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Sammendrag

Maélet med denne bachelor-oppgaven er & gi en metode for & finne lgsninger av ho-
mogene systemer av linezre ligninger over veialgebraer ved bruk av hgyre Grobnerbasis-
steori. Den vil introdusere tosidige Grobnerbasiser og heyre Grobnerbasiser, for
deretter & gé inn i egenskaper disse har som vil veere til nytte nér vi gér over til
systemer av ligninger.



Abstract

The goal of this thesis is to provide a method for finding solutions of homogeneous
systems of linear equations over path algebras using right Grobner basis theory.
It will introduce two-sided Grobner bases and right Grobner bases, to then dive

into properties these have that will be of use when we move over to systems of
equations.
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1 Introduction

Grobner bases were first introduced to the public in 1965 by Bruno Buchberger,
with similar notions being developed as far back as in 1913, by a russian mathe-
matician Nikolai Griinther. Since then, Grébner bases have become important in
many areas of mathematics and informatics. It has also been extended to include
non-commutative settings, by mathematicians such as Edward L. Green. We will
here dive deeper into his works.

In this thesis we assume the reader to have some familiarity with basic abstract
algebra, quivers and path algebras (see [[II]), but, other than that, no particular
knowledge of the main topics covered.

Throughout this thesis we are mainly following the article [[3]] written by Edward
L. Green. We will begin by introducing (non-commutative) Grobner bases for two-
sided ideals of K-algebras and move on to right Grobner bases, which are for right
modules. There we will show important results and methods that will build us up to
figuring out how to attack the problem of finding solutions of systems of equations
over algebras.



2 Grobner Bases

We start by introducing what a Grobner basis is, particularly starting with two-sided
ones in this section. However, before we do that we first need some prior definitions
and results for it to make sense. Here we set R to be a K-algebra, where K is a field.
We are looking for a special basis with some order on the basis.

Definition 2.1. Let 13 be a K-basis for R. We say B is a multiplicative basis if Yb;, b, €
B: blbzeBU{O}.

Example 2.1.

1. The basis of the polynomial algebra K[x] is B = {1,x,x?,...} which is a
multiplicative basis, for if we pick any x*,x" € B fors,t € N we get x* - x' =
x$*tt e B.

2. The matrix algebra M(n,K) has a basis B = {E;;|1 < i, j < n} where E;; is the

nxn matrix with 1in the (i, j)-th entry. We see that E;;E;; = i
0 otherwise

and, hence, is a multiplicative basis.

3. Given any quiver T, the path algebra KT has a basis consisting of all paths of
the quiver. Multiplying any paths either gives a new path in the quiver or 0
depending on if they connect or not.

Given a K-algebra with this basis, there is a bijection between the equivalence
relations on B U {0} and on a special type of ideal called a 2-nomial ideal that will
be useful in knowing when we have a Grébner basis.

Definition 2.2. Let R be given as above with a multiplicative basis B. An ideal I
in R is called a 2-nomial idedl if it is generated by elements b — b’ and b” where
b,b’,b"” € B.

Notice that if I is a 2-nomial ideal with multiplicative basis B, then

I =RHR = { Z beb/(b — b/).ybfb’ + Xb"(b//)J/b” X p—b's Yb—b/s Xprs Y S R}
b—b’,b"eH

where H is the generating set described in the definition. Since Vx € R, x =
D per Apb for finite a, € K*, we have that each element in I can be written as a
finite linear combination of elements in

BHB = {b;hb, : h € H and by, b, € B}
with coefficients in K. For each h € 1 we have two cases:
1. h=b": b;b” € BU{0} = (b;b")b, € BU{0}
2. h=b—"b": by(b—b')by = bybb, — b, b’b, where b, bb,, b;b’'b, € BU{0}.



Hence, BHB contains elements of the form b — b’ and +b”. That is, for any x € I:

S t
X = Zlai(bi — bl/) +21C1b;/
j=

i=

where b;, b!, b;’ € B, b;— b}, b;’ €I and a;,c; €K foralli and j, and for some s and
t.

Example 2.2. LetT: 1 é{ 25 3bea quiver. Then the ideal generated by a —
B
B,ay, By is a 2-nomial ideal of the path algebra KT

We get the following result as was mentioned above.

Theorem 2.1. There is a bijection between the set of equivalence relations on BU {0}
and 2-nomial ideals.

Proof. Let ~ be an equivalence relation on B U {0}. Define the ideal generated by
elements of the form b— b’ and b” if b ~ b’" and b” ~ 0, respectively, as I... This
ideal is precisely the definition of a 2-nomial ideal. If we have two equivalence
relations ~ and ~’ not equal to each other, then 3b, b’ € BU {0}, b # b’ such that
b ~ b/, but b =’ b’, meaning that b — b’ is a generator of I whilst not in I._,. Thus,
I.#1..

Conversely, if I is a 2-nomial ideal in R define the equivalence relation ~; by
b~; b and b’ ~, Owhen b—b’ €1 and b” € I, respectively, where b, b’,b” € B.
We check that this is an equivalence relation on B U {0}.

For any b € BU{0} we have b—b =0 € I, givingus b ~; b. Let b—b’, b’—b" € I.
If b ~; b’ then b’ ~; b since b’ —b = —(b—b’) € 1. Lastly, b ~; b’ ~; b”, then
b—b”"=(b—b")+(b'—b"). Since b—b’,b’—b"” €1 it follows that b—b" € I —
b ~; b”. Thus, it is an equivalence relation and the set of elements is BU {0}.

Assume I # I’ as 2-nomial ideals. Then, without loss of generality (I’ C I or
I ¢ 1), thereexists b—b' €I and b—b’ ¢1I’,or b’ €I and b” ¢ I, or both. If the
first case holds, then b ~; b’ whilst b =, b’. Otherwise, b”’ ~; 0 whilst b” %, 0. In
neither case are the equivalence relations equal.

Hence, we have injections going both ways implying a bijection on sets. O

If we have a 2-nomial ideal we can, then, associate an equivalence relation of
BU {0} to the ideal.

Definition 2.3. If I is a 2-nomial ideal, the associated relation to I is the equivalence
relation on B U {0} corresponding to I.

We use this to characterize what kind of ideals in a K-algebra with multiplicative
basis we need such that the quotient has a multiplicative basis induced from the
original basis.

Theorem 2.2. Let S be a K-algebra with multiplicative basis B. Let I C S be an ideal
and 1: S — S/I be the canonical surjection. Then w(B) \ {0} is the multiplicative
basis for S/I <= 1 is a 2-nomial ideal.



Proof. (=): Suppose B’ := n(B)\ {0} is a multiplicative basis of S/I. Defining the
(equivalence) relation ~ on BU {0} by b ~ b’ if n(b) = n(b’) we want to show
that the 2-nomial ideal, say I, corresponding to ~ (by Theorem is I. Since
n(b) = n(b’) < n(b—b’) = 0 we have b — b’ € I which is also part of the
generators of . For all the generators we have its inclusion in I so ({b—b’: b ~
b’ for some b, b’ € B}U{b” : b” ~ 0 for some b € B}) =1_C 1.

To show the other inclusion let x € I. Then x = Zle a;b; where b; € B, a; €K
and t < |B|. Applying the canonical surjection on x we have

ncx)=n(iaibi)=2ain(bi)= > am(b)=0
i=1 i=1

(b)£0

In the last line we remove the 7t(b;)’s which are zero (b; €I < b; ~0 < b; €
I.). As B’ is K-linear and the a,’s are non-zero, the remaining basis elements must
be reccuring. Thus we get that

Z a;t(b;) = Z Z a; | (b)) [=0

b; b;)=n(b;)
n(b:)7é0 rr([bi):léO b jn(

where )’ be[b 4 = 0, meaning that if we take any a;, say a;, from this sum from
j i
basis elements in the equivalence class [b;], we get that a; = —ij e[b\b, &+ SO

=Zt:aibl Zab +Z Z ajbj +a;b;

i=1 b;el b;] b;e[b;]1\b;
i b ¢I Jj
~SansY S a-we.
b;el b;] b;€[b;1\b;
i b,¢I j

Thus, I =1

(<): Assuming I is a 2-nomial ideal we want to show B’ is a multiplicative basis,
that is, being multiplicative and a K-basis of S/I. Let ©(b), n(b’) € B’ for b, b’ € B.
As Bis multiplicative, bb’ € BU{0}, we get (b)-n(b’) = n(bb’) € n(BU{0}) = B'U
{0}. To show that B’ is a K-basis, we only need to see that its elements are linearly
independent, as 7 is surjective. Suppose Z:‘Zl an(b)=0 = ZLI a;b; €1,
assuming 0 # 7t(b;) # n(b;) #0 fori # j, 1 <1i,j <n. As I is a 2-nomial ideal I

n S t
Zaibi = Zﬁj(bj —b)) +Zykbg
i=1 j=1 k=1

where the b;’s are some of the b, b;, and by/. If there was some f3;(b; — b;) then,
since 0 = 7t(3;(b; — b;)) = B;(n(b;)— n(b;)), we get 71(b;) = n(b;). But since all



such elements were distinct b; = b;.. Similarly, if there was a y; b, in the sum, this

would imply we had a by € I, but all b; are such that (b;) # 0. Thus, S b=
0= a;=-=a,=0.
O

From this, by having the ideal be a 2-nomial ideal we are quotienting out, we
are, in some sense, preserving the multiplicative basis structure. This important
result will be applied later on to show that this ideal is also one of the necessary
conditions for the quotient of a path algebra to have our special multiplicative basis,
namely a Grébner basis.

Next we introduce an ordering on the basis as it gives more structure to work
with, and is part of the basis we are working towards.

Definition 2.4. The pair (,>) is an ordered multiplicative basis of R if B is a mul-
tiplicative basis and > is an admissible order on B. That is, the following properties
hold:

Al. > is a well-ordering on B

A2. Yby,by, by €B, if by > b, then b; by > bybg, when by b # 0 and bybs #0
A3. Vb, by, by € B, if by > b, then bgb; > bsb,, when b3b, # 0 and b3b, #0
A4. Vb, by, by, by €B,if by =bybyb, then by > by

We will set R to have now an ordered multiplicative basis (13,>) continuing
this chapter (still being a K-algebra), in addition, a multiplicative identity, 1, not
necessarily in B. The identity is then of the form 1 = Z?:l a;v; with 0 # a; € K and
distinct v; € B. Now we give some important results for these basis elements which
give us the identity.

Theorem 2.3. Let Ty := {v, Vs, ..., v,} where 1=,

i_ Q;v; where a; € K*. Then

1. Ty is a set of orthogonal idempotents and a; =1 for alli=1,2,...,n.

2. If b € Bthen 3i,j € {1,..,n} such that v;b = b and bv; = b. We denote these
by o(b) = v; and t(b) = v;. In addition, if k # i then vib = 0, and if k # j then
ka =0.

3. If o(b) or t(b) is v;, then b = v,.
4. If b€ B\ T, then b? # b.

5. The elements of T, are primitive, that is, they cannot be written as a sum of two
orthogonal nongero idempotents.

Proof. 1. Pick some v;,v; € T, where v;-v; # 0. By the multiplicative structure of the
basis we have that v;-v; = b € B. Looking at v; first we have v; = v;+1 = Z:zl aV;V,.
Assume b # v;. Since v; is a basis element and we have a recurrence of b for when

¢ = j, we must have an s # j such that v;v; = b also. As our basis is well-ordered



we have two possible cases. Assume v; > v,. Then by[A3] b = v;v; > v;v; = b,
which is impossible, so v;v; = 0 or v;y;, =0 = b = 0. Doing the same arguments
we get b = 0 for the other case. Thus, b = v; = v;v; € T;,. Now, we also have
vi=1-v;= ZZ=1 a.v.v;. We get the same result assuming b # v; using So,
Vi = vy =v;.

By the above we have v; = Z;l:l ajviv; = avivp = vy, = a; =1 for any
v; € [, meaning that we can rewrite 1 = Z?zl V;.

2. Takesome b € B. Then b = b-1=>,,_; bv;. If thereissome b # b, = bv; #0
then by the same argument as in the first proof we get that b = bv;. If there was
another v, # v; such that b = by, then b = bv; = (bv;)v, = 0. So the j is unique.
Similarly, following the same arguments, considering for the case b = 1- b we get
that b = v;b for some v; € T;, and for any other v # v; that v;.b = 0.

3. Let b € B. from (2]) we have some v; such that b = bv; = bv;v;, as v; is
idempotent. By[A4 this implies b > v;.

4. Let b € B\T,. As B is multiplicative b - b € BU {0}. If b?> = 0 then it is
OK. So assume b2 # 0. We have b > o(b) from ) and by the assumption b ¢ T,.
Multiplying by b from the right, we get b% > o(b)b = b. Hence, b # b.

5. Suppose x + y =v; € I, for some x, y € R nonzero orthogonal idempotents.
There are some a;, 8; € K and b; € B\ Ty such that x = >}, ay vy + >, B;b;. Since
o(x +y)=o(v;)) =v; = t(v;) = t(x + y) we have that aj = 0 for k # i, and 8, =0
if o(b;) # v; or t(b;) # v;. So, after rewriting, we have y + a;v; + Zj Bib; =v;. As
they are orthogonal we have

0O=xy= (aivi +Z/5jbj) ((1 —a)v; _Zﬂjbj)
j J )
J J

By (@], for any b,,, b, € B\ T from the sum in x such that b,, b, # 0 we have that
b, b, > v;. Multiplying from the left by b,, we get, by[A3.]

bmbn > bmvl‘ = bm > Vi. (1)

This means that a;(1 —a;) = 0. So a; € {0,1}. Since B is ordered we can choose
the smallest b in the sum in x such that 3 # 0. Then from xy we can see b
occuring, which can only be cancelled out by some b,, b,,, if possible. However, since
b < b,, and by (1) this never happens if the product has b in it. Otherwise, we have
b < b,, b,, by minimality, but this means b,, > b >v; = b,,b, > bb,, > b,, > b.
Hence, f = 0. Continuing choosing the next smallest element we end up with all
B; = 0. Thus, we get x = av; and y = (1 —a)v; where y =0if a =1or x =0 if
a = 0, contradicting our assumption that both of them are nonzero. O

Next we want to find a subset of basis elements which generate the the entire
multiplicative basis B. Thinking of [}, as the vertex set of a quiver, we know that the
set of arrows in a quiver constructs all possible paths. We will see that such a subset



with I}y does the same in this case as well. Define I; to be the set of all elements
in B\ I, that cannot be written as a multiple of two other elements in this set, that
is, I := {b € B\T, | =3b;,b; € B\ T, such that b;b; = b}. These are called the
product indecomposable elements in B\ I.

Theorem 2.4. Let R be a K-algebra with ordered multiplicative basis (B, >). If T,y and
I are defined as above, then ([, UT}) := {l_[ﬁm.te beR* :bel UL} =58

Proof. We want to show that any b € B is a product of elements in I, UT;. Take
b € B\ T, UT;, for otherwise we are done. Then b = b,b, for by, b, € B\ Ij.
b = byb,yt(by) = o(by)b;by so by[A4] b > b, and b > b,. If b = b, then since
b, > t(b) we have by[A3] b = bb, > bt(b) = b. Thus b > b;. Similarly, by [A2]
we get b > b,. If any of the elements are not in I} we can again split them into
two components both being less than the original, as we did above. By[AI] there
is a least element making this process of splitting elements not in I} stop. Thus we
will end up at some point with b = b; b; ---b; where each bi]_ not being able to be

5

divided further, which is exactly being in the set I. O

With the result above we can associate a graph to B by letting I}, be the set
of vertices and I the set of arrows, b, going from the vertices o(b) to t(b). This
directed graph we will use to see what form R must be in when its basis is equipped
with an admissible order. Before that we define some notions we will use in the
proceeding chapter.

Definition 2.5. Let R be a K-algebra with ordered multiplicative basis (5, >).

1. The tip of x = 3, a;b; € R, where a; # 0, denoted TIp(x), is defined as
Tip(x) := b; = b; Vj € {1,2,...,n}, ie. the largest basis element occuring in
x.

2. The coefficient of the tip is defined as CTIP (x) := a;

3. Thetip of I, a subset of R, is defined by a set of the tips of all non-zero elements
inl,
Tip(I) :={Tip(x) € B: x €I\ {0}} C B.

4. NoNTip(I) := B\ Tip(I).

Note that for an ideal I by the definition of Tip(I) we have that Tip(I) =
(Trp (I)) N B where (Tip (I)) is the ideal generated by the tip of I.
The next definition defines the main topic of this chapter.

Definition 2.6. Let R be a K-algebra with an ordered multiplicative basis (53,>). A
subset G C I is a Grobner basis of I with respect to > if (Tip(G)) = (Tip (I)).

Following from the definitions of tips, we have an important general result show-
ing the use of NONTIP (x) that will be used for proving the existence of Grébner
bases.

10



Theorem 2.5. Let V be a vector space over K with basis B having a well-ordering >
and W be a subspace of V. Then

V =W & Span (NONTIP (W))

Proof. We first show that V = W + Span (NoNTipP (W)). Obviously we have V 2
W + Span (NoNTIip(W)). So, suppose for a contradiction that U := V \ (W +
Span (NONTIP(W))) # @. Let v € U be chosen such that TiP(v) = b is minimal
for all elements in U. Then Tip (v — CT1P(v) b) < Tip (v).

Suppose b € NONTIP (W). Then, since v was chosen such that it had the minimal
tip, we have v—ab € W + Span (NoNTIiP(W))sov—ab=w+n, =

v=w+(n, + ab) € W + Span (NONTIP (W))

where w € W and n,, € Span (NONTIP (W)).
Otherwise, if b € Tip(W) then 3w € W such that Tip(w) = b. Then, by the
minimality as above, we have some w’ € W and n,,, € Span (NONTIP (W)) such that

CTip(v) . _ + L. K
Cte(m) W = W' + 1, giving us again

Vv —

)= (W, + CTip (v)

+n, €eW+S NonNTIpP(W)),
SRECw)+ 1, € W+ Span(NoNTir (W)

a contradiction, so U = ) resulting in V = W + Span (NoNT1p (W)).
Finally, let x € W*. Then Tip (x) € Tip(W). If also x € Span (NONTIP (W)) then
Tip (x) € NoNTIP (W). Hence, W N Span (NoNTIP (W)) = {0}. O

By the result above, we have that for any v € V it can uniquely be written
as v = w, +n, where w, € W and n, € Span(NONTIP(W)). We define this for
K-algebras.

Definition 2.7. Let R be a K-algebra with ordered multiplicative basis (5, >) and
I an ideal of R. As vector spaces, let r € R. Then, r =i, + n, for unique i, € I and
n, € Span (NONTIP (I)). We call Norm (r) := n, = r —i, the normal form of r.

Notice that for x, y € R we have (i, + Norm(x)) + (i, + Norm(y)) =x +y =
iy+y +Norm (x + y). Thus, Norm (x + y) = Norm (x) + Norm (y).

Similarly, one can show that Norm(xy) = Norm (x)Norm(y). This will be
useful at the end of our journey.

Continuing with our search, we now show that these Grobner bases indeed exist.

Theorem 2.6. Let R be a K-algebra with ordered multiplicative basis (B,>) and I an
ideal of R. Then there exists a Grébner basis of I.

Proof. We want to construct a subset G of I such that (Tip(I)) = (Tir(G)). From
Theorem [2.5| we know that for any b € Tip(I) C R that b = i, + Norm(b) for
some i, € [ and Norm (b) € Span(NONTIP(I)). Let, then, G := {b —Norm (b) :
b € Tir(I)} C I, where for each b € Tip(I) we have Tip (b —Norm (b)) = b. Thus
Tip(G) =Tip(I) = (Tir(G)) = (Tip(1)). O

11



Hence, we can say that if a K-algebra has an ordered multiplicative basis, then
it has a Grobner basis theory. Next gives a simple example of a Grobner basis in a
path algebra.

Example 2.3. Using Example[2.2]we can define an admissible ordering of the basis
as such: By >ay>vy>f > a> vy > v, > v;. We also have the 2-nomial ideal
I = {a;(a— )+ ayay + asPy : a;,a,,a; € K}. The tip of this ideal is Tip(I) =
{B, ay, By}. Picking the subset G = {a — 8, ay} C I we get that

(Tp(G)) ={r1Bry+rsayry i 1,19, 13,74 €KT}
={a;p +ayay + azfy : a;,a,,a3 EK}
= (Tip(1)).

We state the main theorem of this chapter.

Theorem 2.7. Let R be a K-algebra with an ordered multiplicative basis (B,>). Let
I' =T, UT, be the graph associated to B. Then there exists a 2-nomial ideal I of the
path algebra KT such that

KT/I =R.

Proof. Define a function g: I' — R sending all vertices and arrows of I to the cor-
responding in R as its associated to B. Then it follows that

L Zvero s(v) = ZVGFO v=1,

2. for any u,v € I" such that uv =0, then g(u)g(v) =uv =01inR,
3. forany v €Ty, g(v)=v=v?=g(v)? and

4. for any a € I3, g(o(a))g(a) = o(a)a = a = at(a) = g(a)g(t(a))

By Lemma 1.2 in [4]] g extends uniquely to a K-algebra homomorphism f : KI' = R
where f (v) := g(v) forall v € T and for any path a; - - - a,, of the graph, f(a;---a,) :=
g(a;)--- g(a,). From Theorem[2.4|f hits all basis elements of R and so it is also onto.
Since ker(f) an ideal of KT, we then have by the isomorphism theorem a canonical
surjection 7: KT — KT'/ker(f) = im(f) = R. By Theorem[2.2] as n(I') = Bu {0},
ker(f) is a 2-nomial ideal. O

Thus, we have that R has a Grébner basis theory associated to (B,>) if it is
equal to, up to isomorphism, a path algebra quotiented by a 2-nomial ideal. The
big question, however, which remains unanswered, is under which circumstances
for the 2-nomial ideal it holds the other way. That is, what would be the necessary
and sufficient conditions for a 2-nomial ideal I of a path algebra KT such that KT'/I
has a Grobner basis theory?

12



3 Right Grobner Bases

In this section we will learn about right Grobner bases in an algebra of Grébner basis
theory. We will see that specific projective right modules have right Grobner basis
theory and, at the end, see how one can find a right Grébner basis of intersections of
submodules of a projective right module, that will come in handy in the last section.

Before all that, let us build up the knowledge to understand the theory fully.

For now, set R to be a K-algebra with ordered multiplicative basis (53, >) where
I, is the set of orthogonal idempotents of B, where Zvef‘o y = 1. We look at the
right R-modules, where we particularly have the requirement m -1 = m for all m in
the module.

Similarly to earlier we introduce a basis with an ordering for right modules.

Definition 3.1. Let M be a right R-module with K-basis M. A subset M of M is a
coherent (K-) basis of M if Ym e M,Vb € B, mb € MU {0}

We have an immediate result from this.
Lemma 3.1. If M is a coherent basis of M then Ym € M,3!v € T}, such that mv = m.

Proof. Pick any m € M. We have that m=m-1= ZVEFO mv. For each v we have
mv € MU {0}. If there was some v’ such that mv’ = m’ # m then you would need
cancellation, but since every coefficient is 1 we conclude that mv’ = 0 for each v’
except the ones that give mv’ = m, as this has to occur to satisfy m = m- 1. It
has to also be unique, for otherwise suppose v’ and v” are such elements. Then
m=mv' =(mv')V =m@"v)=0. O

Generally we call elements x € M \ {0} =: M* that satisfy xv = x for some
v € I, left uniform. Note also that, since ZmeM a,m € M where finite a,, € K*,
every element in M is a sum of left uniform elements.

Next, we define an ordering for the coherent basis.

Definition 3.2. Let M be a right R-module as before. We say that (M, >) is an
ordered basis of M if M is a coherent K-basis of M and > is a right admissible order
on M, that is the following properties hold:

M1. > is a well-order.
M2. Ymy,m, € M, Vb € B, if m; > m, and m; b # 0 # m,b then m;b > m,b.
M3. Vm e M, Vby, by € B, if b; > by and mb; # 0 # mb, then mb, > mb,.

Lemma 3.2. Let (M, >) be an ordered basis of M. Let m € M and b € B\ T, and
suppose mb # 0. Then mb > m.

Proof. By the previous result m is left uniform for some v € T,. Since 0 # mb =
m(vb) we have that o(b) = v. We know that b > v so byM3] mb>mv=m. O

Continuing forward, we set M to be a right R-module with ordered basis (M, >).
We can now define the tips as we did similarly previously.
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Definition 3.3. Let (M, >) be an ordered basis of M. Let x = Zir=1 a;m;, where
a; € K* and distinct m; € M. Let X be a subset of M. We define the following:

1. The tip of x is defined as Tip* (x) :=m; = m;, Vi € {1,2,...,r},

2. Denote the coefficient of the tip of x as CTP* (x) := a;,

3. Denote the set of all tips in X as T1p* (X) := {Tp*(x) € M : x € X \ {0}},
4. NoNTIP* (X) := M\ Tip* (X).

With this we can define the notion of a right Grébner basis for right modules.

Definition 3.4. Let M be a right module of R with ordered basis (M, >). Let N be
a right submodule of M. A set G is said to be a right Grébner basis of N with respect
to > if G C N and (T1p* (G))x = (T1P* (N))y where (x); denotes the right submodule
of M generated by x.

Using the result from before (Theorem we can again use the same argu-
ments as in Theorem to show the existence of right Grobner bases. We, thus,
say that M has a right Grobner basis theory with respect to > if (M, >) is an ordered
basis of M. Note that, as vector spaces, M/N = Span(NoNTIp*(N)) for a right
submodule N of M and we say the normal form of m € M with respect to > to be
Norm (m), where m = n,,, + Norm (m) € N @ Span (NoNT1p* (N)), similar to as was
the case in the previous chapter.

The next theorem will show us basic properties that follow from the definition
which is similar to the situation when we were dealing with ideals.

Theorem 3.3. Let M be a right R-module with ordered basis (M, >), N a submodule
of M and G a right Grébner basis for N with respect to >. Then G generates N as a
right submodule.

Proof. Assume G does not generate N. Let 2 € N such that Tip* (z) is minimal and
such that z ¢ (G)z. By hypothesis there exists g € G such that Tip*(g) b = Tip* (2)
for some b € B. However, then

CTiP* (2) )
TiP* | g— ———=gb TIp* .
P (z T (g)g < TIp*(2)

CTip*(2)
CTiP*(g)

Hence z — gb e (G)r = 2z € (G)z. A contradiction. O

Right Grobner bases can have certain properties that we will next define and
show when we have these.

Definition 3.5. Let M be a right R-module with ordered basis (M, >). Let m,m’ €
M. We say m (properly) left divides m’ if m’ = mb (and m’ # m) for some b € B.

Definition 3.6. Let N be a right submodule of M and let G be a right Grébner basis
of N with respect to >.
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1. We say G is reduced if for each g = 2;1 a;m; € G, where a; € K* and m; € M
distinct, there is no g’ € G \ {g} such that Tip* (g’) left divides m; for any
1<i<r,and CTP*(g)=1

2. G is tip-reduced if for every g, g’ € G where Tip* (g) left divides Tip* (g’), then
g=g¢"
We see that the reduced right Grobner basis is also tip-reduced from the defini-

tion.
We want to show that these type of Grobner bases indeed exist.

Proposition 3.4. Let R be a K-algebra with ordered multiplicative basis (B,>). Let M
be a right R-module with ordered basis (M, >) and N a right submodule of M. Then
there exists a tip-reduced right Grébner basis for N, particularly a reduced one that is
unique with respect to >. In addition, there exists a tip-reduced (left) uniform right
Grobner basis.

Proof. As we mentioned, it is enough to show the existence and uniqueness of a
reduced right Grobner basis for N.
Let

T = {t € TIP*(N) : no tip t’ € TIP* (N) properly left divides t}

(if t" left divides t, then t’ = t). We then consider the set G := {t—Norm (t) : t € T }.
To verify it is a right Grobner basis, we can check that (Tip* (7)) = T)g = (T1P* (N))g,
since G has all the tips as 7 has by construction. Assume t € TiP*(N) and t ¢ 7.
This implies t is properly left divided by some t’ € Tip* (N). We assume t’ € T, for
otherwise we repeat the process. Then there is some b € Bsuch thatt’b =t € (T );.
Hence, it is a right Grébner basis. Also, for each element g = t —Norm (t) € G we
have that CTip*(g) = 1, and its tip is only left divided by the same tip, which is
unique in the set, thus also reduced.

Suppose now H is another reduced right Grobner basis of N. Let h € H. Then
dg € G such that Tip* (g) left divides T1p* (h). Then, also 3h’ € H such that Tip* (k')
left divides T1p* (g), so Tip* (') left divides Tip* (h), hence Tip* (g) = Tip* (h') =
Tip* (h). Thus we get that h — g € Span (NoNTIP* (N)). But

h—geN = h—g=0 = HCQG.

Doing the same procedure on G, we see that G = H, and hence we have showed
uniqueness.

From above all we are left to show is that we can make the tip-reduced right
Grobner basis uniform out of a tip-reduced one, say G. From Lemma we have
that for each g € G there exists a unique v € I}, such that Tip* (g)v = Tip*(g), and
gveN. Solet

G'={gvEN:geg,veT, such that TIP* (g) v = T1p* (g)}.

Hence, G’ is a tip-reduced uniform right Grébner basis. O

15



We can write R as ]_[vel“o VR, and since R is a right projective R-module each
submodule constructed by summing an arbitrary of the summands is also right pro-
jective, for if we have a subset G C [}, then assuming there are two right modules
N,M and an epimorphism f: N — M and a homomorphism g: ]_[veg VR — M,
then we have the inclusion ¢: [ [, ; VR < R and the projection 7: R — [ [ ., VR.
Since R is right projective and there is a homomorphism g o : R — M there exists
ah:R— N. Weget foh=gonm = fohot=gomor=goid = g, hence
]_[veg VR is a right projective R-module. We want to construct an ordered basis for
this.

Theorem 3.5. Let R be a K-algebra with ordered multiplicative basis (B,>). Let I be
an index set and V: I — T,. Then the right projective module P := | [,., V(i)R has a
ordered basis (P, >).

Proof. First we have to show that for each v € Ty, (vB,>), where vB :={b € B :
vb = b}, is an ordered basis for VR and > is the admissible order on B restricted to
vB. Let b, b’ € vB. Then bb’ € BU{0}. If bb’ = 0 then OK. Assume 0 # bb’ = b”.
Since b = vb we have that b” = vbb’ = vb”. Hence, vB is a coherent basis. The
right admissible order follows from B. Hence, (vB3,>) is an ordered basis.

Now we want to make an ordered basis for P. For each i € I let

P;={x€P:x;=0fori#jelandx; €V(i)B}.
We have a basis for P: P := Uie[ P;. We need an admissible order > on P. Have
some well-ordering >; on I and for x;, x, € P, we define x; > x, if b; > b, where
b, is the non-zero entry of x; and b, is the non-zero entry of x,, or, if the entries
are equal, the non-zero entry of x; occurs in the ith component and the non-zero
entry of x, occurs in the jth component and i >, j.

We want to verify that (P, >) is an ordered basis of P. Let x € P and b € B.
Then there is some j € I such that x € V(j)B, and since this is a coherent basis as
shown previously, so is P.

Now we wish to show > is a right admissible order on P. Since > is a well-
ordering, there is a minimal element in B, say, b’. Since > is a well-ordering, there
is a minimal element in

{iel:3beV(@HE)B,b=b"}CI,

say, k. We see that for any other element in P by the definition of the ordering of >

any element must have to have at least the same non-zero entry, and since the index

is chosen such that it is minimal, it cannot be any other. Hence, > is well-ordered.
Let x;, X, € P and suppose x; > x,. Let b € B. We check both cases:

1. x; > x4 as elements in B: Then, since > is an admissible order on B we have
x1b > x,b if x1b # 0 # x5b, so x1b > x,b.

2. i>; j where V(i)x; = x; and V(j)x, = x,: Then, since x; = x, as elements
in B, we have x;b = x,b keeping the equality, whilst also index of non-zero
entries are not changed, as vB is an ordered basis for all v € I, unless the
products are 0. Hence, x;b > x,b in both cases.
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Finally we have to check that[M3] holds. Let x € P. Let by, b, € B and suppose
b, > b,y. x is in some vB C B for v € I}, so we have that xb; > xb, as elements in
B, particularly in vB, as long as the products are not zero. Hence, xb; > xb,. [

Suppose now R = KT, a path algebra, and B is a set of finite paths in R with an
admissible order >. Since R is now a path algebra we have that for each p,, p, € 5,

pipy =P8 if t(p1) = o(p2)
152 0 otherwise.

Suppose we have some left and right uniform x,y € R, respectively, so that for
some v € o, xv = x = 2,1 a;p; and vy = y = 3.2 B;q; for p;v,vq; € B and
a;, 3; € K*. Then all the basis elements occuring in xy are in {p;q; € B: 1 <i <
r; and 1 < j < r,}. Notice that Tip* (x) > p; = TIP*(x)q; > p;q; for all i, except
i such that p; = Tip*(x), and j, since > is an admissible order and none of the
compositions are zero. Similarly, Tip* (y) = Tip(y) > q; = p;TiP*(¥) > p;q;.
Thus, we have

Tip* (x) Tip* (y) > p;TIP* (¥) > p;q;
Tip* (x) Tip* (y) > T1p* (x) q; > p;q;

Hence, Tip* (xy) = Tip* (x) Tip*(y). Next we want to show that we have more
right projective R-modules.

Lemma 3.6. Let x € R* left uniform, with xv = x for some v € I Then vR = xR
and, hence, xR is a right projecive R-module.

Proof. Define the homomorphism f : VR — xR by vr — x(vr) = xr which is clearly
onto. We want to show that it is one-to-one. Suppose f(vr) = xr = 0 and assume
vr # 0. Then Tip* (vr) = vTIP*(r) # 0 and TiP*(xr) = 0. Since xv = x € R,
Tip* (x)v # 0, but then 0 # Tip* (x) Tip* (vr) = TiP* (xr). A contradiction. So
vr =0, and hence f is an isomorphism of right modules. O

Hence, we get a fundamental result from this which is used throughout.

Theorem 3.7. Let P = [ [;.; V(i)R be a projective right R-module with ordered basis
(P,>). If G is a uniform tip-reduced subset of P, then the right submodule generated
by G is the right projective module | | geq 8R-

In addition, if Q has a finitely generating set, then every uniform tip-reduced right
Grobner basis is finite.

Proof. Let Q be the right submodule generated by G. To show that the sum is direct,
we have to show that if x = deg gry = 0 then necessarily r, = 0 for all g € G.
Suppose there is some g’ € G such that r,, # 0. Then for some v € Ty, /v # 0, so
xv # 0. We replace x such that xv = x. Since g is uniform there is some v, € T, for

each g such that gv, = g, hence gr, = gv,r, and we can assume v,r, = r,. From
these assumptions we have that Tip* (grg) = Tip*(g) TIp* (rg). Pick the g, € G

such that Tip* (gorgo) is maximal in the sum. We have that Tip* (g,) = V(j)po = Po
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for some j € I and p, € B. Since x = 0 and it is maximal, there must be another
g € g for cancellation to occur, where Tip*(g) = V(j)p = p € B. So Tip* (grg) =

Tip* (gorgo) and g # g,. However,

pTip* (ry) = T1p* (g) T1P* (1, ) = TIP* (g) T1P* (1, ) = poT1P* (17g, )

So either p = pyq or pq = p,, for some q € B. In both cases the tips left divide each
other, contradicting the assumption that G is tip-reduced. From Lemma3.6|we have
for each g € G, gR is projective, by the assumption that they are left uniform, and
so the result follows.

Finally, if Q is finitely generated, and, for a contradiction, Q has a uniform tip-
reduced right Grobner basis G that is infinite, then by what we have shown earlier,
Q=11 geg &R is not finitely generated. A contradiction. So g is finite. O

We use this to also show a stronger result in the case of path algebras.

Theorem 3.8. Let R = KT be a path algebra. Let P = [ [,.; V()R for some index
set I with ordered basis (P, >) and where Q is a right submodule of P. Then there is
a tip-reduced uniform right Grobner basis of Q. For every tip-reduced uniform right

Grobner basis G of Q:
Q=] Jsr.

geg

Furthermore, for every uniform tip-reduced generating set, G, of Q, G is a right
Grobner basis with respect to >.

Proof. From Proposition [3.4] the existence follows.
Suppose now G is a uniform tip-reduced right Grobner basis of Q. By Theorem

3.7} (G)r = [ ;g gR- Furthermore, by Theorem (G)r =Q. Hence [ [,.g gR =
Q.

We now prove the last claim. Again, by Theorem , we have thatQ = [ [, gR.
Let x = dec grgy € Q" where finite r, € R*. Let TIp* gorgo) be the largest tip from
the gr, occuring in x. Suppose Tip* (x) # T1p* (gorgo). Then there has to be some
Tip* (grg) cancelling out with Tip* (gorgo), so we have that Tip*(g) Tip* (rg) =

Tip* (go) T1p* (rgo). So either Tip*(g) = Tip*(gy)q or TiP*(g)q = Tip*(g,) for
some q € B, which contradicts the assumption that G is tip-reduced. Hence, G is a
right Grébner basis. O

Next, we provide an algorithm that will give us a uniform tip-reduced right Gréb-
ner basis for submodules that are finitely generated using what we have learned.
This will be useful later on, when we are working with intersections of submodules.
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Algorithm 1 Construction of Uniform Tip-Reduced Right Grébner Bases For Finitely
Generated Submodules Q of P

1: Input: Finite uniform set H = {h;,...,h.} CP

2: Output: Uniform tip-reduced right Grébner basis H

3: TH —0
4: while |7;,| # |H| do
5: TH <0
6: for all h € # do > Tip-reduce H.
7: Ty < Ty U {h}
8: for all ' € H \ {h} do
9: if Tip* (h') left divides Tip* (h) then
10: To < Ty \ {h}
11: end if
12: end for
13: end for

14 Q< [ler, AR
15: forallh €7, do

16: n < Norm (h) € Span (NONTIP* (Q’)) > Use Theorem Reduce tips
using H, to get Norm (h), which remains uniform.

17: if n # 0 then

18: H—HU{n}

19: end if

20: end for

21: end while
22: return H

We now go back to the case of two-sided ideals, where we wish to find a right
Grobner basis of these ideals as right ideals.
Definition 3.7. Let p,p,,p, € B If p = p;p,, then we say p, is a prefix of p, and a
proper prefix if p, ¢ T,,.

Remember in the case of right modules, M, we had left uniformity on m € M
if there was some v € I, such that mv = m. For two-sided ideals, we say that an
element g € I is strongly uniform if it has some v;, v, € [}, such that v, gv, = g.

In the theorem that follows, we show how we can construct a right Grobner
basis from an ideal.

Theorem 3.9. Let I be a two-sided ideal of R = KT with ordered multiplicative basis
(B,>) with paths in T and suppose G is a reduced strongly uniform Grobner basis of
I. Let

X ={pgel:peNonTir(I),g € G and no proper prefix p; € Tip(I) of Tip(pg)}.

Then, as right ideals, X is a tip-reduced uniform right Grobner basis of I and

I=]_[xR.

XEX
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Proof. Let pg,p’g’ € X. Then, by construction, if Tip(pg) = Tip(p’g’) b for some
b € B, then b €Tj,. g’ is strongly uniform, so

p'Tip(g’) =Tir(p'g’) = Tip(pg) = pTir(g),

for otherwise Tip(p’g’)b = 0. Then, either Tip(g’) = qTir(g) or qTir(g’) =
Tip (g). However, G is reduced. A contradiction. So g’ = g, and so p’ = p. Thus, X
is tip-reduced.

We also have that X C I as G C I, as well as left uniform as G is both left and
right uniform. We want to show for each x € I, x is also in the right ideal generated
by X. Assume to the contrary that there are some elements in I, but not in the right
ideal. Call the set S. Then there is some TIP (x) minimal element in TiP(S), and
so a g € G such that Tip(x) = pTip(g)q for some p,q € B. Choose such that p is
minimal. Then, as G is a reduced Grobner basis for I, pTipP (g) has no proper prefix
in Tip(I), so p € NONTIP (I). Thus pg € X. In the right ideal generated by X we,
thus, have pgq. Since r had the smallest tip out of the elements not in the right
ideal and

;L CTir(r)
- CTIP(g)pgq

has a tip smaller than r, we arrive at a conclusion that r’ and hence r is in the right
ideal. A contradiction. Therefore, X is a right Grobner basis of I.
Finally, by Theorem it immediately follows that I =] [ ., xR.
O

This will show its usefulness in what will soon follow.

We want to end this section with introducing the elimination theory in the non-
commutative case of path algebras and finally the problem of generating intersec-
tions between two right submodules of a right projective module.

We start off by introducing a special admissible ordering, as the usual lex order-
ing on B (basis of paths) is not a well ordering in path algebras, and then extend to
a right admissible ordering.

Definition 3.8. Let R = KT, a path algebra, and B be the basis of paths.

1. Let >_ be defined as the commutative lex order on B as such: Identify all
vertices as 1 and let all the arrows commute, viewing the paths this way as
commutative monomials in a commutative polynomial ring, where the arrows
are the commutative variables.

2. Define >, . to be a noncommutative lex order on B, where the order of the
vertices and arrows of I" such that all vertices are less than the arrows and for
D,q € B then

p>.q,or
p=cqandp>;q

where >, is the left lexicographical order using the fixed order on arrows and
vertices and >, as mentioned above with the same fixed order.

p>Tqu<:{
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We show that this is an admissible ordering.
Proposition 3.10. >, is an admissible ordering on B.

Proof. We have a minimal element in B, that is the smallest vertex. Now suppose
by, by, by € B such that b; >, b,. We wish to show that b, b; >,. byb; whenever
blbg 75 0 75 b2b3, and b3b1 >TlC b3b2 Whenever b3b1 75 0 75 b3b2. We haVe two
cases.

1. by >, by: Multiplying by b5 on left or right side does not matter in the case
we are assuming the arrows commute and adding extra and same variables
to b; and b, does not affect the commutative inequality. Hence,

bibs >, bybs = bybs >, bybs
bsby > bgby, = b3b; >, bsb,

2. by =, b, and b; >; b,: Multiplying from the right by b5 clearly does not affect
the first left inequality of arrows/vertices for b; and b,. Multiplying from the
left, we just have the same terms for the first arrows and vertices of b; until
we again encounter the left-most inequality of arrows/vertices. Hence,

bl b3 =c b2b3 al‘ld bl b3 >l b2b3 — bl b3 >nc b2b3
b3b1 = b3b2 and b3b1 >l b3b2 - b3b1 >nc b3b2.

Lastly, we have to check for b, by, by, bs € B that if b =, by byb5 then b >,,. b,.
Since b =, b;b,b; we have b >_ b, => b >, b, whenever b, or by are in B\ I}.
So suppose both b,, b; € [,,. Then b =; b;b,b3 =, b, = b =, b,, and otherwise
0 if o(b,) # by and t(b,) # bs.

Thus >, is an admissible ordering on 5. O

Now we can extend >,. to a right admissible order > on the basis of P =
[ Iic; V()R exactly as we did in the proof of Theorem Thus we have an or-
dered basis (P, >) for P.

For the elimination theory that follows, we define what it means to eliminate
arrows.

Definition 3.9. Let T be a quiver, R = KT a path algebra and B the basis of paths.
Let a € T;. We define the following.

1. Denote T, as the quiver where (T,), := I and (T},); :=TI; \ {a}. Then KT, is
viewed as a subalgebra of KT. If S is a subset of KT, then (S), :=SNKT,.

2. Denote P, := | [..;,(V(i)KT),. If S is a subset of P, then (S), :=S NP,.

iel
3. Let (>,.), be the restriction of >, to the paths in T,, B,, which is an non-
commutative lex order on KT, and an admissible order on B,.

4. Let >, be the extension of (>,.), to P,, as we did for > .
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Recursively, we can define this for a subset of arrows we wish to remove. Sup-
pose U =ay,...,a, S I;. Then, define Ty, := (Iy\(q,})q, -

What follows is known as The Elimination Theorem, showing that the Grébner
basis for a right projective module, with an eliminated arrow as defined above, is
same, but where the elements with the arrow are removed. Furthermore it will
preserve uniformity and remain reduced. Notice there is more to the result.

Theorem 3.11. Let I be a quiver with a noncommutative lex ordering >,. on the paths
of T. Let a €T} be the maximal arrow in T with respect to >,.. Let P =] [.., V(DKT
with ordered basis (P, >). If G is a uniform right Grébner basis for P with respect to
>, then G, is a uniform right Grobner basis for P, with respect to (>),.

Furthermore, if U ={ay,...,a,} C I} where

Ay Zpe g e " Zpe Ay 2 @
for all a € (I)y, then Gy is a uniform right Grobner basis for P; with respect to ()

Proof. We want to show that G, = G N P, is a uniform right Grébner basis for P,
with respect to >,. Since G is already uniform, so is G,.

Letz € P, C P = 3g € G such that Tip*(g) b = Tip*(z) for some b € B. If
g € P, then g € G,, and this would mean the right modules generated by the tips of
P, and G, are equal. We have that Tip* (g) = Tip* (2) € P,. Then there is some i € I
and p € (V(i)B), such that Tip*(g) has p in the ith component and 0 everywhere
else. Now for any other basis element, g, that has p, at the i,th component and 0
everywhere else, occuring in z we have TiP* (z) > q, and so p >, p,. Hence by the
definition of >,. a cannot occur in g, so q € P,. Thus g € P,. Thus, G, is a uniform
right Grobner basis.

To show the final claim, we remove a; which is maximal for all arrows, and we
have a right uniform right Grébner basis as above. Next, we remove a, which is in
the current maximal arrow of I},. Continuing the recursion this way we arrive at
the result. O

The next construction, that will be defined, will be useful for finding a generat-
ing set of the intersection of two (right) ideals.

Definition 3.10. Let I be a quiver.
1. Define I'[T] to be the quiver such that
I[Tlh=T,
[[T]y,=LU{(T,:v—-ov):veTl}.
We view KT as a subalgebra of KI'[T].

2. IfP=]].,; V@KT for V: I - T, denote P[T]:=] [,,; VI)KT[T].

i€l

3. Let B[T] be a basis of paths in KI'[T]. Let (P,>) be an ordered basis of P,
with noncommutative lex ordering >,. on B. Then, extend >,  to B[T] by
fixing a ordering to T, for v € I, where T, >,  a for all a € T}.
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4. LetT:=> . T

Vel “v*

By the definition of T we see that for a p € BB, then Tp = T,,p and (1—T)p =
p — To(p)p- For any x € P, we have the ith component is Z;Zl a;p; where a; € K*
and p; € V(i)B. So for the case of Tx € P[T ] we define that the ith component is
o1 @ Tp; =25y a;Ty)p;. Similarly, we define for (1—T)x € P[T].

As usual, for a right submodule, Q, of P, we denote TQ for the right submodule
of P[T] where it consists of {Tx € P[T] : x € Q}, and similarly for (1 — T)Q.

Next we show a result where we can express the intersection of two right sub-
modules of P using the construction above.

Theorem 3.12. Let R = KT be a path algebra. Let the right projective R-module be
P =] |,; V()R with ordered basis (P, >), where Q, and Q, are right submodules of
P. Then

QNQy;=(TQ; +(1—-T)Qy)NP.

Proof. Suppose h€ Q;NQ,. ThenhePandh=Th+(1—T)he TQ; +(1—T)Q,.
S0Q; NQ, € (TQ, +(1—T)Q,)NP.

Now let h € (TQ; + (1 —T)Q,) N P. Then there is some ¢; € Q; and ¢, € Q,
such that h = Tq; + (1 —T)q, = T(q; —q,) + q5. Since h € P we cannot have any
loops from T in h, so T(q; —q,) = 0, and since q; and g, must then be equal in
every component they are non-zero at, q; =q,. Thusq; = ¢, =h€Q; NQ,.

Thus, we arrive at the result Q; NQ, =(TQ, +(1—T)Q,) N P. O

From this result, we can find a generating set from the intersection, given we
have Q; and Q,’s uniform tip-reduced Grobner bases G; and G,, respectively. As-
sume these are finite.

From earlier, we have right submodules TQ{,(1 — T)Q, € P[T] and their uni-
form tip-reduced generating sets TG, and (1 — T)G,, respectively. For the right
submodule TQ; + (1 — T)Q, we then have a generating set

G2 ={Tg+(1-T)f :g€G; and f € G,}.

Making the set uniform by applying fv for every f € G;,,, and every v € I, we
can use Algorithm{1]to make an uniform tip-reduced Grébner basis, G, 5, for TQ; +
(1—T)Q, for the extended ordering on P to P[T]. Then we can, by Theorem|3.11]
go back to the original right module, by removing all the loops, as they are defined
to be greater than any other arrow in Iy, to get (G112)(r,ver,} that is a uniform
tip-reduced Grobner basis for

(TQ1 +(1—T)Q2)r,:veryy = (TQ1 +(1—T)Q)NP =Q; NQs.
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4 Systems of Equations Over Algebras

Let R = KT be a path algebra with ordered multiplicative basis (83, >) where B is
the set of paths in T'. Let A = KT'/I where I is an ideal of KT, and A€ A™™:

Aa o A
e R @
A'n,l e ln,m

where A; j€Aforl<i<nand1<j<m.

Our aim for this section is finding solutions, generators for solutions and, finally,
an algorithm for finding such a generating set of the solutions to some homogeneous
systems of linear equations with coefficients in A, that is finding all x € A™ such
that

Ax =0. (3)

However, first we show that we can transform any linear system to a linear
system such that the entries are strongly uniform (that is we have for each entry
A; j some v,u € I such that vA; ju = 4, ;), which also preserves all the solutions in
the original system.

Proposition 4.1. Let A as above and A€ A™™. Then we can associate a new matrix
A € N"*™ such that there exist V: {1,...,n'} = Ty and W: {1,...,m’} - T, such
that for each entry Al’.j in A" we have V(i)lng(j) = A} ., and there is a bijection

i,j?

between the solutions of Ax = 0 for x € A™ and A'’x’ =0 for x’ € ]_[yil W()A.

Proof. Suppose Ty = {v;,...,v,.}. Let R([}) := (vl vr). First, we can start by
replacing the i-th row (Ai,l Ai,m) in Awith ()Li,lvl s AV e Ai’mvr)
for 1 < i < n which we get from multiplying each row with

R(T,) 0
0 R(Ty)

from the right side. So our new matrix is Al;. Next, we replace each column, 1 <
j < rm, in the Al with (lell,svt e VAV e vrln,svt)T, where s =[]
and t = j —r(s — 1), by multiplying from the left with

IR =

R(Ip)" O

0) R(T)"

The final matrix is then A’ := [} Al € A"™"™, We see that for each entry in A" we
have left and right uniformity. We can define W: {1,...,m} x {1,...,r} - [, and
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V:{1,...,n}x{1,...,r} > T, by W(j,1) = v; and V(k,1") = v}, respectively, where
1<j<m,1<k<n,and1<Ll'<r.
To see that there is a bijection between the solutions of Ax = 0 and A’x’ =0

we notice that for each solution (x1 Xy v xm)T of the first problem we have a
solution (V1X1 VoXp et VeXqp et v,xm)T of the 2nd problem. Similarly, for
each solution (xu X1p v Xy, e xm,r)T of Ax” = 0 we have a solution
(V1X1,1 +VoXxy g+ VX, e VX et vrxm’r)T forAx =0. O

We can then assume that each matrix A has this property to continue. We denote
fi € ]_[?:1 V(i)R for the j-th column of A, and notice it is left uniform (f;W(j) = f).
Particularly, in this section, we are interested in the solutions for matrices A where
the direct sum ]_[;"=1 f;jR holds. We have seen from earlier that this holds if the set
of f;’s is uniform and tip-reduced.

Let M be the set of solutions for the system, that is M = {x € ]_[;n:1 WA -
Ax = 0}. We wish to find a generating set for M.

Theorem 4.2. Let R = KT be a path algebra with ordered multiplicative basis (B, >)
of paths where > is a noncommutative lex order on B. Let P := ]_[?zl V()R projective
right R-module with an ordered basis (P,>). Let G be a tip-reduced uniform right

Grébner basis for ]_[;n SROL, VDI C P, so foreach g €G, g = Z;'n=1 fiag ; for
some a, ; €R. Then

{(Norm (ag’l) Norm (ag,z) -++ Norm (ag’m))T € ]_[W(j)A 1g € Q}

j=1
is a generating set for M.

Proof. We want to show any x = (x1,X5,...,X,) € M can be written as a lin-
ear combination of elements in the set above. We have that Z;n:l fijx; = 0in

[Ii=; V@A In [, V()R we have that 377, fix; € [ I, V(DI, so the sum lies
in [ T2, ;RN ]I, V()I, which is generated by G as right R-module. Hence,

ij J‘_ng

geG

for some sg €R (finite Sg # 0). As we have foreach g € G, g = Z

21‘1”‘1‘2(sz g,)s —ZfJZ g jSsg-

geiG j=1 g€g

i 1fj g,j We get

By assumption we have | [/, fiR, so for 1 < j < m, x; = 3} _;ag s, Since
x; € WA,

x; = Norm (Zag] g) ZNorm(ag])Norm( g)

g€y gsg
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where Norm (sg) € A. Altogether, we have

Norm (ang)
Norm (ag,z)
X = Z . Norm (sg).
g€G :
Norm (ag’m)

O

Before continuing forward, we note an important result about the relation of
the dimensionality of quotients of K-algebras with ordered multiplicative bases and
Grobner bases of the kernels of the quotient (ideal) with respect to >.

Theorem 4.3. Let S be a K-algebra with ordered multiplicative basis (B,>) and as-
sume BU {0} is a finitely generated semigroup with 0. Let I be an ideal of S such that
S/I has finite dimension over K. Then there exists a finite Grébner basis for I with
respect to >.

Proof. Note that Span (NONTIP (I)) = S/I as vector spaces, so NONTIP (I) has dim; (S/I)
elements. Let 7 = {t € Tip(I) : there do not exist b, b’ € B\ T, such that t = bb’}.
As we have seen earlier we can define G = {t —Norm (t) € I : t € T} which is a
(reduced) Grobner basis for I.

We want to show that 7 is finite. Particularly, we want to show that 7 € {nb €
B : n € NoNTIP(I) UB} U B, where B is the finite set of generators of B. Let t €
T\ I,. Then, by construction, every proper factor of ¢t must be in NONTIP (I). So
t =o(t)b,--+b,. If b, € B\ {0}, then o(t)b,:--b,_; € NONTIP(I) or in [,. If in
I, then t = b, € B. Else, if the factor is in NONTIP(I), then t € {nb € B:n €
NoNTIP (I) UB}. Thus, 7T is a finite set, and the result follows. O

We see that this result holds for path algebras, where T is a finite graph, as B is
finitely generated by its vertices and arrows.

The final result comes now showing when we can have a finite uniform tip-
reduced right Grobner basis for a intersection of the submodules of P, with some
additional assumptions.

Theorem 4.4. Let R = KT be a path algebra with ordered multiplicative basis (B3,>)
of paths where > is a noncommutative lex order on . Let P := ]_[?21 V(i)R with
an ordered basis (P,>). Let f; € P, 1 < j < m, be a tip-reduced set of uniform
elements. Let I be an ideal such that A := KT/I is finite dimensional over K and
assume P/ ]_[;."21 f;1 is finite dimensional. Then there is a finite uniform tip-reduced

right Grébner basis of ]_[;."=1 fiRNLI, V(DI in P with respect to >.

Proof. Note that Q = [[_, fiRN [[;_, V()I contains the right submodule Z =
]_[;n:l fiI. We have that Q/Z is a right submodule of P/Z, which is assumed to

be finite dimensional. Thus, Q/Z is finite dimensional. Let the K-basis of Q/Z
be B. For each b € B choose a uniform b’ € Q such that b’ + Z = b. Then let
B'={b’€Q:beB}.
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By Theorem [4.3} since A is finite dimensional, the ideal I has a finite reduced
Grobner basis and NONTIP (I) has dimg (A) elements. Then using Theorem [3.9) we
have a finite uniform tip-reduced right Grobner basis for I as right ideals. Let this
set be G;. Then we have a finite uniform right generating set for Z, call it G = {f;h :
1<j <mandh € G,}. Then GUB' is a finite uniform generating set for Q. Finally,
by tip-reducing, we get the result. O

It can be shown that dimg(P/Z) < 00 <= dimg(P/ ]_[;n:l fiR) < 09, so either
of those assumptions of the previous theorem will do it.

From the results we have gotten so far, we can construct an algorithm that will
give us the generating set for solutions of Ax = 0 where the set of columns of A is
a uniform tip-reduced set. We end this section by partially including an algorithm
for these generators.
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Algorithm 2 Generating Set of Solutions for System of Equations

1:

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:

26:

27:

N N A A R

Find a reduced Grobner basis, F, for I. KTI'/I finite dimensional = exists
a finite algorithm to do this. By Theorem 9.2 (9.1) there is a finite reduced
Grobner basis for I. See [2]] for an algorithm.
Find NONTIP(I). There is a finite algorithm to find this finite set. B is finite,
and NoNTiIP(I) = B\ Tip(I). We have for all x € Tip(I), 3g € G such that
x = b;Tip(g) b,. Hence, an algorithm can be:
H<§
for ge g do
for b, e Bdo
for b, € Bdo
H «— {b;Tir(g) by} UH
end for
end for
end for
Tip(I)—H
NoNTIP(I) « B\ Tip(I)
Find the uniform reduced right Grobner basis for I. Use Theorem |3.9
G0
for p € NoNTIP(I) do
for g€ G do
G—Gu{pg}
for p; € Tip(I) do
if p; is a proper prefix of Tip(pg) then
G —g\{pg}
end if
end for
end for
end for
Set up matrix A and f;’s where L[;n=1 f;KT.
Find uniform tip-reduced right Grébner basis for ]_[;.n:1 fiKT NI, V()I. By
using the assumptions of Theorem 9.5 this basis is finite. We have two right
submodules of P, and they have uniform tip-reduced Grébner bases {f; : 1 <
j < mj} for ]_[;.n:lijF and G for ]_[?:1 V(i)I. Using the information from the
end of chapter [3] using the elimination and intersection methods we can get a
finite uniform tip-reduced right Grébner basis.
Use Theorem[4.2]to get the generating set of solutions using this right Grobner
basis.
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