = 0 and we get

f(r, ϵ) = ce−
n
2

r2

R2 rnL

(
−1

2
+ i

ϵR2

2nD
, n, n

r2

R2

)
. (2.1.38)
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We now use the boundary condition at r = R, given in Eq. (2.1.14), to find c:

c =
sinh

[
artanh

(
∆
ϵ

)]
2γRn−1e−

n
2L
(
−3

2
+ i ϵR

2

2nD
, n+ 1, n

) . (2.1.39)

This finally lets us give the solution for f as

f(r, ϵ) =
sinh

[
artanh

(
∆
ϵ

)]
2γ

e
n
2

(
1− r2

R2

)
rn

Rn−1

L
(
−1

2
+ i ϵR

2

2nD
, n, n r2

R2

)
L
(
−3

2
+ i ϵR

2

2nD
, n+ 1, n

) . (2.1.40)

Just as for the case A = 0 we have f̃ = f for |ϵ| < ∆ and f̃ = −f for |ϵ| > ∆. Thus,
according to Eq. (2.1.24) we have zero radial currents which is what we expect from the
symmetries of the geometry.



40 CHAPTER 2. ANALYTICAL SOLUTION

2.2 Results for cylindrical geometry

From the solution f(r, ϵ) in Eq. (2.1.40) we can calculate the current density in the normal
metal using Eq. (2.1.7). However, due to the highly non-trivial dependence on ϵ in f(r, ϵ),
all integrals have been performed numerically. We will also consider the T = 0 limit and
both equilibrium and non-equilibrium situations with an applied voltage eV applied in
such a way as to lead to a two-step distribution function as described in section 1.2.6.
This means that the current density is found using Eq. (2.1.12). As we have shown for
both cases we studied in chapter 2.1 there is no radial current. Thus we will in this
chapter only consider the azimuthal current. In addition, we will from here on focus on
the conventional case of vortices created by applying a magnetic field, as derived in section
2.1.4.

When doing the numerical integrals it was assumed that we had a vortex with winding
number n = 1. Values for ϵ and r were normalized with regard to the superconductor.
Thus, we let ϵ → ϵ/∆ and r → r/ξ to make the Usadel equation dimensionless and
numerically set ∆ = 1 and ξ = 1. From the definition of the coherence length ξ =

√
D/∆

we then get D = ∆ξ2 = 1. For γ we chose a moderate interface transparency γ = 3ξ. We
also need a cutoff frequency for the integral and it was chosen as wc = 30∆, but a lower
wc should also be sufficient as almost all of the contributions are from ϵ ∈ [0, 2∆], as can
be seen from Fig. 2.2. In addition, a small imaginary part was added to the energy in
f(ϵ), i.e., we let ϵ→ ϵ+ 0.01i. This was not done for h(ϵ), but it should be noted that for
the zero temperature case, adding an imaginary part to the energy does not affect h(ϵ),
it still remains a two-step function. Adding this imaginary part had two reasons behind
it. Firstly, this matches closely to what is measured in experiments by R. C. Dynes et
al. [62]. Secondly, it improves the stability in the numerical integration and circumvents
the divergence at ϵ = ∆ for purely real energies.

First, we look at the spectral current density, i.e., the integrand of Eq. (2.1.12). It
should be noted that in all plots we divide by the electron charge. As this is negative
the actual currents get a sign change compared to what is shown in the plots. Figure
2.2 shows how the spectral current density depends on both r and ϵ. We see that for
small radii R of the normal metal, for example, R = 0.5ξ and R = ξ, it is negative for all
values of ϵ and r. Thus, no matter what non-equilibrium distribution function we enforce
through a voltage the current will still be screening the magnetic field. If we instead look
at larger radii, R = 2ξ and R = 3ξ, we observe that it is still negative for ϵ close to 0.
However, for ϵ close to ∆ we see that the current in the material depends on the radius.
The positive contributing area is larger than the negative one, and this difference increases
for larger radii. As we have shown in section 2.1.1, when we apply a voltage eV we block
modes with energy ϵ < eV . This means that if we apply a voltage, we should for some
value of eV between 0 and ∆ observe a reversal of the screening current for some regions
of the normal metal for R = 2ξ and R = 3ξ. Reversing parts of the screening currents
means that these parts increase the magnetic field instead of screening it. Thus, more of
the magnetic field will have to be shielded by the superconductor. In the calculations we
have for simplicity assumed that we have perfect screening at the interface. In practice,
some magnetic flux will leak into the superconductor and thus the screening currents in
the superconductor will be distributed in a finite region close to the interface. As we
get an increase in the amount of magnetic field leaking into the superconductor, we also
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Figure 2.2: Colorplots of azimuthal component of the spectral current density
Je,ϕ(r, ϵ)/(eNf D∆/ξ) as a function of r and ϵ for various radii R of the normal metal.
The blue regions denote conventional diamagnetic screening currents while the red re-
gions denote paramagnetic contributions. By applying a voltage to create a two-step
non-equilibrium distribution function, modes can be blocked with increasing energy ϵ. For
R = 2ξ and R = 3ξ one can thus tune the normal metal from a net diamagnetic response
to a net paramagnetic response.

need a larger area with screening currents, thus the size of the vortex should increase.
In addition, the amount of magnetic field that passes through the normal metal and
superconductor combined is quantized, so the increase in the size of the vortex should
decrease the magnetic field density of the vortex.

This view becomes clearer if we look at Figs. 2.3 and 2.4 which show the current
density for R = 3ξ for different applied voltages eV . We see that for no applied voltage,
the current is negative for the entire cylinder thus screening the magnetic field a bit. If
we focus on the case for eV = 0.18∆ we have zero total current if we also integrate over
r. This might not be clear from Fig. 2.3 since it does not include the fact that when
integrating over r we should also multiply by the factor 2πr since we are working in
cylindrical coordinates. If we instead focus on eV = 0.18∆ in Fig. 2.4 we clearly see
that the negative and positive contributions cancel out. If we compare this to the case
for eV = 0.5∆ we see that in this case the area that gives positive current is increased
while the area that gives negative current is decreased. Thus the total current will be
circulating in the opposite direction as compared to the case for eV = 0. One should also
note that the magnitude of the current is much smaller in the case when eV = 0.5∆ as
compared to eV = 0. The magnitude of the maximum current density is much smaller for
eV = 0.5∆ and the negative contributions for r close to R will partly cancel the positive
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Figure 2.3: Azimuthal current density Je,ϕ(r)/(eNf D∆/ξ) for radius R = 3ξ and different
values of the applied voltage. eV = 0.18∆ is chosen as it gives zero total current. We
see that for r closer to the center of the cylinder we switch from a diamagnetic to a
paramagnetic response when applying a voltage, while for r close to the interface at R
the response stays diamagnetic.

contributions for smaller r. Thus the change of the magnetic field due to the screening
currents in the normal metal will be much smaller when applying a voltage as compared
to no applied voltage.

We can also see the smaller magnitude of the reversed currents due to an applied
voltage in Fig. 2.5. It shows the total current Ie,ϕ = 2π

∫
dr rJe,ϕ(r) for different applied

voltages. If we apply no voltage we have the largest screening current but as we increase
the voltage the current changes differently depending on R. For R < ξ we see basically
no change, which is what is expected from Fig. 2.2 as the spectral current density peaks
quite sharply at an energy ϵ ≈ ∆ and thus blocking the modes with energy ϵ < 0.5∆ has
little effect. However, for larger R we see a clear difference when applying a voltage and
for large enough radii we reverse the current, thus changing from a net diamagnetic to
a net paramagnetic response. The larger the radius is, the smaller the voltage needed
for this reversal. For R > 4ξ we also see that increasing the voltage from eV = 0.2∆ to
eV = 0.5∆ actually decreases the current. This can be understood by the fact that for
such large radii only the modes with energy very close to zero contribute to the screening
current, whereas the rest contribute to the reversing. By increasing the voltage further
than needed, many of the modes that would contribute to the reversing are blocked from
contributing to the current so the total current becomes smaller.

Figure 2.6 shows the applied voltage needed to have zero total current I, where voltages
larger than eV = 2∆ have not been included. One should note that the superconducting
phase becomes unstable for applied voltages eV > ∆ and bistable for eV > 0.5∆ [63].
Values between eV = ∆ and eV = 2∆ have still been included to show that there is still
a mathematical solution. Because of this bistability the region where eV < 0.5∆ is the
most relevant for experiments. For a given R, any voltage above the line in the plot will
lead to the total current being reversed while it will not for any lower voltage, thus we
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Figure 2.4: Polar plots of azimuthal current densities Je,ϕ(r)/(eNf D∆/ξ) for radius
R = 3ξ, showing how the current is distributed within the cylinder for different applied
voltages eV . We see that an increase in the applied voltage switches from a diamagnetic to
a paramagnetic response near the core of the cylinder while near the edge of the cylinder
the response is always diamagnetic.
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Figure 2.5: Total current Iϕ//(eNf D∆ξ) as a function of the radius R of the normal
metal cylinder for different applied voltages eV . The total response of the normal metal
can be tuned from diamagnetic to paramagnetic by applying a voltage for R > 2ξ. The
effect of applying a voltage is negligible for R < 1 due to the sharp peak of the spectral
current at ϵ ≈ ∆ at these radii. When increasing the radii past R = ξ we start getting
paramagnetic modes at ϵ ≈ ∆ and diamagnetic modes at ϵ ≈ 0. Thus the total current
decreases for a range ξ ≲ R ≲ 2.5ξ and this is the same range where we start seeing an
effect when applying a voltage.

call it the switching voltage eVs. This again shows the clear trend that larger radii need a
lower voltage to flip the current. We see that for values of R just above 2ξ the switching
voltage drops quite quickly and afterwards drops more slowly. This is because for R ≈ 2ξ
we change from having a switching voltage eVs > ∆ to a switching voltage eVs < ∆. Thus,
we start to include the relatively large contributions at ϵ ≈ ∆ as seen in Fig. 2.2. We also
see that we always need a finite switching voltage, which is due to the contributions with
ϵ ≈ 0 which always dominate for no applied voltage.

To test the results found in this chapter experimentally, we propose a setup where
one has a thin cylinder of normal metal surrounded by a large superconductor. An
external magnetic field is applied and mainly penetrates the normal metal due to the
Meissner effect. To drive the system out of equilibrium, we apply a voltage through an
injector connected to the normal metal as explained by J. A. Ouassou et al. [39] which
leads to a distribution function as described in section 1.2.6. The system is shown in
Fig. 2.7. To measure the expected increase in the size of the vortex, one can use either
scanning-tunnelling microscopy to measure the change in the density of states caused by
the reduction of superconductivity, or magneto-optical imaging to measure the increase in
the area where the magnetic field penetrates. Using magneto-optical imaging one could
also measure the change in the magnetic field density one expects from the change in the
distribution of the screening currents.
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Figure 2.6: Switching voltage eVs/∆ as a function of the radius R of the normal metal.
We define the switching voltage as the voltage when the net screening current changes
from being diamagnetic to paramagnetic. This voltage decreases as we increase the radius
of the normal metal.
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Figure 2.7: Suggested experimental setup. An external magnetic field is applied and the
normal metal is subject to a voltage bias. In practice the superconductor should be much
larger than shown here.
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Chapter 3

Numerical solution

The cylindrical geometry studied in Ch. 2 is interesting because we could analytically solve
the linearized Usadel equation, however, it is not the easiest setup to realize experimentally.
We will from now on study square geometries due to their more realizable nature. However,
as there is less symmetry in these cases it is harder to find an analytical solution so we
will study them numerically. In addition, this allows us to use fewer approximations,
such as more realistic magnetic field distributions which are not necessarily constant. We
begin by explaining some general numerical tools used for these numerical simulations
in Sec. 3.1. The full numerical implementation of solving the linearized Usadel equation
in Python can be found on GitHub1. Then we continue with studying a square normal
metal surrounded by a superconductor in Secs. 3.2 and 3.3 and finally we study a thin
film of normal metal deposited on a bulk type-II superconductor in Secs. 3.4 and 3.5.

3.1 Numerical techniques

3.1.1 Finite difference method

One of the most intuitive ways to solve differential equations is by the finite difference
approach. Here one discretizes the space one is considering and approximates the derivative
by a difference of function values at neighbouring points. Let us assume that the continuous
variable x is discretized into a set of N points, x ∈ {x1, x2, . . . xN}, and that we have an
equal spacing h between points, i.e. xn = x1 + (n− 1)h and xn+1 − xn = h. To derive a
finite difference version of the derivative we first write out the Taylor expansion for two
function values f(xn+1) and f(xn−1) around the point xn:

f(xn+1) = f(xn) + hf ′(xn) +
h2

2
f ′′(xn) +

h3

3!
f ′′′(xn) +O(h4),

f(xn−1) = f(xn)− hf ′(xn) +
h2

2
f ′′(xn)−

h3

3!
f ′′′(xn) +O(h4).

(3.1.1)

By truncating the expression above at order h, i.e. only including terms up to the first
derivative and dividing by h we can get the so-called forward and backward difference

1https://github.com/Havardfalch/MASTERTHESIS
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approximations [64]

f ′(xn) =
f(xn+1)− f(xn)

h
+O(h),

f ′(xn) =
f(xn)− f(xn−1)

h
+O(h).

(3.1.2)

While these expressions are very simple, the error scales as O(h), which means we require
a very short step length h for the error to be small. This is, however, quite simple to
improve. By subtracting the second line from the first line and dividing by 2h, we get an
expression for the derivative known as the central difference approximation [64]

f ′(xn) =
f(xn+1)− f(xn−1)

2h
+O(h2). (3.1.3)

Here we see that the error scales as O(h2) as the terms containing the second derivative
cancel. This means that the error decreases much faster as h decreases compared to the
forwards or backwards difference approximations in Eq. (3.1.2). We will therefore use the
central difference approximation to calculate derivatives numerically.

To obtain a central finite difference approximation for the second derivative f ′′(xn)
we sum the two lines in Eq. (3.1.1). The first- and third-order derivative terms then
disappear, and dividing by h2 we get

f ′′(xn) =
f(xn+1)− 2f(xn) + f(xn−1)

h2
+O(h2). (3.1.4)

Using Eqs. (3.1.3) and (3.1.4) we can write the linearized Usadel equation (1.5.12) on
finite difference form as

fi+1,j

(
1

h2x
− 2ieAx,i,j

1

hx

)
+ fi−1,j

(
1

h2x
+ 2ieAx,i,j

1

hx

)
+ fi,j+1

(
1

h2y
− 2ieAy,i,j

1

hy

)
+ fi,j−1

(
1

h2y
+ 2ieAy,i,j

1

hy

)
= fi,j

(
2

h2x
+

2

h2y
+ 4e2A2

i,j − 2i
ϵ

D

)
,

(3.1.5)

where fi,j = f(xi, yj) is the value of the Green’s function at (xi, yj), Ap,i,j = Ap(xi, yj) is
the p’th component of the magnetic vector potential at (xi, yj), A

2
i,j = |A(xi, yj)|2 is the

square of the magnetic vector potential at (xi, yj), hx is the step length in the x-direction
and hy is the step length in the y direction. When the linearized Usadel equation is written
in this form it is straightforward to implement numerically, as explained in Sec. 3.1.3.

3.1.2 Ghost points

When solving differential equations, we need boundary conditions to model what happens
in areas where our differential equation is no longer valid. The Usadel equation does not
model the interfaces between the normal metal and the superconductor and we thus need
boundary conditions for this area. The most commonly used linear boundary conditions
are classified into one of two types. First, we have Dirichlet boundary conditions where
the function values at the boundary are specified. Second, are the Neumann boundary
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conditions where the value of the derivative is what is specified at the boundary [65]. When
combining these with the finite difference approach, the Dirichlet boundary conditions are
straightforward to implement. However, implementing the Neumann boundary conditions,
while still keeping the second-order accuracy, is not as straightforward. One simple way
to use the same second-order finite difference scheme is to introduce so-called ghost
points. These are an extra set of points lying outside of the boundary that can be used to
calculate the derivative on the boundary using eq. (3.1.3). Say we have a set of points
{x1, . . . , xN} separated by step length h, we then introduce two new points x0 = x1 − h
and xN+1 = xN + h which are the ghost points. If we then have Neumann boundary
conditions

∂xf(x1) = c,

∂xf(xN) = d,
(3.1.6)

we can use Eq. (3.1.3) to write them as

f(x2)− f(x0)

2h
= c,

f(xN+1)− f(xN−1)

2h
= d.

(3.1.7)

As the linearized Kuprianov-Lukichev boundary condition is a Neumann-type boundary
condition this is a simple way of including them. In addition, we can include Dirichlet
boundary conditions in this form by just setting the ghost points to the values given by
the boundary conditions instead of using them in a derivative.

3.1.3 Solving the linearized Usadel equation

To solve the finite difference version of the linearized Usadel (3.1.5) equation numerically
we need a way to solve for each grid point while also including the boundary conditions on
the form (3.1.7). Let us assume that we work on a square grid of size N ×N for simplicity,
but this can easily be generalized to an N ×M grid. A straightforward way is to convert
the grid including ghost points, of size (N + 2)× (N + 2), to a vector of size (N + 2)2 and
write all the coefficients in the linearized Usadel equation and the boundary conditions in
a matrix. This allows us to write the equations to be solved as a matrix equation

Mx = b, (3.1.8)

where M is a coefficient matrix and b are the constants that are not multiplied with
any Green’s function like the right-hand side of Eq. (3.1.7). Solving this equation for x
then gives the value of the anomalous Green’s function f(x, y) at all points on the grid.
Afterwards, we can easily eliminate the ghost points we introduced for the boundary
conditions. As the coefficient matrix has shape (N +2)2 × (N +2)2, the amount of entries
scales as O(N4), and becomes very large for large systems. However, if we consider the
finite difference version of the linearized Usadel equation (3.1.5), we see that each row will
have only 5 non-zero entries in M. The rows accounting for the boundary conditions will
contain only 2 non-zero entries, as we see from Eq. (3.1.7). Thus, this matrix is incredibly
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sparse and the amount of non-zero elements scales as O(N2), which is the same scaling
as the number of grid points. This means that storing M as a sparse matrix makes it
possible to work with larger systems than a dense storing would allow. As M is so sparse
we can use sparse solvers to solve the system of equations more quickly than the dense
equivalents would be able to.

To do this numerically, we first create the matrix M as a sparse matrix and the vector
b. This is then straightforward to solve with several methods, for example using LU
factorization, to find x. From the solution x, it is then simple to calculate observables
such as the supercurrent density using Eq. (1.5.21). Numerically we created the matrix
M as a Compressed Sparse Column (CSC) matrix. Then, to solve the system we used
the function spsolve from the sparse.linalg library in SciPy which uses the C library
SuperLU to solve sparse systems of equations using LU factorization [66, 67].
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3.2 Square geometry

First, we begin with a square of normal metal surrounded by a superconductor on the
sides and vacuum at the top and bottom. This is rather similar to the cylindrical geometry
studied in Ch. 2. However, the square has lower symmetry than a cylinder. In this
section, we give an explanation of the system that is studied and discuss some theoretical
background needed to treat this geometry.

3.2.1 Physical setup

The square geometry we now study consists of a normal metal square of side length L
and thickness Lz. A superconductor surrounds this normal metal on all four sides, and
the system has vacuum interfaces at the top and bottom. This is shown in figure 3.1.
The voltage applied to drive the system out of equilibrium uses the same quasiparticle
injector as shown in Fig. 2.7. Just as we did for the cylindrical normal metal in Ch. 2, we
will make some further assumptions. First, we assume zero temperature such that the
distribution function is given by Eq. (1.2.56). We also assume that the thickness is much
smaller than the inelastic scattering length such that the distribution function h(ϵ) does
not depend on the z-coordinate even though we apply quasiparticle injector to drive it
out of equilibrium on the top only. To be in the valid regime of quasiclassical theory we
assume that L is much larger than the Fermi wavelength. Moreover, we assume that L is
much larger than the elastic scattering length so that the Usadel equation is valid. In
addition, we assume that the thickness of the superconductor is larger than the magnetic
penetration depth and that it is larger than the coherence length in all dimensions. When
we apply a magnetic field we will assume that it points in the z-direction, is constant
in the normal metal and perfectly screened by the superconductor. This is accurate

L

B

Superconductor

Normal metal

x

y

z

Figure 3.1: The square geometry studied in this section. It consists of a square normal
metal with side length L and thickness Lz surrounded by a superconductor. A magnetic
field is applied in the z-direction. The superconductor is much larger than shown in this
figure.
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when the proximity-induced superconductivity in the normal metal causes only weak
screening currents whereas the superconductor has very strong screening currents. Given
the strength of the magnetic field in the normal metal BN, pointing in the z-direction, we
can find the magnetic vector potential A in the normal metal using ∇×A = BN, the
Coulomb gauge ∇ ·A = 0 as well as boundary conditions from requiring zero current at
the normal-metal/superconductor interface in Eq. (1.5.21).

3.2.2 Boundary conditions

For the interface between the superconductor and the normal metal, we need a boundary
condition. Just as for the cylindrical case, we here use Kuprianov-Lukichev boundary
conditions. They can be written as [68]

2L

D
Ǐ · n = −GT

GN

[ǧ′, ǧ]− , (3.2.1)

where Ǐ is the matrix current, ǧ is the Green’s function on the same side of the interface
as the matrix current is computed, ǧ′ is the matrix current on the opposite side of the
interface, n is the normal vector of the interface, L is the length of the material in
the direction normal to the interface, GT is the tunnelling conductance and GN is the
conductance of the material on the same side as Ǐ is calculated. Let us first assume that
we study an interface parallel to the y-axis where the normal metal is to the right of the
superconductor. This means that we have a superconductor for x < 0 and a normal metal
for x > 0 and n = ex. Using Eq. (1.5.3) for the matrix current, we then get

ǧ∇̃xǧ =
GT

2LGN

[ǧBCS, ǧ] , (3.2.2)

where the subscript BCS denotes the Green’s function of the superconductor. Just as
we did when we linearized the Usadel equation in Sec. 1.5.1, we consider the retarded
component and use Eqs. (1.5.8) and (1.5.9) for the Green’s function in the superconductor
and normal metal to calculate that

(ρ̂3 + f̂)∇̃x(ρ̂3 + f̂) =
GT

2LGN

[
gBCSρ̂3 +

[
0 fBCSiσ

2

−f̃BCSiσ
2 0

]
, ρ̂3 + f̂

]
−
. (3.2.3)

As ρ̂3 does not depend on the coordinates and it commutes with itself we have that
∇̃ρ̂3 = 0. Ignoring terms that are second order in f̂, we find that the left-hand side
becomes

ρ̂3∇̃f̂. (3.2.4)

For the right-hand side, one needs to compute the commutator. As gBCS is a scalar
and the fBCS term has the same structure as f̂, both of those terms end up having the
same structure as the right-hand side in the linearized Usadel equation (1.5.12). In
addition, (iσ2)

2
= −σ0, so the commutator between the fBCS term and f̂ is a simple 2× 2

commutator. Calculating this commutator explicitly, we find that the right-hand side of
Eq. (3.2.3) becomes

GT

2LGN

(fBCSf̃ − ff̃BCS

)
σ0 2(gBCSf − fBCS)iσ

2

2(gBCSf̃ − f̃BCS)iσ
2 −

(
fBCSf̃ − ff̃BCS

)
σ0

 . (3.2.5)
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Putting this together with Eq. (3.2.4), we see that

ρ̂3∇̃xf̂ =
GT

2LGN

(fBCSf̃ − ff̃BCS

)
σ0 2(gBCSf − fBCS)iσ

2

2(gBCSf̃ − f̃BCS)iσ
2 −

(
fBCSf̃ − ff̃BCS

)
σ0

 . (3.2.6)

As f̂ is antidiagonal and the action of ∇̃ does not change the matrix structure, we see
that we get that fBCSf̃ − ff̃BCS = 0. This is to be expected as f and f̃ are perturbations
caused by fBCS and f̃BCS, and thus f and fBCS should have the same symmetry under
tilde conjugation. Thus, taking the tilde conjugate of two of them should not change the
result, i.e. ff̃BCS = f̃fBCS. This means that both diagonal terms cancel and the boundary
conditions become

ρ̂3∇̃xf̂ =
GT

LGN

[
0 (gBCSf − fBCS)iσ

2

(gBCSf̃ − f̃BCS)iσ
2 0

]
. (3.2.7)

Finally, if we assume that the vector potential is parallel to the interface, which in this
case means A ∼ ey, the covariant derivative is equivalent to a normal derivative. Doing
the matrix multiplication we get

[
0 ∂xfiσ

2

∂xf̃ iσ
2 0

]
=

GT

LGN

[
0 (gBCSf − fBCS)iσ

2

(gBCSf̃ − f̃BCS)iσ
2 0

]
. (3.2.8)

These are just two scalar equations for f and f̃ . Defining γ = GT

LGN
as the measure of the

interface resistance, the scalar equation for f becomes

∂xf = γ(gBCSf − fBCS). (3.2.9)

Except for the factor gBCSf , this exactly matches the expression given by F. S. Bergeret
et al. [56], and is exactly the same as the expression found in their appendix. As this
factor contains f , which is small in the limit of weak proximity effect, where |f | ≪ |fBCS|,
it will always be dominated by the fBCS term and we can safely neglect gBCSf .

2

3.2.3 Magnetic field correction

When applying a magnetic field to a superconducting system, this induces screening
currents in the material. From these currents, one can then calculate an induced magnetic
field. The change in the magnetic flux distribution then leads to a corresponding change
in the screening currents, so in general, one has to do self-consistent calculations. However,
we assume that the normal metal is relatively thin and that the induced superconductivity
is weak, which leads to weak supercurrents in the normal metal. This means that we
do not require full self-consistent calculations, but only calculate a first correction to
the magnetic field. To find the magnetic field redistribution produced by the screening
currents in the normal metal, we start with Ampere’s law [69]

∇×B = µ0J, (3.2.10)

2This has also been confirmed numerically by including the term in simulations of the systems we will
consider in this thesis.
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where B is the magnetic field and J is the current in the system. Using that the magnetic
vector potential is defined as B = ∇×A we can we can write

∇2A = −µ0J. (3.2.11)

Here we have used the identity ∇×∇×A = ∇(∇ ·A)−∇2A as well as the Coulomb
gauge ∇ ·A = 0. We see that eq. (3.2.11) is a Poisson equation for A, which has the
general solution [60]

A(r) =
µ0

4π

∫
J(r′)

|r− r′|
d3x′. (3.2.12)

Using this equation with the currents calculated from the Green’s function using Eq.(1.5.21)
then allows us to calculate a correction to the magnetic vector potential and thus the
magnetic field from B = ∇×A.

One could easily imagine systems where this first-order approximation would not
hold, such as a superconductor or a very thick normal metal. Then one would have to
calculate the change in the magnetic field δB(r) from δA(r) and solve the linearized
Usadel equation with this magnetic field redistribution added to the external field again
and again until there is no change in δB(r), so-called self-consistent calculations. However,
this is not the case for the systems we will consider. First, we see from Eq.(1.5.21) that
the supercurrents in the normal metal are proportional to f 2. From Eq. (3.2.12) we also
see that δB(r) is proportional to the thickness of the system Lz. Thus we see that δB(r)
is proportional to f 2Lz. In the systems we will consider we assume that there is a weak
proximity effect inducing superconductivity in the normal metal such that |f | ≪ |fBCS|
and we also assume that the system is relatively thin such that Lz is small. This means
that if we were to solve the linearized Usadel equation again with B(r) + δB(r), we
would get extra corrections to the supercurrents of order f 4Lz and an extra magnetic
field correction δB2(r) of order f

4L2
z. This means that we would get |δB2(r)| ≪ |δB(r)|,

showing that it is sufficient to only calculate the first order correction δB(r).

3.2.4 Pair correlation

When investigating superconducting materials, one interesting property is how strong the
superconductivity is in different parts of the material. One measure of this is the pair
correlation Ψ, which is a measure of the density of the superconducting condensate, i.e.
the Cooper pairs, in a superconducting material. In a superconductor, it can be written
as [50]

Ψ = n1/2
s eiϕ, (3.2.13)

where ns is the density of Cooper pairs. As this is directly proportional to the density
of the Cooper pairs it is zero above the critical temperature Tc and increases below
Tc. This means that Ψ can be an order parameter for the superconducting condensate.
While Ψ is usually zero in a normal metal, it can be finite if there is proximity-induced
superconductivity. In these cases, Ψ can also be used to calculate the magnitude and
distribution of the superconducting condensate.

When studying superconducting vortices the pair correlation is useful to quantify
the vortices. In the middle of the vortex, the superconductivity is destroyed Ψ → 0. In
addition, the phase of Ψ winds an integer multiple of 2π around the vortex. This means
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we can use Ψ to pinpoint the location of the center of the vortex and find how much the
phase winds around one vortex. Using the Green’s function formalism we can calculate it
as [26]

Ψ ∼
∫ ωc

0

h(ϵ)(f(r, ϵ)− f(r,−ϵ))dϵ. (3.2.14)

This is a complex function and can thus be written as

Ψ = |Ψ|exp(iϕ). (3.2.15)

The phase of the superconducting condensate can be extracted as ϕ = arctan(Im(Ψ)/Re(Ψ)).
As Ψ has to be singly defined this phase will only change in multiples of 2π when doing a
line integral around the vortex

∆ϕ =

∮
C
ϕ dl. (3.2.16)

Here ∆ϕ is the phase change when integrating around the vortex, where C is a closed loop
containing the center of the vortex. Thus, to quantify the vortices we define the winding
number

n =
∆ϕ

2π
. (3.2.17)

We also define the total vorticity N as the sum of the winding numbers of all the vortices
in a sample

N =
∑
i

ni. (3.2.18)

When considering superconducting vortices the winding number counts the number of
magnetic flux quanta Φ = ℏπ/e penetrating the superconductor in a single vortex while
the total vorticity counts the total amount of magnetic flux quanta penetrating the
superconductor. Most superconducting vortices will have a winding number of 1. This is
due to the fact that the kinetic energy of a vortex is proportional to n2 [70], and thus two
vortices with n = 1 have lower energy than a single giant vortex with n = 2. However,
Amundsen et al. [26] showed that symmetry constraints can lead to creation of giant
vortices with winding numbers n > 1.
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3.3 Square geometry results

We now study numerically the normal metal surrounded by a superconductor as discussed
in Sec. 3.2. This was studied both in the case with an applied magnetic field and without
an applied magnetic field. In the case without an applied magnetic field, there is a
supercurrent flowing in the surrounding superconductor, which leads to a phase winding
in the superconductor. When doing the simulations we normalized all lengths with
respect to the coherence length and all energies with respect to the gap. For example
L→ L/ξ, ϵ→ ϵ/∆ and eV → eV/∆. We also added a small imaginary part to the energy
ϵ→ ϵ+ iδ with δ = 0.01∆ to regularize the Green’s function close to the gap and match
the experimental measurements by Dynes et al. [62].

3.3.1 No magnetic field

The case without an applied magnetic field has already been studied by Amundsen et
al [26]. They studied a normal metal surrounded by a current-carrying superconductor.
This current was driven externally and would also lead to a magnetic field, however, this
was neglected since the system was thin in the z-direction. Their main focus was on square
geometries, but they also studied a hexagonal one, which we will not consider here. In the
square case, they showed that for an applied vorticity of N = 2, a giant vortex is created
with winding number n = 2. This happens as it has to respect the discrete symmetries of
the system. This symmetry also leads to an antivortex forming in the N = 3 case. We
here show that we reproduce the results with our independently written code.

To form giant vortices and antivortices it has to be both energetically favourable
and also respect the discrete symmetries of the system. From three simple rules, we can
deduce most vortex patterns. First, the sum of the winding numbers of all the vortices
has to equal the total vorticity coming from the surrounding superconductor. For a square
system with total phase winding 2π, i.e. total vorticity N = 1, from the surrounding
superconductor a single vortex is formed in the center. However, for a system with total
vorticity N = 2 we cannot create two normal vortices since there are no ways for two
vortices to distribute themselves that respect the 4-fold symmetries of a square. Thus
we end up with an n = 2 giant vortex in the middle. If we consider a system with total
vorticity N = 3 we end up with two possibilities that respect the discrete symmetry. One
is a giant vortex with winding number n = 3 in the middle of the system and the other
is an antivortex with winding number n = −1 in the middle and 4 surrounding normal
vortices along the diagonals to maximize the distance between them. As the kinetic energy
scales with the square of the current, it is proportional to n2 [70]. This means that the
energy of the giant vortex configuration gets a prefactor 32 = 9 while the antivortex case
gets a prefactor 5. Thus the antivortex configuration has lower energy and will be the one
that is realized. For total vorticity N = 4 we will have 4 normal vortices forming along
the diagonals. With total vorticity N = 5, we end up with 4 vortices forming along the
diagonals and one in the middle and we are basically back to the N = 1 case, just with 4
extra n = 1 vortices.

If we instead consider a regular polygon with k sides we still get a single vortex when
the surrounding superconductor induces a total vorticity N = 1. However, for larger N it
depends on the value of k. While N is smaller than or equal to

⌊
k
2

⌋
, where ⌊i⌋ is the floor
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of i, we get a giant vortex with winding number n. If we were to create an antivortex in
the middle instead we would need k surrounding normal vortices. For N ≤

⌊
k
2

⌋
this would

lead to the antivortex having a winding number with the same or larger magnitude than
the giant vortex case. With the addition of the extra normal vortices this would lead to
higher energy. For

⌈
k
2

⌉
< N < k, where ⌈i⌉ is the roof of i, the lowest energy configuration

is k normal vortices along the symmetry lines of the polygon and an antivortex in the
middle with winding number k −N . If k is odd and we have N = k+1

2
both the single

giant vortex and the antivortex distributions obtain the same prefactor. Thus, this simple
argument does not decide which one of them ends up appearing. In these cases, the
interaction between vortices and antivortices will be affecting the resulting configuration.
As there is an attraction between vortices with opposite signs of the winding number and
a repulsion between vortices with the same sign, the fact that the antivortex is in the
middle means that it is closer to each of the normal vortices than they are to each other.
Thus, this attraction will lower the total energy more than the repulsion between the
normal vortices will raise it and the configuration with an n = (k − 1)/2 antivortex in
the middle with k surrounding normal vortices will be the one preferred. In the case of a
triangle, i.e. k = 3, this has been studied by Chibotaru et al. [71] who found that in a
triangle an antivortex is created in the middle with 3 surrounding normal vortices when a
magnetic field of strength 2Φ0, which corresponds to a total vorticity of N = 2, is applied.

To study the appearance of giant and antivortices we studied a system with a normal
metal surrounded by a current-carrying superconductor by solving the linearized Usadel
equation as explained in Sec. 3.1.3. The amplitude and phase of the pair correlation as
well as the supercurrents in the normal metal are shown in Fig 3.2. When considering
the phase we see that each discontinuity changes the phase by π. Since a vortex has a
total phase change of 2πn when integrating around a closed loop enclosing the vortex
center, we need to cross two discontinuities for a normal n = 1 vortex for the correct phase
change. If we consider the N = 1 case, we see that we have two discontinuities originating
from the center which means this is a normal n = 1 vortex centered in the middle of the
normal metal. The currents also show that this is a single vortex as they all flow around
the middle of the normal metal. In the N = 2 case, we see that we have 4 discontinuities
originating from the center which means that this is a single n = 2 giant vortex. Again
the supercurrents flow around the center showing just a single vortex. For the N = 3
case, we see that we now have 5 vortices. The one in the middle winds the other way and
counting the discontinuities we see that this is an n = −1 antivortex. The surrounding
vortices are n = 1 normal vortices. This is also supported by the supercurrents as the
current flows the opposite way around the middle vortex when compared to the other
4 normal vortices. All five vortices are quite close, which is likely due to the antivortex
attracting the normal vortices as they wind in the opposite direction [50]. Due to their
relative closeness, they also suppress the pair correlation over a greater area compared to
the N = 1 and N = 2 cases. Finally, in the N = 4 case, we see that we have 4 normal
vortices that are quite spread out. As they all have the same vorticity, they repel each
other and if we compare to the N = 3 case there is no antivortex that attracts them
towards the middle. We also see that the pair correlation is suppressed the most at the
cores of the vortices, and quite a large area in the middle has a partly suppressed pair
correlation. This means that unlike the other cases where the pair correlation goes to 0 in
the center of the sample, that is not the case here.
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Figure 3.2: The amplitude and phase of the pair correlation and the supercurrents in the
normal metal. We see the formation of a giant vortex in the N = 2 case and an antivortex
in the N = 3 case.
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The distribution of vortices and antivortices in Fig. 3.2 are all in agreement with the
ones derived by the simple arguments based on symmetry and energy presented above.
This shows that these two factors are the dominating ones in deciding the distribution of
the vortices in the proximitized normal metal.

3.3.2 With magnetic field

We now consider the same geometry, but instead of an externally applied electric current
to generate the vortices, we now apply an out-of-plane magnetic field which induces
screening currents in the proximitized normal metal. Just as for the cylindrical case, we
assume that the magnetic field BN is constant within the normal metal and that there is
perfect screening in the superconductor. The two contributions to the screening currents
are the magnetic vector potential and the gradient, that is the phase change, as seen in
Eq. (1.5.21). This means that the assumption of perfect screening in the superconductor
implies that the magnetic vector potential and the phase change cancel perfectly in the
superconductor. These conditions, in addition to the Coulomb gauge ∇ ·A = 0, allow us
to completely determine the magnetic vector potential A.

Fig 3.3 and Fig 3.4 show the supercurrent density in the normal metal for two different
lengths of the normal metal L = 4ξ and L = 8ξ and three different applied voltages
eV = 0, eV = 0.15∆ and eV = 0.5∆. When there is no applied voltage, we see that
the currents try to contain the magnetic field within the center of the vortex and thus
try to screen the magnetic field in the same way as a type-II superconductor. We also
see that the currents are mostly circular, which leads to the currents in the corners not
being able to circulate. When applying a voltage of eV = 0.15∆ we see a big difference
between L = 4ξ and L = 8ξ. For L = 4ξ there is almost no change from the case without
any applied voltage, only a slight reduction in the currents closest to the center of the
normal metal. This shows that the screening currents are not carried by modes close to
the Fermi level. However, for L = 8ξ we see that most of the central currents are reversed
by applying eV = 0.15∆ and only in the corners is there a current that is not reversed.
This current in the corners is due to edge effects, the screening currents are circular and
thus they are not in the corner of the normal metal. One could view these corner currents
as the screening currents from the superconductor leaking into the normal metal so that
they do not have to travel in a square path around it. However, for this to be the case
they should clearly visible also before reversing the current, which they are not. The fact
that we have a reversal in most of the normal metal at this low of a voltage shows that
here most of the diamagnetic response is carried by modes with energy close to the Fermi
level. This mirrors what we saw in the cylindrical case in Sec. 2.2. When the normal
metal becomes larger, more of the diamagnetic screening is carried by modes very close
to the Fermi level, whereas this is not as pronounced for smaller normal metals. Finally,
increasing the voltage to eV = 0.5∆ we see that we have a reversal of the currents in
both cases, except for in the corners where the edge effects play a major role. We also
observe that for L = 8ξ there is an area in the middle of the normal metal where almost
no currents flow. This is the area furthest from the superconductor that induces the
superconductivity and by applying such a large voltage we can view this as closing the
minigap, thus destroying the superconductivity in this area. Finally, we note that for all
three voltages, the current in the L = 8ξ normal metal is significantly weaker than the
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Supercurrent density J(x, y)/(|e|NfD∆/ξ) for L = 4ξ
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Figure 3.3: Streamplots of the current density J(x, y)/(|e|NfD∆/ξ) for a normal metal
with side lengths L = 4ξ surrounded by a superconductor for three different values of
the applied voltage eV . We observe that the screening currents are fully reversed at an
applied voltage of eV = 0.5∆.

L = 4ξ normal metal, especially when we apply a voltage. As there is always a single
magnetic flux quantum penetrating the normal metal, this means that the magnetic field
density is 4 times as large for L = 4ξ compared to L = 8ξ. This means that the screening
currents need to be larger in this case. When we apply a voltage, the size also matters as
more of the normal metal is further from the superconductor in the L = 8ξ case, meaning
that it has weaker induced superconductivity. When we then apply a voltage, it is easier
to suppress this superconductivity, leading to a lower supercurrent density.

We can also consider the magnetic field induced by the supercurrent density, which is
shown in Fig 3.5 for a normal metal with side lengths L = 8ξ. Without any applied field,
we see that the induced magnetic field looks like that in a type-II superconductor. The
magnetic field is enhanced in the middle, while on the sides it is suppressed, thus it tries
to create a superconducting vortex. When we then apply a voltage of eV = 0.15∆ we
see that we partly reverse this. Now the area closest to the middle tries to reduce the
magnetic field while a large area around has an increased magnetic flux. Finally, when we
increase the applied voltage to eV = 0.5∆, we see that we have fully reversed the induced
magnetic field. The area closest to the middle has almost no change in the magnetic field
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Supercurrent density J(x, y)/(|e|NfD∆/ξ) for L = 8ξ
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Figure 3.4: Streamplots of the current density J(x, y)/(|e|NfD∆/ξ) for a normal metal
with side lengths L = 8ξ surrounded by a superconductor for three different values of the
applied voltage eV . We observe that parts of the screening currents are reversed at an
applied voltage of eV = 0.15∆ and they are fully reversed for eV = 0.5∆.
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Figure 3.5: Magnetic field induced by the supercurrents Bind(x, y)/(|e|µ0NfDξLz) in a
normal metal with side lengths L = 8ξ surrounded by a superconductor for three different
values of the applied voltage eV . We observe that the magnetic field is concentrated
into the middle for eV = 0, mirroring a vortex in a bulk type-II superconductor. For
eV = 0.15∆ and eV = 0.5∆ the magnetic field is forced away from the middle of the
normal metal, giving the opposite response of a vortex in a bulk type-II superconductor.

as there are no supercurrents flowing. Around that, the induced magnetic field points in
the opposite direction of the applied field, reducing the magnetic flux density. Only in the
corners of the normal metal is there an increase in the magnetic field density, which is
caused by the strong currents in these areas, originating from edge effects.

It is also interesting to know how big of a voltage one should use in the quasiparticle
injector to reverse the response of the normal metal. We thus define the switching voltage
eVs as the amount of voltage needed to have the sum of the current circulating the vortex
be 0. The circulating current only includes the current normal to the straight line from
a grid point to the center with positive circulation being defined by the right-hand rule,
thus it is effectively a cross product between the current and the normalized vector from
the origin to the grid point. This is similar to the definition in Sec. 2.2, however, there
all current was azimuthal and thus all current was part of the circulating current. For
the quadratic normal metal the switching voltage is shown in Fig. 3.6 as a function of
the side length of the normal metal. We see that for a small normal metal, the switching
voltage is very large, such that one would destroy the superconductivity before reaching
this applied voltage physically. This is due to the strong induced superconductivity in
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Figure 3.6: Switching voltage eVs/∆ for a normal metal surrounded by a superconductor.
The switching voltage is large for small radii where the magnetic field density is high and
the induced superconductivity is relatively strong. When increasing the size of the normal
metal we see that the switching voltage is reduced because of a larger area with weaker
superconductivity and a lower magnetic field density.

such a small normal metal. When the side length of the normal metal is increased, the
switching voltage decreases quite rapidly. This is because an increasing portion of the area
has a weaker induced superconductivity that is easier to reverse. In addition, the spectral
current density depends on the size in much the same way as we saw for a cylinder of
normal metal in Fig. 2.2 and we have thus not included it explicitly. We have that for
a small square of normal metal, the screening currents are dominated by diamagnetic
modes with energy close to the gap. When one increases the size the diamagnetic response
is mostly coming from modes with energy close to the Fermi energy, while close to the
gap there are mostly paramagnetic states. In the area between the Fermi energy and
the gap, an increasing amount of states become paramagnetic when the size increases.
For larger sizes of the normal metal, there is still a decline, but it changes less. There is
always an area with relatively strong superconductivity at the edge and there is always a
diamagnetic contribution close to the Fermi energy leading to there leading to less change
in the applied voltage needed to reverse the screening currents.
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3.4 Thin film

The cylindrical and square normal metals surrounded by a superconductor are interesting to
study for their behaviours and symmetries. However, they are not the easiest geometries to
realize experimentally. Thus, in this chapter, we will investigate a thin film of normal metal
placed on top of a bulk type II superconductor. This allows induced superconductivity,
and depending on the applied field, we can have one or more vortices in the superconductor.
This then leads to these vortices also being contained in the normal metal due to the
induced superconductivity, letting us study both isolated vortices and vortices in a lattice.

3.4.1 Physical setup

The thin film geometry we now study is shown in Fig. 3.7. It consists of a square
thin film of normal metal of thickness Lz and with side lengths L placed on top of
a type-II superconductor. We apply a magnetic field from below the superconductor
that points in the z-direction and assume that this leads to the formation of vortices in
the superconductor. Due to the proximity-induced superconductivity, this also leads to
superconducting vortices in the normal layer as has been observed both for very thin
normal metal layers [72] and for a rather thick normal metal layer [73]. As the normal
metal layer is thin, we assume that the magnetic field structure of the vortices in the
superconductor is the same in the normal metal, thus we view this as an applied field for
the normal metal. A voltage is applied using the setup of a quasiparticle injector shown
in Fig. 2.7 and we assume zero temperature, which leads to a distribution function given
in Eq. (1.2.56). Just as we did for the earlier geometries, we further assume that the
thickness of the normal metal is much smaller than the inelastic scattering length, such
that h(ϵ) is constant in the entire normal metal. We also assume that L is much larger
than the Fermi wavelength, so the quasiclassical approximation is valid. For the Usadel
equation to be valid we also assume that L is much greater than the elastic scattering
length.

L

B

Superconductor

Normal metal

Lz

x

y
z

Figure 3.7: The geometry of a thin film of normal metal placed on top of a type II
superconductor. The normal metal is a square with in-plane dimensions L× L and out-
of-plane thickness Lz. A magnetic field is applied in the z-direction to create Abrikosov
vortices in the superconductor and thus also the normal metal.
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3.4.2 Integrated Usadel equation

In systems with a thin normal metal layer on top of a superconductor, one can integrate
out the boundary conditions between the superconductor and normal metal. The boundary
conditions then appear as an extra term in the Usadel equation. We have Kuprianov-
Lukichev boundary conditions at the normal metal-superconductor interface at z = 0,
which can be written as [68]

2Lz

D
Ǐ · n̂ = −GT

GN

[ǧ′, ǧ]− , (3.4.1)

where ǧ is the Green’s function on the same side of the interface as the matrix current is
computed, ǧ′ is the matrix current on the opposite side of the interface, Ǐ is the matrix
current, n̂ is the normal vector of the interface, L is the length of the material normal to
the interface, GT is the tunnelling conductance, and GN is the conductance in the normal
state. At the top of the normal metal z = Lz, we have vacuum boundary conditions

Ǐ · n̂ = 0. (3.4.2)

The Usadel equation is

∇̃ · Ǐ = i[Σ̌, ǧ]−, (3.4.3)

and we will show that we can incorporate the boundary conditions in the z component
of the derivative. As we will work with a vector potential without a z component, we
have ∇̃z = ∂z. Since we assume that the normal metal is thin in the z-direction, Ǐ has an
approximately linear dependence on z

∂z Ǐz ≈
Ǐz
∣∣
z=Lz − Ǐz

∣∣
z=0

Lz

. (3.4.4)

Using the vacuum and Kuprianov-Lukichev boundary conditions to evaluate Ǐz this can
be written as

∂z Ǐz = − GTD

2GNL2
z

[ǧBCS, ǧ]− , (3.4.5)

where the subscript BCS specifies that this is the Green’s function in the superconductor.
Returning to the Usadel equation, we can now separate out the z-component of the dot
product and move it over to the right-hand side to get

∇̃ · Ǐ = [iΣ̌+
GTD

2GNL2
z

ǧBCS, ǧ]−. (3.4.6)

When we now linearize Eq. (3.4.6), we get the same terms as in chapter 1.5 but we
also have the Kuprianov-Lukichev term. This commutator has already been calculated in
Sec. 3.2.2. Thus, except for some constants, we get the same form as the right-hand side
of Eq. (3.2.8)

[
GTD

2TNL2
z

ǧBCS, ǧ]− =
γD

2Lz

[
0 2 (gBCSf − fBCS) iσ

2

2
(
gBCSf̃ − f̃BCS

)
iσ2

]
, (3.4.7)
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where γ = GT/(GNL) is a measure of the interface resistance. This has the same matrix
structure as Eq. (1.5.11) and we can therefore split it into two equations and only solve
for f to get

(∇− 2ieA)2f = −
(
2i
ϵ

D
+

γ

Lz

gBCS

)
f − γ

Lz

fBCS. (3.4.8)

Just as in Eq. (3.2.9), we can neglect the term (G0/Lz)gBCSf as this term is dominated
by the term (G0/Lz)fBCS to get

(∇− 2ieA)2f = −2i
ϵ

D
f − γ

Lz

fBCS. (3.4.9)

Writing this on finite difference form we get the same terms as in Eq. (3.1.5), as well as
the extra term − γ

Lz
fBCS:

fi+1,j

(
1

h2x
− 2ieAx,i,j

1

hx

)
+ fi−1,j

(
1

h2x
+ 2ieAx,i,j

1

hx

)
+ fi,j+1

(
1

h2y
− 2ieAy,i,j

1

hy

)
+ fi,j−1

(
1

h2y
+ 2ieAy,i,j

1

hy

)
= fi,j

(
2

h2x
+

2

h2y
+ 4e2A2

i,j − 2i
ϵ

D

)
− γ

Lz

fBCS,i,j,

(3.4.10)

where we have added the subscripts i, j to fBCS to specify that it varies with position
fBCS,i,j = fBCS(xi, yj, ϵ).

3.4.3 Vortex structure

When applying a magnetic field to a type II superconductor and creating vortices, this
changes both the Green’s function of the superconductor and the magnetic field and thus
the vector potential. Inside the core of a vortex, which is a region of radius equal to the
coherence length ξ, the magnetic field is approximately constant, while the superconductor
goes to the normal metal state in the center. In the high-κ approximation, one can show
that the magnetic field as a function of the radius r from the center of the vortex is [70]

B(r) =
Φ0

2πλ2
ln(κ) r < ξ,

B(r) =
Φ0

2πλ2
K0

( r
λ

)
r > ξ,

(3.4.11)

where Φ0 is the magnetic flux quantum, λ is the London penetration depth, ξ is the
coherence length, κ = λ/ξ is the Ginzburg-Landau parameter and K0 is the zeroth
order modified Bessel function of the second kind. According to Tinkham [70], in the
Ginzburg-Landau theory, the superconducting wave function ψ depends on the distance r
from the vortex core as

ψ ∝ tanh(ν
r

ξ
), (3.4.12)

where ν is a constant of order unity. As the wave function ψ is proportional to the gap ∆
we use

∆ ∝ tanh(ν
r

ξ
), (3.4.13)
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when calculating the Green’s function in the superconductor.
When solving the linearized Usadel equation for a system with vortices we need the

magnetic vector potential A. To calculate this we can use Poincaré’s lemma [74, 75]. For
a general vector field F the vector potential G can be calculated as

Gx(x, y, z) =

∫ 1

0

(tzFy(tx, ty, tz)− tyFz(tx, ty, tz)) dt,

Gy(x, y, z) =

∫ 1

0

(txFz(tx, ty, tz)− tzFx(tx, ty, tz)) dt,

Gz(x, y, z) =

∫ 1

0

(tyFx(tx, ty, tz)− txFy(tx, ty, tz)) dt.

(3.4.14)

As we consider a magnetic field that points in the z-direction, this allows us to simplify
the calculation of A greatly compared to the general form of Poincaré’s lemma. This
gives us

Ax(x, y, z) =

∫ 1

0

−tyBz(tx, ty, tz)dt,

Ay(x, y, z) =

∫ 1

0

txBz(tx, ty, tz)dt,

Az(x, y, z) = 0.

(3.4.15)

Using these equations along with Eq. (3.4.11) for the magnetic field allows us to easily
calculate the magnetic vector potential.

We will also consider cases where we have more than one vortex in the normal metal.
The vortices then arrange themselves in a hexagonal lattice as shown by Kleiner et. al. [10]
and this is the arrangement we will use. As the magnetic field and the vector potential
respect the superposition principle, we can simply calculate the vector potential from each
vortex independently and add them together.

3.4.4 Boundary conditions

As we now have vacuum surrounding the normal metal in the x and y directions we will
not use Kuprianov-Lukichev boundary conditions. Instead, we use vacuum boundary
conditions

Ǐ · n̂ = 0, (3.4.16)

where Ǐ is the matrix current defined in Eq (1.5.3) and n̂ is the normal vector of the
normal metal-vacuum interface. Physically this boundary condition corresponds to no
currents flowing out of the normal metal into the vacuum and is natural as vacuum does
not conduct electricity, spin or heat. To simplify Eq. (3.4.16) in the linearized case, we
start by writing out the matrix current using the linearized Green’s function defined in
Eq. (1.5.9):

Ǐ = ĝR∇̃ĝR = ĝR(∇ĝR − ieA[ρ̂3, ĝ
R]−)

= (ρ̂3 + f̂)

([
0 ∇fiσ2

−∇f̃ iσ2 0

]
− 2ieA

[
0 fiσ2

f̃ iσ2 0

])
.

(3.4.17)
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We now neglect terms that are second order in f and take the dot product with n̂ to get

Ǐ · n̂ ≈
[

0 (∇f − 2ieAf) · n̂iσ2

(∇f̃ + 2ieAf̃) · n̂iσ2 0

]
. (3.4.18)

Just as in the case when we derived the linearized Usadel equation in section 1.5.1, we get
two scalar equations and we can obtain one from the other by tilde conjugation. Thus,
the vacuum boundary condition in the linearized case is

(n̂ · ∇)f − 2ie(A · n̂)f = 0. (3.4.19)

To use this numerically we want to write it on finite difference form. Therefore, we first
assume that n̂ = x̂, as the system we study will only have normal vector parallel or
antiparallel to the x or y axis. This means that the boundary condition becomes

∂xf − 2ieAxf = 0. (3.4.20)

Using the finite difference form of the derivative (3.1.3), we then get a form of the boundary
conditions that is easy to implement numerically

fi+1,j

2hx
− fi−1,j

2hx
− 2ieAx,i,jfi,j = 0. (3.4.21)

3.4.5 Choice of material parameters

In Eqs. (3.4.9), (3.4.11) and (3.4.13) there are several free parameters that need to be
determined. Just as we have done earlier we will measure all lengths relative to the
coherence length ξ and all energies relative to the energy gap in the superconductor ∆.
Thus we let ϵ→ ϵ/∆, r → r/ξ, Lz → Lz/ξ and λ→ λ/ξ. This means that κ = λ/ξ will
be the same as λ. As this varies between materials, we will study a couple of different
values of κ. We will first consider an isolated vortex using κ = 2.71 and κ = 75 to
study two extremes. Then, we will study 7 vortices in a hexagonal lattice using κ = 2.71
and κ = 10. These values are not exact fits for any specific material but are rather
representative of different types of type-II superconductors. For example, pure niobium
has κ ≈ 1.4 [76, 77], 50%Nb-50%Ta has κ ≈ 3.9 [78], MgB2 has κ ≈ 38 [77, 79] and
YBa2Cu3O7 has κ ≈ 60-100 [79, 50]. In addition, the values of κ for alloys depend on
both the fabrication and the concentration of each element. The reason for κ = 10 was
that a larger κ requires a larger lattice size for adequate spacing between vortices. This
was numerically infeasible for κ > 10. As the coherence length is defined as ξ =

√
D/∆

we now have that D = ξ2∆ = 1. We choose a moderate interface transparency of γ = 0.3ξ
and a thickness of the thin film of Lz = ξ. Because these two parameters enter the
equation as γ/Lz and they only appear in the one term not containing f , the value of
them does not affect the form of the solution, only the magnitude. Specifically, as we have
a linear equation for f changing the only term not containing f by some multiplicative
constant means we can multiply f by the same constant and still satisfy the equation.

To calculate the superconducting gap in Eq. (3.4.13) we need to decide the value of ν.
We use that according to Tinkham [70] fBCS fulfills the equation

fBCS − f 3
BCS − ξ2

[(
1

r
− 2πA

Φ0

)
f − 1

r

d

dr

(
r
df

dr

)]
= 0. (3.4.22)
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This equation was then solved numerically which gave ν ≈ 0.8 independent of the choice
of κ and this value was used for the numerical simulations. In the integral for the current
density (1.5.21) we also need a cutoff frequency ωc which was chosen to be ωc = 30∆.
Finally, an imaginary part was added to the energy ϵ→ ϵ+ iδ, where δ was chosen to be
δ = 0.01∆. This takes into account the inelastic scattering measured by Dynes et al. [62]
and regularizes the Green’s function at energies ϵ close to the gap ∆.
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3.5 Thin film results

To solve the system with a thin film of normal metal on top of a superconductor numerically
we implement Eq. (3.4.10) and Eq. (3.4.21) using the method described in Sec. 3.1.3. We
study both an isolated vortex and 7 vortices in a hexagonal distribution to study the
effect of a vortex lattice. The values of the material parameters chosen are explained in
Sec. 3.4.5. In addition, all simulations were done at T = 0. We apply a voltage that leads
to a two-step distribution function as explained in 1.2.6.

3.5.1 Isolated vortex

We start by studying an isolated vortex, i.e. there is only one vortex centered in the
middle of the normal metal. This is the simplest case and would correspond to the limit
of vortices that are separated by a long distance. In Fig. 3.8 the supercurrents in the
normal metal are plotted for κ = 2.71, two different lengths L = 10ξ and L = 20ξ and
for three different applied voltages eV = 0, eV = 0.25∆ and eV = 0.5∆. When there is
no voltage applied, we see that the currents in the normal metal act in the same way as
for a type-II superconductor, that is they increase the magnetic field in the middle of the
vortex and reduce it further away, thus concentrating the magnetic field in a smaller area.
When comparing L = 10ξ and L = 20ξ, we see that there is not that big of a difference;
the L = 20ξ plot looks mostly like a zoomed-out version of the L = 10ξ one. This is
because most of the magnetic field is concentrated near the middle of the material. At
(x = 5ξ, y = 0) the magnetic field strength is already reduced to 23% of what it is in
the middle and the pair correlation of the underlying superconductor has fully recovered.
Thus, when we increase the size of the normal metal we only get a slight change in the
supercurrents as there is only a small change in the magnetic field that affects the normal
metal. It should be noted that the maximum value of the current densities is a bit higher
for L = 20ξ which is due to the fact that at L = 10ξ the vacuum surrounding the normal
metal cannot conduct currents. This means that currents close to the boundary get
suppressed but this does not happen for L = 20ξ as here the currents go to zero before
getting close to the vacuum interface. When applying a voltage of eV = 0.25∆ we see
that the current has been reversed in most of the normal metal, except for near the center
of the vortex. This is due to the fact that the magnetic field decreases when moving away
from the center, while the proximity-induced superconductivity increases. To explain this,
we consider the spectral current density shown in Fig. 3.9. This is similar for L = 20ξ,
only more stretched out, and therefore only L = 10ξ has been included. To calculate the
spectral current density we consider the y-component of the current at y = 0 and x > 0.
As we see in Fig. 3.8 the current at y = 0 and x > 0 is representative of the entire normal
metal, one more or less just has to rotate it. For the entire normal metal, the contribution
to the paramagnetic response has an energy quite close to the superconducting gap, and
while they become smaller further away from the vortex, they are qualitatively quite
similar. However, the diamagnetic contributions have a larger variation with respect to
position. There is always a strong diamagnetic contribution close to the Fermi level,
however, contributions from higher energies are much more dependent on position. Near
the center of the vortex, the area with diamagnetic contributions rapidly increases as the
magnetic field is still quite large and the superconductivity recovers from being zero in
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the middle. However, at about x = 1.5ξ the region with a diamagnetic response reaches a
maximum and starts to decrease. This coincides with when the superconductivity has
recovered sufficiently to start setting up proper screening currents and the magnetic field
has started to be shielded. After this, the diamagnetic contributions become more and
more focused close to the Fermi level and we can more easily reverse them. Thus, when a
small voltage is applied only the currents furthest away from the center will be reversed.
As the voltage is increased more currents closer to the center will be reversed, allowing us
to tune the extent of the paramagnetic response. With a sufficiently large voltage, such as
eV = 0.5∆, Fig. 3.8 shows that all the supercurrents are reversed, both for L = 10ξ and
L = 20ξ. Thus, the normal metal now has a fully paramagnetic response to the magnetic
field. We also see that for higher applied voltages the magnitude of the supercurrents is
more than an order of magnitude smaller than without an applied voltage, which shows
us that most of the response to the magnetic field is due to current contributions with
energies very close to the Fermi level as we see from the spectral current density in Fig. 3.9.
In addition, the size of the currents is larger for eV = 0.5∆ than for eV = 0.25∆. This is
because at eV = 0.25∆ the diamagnetic and paramagnetic response compete, whereas
increasing the applied voltage to eV = 0.5∆ suppresses the diamagnetic response.

To see the magnetic fields produced from the currents in the normal metal in the case
where L = 10ξ we consider Fig. 3.10. At the top left panel is the magnetic field emanating
from the Abrikosov vortex in the underlying superconductor. We call this the applied
field as it is the field that enters the normal metal region from outside the normal metal.
The other three panels show the magnetic fields produced from the supercurrents in the
normal metal for three different applied voltages eV = 0, eV = 0.25∆ and eV = 0.5∆.
When we do not apply any voltage we see that the normal metal response mirrors that of
the underlying superconductor, that is we have a diamagnetic response. When we then
apply a voltage of eV = 0.25∆ we get the mixed response we also saw from the currents.
Here it is clear that only a small area in the center remains diamagnetic while the rest
becomes paramagnetic. We also see that there is a larger area where there is a change in
the magnetic field that is of the same order as at the center when compared to no applied
voltage. This is, however, due to the fact that the induced magnetic field in the center is
very weak. When we compare to the case when we apply a voltage of eV = 0.5∆, we see
that we now have flipped the entire magnetic field response to be paramagnetic and thus
it is the opposite of the case without applied voltage. We also see that the strength of
the induced field is about an order of magnitude lower than the case without an applied
voltage, showing that the paramagnetic response is much weaker.

So far we have considered κ = 2.71, but to show that we have the same reversal of
the supercurrents for larger κ, Fig. 3.11 shows the supercurrents for κ = 75, L = 20ξ
and three different applied voltages eV = 0, eV = 0.25∆ and eV = 0.5∆. Without any
applied voltage the currents look quite similar to the L = 10ξ, κ = 2.71 case without
any applied voltage, just more spread out. This is because with such a large value of κ
as 75, the magnetic field takes a very long distance to decrease to small values, and at
the edge, the value of the applied magnetic field is still more than 80% of what it is in
the center. Even with this almost constant magnetic field we still start to get a reversal
when applying a voltage as we see with eV = 0.25∆, which looks very much like the
same voltage for L = 10ξ and κ = 2.71. Only a small area near the center still remains
diamagnetic while the rest has switched to a paramagnetic response. The similarity with
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Supercurrent density J(x, y)/(|e|NfD∆/(2ξ))
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Figure 3.8: Streamplots of the current density J(x, y)/(|e|NfD∆/(2ξ)) for 1 vortex with
κ = 2.71. The left column shows L = 10ξ and the right column L = 20ξ. As most of the
magnetic field and all of the pair correlation damping is contained within a radius r = 5ξ,
there is not that big of a difference between the two cases and L = 20ξ is almost like a
zoomed-out version of L = 10ξ. In the case without applied voltage, the edges of the
normal metal reduce the size of the currents in the L = 10ξ case compared to L = 20ξ.
When applying a voltage of eV = 0.25∆, most of the current is reversed, but not in the
region closest to the center of the vortex. For eV = 0.5∆ we see that all currents are
reversed and we have a fully paramagnetic response for the normal metal.
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Figure 3.9: Spectral current density Jy(x, y = 0, ϵ)/(|e|NfD∆/ξ). The diamagnetic
contributions to the response, in blue, are large close to the Fermi energy. There is also a
considerable paramagnetic contribution close to the superconducting gap. In addition, a
slight diamagnetic contribution is more dependent on position, it is quite large near the
center of the vortex and decreases with the distance from the center. This contribution
leads to a different voltage needing to be applied to reverse the current at different
distances from the center of the vortex.
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Figure 3.10: Applied magnetic field, B(x, y)/(1/(|e|ξ)), at the top left and induced
magnetic field, Bind(x, y)/(|e|µ0NfDξLz/2), at 3 different applied voltages for an isolated
vortex with L = 10ξ and κ = 2.71. Both the applied magnetic field and the induced
magnetic field point in the z-direction. We see that without any applied voltage, the
currents in the normal metal induce a magnetic field mirroring that of the vortex in the
superconductor below. Thus, we still have a normal diamagnetic Meissner effect. When
applying a voltage of eV = 0.25∆ we see that more of the magnetic field points in the
opposite direction due to the supercurrents having been reversed in these areas. However,
close to the center of the vortex we still have a diamagnetic Meissner effect showing that
it is harder to flip the magnetic field response close to the center of the vortex. Finally,
for eV = 0.5∆ we see that all the magnetic field points in the opposite direction of the
one coming from the superconductor, i.e. we have a fully paramagnetic Meissner effect.



3.5. THIN FILM RESULTS 75

Supercurrent density J(x, y)/(|e|NfD∆/(2ξ)) for κ = 75
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Figure 3.11: Streamplots of the current density J(x, y)/(|e|NfD∆/(2ξ)) for an isolated
vortex with L = 20ξ and κ = 75. We see that the current density without an applied field
mirrors that of a normal vortex, however, the finite size of the normal metal restricts the
currents from flowing further out. This restriction is also clear when we apply a voltage,
however, we do get a partial reversal of the current for eV = 0.25∆ and a full reversal of
the current for eV = 0.5∆.

L = 10ξ and κ = 2.71 also continues for eV = 0.5∆, where the entire normal metal has
switched to a paramagnetic response. Thus, we see that even with two values of κ that
are this different, we still get a very similar response both with and without an applied
voltage. The only difference being that the size of the normal metal has to increase to
observe the same currents when κ increases. Based on this, most type-II superconductors
should allow one to experimentally observe a paramagnetic Meissner response as there is
only a weak dependence on the value of κ.

To study how easily one can switch from a diamagnetic to a paramagnetic response in
the normal metal we define a switching voltage eVs. Just as for the cases where we had
the superconductor surrounding the normal metal, we define it as the voltage at which the
total current circulating around the vortex crosses 0. Fig. 3.12 shows the switching voltage
eVs as a function of the length of the normal L for κ = 2.71. We see that the switching
voltage is relatively large for L close to 4ξ but decreases quite rapidly as L increases. This
is because the region closest to the center of the normal metal is the region that needs
the largest voltage to reverse the currents as we saw in Figs 3.8 and 3.11. When the size
is increased, there is a larger area that is easier to reverse and thus the necessary voltage
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Figure 3.12: Switching voltage eVs/∆ as a function of the length of the normal metal L/ξ
for an isolated vortex with κ = 2.71. We see that the switching voltage is relatively large
for small systems as here the currents close to the center also have to be reversed. When
the system size increases the switching voltage drops as it is easier to reverse currents
further from the center of the vortex. We also see a flattening out for larger L/ξ due to
there being very little current that flows so far from the vortex.

is reduced. However, when the size is increased even further, especially past L = 10ξ, the
switching voltage starts to flatten out. This is because at these sizes there is less and less
magnetic field to screen close to the edge and thus the currents out there are very small
as we saw for L = 20ξ, κ = 2.71. Increasing the size of the normal metal thus only adds
very small currents. Even though these are easy to reverse one still has to reverse more or
less the same amount of current close to the center, thus leading to a small change in the
switching voltage.

While the screening currents in a thin film of normal metal on top of a superconductor
is our main focus here, there are also other interesting properties to study for this geometry.
Stolyarov et al. [73] studied how the size of a vortex changed in a thin film of normal
metal on top of a superconductor when compared to the bulk superconductor. They found
that the size of the vortex cores was about 4 times larger in the normal metal than the
superconductor. While we do not make exact comparisons here, we show in Fig 3.13 how
the pair correlation recovers when moving away from the vortex core for κ = 2.71 and
κ = 75. In both cases, the pair correlation recovers proportional to a tanh(νr/ξ) which is
also what was assumed in the superconductor with ν = 0.8. In the normal metal, we see
that this recovery is quite a bit slower, and a value of ν = 0.35 fits quite well in both cases.
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Figure 3.13: The value of the pair correlation as a function of the distance to the core
for an L = 20ξ normal metal with κ = 2.71 in the left plot and κ = 75 in the right plot.
We see that in both cases the value of the pair correlation in the normal metal in blue
matches well with a recovery rate corresponding to ν = 0.35 in the normal metal. This is
about half the value of the superconductor where ν = 0.8

Thus we also have an expansion of the vortex core in the normal metal when compared to
the superconductor. While our expansion is not as drastic, being only 2 times instead of
4, this is due to the fact that we consider a thin film of normal metal, while Stolyarov
et al. considered a relatively thick normal metal. The induced superconductivity is still
rather large in our case, while for a thicker normal metal, it would be weaker and larger
areas will have their superconductivity destroyed by the magnetic field.

3.5.2 Vortex lattice

While a weak magnetic field applied to a superconductor will lead to approximately
isolated vortices as has been discussed until now in this section, we will now study 7
vortices in a hexagonal layout to see the effect of a vortex lattice on reversing the screening
currents. To make it closer to a realistic large-scale vortex lattice, the magnetic field
B(x, y) and the reduction of the superconducting gap ∆(x, y) were calculated from 105
vortices, i.e. all vortices within a square of side length 70, where the 7 in the figures are
located in the middle of this lattice. In the calculations of the switching voltage, these
extra vortices were not included due to longer computation time. The results still match
up well, and in the limit of isolated vortices, they match exactly.

In Fig. 3.14 we have plotted the current density in a normal metal with side lengths
L = 20ξ for κ = 2.71 and κ = 10 for three different applied voltages eV = 0, eV = 0.25∆
and eV = 0.5∆. The distance between each vortex is 7.5ξ, which means that the vortices
are almost isolated for κ = 2.71, while there is a big overlap in the magnetic field for
κ = 10. The magnetic field from the superconductor below the normal metal has been
calculated for a grid of size 70ξ× 70ξ to include the entire magnetic field coming from the
vortices penetrating the superconductor, including the field leaking from vortices further
away. Without any applied voltage we see that the currents in the normal metal mirror
the ones in a type-II superconductor. They try to contain the magnetic field within a
small cylindrical area and screen the rest of the normal metal from the magnetic field.
Even with a sizeable difference in the magnetic field, the current distribution for κ = 10
is very similar to κ = 2.71 due to the similarities of the vortex lattice of the underlying
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superconductor. When we increase the voltage we see that the currents in the middle of
the central vortex still are diamagnetic, while the currents a bit further out are reversed.
This is consistent with what we saw in the isolated vortex case, where the reversal of the
current started far away from the center and then gradually moved closer to the center
when the voltage was increased. For the 6 surrounding vortices, we see that there is still
a small paramagnetic screening current, but here the edges and the other surrounding
vortices restrict them from reversing the currents a bit further away from the center of
each of the vortices. On the inner side the currents have to compete with the ones from
the central vortex and are in this way suppressed, while there are still currents flowing on
the outside as there are no other vortices creating currents they have to compete with here.
Thus, we see the importance of edge effects, had we increased the size of the normal metal
to remove these effects the surrounding vortices should look more like the middle vortex,
which is only affected by the other vortices and not the edges. If we finally increase the
voltage to eV = 0.5∆ we see a full reversing of the screening currents, both for κ = 2.71
and κ = 10. This happens for all vortices and we also see that now the surrounding
vortices are much more pronounced than for eV = 0.25∆. This shows that now there is
not as big of a competition between paramagnetic and diamagnetic response as there was
in the eV = 0.25∆ case and that the vortices are thus less affected by edge effects. Thus
even in a relatively tightly packed lattice of vortices, we can still have a reversal of the
screening currents in the normal metal.

In addition to the supercurrents, we can also directly study the magnetic field induced
by these currents. Fig. 3.15 shows the magnetic field coming from the superconductor
calculated from a grid of size 70ξ × 70ξ which contains 105 vortices, what we have called
the applied field B(x, y)/(1/(|e|ξ)), and the magnetic field induced by the supercurrents
in the normal metal Bind(x, y)/(|e|µ0NfDξLz/2) for 5 different applied voltages, eV = 0,
eV = 0.15∆, eV = 0.25∆, eV = 0.35∆ and eV = 0.5∆. The underlying superconductor
has Ginzburg-Landau parameter κ = 2.71, while the normal metal has side lengths
L = 20ξ. We see that the magnetic field from the superconductor is concentrated in 7
vortices laid out hexagonally, but there is still a lot of field leaking out into the entire
superconductor. If we consider the induced field without any applied voltage, we see that
the normal metal has the same response as a type-II superconductor, i.e. it tries to contain
the magnetic field inside the vortices and screen the rest of the material from the magnetic
field. When we apply a voltage of eV = 0.15∆ we still see the same type of response,
but the induced magnetic field is now much weaker, showing that most of the screening
is done by modes with energy close to the Fermi energy. Increasing the applied voltage
to eV = 0.25∆, we start to see a competition between diamagnetic and paramagnetic
response. Just as we saw for the supercurrents in Fig. 3.15, the magnetic field close to the
middle of the vortices still shows a response mirroring the superconductor, however, a bit
away from the center this is no longer the case. For the central vortex, we see that here
the induced field is reversed, showing a change towards a paramagnetic response. The
surrounding vortices show a bit of a different behaviour at this voltage. Here, only the
outer area close to the edge shows a reversing of the induced magnetic field, while the
inner side closer to the middle vortex does not. This is due to currents on the inner side
having to compete with the central vortex, while the outer ones do not, so there is little
induced magnetic field on the inner side. If we increase the applied voltage further to
eV = 0.35∆, we see that we have now fully switched the structure of the induced field. It
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Supercurrent density J(x, y)/(|e|NfD∆/(2ξ)) for L = 20
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Figure 3.14: Streamplots of supercurrent density for 7 vortices with L = 20ξ for three
different applied voltages eV . The left column is with κ = 2.71 while the right column has
κ = 10. We observe that without any applied voltage, both values of κ show a very similar
current distribution with them mirroring the vortex from the underlying superconductor
and each vortex being more or less isolated from the others. For eV = 0.25∆ we see
that the current in the central vortex flows in the same direction as without any voltage,
however, further out the direction is reversed. For the outer vortices, we see that almost
the entire vortex structure is lost, only a small part very close to the center of each vortex
has a loop of current. This is due to the applied voltage being very close to the voltage
needed to switch the current and due to them being close to the edges. For eV = 0.5∆ all
vortices are reversed and show a paramagnetic response.
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now tries to expel the magnetic field from the vortices and spread it more equally in the
entire normal metal. However, the induced field is now extra weak due to the competition
between the paramagnetic and diamagnetic responses. To increase the strength of this
response a bit, we can increase the applied voltage to eV = 0.5∆. This more than doubles
the strength of the induced magnetic field, but it is still about five times weaker than the
case without an applied voltage. We also see that the reversed vortices are more closely
localized at the vortices from the superconductor, which reduces the edge effects.

Finally, we want to consider what voltages need to be applied for the magnetic field
response to be reversed. To do this we define the switching voltage eVs as the voltage
needed to flip the sign of the induced magnetic field in the middle of the normal metal. It
should be noted that this is a bit different than the definition used earlier, however, it is
harder to consider how much current circulates around each vortex in a lattice and easier
to consider the magnetic field. To be able to compare the 7 vortices with an isolated vortex,
we also found the switching voltage for an isolated vortex with this definition. Finally, it
should be noted that we now only include the magnetic field and superconducting gap
reduction from the 7 vortices, and not the 105 vortices used in earlier calculations due to
computation time. However, the results are still in good agreement with each other.

Fig 3.16 shows the switching voltage for 1 isolated vortex and 7 vortices in a hexagonal
arrangement as functions of the length of the normal metal L for a Ginzburg-Landau
parameter κ = 2.71. For the isolated vortex, we see that the switching voltage is reduced
when increasing the size from L = 4ξ until about L = 8ξ and quickly flattens out after
this. This is because there is only one vortex and the only change when increasing the
size is the reduction of edge effects. As we saw for the isolated vortex, the edges had little
effect even at L = 10ξ. When increasing the size further, the small currents that appear
far away have almost no effect on the sign of the magnetic field in the middle of the vortex.
The curve for the switching voltage is more interesting for the 7 vortices. eVs is quite
small for L = 4ξ and then increases rapidly until about L = 10ξ where it is reduced slowly
until it matches the single isolated vortex at about L = 20ξ. In the 7 vortex lattice, the
distance between the vortices is (3/8)(L/ξ). As the vortices have a core of radius ξ where
the magnetic field is constant, we need at least a length of L = 16/3ξ to avoid the vortex
cores overlapping. Thus, the reason for the low switching voltage at L = 4ξ is that at
this size we basically have only a giant vortex in the entire normal metal. This means
that the induced superconductivity is very weak and the magnetic field density is high,
so switching from the diamagnetic response of the superconductor to the paramagnetic
response requires a relatively low voltage. When the length increases from L = 4ξ the
magnetic field density is reduced and the induced superconductivity is increased, thus
increasing the switching voltage. With this increase in size, we also move more towards
a lattice arrangement of the 7 vortices. At L = 10ξ we see that the switching voltage
flattens out and starts to be reduced when increasing L further. This is because at this
point we have fully transitioned to a lattice configuration. When we then increase the
normal metal length further, we reduce the effects the surrounding vortices have on the
middle vortices and thus the required voltage to switch the response is reduced. We can
also see that the voltage to switch the response in the lattice layout for L = 10ξ is quite a
bit larger than the required voltage for the isolated vortex. As the distance between each
vortex for this length is (15/8)ξ, and assuming that the central vortex is restricted to
about half the area between it and the surrounding vortices it is approximately restricted



3.5. THIN FILM RESULTS 81

Figure 3.15: Applied magnetic field, B(x, y)/(1/(|e|ξ)), at the top left and induced
magnetic field, Bind(x, y)/(|e|µ0NfDξLz/2), for 5 different values of the applied voltage
eV for 7 vortices with L = 20ξ and κ = 2.71. The applied field is the magnetic field
coming from the underlying superconductor and a grid of size 70ξ × 70ξ has been used to
include magnetic field leaking. We see that the applied field is concentrated in 7 vortices,
however, a lot still leaks into the rest of the material. Without any applied voltage, we see
that the induced magnetic field mirrors the applied field, it concentrates the magnetic field
into vortices. Increasing the voltage to eV = 0.15∆ we still have this same diamagnetic
response, however, it is much weaker. For eV = 0.25∆ we have a clear competition
between the paramagnetic and diamagnetic response, with only the middle of each vortex
being diamagnetic. At eV = 0.35∆ we have switched to a fully diamagnetic response.
However, there is still competition between the diamagnetic and paramagnetic response
as increasing the voltage to eV = 0.5∆ increases the magnitude of the induced field.
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to a hexagon with side length 15/8ξ. This means that it is restricted to an area quite
similar to the square of side length L = 4ξ, and it should have a switching voltage which
is also quite similar to the isolated vortex in that square. From the plot we see that the
switching voltage for the L = 4ξ isolated vortex and the L = 10ξ 7 vortex layout are very
similar, supporting this argument. The side length of the hexagon the middle vortex is
restricted to grows at half the rate of the side length L and thus the drop-off in switching
voltage should also be about half that of the isolated vortex case and this can also be
seen from the plot. While the isolated vortex uses about 4ξ-5ξ from L = 4ξ to flatten
out at about L ≈ 8ξ-9ξ, the 7 vortex configuration flattens out at about L = 20ξ, which
means the size increase was 10ξ and is about double that of the isolated vortex. This
flattening out is where the vortices start to be isolated and their switching voltage is not
affected by the edges or the distance to other vortices. Thus, at a spacing of about 8ξ
between the center of the vortices in the normal metal, we can start to treat the vortices
as independent when the underlying superconductor has κ = 2.71. For larger values of κ,
this spacing needs to be larger for them to be treated as independent, as the magnetic
field from each vortex is spread out over a larger region. However, this only considers the
qualitative magnetic field response of the center of the vortex, so the actual distance at
which they can be treated as isolated should be larger as the screening currents furthest
away from the core could still affect other vortices for larger spacings. If we consider the
screening currents of a single κ = 2.71 vortex in Fig. 3.8, we see that the currents start
to be negligible at a distance of about 9ξ from the core, which means that a distance of
18ξ should be sufficient. This is only a factor of 2 larger than what was derived from the
switching voltage, which is a small difference.
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Figure 3.16: Switching voltage eVs/∆ for an isolated vortex and for 7 vortices in a
hexagonal arrangement, for varying lengths L of the normal metal. We see that for the
isolated vortex, the switching voltage is largest for a small normal metal where the edge
effects play a role and stabilize when the size of the normal metal gets large enough to
not affect the vortex. For a small normal metal with 7 very tightly packed vortices the
switching voltage is quite small and much smaller than the isolated vortex in a normal
metal of the same size. This is because at this tight packing of vortices, it is almost like a
single giant vortex where the superconductivity is suppressed a lot and thus it is much
easier to reverse the currents to a paramagnetic response. When the size increases, the
switching voltage increases until about L = 10ξ. This increase is due to the vortices being
more separated and it looks less like a giant vortex. We also see that the switching voltage
is larger than for the isolated vortex. This is due to the surrounding vortices making
the area the vortex is confined in smaller than for an isolated vortex for the same size
of the normal metal. When the size gets very large the vortices get completely isolated.
Thus, the surrounding vortices and the edges do not contribute and the switching voltage
becomes constant.
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Chapter 4

Summary and outlook

In this thesis, we have studied the Meissner response of a proximitized normal metal with
superconducting vortices when driven out of equilibrium through injection of quasiparticles
which are controlled by an external voltage. This has been done by solving the linearized
Usadel equation and we considered three different geometries. First, we considered a
cylinder of normal metal with a superconductor surrounding it in Chapter 2, then a square
surrounded by a superconductor in Secs. 3.2-3.3 and finally a thin film of normal metal
placed on top of a type-II superconductor in Secs. 3.4-3.5.

For the cylindrical geometry, we started by finding an analytical solution for the
Green’s function in the normal metal. Here we studied both a case without an applied
magnetic field, where a current in the surrounding superconductor gives a phase to the
system and a case with an applied magnetic field that was constant within the normal
metal. We then continued by studying how the screening of the magnetic field was in
the normal metal and how this was changed by driving the system out of equilibrium.
We found that in equilibrium, we had a normal diamagnetic Meissner response, trying to
concentrate the magnetic field in the center like in a type-II superconductor, but when
driven out of equilibrium, we saw that the areas closer to the middle of the cylinder
changed their response. This middle area tried to expel the magnetic field from the center
and distribute it in the rest of the material, i.e. a paramagnetic Meissner effect. We
showed that this was dependent on the size of the normal metal cylinder and that this was
due to a lot of the diamagnetic screening currents being conducted by electrons very close
to the Fermi level when the system was larger than the coherence length of the Cooper
pairs.

Afterwards, we solved the linearized Usadel equation numerically for a square of normal
metal surrounded by a superconductor. We first considered the case without any applied
magnetic field, however, a supercurrent flowing in the surrounding superconductor induces
a phase in the Green’s function. Depending on the phase, we saw that in this case we can
create giant vortices and antivortices recreating the results of Amundsen et al. [26]. When
applying a magnetic field, we showed that driving the system out of equilibrium could
reverse the magnetic response from a standard diamagnetic Meissner vortex response,
where the currents contain the magnetic field in a small area, to an opposite paramagnetic
Meissner response where they try to expel the magnetic field from the middle of the
vortex.

Finally, for the thin film of normal metal placed on top of a type-II superconductor,
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we considered both a single isolated vortex and 7 vortices in a hexagonal lattice. For the
isolated vortex, we showed that driving the system out of equilibrium reverses the screening
current in the vortex and that this has a very weak dependence on the Ginzburg-Landau
parameter κ. The screening currents further from the center required a smaller voltage to
reverse than those in the middle, which allows one to tune the extent of the paramagnetic
response. In addition, we showed that the pair correlation recovers slower in the normal
metal, leading to an increase in the size of the vortices, recreating qualitatively the results
of Stolyarov et al [73]. For the 7 vortices, we showed that we can reverse the screening
currents of each vortex, even when quite a bit of the magnetic field leaks into the area of
the surrounding vortices. In addition, we showed that the surrounding vortices reduce the
available space for each vortex making it harder, but still possible, to reverse them if they
are tightly packed. When the distance between them is increased they effectively become
isolated vortices with the same response to a magnetic field as was found in the isolated
case.

Thus, we see that reversing the magnetic field response of a normal metal by driving
the system out of equilibrium is possible for all three geometries we have studied. As this
is present in all three geometries, we expect it to be a general response of the normal metal
and not limited to the few cases we studied here. To observe this effect experimentally,
all of the systems studied here can be considered. However, the thin film of normal
metal is likely the easiest to realize experimentally, and one can in addition study the
effect of varying the vortex density easily by varying the applied magnetic field. To drive
the system out of equilibrium we recommend a quasiparticle injector using the design
explained by Ouassou et al. [39], based on the design from Pothier et al. [48]. To measure
the effect one can for example use magneto-optical imaging to directly measure the change
in the magnetic field and consider how this changes when the voltage of the quasiparticle
injector is changed.

Further studies can consider studying the systems with fewer assumptions. For example,
one can include the inverse proximity effect, especially in the cylindrical case where one
still gets an effective one-dimensional problem. For the thin film, this would lead to a
three-dimensional problem, however, it would be interesting to see how the reversal of the
vortices in the normal metal would affect the vortices in the superconductor. Systems
with spin-active interfaces or magnetic components would also be of interest, as one could
study how the odd-frequency components present in those systems would respond to being
driven out of equilibrium, and if this can favour either the singlet or triplet component.
Finally, testing the results from this thesis experimentally would be of interest to verify
non-magnetic ways of reversing the Meissner effect.
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[21] Th. Bergmann, K. H. Kuhl, B. Schröder, M. Jutzler, and F. Pobell, Journal of Low
Temperature Physics 66, 209 (1987).

[22] J. C. Cuevas and F. S. Bergeret, Physical Review Letters 99, 217002 (2007).

[23] D. Roditchev, C. Brun, L. Serrier-Garcia, J. C. Cuevas, V. H. L. Bessa, M. V.
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