NTNU

Norwegian University of Science and Technology

Faculty of Information Technology and Electrical Engineering

Master’s thesis

Dept. of Information Security and Communication

Technology

Peter B Skramstad Ja@rstad

A comparison of sequence models
for anomaly
detection on process chains

Comparing sequence models for anomaly
detection on process chains as a HIDS

Master’s thesis in Information Security
Supervisor: Gudmund Grov
Co-supervisor: Lasse @verlier

May 2023

@ NTNU

Norwegian University of
Science and Technology

Peter B Skramstad Jarstad

A comparison of sequence models for
anomaly
detection on process chains

Comparing sequence models for anomaly detection
on process chains as a HIDS

Master’s thesis in Information Security
Supervisor: Gudmund Grov
Co-supervisor: Lasse @verlier

May 2023

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Dept. of Information Security and Communication Technology

@ NTNU

Norwegian University of
Science and Technology

A comparison of sequence models for anomaly
detection on process chains

Peter Skramstad Jgrstad

CC-BY 2019/07/18

Chapter 1

Abstract

Abstract:

This study investigates the application of machine learning techniques in host-
based Intrusion Detection Systems (HIDS), with a focus on the analysis of process
relationships, an under-explored area in HIDS research. Through a rigorous lit-
erature review, we identified the current state of the art and potential research
gaps in the field, facilitating the selection of suitable models and datasets for our
investigation.

Our exploration centered on three prominent sequence models - Recurrent
Neural Networks (RNN), Long Short-Term Memory (LSTM), and Transformer
models. The performance of these models was evaluated using the OpTC data-
set, which represents a modern environment well-suited for process-tree based
HIDS. Findings indicated that, among the three models, the Transformer model
demonstrated marginally superior performance, although room for improvement
was noted.

Further, our models were compared with state-of-the-art anomaly detection
techniques. Despite outperforming several algorithms detailed in ProcAID, our
Transformer model was inferior to ANUBIS, an anomaly detection approach that
employs Bayesian Neural Networks. These results not only underscore the poten-
tial of Transformer models for anomaly detection tasks in HIDS, but also highlight
the effectiveness of more sophisticated approaches such as Bayesian Neural Net-
works.

In conclusion, our study contributes to the ongoing discourse in HIDS re-
search, revealing promising areas for future work and development to bolster
anomaly detection performance.

Chapter 2

Sammendrag

Sammendrag

Denne studien undersgker anvendelsen av maskinleeringsteknikker i verts-
baserte Intrusion Detection Systems (HIDS), med fokus pa analysen av prosess-
forhold, et underutforsket omrade i HIDS-forskning. Gjennom en grundig litter-
aturstudie identifiserte vi den navaerende toppmoderne teknikken og potensielle
forskningshull i feltet, noe som muliggjorde valg av passende modeller og datasett
for var undersokelse.

Var utforskning sentrerte rundt tre fremtredende sekvensmodeller - Recur-
rent Neural Networks (RNN), Long Short-Term Memory (LSTM) og Transformer-
modeller. Ytelsen til disse modellene ble evaluert ved hjelp av OpTC-datasettet,
som representerer et moderne miljg godt egnet for prosess-tre baserte HIDS. Funnene
indikerte at blant de tre modellene, demonstrerte Transformer-modellen margin-
alt overlegen ytelse, selv om rom for forbedring ble bemerket.

Videre ble modellene vare sammenlignet med toppmoderne anomalideteks-
jonsteknikker. Til tross for at de utfgrte flere algoritmer detaljert i ProcAID, var
véar Transformer-modell underlegen i forhold til ANUBIS, en anomalideteksjon-
stilneerming som bruker Bayesian Neural Networks. Disse resultatene understreker
ikke bare potensialet til Transformer-modeller for anomalideteksjonsoppgaver i
HIDS, men ogsa effektiviteten til mer sofistikerte tilnaerminger som Bayesian Neural
Networks.

Til slutt bidrar studien var til den pagdende diskursen i HIDS-forskning, og
avslgrer lovende omréder for fremtidig arbeid og utvikling for a styrke anomal-
ideteksjonsytelsen.

Contents

1 Abstract e 1
2 Sammendrag. e e e e e e e 3
Contents e e e e e e e 5
Figures e e 9
Tables 11
Code Listingst 13
3 Introduction 15
3.1 Topic covered by the project 15
3.2 Keywords o oo e 15
3.3 Problem description 15
3.4 Justification, motivation and benefits 16
3.5 Research questions, 17
3.6 Planned contributions 17

4 Background 19
4.1 Intrusion detection systems (IDS) 19
4.2 Past decade’s evolution of Sequential Models 21
4.2.1 Word Embeddings (2013-2014) 21

4.2.2 Sequence to Sequence Learning (2014-2015) 21

4.2.3 LSTM and GRU Networks (2015-2017) 21

4.2.4 Transformer Models (2017-) 22

4.3 Encoding Techniques in Natural Language Processing 22
4.3.1 Omne-HotEncoding, 22

4.3.2 Label (orIndex) Encoding 22

4.3.3 Count Vectorization (Bagof Words) 22

4.3.4 TFEIDF (Term Frequency-Inverse Document Frequency) . .. 23

4.3.5 Word2Vec o e 23

4.4 ProcessTrees . . . v v v v v i i e e e e e e 24
4.4.1 ProcessCreate Event 24

4.4.2 ProcessTree i 25

5 Methodology 27
5.1 Introductiont 27
5.2 ResearchDesignttt 27
5.3 Literature Review i e 29
5.4 Model Selection 29

6

7

8

petej@NTNU: sequence models for anomaly detection

5.5 Dataset Selection 30
5.6 Evaluation 30
5.6.1 MetriCs . . . v v i vt e e e e e e 30
5.6.2 Process e 32
5.7 Ethical Considerations 33
Literature Review 35
6.1 Datasets v v it e e e e e e e e e e 35
6.1.1 Splunk AttackDatavvieenn.. 35
6.1.2 The Security Datasets project 35
6.1.3 Operationally Transparent Cyber (OpTC) Data Release ... 36
6.2 System Call Based Methods 36
6.3 Process Tree Based Methods 38
6.4 SystemLogBased 39
6.5 SUMMATY i e e e e 40
6.5.1 Data Gathering Preprocessing 41
Experimentsand Results 43
7.1 Dataset Preprocessing 43
7.1.1 Obtaining OpTC 43
7.1.2 Extract benign and malicious process create events 43
7.1.3 Buildingtreesandchains. 44
7.1.4 Cleaning the filepaths 44
7.1.5 Building thedatasets 45
7.2 Implementationttt 46
7.2.1 Environment 46
7.2.2 Feature Extraction and Engineering 46
723 TheModels 48
7.2.4 Embedding adaption 51
7.2.5 Hyperparameter Optimization. 51
7.2.6 Training e 52
7.2.7 Evaluation 53
7.3 Results. 53
7.3 1 Dataset e 53
7.32 Models 60
7.3.3 Embedding L 63
Discussion 65
8.1 Methodology 65
8.2 ResultsDiscussion, 65
8.2.1 Datasett 65
8.2.2 Vocabulary. 66
823 Models e 66
8.2.4 RNN, LSTM and Transformer - Index Encoding 66
8.2.5 Embeddingimpact............. 67
8.2.6 Transformer - ANUBIS 68

8.2.7 Transformer - Other algorithms 69

Contents 7

8.2.8 Transformer Mask Rate 0.5 /0.25: 70

9 Conclusion and Future Work 73
9.1 Future Work e 73
9.1.1 Feature Engineering 73

Bibliography 75

Figures

4.1 Self Attention Weights 24
4.2 ProcessTree e 26
7.1 Token Distribution i 55
7.2 Chains Distribution (Top250) 55
7.3 Token Distribution - Malicious 57
7.4 Chains Distribution - Malicious 57
7.5 Plots for ROC and PR for RNN Index and Word2Vec 59
7.6 Plots for ROC and PR for LSTM Index and Word2Vec 61
7.7 Plots for ROC and PR for Transformer Index and Word2Vec 62
7.8 TSNE plot for Word2Vec embeddings 63

Tables

5.1 Confusion MatriXo v it 31
7.1 Per Position StatiStiCS v v vttt e e e 54
7.2 Chain Statistics i 54
7.3 Vocabulary Statistics 56
7.4 Per Position Statistics - Malicious. 56
7.5 Chain Statistics - Malicious 56
7.6 Vocabulary Statistics - Malicious 58
7.7 Performance metrics at two percentiles for RNN - Index and Word2Vec 58
7.8 Performance metrics at two percentiles for LSTM - Index and Word2Vec 60
7.9 Performance metrics at two percentiles for Transformer - Index and
Word2Vec o e 60
7.10 Transformer - Index (Maskrate=0.25) 61

11

Code Listings

4.1

7.1
7.2
7.3
7.4
7.5
7.6
7.7

8.1
8.2
8.3

EventID 4688 25
Schema for the OpTC dataset, used for msticpy 44
Tokenizer e 47
Word2Veco e 47
w2v example for "powershell” L. 47
Transformer Encoder after hyperparameter tuning 50
Transformer model after hyperparameter tuning 50
Word2Vec Embedding layer, equal for allmodels 51
Transformer, multiple hosts 69
Algorithm Comparison for Host 0201 69
Algorithm Comparison for Host 0501 69

13

Chapter 3

Introduction

3.1 Topic covered by the project

An intrusion detection systems (IDS) is a system designed to detect and alarm
on malicious activity on the system it is deployed in. IDS are divided based on
what data they analyse and how they detect malicious behaviour. Network IDS
(NIDS) analyses network traffic data, and Host based IDS (HIDS) analyses host
data. Detection can be done either by looking for signatures (misuse detection) or
anomalies (anomaly detection). Machine learning (ML) is a field within artificial
intelligence, based on the concept that machines can learn from data, identify pat-
terns and make decisions with minimal human intervention [1]. Traditionally, an
IDS was based on manually constructed signatures for detecting malicious activity.
Over the recent years, research on ML techniques for anomaly based detection has
gained popularity. This project focuses on the area of applying machine learning
algorithms to IDS utilizing host data (HIDS).

3.2 Keywords

cybersecurity, intrusion detection, anomaly detection, machine learning

3.3 Problem description

As the world has become more and more digitized, new attack surfaces and tech-
niques has emerged. As misuse detection IDS depend on the signatures written
for them, they are incapable of detecting unseen attacks. Anomaly based IDS are
design around a baseline of normal activity. However, as real-world environments
are dynamic and any abnormal behaviour will be triggered on, they are prone
to a high false alarm rate [2][3][4]. As alarms are mostly reviewed manually it
creates a lot of labor for the operators reviewing them. Further, since the amount
of data a normal company conjures on a daily basis has grown large, even a low
false alarm rate can create a huge number of false alarms.

15

16 petej@NTNU: sequence models for anomaly detection

Network IDS are mostly deployed outside the intranet of an organization
which makes internal attack hard to detect [5]. Also, as network traffic is becom-
ing increasingly encrypted it is potentially problematic for NIDS [6][5]. These
issues points towards host based IDS. Most HIDS research are based on system
calls, which are low-level artifacts of the system kernel. However, there is a lack
of publicly available datasets for HIDS containing system call, and traditional data-
sets cannot represents a modern environment. There are several studies detailing
the problems relating to currently available HIDS datasets [5]. For both HIDS and
NIDS datasets, these problems include old data, redundant information, unbal-
anced numbers of categories, and insufficient data volume [4]. Further, a tracing
tool is required to run on the host in order to collect system calls, which adds a
computational cost, thus making system calls non-present in common log types.
As system-call based HIDS has its challenges with datasets, process tree based
HIDS should be considered.

Processes on a computer has parent-child relationships, and will form trees
which has paths or chains. However, there is little research on HIDS based on
process relationships. Indeed, a survey on HIDS from 2019 only had a small sec-
tion for process-based HIDS, and only one research group had analyzed parent-
child relationships [6]. This project will explore the potential of adopting NLP-
techniques used in system call based methods on process tree based HIDS.

3.4 Justification, motivation and benefits

Several companies report on and predict an increasingly high cost of cyber crime.
In the US, the Federal Bureau of Investigation’s annual Internet Crime Complaint
Center (IC3) reported a cost of $6.9 billion in 2021 [7]. In 2020, Cybersecurity
Ventures projected the total global cost of cyber crime to reach $10.5 trillion USD
annually by 2025 [8]. Accentures study on 11 countries found that the average
cyber crime cost for a company in 2018 was $13 million [9]. Worse still than
common criminals, advanced persistent threats (APT) have the ability to launch
sophisticated attacks to intrude an organization, and has been considered a seri-
ous global problem since the 2010s [10]. Therefore, the ability to detect and alert
on malicious activity is of utmost importance.

By analyzing data from the operating system of a host, HIDS has the privilege
of having access to context-rich data for processes and activities, which support
the ability to detect internal attacks [6][5]. All which is needed to construct a
process tree is the parent-child relationship between the processes, which is in-
cluded in common log types (e.g. Sysmon and Microsoft Security Event Log). As
datasets with just common logging enabled is easier to construct than ones with
system call tracing, there are modern, sufficiently sized datasets available that
are compatible for process tree based HIDS. Also, most enterprises are likely to
have these log types enabled, which makes implementing this type of HIDS cost-
efficient. Considering that system call traces has similarities with process chains
in regards to both being sequential, machine learning techniques used on the one

Chapter 3: Introduction 17

might be adaptable on the other. As a process tree can be seen as both a graph
or as individual chains, different ML techniques may be applied. This in combin-
ation with dataset availability might give grounds for anomaly detection with an
acceptable false alarm rate.

3.5 Research questions

The main research questions to be answered by this project are as follows:

1. What is the state of the art on sequential machine learning methods used
on HIDS?

2. Are there any gaps in the current research?

3. Are these methods suitable to be used on process-chains?

4. How do these methods compare against each other and SOTA?

Which leads to the sub-questions:

a. Which datasets are available and most suitable for HIDS?
b. What is the SOTA on process trees?
¢. How does mask rate affect performance?

3.6 Planned contributions

This project will examine the possibility of adopting machine learning techniques
used for system call based HIDS to process tree based HIDS. More specifically,
natural language processing (NLP) techniques, as these have been extensively
used both on system calls sequences and network traffic. The project also seeks to
review different machine learning approaches already used on process tree based
HIDS, and what datasets are available.

For this, a proof of concept model will be built first, followed by one or two
more advanced. Hopefully, we are able to do anomaly detection with an acceptable
FAR. However, the overall goal is to complete a proof of concept and highlight the
potential in process trees for HIDS.

Chapter 4

Background

4.1 Intrusion detection systems (IDS)

[[Intrusion detection, a critical component of computer security, is defined as the
identification of any unauthorized activities potentially detrimental to an informa-
tion system [11]. Intrusions can compromise the confidentiality, integrity, or avail-
ability of information and services to legitimate users, making systems unrespons-
ive. These malicious activities or intrusions include break-ins, penetrations, and
other forms of computer abuse [12].

Intrusion detection systems (IDS) are specifically designed to identify these
intrusions. IDS can be either a software or hardware system and their primary
purpose is to detect malicious actions that could not be identified by traditional
firewalls [11]. These systems have three core components: data collection, con-
version to select features, and a decision engine. They ingest various data types
such as system logs or network flows, convert these into feature vectors or pre-
defined units of data, and then use an algorithm to decide whether the given data
represents an attack or not. They can be configured to alert a user or trigger an
automated response system [6].

Intrusion detection systems can be broadly categorized into Signature-based
Intrusion Detection Systems (SIDS) and Anomaly-based Intrusion Detection Sys-
tems (AIDS) [11]. Additionally, there are host-based IDS (HIDS), network-based
IDS (NIDS). HIDS, in particular, have been gaining significant attention in the cy-
bersecurity community due to their fine granularity and ability to detect internal
attacks [5].

Unlike antivirus systems, which monitor all activities inside a system, HIDS
collect and analyze specific system data to detect anomalies, including system call
patterns, system events, and the status of the file system [12]. Anomaly detection
techniques, which identify items, patterns, and events deviating from the normal
behavior of system processes, are particularly useful in HIDS. These anomalies or
outliers are commonly found in fraudulent activities, system health issues, fault
detection, and cyber intrusions [12]. Furthermore, HIDS have the capability to
monitor individual systems and provide robust tools for centralized audit policy

19

20 petej@NTNU: sequence models for anomaly detection

management, statistical analysis, and evidentiary support [12].

Intrusion detection systems (IDS) are typically categorized into Signature-
based Intrusion Detection Systems (SIDS) and Anomaly-based Intrusion Detec-
tion Systems (AIDS), with each having their strengths and weaknesses. [5, 6, 11,
12].

SIDS, also known as misuse detection, primarily rely on pattern matching tech-
niques to identify known attacks by referencing a database of previously recorded
attack signatures [5, 11, 12]. These signatures might include specific patterns,
known malicious instruction sequences, or system vulnerabilities [12]. When a
match between a recorded activity and an existing signature happens, an alert is
triggered. Popular tools such as Snort and NetSTAT employ SIDS, and despite the
simplicity and high detection accuracy for known intrusions, these systems has
their challenges [5, 11].

One significant limitation of SIDS is its inability to detect novel or zero-day
attacks, since these exploits do not have existing signatures in the database [5,
6, 11]. Advanced and polymorphic malware, coupled with the rising number of
targeted attacks, also complicate SIDS performance, necessitating continuous up-
dates and maintenance of the signature database [11, 12].

On the other hand, AIDS works by defining a baseline of normal behavior of
a computer system using machine learning, statistical, or knowledge-based meth-
ods. It flags any significant deviation from this model as an anomaly, which might
be malicious activity [5, 11, 12]. Notably, AIDS has the advantage of identify-
ing zero-day attacks, as it is not reliant on a signature database [6, 11, 12]. It is
also capable of detecting internal malicious activities thereby making harder for
cybercriminals to bypass without generating an alert [11].

However, AIDS is not without its challenges. Firstly, it tends to produce a
higher rate of false positives due to the inherent difficulty in distinguishing between
normal activities and actual intrusions [6, 11, 12]. Secondly, making an accur-
ate definition of normal behavior for the system can be complex and resource-
intensive, requiring detailed knowledge of the system’s operation, and this may
lead to overlooking malicious behavior if it is considered within the normal baseline
[5, 12]. Furthermore, attacks can often be obfuscated within the ambient data
noise, especially if the training data has high variance, or if the attack patterns
are present within the training data, resulting in a skewed baseline of normal
behavior [6].

In conclusion, while SIDS and AIDS have their respective advantages and dis-
advantages, the selection of an appropriate IDS generally depends on the specific
security needs of a system or network. Due to the nature of a dynamic threat land-
scape, and the ability of anomaly detection systems to detect novel attacks, this
study revolves around anomaly detection on HIDS.

Chapter 4: Background 21

4.2 Past decade’s evolution of Sequential Models

The past decade, sequential models has seen a lot of improvements. This period
is marked by development and new applications of machine learning techniques
in the field of Natural Language Processing (NLP). This chapter provides a brief
overview of this this period, focusing on the major milestones.

4.2.1 Word Embeddings (2013-2014)

Word embeddings are dense vector representations of words that capture semantic
meanings based on context. In 2013, Mikolov et al. [13] introduced Word2Vec, a
model that used shallow neural networks to generate these vector representations.
This model had a huge improvement in the efficiency of the training procedure
compared to earlier models, which lead to better word representations. [14]

This year also saw an adoption of neural network models in NLP One model in
particular, recurrent neural networks [15] (RNNs; Elman, 1990), gained popular-
ity for its ability in dealing with dynamic input sequences, which is in the nature
of NLP [16]

4.2.2 Sequence to Sequence Learning (2014-2015)

The next milestone was the introduction of sequence to sequence (seq2seq) learn-
ing by Sutskever, Vinyals, and Le in 2014 [17]. This allowed a neural network to
map an input sequence, such as a sentence in one language, to an output sequence,
such as a translation of the sentence in another language. [16]

In 20012, the attention mechanisms was introduced by Bahdanau et al. [18],
to help improve upon seq2seq models. Attention allowed a model to focus on
certain parts of the input sequence when generating an output, proving very suc-
cessful and improving performance on sequence to sequence tasks. [14]

4.2.3 LSTM and GRU Networks (2015-2017)

Long Short-Term Memory (LSTM) networks were popularized in response to what’s
called vanishing gradient problem of conventional RNNs, which makes it dif-
ficult to learn long-range dependencies. LSTM networks introduced a form of
memory into the network, enhancing their ability to retain information over long
sequences. They were developed by Hochreiter and Schmidhuber back in 1997
[19], but only gaining foot-hold later. [16]

A similar solution came with Gated Recurrent Units (GRUs). Introduced by
Cho et al. in 2014 [20], GRUs offered a simplified yet effective variant of LSTM-
style gating mechanisms for handling sequential data. [21]

22 petej@NTNU: sequence models for anomaly detection

4.2.4 Transformer Models (2017-)

The Transformer model, proposed by Vaswani et al. in 2017 [22], was a break-
through that marked a shift away from recurrence-based architectures like RNNs.
They introduced a new type of attention, called self-attention mechanisms, which
allowed the model to learn the relationships between all words in an input se-
quence. This lead to a significant increase in accuracy of NLP tasks such as ma-
chine translation. [23]

The success of Transformers lead to pre-trained models, which are model that
are trained on a large text corpus, then fine-tuned for a specific task. Examples of
such models are OpenAl’s GPT (Generative Pretrained Transformer) and Google’s
BERT (Bidirectional Encoder Representations from Transformers). These models
have shown to improve state-of-the-art methods over a wide range of tasks. [14]

4.3 Encoding Techniques in Natural Language Processing

Encoding techniques in machine learning are used to convert raw data into a
format that can be interpreted by machine learning algorithms. There are several
way to convert the raw data into numbers, some common encoding techniques
used in machine learning are explained here.

4.3.1 One-Hot Encoding

One-hot encoding is a technique where each word in the vocabulary is represented
as a binary vector with the same dimension as the size of the vocabulary. The
vector consists of zeros, except at the index that corresponds to the specific word,
which is marked as one. While straightforward and computationally efficient, one-
hot encoding falls short in capturing any semantic relationships between words,
and its high dimensionality can pose challenges with large vocabularies [24, 25].

4.3.2 Label (or Index) Encoding

This is a simple and common approach where each unique category value is as-
signed an integer value. For example, red could be 1, blue 2, and green 3. This
method is straightforward but can lead to the algorithm mistakenly interpreting
the indexes as a scalar, thereby assuming a numerical difference between the cat-
egories that does not exist [24].

4.3.3 Count Vectorization (Bag of Words)

Count Vectorization, also known as Bag of Words (BoW), represents a vector with
a count for every token present in the document or text. It disregards the order
of words, thus treating the document as a ’bag’ of words. Although it’s computa-
tionally efficient and easy to understand, BoW completely disregards the semantic
relationships between words and the context of words in the document. [25, 26]

Chapter 4: Background 23

4.3.4 TF-IDF (Term Frequency-Inverse Document Frequency)

TF-IDF is an enhancement over simple count-based methods, quantifying the im-
portance of a word in a specific document relative to its frequency in the entire
corpus. This approach assigns higher weigh to words that occur frequently in a
one document but are less frequent in the entire, and vice versa. The idea is to
weigh important words or tokens more. Despite its advantages, TF-IDF still does
not capture semantic relationships between words [24-26].

4.3.5 Word2Vec

Word2Vec is a popular word embeddings technique that represents words as vec-
tors in a continuous vector space. Unlike the above methods, Word2Vec captures
the semantic relationships between words by placing semantically similar words
close to each other in the vector space. In order to to this, Word2Vec employs a
shallow neural network, using either of two methods:

Continuous Bag of Words (CBOW): This model predicts a target word given its
context, as in surrounding words. The context is represented as the bag of words
for simplicity, hence disregarding the order of words.

Skip-gram: This model does the opposite, it predicts the context words from
a target word. For each context word, it generates skip-gram pairs between it and
the target word.

The neural network is trained on these tasks usually using a large corpus of
text. Once trained, it is the actual weights of the hidden layer of the neural network
that serve as the word vectors, constructing what’s called an embedding matrix.

The main purpose of Word2Vec is to capture the semantic meaning of words
in a compact representation. However, it is not without its drawbacks. [24, 25,
27]

Transformer Encoders

Transformers, introduced in the paper "Attention is All You Need" by Vaswani et
al. [22], primarily consist of an encoder and a decoder. However, we’ll focus on
the encoder part, which is applied by popular models such as for BERT[28].

A Transformer encoder processes the input data (such as a sentence in a nat-
ural language processing task) all at once rather than sequentially, which can help
with efficiency and long-range dependencies [29]. Each encoder consists of a stack
of identical layers. Each layer has two main components: Self-attention layer (or
multi-head attention layer): This layer computes an attention score for each word
in the input with respect to every other word. This allows the model to consider
other words in the sentence as it encodes a particular word. Feed-forward neural
network: After the attention scores are used to compute a weighted representation
of the input, this is passed through a feed-forward neural network for further pro-
cessing. These components are connected with normalization and residual con-
nections, which help with in training deep networks.

24 petej @NTNU: sequence models for anomaly detection

A A

8 3 £ o o}

T £8 -8 « % E_E ¥

<BOS> -
where
do
|
come
?
who

am
|

me

?
<EOS>

Figure 4.1: Self Attention Weights [30]

4.4 Process Trees

4.4.1 Process Create Event

Windows Event ID 4688 is a security event that tracks when a new process is cre-
ated, and is generated by the operating system’s auditing mechanism. The event
provides information about the newly created process, the user account respons-
ible for creating it, and other details.

Event ID 4688 includes the following information: Security ID (SID): A unique
identifier of the user account that initiated the process creation. Account Name:
The user account name associated with the Security ID. Account Domain: The do-
main the user account is a part of. Logon ID: A semi-unique (unique between
reboots) identifier for the logon session. New Process ID (PID): A semi-unique
(unique between reboots) identifier for the newly created process. New Process
Name: The full path to the executable file associated with the new process. Token
Elevation Type: Indicates the elevation level of the user’s token (e.g., full admin-
istrative rights or limited user rights). Mandatory Label: The integrity level of the
process, which is determined from the user integrity level and the file integrity
level of the executable. Creator Process ID: The identifier of the parent process
that initiated the creation of the new process. Creator Process Name: The full path
to the executable file associated with the creator process.

[31][32]

Sysmon (System Monitor) is a Windows system service that monitors and logs
system activity to the Windows event log. It provides more detailed information
about process creation events compared to the native Windows Event ID 4688.
Following are some additional fields that are included in a Sysmon Event ID 1:
ProcessGuid: A globally unique identifier (GUID) for the process making event
correlation easier. ParentProcessGuid: The GUID of the parent process that cre-
ated the new process. CommandLine: The full command line used to initiate the

Chapter 4: Background 25

A new process has been created.

Creator Subject:
Security ID: SYSTEM
Account Name: -
Account Domain: -
Logon ID: Ox3E7

Target Subject:
Security ID: NULL SID
Account Name: -
Account Domain: -
Logon ID: 0x0

Process Information:

New Process ID: Ox1led

New Process Name: C:\Windows\System32\services.exe

Token Elevation Type: TokenElevationTypeDefault (1)

Mandatory Label: Mandatory Label\System Mandatory Level
Creator Process ID: 0x394

Creator Process Name: C:\Windows\System32\wininit.exe

Process Command Line:

Code listing 4.1: EventID 4688

process, including arguments and parameters. LogonGuid: GUID of logon session
associated with the event. Hashes: A set of cryptographic hashes (e.g., MD5, SHA1,
SHA256, IMPHASH) for the process’s executable file. [33] [34]

4.4.2 Process Tree

In operating systems, processes can spawn other processes, which in turn can
spawn even more processes, forming a hierarchical structure. A process tree visu-
alizes these relationships, with the root node representing the initial process and
child nodes representing the descendant processes. A process chain represents a
specific path in this tree, showing how a series of processes are related through
parent-child relationships. A process chain, in this context, refers to a sequence
of related processes in a process tree, where each process in the chain is an an-
cestor of the next process. In other words, it is a series of parent-child relationships
between processes that originate from a single starting process, extending down
to the leaf processes in the process tree.

26

petef @NTNU: sequence models for anomaly detection

explorer.exe

cmd.exe outlook.exe
[: |
install.msi powershell.exe
powershell.exe cmd.exe
L wget.exe

Figure 4.2: An example of a process tree, with one process chain in darker blue
[35]

Chapter 5

Methodology

5.1 Introduction

The purpose of this methodology chapter is to outline the systematic approach
employed to address the research objectives of this study. By providing a detailed
description of the methodology we aim to ensure transparency and reliability in
our research process. This chapter serves as a roadmap for readers, enabling them
to understand the steps taken from start to end.

The methodology chapter is organized into five key sections. Firstly, the re-
search design section explains the overall approach of the study, highlighting the
mixed-method nature that combines both quantitative and qualitative method-
ologies. Following this, the literature review section describes the examination
of existing research, aiming to identify relevant ML techniques and potential re-
search gaps. The subsequent section focuses on model selection, where the most
promising ML techniques for evaluation within the context of the study are chosen.
Following is the dataset selection section which outlines the criteria and process
used to identify the most suitable dataset for the study. The evaluation section
explains the steps involved in assessing the selected models’ performance and
drawing meaningful conclusions. Lastly we reflect on ethical considerations.

5.2 Research Design

The present study adopts a mixed-method approach, combining both quantitat-
ive and qualitative research techniques. Focused on Intrusion Detection Systems
(IDS) and machine learning methods, the design is primarily quantitative given
the numeral metrics that can be applied to the analysis of machine learning meth-
ods. The IDS models are evaluated based on metrics such as loss and accuracy
using labeled data, allowing us to make comparative judgments. Alongside this
quantitative aspect, we also incorporate a literature review component, which em-
ploys a more qualitative methodology. Here, studies are evaluated using a com-
bination of numerical and non-numerical metrics to assess their relevance and

27

28 petej@NTNU: sequence models for anomaly detection

effectiveness.

Our primary objective is to explore the applicability of machine learning (ML)
techniques to process sequences in a Host-based Intrusion Detection System (HIDS).
To achieve this, we have crafted a research design encompassing the following
stages:

1. Literature Review: This initial stage involves a comprehensive examination
of existing literature to discern ML techniques that have been applied to
HIDS. Here, we also aim to identify any gaps in the current body of research,
thereby highlighting areas of potential exploration.

2. Model Selection: Following the literature review, we will select the most
promising ML techniques for evaluation within a HIDS context. These se-
lections could either be established methods that have proven their efficacy
or promising areas of exploration unveiled by the identified gaps in the lit-
erature.

3. Dataset Selection: From the literature review, we will identify and select
the most suited dataset based on some critera outlined below.

The quantitative component of our study follows a standard approach com-
prising the steps below:

1. Data Collection: The initial stage involves gathering relevant data to serve
as the basis for our models.

2. Data Preprocessing: The collected data is processed to make it suitable
for use by the models. This involves tasks such as handling missing data,
normalization, and encoding categorical variables.

3. Feature Selection and Engineering: We identify the most relevant features
for our models and engineer encodings to optimize performance.

4. Model Training: Our chosen models are trained using preprocessed and
feature-engineered data.

5. Model Validation and Evaluation: Our trained models are then tested on
unseen data, using suitable metrics to evaluate their performance.

6. Results Interpretation: Finally, we draw meaningful conclusions from the
evaluation results.

The research design outlined above aligns with our research question, as it
systematically enables the exploration of the utilization of ML techniques in IDS,
more specifically, in HIDS. It further allows for a comparison between different
models and the current state-of-the-art, illuminating the potential advantages and
shortcomings of each.

In summary, this research design facilitates a comprehensive understanding of
the topic through a thorough literature review and quantitative analysis. Its struc-
ture supports the identification and exploration of gaps in the literature, enabling
us to contribute to the academic conversation in a meaningful and insightful way.

Chapter 5: Methodology 29

5.3 Literature Review

To better comprehend the current landscape of machine learning methods em-
ployed in HIDS, a literature review was done. The goal for the review was to
identify, evaluate and synthesize the most relevant academic papers and other
sources. The methodology comprised of several phases:

Identification of Sources. We started by searching the electronic databases Google
Scholar, Oria (NTNU Universitetsbiblioteket, Norske fagbibliotek), IEEE Xplore
and ACM Digital Library, using keywords relevant to our topic. On key papers, we
also did a manual two-way search on both references from the paper and articles
that cite this paper. This was done to uncover additional sources that might not
have appeared in our initial search.

Inclusion and Exclusion Criteria. In order to filter out non-relevant sources, we
defined criteria to decide which sources to include or exclude. The first criteria
was relevance to our research questions, which was assessed by first pass screen-
ing of titles and abstracts. The age of the publication is important for finding
contemporary articles, and the cutoff was set to 2010. The credibility of the paper
is indicated by the publisher and where it is published, and whether it is peer-
reviewed. A reputable academic journal or conference proceedings, published by
a reputable association gives higher credibility.

Evaluation. We evaluated the source’s methodological quality to ensure that
we relied on sound research. We considered the research design, data collection
and analysis methods, and the overall coherence of the paper, especially the dis-
cussions. This is assessed by second pass screening of the full text.

Synthesis. Lastly, we synthesized our findings to identify common themes, con-
trasts, and gaps in the existing literature. This is done to build an understanding
of the state of the art and how our research can contribute.

5.4 Model Selection

Based on the literature findings, we narrowed down our selection to a few prom-
ising ML techniques for further evaluation. These techniques must have either
shown promise in HIDS applications, or represent promising new directions.

The selected models will be subject to evaluation in order to determine their
applicability and effectiveness in the context of HIDS. We will conduct a compar-
ative analysis between the selected models, as well as against the state-of-the-art
models in the field.

Our goal in this model selection phase is not only to identify the best per-
forming ML techniques for HIDS but also to contribute to filling the gaps in the
literature. This dual objective ensures our research provides valuable insights into
the current state of IDS and ML intersection and offers novel perspectives for fu-
ture exploration.

30 petej@NTNU: sequence models for anomaly detection

5.5 Dataset Selection

This section describes the process to select an appropriate dataset for our research.
We examined several potential datasets identified in our literature review, assess-
ing each one based on some criteria. These criteria include size, features, data
quality, and the presence of labeled data.

Size. The performance of machine learning models can be heavily influenced
by the size of the dataset they're trained on. As a rule of thumb, if there’s not
enough training data, the model’s predictions won’t be accurate. If the model has
too many constraints, it won't fit the limited training data well, called underfit-
ing. Conversely, a model with too few constraints may overfit the training data,
causing it to perform poorly as well. Furthermore, if there’s insufficient test data,
the model’s performance estimation could be overly positive and fluctuate signi-
ficantly. [36] We therefore prioritized datasets of considerable size.

Features. We examined the features present in each dataset. The dataset must
at a bare minimum include features that makes it possible to construct process
chains, which are the fields ProcessID (PID) and Parent-PID (PPID). Other fea-
tures that are relevant to our research and will enrichen the model training is also
weighted.

Quality and Reliability. We looked for datasets with minimal missing or erro-
neous data, which could potentially skew our results or make extensive data clean-
ing necessary. Further, we looked for a data collection process that was systematic
and unbiased, ensuring the reliability of the dataset. Real-world data would be
preferable, as it would train the model to a realistic scenario. However, a syn-
thetic dataset can do fine.

Labels. The dataset must include both benign and malicious data, as this is
necessary for training and evaluation of the models. Even though models can be
trained exclusively on normal data, malicious data is needed for doing proper
evaluation of the model, ensuring it can discriminate between that and benign
data. How well-made the labels are can vary greatly between dataset, and since
bad or naive labelling of the data can lead to inaccurately training or evaluation,
we ensure to weight how good the labels are.

Using these criteria, we will select a dataset that best met these conditions,
providing a suitable foundation for our project. The specifics of the chosen dataset,
including its source, size, features, and labels, will be described in more detail in
later.

5.6 Evaluation

5.6.1 Metrics

Multiple quantitative metrics are used to evaluate an IDS and a machine learning
model. In order to best describe and evaluate models against each other, several
metrics are used [3]. A confusion matrix is a table with prediction results on the

Chapter 5: Methodology 31

columns and ground truth on the rows, enumerating the possible classifications.
For binary classification, this will be a 2*2 matrix [4], as shown in the table below

Table 5.1: Confusion Matrix

Classified Positive Classified Negative
Actual Positive TP FN
Actual Negative FP TN

The four categories are: True Positive (TP): a sample correctly classified as
positive, True Negative (TN): a sample correctly classified as negative, False Pos-
itive (FP): a sample wrongly classified as positive, False Negative (FN): a sample
wrongly classified as negative. These categories are used to calculate the metrics.

Accuracy: Accuracy is the fraction of correct predictions our model made over
the total number of predictions. It is most useful when target classes are well
balanced.

Number of Correct Predictions _ TP+ TN
Total Number of Predictions = TP + TN + FP + FN

Accuracy =

Precision: Precision, also known as positive predictive value, is the fraction of
correctly marked positives among all the predicted positives, representing confid-

ence in a TP
TP

TP+ FpP
True Positive Rate (TPR), Recall or Sensitivity: TPR, also known as Recall or

Sensitivity, is the fraction of correctly marked positives among all the actual posit-
ives. This is an important metric in an IDS as it reflects the ability to detect attacks.

Precision =

TP

Recall = ———
TP+ FN

False Negative Rate (FNR): FNR is the ratio of the number of false negatives
(predicted negatives that are actually positive) to the total number of actual pos-
itives.

FN
FNR = ——
TP+FN

False Positive Rate (FPR): FPR is the ratio of the number of false positives (pre-
dicted positives that are actually negative) to the total number of actual negatives.

Fp

FPR= ———
FP+TN

32 petej@NTNU: sequence models for anomaly detection

True Negative Rate (TNR): TNR, also known as Specificity, is the ratio of the
number of true negatives (predicted negatives that are actually negative) to the
total number of actual negatives.

TN

TNR/Speciﬁcity = m

F1-score: The Fl-score is the harmonic mean of precision and recall, giving
both metrics equal weight. It ranges from 0 to 1, with 1 being perfect precision
and recall, and it is a good metric to use when the positive class is the minority or
when false positives and false negatives are equally important.

Precision - Recall
Fl-score=2-

Precision + Recall

Receiver Operating Characteristic (ROC): The ROC curve is a graphical rep-
resentation of the contrast between true positive rates (TPR) and false positive
rates (FPR) at various thresholds. It can be used to evaluate the trade-off between
sensitivity (or TPR) and specificity (1 — FPR).

AUC: Area Under the ROC Curve: AUC represents the probability that a random
positive example will be ranked more highly than a random negative example.
AUC ranges from 0 to 1. A model whose predictions are 100% wrong has an AUC
of 0.0, one whose predictions are 100% correct has an AUC of 1.0.

Precision-Recall (PR) curve: The precision-recall curve is a graphical repres-
entation of the trade-off between precision and recall for different classification
thresholds in a binary classification problem. PR curves are particularly useful
when dealing with imbalanced datasets, where the positive class is much less fre-
quent than the negative class.

Area Under the Precision-Recall Curve (AUC-PR) or Average Precision (AP): is
a metric that quantifies the overall performance of a binary classification model
based on the precision-recall trade-off. It represents the average precision across
all possible recall levels.. A model with perfect precision and recall would achieve
an AUC-PR value of 1. In the context of imbalanced datasets, AUC-PR can often
provide more informative performance summaries than traditional metrics like
accuracy or AUC-ROC.

Matthews Correlation Coefficient (MCC): is a metric measure the quality of bin-
ary classifications. It takes into account all four aspects of the confusion matrix and
is generally regarded as a balanced measure which can be used even if the classes
are of very different sizes. A coefficient of +1 represents a perfect prediction, 0 no
better than random prediction, and -1 indicates total disagreement.

5.6.2 Process

The first step in the evaluation process involves determining a threshold value
based on the model’s loss scores on the validation dataset. The validation dataset,
which is a subset of the data that the model has not been trained on, provides

Chapter 5: Methodology 33

a reasonable estimate of how the model might perform on unseen data. The
threshold is set as a certain percentile of these validation losses. This percentile-
based thresholding is an effective way to balance performance metrics as it is
granular, and based on percentage rather than some fixed values.

The actual evaluation is based on the test datasets. We use two distinct test
datasets - one comprising benign sequences and the other, malicious sequences.
It’s crucial to note that the model has never encountered these datasets before,
ensuring an unbiased evaluation on new data.

The model’s loss scores from the benign and malicious test datasets are then
used to evaluate its performance. This evaluation is carried out by employing the
set of metrics that we’ve previously presented in . This collection of metrics offers
a comprehensive view of the model’s performance.

5.7 Ethical Considerations

It is crucial to address the ethical considerations associated with the research.
One important aspect to consider is data privacy and protection. As researchers,
we must ensure that any personal or sensitive information is handled with care
and in compliance with relevant data protection regulations.

To mitigate potential privacy concerns, the use of synthetic datasets can be
employed. Synthetic datasets are artificially generated and do not include real
data from real individuals. By using synthetic data, we eliminate the risk of ex-
posing personal information or violating privacy rights. However, it is important
to note that even when using synthetic datasets, it is necessary to adhere to eth-
ical guidelines and ensure that the generated data does not inadvertently reveal
private or sensitive information.

Chapter 6

Literature Review

6.1 Datasets

Available datasets with process parent-child relationships. From various sources,
including Windows Security Event logs and Sysmon logs. There are many datasets
that can be considered outdated as of today. The following dataset are the ones
consider according to our criteria.

6.1.1 Splunk Attack Data

Splunk Attack Range is a detection development platform developed by Splunk.
A user can build a small lab infrastructure, and use the range to perform attack
simulations with engines such as Atomic Red Team or Caldera to simulate real at-
tack data. The deployment consists of several Windows systems, a Kali machine,
some Splunk servers and more. Several log sources are collected from the ma-
chines, including Windows Event Logs, Sysmon Logs and Sysmon for Linux Logs
[37]. A repository of logs from the range from different contributors has been cre-
ated, called Attack Data [38]. The datasets created by simulating atomic test are
labeled with MITRE ATT&CK technique used, they are freely available, and can
be downloaded from the Github repo. The files totals to above 9Gb.

6.1.2 The Security Datasets project

The Security Datasets project is an open-source project, that collects benign and
malicious dataset from different systems. The project is open for everyone to con-
tribute to the repository. The datasets are produced by running atomic red team
test in a virtual environment, and labeled according to the technique used. The
repository includes host and network logs from Windows, Linux and AWS. As of
now, there are 91 datasets for Windows, 3 for Linux and 2 for AWS [39].

35

36 petej@NTNU: sequence models for anomaly detection

6.1.3 Operationally Transparent Cyber (OpTC) Data Release

Operationally Transparent Cyber (OpTC) was a pilot study with the objective of
determining if DARPA Transparent Computing program technologies could scale
up to a thousand machines while maintaining detection performance. A third-
party instance acted as a red team and test coordinator. The OpTC system archi-
tecture was based on one used in TC program evaluations, and was evaluated in
a well instrumented facility. Virtual clients were programmed to complete basics
tasks to mimic generic daily user activity. Every client ran an endpoint sensor that
sends real time system-level data to a translator server. The translator compiles co-
related events into aggregate messages, and undergo additional processing ending
up in a format called eCAR. This evaluation underwent for two weeks, with the
first period used for benign record generation, and the last three days for a red
team operation. The clients ran Windows, and data was collected from 500 cli-
ents for the evaluation period. The data collection totals up to approximately a
terabyte in a compressed JSON compatible format. A red team report contains
the ground truth from the red team operation to assist in evaluation. The dataset
is divided into ecar-bro containing flow-start event, ecar containg endpoint data,
and bro containing data from a bro sensor. Data for the benign period and for the
evaluation period are separated. The eCAR format builds on MITRE’s CAR, and
include objects such as PID, PPID, image path, and command line [40].

6.2 System Call Based Methods

System calls provides the interface for which a process can request services from
the operating system. The services of the operating system reside in the kernel
space, and are delivered through an API by the use of systems calls. This is the
only entry point for the kernel space [41]. Modern operating systems range from
having a couple of hundred different systems calls to a couple of thousand. For
example, Linux has listed above 300 different in its manual page [42], while Win-
dows has almost 2000 [43]. Since system calls are pure in the sense that they are
not interpreted, filtered or processed in a way that can obfuscate the event, they
are a popular choice for HIDS Creech and Hu [44]. Whenever a process runs,
it will produce a sequence of system call called a trace. Often, the trace for a
process is collected in a given time frame. Because of the sequential nature of sys-
tem call traces, natural language processing techniques are suited for processing
them. Taking it further, Creech and Hu [44] imagined system call as letters, a
string of connected systems calls thereby a word, and a combination of these as
phrases. The most popular methods are n-gram, sliding window algorithm, bag-of-
words, term frequency-inverse document frequency (TF-IDF) and Markov models
Bridges et al. [6]Liu et al. [5]. The definition of n-gram in this context is a con-
tinuous sequence of n system calls from a system call trace within a specified time
frame. With the sliding window algorithm, a window of size n passes along a com-
plete system call trace to produce a number of n-grams. It is also possible to use

Chapter 6: Literature Review 37

multiple-length windows to produce multiple length n-grams, as done by Creech
and Hu [44] following Forrest et al. [45].

Liu et al. [5] surveyed the usage of various types of NN in HIDS research,
including multilayer perceptron, self-organizing maps NN, radial basis function-
based NN, extreme learning machine, and self-structuring confabulation network.
The survey also states that deep learning has proven to be good at finding deep
features within big data and therefore is a promising technique for HIDS. However,
it points out the disadvantage that training a deep NN is time consuming and
requires strong hardware.

Creech and Hu [44] used the sliding window algorithm to produce the train-
ing data from the KDD98 and ADFA-LD datasets, with both validation and attack
data. They used this data to train an Extreme Learning Machine (ELM), a training
scheme for a feedforward neural network with a single hidden layer Huang et al.
[46]. The design was implemented on every host and required a large amount of
computational power, taking up weeks to train. However, the classification part
was fast, and the produced accuracy results were good.

Anandapriya and Lakshmanan [47] also conducted research on anomaly-based
HIDS with ELM. Several works [3][48][49][4] have popularized LSTM and GRU
for HIDS.

Tong et al. [50] suggested a hybrid model of RBF NN combined with an Elman
NN for both misuse detection and anomaly detection. The RBF NN was used for
real-time classification and the Elman NN was used to handle the memory for pre-
vious events. The DARPA Intrusion Detection Evaluation Data Sets of 1999 was
used for training and testing of the network Cunningham et al. [51]. The tests
resulted in a 93% detection rate and and 2.6% FAR for anomaly detection, and
95.3% detection rate and 1.4% FAR for misuse detection. However, the classific-
ation itself is done by the non-recurrent RBF NN, and therefore does not look for
the sequential features we are interested in.

In Kim et al. [52],proposes an architecture with two parts, with the first being
an LSTM NN doing language modeling of system calls and the second part doing
anomaly prediction based on ensemble of thresholding classifiers derived from the
first part. The goal of the ensemble method is to build a "strong normal" model,
i.e. a sequence of system calls which is highly likely normal, and thereby reducing
false positives. This is done by composing several classifiers into one. Evaluation
with the KDD98 and ADFA-LD dataset yielded a 100% detection rate with a 2,3%
FAR and AUC of 0.994, and a 100% detection rate with 50-60% FAR or AUC of
0.928, respectively.

Chawla et al. suggests a combined CNN/RNN architecture for anomaly based
HIDS Chawla et al. [53]. The first part of the architecture consists of an embedding
layer and several CNNs that works as a pre-processing step, making the system call
sequences smaller resulting in faster training. As this is 1D data, the convolution
action done by the CNN consists of filters sliding across sequences to extract a
feature map for local sub-sequences. By adjusting the number of stacked CNNs
one can control the effect of this part. The second part consists of a RNN with

38 petej@NTNU: sequence models for anomaly detection

GRU units and a Time Distributed Layer. The authors built five independent model
based on this arcitecture, with different hyperparameters. The NN is trained on
normal sequences from the ADFA-LD dataset to produce a probability distribution
for the next call in a sequence, similar to a language model. The authors were able
to achieve a detection rate of 100% with a FAR of 60%, or AUC of 0.81. Compared
to [52] the results were not as good, but with faster training times.

6.3 Process Tree Based Methods

Processes on a host has parent-child relationships, and will form process trees.
These trees has "paths" or "chains". Some works explore treating the tree as a
graph and use methods like link prediction, gradient boosted trees, and autoen-
coder to detect malicious process creations. PROBE is a Host based intrusion pre-
vention system (HIPS) proposed by in Kwon et al. [54]. It uses the parent-child
relationships of processes to detect and block abnormal behaviour. The mechan-
isms of PROBE has three parts; Tree Builder for constructing the process trees, Path
checker that inspect the process relationships, and Process controller that blocks
abnormal processes. Tree Builder uses the identifiers PID (ProcessID) and PPID
(ParentProcessID) of a process to make the process tree for running processes on
a host. Each node in the tree is a process and it has edges to its parent and child
processes, if any. The Path checker checks if something abnormal occurs based on
information from operating system system objects—attributes, modification time,
and more. Advantages of this method is that it lightweight and does not require
much computing power. However, disadvantages of this method is that it relies on
manually defined rules, and might not scale very well when the amount of data
grow large.

In Read [55], Read proposes an anomaly based HIDS that treats process trees
as graphs and uses unsupervised link prediction to find anomalies.

In Patel [35] the researcher presents an anomaly detection method focused on
analyzing process creation chains. The hypothesis being that rare process creation
chains might indicate malicious activity. To recognize similarities between various
file paths, the researchers treated the paths as a natural language processing prob-
lem. They collected about 22 million log entries and used tokenization to obtain
"sentences" (file paths) and "words" (directory and file names). They encoded the
directory and file names by training a word2vec-style model (FastText) [56], on
the tokenized data, which generated word vectors capturing similarities between
related file and directory names. They used the DBSCAN algorithm to cluster word
vectors by cosine distance and identified common patterns in file and directory
naming. They normalized and reduced the initial dataset by generating regular
expressions for the clusters. Then they trained the FastText model using the new,
normalized paths. To distinguish anomalous process creation chains from benign
ones, the researchers used an autoencoder. They hypothesized that the model’s
reconstruction error would be lower for common process chains than for rare
ones. They trained a bidirectional RNN autoencoder on process chain sequences

Chapter 6: Literature Review 39

using the vectors obtained from the previous steps. After training, they tested
the autoencoder’s ability to detect anomalous process chains by measuring its re-
construction error. They set a threshold value for the reconstruction error, above
which a process chain can be considered anomalous.

In Filar and French [57] the researcher present ProblemChild, a graph-based
analytic framework designed to identify anomalous parent-child process chains.
They focuses on process events from Microsoft ETW data. A directed acyclic graph
is constructed from the logs, where nodes represent objects (e.g. process names),
edges represent actions taken by objects (e.g. process creation, termination), and
metadata describes nodes or edges (e.g., process ID, command line arguments,
timestamps). The following features are used to generate a weight for a given
edge between nodes (u, v) in the graph: t between process creation and termina-
tion, one-hot encoding of u.child and v.parent (100 processes), process-signature,
-elevation and -integrity information, if process is running as system, parent-child
user mismatch, entropy of process name and of command line, and lastly TF-IDF
(n-grams) of the command line arguments. These features form vector that is
passed to XGBoost Chen and Guestrin [58], a gradient boosted trees model, to as-
sign edge weights based on the maliciousness of a given parent-child pair. Louvain
community detection is then applied to segment the weighted graph, providing a
structure for identifying rare process chains and group attacks. ProblemChild was
trained on multiple datasets, both malicious and benign, to establish a normal
baseline. The model was then tested on real-world and simulated data, with the
goal of determining an ideal threshold for identifying malicious communities.

6.4 System Log Based

DeepLog Du et al. [59] is a technique that views each parameter value vector
sequence in a log key as a separate time series, employing a Long Short-Term
Memory (LSTM) based approach to construct individual LSTM networks for each
unique log key value’s parameter value vector sequence. The goal of the LSTM
model’s training process is to minimize the error between the prediction and the
observed parameter value vector using mean square loss. Anomalies are detected
by comparing the predicted and observed parameter value vectors using mean
square error (MSE). This method is particularly effective in detecting a variety of
performance anomalies, as parameter values in log messages often capture crucial
system state metrics.

Building on the concept of using machine learning for anomaly detection, Log-
BERT Guo et al. [60] is a framework designed to detect anomalies in log sequences.
Inspired by BERT, a widely used transformer model, LogBERT is trained through
self-supervised tasks to learn the patterns of normal log sequences. The authors
propose two self-supervised tasks for training LogBERT: Masked Log Key Predic-
tion (MLKP) and Volume of Hypersphere Minimization (VHM). The idea behind
anomaly detection in LogBERT is that, being trained on normal log sequences, it
can predict masked log keys with high accuracy if a test sequence is normal. If the

40 petej @NTNU: sequence models for anomaly detection

true log key is not in the predicted set, the key is considered anomalous.

In LogFiT, Almodovar et al. [61] applies recent developments in Deep Learn-
ing and Natural Language Processing (NLP) to detect anomalies in system logs.
It relies on "foundation models," pre-trained on large, multi-modal datasets. The
foundation model used is Longformer, an advanced version of the RoBERTa model,
which surpasses BERT. LogFiT learns from normal system logs to understand their
linguistic patterns and properties. During training, it predicts masked tokens in
these logs, minimising the difference between its predictions and actual tokens us-
ing cross-entropy loss. For training, LogFiT uses a self-supervised approach, using
masked token prediction. In the application phase, LogFiT uses its understanding
of normal logs to identify anomalies.

For these methods, each method uses different preprocessing, training, and
optimization techniques to detect anomalies in system logs. While DeepLog uses
LSTM networks and a time-series approach, LogBERT and LogFiT leverage Transformer-
based models with various training and optimization strategies to understand log
sequences and identify anomalies.

6.5 Summary

The literature review provides an overview on the evolution and application of
sequence models from RNNs to LSTMs, and more recently, to Transformer models
in Host-based Intrusion Detection Systems (HIDS). These models have been em-
ployed extensively in System Call Based methods, and have started to find their
way into System Log Based methods. Notably, the research community has made
significant strides in implementing various neural networks architectures in an-
omaly detection tasks, achieving impressive results.

The transition from traditional RNNs to LSTMs was driven by the latter’s ability
to mitigate the vanishing gradient problem, thereby facilitating the learning of
long-term dependencies in sequence data. This is particularly important for system
call sequences where an anomalous event might be better identified considering
a broader context.

Recently, the application of Transformer models is gaining attention, partic-
ularly in the context of system log analysis. Models such as BERT, LogBERT and
Longformer have shown promise in understanding the patterns in system logs for
anomaly detection. They offer an advantage in terms of their attention mechanism
that allows for parallel computation and better handling of long-range dependen-
cies, which might be a limiting factor in RNNs and LSTMs.

However, despite the advantages offered by these models, their application to
Process Tree Based methods appears to be a largely unexplored area. The current
methods for process tree analysis predominantly rely on graph-based techniques,
PID and PPID relationships, and clustering-based algorithms. As identified in the
literature, these methods might not scale well when dealing with large amounts
of data and rely heavily on manually defined rules.

Chapter 6: Literature Review 41

The proposed research aims to explore the application of Transformer models
to Process Tree Based methods. Given their proven success in sequence and log
data, Transformer models could potentially improve the efficiency and accuracy of
process tree based anomaly detection. The proposed research will be a significant
contribution to the field as it intends to bridge this gap in the current state-of-the-
art.

Moreover, the proposed research will also include a comparative study with
the existing RNN/LSTM based methods. This will provide valuable insights into
the relative performance and trade-offs between these different approaches. It
will also serve as a comprehensive reference for future studies seeking to optimize
anomaly detection methods.

In conclusion, this research proposal presents a promising direction for im-
proving HIDS. It has the potential to significantly advance the field by leveraging
state-of-the-art Transformer models in a new application domain.

6.5.1 Data Gathering Preprocessing

The most suitable dataset was identified based on the literature review. The OpTC
dataset was chosen based on the type of logs, the large size, both in numbers of cli-
ent and amounts of data, and that the data is nicely structured in a JSON format.
The dataset was then collected from the repository. The initial step involves filter-
ing out irrelevant data. In this study, we focus on Process Creation events, which
can be found in both Windows Security Event logs and Sysmon logs, or other log-
ging applications. This was done by simply filtering on two fields that correspond
to a process create event.

Chapter 7

Experiments and Results

7.1 Dataset Preprocessing

7.1.1 Obtaining OpTC

The dataset contains three folders: ecar-bro, ecar, and bro. For this project, we are
only interested in the ecar data. Benign data from the first period, 17-18 Septem-
ber, and the last period, 20-23 September, is downloaded. Evaluation data from
Day 1 is also downloaded. The total size on disk for the benign data is was around
1.6TB, and the total size for the evaluation data was 179 GB. However, the amout
of data was drastically reduced when extracting the features.

7.1.2 Extract benign and malicious process create events

The first thing that needs to be done is extracting the events we’re interested in.
These are process creation events, i.e. events where action is CREATE and object
is PROCESS.

For benign processes, we can simply collect all that are present in the dataset.
However, the dataset is not directly labeled, but rather split into days of normal
activity and days of attacks. For the dataset from the attack-days, the red team
has described and reported the process. The "ground truth" report specifies which
hosts are attacked during that day, and include the malicious agent running on
the host, malicious process IDs and IP-addresses. In order to extract the malicious
events, we filter on the attacked hosts and PIDs for the respective host. This ma-
licious data is put into its own dataset and processed in similar fashion as the
benign data. However, this dataset is only used for evaluation.

The logs are nicely structured in the JSON format, but because of the large
file size, the files need to be parsed with ijson ¢[62], an iterative JSON parser.
The files are read iteratively in “slices”, and for each slice the function appends all
process-create events to a new list. This list is then normalized and flattened, as
a flattened JSON object is easier to work with than a nested one. Some columns
need to be renamed as punctuation marks causes problems in downstream tasks.

43

44 petej @NTNU: sequence models for anomaly detection

Lastly, the objects are grouped by hostname, which is needed for building process
relationships as PIDs are unique only per host.

7.1.3 Building trees and chains

We are interested in the process parent-child relationships, but they must be con-
structed. This is done using a python library from Microsoft Threat Intelligence
called msticpy, which is for InfoSec investigation and hunting [63]. In the library,
a root process is defined as a top-level process, which only has children. A leaf
process is at the end of the tree and only has parents. Branch processes are in
between root and leaves.

Code listing 7.1: Schema for the OpTC dataset, used for msticpy

optc schema = {

"process_name": "image path",
"parent name": "parent image path",
"process _id": "pid",

"parent_id": "ppid",
"host_name_column": "hostname",
"time stamp": "timestamp",
"cmd_line": "command_line",
"logon_id": "actorID"

}

The function takes as input the process create events and their schema, which
must be adapted. Firstly, the function build process tree constructs the process tree,
from which process chains can be constructed. The function iterates over each
level of the process tree, starting from the bottom. For each level, every process
residing at this level is identified and iterated over. If a process is a leaf node, its
ancestors are retrieved using get ancestors. For every ancestor of the process, it
extracts the process name, image path, and command line, and appends these as
a list which represents the process chain.

7.1.4 Cleaning the file paths

The function takes a string as input and processes it using a series of operations:
convert the string to lowercase, remove the ’.exe’ extension if it exists, replace
spaces with underscores, and several regular expressions generalizes specific pat-
terns in the string, such as file paths, version numbers, and others. For example,
usernames are converted to “user.” Every operation is tried on the string, passing
if error occurs.

Normalization

The process paths include variables such usernames and version numbers. The
name of the user who ran the program is not of interest in this study, as it does
not carry the semantic information we are looking for. Similarly to how SIDs were
excluded in [64] and usernames normalized in [57], we chose to normalize the

Chapter 7: Experiments and Results 45

usernames. In an environment, there can be several version of the same applica-
tions running. We regard the specific version numbers as not important to the re-
lationships between the processes, on the contrary, training a model on too many
tokens could result in weak learning. So, similar to the preprocessing in [35],
we use Regex to perform manual stemming of the process paths. Stemming is a
technique to reduce words to their base. With these two techniques, we conduct
normalizing and dimensional reduction. by normalizing, the goal is to improve
performance of the models, as they should generalize and recognize pattern more
easily. By reducing the vocabulary, memory requirements are lowered and should
result in faster processing. However, its important not to overstem or understem
[65], which can lead to information loss or incomplete normalization, respectively.
Therefore, we chose to stem the version numbers down to the major version, as
this seemed like a good balance. Aslo, as handling N/A fields can be a challenge
for some functions, all N/A fields are replaced with a blank value.

7.1.5 Building the datasets

Data splitting is done so that we have a sets for different purposes. Typically, the
data in a machine learning model is divided into three subsets: the training set,
the validation set, and the test set. The training set is used to train the model,
allowing it to learn and optimize its parameters. The validation set, also known as
the cross-validation or model development set, is used to adjust learning process
parameters. It ranks the model’s accuracy and aids in model selection. The test
set evaluates the final model by comparing it with previous data sets, thus provid-
ing an assessment of the model and its algorithm. Data splitting helps prevent
data leakage, which occurs when information from the evaluation or test set un-
intentionally influences the training process. To ensure unbiased evaluation and
accurate estimation of model performance, it is crucial to keep the training, valida-
tion, and test sets independent and avoid any overlap between them. The splitting
also helps the model to generalize better to new data and not just memorize the
training data. It provides aims to prevent overfitting and gives a more accurate
measure of how the model will perform in real-world scenarios. To ensure a high
amount of training data, data sets are often split using an 80-20 or 70-30 ratio of
training to testing data. [66] There are several methods for implementing a data
split. One simple being random sampling, which is a data sampling method that
prevents bias towards various data characteristics. However, this method may lead
to uneven data distribution. In this study, an 80-10-10 split with random sampling
was chosen as the data splitting strategy.

We utilize sklearn’s train test split [67] to first shuffle the data, with the random
state value controlling the shuffling in order to have a reproducible output. Since
the funtion splits the data in two, it is applied twice. The final dataset er 80%
for training, 10% for validation and 10% for testing. All datasets are batched for
better performance.

46 petej @NTNU: sequence models for anomaly detection

7.2 Implementation

7.2.1 Environment

Our choice landed on Tensorflow [68] and Keras [69] for the construction of our
machine learning models. This choice was based on their solid documentation
and user-friendly nature, which significantly simplify the implementation process.
These libraries offer intuitive high-level APIs, making it easy to build and experi-
ment with different models, which was particularly important given our focus on
a variety of sequential architectures.

As for the execution of the code, we decided on Google Colab [70] due to sev-
eral factors. First, Google Colab provides an environment of simplicity, reducing
the need for extensive setup or configuration, thus allowing us to concentrate on
the machine learning aspects of our project. Second, Google Colab offers substan-
tial computational resources, including access to GPU processing power, which is
critical when training the models. Finally, Tensorflow, being developed by Google,
integrates seamlessly with Google Colab, which should make for a smooth work-
flow.

It should be noted that while our models are not overly complex or large in
scale. Thus, the combination of Tensorflow, Keras, and Google Colab forms an
ideal solution, providing us with the required tools and resources to successfully
implement our project without unnecessarily complex infrastructure or computa-
tional requirements.

7.2.2 Feature Extraction and Engineering
Process Path

The available features for the process create events are many, as described in
Process Create Event chapter. For this project, the full process path was chosen
as the sole feature, similar to the approach taken in (Patel et al. 2020) [35]. The
reason for this is that we mainly want to study the semantic relationship between
processes, and for that purpose the paths will suffice. Using only process names
would be overly simplistic, as malicious programs could easily change their names
to avoid detection (Patel et al. 2020) [35]. By considering the full path, we also
take into account the directory where the executable file is located, allowing us
to distinguish between processes run from different directories, such as system32
and temp, even if they share the same name.

Tokenization and Vectorization

A relatively simple tokenization technique was employed to represent the input
data. Each path is treated as a single token and assigned a unique index or token
ID. Unlike a wordpiece tokenizer, which breaks words into subtokens, we chose
not to split the paths into smaller units.

Chapter 7: Experiments and Results 47

While wordpiece tokenizers have proven to be effective for natural language
processing tasks, their usefulness relies on the assumption that similar words carry
similar meanings. This assumption does not hold true for processes, as the name of
a process does not necessarily reflect its actual function. By using a straightforward
tokenization approach, we ensure that each process is treated as an individual unit
without introducing potential inaccuracies based on shared subtokens.

vectorize layer = tf.keras.layers.TextVectorization(
max_tokens=1000,

standardize="1lower’,

split="whitespace’,

output mode='int’,

output sequence length=32,

Code listing 7.2: Tokenizer

A keras.layers.TextVectorization is used for vectorization and tokenization.
The text is lowered and split on whitespaces. This layer is used to build the vocab-
ulary, which maps tokens to token-IDs, which is a technique not far from one-hot
encoding. The layer can then convert process chains to sequences of token IDs.
The sequences are also padded to handle their variable length. This is done to
ensure the model gets a consistent input. The padding token is a "0" , which is
masked or ignored by the later layers.

Embedding Techniques

In order to enhance the representation of the input text, we experimented with
word2vec embeddings instead of relying solely on index encoding. The Word2vec
vectors should capture the semantic similarities and relationships of the tokens.
We hypothesized that using word2vec embeddings would improve the perform-
ance of the model by providing richer features. We used the Gensim [56] frame-
work to generate the word2vec embeddings because it offers a fast and easy way
to create and manipulate word vectors.

model = gensim.models.Word2Vec(sentences=train_list, vector_size=8, min_count=1)
model.train(corpus iterable=train list, total examples=model.corpus count, epochs=5)

)

Code listing 7.3: Word2Vec

Code listing 7.4: w2v example for "powershell"

Vector Dimension: 8

Most Similar Tokens to 'powershell’:

[("\\device\\harddiskvolumel\\program files\\windows defender\\msmpeng’,
0.781205415725708) ,

("\\device\\harddiskvolumel\\program files (x86)\\google\\chrome\\application\\

48 petej @NTNU: sequence models for anomaly detection

chrome’,0.7426756620407104) ,
("\\device\\harddiskvolumel\\windows\\system32\\compattelrunner’,
0.731886088848114),
("\\device\\harddiskvolumel\\windows\\system32\\conhost’, 0.7241727113723755),
("\\device\\harddiskvolumel\\windows\\system32\\devicecensus’,
0.7036294937133789)]

Vector representation of ’'powershell’:

array([-1.4884729 , -1.7543703 , -1.7553613 , 0.30112946, -2.1499376 ,

-2.0736372 , 1.7052546 , -2.9479523], dtype=float32)

7.2.3 The Models
RNN and LSTM

We employed two types of Recurrent Neural Networks (RNNs) - SimpleRNN and
Long Short-Term Memory (LSTM) - to carry out sequence analysis for the task of
next-token prediction. This task is used for anomaly detection in a binary class,
using the loss as an anomaly score. Given that our sequences are typically short,
ranging from 2 to 16 in length, and that our dataset consists of 1.6 million such
sequences, RNNs are suitable due to their ability to handle sequential data and
capture temporal infromation.

Both models are implemented using Keras’ Sequential API [71], which allows
for linear stacking of layers, making it highly suitable for these relatively straight-
forward model architectures.

SimpleRNN Model The architecture of the SimpleRNN model begins with an
Embedding layer. This layer transforms the integer-encoded vocabulary into fixed-
size dense vectors. The input dimension is set to the size of the vocabulary, while
the output dimension is determined by a tunable hyperparameter which ranges
from 8 to 64 in steps of 8. The 'mask _zero’ parameter is set to True, allowing the
model to handle sequences of variable length.

Following the Embedding layer, we introduce a SimpleRNN layer. The number
of units, is a hyperparameter that varies between 8 and 64 in steps of 8. We also
apply a dropout rate of 0.5 to prevent overfitting, which aids in model generaliz-
ation.

The last layer is a Dense layer that uses a softmax activation function. The
number of units equals the size of the vocabulary, making the output a probability
distribution across all potential next tokens.

Model summary after hyperparameter tuning:

Layer (type) Output Shape Param #
embedding (Embedding) (None, 32, 32) 5824
simple rnn (SimpleRNN) (None, 64) 4160

dense (Dense) (None, 182) 11830

Chapter 7: Experiments and Results 49

Total params: 21,814
Trainable params: 21,814
Non-trainable params: 0

LSTM Model The LSTM model also begins with an Embedding layer and ends
with a Dense layer identical to the SimpleRNN model.

The middle layer consists of an LSTM unit. LSTMs, a variant of RNN, are par-
ticularly for learning long-term dependencies, that also might be a beneficial prop-
erty even in the context of relatively short sequences. The number of LSTM units,
is a tunable hyperparameter that ranges from 8 to 64 in steps of 8. Again, a dro-
pout rate of 0.5 is applied.

The tunable hyperparameters allow for model optimization based on the char-
acteristics of the specific task and dataset, enabling the models to balance model
complexity and computational efficiency, a crucial consideration given the sizable
dataset of 1.6 million sequences.

Model summary after hyperparameter tuning:

Layer (type) Output Shape Param #
embedding (Embedding) (None, 32, 40) 7280
lstm (LSTM) (None, 128) 53760
dense (Dense) (None, 182) 23478

Total params: 84,518
Trainable params: 84,518
Non-trainable params: 0

Transformer

First a set of hyperparameters are define, which are used in the layers. These
include the number of transformer layers, the dimensions of the model, the di-
mension of the intermediate layer in the transformer, and the number of atten-
tion heads in the multi-head attention mechanism of the transformer. These para-
meters are subject to optimization via hyperparameter tuning, with appropriate
ranges and steps defined for each. Dropout rate is fixed at 0.5 to prevent overfit-
ting. A norm epsilon value is also defined for the layer normalization process.

We start by defining an input tensor with shape set to 32. This allows for a
flexible handling of our sequences which usually range from 2-10 tokens, but can
be padded up to a length of 32.

The first layer is a TokenAndPositionEmbedding layer. This layer first embeds
the token ids into continuous vectors and then adds positional encoding to the

50 petej@NTNU: sequence models for anomaly detection

embeddings, providing positional context to the model. The layer also apply a
mask to ignore padding tokens.

Following the embedding layer, we apply layer normalization and dropout
to regularize the model and prevent overfitting. The epsilon value in the layer
normalization is a hyperparameter.

Subsequently, we add a number of transformer encoder layers as defined by
a hyperparameter. Each encoder layer includes multi-head self-attention and a
feed-forward network, both of which have residual connections and layer normal-
ization. The dimensionality of the feedforward layer is a hyperparameter, and an-
other hyperparameter defines the number of attention heads in the self-attention
mechanism.

This completes the encoder which takes token ids as input and returns the
transformer-encoded tokens.

Finally, we attach a masked language model head on top of the encoder model.
This model receives the encoded tokens and outputs predicted token probabilities
for masked positions in the sequence.

The transformer model is a suitable choice for sequence analysis due to its
ability to handle dependencies between tokens regardless of their distance in the
sequence, which is an advantage over traditional RNNs or LSTMs. Moreover, its
attention mechanism can offer insight into the relationships between tokens, po-
tentially aiding in the detection of anomalies.

Code listing 7.5: Transformer Encoder after hyperparameter tuning

Layer (type) Output Shape Param #
InputLayer [(None, 32)] 0
TokenAndPositionEmbedding (None, 32, 48) 10272
LayerNormalization (None, 32, 48) 96
Dropout (None, 32, 48) 0
TransformerEncoder x5 (None, 32, 48) 10806

Total params: 64,398
Trainable params: 64,398
Non-trainable params: 0

Code listing 7.6: Transformer model after hyperparameter tuning

Model: "model 1"

Layer (type) Output Shape Param #

input_2 (InputLayer) [(None, 32)] 0

model (Functional) (None, 32, 48) 64398

Chapter 7: Experiments and Results 51

input_3 (InputLayer) [(None, 16)] 0

masked lm head (MaskedLMHead) (None, 16, 182) 11366

Total params: 67,028
Trainable params: 67,028
Non-trainable params: 0

7.2.4 Embedding adaption

The adaption of the models to using pre-trained word2vec embeddings requires a
modification of the initial embedding layer. Instead of learning the weights during
the training process, we initialize the embedding layer with an embedding matrix,
containing the weights for the pre-trained embeddings. The ’'trainable’ parameter
is set to False, meaning that these weights are kept fixed and are not updated
during training. This is done in order to better measure the impact of using these
embeddings. The embedding matrix has shape vocabulary-size*vector-size, where
the vector size is the dimension of the embeddings. This is set to a conservative
size of 8, to be able to learn good embeddings even with little data.

To use the word2vec embeddings with the transformer, the TokenAndPositionEmbed-
ding layer had to be split up into a a token embedding layer (which uses the pre-
trained embeddings) and the positional embedding used for the attention mech-
anism. These two embeddings are then simply summed together. For this model,
both setting the ‘trainable‘ parameter to False and True was attempted.

However, one potential disadvantage of this approach is that since the embed-
dings are not updated during training, this part of the model is not able to adapt
it further. In this context, though, the pre-trained embeddings are trained on the
same corpus, so they should fit the data well already.

Code listing 7.7: Word2Vec Embedding layer, equal for all models

Layer (type) Output Shape Param #

embedding 2 (Embedding) (None, 32, 8) 1456

7.2.5 Hyperparameter Optimization

We leverage the Keras Tuner, a powerful and easy-to-use hyperparameter tuning
library, to optimize the performance of the models.

We use the Hyperband tuning algorithm provided by Keras Tuner. It is an ad-
aptation of the random search algorithm with a more efficient resource allocation
strategy. It should help us in finding the optimal hyperparameters in fewer itera-
tions, thereby speeding up the tuning process.

52 petej@NTNU: sequence models for anomaly detection

Model Tuning We instantiate the Hyperband tuner by specifying the model-
building function, the objective to maximize (in this case, validation sparse cat-
egorical accuracy), the maximum number of epochs for each model to be trained,
and the reduction factor of the number of epochs and models for each bracket in
Hyperband.

To prevent overfitting and reduce unnecessary computations, we introduce an
early stopping callback that halts the training process when the validation loss has
not improved for a number of epochs, called patience. We chose to set this to 2,
as the models are relatively small, and should converge fast.

By leveraging this strategy, we can find an optimal set of hyperparameters that
would lead to better model performance in terms of validation sparse categorical
accuracy. This in turn improves the effectiveness of our anomaly detection task by
increasing the model’s prediction accuracy.

7.2.6 Training

Training our models encompasses several techniques tailored to our specific task
of anomaly detection in sequences. This section will discuss the main strategies
and techniques we employ, specifically focusing on the training objective, the op-
timizer, and the loss function.

Training Objective

The training process differs slightly for the two types of models implemented, the
RNNs and the transformer.

For the RNN and LSTM models, we use next-token prediction. In this ap-
proach, the model is trained to predict the next token in a sequence given the
preceding tokens. The aim is to allow the model to learn the temporal depend-
encies inherent in the sequences. It can capture normal patterns in the data, and
anomalies can then be detected as deviations from these patterns.

On the other hand, for the Transformer model, we utilize a masked language
model (MLM) technique. Using this technique, certain tokens in the sequence are
masked out, and the model’s objective is to predict these masked tokens based
on the context provided by the unmasked tokens. This training technique, is par-
ticularly effective for Transformer models as it allows the model to leverage the
attention mechanism, where all tokens in the sequence make up the context. It
also provides a more granular view of sequence structure and has been shown to
be successful in sequence analysis tasks, specifically for anomaly detection [60,
61, 72, 73]. In our training, we set the mask rate to 0.25 and max number of
masks to 16. This means that every token has a 25% of being masked, and the
maximum value we set equal to the longest sequence observed in training.

Chapter 7: Experiments and Results 53

Optimizer

All our models utilize the Adam optimizer for training. Adam, short for Adaptive
Moment Estimation, is a popular optimization algorithm in deep learning due to
its efficiency and low memory requirements. It combines the benefits of two other
extensions of stochastic gradient descent: AdaGrad, which works well with sparse
gradients, and RMSProp, which works well in online and non-stationary settings
[74]. This makes Adam well-suited for our task, as we are dealing with multiclass
data with many sparse values, or sequences with padding.

Loss Function

The models are trained using the Sparse Categorical Cross-Entropy loss function
[75]. This loss function is suitable for our task as we are dealing with multi-class
classification problems (predicting the next token or masked token out of a vocab-
ulary). The ’sparse’ variant is particularly useful when the classes are mutually
exclusive, i.e., each token can belong to one and only one class, which is the case
in our task.

Anomaly Detection

Anomaly detection in our models is based on the concept of reconstruction loss.
Given that our models are trained to predict the next token (for the RNNs) or
masked tokens (for the Transformer), the loss value can serve as a measure of
how well the model 'understands’ a given sequence. Normal sequences should
have lower loss values as they align with the patterns learned during training,
while anomalous sequences will yield higher loss values as they deviate from these
patterns. Therefore, by monitoring the loss value, we hypothesize that we can
identify anomalies in the sequences, as others also have [61, 72, 76, 77].

7.2.7 Evaluation
7.3 Results

7.3.1 Dataset
Benign Class

In Table 7.1, some statistics for every sequence position is shown, these include the
count of tokens at that position, unique tokens at the position, and the top token
and its frequency. Here, it is apparent that the number of sequences decrease as
the length grows. In the 'top’ field the paths are shortened to just a backslash. The
longest sequence is of 16 tokens, and is sits alone at the top.

In Figure 7.1 and Figure 7.2, the distribution for tokens and top 250 chains are
shown, respectively. Without doing heavy statistics, it looks like the distributions
has a classic ’head’ and ’long tail’, where a few tokens and chains account for

petej@NTNU: sequence models for anomaly detection

Table 7.1: Per Position Statistics

index count unique top freq

0 1618967 124 \svchost 602017
1 1618967 161 \emd 418026
2 1273445 149 \mantra 369230
3 1084312 145 \python 384698
4 926123 138 ping 278459
5 587551 141 \python 122529
6 353226 127 \cmd 107504
7 203694 117 reg 62040
8 81273 113 ping 34272
9 36035 93 ping 13486
10 11670 43 \python 5034
11 6421 36 \emd 3239
12 3886 22 \gwinsta 770

13 855 15 netstat 684

14 37 6 mstsc 22

15 1 1 netstat 1

Table 7.2: Chain Statistics

attribute value

count 1618967

unique 8558

top \svchost \cmd \mantra \python ping
freq 272923

Chapter 7: Experiments and Results 55

most of the events, and a large number of them only has 1 count. The number
of chains included in the graphics had to be cut for from 8558 to 250. Top and
bottom tokens in the vocabulary is shown in Table 7.3. Note that this is for the
entire benign dataset, not the vocabulary used for training, the difference though
is only one token. In Table 7.2, the total count of chains are shown, and how many
are unique. Also the top chain is shown along with its count. Again, the path here
is shortened.

le6

12

10

0.8

0.6

0.4

0.2

Figure 7.1: Token Distribution

250000
200000
150000

100000

50000 :l
0

Figure 7.2: Chains Distribution (Top 250)

Malicious Class

In Table 7.4, the same statistics as in Table 7.1 is shown. The number of chains
seems to have a significant drop off after length of 4 tokens. We can also note the
high number of chains that end with Powershell.

In Figure 7.3 and Figure 7.4, the distribution for the tokens and chains are
plotted. The shapes of the plots are not too different from the benign distribu-

56 petej@NTNU: sequence models for anomaly detection

Table 7.3: Vocabulary Statistics

Token Count
\device\harddiskvolumel\windows\system32\svchost 1307667
\device\harddiskvolumel\windows\system32\cmd 1118480
\device\harddiskvolume1\python27\python 977564
\device\harddiskvolumel\windows\system32\services 774236
\device\harddiskvolume1l\ncr\mantra\runtime\scripts\mantra 753334
\device\harddiskvolumel\windows\system32\secedit 1
powerpnt 1
\device\harddiskvolumel\windows\system32 askmgr 1
\device\harddiskvolumel\windows\system32\werfault 1
\device\harddiskvolumel\windows\system32\cloudnotifications 1

Length: 181

Table 7.4: Per Position Statistics - Malicious

index count unique top freq
0 605 10 \svchost 308
1 605 13 powershell 261
2 603 16 \powershell 257
3 308 16 \ping 255
4 39 8 \cmd 17
5 27 7 powershell 15
6 24 8 \powershell 11
7 17 7 \powershell 9

8 12 6 \whoami 6

9 2 2 \mmc 1
10 1 1 mmc 1

Table 7.5: Chain Statistics - Malicious

attribute value

count 605
unique 45
top \wmiprvse powershell \ping

freq 254

Chapter 7: Experiments and Results 57

tions, however these statistics are from a significantly smaller sample. We also
note that only 2 chains account for most events. Vocabulary statistics for the mali-
cious class are shown in Table 7.6, and we note that 5 tokens account for most of
the events. The number of and percentage of Out-Of-Vocabulary tokens is shown
at the bottom. This value is important, as it tells us how many of the tokens is
received as UNK for the model. The table is a bit misleading, as the number (13)
is unique tokens, and the percentage (23.6%) is the number of instances that the
OOV-tokens makes up of all instances. We note that this value is a significant por-
tion the tokens. In Table 7.5, statistics about the chains are shown. We note that
these numbers are very small compared to the benign class.

500 4

400

300

200

100 4

0 |IIIIIII||--..
LA L e

y
= T AT 7 e U AT A LY T o 18) et U AT b ¢ e A £ LM

Figure 7.3: Token Distribution - Malicious

2504

200+

150

100 -

50 4

Figure 7.4: Chains Distribution - Malicious

58 petej@NTNU: sequence models for anomaly detection

Table 7.6: Vocabulary Statistics - Malicious

Token Count
\device\harddiskvolumel\windows\system32\windowspowershell\v1.0\powershell 534
\device\harddiskvolumel\windows\system32\ping 509
\device\harddiskvolumel\windows\system32\svchost 321
powershell 282
\device\harddiskvolumel\windows\system32\wbem\wmiprvse 268
\device\harddiskvolumel\windows\system32\cmd 85
taskkill 1

reg 1
\device\harddiskvolumel\windows\system32\wscript 1

netl 1
tasklist 1
(0]0)% 13 (23.6%)

Table 7.7: Performance metrics at two percentiles for RNN - Index and Word2Vec

RNN-Index RNN-Word2Vec

Metric 95th % 99th % 95th % 99th %
ROC AUC Score 0.937 0.937 0.943 0.943
Avg Precision 0.862 0.862 0.864 0.864
F1 Score 0.116 0.38 0.118 0.382
Precision 0.062 0.244 0.063 0.245
Recall 0.868 0.866 0.873 0.863
MCC 0.225 0.456 0.227 0.457
TN 153988 160270 154078 160292
FP 7909 1627 7819 1605
FN 80 81 77 83

TP 525 524 528 522

Chapter 7: Experiments and Results

ROC Plot
10fs = = =
- -
TEERENY -
-
”
.
-
0.8 e
. -
h R
- -
o - e
v 0.6 .
2 e
‘G -
-
2 P
a -
w -
S 0.4 -,
= -~
-
-,
Cd
’,’ —— ROC curve of class 0 (area = 0.94)
0.2 1 ,I = ROC curve of class 1 (area = 0.94)
P = = micro-average ROC curve (area = 1.00)
/’, = = macro-average ROC curve (area = 0.94)
0.0 T T T T
0.0 0.2 0.4 0.6 0.8 10
False Positive Rate
(a) RNN - Index ROC
PR Curve
1.0
0.8
c 0.6
=]
(2]
3
-3
0.4
029 precision-recall curve of class 0 (area = 0.999)
= Precision-recall curve of class 1 (area = 0.862)
= ® micro-average Precision-recall curve (area = 0.999)
0.0 T T T T
0.0 0.2 0.4 0.6 0.8 10

Recall

(c) RNN - Index PR plot

True Positive Rate

Precision

59

ROC Plot
10= = = = & ey -
A saEEEEN s
'
e
.
0.8 - o 7
" .
. -
- ”
. -
0.64m e
- ,’
[,/
e
td
0.4 ”/
-
-,
Cd
’,’ —— ROC curve of class 0 (area = 0.94)
0.2 1 ,I = ROC curve of class 1 (area = 0.94)
P = = micro-average ROC curve (area = 1.00)
/’, = = macro-average ROC curve (area = 0.94)
0.0 T T T T
0.0 0.2 0.4 0.6 0.8 10
False Positive Rate
PR Curve
1.0
0.8
0.6
0.4
R [— Precision-recall curve of class 0 (area = 1.000)
= Precision-recall curve of class 1 (area = 0.864)
= ® micro-average Precision-recall curve (area = 0.999)
0.0 T T T T
0.0 0.2 0.4 0.6 0.8 10

Recall

(d) RNN - W2V PR plot

Figure 7.5: Plots for ROC and PR for RNN Index and Word2Vec

60

7.3.2 Models

RNN

LSTM

petej@NTNU: sequence models for anomaly detection

Table 7.8: Performance metrics at two percentiles for LSTM - Index and Word2Vec

LSTM-Index LSTM-Word2Vec
Metric 95th % 99th % 95th % 99th %
ROC AUC Score 0.941 0.941 0.947 0.947
Avg Precision 0.866 0.866 0.836 0.836
F1 Score 0.12 0.381 0.116 0.382
Precision 0.064 0.244 0.062 0.245
Recall 0.869 0.868 0.881 0.864
MCC 0.229 0.457 0.227 0.457
TN 154231 160270 153880 160287
FP 7666 1627 8017 1610
FN 79 80 72 82
TP 526 525 533 523

Transformer

Table 7.9: Performance metrics at two percentiles for Transformer - Index and

Word2Vec
Transformer-Index Transformer-Word2Vec

Metric 95th % 99th % 95th % 99th %
ROC AUC Score 0.957 0.957 0.95 0.95
Avg Precision 0.546 0.546 0.239 0.239
F1 Score 0.117 0.391 0.116 0.248
Precision 0.063 0.251 0.062 0.163
Recall 0.894 0.883 0.883 0.519
MCC 0.229 0.468 0.227 0.286
TN 153807 160305 153861 160280
FP 8090 1592 8036 1617
FN 64 71 71 291

TP 541 534 534 314

Chapter 7: Experiments and Results

ROC Plot
104 = = = -y
"TERERER’
-
-
’I
081 L. -
N .h ”I
& - -
& . e
w 0.6 ”
= Pl
2 ,,
8 .
L4 ”
S 0.4 e
= -,
Cd
-
”
,’ = ROC curve of class 0 (area = 0.94)
] -’
0.2 e —— ROC curve of class 1 (area = 0.94)
i = = micro-average ROC curve (area = 1.00)
/’, = = macro-average ROC curve (area = 0.94)
0.0 T T T T
0.0 0.2 0.4 0.6 0.8 10
False Positive Rate
(a) LSTM - Index ROC
PR Curve
1.0
0.8
c 0.6
=]
w
]
[
0.4
0249 Precision-recall curve of class 0 (area = 1.000)
Precision-recall curve of class 1 (area = 0.866)
= = micro-average Precision-recall curve (area = 0.999)
0.0 T T T T
0.0 0.2 0.4 0.6 0.8 1.0

Recall

(c) LSTM - Index PR plot

True Positive Rate

Precision

61

ROC Plot

- = ROC curve of class 0 (area = 0.95)
i -’
0.2 e —— ROC curve of class 1 (area = 0.95)
i = = micro-average ROC curve (area = 1.00)
/’, = = macro-average ROC curve (area = 0.95)
0.0 T T T T
0.0 0.2 0.4 0.6 0.8 10
False Positive Rate
PR Curve
1.0
0.8
0.6
0.4
0249 Precision-recall curve of class 0 (area = 1.000)
Precision-recall curve of class 1 (area = 0.836)
= = micro-average Precision-recall curve (area = 0.999)
0.0 T T T T

0.0

0.2 0.4 0.6 0.8 1.0
Recall

(d) LSTM - W2V PR plot

Figure 7.6: Plots for ROC and PR for LSTM Index and Word2Vec

Table 7.10: Transformer - Index (Maskrate=0.25)

percentile

95,99

roc_auc_score
avg_precision
f1 score
precision
recall

mcc

0.92
0.41
0.098, 0.296
0.052, 0.194
0.737, 0.623
0.188, 0.344

tn 153821, 160329

fp 8076, 1568
fn 159, 228
tp 446, 377

62

True Positive Rate

Precision

petef @NTNU: sequence models for anomaly detection

ROC Plot
10fs = n —Teeeere >
’I
”
.
-
0.8 e
-
-
-
”
e
0.6 ‘
r’,
-~
e
td
0.4 ”/
-
-,
Cd
’,’ —— ROC curve of class 0 (area = 0.96)
0.2 1 ,I = ROC curve of class 1 (area = 0.96)
P = = micro-average ROC curve (area = 1.00)
/’, = = macro-average ROC curve (area = 0.96)
0.0 T T T T
0.0 0.2 0.4 0.6 0.8 10
False Positive Rate
(a) Transformer - Index ROC
PR Curve
1.0
0.8
0.6
0.4
R [— Precision-recall curve of class 0 (area = 1.000)
= Precision-recall curve of class 1 (area = 0.546)
= ® micro-average Precision-recall curve (area = 1.000)
0.0 T T T T
0.0 0.2 0.4 0.6 0.8 10

Recall

(c) Transformer - Index PR plot

True Positive Rate

Precision

ROC Plot

10

’,’ —— ROC curve of class 0 (area = 0.95)
0.2 1 ,I = ROC curve of class 1 (area = 0.95)
P = = micro-average ROC curve (area = 1.00)
/’, = = macro-average ROC curve (area = 0.95)
0.0 T T T T
0.0 0.2 0.4 0.6 0.8
False Positive Rate
(b) Transformer - W2V ROC
PR Curve
1.0
0.8
0.6 —— Precision-recall curve of class 0 (area = 1.000)
== Precision-recall curve of class 1 (area = 0.239)
= = micro-average Precision-recall curve (area = 1.000)
0.4
0.2
0.0 T T T T
0.0 0.2 0.4 0.6 0.8

Recall

(d) Transformer - W2V PR plot

Figure 7.7: Plots for ROC and PR for Transformer Index and Word2Vec

10

Chapter 7: Experiments and Results 63

7.3.3 Embedding

To plot the embedding, we first used the DBSCAN (Density-Based Spatial Clus-
tering of Applications with Noise) algorithm to identify clusters in the set vec-
tors. After performing the DBSCAN algorithm, the we constructs a 2D t-SNE (t-
Distributed Stochastic Neighbor Embedding) plot for visualization. This plot helps
reveal the structure of the data and show how the points are grouped into clusters.
Each point on the t-SNE plot represents a data vector, and the location of the point
reflects the similarity of that vector to the others. Points that are closer together
are more similar. The points are colored according to the cluster assignment from
the DBSCAN algorithm, making it possible to visually identify the clusters. An-
notations (labels) are added to the five points in each cluster that are closest to
the cluster’s centroid, providing representative labels for the clusters. The legend
outside the plot area helps identify which color corresponds to which cluster.

I
i .ﬁmﬁm"%gmsm!?ﬁmnae&éwawﬁﬂm\)\ekmwwmug,

)
PR
LY

- N

° aceridfERomstnvRvmmsseyaesaRIsHRCRYEY
owersnel

Figure 7.8: TSNE plot for Word2Vec embeddings

Chapter 8

Discussion

8.1 Methodology

We regard the methodology as being a good fit for the research question. Question
1-2 are qualitative, and a literature review was conducted to answer them. Ques-
tion 3-4 are quantitative, and numerical measurements, as in model evaluation,
were used to answer them. The subquestions vary a bit in nature, but they were
answered throughout the research. However, more time and resources could have
been invested in analysing the result, as this would have given a better picture of
model performance, both in terms of comparison between developed models and
also against SOTA.

Research questions:

1. What is the state of the art on sequential machine learning methods used
on HIDS?

2. Are there any gaps in the current research?

3. Are these methods suitable to be used on process-chains?

4. How do these methods compare against each other and SOTA?

Which leads to the sub-questions:

a. Which datasets are available and most suitable for HIDS?
b. What is the SOTA on process trees?
c. How does mask rate affect performance?

8.2 Results Discussion

8.2.1 Dataset

The unbalanced dataset likely contributes to the somewhat bad results, and it may
be beneficial to use techniques such as oversampling, undersampling, or synthetic
sample generation (like SMOTE) to address this issue.

65

66 petej@NTNU: sequence models for anomaly detection

8.2.2 Vocabulary

Since the amount of different processes running on a system is non defined, unlike
syscalls, a list of processes must be created. This can be done in two ways: either
by building the vocabulary from the training set, or by pre-defining a static list of
processes of interest, or a combination of both. For example, Powershell instances
might be of interest whereas Spotify instances might not be. One way to go about
this is to create a list of top-x processes on the system. Malicious actors are mov-
ing towards "Living off the Land" (LotL), which is a technique where the actor
uses programs already existing in the targeted environment, instead of relying on
custom-made software. This makes the malicious behaviour harder to detect for
standard antivirus software [78][79]. However, it makes the task of creating a
priority list of processes easier. A project called the LOLBAS (Living Off The Land
Binaries, Scripts and Libraries) [80] has listed 157 binaries, scripts and libraries
that can be used for LotL techniques. By merging a top-x process list with this list
we can construct a decent list of processes of interest. However, for this project
the chosen method was to build a vocabulary from the training set.

8.2.3 Models
8.2.4 RNN, LSTM and Transformer - Index Encoding

This evaluation presents the performance of the three models - the Transformer
Table 7.9, the LSTM Table 7.8, and the RNN Table 7.7 - for anomaly detection
based on Sparse Categorical Crossentropy loss. The results are for two thresholds,
the 95th and 99th percentile.

Starting with the ROC AUC score, which provides an overall measure of the
model’s ability to distinguish between classes, we see that the Transformer out-
performs the LSTM and RNN with a score of 0.957. The LSTM follows with a score
of 0.941, while the RNN lags slightly behind with a score of 0.937.

Average precision, which considers the trade-off between precision and recall,
is substantially higher for the LSTM (0.866) and RNN (0.862) models as compared
to the Transformer model (0.546). Despite having a higher ROC AUC, the signific-
antly lower average precision of the Transformer model suggests that it may not
balance precision and recall as well as the LSTM and RNN models.

In terms of the F1 score, which is the harmonic mean of precision and recall,
the Transformer model slightly outperforms the LSTM and RNN models at the
99th percentile, but they perform comparably at the 95th percentile.

Looking at precision, which measures how many of the flagged anomalies are
actual anomalies, all models show low scores at the 95th percentile, while at the
99th percentile, the Transformer model has the highest precision. This suggests
that the Transformer model may have fewer false alarms at the 99th percentile,
but at the 95th percentile, it tends to misclassify normal instances as anomalies
more often.

The recall scores, which measure the proportion of actual anomalies that were

Chapter 8: Discussion 67

correctly detected, are similar across all models, with the Transformer model
slightly outperforming the others. This suggests that the Transformer model is
slightly more effective at catching actual intrusions.

The Matthews Correlation Coefficient (MCC), a balanced measure that is use-
ful even if classes are of very different sizes, is highest for the Transformer model at
the 99th percentile, indicating it as the better performing model at this threshold.
At the 95th percentile, the MCC is similar for all three models.

Looking at the actual counts of true positives (TP), true negatives (TN), false
positives (FP), and false negatives (FN), the Transformer model identifies slightly
more actual intrusions (TP) and fewer missed intrusions (FN), but has more false
alarms (FP) at the 95th percentile. However, at the 99th percentile, the Trans-
former model has fewer false alarms and more correctly identified normal in-
stances (TN) compared to the LSTM and RNN models.

Summary Overall, while the Transformer model shows a higher ROC AUC score
and slightly better performance in terms of F1 score, recall, and MCC at the 99th
percentile, its significantly lower average precision score compared to the LSTM
and RNN models suggests that it may not balance the trade-off between precision
and recall as effectively, particularly at lower thresholds.

The choice between these models would thus depend on the operational needs
and constraints of the intrusion detection system. Further improvements might in-
volve optimizing these models for better precision without significantly sacrificing
recall, potentially through techniques such as adjusting the decision threshold, us-
ing cost-sensitive learning, or applying oversampling or undersampling techniques
to handle the imbalance in the dataset.

8.2.5 Embedding impact

Comparing the performance metrics between the models with and without pre-
trained Word2Vec embeddings, it’s clear that the embeddings have a significant
impact on performance.

Transformer The Transformer model shows a slight decrease in the ROC AUC
score from 0.957 to 0.95 at both percentiles after applying the Word2Vec embed-
dings.

Interestingly, average precision for the Transformer model significantly de-
creased from 0.546 to 0.239. This is a substantial drop, suggesting that the use
of Word2Vec embeddings in this model negatively impacts its ability to balance
precision and recall.

The F1 score at the 99th percentile decreased significantly (from 0.391 to
0.248) due to lower precision and recall. This suggests that while the model was
able to maintain a good balance between precision and recall without embed-
dings, introducing Word2Vec significantly impaired its performance.

68 petej@NTNU: sequence models for anomaly detection

The Matthews Correlation Coefficient also decreased, indicating a decrease in
the quality of binary classifications.

LSTM For the LSTM model, the ROC AUC score increased slightly from 0.941 to
0.947 at both percentiles when using Word2Vec embeddings.

However, the average precision score decreased from 0.866 to 0.836. This
suggests that while Word2Vec embeddings helped the LSTM model to improve
overall class separation, they also slightly reduced its ability to balance precision
and recall.

In terms of F1 score, precision, and recall, the LSTM model with Word2Vec
embeddings performs similarly to the original LSTM model at the 99th percentile,
indicating that the embeddings did not have a substantial effect on the perform-
ance of this model in these respects.

The Matthews Correlation Coefficient remained the same, suggesting a con-
sistent quality in binary classifications.

RNN The RNN model showed a minor improvement in the ROC AUC score from
0.937 to 0.943 at both percentiles when using Word2Vec embeddings.

The average precision for the RNN model increased slightly from 0.862 to
0.864. This suggests that Word2Vec embeddings improved the RNN model’s ability
to balance precision and recall, albeit slightly.

The F1 score, precision, recall, and Matthews Correlation Coefficient for the
RNN model remained nearly the same, suggesting that the Word2Vec embeddings
had little to no impact on these aspects of the RNN model’s performance.

Summary The use of Word2Vec embeddings had varying impacts on the per-
formance of the models. It seemed to negatively impact the Transformer model
significantly while only slightly impacting the LSTM model and the RNN model.
This suggests that while Word2Vec embeddings can be beneficial, their effective-
ness may depend on the specific architecture of the model, and might not be a
good fit for a transformer. This could be due to a mismatch with the advanced
attention mechanism, which utilizes both token and positional embedding. The
underlying reason for this effect could be an interesting point for further invest-
igation.

8.2.6 Transformer - ANUBIS

ANUBIS Anjum et al. [64] , is an anomaly detection method utilizing based on
a Bayesian Neural Network. Their approach was not covered in the literature re-
view, however, they base their work on the same dataset as this, namely OpTC.
Their work can be considered similar, as they utilize a neural network for anomaly
detection, on the same dataset. The sampling might be different, though.

Transformer
fl score 0.391

Chapter 8: Discussion 69

precision 0.251
recall 0.883
ANUBIS

fl score 0.998

precision 0.997

recall 1.00

The F1 score for the ANUBIS model is significantly higher (0.998) than the
Transformer model’s score (0.391). This suggests that the ANUBIS model is much
more accurate in correctly classifying instances as anomalous or benign.

Precision: Again, ANUBIS outperforms the Transformer, with a precision of
0.997 compared to the Transformer’s 0.251. This indicates that when the ANUBIS
model classifies an instance as anomalous, it is very likely to be correct. On the
other hand, when the Transformer model classifies an instance as anomalous, it
is correct only about 25% of the time.

Recall: The ANUBIS model has perfect recall (1.00), meaning it correctly iden-
tifies all actual anomalous instances. The Transformer model, while performing
decently with a recall of 0.883, falls short of perfect detection and misses about
12

In conclusion, the ANUBIS model significantly outperforms the Transformer
model in all the compared metrics. However, a definite comparison cannot be
made without more metrics, and the fact that the models are based on slightly
different samples.

8.2.7 Transformer - Other algorithms

From the ProcAID paper Read [55], an approach looking at processes, Read did
a comparison of different algorithms on the OpTC dataset. Below are the col-
lected result for the hosts, 0201 and 0501. "Stage One" represent ProcAIDs own
algorithm.

Code listing 8.1: Transformer, multiple hosts

Transformer
fl score 0.391
precision 0.251

recall 0.883

Code listing 8.2: Algorithm Comparison for Host 0201

Algorithm Precision Recall F1-Score
Stage One 33.871 100.00 50.602
NewEdge 0.000 0.000 0.000

K-Means 2.365 53.846 4.531

HBOS 17.241 23.809 20.000

One-Class SVM 6.410 23.810 10.101

Code listing 8.3: Algorithm Comparison for Host 0501

Algorithm Precision Recall Fl-Score

70 petej @NTNU: sequence models for anomaly detection

Stage One 11.852 84.211 20.779
NewEdge 0.000 0.000 0.000
K-Means 2.571 56.250 4.918

HBOS 0.000 0.000 0.000
One-Class SVM 1.546 37.500 2.970

The Transformer model outperforms all other models with an F1 score of
0.391. The F1 score, indicates that the Transformer model has a good balance
between precision and recall compared to the other models. In contrast, the next
best algorithm (Stage One) has a significantly lower F1 score of 20.779.

The precision of the Transformer model is the highest precision among all
the models, indicating that it provides the fewest false positives. The next best
precision is from the Stage One algorithm, but it is significantly lower, and three
of the models (NewEdge, HBOS, One-Class SVM) have very low precision scores,
indicating they might often misclassify normal instances as anomalies.

The recall of the Transformer model, is the second-highest among all algorithms,
indicating that it catches a high proportion of the actual intrusions. The Stage One
algorithm has a slightly higher recall, which means it might detect a higher per-
centage of anomalies, but considering its lower precision, it’s also likely to produce
more false positives.

In summary, the Transformer model demonstrates superior performance over
the algorithms in terms of precision and F1 score and has a high recall. This in-
dicates that it balances the trade-off between identifying as many intrusions as
possible (high recall) and minimizing false alarms (high precision), leading to the
highest F1 score among the compared models.

However, the algorithms were only tested on two hosts that had been attacked,
while the transformer was tested on a much larger part of the dataset, also includ-
ing data from these hosts. This skews these result. Still, this indicates that there
is potential for sequence model in process analysis.

8.2.8 Transformer Mask Rate 0.5 / 0.25:

In this evaluation, two configurations of the same Transformer model are com-
pared. The only difference is the masking rate during evaluation, with one model
using a mask rate of 0.5 and the other 0.25. The hypothesis under consideration
is that a higher mask rate (0.5) provides more granular loss data, which leads to
better discrimination between the two classes.

From the given metrics, it appears that the hypothesis holds true. The Trans-
former model with a higher mask rate of 0.5 generally performs better across all
metrics when compared to the one with a lower mask rate of 0.25.

The ROC AUC score of the model with a mask rate of 0.5 is significantly higher
than that of the model with a mask rate of 0.25 at both percentiles (0.957 vs 0.92).
This indicates that the model with a higher mask rate is better at distinguishing
between the two classes.

Average Precision: Similarly, the average precision of the model with a mask
rate of 0.5 is substantially higher than that of the model with a mask rate of 0.25 at

Chapter 8: Discussion 71

both percentiles (0.546 vs 0.41). This suggests that the model with a higher mask
rate is better at balancing precision and recall, leading to fewer false positives and
false negatives.

The F1 score, is also higher in the model with a mask rate of 0.5 as compared
to the model with a mask rate of 0.25 at both percentiles.

Precision:The model with a mask rate of 0.5 also outperforms the other model
in terms of precision.

Recall:The recall of the model with a mask rate of 0.5 is considerably higher
than that of the model with a mask rate of 0.25 at both percentiles. This sug-
gests that the model with a higher mask rate is more capable of identifying true
positives, thus lowering the chance of false negatives.

Matthews Correlation Coefficient: Is again higher for the model with a mask
rate of 0.5, suggesting that this model provides better binary classifications.

Confusion Matrix (TB FB TN, FN): From the confusion matrix, the model with
a mask rate of 0.5 produces fewer false negatives and more true positives, sug-
gesting that it is better at correctly identifying actual anomalies.

In conclusion, the comparison suggests that the Transformer model with a
higher mask rate of 0.5 performs better in anomaly detection. Thus, this supports
the initial hypothesis that a higher mask rate provides more granular loss data,
thereby improving the model’s ability to discriminate between classes.

Chapter 9

Conclusion and Future Work

In conclusion, this study has explored the performance of three popular sequence
models - RNN, LSTM, and a Transformer - in the task of anomaly detection on the
OpTC dataset. Our findings indicate that while the Transformer model demon-
strated slightly superior performance compared to the RNN and LSTM models, it
still leaves considerable room for enhancement.

Furthermore, we compared the Transformer model with state-of-the-art mod-
els in anomaly detection. While the Transformer exhibited superior performance
to several algorithms presented in ProcAID Read [55], it was outperformed by
ANUBIS Anjum et al. [64], a Bayesian Neural Network-based anomaly detection
approach.

These findings not only underscore the utility of Transformer models in anom-
aly detection tasks but also highlight the potential of more advanced techniques
such as Bayesian Neural Networks. This indicates a promising direction for future
research and development to improve the efficacy of anomaly detection systems.

9.1 Future Work

Future research efforts in this domain can pursue several potential directions,
which are outlined in the following subsections:

9.1.1 Feature Engineering

A deeper exploration into feature engineering could offer beneficial insights and
improve model performance. As Filar and French [57] suggests, a comprehensive
analysis of various features including, but not limited to, process name, parent
process name, commandline arguments, process path, event subtype, and integ-
rity level could be undertaken. Other potentially meaningful features worth in-
vestigating might include normalized process path, whether the process is signed,
and the trust level of the signer.

Furthermore, specific attention could be paid to the commandline arguments
. As Cocea [81] demonstrated, utilizing the BERT embedding for commandline ar-

73

74 petej @NTNU: sequence models for anomaly detection

guments could yield useful insights. The application of advanced language model
embeddings like BERT might unveil complex patterns within the commandlines
that simpler feature extraction methods might overlook.

Investigating different types of embeddings can reveal more about the nature
and structure of the data. For example TF-IDF that could add additional weights
to the process events.

Feature importance can also be assessed to identify the most informative fea-
tures contributing to the detection of anomalies. This can be achieved by employ-
ing various statistical methods or by using machine learning models that provide
feature importance scores.

In summary, embedding and feature engineering present promising areas for
future research that could significantly enhance the performance and interpretab-
ility of intrusion detection systems. Future work in these areas can contribute to
the development of more robust and effective IDS models.

Bibliography

[1]

[2]

[3]

[4]

[5]

(6]

[7]

[8]

[9]

S. Institue, Machine learning what it is and why it matters, [Online; accessed
18-May-2022], 2022. [Online]. Available: https://www.sas.com/en_us/
insights/analytics/machine-learning.html.

J. Lansky, S. Ali, M. Mohammadi, M. K. Majeed, S. H. T. Karim, S. Rashidi,
M. Hosseinzadeh and A. M. Rahmani, ‘Deep learning-based intrusion detec-
tion systems: A systematic review,” IEEE Access, vol. 9, pp. 101 574-101 599,
2021.

H. Liu and B. Lang, ‘Machine learning and deep learning methods for intru-
sion detection systems: A survey,’ applied sciences, vol. 9, no. 20, p. 4396,
2019.

Y. Xin, L. Kong, Z. Liu, Y. Chen, Y. Li, H. Zhu, M. Gao, H. Hou and C. Wang,
‘Machine learning and deep learning methods for cybersecurity,’ Ieee access,
vol. 6, pp. 35365-35 381, 2018.

M. Liu, Z. Xue, X. Xu, C. Zhong and J. Chen, ‘Host-based intrusion detec-
tion system with system calls: Review and future trends,” ACM Computing
Surveys (CSUR), vol. 51, no. 5, pp. 1-36, 2018.

R. A. Bridges, T. R. Glass-Vanderlan, M. D. Iannacone, M. S. Vincent and Q.
Chen, ‘A survey of intrusion detection systems leveraging host data,” ACM
Computing Surveys (CSUR), vol. 52, no. 6, pp. 1-35, 2019.

digitalguardian, Cybercrime cost u.s. $6.9 billion in 2021, [Online; accessed
18-May-2022], 2022. [Online]. Available: https ://digitalguardian.
com/blog/cybercrime-cost-us-69-billion-2021.

cybersecurityventures, Cybercrime to cost the world $10.5 trillion annually
by 2025, [Online; accessed 18-May-2022], 2020. [Online]. Available: https:
//cybersecurityventures.com/hackerpocalypse-cybercrime- report-
2016/.

accenture, Ninth annual cost of cybercrime study, [Online; accessed 18-
May-2022], 2019. [Online]. Available: https://www.accenture . com/
_acnmedia/ pdf - 96 /accenture - 2019 - cost - of - cybercrime - study -
final.pdf.

75

https://www.sas.com/en_us/insights/analytics/machine-learning.html
https://www.sas.com/en_us/insights/analytics/machine-learning.html
https://digitalguardian.com/blog/cybercrime-cost-us-69-billion-2021
https://digitalguardian.com/blog/cybercrime-cost-us-69-billion-2021
https://cybersecurityventures.com/hackerpocalypse-cybercrime-report-2016/
https://cybersecurityventures.com/hackerpocalypse-cybercrime-report-2016/
https://cybersecurityventures.com/hackerpocalypse-cybercrime-report-2016/
https://www.accenture.com/_acnmedia/pdf-96/accenture-2019-cost-of-cybercrime-study-final.pdf
https://www.accenture.com/_acnmedia/pdf-96/accenture-2019-cost-of-cybercrime-study-final.pdf
https://www.accenture.com/_acnmedia/pdf-96/accenture-2019-cost-of-cybercrime-study-final.pdf

76 petej@NTNU: sequence models for anomaly detection

[10] Y. Tsuda, J. Nakazato, Y. Takagi, D. Inoue, K. Nakao and K. Terada, ‘A light-
weight host-based intrusion detection based on process generation pat-
terns,” in 2018 13th Asia Joint Conference on Information Security (AsiaJ-
CIS), IEEE, 2018, pp. 102-108.

[11] A. Khraisat, I. Gondal, P Vamplew and J. Kamruzzaman, ‘Survey of intru-
sion detection systems: Techniques, datasets and challenges,” Cybersecurity,
vol. 2, no. 1, pp. 1-22, 2019.

[12] S. Jose, D. Malathi, B. Reddy and D. Jayaseeli, ‘A survey on anomaly based
host intrusion detection system,’ in Journal of Physics: Conference Series,
IOP Publishing, vol. 1000, 2018, p. 012 049.

[13] T. Mikolov, K. Chen, G. Corrado and J. Dean, ‘Efficient estimation of word
representations in vector space,” arXiv preprint arXiv:1301.3781, 2013.

[14] E Chiusano, A brief timeline of nlp, 2022. [Online]. Available: https://
medium.com/nlplanet/a-brief-timeline-of-nlp-bc45b640f07d.

[15] J. L. Elman, ‘Finding structure in time,” Cognitive science, vol. 14, no. 2,
pp. 179-211, 1990.

[16] A. Louis, A brief history of natural language processing — part 2, 2020.
[Online]. Available: https://medium.com/@antoine. louis/a- brief -
history-of-natural-language-processing-part-2-f5e575e8e37.

[17] L Sutskever, O. Vinyals and Q. V. Le, ‘Sequence to sequence learning with
neural networks,” Advances in neural information processing systems, vol. 27,
2014.

[18] J.K.Chorowski, D. Bahdanau, D. Serdyuk, K. Cho and Y. Bengio, ‘Attention-
based models for speech recognition,” Advances in neural information pro-
cessing systems, vol. 28, 2015.

[19] S. Hochreiter and J. Schmidhuber, ‘Long short-term memory,” Neural com-
putation, vol. 9, no. 8, pp. 1735-1780, 1997.

[20] J.Chung, C. Gulcehre, K. Cho and Y. Bengio, ‘Empirical evaluation of gated
recurrent neural networks on sequence modeling,” arXiv preprint arXiv:1412.3555,
2014.

[21] S.Kostadinov, Https: //towardsdatascience.com /understanding-gru-networks-
2ef37df6c9be, 2017. [Online]. Available: https://www.guru99.com/system-
call-operating-system.html.

[22] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. Kaiser and I. Polosukhin, ‘Attention is all you need,” Advances in neural
information processing systems, vol. 30, 2017.

[23] Deva, Evolution of natural language processing(nlp), 2021. [Online]. Avail-
able: https://medium.com/analytics-vidhya/evolution-of-natural-
language-processing-nlp-ac941b6523e9.

https://medium.com/nlplanet/a-brief-timeline-of-nlp-bc45b640f07d
https://medium.com/nlplanet/a-brief-timeline-of-nlp-bc45b640f07d
https://medium.com/@antoine.louis/a-brief-history-of-natural-language-processing-part-2-f5e575e8e37
https://medium.com/@antoine.louis/a-brief-history-of-natural-language-processing-part-2-f5e575e8e37
https://www.guru99.com/system-call-operating-system.html
https://www.guru99.com/system-call-operating-system.html
https://medium.com/analytics-vidhya/evolution-of-natural-language-processing-nlp-ac941b6523e9
https://medium.com/analytics-vidhya/evolution-of-natural-language-processing-nlp-ac941b6523e9

Bibliography 77

[24] R. Silipo and K. Melcher, Text encoding: A review, 2019. [Online]. Available:
https://www.kdnuggets.com/2019/11/text-encoding- review.html.

[25] S. Gupta, Word vector encoding in nlp (make machines understand text),
2020. [Online]. Available: https://www.enjoyalgorithms . com/blog/
word-vector-encoding-in-nlp.

[26] B. Bose, Nip — text encoding: A beginner’s guide, 2020. [Online]. Avail-
able: https://medium.com/analytics-vidhya/nlp-text-encoding-a-
beginners-guide- fa332d715854.

[27] tensorflow, Word2vec, 2023. [Online]. Available: https://www.tensorflow.
org/tutorials/text/word2vec.

[28] J. Devlin, M.-W. Chang, K. Lee and K. Toutanova, ‘Bert: Pre-training of
deep bidirectional transformers for language understanding,’ arXiv preprint
arXiv:1810.04805, 2018.

[29] S. Cristina, The-transformer-model, 2022. [Online]. Available: https://
machinelearningmastery.com/the-transformer-model/.

[30] J.Zhan, Q. Chen, B. Chen, W. Wang, Y. Bai and Y. Gao, Non-autoregressive
translation with dependency-aware decoder, Mar. 2022.

[31] microsoft, Event-4688, [Online; accessed 1-Apr-2023], 2022. [Online]. Avail-
able: https://learn.microsoft.com/en-us/windows/security/threat-
protection/auditing/event-4688.

[32] ultimatewindowssecurity, Eventid=4688, [Online; accessed 1-Apr-2023],
2022. [Online]. Available: https://www.ultimatewindowssecurity.com/
securitylog/encyclopedia/event.aspx?eventid=4688.

[33] sysinternals, Sysmon, [Online; accessed 1-Apr-2023], 2023. [Online]. Avail-
able: https://learn.microsoft.com/en-us/sysinternals/downloads/
sysmon.

[34] ultimatewindowssecurity, Sysmon event id 1, [Online; accessed 1-Apr-2023],
2023. [Online]. Available: https://www.ultimatewindowssecurity.com/
securitylog/encyclopedia/event.aspx?eventid=90001.

[35] A. Patel, Detection of anomalous process creation chains using word vec-
torization, normalization, and an autoencoder, [Online; accessed 18-May-
2022], 2020. [Online]. Available: https://blog.f-secure.com/process-
creation-chains/.

[36] J.Brownlee, Impact of dataset size on deep learning model skill and perform-
ance estimates, Aug. 2020. [Online]. Available: https://machinelearningmastery.
com/impact-of-dataset-size-on-deep-learning-model-skill-and-
performance-estimates/.

[37] Splunk, Splunk attack range, [Online; accessed 10-May-2022], 2022. [On-
line]. Available: https://github.com/splunk/attack range.

https://www.kdnuggets.com/2019/11/text-encoding-review.html
https://www.enjoyalgorithms.com/blog/word-vector-encoding-in-nlp
https://www.enjoyalgorithms.com/blog/word-vector-encoding-in-nlp
https://medium.com/analytics-vidhya/nlp-text-encoding-a-beginners-guide-fa332d715854
https://medium.com/analytics-vidhya/nlp-text-encoding-a-beginners-guide-fa332d715854
https://www.tensorflow.org/tutorials/text/word2vec
https://www.tensorflow.org/tutorials/text/word2vec
https://machinelearningmastery.com/the-transformer-model/
https://machinelearningmastery.com/the-transformer-model/
https://learn.microsoft.com/en-us/windows/security/threat-protection/auditing/event-4688
https://learn.microsoft.com/en-us/windows/security/threat-protection/auditing/event-4688
https://www.ultimatewindowssecurity.com/securitylog/encyclopedia/event.aspx?eventid=4688
https://www.ultimatewindowssecurity.com/securitylog/encyclopedia/event.aspx?eventid=4688
https://learn.microsoft.com/en-us/sysinternals/downloads/sysmon
https://learn.microsoft.com/en-us/sysinternals/downloads/sysmon
https://www.ultimatewindowssecurity.com/securitylog/encyclopedia/event.aspx?eventid=90001
https://www.ultimatewindowssecurity.com/securitylog/encyclopedia/event.aspx?eventid=90001
https://blog.f-secure.com/process-creation-chains/
https://blog.f-secure.com/process-creation-chains/
https://machinelearningmastery.com/impact-of-dataset-size-on-deep-learning-model-skill-and-performance-estimates/
https://machinelearningmastery.com/impact-of-dataset-size-on-deep-learning-model-skill-and-performance-estimates/
https://machinelearningmastery.com/impact-of-dataset-size-on-deep-learning-model-skill-and-performance-estimates/
https://github.com/splunk/attack_range

78 petej@NTNU: sequence models for anomaly detection

[38] Splunk, Attack data repository, [Online; accessed 10-May-2022], 2022. [On-
line]. Available: https://github.com/splunk/attack data/.

[39] R.Rodriguez, Securitydatasets, [Online; accessed 10-May-2022], 2022. [On-
line]. Available: https://securitydatasets.com/introduction.html.

[40] DARPA, Operationally-transparent-cyber-optc, [Online; accessed 10-May-2022],
2019. [Online]. Available: https://ieee-dataport.org/open-access/
operationally-transparent-cyber-optc.

[41] L. Williams, System call in os (operating system): What is, types and ex-
amples, [Online; accessed 1-May-2022], 2022. [Online]. Available: https:
//www.guru99.com/system-call-operating-system.html.

[42] M. Kerrisk, Syscalls(2) — linux manual page, [Online; accessed 1-May-
2022], 2021. [Online]. Available: https://man7.org/linux/man- pages/
man2/syscalls.2.html.

[43] M. Jurczyk, Windows win32k.sys system call table, [Online; accessed 1-May-
2022],2022. [Online]. Available: https://j00ru.vexillium.org/syscalls/
win32k/32/.

[44] G. Creech and J. Hu, ‘A semantic approach to host-based intrusion detec-
tion systems using contiguousand discontiguous system call patterns,’ IEEE
Transactions on Computers, vol. 63, no. 4, pp. 807-819, 2013.

[45] S. Forrest, S. A. Hofmeyr, A. Somayaji and T. A. Longstaff, ‘A sense of self
for unix processes,” in Proceedings 1996 IEEE Symposium on Security and
Privacy, IEEE, 1996, pp. 120-128.

[46] G.-B. Huang, Q.-Y. Zhu and C.-K. Siew, ‘Extreme learning machine: A new
learning scheme of feedforward neural networks,” in 2004 IEEE interna-
tional joint conference on neural networks (IEEE Cat. No. 04CH37541), leee,
vol. 2, 2004, pp. 985-990.

[47] M. Anandapriya and B. Lakshmanan, ‘Anomaly based host intrusion detec-
tion system using semantic based system call patterns,” in 2015 IEEE 9th
International Conference on Intelligent Systems and Control (ISCO), IEEE,
2015, pp. 1-4.

[48] A. Aldweesh, A. Derhab and A. Z. Emam, ‘Deep learning approaches for
anomaly-based intrusion detection systems: A survey, taxonomy, and open
issues,” Knowledge-Based Systems, vol. 189, p. 105 124, 2020.

[49] Z.Ahmad, A. Shahid Khan, C. Wai Shiang, J. Abdullah and E Ahmad, ‘Net-
work intrusion detection system: A systematic study of machine learning
and deep learning approaches,” Transactions on Emerging Telecommunica-
tions Technologies, vol. 32, no. 1, e4150, 2021.

[50] X. Tong, Z. Wang and H. Yu, ‘A research using hybrid rbf/elman neural
networks for intrusion detection system secure model,” Computer physics
communications, vol. 180, no. 10, pp. 1795-1801, 2009.

https://github.com/splunk/attack_data/
https://securitydatasets.com/introduction.html
https://ieee-dataport.org/open-access/operationally-transparent-cyber-optc
https://ieee-dataport.org/open-access/operationally-transparent-cyber-optc
https://www.guru99.com/system-call-operating-system.html
https://www.guru99.com/system-call-operating-system.html
https://man7.org/linux/man-pages/man2/syscalls.2.html
https://man7.org/linux/man-pages/man2/syscalls.2.html
https://j00ru.vexillium.org/syscalls/win32k/32/
https://j00ru.vexillium.org/syscalls/win32k/32/

Bibliography 79

[51] R.K.Cunningham, R. P Lippmann, D. J. Fried, S. L. Garfinkel, I. Graf, K. R.
Kendall, S. E. Webster, D. Wyschogrod and M. A. Zissman, ‘Evaluating in-
trusion detection systems without attacking your friends: The 1998 darpa
intrusion detection evaluation,” Massachusetts Inst Of Tech Lexington Lin-
coln Lab, Tech. Rep., 1999.

[52] G.Kim, H.Yi, J. Lee, Y. Paek and S. Yoon, ‘Lstm-based system-call language
modeling and robust ensemble method for designing host-based intrusion
detection systems,’ arXiv preprint arXiv:1611.01726, 2016.

[53] A. Chawla, B. Lee, S. Fallon and P Jacob, ‘Host based intrusion detection
system with combined cnn/rnn model,’” in Joint European Conference on
Machine Learning and Knowledge Discovery in Databases, Springer, 2018,
pp. 149-158.

[54] M. Kwon, K. Jeong and H. Lee, ‘Probe: A process behavior-based host intru-
sion prevention system,’” in International Conference on Information Security
Practice and Experience, Springer, 2008, pp. 203-217.

[55] A. Read, ‘Procaid: Process anomaly-based intrusion detection,” Ph.D. dis-
sertation, The George Washington University, 2022.

[56] gensim, Fasttext, [Online; accessed 1-Apr-2023], 2023. [Online]. Available:
https://radimrehurek.com/gensim/models/word2vec.html.

[57] B.FilarandD. French, ‘Problemchild: Discovering anomalous patterns based
on parent-child process relationships,” arXiv preprint arXiv:2008.04676, 2020.

[58] T. Chen and C. Guestrin, ‘Xgboost: A scalable tree boosting system,’ in Pro-
ceedings of the 22nd acm sigkdd international conference on knowledge dis-
covery and data mining, 2016, pp. 785-794.

[59] M. Du, E Li, G. Zheng and V. Srikumar, ‘Deeplog: Anomaly detection and
diagnosis from system logs through deep learning,” in Proceedings of the
2017 ACM SIGSAC conference on computer and communications security,
2017, pp. 1285-1298.

[60] H. Guo, S. Yuan and X. Wu, ‘Logbert: Log anomaly detection via bert,” in
2021 international joint conference on neural networks (IJCNN), IEEE, 2021,
pp- 1-8.

[61] C. Almodovar, E Sabrina, S. Karimi and S. Azad, ‘Logfit: Log anomaly de-
tection using fine-tuned language models,” 2023.

[62] ICRAR, Ijson, 2023. [Online]. Available: https: //github.com/ICRAR/
ijson.

[63] microsoft, Processtree, [Online; accessed 10-Aug-2022], 2023. [Online].

Available: https://msticpy.readthedocs.io/en/latest/visualization/
ProcessTree.html.

[64] M. M. Anjum, S. Igbal and B. Hamelin, ‘Anubis: A provenance graph-based
framework for advanced persistent threat detection,” in Proceedings of the
37th ACM /SIGAPP Symposium on Applied Computing, 2022, pp. 1684-1693.

https://radimrehurek.com/gensim/models/word2vec.html
https://github.com/ICRAR/ijson
https://github.com/ICRAR/ijson
https://msticpy.readthedocs.io/en/latest/visualization/ProcessTree.html
https://msticpy.readthedocs.io/en/latest/visualization/ProcessTree.html

80

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

[77]

[78]

[79]

petef@NTNU: sequence models for anomaly detection

H. Heidenreich, Stemming? lemmatization? what? [Online; accessed 1-Apr-
2023], 2018. [Online]. Available: https ://towardsdatascience . com/
stemming- lemmatization-what-ba782b7c0bd8.

A. S. Gillis, Data splitting, [Online; accessed 1-Apr-2023], 2022. [Online].
Available: https://www.techtarget.com/searchenterpriseai/definition/
data-splitting.

scikit-learn, (plit, 2023. [Online]. Available: https://github.com/scikit-
learn/scikit - learn/blob/364c77e04 / sklearn/model selection/
_split.py#L2463.

tensorflow, Tensorflow, 2023. [Online]. Available: https://www.tensorflow.
org/.

keras, Keras,lp, 2023. [Online]. Available: https://keras.io/keras
nlp/.

google, Colab.research.google, 2023. [Online]. Available: https://colab.
research.google.com/.

keras, Api/models /sequential, 2023. [Online]. Available: https://keras.
io/api/models/sequential/.

Y. Lee, J. Kim and P Kang, ‘Lanobert: System log anomaly detection based
on bert masked language model,” arXiv preprint arXiv:2111.09564, 2021.

S. Huang, Y. Liu, C. Fung, R. He, Y. Zhao, H. Yang and Z. Luan, ‘Hitanom-
aly: Hierarchical transformers for anomaly detection in system log,” IEEE
Transactions on Network and Service Management, vol. 17, no. 4, pp. 2064—
2076, 2020.

D. P Kingma and J. Ba, ‘Adam: A method for stochastic optimization,” arXiv
preprint arXiv:1412.6980, 2014.

tensorflow, Sparsecategoricalcrossentropy, 2023. [Online]. Available: https:
//www.tensorflow.org/api docs/python/tf/keras/losses/SparseCategoricalCrossentropy.

S. Tuli, G. Casale and N. R. Jennings, ‘Tranad: Deep transformer networks
for anomaly detection in multivariate time series data,’ arXiv preprint arXiv:2201.07284,
2022.

Z. Chen, D. Chen, X. Zhang, Z. Yuan and X. Cheng, ‘Learning graph struc-
tures with transformer for multivariate time-series anomaly detection in
iot,” IEEE Internet of Things Journal, vol. 9, no. 12, pp. 9179-9189, 2021.

P Alto, What-are-fileless-malware-attacks, [Online; accessed 11-May-2022],
2022.[Online]. Available: https://www.paloaltonetworks.com/cyberpedia/
what-are-fileless-malware-attacks.

frsecure, Living-off-the-land-attacks, [Online; accessed 11-May-2022], 2021.
[Online]. Available: https:// frsecure. com/blog/living- off - the -
land-attacks/.

https://towardsdatascience.com/stemming-lemmatization-what-ba782b7c0bd8
https://towardsdatascience.com/stemming-lemmatization-what-ba782b7c0bd8
https://www.techtarget.com/searchenterpriseai/definition/data-splitting
https://www.techtarget.com/searchenterpriseai/definition/data-splitting
https://github.com/scikit-learn/scikit-learn/blob/364c77e04/sklearn/model_selection/_split.py#L2463
https://github.com/scikit-learn/scikit-learn/blob/364c77e04/sklearn/model_selection/_split.py#L2463
https://github.com/scikit-learn/scikit-learn/blob/364c77e04/sklearn/model_selection/_split.py#L2463
https://www.tensorflow.org/
https://www.tensorflow.org/
https://keras.io/keras_nlp/
https://keras.io/keras_nlp/
https://colab.research.google.com/
https://colab.research.google.com/
https://keras.io/api/models/sequential/
https://keras.io/api/models/sequential/
https://www.tensorflow.org/api_docs/python/tf/keras/losses/SparseCategoricalCrossentropy
https://www.tensorflow.org/api_docs/python/tf/keras/losses/SparseCategoricalCrossentropy
https://www.paloaltonetworks.com/cyberpedia/what-are-fileless-malware-attacks
https://www.paloaltonetworks.com/cyberpedia/what-are-fileless-malware-attacks
https://frsecure.com/blog/living-off-the-land-attacks/
https://frsecure.com/blog/living-off-the-land-attacks/

Bibliography 81

[80]

[81]

O. Moe, J. Bayne, C. Richard, C.’. Spehn, Liam and Wietze, Lolbas-project,
[Online; accessed 11-May-2022], 2022. [Online]. Available: https://github.
com/LOLBAS-Project/LOLBAS/blob/master/README.md.

S.-B. Cocea, Bert embeddings: A modern machine-learning approach for de-
tecting malware from command lines, [Online; accessed 10-Apr-2023], 2022.
[Online]. Available: https://www.crowdstrike.com/blog/bert-embeddings-
new-approach-for-command-1line-anomaly-detection/.

https://github.com/LOLBAS-Project/LOLBAS/blob/master/README.md
https://github.com/LOLBAS-Project/LOLBAS/blob/master/README.md
https://www.crowdstrike.com/blog/bert-embeddings-new-approach-for-command-line-anomaly-detection/
https://www.crowdstrike.com/blog/bert-embeddings-new-approach-for-command-line-anomaly-detection/

@ NTNU

Norwegian University of
Science and Technology

	Abstract
	Sammendrag
	Contents
	Figures
	Tables
	Code Listings
	Introduction
	Topic covered by the project
	Keywords
	Problem description
	Justification, motivation and benefits
	Research questions
	Planned contributions

	Background
	Intrusion detection systems (IDS)
	Past decade's evolution of Sequential Models
	Word Embeddings (2013-2014)
	Sequence to Sequence Learning (2014-2015)
	LSTM and GRU Networks (2015-2017)
	Transformer Models (2017-)

	Encoding Techniques in Natural Language Processing
	One-Hot Encoding
	Label (or Index) Encoding
	Count Vectorization (Bag of Words)
	TF-IDF (Term Frequency-Inverse Document Frequency)
	Word2Vec

	Process Trees
	Process Create Event
	Process Tree

	Methodology
	Introduction
	Research Design
	Literature Review
	Model Selection
	Dataset Selection
	Evaluation
	Metrics
	Process

	Ethical Considerations

	Literature Review
	Datasets
	Splunk Attack Data
	The Security Datasets project
	Operationally Transparent Cyber (OpTC) Data Release

	System Call Based Methods
	Process Tree Based Methods
	System Log Based
	Summary
	Data Gathering Preprocessing

	Experiments and Results
	Dataset Preprocessing
	Obtaining OpTC
	Extract benign and malicious process create events
	Building trees and chains
	Cleaning the file paths
	Building the datasets

	Implementation
	Environment
	Feature Extraction and Engineering
	The Models
	Embedding adaption
	Hyperparameter Optimization
	Training
	Evaluation

	Results
	Dataset
	Models
	Embedding

	Discussion
	Methodology
	Results Discussion
	Dataset
	Vocabulary
	Models
	RNN, LSTM and Transformer - Index Encoding
	Embedding impact
	Transformer - ANUBIS
	Transformer - Other algorithms
	Transformer Mask Rate 0.5 / 0.25:

	Conclusion and Future Work
	Future Work
	Feature Engineering

	Bibliography

