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Abstract

Accurate inference of intracellular signalling activity from omics data poses a challenge in systems biology
approaches that leverages logical modelling for personalising cancer treatments. Despite the emergence of
software tools analysing data on gene expression and protein levels, ensuring the quality of activity inference
remains a challenge in translational research. This master’s thesis focuses on using logical modelling, software
tools and the DrugLogics pipeline as a solution to this problem. By evaluating four different software tools in
inferring high-quality biomarker activities from transcriptomics data, this thesis aims to enhance the accuracy
and effectiveness of in silico biomarker inference that can be used to personalise logical models within the
DrugLogics pipeline. The findings of this project offers a framework for selecting suitable software tools for
high-quality inference, and lay the groundwork for future research on improving computational activity infer-
ence from omics data. Developed scripts automate aspects of the biomarker inference process, and facilitate
seamless data integration into the DrugLogics pipeline. The thesis work identified CONSENSUS as the most
consistent and robust software tool in inferring biomarker activities for calibrating logical models in the Dru-
gLogics pipeline. The software tools ULM and MLM also displayed potential as alternative options, but were
found to be sensitive to parameter settings and dataset characteristics. Further investigation is recommended
for subsets of activities from the PROFILE software, in combination with CONSENSUS activities. Optimal
tool-specific parameters for precise inferences were identified, including the recommended expression count
measure ’read counts’ for CONSENSUS, MLM and ULM. Utilising the gene regulatory network CollecTRI
and having a relatively strict p-value threshold may also be preferred with these tools, to obtain consistent
inference results. If the PROFILE software is used, normalised expression data may be preferred. However, it
is acknowledged that external factors, such as data characteristics, model limitations, and statistical measures
may influence the conclusions drawn from the results. By evaluating software tools in inferring accurate bio-
marker activities from omics data, the findings of this master’s thesis highlight the potential of leveraging in
silico methods for logical model calibration in the DrugLogics pipeline, paving the way for more effective and
personalised cancer treatment strategies.
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Sammendrag

Identifisering av presise biomarkør aktiviteter fra biologisk data er en utfordring i systembiologiske metoder
som tar i bruk persontilpassede logiske modeller for individbasert kreftbehandling. Til tross for fremveksten
av programvareverktøy som analyserer genuttrykk og protein aktiviteter, forblir identifisering av presis bio-
markør aktivitet en utfordring i translasjonsforskning. Denne masteroppgaven benytter logisk modellering og
programvareverktøy for å analysere omikk data til aktivitetsnivåer, kombinert med DrugLogics-algoritmen som
en løsning på dette problemet. Ved å evaluere fire forskjellige programvareverktøy for identifisering av presise
biomarkører fra transkripsjonsdata, har denne oppgaven som mål å forbedre effektiviteten av in silico iden-
tifisering av biomarkør aktiviteter som kan utnyttes for å tilpasse logiske modeller i DrugLogics-algoritmen,
og legge grunnlaget for at de kan benyttes i personlig kreftbehandling. Funnene fra dette prosjektet tilbyr et
rammeverk for å velge effektive programvareverktøy for presis biomarkør identifisering, og danner et grunnlag
for fremtidig forskning på in silico biomarkør identifisering fra biologisk data. Utviklede skript automatiserer
aspekter av in silico identifisering av biomarkører, og tilbyr sømløs dataintegrasjon i DrugLogics-algoritmen.
Resultatene viser at CONSENSUS var det mest presise og robuste verktøyet for identifisering av presise aktiv-
itetsnivåer for tilpassing av logiske modeller i DrugLogics-algoritmen. Programvareverktøyene ULM og MLM
viste også potensial som gode alternativer, men demonstrerte økt sensitivitet ovenfor parameterinnstillinger og
datasettkvalitet. Videre forsking anbefales for å undersøke bruken av deler av biomarkørene identifisert av
verktøyet PROFILE i kombinasjon med CONSENSUS aktiviteter. Optimale verktøy-spesifikke parametere for
presis identifisering ble identifisert som bruk av ‘read counts’ for CONSENSUS, MLM og ULM. Å bruke
det regulatoriske nettverket CollecTRI, og opprettholde en relativt lav p-verditerskel kan også foretrekkes med
disse verktøyene, for å oppnå konsistent biomarkør identifisering. For PROFILE kan bruk av normalisert data
være fordelaktig. Eksterne faktorer som datakvalitet, begrensninger ved logiske modeller og statistiske para-
metere kan imidlertid ha innvirkning på konklusjonene som kan trekkes fra disse resultatene. Ved å evaluere
programvareverktøy for å identifisere presise biomarkør aktiviteter, viser resultatene fra denne masteroppgaven
potensialet for å utnytte in silico metoder for kalibrering av logiske modeller i DrugLogics-algoritmen, og åpner
mulighetene for mer effektive og individuelt tilpassede kreftbehandlingsstrategier.
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1 Introduction

1.1 The Complexity of Cancer: A Global Health Concern

Accounting for nearly 10 million deaths in 2020, cancer is one of the leading causes of deaths worldwide
[1]. Cancer imposes a huge physical, emotional and economic burden on individuals, but also on families,
communities, healthcare systems and whole nations. According to the World Cancer Report, it is projected
that the global number of new cancer cases will rise to over 27 million per year by 2040, which represents
a 50% increase from the estimated 18.1 million cases that occurred in 2018 [2]. These increases are related
to a large number of potential cancer hazards, including alcohol and tobacco, eating habits, obesity and air
pollution. Despite the rising cancer incidences, the past decade has seen remarkable advances in research and
treatment, leading to an overall decrease in cancer related mortality rates. In fact, cancer survival in the United
States has doubled over the last 40 years, and 50% of people that are diagnosed with cancer in England and
Wales survive for ten years or more [3]. Nevertheless, cancer remains one of the most complex and challenging
human diseases, and there is a pressing need for new and innovative strategies to fight it effectively.

1.1.1 From Molecular Interactions to Cancer Progression

A cancer cell arises when a normal cell progresses into a tumour cell through a series of characteristic changes.
These changes can be classified as the ’hallmarks of cancer’, and include promoting cell growth and division,
resisting cell death and stimulating angiogenesis and metastasis [4]. Although cancer is a term that covers
a broad range of subtypes, most cancers arise when changes occur in genes involved in, or controlling these
processes. Thus, the hallmarks are crucial to understand the underlying mechanisms that are common in most
cancer types. The hallmarks of a cancer cell can arise through a series of genetic alterations such as mutations,
deletions, amplifications, copy number alterations (CNA), translocations and so on. Such alterations cause
molecular interactions in vital signalling pathways to deviate from normal, contributing to the progression of a
cancer cell.

When most people think of the word ’interaction’ they might think of verbal communication and exchange of
information between people. Similarly to human communication, molecular interactions convey the exchange
of information between molecules, and the information is encoded in a language of chemical and electrical
signals. In the world of biology, these signals are often thought of as cascades, in which one signal triggers a
sequence of downstream signals. Given different signals, such cascades can cause changed activity or function
of proteins, or even change the expression of specific genes. Disturbances in these pathways can lead to aberrant
cellular responses, which may contribute to the development and progression of complex diseases like cancer
[5]. To illustrate how disrupted molecular interactions in signalling cascades can lead to the emergence of
cancer, lets look at an example below.

A healthy cell relies on a complex network of signalling pathways that regulate various cellular processes,
including cell growth, differentiation and death. One of the most crucial signalling pathways for maintaining
healthy cell proliferation and differentiation is the Wnt/�-catenin signalling pathway [6]. This pathway is initi-
ated when a ligand binds to its receptor, which activates a cascade that ultimately leads to the stabilisation and
nuclear translocation of the transcription factor (TF) �-catenin. When stabilised, �-catenin binds to members
of a TF family called the the ’TCF/LEF family’, thereby regulating the expression of downstream target genes
(TG). Dysregulated interactions in this pathway can have serious and fatal consequences, and is a known char-
acteristic of many types of cancers. Aberrant activation of the pathway can occur through genetic mutations in
key components, causing dysregulated interactions throughout the signalling cascade. For example, mutations
in �-catenin may cause aberrant activation of downstream TGs involved in cell proliferation and differenti-
ation, ultimately resulting in uncontrolled cell growth and tumour formation. Consequently, while the genetic
mutation in itself may not cause a fatal outcome, the changed activity of the mutated entity altered the whole

1



1 INTRODUCTION 2

dynamic of the signalling cascade, ultimately causing a healthy cell to progress into a cancer cell.

Dysregulation of signalling pathways is actually a common feature amongst the hallmarks of cancer [5]. As a
result, cancer can be thought of as a disease with abnormal molecular interactions in pathways vital to sustain
the function of hallmark characteristics. Nevertheless, the fact that cancer is not caused by a single genetic
mutation, but rather by the altered activity of mutated entities that can cause dysregulated interactions through-
out intricate signalling cascades underscores the complexity of cancer. Thus, there is need for a comprehensive
approach to understand the underlying mechanisms of cancer, and to develop effective treatment strategies.

1.1.2 Traditional Cancer Therapies

Traditional cancer therapies has long been based on cytotoxic chemotherapy and one-size-fits-all approaches
[7]. Cytotoxic chemotherapies are a class of anticancer drugs that target rapidly dividing cells in the body,
including cancer cells. They work by damaging the DNA of cells, which prevents them from dividing and
growing. While effective in treating cancer, cytotoxic chemotherapies can have significant side effects, as they
also affect normal cells in the body, such as those in the bone marrow and hair follicles [8] [9]. Moreover,
cancer tumours are also highly heterogeneous, meaning that there may be different types of cancer cells within
a single tumour, each with its own genetic and molecular characteristics [7]. Even cancers that stem from
the same tissue can exhibit a diverse array of alterations [2]. The complexity of cancer and the challenge of
treating it effectively is further exacerbated by the growing recognition of the contribution of peoples individual
genetic makeup to the tumour biology [7]. Therefore, treating all cancer patients in the same manner, without
considering the differences in tumour biology of individual patients, is no longer sufficient for effective cancer
treatment. Fortunately, the past decade has seen a shift from traditional cancer treatments, largely due to the
emergence of so-called high-throughput technologies and systems biology.

1.2 Systems Biology: The Key to Understanding Complex Biological Diseases

Over the past decade, remarkable advancements has been made in regards to understanding the structure of the
DNA, and how changes in the DNA relates to health and disease [10]. High-throughput technologies, which
refer to the use of automated methods for generating large-scale biological data, have been instrumental in
this progress [11]. These automated methods have significantly accelerated the speed and reduced the cost
of genome sequencing, making it now possible to sequence a human genome for 1000 US dollars [10] [12].
This represents a 50 000-fold reduction in the expense of human genome sequencing since the mid-2000s. In
addition, high-throughput technologies are increasingly being used to generate so-called ’omics’ data.

Omics is a collective term used to describe different fields of studies that analyse biological molecules or
components within a biological system. Each omics field focuses on a specific type of biological molecule
or component, including genomics (the study of genes), proteomics (the study of proteins), transcriptomics
(the study of RNA molecules), and metabolomics (the study of metabolites) [13]. Omics has completely
transformed the field of genetics and medicine, by providing rapid and low cost information regarding genetic
changes such as mutations and CNAs, that give rise to the hallmarks of cancer and other diseases [13] [14]. At
a patient level, such data can highlight certain genes, mechanisms or signalling pathways that might be aberrant
by comparing the patient data to control data. As a result, high-throughput technologies have provided a pool
of biological data that, analysed in the right way, can inform clinical decision making, diagnosis and treatment
of complex diseases.

The pool of omics data generated by high-throughput technologies, combined with novel computational meth-
ods, and an increased understanding of the biological changes during disease development has prompt the
emergence of systems biology as a field. While systems biology is a term that dates back to the early 2000s
[15], its relevance has increased massively in the post-omics era. Systems biology is an interdisciplinary field of
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research that aims to understand the organisation and behaviour of biological systems as integrated networks of
complex interactions. It seeks to develop a comprehensive understanding of biological processes at a system-
level, by integrating information from multiple scientific fields, such as biology, informatics, computational
modelling, mathematics, statistics and others [15] [16]. By utilising interdisciplinary fields, systems biology
provides a way of handling vast amount of omics data in a hierarchical way.

Biological systems can be described at various hierarchical levels, including cells, tissues, organs, and organ-
isms [17]. These systems are composed of various components, depending on the system. A cellular system
may comprise of components such as DNA, RNA, proteins, and metabolites, as well as environmental factors.
Although knowledge of individual components remain important, the central focus of systems biology is to
comprehend the overall structure and dynamics of whole systems [15]. In the field of systems biology, bio-
logical systems are viewed as interconnected networks that consist of numerous interdependent components.
These components interact with each other in complex ways, resulting in the emergence of the system-level
properties. Therefore, a comprehensive understanding of biological systems requires an analysis of the network
of interactions between its different components.

1.2.1 Biological Networks

Understanding a cell’s functional organisation, its network biology, is key to post-omic biomedical research
[18]. To describe a biological system as a network means to describe its various components in a topological
way, meaning the arrangement of the components and the relationships between them [18] [19]. The compon-
ents in a biological network may be genes, proteins or small molecules, and are often termed ’nodes’ within the
field of network biology. In biological systems, these nodes are interacting with one another, and the interac-
tions between nodes are called ’links’ or ’edges’. Edges can for example portray both activating and inhibiting
interactions, binding, formation of complexes and much more, depending on the biological system. The nodes
and edges together form a biological network.

Traditionally, research regarding network biology was based on model organisms such as Escherichia coli
and Saccharomyces cerevisiae [19]. However, high-throughput technologies and the Human Genome Project
provided the necessary data to study networks in the human body [10]. The Human Genome Project was an
international research initiative that played a vital part in unravelled the chemical sequence of the entire human
genetic material [20]. Some of the most commonly studied human networks include protein-protein interaction
(PPI) networks, metabolic networks, signalling networks and regulatory networks (TF - TG interactions) [18]
[21]. Depending of the type of network, the edges can be either directed (have a direction) or undirected (a
two-way relationship). In a regulatory network, the edges may be directed, as the interactions consist of TFs
activating or repressing their TGs. Undirected interactions may for example represent two proteins binding to
each other. All networks display different types and levels of interactions, and each give a piece of the puzzle
that is the biology of the human body. Figure 1.1 illustrates a simple directed network with five nodes and six
edges.

Figure 1.1: Example of a directed network consisting of five nodes and six edges. Green edges indicate an
activating effects while red T-headed edges indicate inhibiting effects.
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The topology of a biological network can provide insightful information in the fields of medicine and clinical
research. This is due to the fact that molecular functions inside our bodies more often than not are carried out
in a highly hierarchical manner [18]. As mentioned earlier, components in a given pathway can be affected
by mutations in upstream components, which may result in changes throughout the pathway. By following the
hierarchy of biological networks, mutation sites that may cause or contribute to the progression of a disease
can be identified. Topological features of PPI networks are for example found to be very useful in identifying
mutation sites and deregulated pathways in malignancy [22] [23] [24].

However, analysis of biological networks is challenging due to their complexity, size and interconnectedness.
Gene regulatory networks (GRNs), for instance, can contain a large number of interactions between regulat-
ors (TFs) and their TGs, which may make it difficult to discern the meaningful patterns [25]. Additionally,
GRNs are often highly dynamic and constantly changing in response to different environmental conditions,
making their analysis even more challenging. Nevertheless, the study of biological networks is critical for
advancing our understanding of biological processes, and developing new approaches for treating cancer and
other complex diseases.

1.3 In Silico Modelling of Biological Networks

One systems biology approach of studying biological networks is through the use of computational in silico
modelling and simulation. Computational modelling of a biological network involves creating mathematical
models that simulate the behaviour of a biological system, based on knowledge of the interactions between
the components [26]. The in silico biological network, which is supposed to represent the in vivo network, is
constructed by using data from different omics. These in silico models can further be used to predict how the
system will behave under different conditions, and to test the effects of various interventions or perturbations.
This approach allows researchers to gain a deeper understanding of the underlying mechanisms of biological
networks at a system-level, and predict how the system would respond to potential drug treatments. Several
types of computational models can be distinguished, primarily classified as continuous or discrete [27]. Con-
tinuous and discrete models represent different levels of complexity, with discrete models being the most simple
representation of a biological network.

Logical models, a sub-type of discrete models, offer a qualitative approach to describe biological networks
[27]. Logical models define a set of rules to describe the behaviour (the logical state) of each component and its
interactions with other elements within the system. The qualitative and discrete characteristics of logical models
makes them easy to fit to biological systems, allowing researchers to focus on the most essential components
of a network and model them in a simplified way. By reducing the complexity of biological systems to discrete
logical states, logical modelling can be used to study and analyse the behaviour of large and interconnected
biological networks. However, it is important to keep in mind that logical models are only capable of analysing
networks in a qualitative way. In addition, the construction of a logical models can be a time-consuming and
labour-intensive procedure, that requires a significant amount of experimental data about biological processes
and signalling pathways.

1.3.1 Boolean Networks

Boolean networks are specific cases of logical models [27]. As mentioned previously, studying biological net-
works is challenging due to their sheer size and complexity. Boolean networks holds promise as a simplification
of this complexity while still retaining dynamic properties thought to reflect vital biological information. In
Boolean models each node has only two options: being active or being inactive. In the Boolean world this
translates to 1’s and 0’s, respectively. Whether the activity of a node in the network is 0 or 1 is determined
by its logical rule. The logical rules are node specific and are governed by the logical operators ’AND’, ’OR’
and ’NOT’ [28]. These logical operators, together with the presence or absence of other nodes in the network,
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determine a nodes activity level.

A node within the network can be regulated by multiple regulators, and the logical rule for the node is con-
structed by integrating the regulators with the appropriate logical operator [27] [28]. If regulators need to act
together to activate a node, then they are combined with the AND operator. On the other hand, if the regulators
are able to activate the target node independently, then the OR operator is used. For regulators that repress the
target node, the NOT operator is used. NOT operators can also be coupled with either OR or AND operators. If
only one regulator determines the activity of a node, then the logical rule is constructed using only the regulator
name (with an addition of the NOT operator for repressors). For instance, in Figure 1.1, node 4 was connected
to node 5 with an activating link and to node 3 with an inhibiting link. Consequently, node 4 may represented
by the following logical equation:

4 = 5 AND NOT 3 (1)

From Equation 1 it can be seen that in order for node 4 to be active, node 5 needs to be active and node 3 needs
to be inactive.

Despite the reduction of biological networks to 0’s and 1’s, Boolean models have proven to explain biological
reality surprisingly well. For instance, Davidich & Bornholdt [29] used a Boolean network model to accurately
predict the phenotype resulting from a knockout mutation in yeast. In fact, both logical and Boolean models
combined with systems biology approaches, can be utilised to develop effective cancer treatments strategies.
The advantages of utilising logical models for drug effect prediction are becoming more widely acknowledged
[30], and that is not without reason. In the world of systems medicine, logical models provide as an economic
alternative by lowering the bottleneck of experimental testing of drugs. In addition, they are relatively simple
to use and easy to understand. They can be constructed based on existing biological knowledge, and their struc-
ture can be easily modified as new information becomes available. Logical models are also computationally
efficient, making them suitable for large-scale simulations. And last but not least, logical models can provide
accurate predictions of drug effects, especially for diseases where the underlying biological mechanisms are
well understood. By integrating multiple data sources and experimental results, logical models can be used to
identify drug targets and predict their effects on biological systems in silico.

1.4 In Silico Prediction of Drug Synergies: A New Approach to Personalised Cancer
Treatments

Personalised medicine represents a transition from conventional therapeutic approaches that are designed based
on the average patient. Instead, it focuses on developing tailored treatment strategies to small groups of pa-
tients, or even to individuals. Hood & Friend [31] states that ”This revolution is being fueled by several
factors: first, an appreciation that medicine is an information science; second, systems or holistic approaches
to studying the enormous complexities of disease; third, emerging technologies that will let us explore new
dimensions of patient data space; and fourth, powerful new analytical technologies—both mathematical and
computational—that will let us decipher the billions of data points associated with each individual.”

Targeted therapy lies in the heart of personalised medicine, and relates to drugs that are designed to target
drivers of a specific disease [7] [31] [32]. These drugs target specific pathways or processes that are known
to be related to the disease, for instance by inhibiting or regulating their central genes or proteins. Targeted
drugs may be adapted to the individual patients needs, with respect to their unique genetic makeup and tumour
biology. In addition, they may eliminate unwanted side effects of cytotoxic chemotherapies as they do not
damage proliferating healthy cells, and overall generate smaller levels of toxicity. The add-on from cytotoxic
chemotherapies to targeted therapies has largely been adopted by the field of medicine in the post-omics era
[7].
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Furthermore, it has been suggested that anticancer treatments in the future will adopt combinatorial drug ther-
apies, where two or more anti-cancer drugs target a variety of robustness features or weaknesses of a specific
tumour [32]. When two targeted drugs are combined to a combinatorial drug therapy, they can have synergistic
effects. A synergistic interaction can be defined as one that performs better than the expected additive effect of
two drugs [33] [34]. Identification of effective drug synergies is a vital step towards fighting cancer efficiently,
as they have proven to be more potent at killing tumour cells, while decreasing drug resistance and allowing
for reduced drug dosages, thus decreasing the likelihood of overlapping toxicity [32]. However, to clinically
test all possible drug combinations would be costly and take a long time, to say the least. To illustrate this, the
National Cancer Institute (NCI) in the United States lists 676 drugs for cancer and conditions related to cancer
[35]. To pairwise test all of these drugs would result in 228 150 possible combinations. Taking into account
that drug synergy could involve three or even four drugs, the number rises to over 51 million and 8 billion
combinations, respectively. In addition, if dosage optimisation of each individual drug are taken into account
one can only imagine the resulting number of combinations.

In silico methods can be suitable for the development, assessment, and prioritisation of drug combinations for
clinical testing, by simulating the impact of drugs on biological systems [36]. In fact, recent studies have shown
that logical models hold great promise for predicting novel and targeted drug combinations [30] [36] [37] [38]
[39]. In addition, logical cancer models can be modified to represent the unique tumour biology of individual
patients. A generic logical model can be customised to represent the genetic variation in cancer patients by
customising it to fit to the characteristics of their individual tumour biology. In simple, this is done by changing
the logical formalism of the model to fit to the biological behaviour of the patients cancer state. In order to
do so, patient data from the individuals cancer cells need to be obtained, and used to personalise the logical
model.

1.4.1 Personalising Logical Models with Biomarkers

The term biomarker, a fusion of ’biological marker’, refers to the quantifiable indication of the state of a cell
or an organism [40]. In principle, anything that can be used to describe or measure features of a biological
system can be called a biomarker. However, in the context of bio-medicine, biomarkers often relate to different
biological molecules, for instance DNA, RNA and proteins, which can be used in clinical research as indicators
of diseases.

Clinical practice has a long-standing tradition of relying on biomarkers, and they are still recognised as the
most reliable and objectively measurable medical indicators of disease [40]. However, the use of biomarkers,
particularly laboratory-measured ones, is relatively new in clinical research, and the most effective methods for
implementing this practice are still being developed and improved. One challenge is to establish the association
between a specific biomarker and a relevant clinical outcome. In reality, this will be how a specific biomarker
is related to a given state of being, for example a state of cancer. Every cancer patient may have their own
unique set of personal biomarkers indicating the unique characteristics and behaviour of their tumour biology.

As mentioned earlier, personal biomarkers may be used to customise a generic cancer model to represent a
persons specific cancer state. However, in order to determine that an entity is a biomarker for a persons cancer,
there needs to be strong linking of that entity to the unique characteristics of the persons tumour biology. This
typically refers to biological entities that exhibit a strong association to the observed activity in the patient’s
data, and may potentially drive the disease progression in the patient. Such patient data may for instance be
transcriptomics or proteomics. As mentioned earlier, the real bottleneck is no longer the availability of relevant
biological data, it is to interpret the large amount of data in a meaningful way. In recent years, several software
tools have been developed to infer biological activity levels of proteins and genes from omics data. Such
tools are able to analyse gene expression levels to estimate gene activity, assess protein abundance or activity,
measure phosphoproteomics (the level of protein phosphorylation), and use matrices denoting the relation
between regulators and their targets to estimate regulatory activities. Biological regulators like TFs and kinases
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may for instance be inferred from downstream gene expression levels and proteomics, respectively. However,
the quality of in silico biomarker inference remains a challenge in systems biology approaches and clinical
research. In this context, quality biomarkers refers to biomarker activities that are accurate and representative of
the underlying biology of the sample in which they are inferred from. Given the complexity and interconnected
of biological networks, finding tools that are able to infer high-quality biomarker activities is challenging, but
crucially important.

1.5 Project Objectives

The primary objective of this master’s thesis was to enhance the accuracy and effectiveness of in silico inference
of biomarker activities for personalising logical models in the DrugLogics pipeline. The goal was to be achieved
through evaluating the performance of different software tools at inferring high-quality biomarkers from omics
data, by testing them in configuring logical models that accurately represent and predict cellular behaviour.
The term ’biomarker activities’ is in this project related to biological activity levels of entities inferred from
omics data by software tools. By using high-quality biomarker activities to personalise logical models, the
overarching aim of this project is to pave the way towards more targeted and personalised cancer treatments.

The objectives related to this project are:

– To identify software tools capable of inferring high-quality biomarker activities from omics data, and to
utilise these biomarker activities to calibrate logical models that may be used to predict accurate drug
synergies, for personalised and targeted cancer treatment.

– To identify optimal combinations of tool-specific parameters, to ensure accurate biomarker activity in-
ference. This involves identifying the most optimal combinations of parameters and settings for each
software tool, such as input data types, regulatory networks, and statistical thresholds, to maximise the
accuracy and robustness of high-quality biomarker activity inference.

The following specific questions are also addressed:

– Is the inference performance of the software tools generalisable across different cancer models and cell
lines?

– Do optimal tool-specific parameter settings persist across models and cell lines?

– Can the work in this thesis support recommendations for use of specific new tools and approaches in the
DrugLogics pipeline?



2 Materials and Methods

This project was carried out utilising a systems biology approach. A brief overview of the workflow conducted
throughout this project is outlined here, while the succeeding sections provide a comprehensive explanation
of the tools and methods utilised. Initially, three cancer models were gathered from different research groups.
Next, a number of cell line datasets were obtained for each cancer model, and four software tools were utilised
to infer biomarker activities from the datasets. The inferred biomarker activities were fitted to the format of the
synergy prediction pipeline of the DrugLogics Initiative. The fitted data were subsequently used to calibrate lo-
gical models in the DrugLogics pipeline, resulting in drug synergy predictions. To asses the inference accuracy
of the software tools, AUC ROC values were calculated for each of the pipeline-generated synergy predictions.
Then, to evaluate the significance of the obtained synergy results, a statistical analysis using bootstrapping was
carried out. This involved re-running the pipeline to generate new synergy predictions using random activity
data. By comparing the synergy results generated by using biomarker activities inferred by the software tools
to the random results, the statistical significance of the predictions could be discussed. Finally, the results of
this analysis were evaluated to determine the most effective and precise tool for identifying biomarker activities
from omics data to calibrate logical models in the DrugLogics pipeline. Figure 2.1 displays a brief overview
of the workflow conducted throughout this project. Overall, this workflow provided a systematic approach to
analysing software inference tools, using rigorous data processing techniques and ensuring the reproducibility
of the results obtained.

Figure 2.1: Overview of the workflow conducted to analyse the performance of software tools in inferring
biomarker activities from omics data. First, biomarker activities were inferred from cell line

transcriptomics data, and the activities were converted to the training data format DrugLogics synergy
prediction pipeline. Next, the pipeline was executed with the biomarker activities to calibrate logical

models and generate drug synergy predictions. Finally, AUC ROC values were calculated, and a statistical
analysis was performed to determine the significance of the obtained results.

An overview of the different versions of software packages, databases and tools utilised in this project can be
found in Appendix A. In addition, all related scripts and files necessary to redo the analysis have been made
available on GitHub: https://github.com/victoriagjovaag/Master-Thesis.

8
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2.1 The DrugLogics Pipeline

This master thesis has been carried out as part of the DrugLogics Initiative. The DrugLogics Initiative comprise
of multiple sub-projects, all aiming to utilise multi-omics data combined with logical models towards the
development of personalised and targeted medicine [41]. DrugLogics operates on a pipeline-based architecture,
which relates to a series of data processing steps, where the output of one element is the input in the next
element. In this way, pipelines are able to facilitate the management and processing of large and complex
datasets.

The DrugLogics Initiative is composed of several modular components, which can be viewed from the related
GitHub repository. Each modular component performs a specific data processing or analysis task. This project
aims to improve the predictive results of one of these software modules: the ’druglogics-synergy’ module. The
druglogics-synergy module, referred to as the ’DrugLogics pipeline’ from this point, is a software pipeline
module that provides an in silico foundation that guides the generation of disease specific logical models, and
predicts the response of drug combinations on those models [42]. The pipeline is also designed to identify
novel drug synergies for a given cancer model. The goal is that the DrugLogics pipeline will be an automated
modelling pipeline capable of generating logical models for any cancer network that may be customised using
baseline biomarker data from patient tumours, and provide combinations of drug treatments that should be
further examined in pre-clinical and clinical settings (Figure 2.2)

Figure 2.2: Simplified overview of the DrugLogics pipeline workflow. The pipeline is designed to be an
automated modelling pipeline capable of generating logical models for any cancer network that may be

customised using baseline biomarker data from patient tumours, and provide combinations of drug
treatments that should be further examined in pre-clinical and clinical settings. The figure is retrieved from

https://druglogics.eu/projects/colosys/
.

The DrugLogics pipeline subsequently runs two software modules: ’Gitsbe’ and ’Drabme’. Initially, Gitsbe
is utilised to generate a collection of Boolean models that are calibrated to specific biological activity levels,
by using a genetic parameterisation algorithm. Subsequently, Drabme uses the calibrated models from Gitsbe
to conduct an analysis of drug responses to these models, and predicts scores representing the synergistic
effect of the drugs. The full documentation for the Gitsbe and Drabme modules can be accessed at the
DrugLogics Software Documentation.

https://github.com/druglogics
https://druglogics.eu/projects/colosys/
https://druglogics.github.io/druglogics-doc/index.html
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2.1.1 Gitsbe

Gitsbe is an acronym for ’Generic Interactions To Specific Boolean Equations’, which highlights its function
of converting generic interactions into Boolean formulas. In order to run the Gitsbe module, there are some
required inputs:

– A network: A file displaying a cancer network. The network needs to be in Cytoscape’s .sif format, and
its interaction statements must be directed and binary signed.

– A training data file: A file that contains a condition-response pair, where the condition refers to a specific
biological state (for instance a steady cancer state), and the response relates to observed activity levels
(for instance inferred biomarker activities) at this state.

– A model outputs file: A file with biological entities that directly influence the model outputs (proliferation
or cell death).

– A configuration file: A file where common options are specified.

In addition, there are some optional inputs:

– A project name: If specified, it will be the title of the folder storing the outputs of Gitsbe.

– A drug panel file: A file with information about the drugs that will be tested. This file is required when
the training data file specifies a single or double drug perturbation condition.

The Training Data File
The condition-response pairs specified in the training data file are used to calibrate logical models in the Gitsbe
module. There are several different condition - response options that are supported in the DrugLogics pipeline:

– Knockout/overexpression condition - globaloutput response: This is a global output response to a knock-
out and/or an overexpression. The globaloutput response refers to an overall cell fate which must be
specified in the [0,1] interval (ranging from cell death to a cell proliferation state). This option allows
to calibrate models to fit to a knockout/overexpression of one or several biological entities in the model
network.

– Single drug perturbation - globaloutput response: This is a global output response to a drug perturbation.
This option allows to calibrate models to fit to the effect a single drug has on the network model.

– Double drug perturbation - globaloutput response: This is a global output response to a double drug
perturbation. This option allows to calibrate models to fit to the synergistic effects a drug combination
has on the network model.

– Unperturbed condition - globaloutput response: This is a global output response to an unperturbed
system.

– Unperturbed condition - steady state response: This is a steady state response to an unperturbed system.
A steady state means that the condition of the system does not change over time. The nodes specified as
a response will be biological entities and activity levels related to the steady state.

The ’unperturbed condition - steady state response’ option is the most commonly used option in the DrugLogics
pipeline, and also the option used throughout this project. In this project, the steady state response relates to
the inferred biomarker activities from cell line data.
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The content of the training data file needs to be formatted in a specific way:

Condition
[data]
Response
[data]
Weight: [number]

The training data file, together with the other inputs, are used by the Gitsbe module to calibrate logical models
to fit to the biological observations described in the training data. This process is illustrated in Figure 2.3, and
can can be summed up by three steps.

Figure 2.3: Gitsbe cycle for utilising training data to calibrate logical models in the DrugLogics pipeline.
Using prior knowledge of molecular interactions (signalling topology), along with steady state data

(biomarker activities), logical models are constructed with predefined rules. A genetic algorithm
iteratively mutate the logical logical rules of the models and calculate their fitness score. This process is
performed simultaneously for multiple models, resulting in an optimised ensemble that closely matches

the observed biomarker activities. The figure is modified from Flobak et al. [42].

Step 1:
The model interactions defined in the network .sif file are converted to logical equations. This is accomplished
by relating the nodes to their regulators in the network, based on the characteristics of the following equation:

Target = (A OR B) AND NOT (C OR D)

In this equation, A and B are activating regulators, and C and D are inhibitory regulators. The logical operator
’OR’ links the A and B, and C and D together. Similarly, the ’AND NOT’ operator links to two pairs of
regulators together. Essentially, the expression states that either regulator A or B must be present, and in
addition both C and D must be absent for the target to be active. If one or more of these criteria are not met,
the target node will be inactive. Each node in the network will end up with its own logical equation, based on
its interactions with the other entities in the network.

Step 2:
Gitsbe uses a genetic algorithm to create logical models that fit to the biomarker activity data that is stated in
the training data file. The creation of these logical models follows a series of repeated steps:

– An initial generation of logical models are randomly generated from the original model (the logical model
created from the network .sif file) in a mutation phase. This first collection of models are generated by
randomly introducing mutations in the logical equations of the original model (for example switching an
’AND NOT’ operator to an ’OR NOT’, or vice versa).

– A fitness score is calculated for each model. This score relates to how well a given model represents the
biomarker activity observations in the training data. The fitness score is a continuous value between 0
(no fitness at all) and 1 (perfect fitness).
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– The models with the highest fitness scores go on to the next phase.

– The mutation phase is repeated, where the logical equations of the highest ranking models are exchanged
in a crossover phase. This phase will produce the next generation of models, which then again will have
a fitness score calculated.

Step 3:
After repeating the series of steps for a specified number of times (as specified in the configuration file), a final
collection of output models are obtained, that best represent the observations in the training data file.

2.1.2 Drabme

After logical models are calibrated by Gitsbe, Drabme (Drug Response Analysis to Boolean Model Ensembles)
uses them together with additional input files to identify and evaluate their responses to drug combinations. Like
Gitsbe, Drabme has some required inputs:

– A models directory: A directory of logical models that was generated by Gitsbe.

– A drug panel file: A file storing information about the different drugs that will be tested on the models.

– A model outputs file: The same model outputs file that was an input in Gitsbe.

– A configuration file: The configuration file that also was an input in Gitsbe.

Drabme also has some optional inputs:

– A project name: If specified, it will be title of the folder storing the outputs of Drabme.

– A perturbations file: A file listing the single and combined drug perturbations to be used.

Drabme will use these inputs to predict drug synergies following these three steps:

1. For each model from Gitsbe, all perturbations specified in the perturbations file are simulated. These
perturbations results in a new logical model for every combination of models (in the models directory)
and drugs (in the perturbation file). The new models are generated by permanently changing the logical
equations of the perturbed target nodes in the models to either false (when the drug inhibits its target) or
true (when the drug causes the expression of its target).

2. Next, a global output response parameter referred to as the ’growth value’ is calculated for each model.
Essentially, a growth value of 0 denotes zero growth (cell death state), whereas a growth value of 1
represents a model with maximum growth (a proliferating cell).

3. Lastly, the growth values of the perturbed models are utilised to assess which drug combinations are
synergistic.

In the configuration file one of two mathematical models can be selected to evaluate if two drugs are synergistic,
either HSA (Highest Single Agent) or Bliss Independence. The HSA mathematical model was used exclusively
in this project as it is a less conservative model in identifying synergies, which enables more potential synergies
to be classified. These mathematical models work by comparing the expected additive response of two drugs,
to the observed or predicted combined response [43]. If the combined response is lower than the additive
response, the drugs are considered to be synergistic, whereas if it is higher, they are considered antagonistic
(meaning that the combined effect of the drugs is less than what would be expected based on the sum of
their individual effect) [44]. In the case of the HSA model, the minimum of the two single-drug perturbed
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model responses is used as the additive response in the pipeline. Hence, if the output response of the two-drug
perturbed model is lower than the minimum of the two single-drug perturbed models, the combination of the
two drugs is considered to act synergistically on that particular model.

There are two ways to assess synergies in Drabme: model-wise and ensemble-wise. In the model-wise ap-
proach, Bliss or HSA is used to compare the number of models predicting a drug combination as synergistic
or antagonistic. In the ensemble-wise approach, the average single-drug responses and average combination
response are calculated across available models, and Bliss or HSA is used on these ensemble-wise values. The
ensemble-wise approach was utilised in this project.

The so-called ’HSA-exceed’ value is one of the main outputs of Drabme and relates to the the difference
between the average combination response and the minimum of the two average single-drug responses. The
more negative exceed value, the stronger is the indication of the synergy. A positive value indicates a more
antagonistic effect.

2.2 Collecting Models and Cell Lines

2.2.1 Model Selection

Specific cancer models needed to be selected in order to to run the DrugLogics pipeline. The cancer models
used in this analysis were selected based on availability of necessary background information in order to run
the pipeline. The model-specific inputs that are needed to run the DrugLogics pipeline are:

1. Logical rules of the components in the cancer network. This information is vital in order to create the
model network file (the .sif file) and the model outputs file that is needed as Gitsbe inputs.

2. Observed synergies for appropriate cell lines of the cancer model. This information is needed in order to
be able to compare the resulting synergies to known synergies. Drug synergies are cell line specific, so
when selecting a model there needed to exist information about drug synergies for appropriate cell lines
for the respective cancer model.

Three logical cancer models were selected based these criteria: a gastric adenocarcinoma model, a colitis-
associated colon cancer (CAC) model and a colorectal cancer (CRC) model. All necessary files used in this
project to run these models with the DrugLogics pipeline can be found in the related GitHub folder.

The CASCADE 1.0 Model
CASCADE 1.0 is a logical model representing the cell fate decision network in the human gastric adenocar-
cinoma cell line (AGS) [30]. The main reason why CASCADE 1.0 was chosen for this project was that it was
specifically developed by the DrugLogics group for use in the DrugLogics pipeline. As a result, the model
fulfilled the necessary criteria for running the pipeline. In addition, CASCADE 1.0 is a relatively small model
in terms of number of nodes and edges, providing a fast compilation time when running the pipeline.

CASCADE 1.0 was constructed to contain key signalling pathways in AGS [30]. The construction of the model
was based on knowledge of the mutations in the AGS cell line from scientific papers and databases. Amongst
others, this comprised of the MAPK, PI3K, Wnt/�-catenin and NF-B pathways. These pathways, as well as
the interacting components between them, were included in the CASCADE 1.0 model to represent the cell fate
decision network of AGS cells. How these entities are connected can be seen from the interaction network of
CASCADE 1.0 in Figure 2.4.

Both transcriptomics and proteomics data from the AGS cell line was used to curate CASCADE 1.0, as well
as cancer and cell line databases, like the Cancer Genome Atlas and the Cancer Cell Line Encyclopedia. The
final model consists of 75 nodes and 149 edges. Each component in the network is associated with a logical

https://github.com/victoriagjovaag/Master-Thesis/tree/main/DrugLogics%20Pipeline%20Scripts
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rule that defines its activity level based on the presence or absence of its regulators. The logical formalism
of the model is defined to recapitulate unperturbed AGS cells in their baseline proliferating state, and can be
found in Appendix B. The network does not have any external input components, but contains two phenotypic
output nodes, Prosurvival and Antisurvival, representing the cell fates of the model. Figure 2.4 displays that
Prosurvival is directly influenced by active MYC and CCND1, whereas Antisurvival is directly influenced by
CASP3 and FOXO f. These nodes are again affected by other components in the network. See Flobak et al.
[30] for the full documentation of the model construction.

Figure 2.4: Cell fate decision network of AGS gastric adenocarcinoma cell line model (CASCADE 1.0)
derived from Flobak et al. [30]. The network does not receive any external inputs but consists of two

outputs: Antisurvival and Prosurvival (coloured in red and blue, respectively, as phenotypic indicators).
The signalling components of the network are proteins, protein complexes or genes, each connected to a
logical rule that determines its Boolean activity level (0 or 1). Blue arrows indicate an activating effects

while red T-headed lines indicate inhibiting effects.

By utilising the CASCADE 1.0 model Flobak et al. [30] were able to identify four drug synergies that had a
synergistic effect in inhibiting gastric cancer (GC) cell growth in laboratory testing.

The Lu Model
The CAC network model used in this project was constructed by Lu et al. [45] to investigate the mechanism
underlying CAC. This model will be referred to as the ’Lu model’ from this point onward. The Lu model is a
Boolean logical model incorporating multiple layers of information, including gene expression data, protein-
protein interactions (PPI), and known signalling pathways in intestinal epithelial cells. As a result, the model
reveals key modules that are dysregulated in CAC, including modules involved in inflammation, cell prolif-
eration and apoptosis. The model was used by Lu et al. [45] to identify potential therapeutic targets. The
research group found that several key nodes in the network, such as IL-6, STAT3, and NF-B, were highly con-
nected and could serve as effective targets for anti-cancer therapy. Additionally, they identified several novel
targets that had not been previously implicated in CAC, including the protein kinase PAK1 and the transcription
factor (TF) SRF. By combining multiple targets, the authors were able to construct combinatorial therapies that
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displayed enhanced efficacy in reducing tumour growth in mouse models of CAC.

The original Lu model network consists of 70 nodes and 153 edges. However, in this project it was necessary to
focus solely on the intracellular signalling pathways, as these pathways often are the ones that are dysregulated
in cancer cells, and the ones that can be targeted by drug therapy. In addition, by focusing of the intracellular
pathways, it is not necessary to specify inputs, thereby building on the endogenous proliferative nature of cancer
cells. To accommodate this, the nodes and edges related to the extracellular immune microenvironment were
removed. The goal was that reducing the network to include only intracellular components would simplify the
model while still capturing the key signalling pathways involved in CAC. The reduction resulted in removing
14 nodes and all their corresponding edges. The original and modified Lu models are displayed in Figure 2.5.

(a) Original Lu model network. (b) Modified Lu model network.

Figure 2.5: Cell fate decision network of a colitis-associated colon cancer model derived from Lu et al.
[45]. Panel (a) displays the original CAC model and Panel (b) displays a modified CAC model where 14

nodes and edges related to the extracellular immune microenvironment are removed. The model have two
phenotypic output nodes: Antisurvival and Prosurvival (coloured in red and blue, respectively). The

signalling components of the network are proteins, protein complexes or genes, each connected to a logical
rule that determines its Boolean activity level (0 or 1). Green nodes are related to the extracellular immune
microenvironment. Blue arrows indicate an activating effects while red T-headed lines indicate inhibiting

effects.

Same as for the CASCADE 1.0 model, there are two phenotypic output nodes in the Lu model. Each node
in the Lu network is also associated with a corresponding logical rule, and thus it was possible to create the
necessary input files for running the DrugLogics pipeline with this model. The network files for the Lu model
was created in another DrugLogics master’s thesis by Thea Hettasch (’Effect of calibration data subsetting
on Boolean model calibration and drug synergy predictions’, May 2023). The network file was created by
manually converting the logical formalism of the Lu model to tab-delimited, directed and binary signed single
interactions. The model outputs file was created from the topological network by annotating all nodes contrib-
uting to Apoptosis as -1, and all nodes contributing to Proliferation as 1. The nodes that contributed to either
Apoptosis or Proliferation were assumed to be nodes linked to a node directly connected to the phenotypic out-
put (Figure 2.5). In the case of Apoptosis, this involved annotating all nodes with an activating link to CASP3
with a value of -1, and all nodes with an inhibiting link to CASP3 with a value of 1. Similarly for Prolifera-
tion, all nodes with a direct link to either P21, CASP3, FOS or CYCLIND1 were annotated as either 1 or -1
depending on their activating or inhibiting contribution, respectively. The logical formalism of the original and
reduced Lu models can be found in Appendix B. The observed synergies of appropriate cell lines for the Lu
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model was derived from the findings of Jaaks et al. [46].

The Park Model
The CRC model used in this project was developed by Park et al. [47], and will be referred to as the ’Park
model’ from this point forward. The Park model is a Boolean network model representing the large-scale
signalling events in the HCT-116 CRC cell line (Figure 2.6). The Park model was based on integrating PPI data,
gene expression data, and information on signalling pathways and feedback loops. The model incorporates
several key components of signalling pathways involved in CRC progression, including signalling events such
as the MAPK/ERK, PI3K/AKT and Wnt/�-catenin pathways. The model also includes feedback loops that can
modulate the activity of these pathways in response to external stimuli, such as drug treatments. Integration
of PPI data and feedback loops in this way allows for a more comprehensive understanding of the complex
signalling networks involved in CRC.

Using the CRC model, Park et al. [47] found that the combination of inhibiting MEK and JNK pathways,
was particularly effective in disrupting feedback loops and promoting cell death in CRC cells. As a result,
inhibition of the MEK and JNK pathways could enhance the efficacy of targeted therapy in CRC by suppressing
compensatory signalling pathways that can lead to drug resistance. The model analysis also revealed that the
combination treatment was able to overcome adaptive resistance to multiple targeted therapies, suggesting that
this approach could be applicable for the treatment of CRC.

(a) Original Park model network. (b) Modified Park model network.

Figure 2.6: Cell fate decision network of a colorectal cancer model derived form Park et. al [47]. Panel (a)
displays the original CRC model and Panel (b) displays a modified CRC model where input nodes and

related edges are removed. The network have of two output nodes representing phenotypic outputs:
Antisurvival and Prosurvival (coloured in red and blue, respectively). The signalling components of the
network are proteins, protein complexes or genes, each connected to a logical rule that determines its

Boolean activity level (0 or 1). Blue arrows indicate an activating effects while red T-headed lines indicate
inhibiting effects.

As shown in Figure 2.6, the original Park model consists of 95 nodes and 341 links, with Apoptosis and
Proliferation representing the two phenotypes produced by the model. The original model also contains four
input nodes: EGD, DNA damage, WNT and TGF�, which represent the external stimuli that can activate the
signalling pathways involved in the cancer progression. Similar to the Lu model, these external input nodes
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(and the ones that were soley dependent on them) were removed from the Park model prior to using it in the
DrugLogics pipeline. In the same manner as the other cancer models, there are some signalling pathways
(like the MAPK/ERK and PI3K/AKT pathways) that can promote cell proliferation, survival, and invasion of
CRC. Understanding the mechanisms underlying the activation of these pathways is therefore important for
developing effective cancer therapies of CRC. The logical formalism underlying the original and reduced Park
models can be found in Appendix B.

The necessary files used in this project to run the DrugLogics pipeline with the Park model were created in
a similar way as for the Lu model in the master’s project of Thea Hettach, by utilising the models logical
formalism and network topology. The observed synergies of appropriate cell lines for the Park model was also
derived from the findings of Jaaks et al. [46].

2.2.2 Cell Line Selection

In order to utilise software tools to infer biomarker activities, it was necessary to select appropriate cell line
datasets to infer the activities from. Cell lines are cell populations derived from single cell sources, like tissues,
organs, and cancerous tumours [48]. Human cancer cell lines have been extensively studied and are widely
available, providing a valuable resource for researchers to investigate cancer-related processes. During this
project, cell lines were selected based on two criteria:

1. That the cell line is derived from the cancer type of one of the respective models.

2. That known drug synergies for the cell line is available. As stated previously this information is necessary
to be able to compare the resulting synergies to known synergies of the cancer model.

Cell line transcriptomics data was collected from Cell Model Passports (CMP) in this project. In the world of
genomics and cancer research, CMP is a hub for functional datasets and preclinical cancer models [49]. CMP
currently holds over 2000 cancer cell lines, and include detailed annotations like tissue and cancer type. The
platform is designed to be constantly evolving by allowing for incorporation of new models and datasets. The
selected cell lines and their identifiers are displayed in Table 2.1.

Table 2.1: Identifiers of the cell lines utilised in this project [49].

Cell line Cancer type Tissue status Sample site Sanger ID
AGS Gastric carcinoma Tumour Stomach SIDM00850
HCT-116 Colorectal carcinoma Tumour Unknown SIDM00783
COLO-205 Colorectal carcinoma Metastasis Ascites SIDM00826
SW48 Colorectal carcinoma Tumour Colon SIDM00837
SW620 Colorectal carcinoma Metastasis Colon SIDM00841

All models used in this project have their own specific node annotations. In order to have a unified framework to
work with, it was necessary to convert the CPM datasets from HGNC (HUGO Gene Nomenclature Committee)
annotations to the specific annotations of the logical models. The HGNC multi-symbol checker was used as
a resource for this purpose. The multi-symbol checker compares search items against all HGNC approved
symbols as well as all previous, withdrawn and alias symbols. In this project, the HUGO database was used by
uploading a list of model specific node names to the multi symbol checker tool. The checker then returns a list
of matches for each search item, which was used to create scripts for model specific annotation conversions.
Scripts for converting from HGNC annotations to model specific annotations can be accessed at the related
GitHub folder.

Ethical Concerns of Using Biological Data
There are some ethical concerns regarding the use of biological data, such as cell lines. Amongst others, these

https://www.genenames.org/tools/multi-symbol-checker/
https://github.com/victoriagjovaag/Master-Thesis/tree/main/Creating%20Training%20Data/node_conversion
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concerns include legal and ethical compliance, consent, and questions related to storing and using biological
material [50]. Using human cell line data for research generally requires informed consent, and balancing the
benefits of research with individual rights is important. An ethics statement is not necessary here, since all cell
lines used in this study are publicly available at the open-access database CPM.

2.3 Part I: Creating Training Data for the DrugLogics Pipeline

This section presents the workflow from inferring biomarker activities from omics data with software tools, to
a fitted training data file that can be used in the DrugLogics pipeline to calibrate logical models.

2.3.1 Selecting Inference Tools

There are many software tools that can infer biomarker activities from omics data, and their applicability can
vary depending on the research question and datatype being analysed. As this project aims to identify an
optimal tool for use in the DrugLogics pipeline, multiple software tools needed to be analysed. Because of this,
a review of the current available tools was performed. Two approaches were selected based on this review: the
’decoupleR’ software suite and the ’PROFILE’ framework.

There are several reasons why these two approaches were selected. Both decoupleR and PROFILE have been
extensively tested and validated in different research contexts, and are supported by software communities and
ongoing development efforts. DecoupleR software suite has for instance been used in a variety of research
contexts, including cancer biology [51]. The decoupleR methods was shown to be effective in inferring activ-
ities of molecular entities associated with various disease states, and has been validated using experimental
data. Similarly, PROFILE has also been used in a variety of research contexts, particularly in cancer research.
It was shown to be effective at identifying prognostic biomarkers and predicting treatment outcomes, and has
been validated using both experimental and clinical data [52]. While there is always room for improvement
and further validation, these tools are generally considered to be robust and reliable, and are likely to remain
important tools for omics data analysis.

DecoupleR
DecoupleR is a an open source Bioconductor package containing a collection of statistical tools that extract
biological activities by employing prior knowledge [53]. DecoupleR can be utilised to extract information
from omics data, such as transcriptomics or proteomics, given that the data can be associated with a biolo-
gical process that is built from known phenomena. According to Badia-I-Mompel et al. [53] such biological
processes can for example be ”transcriptomics gene sets regulated by a transcription factor or in phospho-
proteomics phosphosites that are targeted by a kinase.”. In that way, regulators of the data, such as TFs and
kinases, can be deduced from their downstream transcripts and phosphosite targets, respectively. As of now, the
decoupleR software suite contains 11 different statistics, including Area Under the Curve (AUCell), Fast Gene
Set Enrichment Analysis (FGSEA), Gene Set Variation Analysis (GSVA), Univariate Linear Model (ULM),
Multivariate Linear Model (MLM) and Weighted Sum (WSUM) [53]. In addition, the decoupleR ensemble
includes a so-called CONSENSUS tool that generates a combined score when multiple methods are used. A
complete list of the decoupleR tools can be found in Appendix C.

All decoupleR tools have a standard input format:

– A matrix of molecular readouts (for example gene expression data).

– A network that relates target features (for example genes and proteins) to ’source’ biological entities (for
example pathways, TFs and molecular processes).

In this project, cell line data was utilised as the molecular matrix and two different gene regulatory networks
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(GRNs) were used to relate TFs to target genes (TGs). In addition, a ’minsize’ argument can be specified
according to the desired minimum target of features per biological entity. The minsize argument was sat to 5,
meaning that biological entities with less target features were removed. By specifying the minsize argument
potential noise from TFs with few corresponding TGs in the molecular matrix were removed. In addition, a
MOR (mode of regulation) argument is available for methods that can leverage weights, and denotes whether
an interaction is activating (1) or inactivating (-1).

The various tools offered by decoupleR all aim to identify activities that are driving the observed patterns in
the input data. This is accomplished by exploiting the combination of prior knowledge resources and different
statistical methods. By doing so, the decoupleR tools are able to infer entities (for instance TFs) that regulate
the behaviour in the data, and to assign scores that reflect the degree to which they exhibit those activities.
Figure 2.7 displays the general workflow of decoupleR tools.

Figure 2.7: General workflow of decoupleR tools. The decoupleR software suite comprises various
computational methods that, when combined with relevant prior knowledge resources, are capable of
estimating the biological processes and functions reflected in omics data. The figure is retrieved from

Badia-i-Mompel et al. [53].

Recent benchmarking of the decoupleR tools showed that some tools performed consistently better than others
in regards to inferring biomarker activities from omics data [53]. The benchmark was designed to evaluate
the accuracy, robustness, and computational efficiency of the tools. The documentation for the decoupleR
benchmark is described by Badia-i-Mompel et al. [53] in ’decoupleR: Ensemble of computational methods to
infer biological activities from omics data’. According to the benchmark, most of the tools return acceptable
estimates. However, the combination into a CONSENSUS score, and the use of linear models consistently
outperformed the other methods. In addition, they found that methods that utilise weights perform better when
those are taken into consideration. Badia-I-Mompel et al. [53] also investigated the methods speed and found
that the top three performing tools ran at a satisfactory speed, allowing their use with large datasets. A list
of decoupleR methods ranked by their performance in the benchmarking can be found in Appendix C. As a
result of the benchmarking analysis of decoupleR tools estimate and speed performances, the overall top three
performing tools, namely ULM, MLM and CONSENSUS, were selected for further analysis in this project.

Univariate Linear Model
ULM (previously known as SCIRA) is a statistical method that estimate the correlation between a single regu-
lator (like a TF) and molecular features (like its TGs) [54]. This strategy enables ULM to identify the unique
contributions of each TF to their TGs. To achieve this, ULM uses the prior knowledge given in the regulatory



2 MATERIALS AND METHODS 20

network as input. The regulatory network contains information about TF-TG interactions, which can be either
activating or inhibiting. This information is used to identify which TFs potentially regulate the expression of
each gene in a data (the molecular matrix). A simplified step-by-step workflow of ULM is displayed in Figure
2.8.

For each gene in the molecular matrix, ULM looks up the corresponding information in the regulatory network
to identify which TFs potentially regulate its expression (Step 1 in Figure 2.8). Once ULM has identified the
TFs that potentially regulate the expression of each gene in the data (Step 2 in Figure 2.8), it needs to estimate
the activity levels of these TFs. ULM uses a linear model to estimate the activity levels of each TF, given by
the associated gene expressions in the molecular matrix, and the MOR of the interactions in the regulatory
network. Target features with no MOR are set to zero. A simplified mathematical representation of this can be
the following equation:

Molecular Readout = Mode of Regulation ⇥ Regulator Activity (2)

A positive MOR indicates that the molecular readout (expression level) of the gene is positively associated with
the activity level of the regulator, while a negative coefficient indicates that the expression level of the gene is
negatively associated with the activity level of the regulator. The obtained t-values from the fitted linear model
is the estimated activity score of the regulator, based on the expression levels of its TGs. In this way, ULM
assumes that the activity of each TF is independent of the activities of other TFs in the network, and does not
take into account potential interactions between TFs. The output of ULM, and the other decoupleR tools used
in this analysis, is a list of the estimated activity levels of each TF in the sample, along with their corresponding
p-values (Step 3 in Figure 2.8).

Figure 2.8: Simplified step-by-step workflow of decoupleR tools. The first step includes utilising
information about regulon interactions from network resources to identify the entities that potentially

regulate the expressions observed in the input data. The second step consists of estimate the activity levels
of these regulators by using a statistical algorithm. This results in step three, a list of the estimated activity

levels of each regulator in the sample, along with their corresponding p-values.

In summary, ULM uses a prior knowledge resource in form of a regulatory network, to identify the TFs that
potentially regulate the expression of genes in a specific data sample. It then estimates the activity levels of
these TFs using a linear model that takes into account the strength of the regulatory interaction between each
TF and its TGs, as well as the gene expression data.

Multivariate Linear Model
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Similar to ULM, MLM is also a statistical method used to identify a subset of omics features that are associated
with the biological activity of a given data sample. Unlike ULM, MLM considers all regulators simultaneously
in a multivariate linear model. The MLM workflow still follow the same steps as indicated in Figure 2.8,
only that the linear regression is based on multiple TF’s. By utilising multiple regression, the activity levels
of multiple TFs are estimated simultaneously, by taking into account the possible interactions between the
regulators and their joint influence on TGs, as well as the expression levels of the genes. Equation 2 displays a
simplified mathematical representation of MLM:

Molecular Readout = �1⇥ Activity of R1 + �2⇥ Activity of R2 + ... + �n⇥ Activity of Rn (3)

In this equation R represent regulators, and � denotes the the MOR’s related to the relationship between the
molecular readout and the regulator. MLM may provide a more comprehensive analysis of TF activities than
ULM, as it considers the potential interdependence between multiple TFs and their TGs. This allows for a
more comprehensive analysis of interconnected regulatory networks. This is particularly important in cases
when one TF may activate another TF, or two TFs may cooperate to regulate a set of TGs. By considering all
regulators jointly, MLM can provide a more accurate representation of complex regulatory networks.

CONSENSUS
CONSENSUS is an ensemble method that combines the results of the top-performing statistics in decoupleR
(MLM, ULM, and WSUM) to generate a final list of potential biomarkers [53]. The idea behind CONSENSUS
is to obtain a more robust set of biomarker activities by using the strengths of several methods.

To calculate a ’consensus score’ for each biomarker, the activity scores obtained from the top-performing
methods are first standardised using a double-tailed z-score transformation. A z-score is a statistical measure
that represents the number of standard deviations (SDs) an individual data point is away from the mean of a
population [55]. The first step of a double-tailed z-score transformation is to calculate the z-score for each
activity score by subtracting the population mean from the raw score, and dividing the result by the population
SD. This gives a standardised z-score representing how many SDs the raw score is away from the population
mean. Next, the z-scores are transformed using a new mean and SD. This is done by calculating a new z-score
for each standardised score using the formula:

New z-score = (old z-score � current mean )/ current SD ⇥ new SD + new mean (4)

In this equation, the ’old z-score’ refers to the standardised score calculated in the previous step, and the ’current
mean’ and ’current SD’ refer to the mean and SD of the old z-score. The new mean and SD refer to the desired
mean and SD of the transformed scores. In a double-tailed z-score transformation, the new mean and SD are
chosen such that the resulting z-scores are symmetrical around zero. This means that both positive and negative
z-scores will have the same magnitude, and the distribution will be centred around the new mean. The purpose
of this transformation is to standardise the data and make it easier to compare scores across different variables
or populations. After the double-tailed z-score transformation is performed, the CONSENSUS score for each
biomarker is calculated as the mean of the transformed activity scores.

PROFILE
PROFILE is a pipeline that tailors logical models to biological measurements, like a patient tumour [52].
Similar to the DrugLogics pipeline, PROFILE aims to use logical modelling as a tool for precision medicine,
and facilitate better clinical choices for patient-specific drug treatments. PROFILE is developed to handle
high-dimensional, heterogeneous omics data that is often encountered in clinical studies. Béal et al. [52]
demonstrates the effectiveness of PROFILE at identifying biomarkers for patients with acute myeloid leukemia.
They identified a set of biomarkers that is associated with poor overall survival, including genes involved cell
cycle regulation. In addition, they identified a set of biomarkers that is associated with response to specific
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therapies, such as genes involved in DNA repair.

PROFILE is a comprehensive tool that provides all the necessary steps from inferring biomarker activities
to personalising logical models. Since the goal of this project was to utilise the DrugLogics pipeline for
personalising logical models and predicting synergies, only the part of PROFILE that relates to inferring patient
profiles (biomarker activities) was employed.

PROFILE can infer activity levels from various data types, such as mutation data, copy number alterations
(CNA), transcriptomics and proteomics from the biological system of interest (for example patient data or cell
lines). In this project, PROFILE was only utilised to infer biomarkers from RNA sequencing data taken from
cancer cell lines. In PROFILE, activity levels are obtained by either binarising or normalising the data. To
achieve this, the gene expression data is initially divided into three categories based on their distribution across
the samples: bimodal, unimodal, or zero-inflated distribution. Genes are treated differently according to the
distribution they have. In short, a unimodal distribution means that the data has only one peak, while a biomodal
distribution has two peaks. On the other hand, zero-inflated refers to a distribution that allows for frequent zero
valued observations (the data has excess of zero counts).

Figure 2.9 displays the process of classifying genes as bimodal, unimodal or zero-inflated in PROFILE. To
classify the genes, an admissibility test is first conducted [52]. This test checks if the gene expression values are
sufficiently variable, and contain enough non-zero values. If a gene fails the test, it is filtered out. The remaining
genes are classified as bimodal, unimodal, or zero-inflated based on their distribution patterns using three
statistical techniques: the dip test, bimodality index, and kurtosis criteria. In this context the term ’distribution
pattern’ refers to the genes expression value in the cancer data compared to a reference expression dataset. The
reference expression dataset was in this project a cohort of other cell lines originating from the same cancer
type. A gene is only classified as bimodal if it meets the criteria for all three tests. The full documentation for
the classification of genes based on their distribution pattern is described by Béal et al. [52].

Figure 2.9: Overview of the gene classification process in PROFILE. Panel A displays the workflow of
the admissibly test the bimodality test to classify genes as either bimodal or non-bimodal. Panel C displays

the zero-inflation test to classify genes as either unimodal or zero-inflated. The figure is retrieved from
Béal et al. [52].
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Genes with bimodal distributions are binarised, while genes with unimodal or zero-inflated distributions are
normalised, as displayed in Figure 2.10. PROFILE can also provide binarised values for more genes that those
with a bimodal distribution. In that case, bimodal genes are processed using a Gaussian mixture model and
binarised based on the probability of belonging to one of the modes. Unimodal genes are normalised using
a sigmoid function, while zero-inflated genes are linearly transformed to maintain the asymmetric original
pattern. The resulting binarised and normalised gene expressions can consequently be utilised as biomarker
activity levels in downstream analysis.

Figure 2.10: Normalisation techniques in PROFILE applied to expression data of genes belonging to three
distinct categories (bimodal, unimodal, and zero-inflated). The initial column panels display original gene
distributions representing each category. The subsequent column demonstrate the normalisation methods
employed for each distribution, and the third column shows the resulting normalised distributions. The

figure is retrieved from Béal et al. [52].

2.3.2 Selecting the Tool Parameters

Within each software tool, there are a variety of parameters that can be specified. In this project, multiple
combinations of parameters were analysed for each tool, aiming to identify some optimal parameters to ensure
accurate biomarker inference.

Gene Regulatory Networks
For all decoupleR tools it was necessary to use a GRN. Two GRN networks were used in this project, namely
DoRothEA and an early version of CollecTRI.

DoRothEA
DoRothEA is a comprehensive GRN that is constructed based on prior knowledge of regulatory interactions
between TFs and their TGs [56]. TF-TG interactions (regulons) are the fundamental building blocks of GRNs,
and they play a critical role in determining the activity levels of genes and the biological processes that they
control.

DoRothEA was constructed using a systematic approach that integrated diverse types of genomics data, includ-
ing chromatin accessibility, TF binding, and gene expression data to infer regulatory interactions. The resulting
network contains over 400 000 regulatory interactions among 1395 TFs and over 20 000 TGs in humans,
as can bee seen from the package documentation. DoRothEA provides a valuable resource for investigating
the regulatory mechanisms underlying complex biological processes, such as cancer. An important feature of

https://bioconductor.org/packages/release/data/experiment/manuals/dorothea/man/dorothea.pdf
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DoRothEA is that it provides a confidence score for each regulatory interaction, which reflects the strength
of evidence supporting the interaction. The confidence score is based on a statistical model that accounts for
the reliability and consistency of the various types of functional genomics data used to infer the interaction.
The confidence score can be used to prioritise regulatory interactions for further experimental validation, or to
filter out less reliable once. The confidence levels are categorised in five levels from A (highest confidence) to
E (lowest confidence). Interactions that are supported by at least four lines of evidence, including literature-
curated resources, ChIP-seq interactions, gene expression, or TF binding motifs, are considered highly reliable
and are assigned an A level. Interactions curated by experts in specific reviews or that are supported by at least
two curated resources are also assigned an A level. Level B-D are reserved for curated and/or ChIP-seq inter-
actions with different levels of additional evidence. Finally, level E is used for interactions that are uniquely
supported by computational predictions.

CollecTRI
CollecTRI was used as an alternative to DoRothEA in this project to see if using different GRNs with the de-
coupleR tools affected the biomarker inference results, and subsequently the synergy results in the DrugLogics
pipeline. An early version of CollecTRI was utilised in this project, as the final version of CollecTRI was not
established of the point of the analysis. The main difference of the early and the released version of CollecTRI
is the assigned signs (MORs) of the different interactions.

The final version of CollecTRI is a GRN containing signed TF-TG interactions for 1183 TFs [57]. CollecTRI
was created to improve the accuracy of estimating TF activities by expanding the coverage of regulons from
high-confidence prior knowledge. Müller-Dott et al. [57] notes that while there are several methods available
for inferring TF activities, these methods rely on prior knowledge of the TGs that are regulated by each TF.
However, the existing knowledge of regulons is often incomplete or inaccurate, which can limit the accuracy of
TF activity estimation. CollecTRI was created to overcome this limitation, by incorporating multiple resources
like public databases, text mining and manual curation. Specifically, Müller-Dott et al. combined existing
regulon knowledge with gene co-expression networks and gene ontology term annotations to identify additional
TGs that are likely to be regulated by each TF. CollecTRI was experimentally tested, in which it significantly
improved the accuracy of TF activity estimation compared to other networks like DoRothEA.

Expression Count Measures
Expression count measures are quantitative measures of the gene expression levels in a biological sample.
Three different RNA sequencing expression count measures are given for cell lines from CMP: read count
data, FPKM data and TPM data.

Read Counts
Read count (RC) measurements is the simplest approach to quantifying gene expression by RNA sequencing.
In this measurement, the number of raw reads that align to a particular gene is counted and used as a measure
of the level of gene expression. The basic idea behind read count quantification is that the more reads that align
to a gene, the higher is the expression of that gene. Transcript lengths are not considered in raw read counts
[58].

FPKM Values
Fragments per kilobase of transcript per million mapped reads (FPKM) is a commonly used normalisation
method in RNA sequencing experiments to quantify gene expression levels [58]. To calculate FPKM values,
the first step is to determine the total number of reads in a sample. This count is then divided by a million to
obtain the ’per million’ scaling factor. To further account for differences in gene length, the counts are divided
by the length of the corresponding gene in kilobases. This division gives the FPKM value, representing the
expression level of a gene normalised for both sequencing depth and gene length.

TPM Values
Transcripts per million (TPM) is also used as an RNA sequencing measure to quantify gene expression levels
[58]. TPM values are very similar to FPKM values, but TPM normalises the read counts by gene length first,
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yielding reads per kilobase (RPK), and then divides the RPK values by the ’per million’ scaling factor. One
notable advantage of TPM is that the sum of TPM values for all genes within a sample is always the same. This
property ensures that TPM values represent the proportion of transcripts contributed by each gene, making it
easier to compare the relative expression levels within and between samples.

P-value Thresholds
The decoupleR tools return a list of inferred TFs and their corresponding activity levels. This ’TF - activity
level’ couple comes with an associated p-value. The p-value provides an estimate of the statistical significance
of the obtained activity score. Three different p-value thresholds were selected for analysis in this project: 0.05,
0.2 and no threshold.

Output Classification
As mentioned earlier, PROFILE provides both normalised and binarised biomarker profiles. The outputs were
analysed separately in this project. In addition, an analysis of binarising the obtained normalised output were
experimented with.

2.3.3 Inferring and Integrating Biomarker Activities into the DrugLogics Pipeline: A Workflow Ex-
planation

For ease of use, scripts that automated the process of inferring and integrating biomarker activities seamlessly
into the DrugLogics Pipeline were created for each of the four software tools. The tool-specific scripts can be
accessed at the related GitHub folder. Due to the multiple combinations of parameters utilised, a total of 60
different training data files were generated per dataset (cell line).

A brief description of this process is given in this section. A detailed step-by-step explanation of the tool-
specific scripts, and the workflow from omics data to a formatted training data file can be found in Appendix D.
All tools were carried out in the statistical programming language R, which is frequently used for quantitative
analysis because of its convenient use with data importing and visualisation [59].

DecoupleR Tools Workflow
The decoupleR tools were downloaded via the decoupleR package, which was in this project was installed
with Bioconductor. ULM, MLM and CONSENSUS were used with the same procedure to infer biomarker
activities from omics data. In short, this process involved first importing and reading the necessary inputs:
the molecular matrix and the regulatory network. The specific decoupleR tool was selected for and executed
with the selected network, resulting in a list of inferred TF activity levels. The inferred activity levels were
subsequently binarised, and the TF annotations were converted from HGNC annotations to the annotations in
the respective logical model utilised. Finally, the output was formatted to match the format in the DrugLogics
pipeline, using a specialised function created in this project.

PROFILE Workflow
As mentioned previously, only the part of PROFILE that relates to extraction of cell line activity levels was util-
ised in this project. The files necessary to exceute PROFILE was downloaded from the PROFILE repository .
PROFILE was generally executed by following the related tutorial. This included utilising a script from the
PROFILE repository that relates to extracting activity levels, with minor changes. This script takes several
inputs to infer activities, and the once relevant for this project are:

– Omics data in HGNC annotations.

– A model file describing the conversion from HGNC annotations to the specific annotations in the logical
model.

When downloading the PROFILE repository, the input files related to omics data for numerous cell lines are

https://github.com/victoriagjovaag/Master-Thesis/tree/main/Creating%20Training%20Data/decoupleR%20tools%20scripts
https://www.bioconductor.org/packages/release/bioc/html/decoupleR.html
https://github.com/sysbio-curie/PROFILE_BRAF_Model/tree/master
https://github.com/sysbio-curie/PROFILE/blob/master/Tutorial_PROFILE.pdf
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present. All cell lines analysed in this project were part of the data files that were already present in the repos-
itory. As a result, in order to run PROFILE with the selected logical models the only task that was necessary
to do was to create the model file describing the conversion from HGNC annotations to the specific annota-
tions in the model. Creating the model files comprised of making a tab-separated file with two columns, one
with HUGO annotations, and one corresponding column with the annotations in the specific model network.
Separate model files were created for each of the CASCADE 1.0, Lu and Park cancer models. The output of
PROFILE was also formatted to match the format in the DrugLogics pipeline by using the specialised function.

2.4 PART II: Prediction of Drug Synergies With the DrugLogics Pipeline

This section presents the workflow of using the inference tool-generated training data files with the DrugLogics
pipeline to generate synergy predictions.

2.4.1 Running the DrugLogics Pipeline

The DrugLogics pipeline can generally be executed by following the tutorial for synergy prediction. The Dru-
gLogics pipeline was executed both with utilising a Docker image and by using Java and Maven. However, the
pipeline needs to be executed separately for each training data file. Given that the number of training data files
generated in this project is in the thousands, a script was generated to automate the execution of the DrugLogics
pipeline. The script facilitates to automatically run numerous training data files subsequently in a loop, without
the need for excessive manual labour. The automated scripts are made available on GitHub.

In addition, running the DrugLogics pipeline demands a lot of processing power of a computer. Depending of
the size and complexity of the logical model utilised, running the pipeline on a regular computer can take up
to several hours just for one simulation. Utilising a more powerful processor makes it possible to decrease the
compilation time of the pipeline dramatically. Given the extent of this analysis, it was desirable to utilise an
external server for this purpose. An external server is a computer system that may grant access to users over the
internet. The NTNU SSB1 server was used in this project by connecting with Secure SHell (SSH) keys, and
utilising terminal commands. This facilitated to run the pipeline on the external SSB1 server from an internal
computer, and to move directories to and from the server.

The process of running the DrugLogics pipeline on the SS1 server can be summarised by the following steps:

1. Moving the necessary files for running the DrugLogics pipeline from an internal computer to the SSB1
server, by using terminal commands.

2. Connecting to the SSB1 server using SSH keys.

3. Executing the DrugLogics pipeline on the SSB1 server using the automated script.

4. Moving the directories with the pipeline outputs from the SSB1 server to an internal computer, by using
terminal commands.

This workflow facilitated the possibility of running the DrugLogics pipeline with numerous training data files
at minimal cost of manual labour and internal processing power, while significantly reducing the compilation
time. As a result, it was possible to investigate a large collection of tools, parameters, cell lines and cancer
models in this analysis.

https://druglogics.github.io/synergy-tutorial/
https://github.com/victoriagjovaag/Master-Thesis/tree/main/DrugLogics%20Pipeline%20Scripts/Automated%20SSB1%20scripts


2 MATERIALS AND METHODS 27

2.4.2 Calculating AUC ROC Values

AUC (Area Under the Curve) ROC (Receiver Operating Characteristic) plots was used as the statistical measure
of the synergy results in this project. AUC ROC curves are commonly used to evaluate the performance of
binary classifiers [60]. A ROC curve is a plot of the true positive rate (TPR) versus the false positive rate (FPR)
at various classification thresholds. The TPR is the proportion of positive cases that are correctly identified
by the model, while the FPR is the proportion of negative cases that are incorrectly classified as positive.
Essentially, the AUC ROC curve will represent the trade-off between sensitivity (TPR) and specificity (1-
FPR). A perfect classifier would have a TPR of 1 and an FPR of 0, resulting in a point at the upper left corner
of the AUC ROC plot. Figure 2.11 displays an example of a ROC curve with the calculated AUC.

Figure 2.11: Example of a ROC curve with the calculated AUC. Figure retrieved from Flobak et al. [30]
with CASCADE 1.0, HSA synergy method, and 150 models calibrated to the AGS cell line steady state.

A random classifier, on the other hand, would (in theory) have a diagonal ROC curve with an AUC of 0.5,
indicating that its performance is no better than chance. In general, a higher AUC indicates better classifier
performance, with an AUC of 1 indicating perfect classification.

AUC ROC values are commonly used by the DrugLogics group to evaluate synergy predictions, due to its
convenience with binary input. When calculating AUC ROC values, the obtained synergy results from Drabme
are compared to drug synergies that are known to be true, so-called ’gold standard drug synergies’. AUC ROC
values may be calculated from the ensemble-wise synergies file created by Drabme, by comparing the scores
of the identified synergies to the gold standard synergies. As mentioned earlier, the ensemble-wise synergies
file is constructed by comparing the growth value of the collection of Boolean models from Gitsbe when they
are perturbed by pairwise combinations of drugs, to the growth value when they are perturbed with single
drugs. If the growth of a pairwise combination is lower than the additive effect of two single drugs, that is an
indication of a drug synergy. The more negative the value is, the stronger the synergistic drug combination.
When calculating AUC ROCs, the synergy values in the ensemble-wise synergies file are compared to the gold
standard synergies as a TPR-FPR trade-off. This ultimately means that the higher the AUC ROC value, the
better the model’s ability to distinguish between synergistic and non-synergistic drug combinations (according
to the gold standard synergies).

Automated scripts to interpret hundreds of synergy results simultaneously and calculate subsequent AUC ROC
values were generated in this project, and can be accessed at GitHub.

Relating Training Data Quality to AUC ROC Values
It is the collection of logical models that are used to calculate the growth value in Drabme that links the quality

https://github.com/victoriagjovaag/Master-Thesis/tree/main/AUC%20ROC%20Calculation
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of the training data to the the resulting AUC ROC values. As mentioned earlier, the fitness of the logical
models in Gitsbe are directly calculated based on the information in the training files. Models will obtain a
high fitness if they capture the biology specified in the training data in a precise way. High fitness models
will proceed to Drabme, and be used to calculate the growth value. As a result, the precision of the inferred
biomarker activities in the training data will affect the precision of the generated models, and consequently the
drug synergy predictions and the resulting AUC ROC values.

2.5 Part III: Statistical Analysis of Synergy Results

This section presents the workflow of a statistical evaluation of the synergy results. In order to evaluate the sig-
nificance of the synergy results, and thus the inference performance of the selected software tools, a statistical
analysis was conducted. The goal was to investigate if the training data generated by the inference tools stat-
istically improved the synergy predictions over randomly calibrated models. In order to do this, bootstrapping
of random calibration data (training data) was selected as a basis of comparison.

Bootstrapping is a statistical technique used to estimate the accuracy of an estimate or a test statistic [61].
The method involves creating multiple re-sampled datasets by randomly sampling with replacement from the
original dataset. The resampled datasets will have the same size as the original dataset, and can be used
to generate multiple estimates of the same statistic. Figure 2.12 displays the workflow of the bootstrapping
process conducted in this project.

Figure 2.12: Simplified workflow of the bootstrapping process conduced in this project. The first step
consisted of identifying the number of nodes in the inference result of each tool, and then generate a

hundred random training files for the same number of nodes. Next, the DrugLogics pipeline was executed
with the bootstrapped training files and the mean AUC ROC value was calculated for each bootstrapping

and used as the population parameter since it may represent an ’average’ random synergy result. 95%
confidence interval was subsequently computed of the bootstrapped mean, and used to determine the

statistical significance of the obtained synergy results.

The bootstrapping was conducted for each model by randomly and independently sampling nodes from the
respective model network. The random training data was designed so that the amount of random activit-
ies matched the amount of actual biomarker activities of the synergy result that was to be statistically ana-
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lysed. This means that the number of nodes in every synergy result had to be identified, and a bootstrapping
sampling of that respective model network had to be conducted for the same number of nodes. The bootstrap-
ping sampling was then conducted 100 times. Next, the expression value of each bootstrapped node would
randomly be selected as 0 or 1. This resulted in a hundred bootstrapped training files that would represent a
collection of random training data. An automated script was created for the bootstrapping process, and can be
found at GitHub. The DrugLogics pipeline was then utilised with the hundred bootstrapped training data files
to generate a representation of random synergy predictions.

Further on, the bootstrapping results was used to estimate confidence intervals (CI) with R. CIs are a range of
values that are expected to contain the true value of a population parameter with a certain level of confidence.
In this project, the mean AUC ROC of the random calibration data was used as the population parameter
since it may represent an ’average’ random synergy result. The 95% CI was subsequently computed of the
bootstrapped mean, and would represent an interval were if the bootstrapping was re-did, the new mean would
be within that interval (with a 95% confidence). If one assumes that the bootstrapped mean represents a random
synergy result, then whether the synergy result at question is within that CI would tell if this result is likely to
be obtained at random. If the synergy result is outside of the 95% CI, it may be defended that it is less than
5% likely that the result would be obtained by using random calibration data. Whether that synergy results is
significantly better or worse than the bootstrapped results depend on if the result is above the upper limit of
the CI or below the lower limit, respectively. On the other hand, if the synergy result is within the CI, there is
a probability above 5% of obtaining that result with random training data, and the null-hypothesis will not be
rejected. In this case, the null hypothesis will be that the synergy result is generated at random. As a result,
if the synergy results is above the CI, that would mean that the hypothesis that the synergy result could be
generated by using random calibration data could be rejected with a 95% confidence.

https://github.com/victoriagjovaag/Master-Thesis/blob/main/Bootstrapping%20Script/bootstrap.r


3 Results and Discussion

The Results and Discussion section of this report presents the findings of a systems biology analysis that
evaluated the efficacy of four software tools, namely ULM, MLM, CONSENSUS, and PROFILE, in inferring
biomarker activities from omics data for logical model calibration. As outlined in Materials and Methods, this
analysis was conducted using a five-step approach:

1. Infer biomarker activities using the software tools

2. Fit activity data to the format of the DrugLogics pipeline

3. Predict drug synergies with the DrugLogics pipeline

4. Calculate AUC ROC values

5. Conduct a statistical analysis

The findings of this project are presented and analysed in three main sections, focused on inference outcomes,
synergy predictions, and the statistical analysis. The insights from these three parts are integrated to discuss the
feasibility of identifying an optimal approach for biomarker activity inference to calibrate logical models in the
DrugLogics pipeline. Due to the complexity of the analysis, the discussion is focused on results related to the
gastric adenocarcinoma cell line (AGS) CASCADE 1.0 model. This model was chosen as the primary focus
due to its reliability and robustness, having been extensively curated, analysed and utilised in the DrugLogics
pipeline previously. These factors make CASCADE 1.0 a suitable candidate for a comprehensive in-depth ana-
lysis. The results related to the Lu and Park models with their associated cell lines were utilised to investigate
whether the findings of tool performances (and tool parameters) could be generalised across network topologies
and dataset characteristics. The synergy results and statistical analysis related to the Lu and Park models are
included in Appendix E.

3.1 PART I: Creating Training Data for the DrugLogics Pipeline

This section aims to identify and discuss observed trends and differences in inferred biomarker activities. The
discussion is in turn focused on general trends across tools, within tools and with respect to tool parameters. The
insights gained from this analysis highlights the strengths and limitations of the tools’ inference methodologies,
and are used as a foundation for explaining the synergy results in section 3.2.

3.1.1 Gold Standard Biomarker Activities

A set of ’gold standard’ biomarker activities for the AGS gastric cancer (GC) cell line were established as a
basis of comparison for the obtained inference results (Table 3.1). In this context, ’gold standard’ biomarker
activities relates to Boolean activity levels that may be expected in the AGS cell line.

The gold standard biomarker activities were constructed based on the findings of Flobak et al. [30]. Their
findings included a manually curated analysis of 219 observations of activity levels in AGS steady state from
72 papers. These gold standard activities are only defined for nodes in the CASCADE 1.0 network. In addition,
nodes with less than three independent reports on their activity levels were excluded. In instances where
conflicting activity levels were encountered, the activity value with the highest level of scientific support was
selected. Reports on conflicting findings and less sustained activity observations of Flobak et al. [30] can be
found in Appendix F.

30
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Table 3.1: Boolean gold standard activity levels that can be expected to be inferred from AGS cell line
data based on an AGS steady state manually curated analysis by Flobak et al. [30].

Biomarker Boolean activity value
MYC 1
TP53 0
TCF7 f 1
NFB f 1
AKT f 1
ERK f 1
MMP f 1
JNK f 0
BCL2 1
GSK3 f 0
KRAS 1
S6K f 1
BAX 0
CASP3 0
PIK3CA 1
PTEN g 0
RAC f 1
CCND1 1
CTNNB1 1
CASP8 0
MAPK14 0

The underlying reason for these expected activity levels may be explained by the biological function of the
components in the AGS signalling network. For instance, the expected active state of the transcription factor
(TF) MYC may be attributed to its critical role in cell cycle progression, apoptosis, and cellular transformation.
Overexpression of MYC is found to contribute to GC development by activating a cascade of downstream sig-
nalling pathways, which are involved in promoting cell growth and division, inhibiting apoptosis and enhancing
angiogenesis. In fact, overexpression of MYC has been observed in over 40% of GC incidents, and its activa-
tion has been associated with poor prognosis and aggressive tumour behaviour [62] [63]. TP53, however, was
found to be inactive in AGS by Flobak et al. [30]. This may be explained in that TP53 is a tumour suppressor
gene which plays an important role in maintaining genome stability by regulating the cell cycle, promoting
apoptosis and triggering the repair of damaged DNA [64]. Because of this, TP53 is known as the ’guardian of
the genome’ [65].

Another example is CTNNB1 and TCF7 f (TCF7 family) which are TFs that were mostly found to be active
in AGS by Flobak et al. [30]. This may for instance be explained by their relation to the Wnt/� signalling
pathway. As mentioned in the Introduction, aberrant activation of the Wnt/� signalling pathway is a known
characteristic of many types of cancers, including GC [6]. CTNNB1 and TCF7 f are both key components
needed in active states to maintain the functionality of this pathway [66] [67].

3.1.2 General Inference Trends

To highlight the differences in inferred activity levels by various tools, it is necessary to first analyse general
trends across them. Figure 3.1 displays inferred biomarker activities from the AGS cell line by each software
tool. Each column represents a different set of inferred biomarker activities obtained from using a unique set
of tool parameters. As the intent is to first provide a global assessment across tools, the parameters are not
visualised in this figure. Tool parameters are discussed in section 3.1.4.

As observed in Figure 3.1, PROFILE infers a significantly larger number of biomarker activities compared to
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the decoupleR tools, which at most inferred a total of seven activities. The reason for this is that the decoupleR
tools are only capable of inferring regulator activities, which in the case of transcriptomics are TFs, such as
MYC, TP53, FOXO f, TCF7 f, EGR1 CTNNB1, and NFB f. PROFILE, in contrast, returns activity levels of
both TFs, enzymes, receptors, genes, peptides and so on. As a result, the decoupleR tools are only capable of
inferring a subset of the activities that PROFILE returns.

Figure 3.1: Inferred biomarker activities from AGS cell line transcriptomics. Biomarker activities were
inferred using the bioinformatic tools ULM, MLM, CONSENSUS and PROFILE with different
combinations of parameters. Each column represents a different set of tool parameters. The tool

parameters include different regulatory networks, expression count measures, p-value thresholds and
output classifications. Colours indicate inferred Boolean activity values (1=dark, 0=light).

Another noticeable trend is that the tools consistently infer the same activity values for particular nodes, while
the activities of other nodes differ more across tools. For instance, the inference of active MYC is observed by
almost all tools, which is in compliance with its gold standard activity (Table 3.1). TP53 was mainly expected
to be inferred in an inactive state from the AGS cell line, and although this is generally true, it is inferred as
active by some tools.

FOXO f, which is short for ’FOXO family’, was also one of the biomarkers inferred with a consistent activity
level my multiple tools. FOXO f was not included by Flobak et al. [30] as a gold standard due to limited papers
reporting its activity level in AGS. However, one paper suggested its possible active state in AGS, as seen from
the less sustained observations in Appendix F. However, other studies report that FOXO factors can function as
tumour suppressors by promoting cell cycle arrest, apoptosis and DNA repair. Aberrant modulation of FOXO
factors leading to their inactive state has also specifically been linked to the development and progression
of gastric adenocarcinoma [68] [69] [70]. Further supporting this, a study from 2018 specifically linked the
presence of FOXO3, a member of the FOXO family, to the inhibition of AGS cell growth [71]. Consequently,
it seems like the consistent inference of inactive FOXO f may be reasonable, although its link to AGS is less
reported on.

Similarly, EGR1 is inferred as inactive by several tools. EGR1 is also part of the less sustained observations
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of Flobak et al. [30], with one paper from 2004 suggesting its inactivity in AGS. Reviewing more recent
literature further support this. EGR1 is a TF involved in cellular regeneration, angiogenesis, cell growth and
programmed cell death [72]. Ko et al. [72] found that proliferation of AGS cells could be inhibited through a
signalling pathway involving EGR1. They found that EGR1 promoted the upregulation of molecules involved
in inducing apoptosis, such as the p21 gene, whose function lies in the induction of cell cycle arrest. Through
these downstream genes, EGR1 inhibition was linked to inhibiting apoptosis in AGS. The study of Kim et al.
[73] further support this. As a result, it seems like the inference of inactive EGR1 from multiple tools may be
expected from AGS data. However, there were also some instances where active EGR1 was inferred.

Finally, NFB, CTNNB1 and TCF 7 were expected to be inferred in active states, and for the most part, this is
observed (Figure 3.1). However, some tools inferred these TFs in inactive states from the AGS cell line. Except
for one paper suggesting findings of active NFB in AGS [74], there was not found any supporting literature
of these observations in AGS.

These deviating results may be caused by the different algorithms and parameters of the software tools, which
is discussed in section 3.1.3 and 3.1.4. The contradictory findings of biomarker activities also brings to light
the challenges of investigating them. It is important to approach biomarker inference results from software
workflows with caution, as there may be multiple intertwined factors causing them. For instance, as our un-
derstanding of regulatory interactions enhance through research, the functional and regulatory roles of network
components becomes better understood. This improved understanding results in better characterisation and
description of certain components, for example in network resources like DoRothEA and CollecTRI. As men-
tioned in Materials and Methods, only regulons with a confidence level of C or higher were considered in
this analysis, meaning that TF-target gene (TG) interactions with low confidences were discarded. As the de-
coupleR tools utilise these networks to infer TF activities, they may be better equipped at inferring accurate
activity levels of some TFs if all of their interactions in the regulatory networks are accurate and have high con-
fidence levels. Consequently, as more knowledge is gained about a particular regulator, its true activity level
may be more likely to be consistently identified by software tools due to its well-characterised and understood
functions in biological networks. As a result, it is important to note that a skewed information bias towards
some TFs may lead to a more consistently correct inference rate of these TFs compared to less understood
once.

3.1.3 Comparing Tool-Specific Inference Results

In this section, the focus is to analyse biomarker activities specific to each tool. The aim of this analysis is to
highlight the underlying methodologies and statistical algorithms of each tool, and their impact on biomarker
inference. Additionally, this section aims to increase confidence in using certain tools to infer biomarker
activities to calibrate logical models in the DrugLogics pipeline.

To strictly analyse the tools, the inference results of the decoupleR tools are analysed within the same combin-
ations of parameters, and the PROFILE results are analysed independently. Figure 3.2 and Figure 3.3 provides
a detailed view of the tool-specific inference results from AGS transcriptomics.

DecoupleR tools

ULM and MLM
As previously outlined, the methodologies employed by ULM and MLM are distinct, despite being based
on linear models. ULM examines each regulator’s activity individually to estimate the correlation between a
single TF and the TGs in a sample. Conversely, MLM takes into account the possible interactions between TFs
and their joint influence on TGs. These differences in methodologies may cause differing sensitivities to the
threshold used to identify a TF as a regulator of the genes in the data. As ULM considers the activity of each
regulator independently, it might be more sensitive to detect small variations in the data of individual genes.
In contrast, by considering the interactions between multiple regulators and their joint impact, MLM may be
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more robust against small variations in the data. To infer a TF, MLM may require substantial variations in the
genes expression values. This difference in sensitivity could let ULM infer more TFs than MLM under the
same circumstances.

(a) ULM

(b) MLM

(c) CONSENSUS

Figure 3.2: Tool-specific inference results of decoupleR tools from AGS transcriptomics. The inference
results are divided into tool-specific panels, and each column represents a different set of tool parameters.

The tool parameters include different regulatory networks, expression count measures and p-value
thresholds. The colours indicate the inferred Boolean activity values (1=dark, 0=light).

The suggestion that ULM may infer more TF activities than MLM is an evident trend when analysing Figure
3.2 (a) and (b). For instance, with the parameters DoRothEA, read count (RC) and a p-value threshold of
0.05 and 0.2, ULM identified three (MYC:1, TCF7 f:1, TP53:0) and five TF activities (MYC:1, TCF7 f:1 and
TP53:0, FOXO f:0, NFB f:1), respectively. MLM identified only one TF (MYC:1) in both cases. However,
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it is important to note that this trend does not always hold true, as MLM produces comparable or even higher
numbers of inferred activities than ULM in some cases, for instance with the parameters ’DoRothEA, FPKM,
no p-value’. Several factors can contribute to this variability. For example, in situations where the expression
of a particular TG is regulated by the combined effect of multiple regulators, MLM might be better equipped
to identify those complex interactions than ULM. As a result, the number of inferred activities by ULM and
MLM might differ depending on the expression data and the complexity of the regulatory network used.

When comparing the inference results of ULM and MLM to the gold standard biomarkers (Table 3.1) is seems
as ULM mainly infers biomarkers in accordance to the gold standard activities. In fact, ULMs deviations
from the gold standards are only observed a few times (two times for NFB f and TCF7 f and one time for
CTNNB1). MLM in contrast, infers both NFB f, TCF7 f, CTNNB1 as inactive and TP53 as active several
times. Neither of these results are in accordance with the gold standards. NFB f:0, TCF7 f:0 and TP53:0 are
all inferred three times each and CTNNB1:0 is inferred two times. In addition, both ULM and MLM identifies
inactive FOXO f and EGR1. As mentioned earlier, these findings may be expected in AGS, although their
activities in the cell line is not thoroughly documented. Nevertheless, one potential limitation of both MLM
and ULM is that they assume a linear relationship between the omics features and the biological activity. In
reality, this relationship may be more complex, which may cause the biologically incorrect inference results.

To conclude, it seems like the overall deviation of MLM from the gold standard activities of AGS is more
pronounced compared to ULM. These results might be caused if the dataset contains small variations, or that
the TGs in the data are mostly regulated by single TFs, as ULM might more equipped to asses these precisely.

CONSENSUS
As mentioned in Materials and Methods, CONSENSUS combines the results of the top-performing decoupleR
tools (ULM, MLM and WSUM), by using a double-tailed z-score transformation. By combining the different
methodologies of ULM and MLM, both single and joint relations may be taken into consideration. Thus, this
approach can lead to even more robust and reliable results. In fact, most of the biomarker activities identified by
CONSENSUS (Figure 3.2 (c)) are in compliance with the expected gold standards. However, CONSENSUS
identifies inactive NFB f and active EGR1 as regulators (when eliminating the p-value thresholds), which is
is not expected in the AGS cell line. This is further discussed in section 3.1.4. Nevertheless, CONSENSUS is
mostly able to infer expected biomarker activities according to the gold standards. In addition, when combining
the results from multiple tools, the inferred biomarker activities from CONSENSUS remain relatively limited
in comparison to other methods.

However, the inference results of CONSENSUS may introduce a level of complexity that can be difficult to
interpret in a biological way, especially if the results from different workflows are contradictory. For example,
if one tool identifies a TF as highly active in a given sample, while another tool identifies the same TF as
having low or no activity in the same sample, it can be challenging to reconcile these seemingly contradictory
results to a combined score in a biological meaningful way. Therefore, it is important to carefully consider
the limitations and potential sources of variability when using the CONSENSUS approach, and to be cautious
when interpreting the biological meaning of its results.

PROFILE
All inferred biomarker activities of PROFILE are not analysed here, but some links are drawn to compare the
result to the decoupleR tools. Similar to the decoupleR tools, FOXO f, TP53, EGR1 and NFB f is inferred
as rather inactive by PROFILE (Figure 3.3). MYC, however, is also inferred as inactive by PROFILE, which
deviates from decoupleR results and its gold standard activity (Table F).

In contrast, PROFILE identifies some none-TF gold standard activities that the decoupleR tools are not able
of inferring, namely AKT f, ERK f, MMP f, JNK f, GSK3 f, S6K f, PTEN g, RAC f and CASP8. BCL2
and KRAS were inferred by PROFILE at relatively low and high expression values, respectively. This is in
compliance with the gold standard activity for KRAS, but not for BCL2. The rest of the these biomarkers were
inferred with normalised activity levels close to 0.5, making them difficult to interpret due to the Boolean nature
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of the gold standards. This highlights one of the limitation of utilising Boolean values to describe biological
processes, which is discussed further in section 3.5.5.

To conclude, it seems like PROFILE overall is able to capture a broader set of components with known rela-
tions to the AGS cell line than the decoupleR tools. However, the continuous activity levels of some of these
components are difficult to interpret in a biological meaningful way. In addition, PROFILE identifies a large
number of entities in which there was not found experimental observations on in AGS (Appendix F). While
these nodes may be of importance, they may also add noise in the model calibration.

Figure 3.3: Inferred biomarker activities of PROFILE from AGS cell line transcriptomics. Each column
represents a different set of tool parameters. The tool parameters include different expression count

measures and output classifications. Colours indicate inferred Boolean activity values (1=dark, 0=light).
The letter B denotes binarised output classification and the letter N denotes normalised output

classification.
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3.1.4 Comparing Parameter-Specific Inference Results

The differences in inferred biomarker activities with respect to tool parameters are examined in this section.
This analysis offers additional insights into underlying factors contributing to the observed inference activities,
and highlights possible optimal parameters for each tool.

DecoupleR Parameters
The three different decoupleR parameters, namely GRNs, expression count measures and p-value thresholds are
identified and discussed in this section. The decoupleR tools differ in the degree they are affected by parameters.
Figure 3.2 highlights that ULM exhibits a greater variance in inferred activity levels across different parameters
than both MLM and CONSENSUS. This increased variance may be due to ULM single regulator estimating
approach, making it more sensitive to detect variations resulting from different expression data and regulatory
networks. By considering complex relationships, ULM and CONSENSUS may be more robust towards these
variations, with CONSENSUS being the overall least affected by differing parameters.

Gene Regulatory Networks
Reviewing the inference results reveals that utilising different GRNs significantly impacts the inferred activities
of some tools. Figure 3.2 (a) displays an example of this, where for ’TPM, 0.2’, the inferred biomarker activities
with DoRothEA are MYC:1 TCF7 f:1 TP53:0, while for CollecTRI they are MYC:1, TCF7 f:1 and FOXO f:0.
While there are instances where the use of both networks infer identical biomarker activities, the inferred TFs
seem to significantly vary with different networks for ULM and MLM (with greater p-values).

As mentioned earlier, ULM inferred opposite expression values of TCF7 f than what is expected by its gold
standard activity (Table 3.1). This incident is exclusively the case when ULM used CollecTRI as a GRN. How-
ever, for the same incident in MLM, it is exclusively observed with DoRothEA. In contrast, TP53’s activity
level was incorrectly inferred by MLM with CollecTRI. NFB’s activity level was incorrectly inferred com-
pared to the gold standards by ULM with both GRNs. In CONSENSUS, the results are almost identical with
CollecTRI and DoRothEA. Based on the variability of these results, concluding with an optimal GRN for ULM
and MLM cannot clearly be accomplished based on this analysis. The effect of GRNs is further discussed in
light of the synergy results in section 3.2.3.

The obtained differences resulting from GRNs may be explained by their different information bases. Collec-
TRI and DecoupleR differ in their sources and quality of prior knowledge that they use. DoRothEA’s human
regulons with confidence levels of C or higher consists of about 13 000 TF-TG interactions. In contrast, Collec-
TRI is triple the size and has increased coverage of the TF-TG interactions obtained from combining different
resources. Therefore, depending on the specific characteristics of the data and the tools used for inference,
the different GRNs may contribute to the identification of different sets of biomarker activities. However, the
use of different regulatory networks does not seem to affect the inference results of CONSENSUS. In fact, its
inference result with DoRothEA is almost identical to the inference results with CollecTRI with the same para-
meters. As mentioned earlier, this might be caused by the fact that CONSENSUS is a more robust tool in terms
of sensitivity to small changes in the data, by combining the results obtained from several tools. However, in
the benchmark of Müller-Dott et al. [57] the inference results of CONSENSUS was consistently better than
when using other resources like DoRothEA. This is further discussed in section 3.2.3.

Expression Count Measures
As described in Materials and Methods, RCs represents the raw number of reads mapped to a specific gene,
while FPKM (Fragments Per Kilobase of transcript per Million mapped reads) and TPM (Transcripts Per
Million) are both normalisation methods. Some patterns can be observed from Figure 3.2, with respect to these
three parameters. First, it seems that using FPKM, TPM or RC does not have a dramatic impact on the inferred
biomarker activities for most tools. For example, CONSENSUS and ULM consistently infer MYC:1, TP53:0
and FOXO f:0 regardless of whether FPKM, TPM or RC was used. There are a few exceptions to this trend.
For example, CONSENSUS only infers TCF7 f when RC is used. As mentioned earlier, active TCF7 f is
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expected in the AGS cell line, so it seems like it is missed when FPKM and TPM expression values are used.
Overall, using RC data seems to have a more significant impact on the inferred activities compared to FPKM
or TPM. For example, with CollecTRI ULM infers TCF7 f, NFB f and CTNNB1 as active with FPKM and
TPM, but they are all inferred as inactive with RC. From a biological point of view, these biomarker activities
are expected to be active in AGS (Table 3.1). This is also true in MLM and CONSENSUS with CTNNB1 and
EGR1, respectively, although the literature findings on EGR1 in AGS were not very strong.

In addition, when comparing the number of inferred biomarker activities of the decoupleR tools, using FPKM
and TPM data yield slightly lower numbers in a few cases compared to using RC data. This is not a evident
trend, but in the cases where the numbers differ, the highest number is inferred with RC five out of eight
times. This can be attributed to the fact that both FPKM and TPM normalisation methods take into account
the differences in gene length, which RC does not. From a technical point of view, normalising the data
can decrease the range of expression values, making the variations in the dataset smaller, thus making the
biomarkers harder to detect for some tools, like MLM. This may explain the slightly higher inference rate and
the generally larger deviation from the expected biomarker activities when raw RC are utilised compared to
FPKM and TPM.

Overall, it appears that the choice of input data, particularly between FPKM and TPM, does not highly affect
the inferred activities for most tools. However, the choice of RC versus FPKM and TPM seems to have a more
significant impact on the inferred activities, particularly for ULM and MLM. However, it is important to note
that while there seems to be some differences in the inference based on the different expression values, these
differences are relatively minor, and most tools infer activities relatively consistent across these parameters.

P-value Thresholds
Different p-values cause different biomarker activity inference, as is evident when looking at Figure 3.2. When
the p-value threshold is eliminated, more biomarkers may be identified. However, this may also potentially
increase the number of incorrect inferences. When analysing the inference results with respect to the gold
standard biomarkers (Table 3.1) this seems to be the case. Cutting off the p-value threshold increased the
rate of deviations from the expected inference activities for both ULM, MLM and CONSENSUS compared to
having a strict p-value threshold. Conversely, using a more stringent threshold (0.05 or 0.2) results in fewer
biomarker activities detected, but with higher confidences. As the p-values are estimates of the confidence
of an inferred biomarker activity, it is expected that allowing higher p-values increases the rate of incorrect
inferences.

PROFILE parameters
In this subsection, the differences in inference results when using the different parameters of PROFILE, namely
expression count measures and output classification is identified and discussed.

Expression Count Measures
Same as for the decoupleR tools, there can be observed some differences in the inference of biomarker activities
when using FPKM and RC with PROFILE (Figure 3.3). This is especially evident with the binarised output
where, except for one node (RTPK f), different nodes are inferred with FPKM and RC values. Six nodes were
inferred when using FPKM data and only two were inferred when using RC data. Together with the decoupleR
inference results, these results suggest that the choice of expression count measure can impact the inferred
biomarker activities, likely due to the normalisation method affecting gene expression levels.

When looking for differences in the normalised output, PROFILE infers lower levels of MYC, TP53 and
CTNNB1 expressions when using FPKM data than with RC data. TCF 7 and CASP3 on the other hand, is
inferred at a higher expression rate when FPKM is used compared to RC. MMP f and BCL2 are not inferred
with FPKM but are inferred with very low expression values with RC. Comparing these results to the expected
inference results, there is no evident trend in where the faulty inference trends are observed (Table 3.1). As a
result, it is not possible to conclude with an optimal expression count measure for PROFILE at this point.
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Output Classification
Looking at PROFILE’s inference results it seems like most of the genes fall within the categories of unimodal
or zero-inflated distributions (Figure 3.3), as the number of biomarker activities in the normalised output are
highest. As a much larger number of biomarker activities are normalised than binarised, one can observe a much
higher rate of expected biomarker activities in the normalised training data. Consequently, the rate of biomarker
activities which deviates from the gold standard activities, and entities with no experimental observations in
AGS is also higher in the normalised output.

Looking at the binarised output of PROFILE (Figure 3.3), except for MYC, there are no similarities in the
inferred nodes of PROFILE and the the nodes inferred by the decoupleR tools. MYC is also inferred as
inactive by PROFILE, which according to the gold standard biomarkers is not expected in AGS (Table 3.1).
This is also the case for both BAX, CASP3 and MAP2K4 which are inferred as active but expected to be
inactive according to the observations of Flobak et al. (Appendix F). In contrast, BAD is inferred in accordance
to the less sustained observations. As for the remaining nodes in the binarised output, no evidence was found
by Flobak et al. [30] supporting their relation to the AGS cell line (Appendix F). Overall, it seems like both
the normalised an binarised output of PROFILE introduces some noise and unknown activities. The effect of
training data sizes and deviations of PROFILE is further discussed in section 3.2.3.

3.2 PART II: Prediction of Drug Synergies With the DrugLogics Pipeline

The second part of the results in this project relates to the generation of synergy predictions, using the inferred
biomarker activities as training data in the DrugLogics pipeline. Each training data file generated a unique
synergy prediction, resulting in a corresponding unique AUC ROC value. The obtained AUC ROC values
range from 0 to 1, with a score of 0 indicating that no correct synergy predictions were found, and 1 indicating
a perfect synergy prediction, in accordance to a set of predefined gold standard synergies [30].

Trends and differences in AUC ROC results are identified and discussed in this section. The discussion is in
turn focused on general trends across tools, within tools and with respect to tool parameters. The previous
findings of inference results in section 3.2 are used to explain observed patterns and deviations. The goal is
to investigate if biomarker activities inferred by specific tools perform better than others as calibration data to
tailor logical models in the DrugLogics pipeline.

3.2.1 General Trends in Synergy Predictions

General trends in synergy predictions, using AUC ROC values, are addressed in this section. Table 3.2 displays
a small extract of the inferred biomarker activities from the AGS cell line, and corresponding AUC ROC values
using the CASCADE 1.0 model. All synergy results related to the AGS cell line can be found Table G.1 in
Appendix G.

Table 3.2: An extract of inferred biomarker activities from the AGS cell line, and corresponding AUC
ROC values from the CASCADE 1.0 model with the DrugLogics pipeline.

Tool Inferred biomarker activities AUC ROC
CONSENSUS MYC:1, TP53:0 0.82
CONSENSUS EGR1:0, FOXO f:0, MYC:1, TP53:0 0.77
ULM MYC:1, TCF7 f:1, FOXO f:0 0.72
CONSENSUS MYC:1 0.68
ULM EGR1:0, FOXO f:0, MYC:1, NFKB f:0, TP53:0 0.66
MLM MYC:1, TP53:1 0.47
CONSENSUS EGR1:1, FOXO f:0, MYC:1, TP53:0, NFKB f:0 0.29
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Looking at Table 3.2 it is evident that the inference of specific biomarker activities results in high AUC ROC
values. For instance, the combination of MYC:1 and TP53:0 appears with the high AUC ROC value of 0.82.
This suggests that these two biomarker activities may be useful in calibrating logical models for predicting
accurate synergies for AGS. When MYC:1 is inferred alone the resulting AUC ROC value drops to 0.68,
so it seems as the presence of TP53:0 contributes to calibrating more accurate AGS models. This is also
highlighted by the fact that when MYC:1 and the biologically incorrect TP53:1 are inferred, the AUC ROC
value is significantly lower (0.47). As mentioned previously, these biomarker activities are expected in AGS,
so given that the logical model captures the biology of AGS, it makes sense that inference of these biomarker
activities results in high AUC ROC values. This is also evident when looking at the CASCADE 1.0 model
network (Figure 2.4), as MYC is directly connected to Prosurvival with a positive link. Active TP53 in contrast,
contributes to Antisurvival through a series of links, and hence the inactivation of TP53 would be expected to
contribute to AGS in the network model.

Another general observation from the synergy results is that the addition of biologically incorrect biomarker
activities may decrease the AUC ROC values. This can be seen from the combination of EGR1:1, FOXO f:0,
MYC:1, NFB f:0 and TP53:0 which result in an AUC ROC value of 0.29. Knowing that MYC:1 and TP53:0
alone results in a much higher AUC ROC value, it seems like the presence of EGR1:1, FOXO f:0 and NFB f:0
contributes to decreasing the precision of the synergy predictions. As discussed previously, a strong connection
of active NFB f in AGS activity was found, so from a biological point of view the presence of NFB:0 in
the training data results in inaccurate AGS models, and hence, a lower AUC ROC value. This result also make
sense in regards to the topology of CASCADE 1.0, as NFB f contributes, through series of different nodes,
to the inactivation of Antisurvival. In addition, the active inference of EGR1 also deviates from some scientific
findings.

Overall, the general trends highlights that it can be even more important to prioritise exclusion of incorrect
biomarkers compared to prioritise inclusion of correct biomarkers, when it comes to constructing models that
can accurately predict synergies in the Gitsbe module of the DrugLogics pipeline. This is for example evident
from the fact that the AUC ROC result connected to MYC:1 increased by 0.15 when adding the biologically
correct inference value of TP53 (TP53:0), but decreased by 0.21 when adding the incorrect TP53:1. In addition,
there seems to be some biomarker activities that are more detrimental to have in the training data file in order to
obtain high AUC ROC values. For instance, when EGR1:0, FOXO f:0, MYC:1, TP53:0 are inferred, the AUC
ROC value is 0.77, and it decreases with as little as 0.10 when the biologically incorrect biomarker activity of
NFKB f is added. This may suggest that NFKB f does not plays a vital role in the CASCADE 1.0 network, as
its incorrect inference did not have detrimental outcomes on the AUC ROC value.

3.2.2 Trends in Tool Performances

In this section, the performances of ULM, MLM, CONSENSUS and PROFILE is highlighted and discussed
based on the obtained AUC ROC values. Figure 3.4 displays synergy predictions in form of AUC ROC values
resulting from each training file with biomarker inferences from the AGS cell line. As seen from Figure 3.4,
the tool performances vary depending on parameter combinations. However, in this section the focus is on dis-
cussing general trends in each tool, by comparing AUC ROC values within the same parameter combinations.
Synergy results is discussed with respect to the tool-specific parameters in section 3.2.3.

Comparing the performances of the decoupleR tools with the same parameters reveals that CONSENSUS gen-
erally outperforms both ULM and MLM. This trend is evident across multiple parameters, including different
normalisation methods, regulatory networks and p-value thresholds. This suggests that CONSENSUS may be
the most effective inference tool overall, as it is able to combine multiple sources of information to achieve a
robust collection of biomarker activities. In fact, within the 18 different combinations of decoupleR parameters
tested, CONSENSUS achieves the highest synergy performance in six of them, and results are tied with other
tools in five more. However, it is worth noting that in several cases the improvement in performance achieved
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Figure 3.4: Combined synergy results in form of AUC ROC values obtained from using AGS CASCADE
1.0 with the DrugLogics pipeline. Each column represents a different set of parameters. The tool

parameters include different regulatory networks, expression count measures, p-value thresholds and
output classifications. The colours in the figure refer to the respective software tool utilised for biomarker

activity inference.

by CONSENSUS is relatively modest compared to ULMs.

Another trend in tool performances observed from Figure 3.4 is that the AUC ROC values of ULM are generally
higher than those of MLM. In fact, ULM receives a higher value than MLM in 13 out of 18 combinations of
parameters. This is especially evident with the ’CollecTRI,FPKM,no p’ parameters, where ULM has an AUC
ROC value close to 0.8 while MLMs is close to 0.4. Similarly, in ’CollecTRI,RC,0.2’, ULM has an AUC ROC
value of 0.41 while MLM has an AUC ROC value of 0.60. In DoRothEA with FPKM and p < 0.2, ULM has
an AUC ROC value of 0.77 while the one of MLM is 0.68.

To explain the observed patterns in tool performances, it is necessary to revisit the inference results. As dis-
cussed earlier, CONSENSUS was found as the most robust tool in terms of inferring biomarker activities that
are biologically expected from the AGS cell line, and to be least affected by the differing parameters. As a
result, it may not be surprising that the synergy results of CONSENSUS are consistently high as well. Except
for four cases where the p-value is eliminated (which is discussed later in section 3.2.3), all CONSENSUS
results are within the range of 0.66 to 0.82. Interestingly, so are almost all the results of ULM (except for two
cases: ’CollecTRI,RC,0.2’ and ’CollecTRI,RC,no p’). This highlight that while CONSENSUS outperforms
ULM in almost all cases, the inference results from both tools culminates in relatively consistent and high syn-
ergy predictions. Now, the reason why the inference results ULM outperforms MLM, and why CONSENSUS
outperforms both ULM and MLM in the DrugLogics pipeline may lie in the tool’s ability to infer a conservat-
ive but precise collection of biomarker activities. As discussed previously, CONSENSUS and MLM are more
conservative inference approaches than ULM in terms of number of inferred activities. However, this might
be attributed to higher validity in the more conservative inference methods, where there are fewer incorrectly
inferred biomarker activities. This relates to the way the training data is used to calibrate logical models in the
Gitsbe algorithm. In this context, a precise biomarker refers to two things: 1) it has a strong association to the
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function of the biological network that is modelled, and 2) the correct activity value is inferred.

As mentioned earlier, it is the collection of Boolean models that are used to calculate the growth value in
Drabme that links the quality of the training data to the the AUC ROC values. In the genetic algorithm of
Gitsbe, the fitness score of each individual model is calculated by comparing the output of the model with
the expected values in the training data. High fitness models are passed to Drabme and are used to calculate
the growth value. As a result, the precision of inferred biomarker activities in the training data affects the
precision of the generated models in Gitsbe, and consequently the drug synergy predictions from Drabme and
the resulting AUC ROC values.

Both missing and imprecise biomarker activities may affect the precision of the generated models in Gitsbe.
This may be explained by taking a closer look at the effect missing and imprecise activities in the training data
have in the progression of the Gitsbe algorithm. If the training data contains biologically imprecise information,
such as MYC:0, the fitness score of the model may be misleading. This is because the model is being trained to
fit to biologically incorrect information, which can lead to the generation of models with high fitness scores that
are not biologically representative of the disease state. This may result in the generation of a model collection
that proceeds to Drabme with high fitness scores, but low representation of the biology in the cancer network.
In contrast, if a biologically important biomarker activity is missing from the training data, for example the
absence of MYC:1, the resulting models will not properly account for its effects, which also can lead to bio-
logically defective models. Specifically, the fitness scores will be calculated based on incomplete information
about the cancer system, and the resulting models may not accurately reflect the true dynamics of the cancer in
the presence of the missing biomarker. In both cases, a defective model collection is used to calculate growth
values in Drabme. This may in turn cause lack of, or incorrect drug synergies which ultimately results in lower
AUC ROC values when comparing these to the gold standard drug synergies. In the case of a restricted bio-
marker collection, there will most likely be less imprecise biomarker activities compared to a larger inference
collection. However, there will also most likely be missing important biomarker activities from the training
data, compared to a larger collection. From the obtained AUC ROC values it seems like ULM overall scores
higher with respect to this trade-off than MLM, and that CONSENSUS scores overall higher than both. This
might not be surprising as MLM was found to infer smaller collections of biomarkers, and deviate the most
from the expected inference results, while CONSENSUS was found to infer a small collection of biomarkers
and deviate the least. ULM on the other hand, generally inferred the most biomarkers of all, but had lower
deviation rates than MLM.

However, there are cases where it may be more difficult to explain the obtained AUC ROC values based on
biological interpretation of the inference results. For example in the case of ’CollecTRI, FPKM, 0.2’ CON-
SENSUS infer MYC:1 and TP53:0 (which as discussed earlier are expected in AGS) with the AUC ROC value
of 0.82. With the same parameters MLM infers MYC:1 and TP53:1 with an AUC ROC of 0.47. In this case, it
seems like the presence of active TP53 dramatically lowered the AUC ROC value, which makes sense as it is
expected to be inferred as inactive in AGS, as can also be observed from the CASCADE network structure (Fig-
ure 2.4). However, the inference results from ULM with these parameters is harder to explain in a biological
meaningful way. ULM infers MYC:1, TCF7 f:1 and FOXO f:0, with an AUC ROC of 0.72 (Table 3.2). Based
on background knowledge provided in section 3.2 it is known that FOXO f inactivation, MYC activation and
TCF7 f activation can be expected in AGS function. So how come the AUC ROC value of ULM is lower then
of CONSENSUS, if both tools inferred biologically precise biomarkers? This question needs to be addressed
with respect to the workflow of the DrugLogics pipeline.

It could be speculated that the obtained AUC ROC value is within a reasonable uncertainty, as the synergy
predictions from the DrugLogics pipeline are based on a number of evolutions of model mutations. The higher
the evolution number (up to a plateau, beyond which no improvement is seen), the more cycles of mutations
the models undergo to fit more accurately to the observations in the training data. As a result, it is possible that
the number of evolutions may have limited the models ability in fitting to the training data in a more precise
way, and that increasing the number of evolutions might result in a higher AUC ROC value. To investigate
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this, the number of evolutions was increased from 50 (the default) to 500. For the specific case of MYC:1,
TCF7 f:1 and FOXO f:0 this yielded an AUC ROC value of 0.65, which is even lower than before. A possible
explanation for this may be that the evolution process of mutations in Gitsbe is less constrained when lower
numbers of biomarkers are fixed in the training data. The evolutionary algorithms may explore some additional
trajectories in the mutation phase when it is not penalised for having multiple activity levels fixed. Further
supporting this is the findings of the master project by Thea Hettasch (’Effect of Calibration Data Subsetting
on Boolean Model Calibration and Drug Synergy Predictions’, May 2023), which indicates that there may be
a prevalence within the DrugLogics pipeline for smaller collections of biomarker activities. Other factors that
may affect the obtained synergy results is discussed in section 3.5.

PROFILE, in contrast, has the lowest overall AUC ROC values out of all four tools. This indicates that it may
not be as effective as the other tools at identifying precise and restricted biomarker sets. However, there are
a few instances where PROFILE performs relatively well, such as with FPKM where the normalised output
is consecutively binarised. The reason why the binarised version of the normalised output yields a higher
AUC ROC vale might simply be because the binarisation process shifted more inference values in the ’right’
direction according to the gold standards. However, this might just be a ’lucky case’, as the opposite results are
observed with RC. As previously stated, the inference results of PROFILE are quite different to the inference
results of decoupleR. To give a short recap, the binarised results contained very few biomarkers as expected
and the normalised results contain a lot of expected biomarkers (according to the gold standards), but also a lot
of unexpected once. As a result, it may not be surprising that the synergy results of PROFILE are consistently
lower than of the decoupleR tools, as the trade-of of inferring a restricted but precise activity collection seem
to be shifted with either low precision or too much noise. The possible prevalence of the DrugLogics pipeline
towards smaller training data collections may also provide an explanation for the low AUC ROC results of
PROFILE. However, it is worth noting that PROFILE was only evaluated in a limited number of parameters,
so its performance may differ in other cases.

Overall, CONSENSUS appears to have the overall highest performance in inferring biomarker activities from
the AGS transcriptomics to calibrate logical models in the DrugLogics pipeline. MLM and ULM have relatively
consistent performances, but ULM generally outperforms MLM. PROFILE has lower AUC ROC values overall,
but performs relatively well with some specific parameters. However, the performance of all tools are highly
dependent on the specific parameters used, which is discussed in the following section.

3.2.3 Trends in the Performance of Tool Parameters

AUC ROC results with respect to each tool parameter is analysed and discussed in this section, aiming to
provide additional insights into the observed variance in the overall prediction results. The goal is also to
highlight optimal parameters for each tool.

DecoupleR Parameters

Gene Regulatory Networks
Figure 3.5 displays synergy predictions in form of AUC ROC values for all tools, where the colours refer to the
GRN utilised. As previously discussed, the GRNs had almost no effect on the inference of CONSENSUS, so
as expected the synergy results display the same (Figure 3.5 (c)).

Interestingly, the performance of ULM and MLM seems to be higher and more consistent when using DoRothEA,
compared to using CollecTRI. From the inference analysis there were not any obvious trends of one GRN lead-
ing to the inference of more precise biomarkers than the other, as the use of both GRNs seem to cause deviations
in a relatively equal rates. However, as mentioned earlier, this might relate to the fact that some biomarkers are
more significant than others in the CASCADE 1.0 network topology. It seems that for ULM and MLM util-
ising DoRothEA might lead to the identification of biomarkers that are more significant, or in the case where
it identifies incorrect biomarker activities, they might be less detrimental than the ones identified when using
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(a) ULM (b) MLM

(c) CONSENSUS

Figure 3.5: AGS CASCADE 1.0 synergy results from the DrugLogics pipeline highlighted for gene
regulatory networks. Synergy predictions in form of AUC ROC values are divided into tool-specific
panels. Colours refer to the respective gene regulatory network utilised. Each column in the figure
represents a different set of parameters, including different expression count measures and p-value

thresholds.

CollecTRI.

When looking at MLMs synergy results in Figure 3.5 (b), there are six cases where CollecTRI noticeably has
a lower AUC ROC value. In these six cases, TP53 is inferred in an active state. While MLM infers TCF7 f
as inactive with DoRothEA, that does not seem to impact the synergy results, indicating that TP53 has a more
significant contribution to the characteristics of AGS (at least in the CASCADE 1.0 network). This might also
be attributed to the fact that TCF7 f’s role in CASCADE is to activate MYC, which is already active in these
incidents. Similarly, when analysing Figure 3.5 (a) there are two incidents of CollecTRI with a particularly
low AUC ROC value, which relates to the incidents where TCF7 f, NFB f and CTNNB1 are all inferred
with opposing expression values according to the gold standards. NFB f is also identified with an incorrect
inference value with DoRothEA, but this does not affect the synergy outcomes. In this case it seems that the
additive effect of these three imprecise biomarkers have a very damaging effect on the synergy results. As a
result, for ULM and MLM it seems like utilising CollecTRI overall increases the risk of identifying imprecise
biomarker activities with more damaging effects on the model calibration process, than when using DoRothEA.
Lastly, it is worth noting that MLM seems to be most affected by the regulatory network used, as is seen from
Figure 3.4.

As mentioned earlier, the underlying reason why CollecTRI and DoRothEA may display such large variations is
due to their differing sizes of TF-TG interactions, and the corresponding coverage of those regulons. CollecTRI
contains more TF-TG interactions and has a greater regulon coverage than DoRothEA. CollecTRI was also
found in the benchmark of Müller-Dott et al. to generally perform better at identifying perturbed TFs [57].
Müller-Dott et al. utilised CONSENSUS to benchmark the GRNs, so the almost identical results of DoRothEA
and CollecTRI with CONSENSUS seem to be a bit contradictory. This may be due to the fact that the TFs
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identified by both GRNs are probably some of the most studied TFs in cancer, meaning that they are likely
adequately covered by both GRNs. In addition, only a few TFs are compared in this analysis, while more
907 datasets, corresponding to 450+ TFs was utilised in the benchmark. Furthermore, an early version of the
CollecTRI GRN was utilised in this project. More accurate signs of TG-TG interactions are included in the
latest version, which may have caused the deviations of these results from the benchmarking of Müller-Dott et
al. [57].

Expression Count Measures
Figure 3.6 displays synergy predictions in the form of AUC ROC values for all tools, where the colours refer to
the respective expression count measure utilised. From the figure, it is evident that AUC ROC values obtained
with the different expression measures are mostly similar for all tools, with a few exceptions. It is especially
evident that the use of FPKM and TPM data seems to produce identical results in almost all cases. This
suggests that the normalisation methods utilised by FPKM and TPM does not significantly affect the synergy
predictions. As utilising FPKM and TPM data mostly resulted in the same inferred biomarkers activities, this
is in line with the expected outcomes.

(a) ULM (b) MLM

(c) CONSENSUS

Figure 3.6: AGS CASCADE 1.0 synergy results from the DrugLogics pipeline highlighted for expression
count measures. Synergy predictions in form of AUC ROC values are divided into tool-specific panels.

Colours refer to the respective expression count measure utilised. Each column in the figure represents a
different set of parameters, including different gene regulatory networks and p-value thresholds.

However, there are a few instances where the AUC ROC values differ when using different expression data. For
example, the combination of CollecTRI with higher p-values in both ULM and MLM result in some differences
when using RC compared to TPM and FPKM data. As mentioned previously, these differences can be attributed
to the fact that FPKM and TPM are normalisation methods. However, it seems like utilising RC provides the
most consistently high AUC ROC values for both MLM and CONSENSUS, while utilising TPM and FPKM
provided the overall highest results for ULM. MLM seems to be overall least affected by the expression count
measures.
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An explanation for why RC may result in higher synergy results for MLM and CONSENSUS is that, as men-
tioned earlier, these two tools may require larger variations in the data to infer biomarker activities than ULM.
As there may be larger variations in the RC data, this might explain their ability to draw more precise biomarker
activities from RC data than with normalised data, as there will generally by smaller variations there. However,
this may not always be the case, as utilising raw RC’s may cause imprecise inferences as it does not take into
account important biological aspects of the data. In contrast, ULM might be able to detect these small vari-
ations in the normalised data. For ULM, the larger differences in RC data might provide as noise, which ULM
is more sensitive to detect as significant variation, leading to imprecise detection of biomarkers. In conclusion,
utilising TPM and FPKM data seems to result in more reliable biomarkers when CONSENSUS and MLM is
utilised, while RC seems to be the better choice for ULM.

P-value Thresholds
Figure 3.7 displays synergy predictions in form of AUC ROC values for all tools, where colours refer to the
respective p-values utilised. As mentioned in Materials and Methods, p-values are used to filter out biomarker
activities with low confidences.

(a) ULM (b) MLM

(c) CONSENSUS

Figure 3.7: AGS CASCADE 1.0 synergy results from the DrugLogics pipeline highlighted for p-value
thresholds. Synergy predictions in form of AUC ROC values are divided into tool-specific panels. Colours
refer to the respective p-values utilised. Each column in the figure represents a different set of parameters,

including different expression count measures and gene regulatory networks.

Looking at Figure 3.7 (a) and (b), it is evident that the AUC ROC values obtained with the three p-value
thresholds are similar in several cases. However, there are some instances where the AUC ROC values differ
more. In the cases where the p-values differ the most, it seems that eliminating the p-value causes the most
damage to the synergy predictions. In fact, the lowest AUC ROC values of both ULM and MLM result from
eliminating the p-value threshold. In addition, the results indicate that utilising the strict p-value of 0.05 results
in the most overall highest synergy predictions with both ULM and MLM.

For CONSENSUS it seems evident that eliminating the p-value threshold dramatically decreases the synergy
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predictions (Figure 3.7 (c)). Contrasting, the highest AUC ROC values of CONSENSUS consistently result
from utilising 0.2 as the p-value threshold. This might suggest that for CONSENSUS, having a very low p-value
threshold does not allow for inference of enough biomarker activities, since it already is a restrictive inference
tool. As mentioned, lack of important biomarker activities in the training data might lead to faulty models in
Gitsbe by not providing enough relevant information. This may in turn result in defective synergy predictions
and a lower AUC ROCs. However, eliminating the threshold allows for too much noise in the training data,
also resulting in inaccurate model generations in Gitsbe and ultimately incorrect synergy predictions and low
AUC ROC results. The observations of the inference results supports this claim, as a higher rate of imprecise
biomarkers were found when eliminating the p-value threshold. For MLM and ULM this trend is less obvious,
which might be due to the fact that their methodologies originally are less strict at inferring biomarkers. As
a result, increasing or decreasing the p-value threshold might not have as dramatic effect on their inferred
biomarkers, as for CONSENSUS.

In conclusion, while the AUC ROC values obtained with different p-values are mostly similar, there may be
instances where one p-value threshold outperforms the others. Overall, having a relative strict p-value threshold
seems to generally result in more precise biomarker inferences for all three tools.

PROFILE Parameters
Figure 3.8 displays the synergy predictions of PROFILE in form of AUC ROC values where the colours refer
to the different parameters utilised. Figure 3.8 (a) display the effect of expression count measures and Figure
3.8 (b) displays the effect of utilising binarised, normalised or normalised output that is subsequently binarised.

(a) Expression count measures (b) Output classification

Figure 3.8: AGS CASCADE 1.0 synergy results from the DrugLoigcs pipeline highlighted for PROFILE
parameters. Synergy predictions are displayed in form of AUC ROC values. Colours refer to the respective

PROFILE parameters investigated. Each column in the figures represents a different set of remaining
parameters.

The AUC ROC values displayed in Figure 3.8 (a) imply that RC might provide slightly more consistently high
synergy results than FPKM, although utilising FPKM resulted in the overall highest AUC ROC value. Panel
(b) suggests that using normalised output that is subsequently binarised results in better synergy predictions
than using normalised data. Utilising the binarised data leads to the highest and the lowest synergy result in the
two incidents. Since analysing the parameters in PROFILE is based on very few observations, and the trends
are very weak, it not appropriate to draw any conclusions in regards to optimal parameters from this analysis.

3.3 PART III: Statistical Analysis of Synergy Results

The third part of the results in this project relates to the statistical analysis of the synergy predictions. This
analysis was executed to investigate to what degree the training data generated by the software tools statistically
improved the model calibration over randomly calibrated models. In order to do so, the AUC ROC values
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resulting from the tools were compared to bootstrapping of random training data. Consecutive confidence
intervals (CI) associated with the bootstrapping were calculated and used together in the statistical analysis.
The trends and differences in inference significance is identified and discussed in this section.

Figure 3.9 displays the five highest AUC ROC values related to each inference tool applied with the AGS
cell line. The AUC ROC values are displayed together with the mean value (the black lines) of the random
bootstrapping and its corresponding confidence interval (CI) (the red intervals). Figure 3.9 displays that the
AUC ROC values of CONSENSUS and ULM are consistently higher than the bootstrapped mean values. This
suggests that these tools are indeed performing better than randomly selecting biomarker activities from the
disease network. Furthermore, the CIs do not overlap with the obtained AUC ROC values, further indicating
that the added value of the bioinformatic tools is statistically significant.

(a) ULM (b) MLM

(c) CONSENSUS (d) PROFILE

Figure 3.9: Synergy results resulting from the top five inferences of each software tool compared to
bootstrapping of random training data of the CASCADE 1.0 model. Purple dots are AUC ROC values

obtained by each software tool, and black lines indicate the bootstrapped mean of random training data.
Red lines indicate associated confidence intervals.

However, when looking at the results obtained from MLM one can observe that the AUC ROC values are
consistently close to the bootstrapped mean, which suggests that the tools are not performing significantly better
than random at inferring precise biomarkers from AGS transcriptomics. The CIs for each AUC ROC value also
overlap with the bootstrapped mean, which further supports the conclusion that the tool is not significantly
outperforming random chance.

When it comes to PROFILE, the obtained AUC ROC values are not consistently close to the bootstrapped
mean. The CIs do not overlap with the obtained results, but the performance of the tool varies considerably,
with some results performing better and others performing worse than random training data. However, it is
worth noting that two of the AUC ROC values are higher than the bootstrapped mean and the corresponding
CIs do not overlap, which suggests that this tool may hold promise at performing better than random chance.
As seen from the analysis of the master project by Thea Hettasch, taking a specific subsets of expression data
may perform better than utilising the whole set. Further investigation is needed to determine the statistical
significance of PROFILE as an inference tool in order to draw any final conclusions.
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To conclude, it seems like MLM and PROFILE are not consistently performing significantly better than random
chance at inferring precise biomarkers from AGS transcriptomics to calibrate logical models in the DrugLogics
pipeline. In contrast, ULM and CONSENSUS provide statistically significant results according to the findings
in this analysis, further supporting the previous findings. However, it is important to note that these conclusions
are drawn from inference results from one cell line and the use of one logical model in the DrugLogics pipeline.
Additional analysis with more data is necessary to fully evaluate the performance of these tools.

3.4 Consistency of Trends Across Logical Models and Cell Lines

Whether the trends found from inferences from the AGS cell line and model calibration with the CASCADE
1.0 model is consistent with other model topologies and cell line datasets is discussed in this section. The
section do not provide an in depth analysis of the results related to the Lu and the Park models, but their global
trends with respect to tool performances and parameter settings are analysed.

3.4.1 Consistency of Tool Performances

Consistency Across Cell Lines
When looking at the synergy results of the Lu and Park models in Appendix E, is it evident that there are
not any strong trends indicating that one or more tools consistently outperform the others. In fact, the tool
performances differ quite dramatically from cell line to cell line. For instance, with the Park model and the
COLO 205 cell line, ULM and MLM seem to outperform CONSENSUS, while with the HCT-116 cell line, the
opposite trend seems to be the case (Figure E.1 in Appendix E). However, in both cases, inferences of MLM
result in one of the highest synergy scores. This is also the case with the cell line SW48, where MLM seem
to slightly outperform ULM and CONSENSUS a few times, in addition to providing the highest overall AUC
ROC score. As for the SW620 cell line, there is not a consistent performance pattern across parameter settings,
but ULM and CONSENSUS inferences resulted in the highest synergy scores. When it comes to PROFILE, it
generally displays a large range of AUC ROC values, with some results comparable to the decoupleR results,
but also often some among the lowest values.

The tool performances also differ quite significantly from cell line to cell line with the Lu model (Figure E.2
in Appendix E). However, with the COLO 205 and HCT-116 cell lines, ULM and MLM seem to outperform
CONSENSUS in most cases. With HCT-116, MLM also consistently outperform ULM. With the SW48 and
the SW620 cell lines the results from all three decoupleR tools are strikingly similar. In addition, PROFILE
performs consistently equal or better than the decoupleR tools, and is actually the highest ranking tool in both
the HCT-116 and the SW620 cell lines. As a result, it is hard to conclude about an optimal tool across different
cell lines, as the characteristics of the datasets seem to significantly impact the inference performances of the
tools. However, there seem to be a slight advantage of using ULM and MLM over CONSENSUS, which is
conflicting from the findings with the AGS cell line.

Consistency Across Logical Models
Figure E.1 and Figure E.2 in Appendix E also highlights fact that the tools performances differ within the same
cell lines across the two models. This suggest that the topology of the logical models significantly impacts
the synergy results. In fact, for the HCT-116 cell line, CONSENSUS was consistently one of the highest
performing tools with the Park model, while with the Lu model it was consistently the lowest performing tool.
This is also evident with the SW48 and SW620 cell lines, where the results were rather similar across tools
with the Lu model, while there was a relatively large variations with the Park model. This highlights one of
the main challenges and greatest weaknesses with the analysis of this project. As the characteristics of the
model topology highly influences the synergy results, the conclusions drawn of the tool performances cannot
be generalised across models. The limitations of model topologies in this analysis is further discussed in section
3.5.4. Nevertheless, when looking at the results obtained from the statistical analysis related to the Park model,
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the inference results from all decoupleR tools seem to generally perform better than random calibration data.
For the Lu model, however, the results are often found within or below the CI of the random calibration data.

3.4.2 Consistency of Optimal Tool Parameters

As for optimal tool parameters, there are some trends from the AGS CASCADE 1.0 results that persist across
models and cell lines, while other trends are changed.

CONSENSUS
One trends that seems to persist across models and cell lines is that different parameters seem to have little to no
effect on the synergy results of CONSENSUS, as can bee seem from Figures E.3 - E.8 in Appendix E. This is
especially evident with different GRNs, where the AUC ROC values resulting from DoRothEA and CollecTRI
are close to identical across cell lines and models. This was also the case with AGS and CASCADE 1.0. As
for using different expression count measures, varying between FPKM and TPM seem to have relatively low
impacts on the results of CONSENSUS across these cell lines and models as well. However, using RC with
CONSENSUS did not result in consistently higher AUC ROC values than FPKM/TPM across all models and
cell lines, as was indicated with AGS and CASCADE 1.0. Nevertheless, using RC resulted in some cases of
slightly higher AUC ROC values compared to FPKM/TPM across cell lines. When it comes to p-values for
CONSENSUS, there also seem to be a less consistent trend across cell lines and models compared to with AGS
and CASCADE 1.0. In fact, the p-value thresholds seem to not highly affect CONSENSUS overall, although
eliminating the p-value results in better or worse results compared to the more strict thresholds in some cell
lines. This is especially evident with the Lu model and the COLO 205 cell line, where the AUC ROC values
are higher when eliminating the p-value in all cases. However, given that eliminating the p-value when using
CONSENSUS results in the largest range of AUC ROC values, it might be safer to keep a threshold to secure
consistent results.

ULM
For ULM, using DoRothEA was previously found to consistently improve the synergy results over CollecTRI.
However, using CollecTRI seems to be the better choice across models and cell lines, as can be seem from
Figure E.9 and Figure E.10 in Appendix E. When it comes to utilising different expression count measures, the
results across models and cell lines displayed less variance than with the AGS CASCADE 1.0 results. In fact,
the results are very similar and almost identical in certain cases. However, it seems that using RC provides
a slight advantage in some cell lines, which was not the case with with AGS and CASCADE 1.0. For the
p-values, there does not seem to be an evident trend across models and cell lines here either, as many of the
synergy results are very similar across p-values. However, it seems that eliminating the p-value resulted in
slightly more differing AUC ROC values, with some higher and some lower than with p-value thresholds. This
means that having a threshold may be the best option for ULM, to obtain consistent results.

MLM
When it comes to MLM, using DoRothEA also consistently resulted in the highest overall AUC ROC values
with AGS and CASCADE 1.0. Same as for ULM, using CollecTRI might seem to be the better choice across
models and cell lines, although the improvements are rather small and not consistent for all cell lines (Figure
E.15 and Figure E.16 in Appendix E). Also similar to ULM, the results of expression count measures are very
similar across models and cell lines, with RC displaying a slightly larger variation than FPKM/TPM. However,
using RC seemed to slightly improve the synergy results, might make it the safest options with this tool. As for
the p-values, eliminating the threshold when using MLM seems to result in slightly lower AUC ROC values in
both models for most cell lines, although this is not an evident trend.

PROFILE
Due to limited parameter combinations in PROFILE it was not possible to draw any firm conclusions from the
AGS cell line with the CASCADE 1.0 model. When reviewing the results from the Lu and the Park models
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with respect to different output classifications (Figure E.21 and Figure E.22 in Appendix E) it still seems like
the results differ quite significantly without any obvious trends across cell lines and models, making it hard to
conclude with an optimal output. However, there might be a slight tendency of normalised output performing
a bit better for some cell lines. When it comes to different expression count measures with PROFILE, it is still
not possible to conclude with an optimal one, as there is no evident trends in the results.

3.5 Limitations and Critical Reflections

As described throughout this section, the obtained inference and synergy results can be explained based on
biological knowledge of the modelled cancer system, and knowledge of the methodologies and statistics of
the software tools. While this study provides insights into the performance of inference tools, it is important
to acknowledge the limitations that may impact the findings. These limitations are discussed in the following
paragraphs, together with possible suggestions to address the issues.

3.5.1 Training Data Binarisation

As mentioned in Materials and Methods, all training data from the inference tools were binarised prior to
running the DrugLogics pipeline (except for the normalised training data in PROFILE). There are several
reasons why this was done, one of them being that the CASCADE 1.0 model can be considered a Boolean
model, although its output nodes are multivalued. This is due to the fact that the output nodes are not directly
utilised in the pipeline, as it is the binary values of the nodes connected to them that are used to calculate the
growth value. As these nodes are Boolean, the model can be considered as Boolean. Consequently, the nodes
in the networks of the generated models in Gitsbe, which the training data is compared to, are also Boolean. As
a result, also having Boolean values in the training files seemed reasonable. In addition, as mentioned earlier,
interpreting the inference results from a biological point of view is more complicated for normalised expression
values.

However, binarising the training data means that the obtained inference results of the tools are shifted to an
extreme value. This results in inference results that do not reflect the accurate findings of the tools, and may
cause biases when comparing the tool performances. It is important to note that the data was scaled between 0
and 1 prior to the binarisation, in order to maintain the integrity of the data. Nevertheless, if the extreme scenario
that MLM’s inferred activity of TP53 was found and scaled to be 0.51 it would be 1 after the binarisation,
while if ULM inferred activity of TP53 was 0.50 after the scaling it would be 0 after the binarisation process.
Consequently, it would seem that ULM is much more effective at inferring the true activity level of TP53 than
MLM, while in reality they are almost identical. While the biological interpretation might have been more
complicated, the synergies found by the pipeline might have been more precise in terms of displaying a true
inference performance of the different tools. As a result, it is important to keep this bias in mind when looking
at the findings of this study. Utilising continuous training data might be desirable if a more comprehensive
analysis is to be conducted on this topic.

3.5.2 Data Quality and Complexity

As mentioned earlier, the characteristics of the data can have a significant impact on the performance of in-
ference tools at identifying biomarkers. One such characteristic is the amount of variation present in the data,
which refers to the range of expression values. As previously stated, MLM and CONSENSUS may require
more substantial variations in the data to infer a biomarker than ULM. In addition, the number of samples
in the dataset can affect the ability of both ULM and MLM methodologies to detect significant relationships
between regulators and molecular features. With smaller sample sizes, there might not be sufficient statistical
power to detect subtle effects for MLM. In contrast, if the dataset contains many genes that are regulated by the
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combined effect of multiple regulators, MLM might be more capable than ULM at identifying these regulators
precisely. As a result, the specific characteristics of the AGS cell line might cause inference advantages for
some tools, leading to a better performance than when datasets with other characteristics were utilised. This
may explain some of the observed variance of tool performances resulting from the AGS cell line compared to
the other cell lines.

3.5.3 AUC ROC as a Statistical Measure

While ROC curves are useful for evaluating the performance of drug response prediction models, they also
have limitations, particularly in their use of true positive rate (TPR) and false positive rate (FPR).

One limitation of using AUC ROC values as a statistical measure of tool performances is that it can be affected
by the characteristics of data used to generate them. If the data is imbalanced, AUC ROC values may be
misleading [75]. An imbalanced AUC ROC value may for instance be a very high true negative rate, and a very
low true positive rate, which is the case in most of the inference results in this analysis. In such imbalanced
scenarios, the AUC ROC value can be misleading because it focuses on the overall performance of the classifier
across all possible classification thresholds. It measures how well the model ranks the positive samples against
the negative samples. However, if the one class dominates the samples, the classifier might perform very well
in correctly classifying the majority class (high true negative rate) but poorly on the minority class (low true
positive rate). Despite the poor performance on the minority class, the AUC ROC can still be high because it
considers the overall ranking of the samples. This may lead to incorrect conclusions regarding the performance
of the tools.

In addition, if the TPR and FPR are imbalanced, the resulting AUC ROC value may be difficult to interpret.
The AUC value does not provide information about the rate of TPs and FPs, which can make it difficult to
interpret the biological meaning of the obtained values. This can ultimately limit the ability to draw meaningful
conclusions of the underlying biological mechanisms that contributed to the low or high AUC ROC value. In
this project it was desirable to take both the TPR and the FPR into account, and due to the extensive number
of synergy results it was not feasible to analyse each AUC ROC curve. Nonetheless, if it is desirable to assign
different weights to the TPR or FPR, it might be appropriate to conduct an analysis of the obtained AUC ROC
curves, or calculate each rate separately.

To obtain a more robust analysis, different statistical measures could be added in addition to AUC ROC, for
instance AUC PR (Precision-Recall). PR curves are another way of evaluating the performance of binary
classifiers, only that they focus on the precision and recall metrics rather than the TPR and FPR like ROC [75].
PR are particularly useful when the positive class is rare (which was the case in this analysis), as they are more
informative than ROC curves in this scenario. PR curves may also be is good for assessing if a positive/negative
prediction has a real-world usage merit, by assessing if the prediction result matches reality. For instance
in situations where there is a significant class imbalance (very low or high prevalence of positive samples),
precision-recall can provide valuable insights by considering the trade-off between precision (the proportion of
correctly predicted positive samples) and recall (the proportion of actual positive samples correctly identified
by the model). Utilising such additional statistical measures together with the AUC ROC may provide more
accurate assessments of the performance of the tools, and should be applied if a more comprehensive analysis
is to be conducted on this topic.

3.5.4 Using Synergy Predictions From the DrugLogics Pipeline as Measures of Tool Performances

The goal of this project was to identify alternative approaches of generating biomarker activity data to improve
model calibration in the DrugLogics pipeline. However, the use of synergy predictions generated by the Drug-
Logics pipeline as a measure of the relative performance of inference tools is subject to bias, which may lead
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to erroneous conclusions.

Boolean Models as Cancer Systems
One limitation of the DrugLogics pipeline is that it does not account for the dynamic changes in the biological
system. As mentioned in Materials and Methods, Boolean models are an essential part of the DrugLogics
pipeline, as they allow for the simulation of complex biological networks.

One of the limitations of using Boolean models in the DrugLogics pipeline is that they assume that the interac-
tions between genes and proteins are static and binary, meaning that they either exist or do not exist. However,
in reality, the interactions are more complex, such as quantitative or temporal interactions, which cannot be
captured by Boolean models. Boolean models does not account for the time-dependent changes in gene ex-
pression, which may be critical in understanding the response of cancer cells to different drugs. Therefore,
the predictions of the pipeline may not always reflect the actual biological behaviour, as the model utilised to
generate them does not accurately reflect the biology of the disease. As a result, while the inference results of
a tool may accurately reflect the cellular system, the synergy predictions may not be in line with the expected
results as certain assumptions are made by the Boolean model that deflect from a ’real’ biological system. This
has the possibility of introducing biases in the obtained results, that may lead to incorrect conclusions regarding
the tools inference precision. The Boolean model’s limitations should be taken into account when interpreting
the results, and further research is needed to develop more sophisticated models of biological cancer systems.

Deficiencies in the Prior Knowledge
Another limitation of the DrugLogics pipeline is that it heavily relies on prior knowledge. Because of the
drawbacks of this, the predictions of the pipeline may not be what is biologically observed.

Deficiencies in the Logical Models
Gaps in the prior knowledge of the logical models used by the DrugLogics pipeline may also affect the synergy
results. Since the models used in the pipeline are derived from prior knowledge, modifications to the prior
knowledge must be expected to affect the predictive performance of the model [42].

The logical rules of the models are based on experimental data and prior knowledge of the cancer systems, and
are used to determine how the components of the system interact with each other. However, the models are
sensitive to the logical equations used to describe these interactions. Small changes in the equations can lead
to significant changes in the behaviour and predictions of the model. Thus, if the prior knowledge network
is incomplete or incorrect, it may lead to false predictions of synergistic drug combinations. Flobak et al.
[42] states that ”We find that our approach is somewhat sensitive to errors in the training data, and even
more sensitive to errors in the prior knowledge, indicating that curation quality is paramount to our modeling
approach”. If a biologically significant biomarker is missing from the logical model, the presence of this
biomarker in the training data is not considered. This may mean that important information inferred from
the tools may be discarded, possibly leading to false conclusions regarding their precision. In addition, if the
interactions between the entities in the logical model do not accurately describe the true biological processes,
this might also cause improper conclusions. For example in the case of TCF7 f, some tools inferred it as active
while others found it to be inactive. The way TCF7 f is included in the Boolean network, its incoming and
outgoing interactions, are decisive for whether inferring it as 0 or 1 results in the highest synergy predictions.
Remembering the fact that different studies found contradicting findings on several of the biomarker activities
included in the CASCADE 1.0 model (Appendix F), some of the interactions in the model could be incomplete
or based on outdated information. Therefore, it is crucial to have reliable and up-to-date prior knowledge to
obtain accurate predictions with the DrugLogics pipeline.

As described in Materials and Methods, the networks of the Lu and the Park models was simplified by reducing
the number of nodes and edges, prior to using them in the DrugLogics pipeline. Such reductions can result in
losing some important interactions that contribute to the synergy predictions. This may be the case with the
the Lu model, as its synergy results are overall lowest, suggesting that it may be of lower curation quality than
the CASCADE 1.0 and the Park model, or that the modifications done significantly damaged the quality of the
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model. The Lu model also had the most comprehensive reduction out of the two. Inconsistent behaviour of the
Lu model was also fount in the analysis of Thea Hettach, further supporting this claim. The Park model also
displays generally lower AUC ROC values than the CASCADE 1.0 model, at least with the COLO 205 and
HCT-116 cell lines. This may also suggest that the predictive performance of the Park model in the DrugLogics
pipeline is not as consistent and reliable as the CASCADE 1.0 model. As a result, the CASCADE 1.0 seems
to have the overall highest predictive performance, suggesting that the results and conclusions drawn form this
model may be the most reliable. Nevertheless, such deficiencies in model networks, and their significant impact
on the synergy results in the DrugLogics pipeline, makes it difficult to generalise findings of tool performances
across models.

Deficiencies in the Gold Standard Drug Synergies
Similarly as with the logical models, deficiencies in the gold standard drug synergies have the possibility of
directly influencing of the synergy results.

In the case of CASCADE 1.0, the gold standard drug synergies refer to a set of four synergies: PI-PD, PI-5Z,
PD-AK and AK-5Z. In this case, the four gold standard synergies were experimentally tested by Flobak et
al. [30]. However, there may be other relevant drug synergies for AGS that are not included in this set. This
particular experiment was limited to investigation of seven nodes in the CASCADE 1.0 network, and their 21
pairwise combinations [30]. Analysing a larger collection of nodes, possibly with a larger logical model for
AGS, may result in the discovery of novel drug synergies. If novel drug synergies were included in the gold
standards, that would highly affect the obtained synergy results, as it content is directly used to calculate the
AUC ROC values. In turn, this might have affected the conclusions drawn of the tool performances.

Nevertheless, these seven nodes were selected based on the availability of chemical inhibitors for targeting
them in biological experiments. As a result, more information is needed in regards to chemical inhibitors in
order to scale up this experiment. Such limitations would also relate to the gold standard drug synergies found
by Jaaks et al. [46].

The Methodology of the DrugLogics Pipeline
As mentioned previously, there are some assumptions made by the pipeline that may affect the synergy results,
such as the number of evolutions specified in the configuration file. However, 50 evolutions is above the plateau
level of fitness found by Flobak et al. [42]. In addition to the number of evolutions, a number of models per
generation, and a number of models selected for the next generation can also be specified in the configuration
file. Furthermore, one can specify the number of mutations, the fitness threshold used to stop the evolutions
and so on. While the same set of parameters in the configuration file was utilised throughout this project, the
results and the conclusions drawn from them might have looked differently if another set of parameters was
chosen.

As mentioned earlier, there may also be some biases in the pipeline towards preferring low numbers, or at least
not having excessive numbers, of biomarker activities in the training data, as found by another master project
by Thea Hettasch. As a result, tools which infers a high number of biomarkers (like PROFILE) may have been
given a lower AUC ROC value than what can be biologically explained.

3.6 Guidelines for Selecting Inference Tools for the DrugLogics Pipeline

In this section, the main objective of this project, to assess whether an optimal inference tool (and tool-specific
parameters) could be identified, is discussed. Recommendations and guidelines is given for selecting inference
tools for generating training data for the DrugLogics Pipeline.

One thing that might be obvious from this analysis is the fact that there might not be one optimal tool that
under all circumstances will infer precise biomarkers from omics data to use as training data in the DrugLogics
pipeline. However, the analysis highlighted some trends that may be utilised as guidelines for selecting an
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appropriate tool for different purposes.

CONSENSUS has proven to be a robust tool at inferring precise biomarkers from the AGS cell line, decreas-
ing the likelihood of identifying incorrect biomarker activities. The overall highest synergy predictions from
the AGS cell line and the CASCADE 1.0 model were obtained by utilising training data generated by CON-
SENSUS, which makes it a promising tool for identifying biomarker activities to calibrate logical models in the
DrugLogics pipeline. However, the consistently high performance of CONSENSUS was not an evident trend
across other model topologies and dataset characteristics. This decreases the confidence of CONSENSUS as
the most robust tool, as it seemed to be slightly outperformed by ULM and MLM in other models and cell
lines. However, the fact that CONSENSUS is least affected by the different parameter conditions seem to per-
sist across models and cell lines. There also seemed to be a slight preference towards using a p-value threshold
of either 0.05 or 0.2 when utilising CONSENSUS, as it seems that eliminating this threshold may damage the
robustness and preciseness of the tool. There might also be a slight preference towards utilising RC data over
FPKM/TPM with CONSENSUS. The analysis did not reveal any preferential GRN, as the inference results of
CONSENSUS was consistent across these parameters for almost all models and cell lines. However, the infer-
ence results of CONSENSUS, as mentioned earlier, may introduce a level of complexity that can be difficult to
interpret in a biological way, especially if the results from different workflows are contradictory. If considering
implementation of CONSENSUS in the DrugLogics pipeline, this complexity needs to be taken into account.

Although generally outperformed by CONSENSUS, ULM also proved as an inference tool capable of identi-
fying expected biomarker activities as checked against gold standards from the AGS cell line. The inference
results of ULM resulted in constantly high synergy results when applied in the DrugLogics pipeline, although
the results of CONSENSUS were overall highest. Nevertheless, there is also ground for marking ULM as a
promising tool to identify biomarkers for use as training data in the DrugLogics pipeline, as ULM displayed
great promise with the other models and cell lines as well. As for the most optimal parameters in ULM, there
are less consistent trends than for CONSENSUS, so there is need for a more thorough analysis in order to draw
any strict conclusions. Based on the obtained results from the AGS cell line, there is an indication that utilising
DoRothEA as a GRN, with a strict p-value threshold and FPKM/TPM data, provides the most robust inference
of biomarker activities. However, the results from the other models and cell lines suggested that CollecTRI and
RC data might be a better choice. Given that using CollecTRI improved more results, and that the observed
advantage of DoRothEA with AGS and CASCADE 1.0 were only observed in specific cases (high p-values), it
may be advisable to use CollecTRI as the preferred GRN with ULM. The same can be said for recommending
the use of RC data. However, these analyses should be repeated with the latest version of the CollecTRI reg-
ulons. Nevertheless, the suggestion of using a strict p-value from the AGS and CASCADE 1.0 results seemed
to persist across the other models and cell lines.

From the results of AGS and CASCADE 1.0, MLM proved the least robust at inferring precise activities to
calibrate logical models in the DrugLogics pipeline. Its synergy results had a larger degree of variance, its
inference result displayed the most deviations from the expected inference results, and it also obtained the
overall lowest AUC ROC values compared to the other decoupleR tools. However, its synergy results when
utilising the DoRothEA network are rather consistent, and also relatively high. In addition, MLM also displayed
great promise with the other models and cell lines, which indicates that it may be of value after all. Same as for
ULM the optimal parameters seemed to be different with the other cell lines and models, suggesting CollecTRI
as the optimal GRN. Same as for ULM, the general recommendation of a GRN for MLM would also be
CollecTRI, as the observed improvements of DoRothEA was only observed a few times (also with high p-
values) and more results of other cell lines are improved with CollecTRI. Contrasting, the recommendation to
utilise a stringent p-value and RC data derived from the AGS and CASCADE 1.0 outcomes remained relatively
consistent across models and cell lines.

Based on the obtained results from PROFILE and the limited variations of parameters utilised, it would be the
least recommended tool to utilise to generate training data for the DrugLogics pipeline. This is because there of
the great deviations from the expected inference results, and also its large variance and range in synergy results.
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However, if PROFILE is utilised, it seems like normalised output produced slightly highest synergy results for
some cell lines. However, this is not a recommendation, as the trends were very weak. For the same reason, it
was not possible to conclude with an optimal expression count measure based on this analysis. However, using
different subsets of the PROFILE output may hold promise at increasing its value as a inference tool for the
DrugLogics pipeline.

Due to the fact that the results from CASCADE 1.0 may hold the most significance with respect to compar-
ing tool performances due to its high caution quality and predictive power, the overall recommended tool for
further research is CONSENSUS. This is also due to the fact that CONSENSUS displayed the most consistent
inference results of TFs across all models and cell lines, and its relative strong statistical significance (at lest
with the CASCADE 1.0 and Park models). However, based on the analysis of Thea Hettach, and the displayed
potential of PROFILE with the Lu and Park models, an additional alternative may be to supplement the infer-
ences of CONSENSUS TFs with subsets of the activity levels of other entities by PROFILE. The analysis of
Thea Hettach may be useful for determining an appropriate sub-setting approach for the PROFILE outputs.

The recommended tool-specific parameters based on the analysis conducted in this project are summarised in
Table 3.3

Table 3.3: Recommendations of tool-specific parameters.

CONSENSUS ULM MLM PROFILE

P-value cutoff 0.05 / 0.2 0.05 / 0.2 0.05 / 0.2 -

GRN DorothEA/CollecTRI CollecTRI CollecTRI -

Expression count measure Read counts Read counts Read counts ?

Output classification - - - Normalised?

Finally there are some additional factors that should to be taken into consideration before selecting a software
tool for biomarker inference, two of which are briefly presented here.

Computational Efficacy
One advantage of ULM is that it may be computationally faster than MLM, as it only analyses one variable at
a time. The computational cost of using CONSENSUS is even higher than that of using ULM or MLM alone.
However, for the purpose of this project there was no noticeable difference of the three decoupleR tools, as
they all compiled in a matter of seconds. However, running the PROFILE script to infer biomarker activities
was more time consuming (up to 15 minutes per run). If a large-scale analyses is to be conducted, it might be
wise to consider the computational efficiency of the tools. If a smaller analysis is to be conducted, this might
not be of much relevance.

The Characteristics of the Data
As mentioned earlier, if the data contains much noise or is derived from a complex biological system with
strong connections between the regulators in the network, the relationships between regulators and molecular
features might be more difficult to discern by ULM, so MLM or CONSENSUS might be more appropriate
tools to infer biomarkers from such data. In contrast, if the dataset is small, or has low variations and low noise,
ULM might be the preferred tool as might be able to detect these variations better than MLM. In reality, one
might not know the quality, complexity or characteristics of the data prior to analysis. In these cases, it seems
like CONSENSUS is the safest choice, as it includes the characteristics of both ULM and MLM.
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4.1 A Brief Summary

Computational modelling of cellular systems is a powerful tool to increase our understanding of biological
processes and disease mechanisms. Logical modelling, in particular, is useful in building simplified models of
complex biological systems that have predictive power to suggest new therapeutic drug combinations. By using
personalised cancer data, these models can be calibrated to individual patients. By integrating experimental
data and prior knowledge, computational models such as the DrugLogics pipeline can simulate the behaviour
of patient cancer cells and predict the effect of drug combinations on those cells.

During this project, software tools capable of inferring high-quality biomarker activities from omics data were
identified. It was also found that in silico inference of precise biomarker activity states can improve calibration
of logical models in the DrugLogics pipeline, optimise cell line specific drug synergy predictions, and reduce
time spent on manual curation of biomarkers. While there was not found an optimal tool that can infer precise
biomarkers under all circumstances, some trends identified in this project can support the recommendation on
the use of new tools and approaches in the DrugLogics pipeline. CONSENSUS proved the most consistent
and robust inference tool and is the overall recommended tool for implantation in the DrugLogics pipeline to
calibrate logical models. ULM and MLM may may also provide viable options, but their performance were
more affected by parameter settings and dataset characteristics. Using the whole output of PROFILE is not re-
commended for generating training data for the DrugLogics pipeline, but sub-settings its output in combination
with the CONSENSUS TFs may be of value for further research. The project also highlighted some optimal
parameters for precise inference, which may be summarised in that a p-value threshold of 0.2 or 0.05 and the
regulatory network CollecTRI may be applied for optimal inferences with the decoupleR tools. However, the
analysis should be redone with the latest version of CollecTRI to confirm this. The recommended expression
count measures based on this analysis are read counts for all decoupleR tools. If PROFILE is used, normalised
expression data resulted in the slightly higher predictive performances in this analysis. However, there are
multiple external factors that may have influenced these results, like the characteristics and complexity of the
data, limitations of utilising Boolean models, using AUC ROC values as a statistical measure and deficiencies
in the prior knowledge of the logical models. The inconsistency of tool performances across model topologies
and dataset characteristics limits the overall value of the findings, as the findings of tool performances cannot
be generalised across the studied logical models and cell lines.

4.2 The Value of the Research

The findings of this project may be utilised as guidelines for selecting software tools capable of inferring
biomarkers that may be used as training data to calibrate logical models in the DrugLogics pipeline. The
results also provide a basis of further research aiming to improve accurate inference of biomarker activities.
Further research in this area can empower oncologists and healthcare professionals to make more informed
decisions about the most suitable treatment options for individual patients. Ultimately, the utilisation of logical
modelling and biomarker inference in cancer care can lead to more personalised and effective treatments,
potentially improving patient outcomes and quality of life.

In addition, the findings of this master’s thesis provide some guidance on the parameters that may provide
most optimal for accurate inference for the tools analysed, at least for ULM, MLM and CONSENSUS. The
scripts produced in this project may also automate the process of inferring biomarker activities, converting node
names from HGNC annotations to model specific annotations, and formatting and creating a training data file
ready to use with the DrugLogics pipeline. Automated scripts created for calculating AUC ROC values from
numerous synergy files may also be of value. In addition, the inconsistent or absent inference of some TFs may
be utilised at indicators of lack of proper annotated regulatory interactions of these TFs in prior knowledge
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networks utilised.

4.3 Recommendations for Further Work

To achieve the goal of identifying an optimal software tool that can accurately and precisely infer biomarkers
from omics data which can be leveraged to calibrate logical models for predicting drug synergies for personal-
ised cancer treatment in the DrugLogics pipeline, there are several recommendations for future work that could
be explored.

One possible avenue for further analysis would be to explore the use of additional data types, such as proteom-
ics. Proteomics data is the measure of expression levels of proteins in a cell, which can provide complementary
information to transcriptomics data. Utilising more types of data to evaluate the inference power of tools may
provide strength to the observed findings of the inference tools, or additional insights into the differences and
limitations of the them. In the same way, it may be interesting to explore additional logical models and cell
lines. Additional logical models that may be interesting to add to this analysis could be CASCADE 2.0 and
CASCADE 3.0. CASCADE 2.0 [76] and CASCADE 3.0 [37] which are extensions of CASCADE 1.0 were
additional nodes and edges have been added to the network. These models could provide valuable insights
into the inference power of the software tools by seeing if the added nodes may change or strengthen the
performance outcomes of the tools.

Another area that would be interesting to explore could be the use of an R package created by the DrugLo-
gics group called EMBA (an acronym for ’Ensemble (boolean) Model Biomarker Analysis’). EMBA aims to
analyse the predictive performance and synergy prediction output of the models generated by Gitsbe module
in the DrugLogics pipeline, and identify significant nodes (biomarkers) within the Boolean networks that sig-
nificantly contribute to the observed synergies or produce better predictions [77]. These nodes may contribute
to the accurate prediction of experimentally observed synergies or improve overall prediction performance.
By identifying significant nodes within the Boolean networks that contribute to the observed synergies or im-
prove overall prediction performance, that might indicate node activities that might aught to be included in the
training data to improve the calibration of the logical models.

Another important area is to explore additional inference tools, such as ROMA. ROMA is specifically designed
to efficiently and accurately compute the activity of gene sets or modules with coordinated expressions [78].
The activity quantification in ROMA is based on a simple uni-factor linear model of gene regulation that
approximates the expression data of a gene set by its first principal component. ROMA can be used in various
contexts, ranging from estimating differential activities of transcriptional factors to identifying overdispersed
pathways in single-cell transcriptomics data. Additional workflows that may be worth looking into can be
Reverse Causal Reasoning (RCR) [79] or High Throughput Pathway Interpretation and Analysis (hiPathia)
[80].

Finally, it could be interesting to explore the use of a pool of software tools to identify novel nodes that might
be of relevance to a specific logical cancer model, but are not yet incorporated in the model. For instance, nodes
that are frequently identified by multiple tools from omics data related to a specific cancer type may represent
nodes that should be included in the logical model of the cancer system. By incorporating these nodes into the
model, it may be possible to improve the predictive power of the logical models, and thus obtain more accurate
drug synergy predictions for personalised treatment strategies.
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20. Moraes F and Góes A. A decade of human genome project conclusion: Scientific diffusion about our
genome knowledge. Biochemistry and Molecular Biology Education 2016 May; 44:215. DOI: 10.1002/
bmb.20952

https://www.who.int/publications/i/item/9789240001299
https://doi.org/10.1016/S0140-6736(14)61396-9
https://doi.org/10.1016/j.cell.2011.02.013
https://doi.org/10.1016/j.febslet.2014.02.005
https://doi.org/10.1186/s13045-020-00990-3
https://doi.org/10.1146/annurev-pharmtox-010611-134532
https://doi.org/10.1093/mutage/gey014
https://doi.org/10.1038/nrg.2016.49
https://doi.org/10.1002/bies.200900181
https://doi.org/10.1534/g3.115.018564
https://doi.org/10.1576/toag.13.3.189.27672
https://doi.org/10.1186/s13059-017-1215-1
http://www.stke.org/
http://www.stke.org/
https://doi.org/10.1016/B978-0-12-385944-0.00016-2
https://doi.org/10.4161/bioe.26570
https://doi.org/10.1038/nrg1272
https://doi.org/10.1038/nrg2918
https://doi.org/10.1002/bmb.20952
https://doi.org/10.1002/bmb.20952


BIBLIOGRAPHY 60

21. Carvunis AR, Roth FP, Calderwood MA, Cusick ME, Superti-Furga G and Vidal M. Interactome Net-
works. Handbook of Systems Biology: Concepts and Insights. Elsevier, 2012 Nov :45–8. DOI: 10.1016/
B978-0-12-385944-0.00003-4

22. Chu LH and Chen BS. Construction of a cancer-perturbed protein-protein interaction network for discov-
ery of apoptosis drug targets. BMC Systems Biology 2008 Jun; 2:1–17. DOI: 10.1186/1752-0509-2-56

23. Li L, Zhang K, Lee J, Cordes S, Davis DP and Tang Z. Discovering cancer genes by integrating network
and functional properties. BMC Medical Genomics 2009; 2:4–14. DOI: 10.1186/1755-8794-2-61

24. Oti M, Snel B, Huynen MA and Brunner HG. Predicting disease genes using protein-protein interactions.
Journal of Medical Genetics 2006 Aug; 43:691–6. DOI: 10.1136/jmg.2006.041376

25. Bulyk ML and Walhout AJ. Gene Regulatory Networks. Handbook of Systems Biology: Concepts and
Insights. Elsevier, 2012 Nov :65–88. DOI: 10.1016/B978-0-12-385944-0.00004-6

26. Palsson B. The challenges of in silico biology. Nature Biotechnology 2000; 18:1147–50. DOI: 10.1038/
81125

27. Karlebach G and Shamir R. Modelling and analysis of gene regulatory networks. Nature Reviews Mo-
lecular Cell Biology 2008 Oct; 9:770–4. DOI: 10.1038/nrm2503

28. Albert R and Thakar J. Boolean modeling: A logic-based dynamic approach for understanding signaling
and regulatory networks and for making useful predictions. Wiley Interdisciplinary Reviews: Systems
Biology and Medicine 2014; 6:353–61. DOI: 10.1002/wsbm.1273

29. Davidich MI and Bornholdt S. Boolean Network Model Predicts Knockout Mutant Phenotypes of Fission
Yeast. PLoS ONE 2013 Sep; 8:1–7. DOI: 10.1371/journal.pone.0071786
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Appendix

A Versions of R packages, Databases and Tools

The versions of of R packages, tools and databases utilised in this project are displayed in Table A.1.

Table A.1: Versions of R packages, databases and tools utilised in this project.

Resource Version

Bioconductor 3.15
CollecTRI 11.11.22
Cytoscape 3.8.2
DecoupleR R version 2.2.2
Docker 4.13.0
Drabme 1.2.1
Druglogics-synergy module 1.2.1
Gitsbe 1.3.1
Human DoRothEA 1.12.0
Java 8
Maven 3.6.0
R 4.2.2
RStudio 2022.12.0+353
Visual Studio Code 1.78.0
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B Logical equations

Symbols used to represent logical operators:

• & = AND

• | = OR

• ! = NOT

B.1 CASCADE 1.0 Model

The logical formalism of the CASCADE 1.0 model by Flobak et al. [30] are displayed in Table B.1 and Table
B.2.

Table B.1: Boolean rules of the CASCADE 1.0 model of Flobaek et al. [30].

Boolean rule
TAB1 = !p38alpha
CFLAR = AKT & !ITCH
IKKA = AKT
DKK1 = DKK1gene
pras40 = !AKT
Axin = !LRP
TCF = betacatenin | !NLK
cMYC = TCF
RTPKgene = FOXO
TSC2 = GSK3 & !(IKKB | AKT | RSK | ERK)
SFRP1gene = !cMYC
Caspase9 = CytochromeC
p53 = p38alpha & !MDM2
DKK1gene = TCF & !cMYC
GAB = GRB2 & !ERK
AKT = PDK1 | mTORC2
ASK1 = !AKT
RSK = ERK & PDK1
SHP2 = GAB
Ras = SOS | SHP2
MEKK4 = Rac
S6K = PDK1 | mTORC1
MKK3 = ASK1 | TAK1
PDK1 = PI3K & !PTEN
MEK = Raf | MAP3K8 | !ERK
DUSP1 = p38alpha | MSK
BAD = !AKT & !RSK
BAX = p53
TAK1 = TAB1
RTPK = (RTPKgene | MMP) & !(p38alpha | MEK)
CK1 = !LRP
Egr1 = !TCF
SOS = GRB2 | !ERK
BCL2 = !BAD
MKK7 = TAK1 | GRAP2
LRP = (Fz | ERK | JNK1 | p38alpha) & !DKK1
GRB2 = SHC1
MAP3K8 = IKKB
Caspase8 = !CFLAR
FOXO = !(AKT | NLK)
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Table B.1 – Continued from previous page
Boolean rule
GSK3 = !(LRP | RSK | S6K | ERK | p38alpha | Dvl | AKT)
Raf = Ras | !(Rheb | AKT | ERK)
ITCH = JNK1
MLK3 = Rac
PTENgene = Egr1
p38alpha = (MKK3 | MKK4) & !DUSP1
IKKB = TAK1 & !p53
MSK = ERK | p38alpha
MDM2 = (AKT | MDM2gene) & !S6K
MDM2gene = NFkB | p53
DUSP6 = ERK | mTORC1
NFkB = IKKA | IKKB | MSK
JNK1 = (MKK7 | MKK4) & !DUSP1
ERK = MEK | !DUSP6
Rheb = !TSC2
Rac = Dvl | mTORC2
CytochromeC = BAX & !BCL2
betacatenin = IKKA | !betaTrCP
MKK4 = MEKK4 | MLK3 | TAK1 | GRAP2
mTORC2 = TSC2 & !S6K
SHC1 = RTPK | !PTEN
IRS1 = !(S6K | ERK | IKKB)
mTORC1 = (Rheb | RSK) & !pras40
NLK = TAK1
Dvl = Fz
betaTrCP = Axin & GSK3 & CK1
SFRP1 = SFRP1gene
Fz = !SFRP1
MMP = LEF
PI3K = GAB | IRS1 | Ras
LEF = betacatenin
PTEN = PTENgene & !GSK3
GRAP2 = !p38alpha

Table B.2: Multivalues Boolean rules of the CASCADE 1.0 model of Flobak et al. [30].

Multivalued rules
CCND1 = RSK + TCF
Caspase37 = Caspase8 + Caspase9
Antisurvival = Caspase37 + FOXO
Prosurvival = CCND1 + cMYC

B.2 Lu Model

The logical formalism of the original Lu et al. [45] model are displayed in Table B.3.

Table B.3: Boolean rules of the original Lu et al. model [45].

Boolean rule
ATM = ROS
ASK1 = ROS & !P21
AKT = PI3K & ! (PP2A | CASP3)
BAX = ((TBID | P53) & PP2A) & !AKT
BCATENIN = !(GSK3B | APC)
BCL2 = (STAT3 | NFKB) & !(P53 | PP2A)
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Table B.3 – Continued from previous page
Boolean rule
CASP3 = (CASP8 | CASP9) & !IAP
CASP8 = FADD &! (CFLIP | P21)
CASP9 = CYTC & !(IAP | P21)
CERAMIDE = SMASE & !SPHK1
CFLIP = NFKB
COX2 = S1P & TNFR
CYCLIND1 = (BCATENIN | STAT3 | JUN) & !GSK3B
CYTC = MOMP
EP2 = PGE2
ERK = MEK
FAS = CTL
FADD = TNFR | FAS
FOS = ERK
GP130 = IL6
GSK3B = !(EP2 | AKT)
IAP = (NFKB | STAT3) & !SMAC
IKB = !IKK
IKK = (AKT | (S1P&TNFR))
JAK = GP130 & !SOCS
JNK = ASK1 | MEKK1
JUN = ((BCATENIN | ERK) & JNK) & !GSK3B
MDM2 = (P53 & AKT) & !(GSK3B | ATM)
MEK = RAF | ROS
MEKK1 = CERAMIDE | TGFR | TNFR
MOMP = (BAX | TBID | CERAMIDE) & !BCL2
NFKB = !IKB
P21 = (P53 | SMAD) & !(GSK3B | CASP3)
P53 = (PTEN | JNK | ATM) & !MDM2
PGE2 = COX2
PI3K = EP2 | RAS &!PTEN
PP2A = CERAMIDE & !AKT
PTEN = P53 & !(NFKB | JUN)
RAF = CERAMIDE | RAS
RAS = EP2 | GP130
ROS = TNFR &! SOD
SOD = NFKB | STAT3
S1P = SPHK1
SMAC = MOMP
SMAD = TGFR & !JUN
SMAD7 = SMAD | NFKB
SMASE = P53 | FADD
SPHK1 = ERK | TNFR
STAT3 = JAK
SOCS = STAT3
TBID = CASP8 & !BCL2
TGFR = TGFB &!SMAD7
TNFR = TNFA
TREG = (IL10 | DC) &! IL6
TNFA = MAC
TH2 = IL4 &! (IFNG | TGFB)
TH1 = (IL12 | IFNG) &! (IL10 | TGFB | IL4)
TGFB = TREG
MAC = (IFNG | CCL2) &! IL10
IL6 = MAC | DC | NFKB
IL4 = DC | TH2
IL12 = DC | MAC
IL10 = TREG | TH2
IFNG = TH1 | CTL
CTL = IFNG &! TGFB
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Table B.3 – Continued from previous page
Boolean rule
DC = (CCL2 | TNFA) &! IL10
CCL2 = NFKB
Prosurvival = (FOS & CYCLIND1) & !(P21 | CASP3)
Antisurvival = CASP3

The logical formalism of the modified Lu et al. [45] model are displayed in Table B.4.

Table B.4: Boolean rules of the modified Lu et al. model [45].

Boolean rule
ATM = ROS
ASK1 = ROS & !P21
AKT = PI3K & ! (PP2A | CASP3)
BAX = ((TBID | P53) & PP2A) & !AKT
BCATENIN = !(GSK3B | APC)
BCL2 = (STAT3 | NFKB) & !(P53 | PP2A)
CASP3 = (CASP8 | CASP9) & !IAP
CASP8 = FADD &! (CFLIP | P21)
CASP9 = CYTC & !(IAP | P21)
CERAMIDE = SMASE & !SPHK1
CFLIP = NFKB
COX2 = S1P & TNFR
CYCLIND1 = (BCATENIN | STAT3 | JUN) & !GSK3B
CYTC = MOMP
ERK = MEK
FADD = TNFR | FAS
FOS = ERK
GP130 = IL6
GSK3B = !(EP2 | AKT)
IAP = (NFKB | STAT3) & !SMAC
IKB = !IKK
IKK = (AKT | (S1P & TNFR))
JAK = GP130 & !SOCS
JNK = ASK1 | MEKK1
JUN = ((BCATENIN | ERK) & JNK) & !GSK3B
MDM2 = (P53 & AKT) & !(GSK3B | ATM)
MEK = RAF | ROS
MEKK1 = CERAMIDE | TGFR | TNFR
MOMP = (BAX | TBID | CERAMIDE) & !BCL2
NFKB = !IKB
P21 = (P53 | SMAD) & !(GSK3B | CASP3)
P53 = (PTEN | JNK | ATM) & !MDM2
PI3K = EP2 | RAS &!PTEN
PP2A = CERAMIDE & !AKT
PTEN = P53 & !(NFKB | JUN)
RAF = CERAMIDE | RAS
RAS = EP2 | GP130
ROS = TNFR &! SOD
SOD = NFKB | STAT3
S1P = SPHK1
SMAC = MOMP
SMAD = TGFR & !JUN
SMAD7 = SMAD | NFKB
SMASE = P53 | FADD
SPHK1 = ERK | TNFR
STAT3 = JAK
SOCS = STAT3
TBID = CASP8 & !BCL2
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Table B.4 – Continued from previous page
Boolean rule
TGFR = !SMAD7
IL6 = NFKB

B.3 Park Model

The logical formalism of the original Park et al. [47] model are displayed in Table B.5.

Table B.5: Boolean rules of the original Park et al. model [47].

Boolean rule
Akt = mTOR2 & PDK1 & !PP2A
AMPK = p53
AP 1 = ATF2 | beta catenin | CREB | ELK1 | ERK | JNK | PP2A | p90RSK & !GSK3beta
APAF1 = CytC | FOXO3 | E2F1
APC = !Frizzled
ATF2 = JNK | p38 | ATM
ATM = DNA damage | E2F1 & !(CyclinG | Wip1)
AXIN = beta catenin
Bax = c Myc | JNK | p53 | Smad2 3 4 | GSK3beta | PP2A | FOXO3 & ! (Akt | ERK | S6K | p90RSK | Bcl 2)
Bcl 2 = STAT | Akt | ERK | CREB | p90RSK & !(JNK | p53 | Smad2 3 4 | PP2A)
beta catenin = !APC | !(APC | (AXIN& GSK3beta) | p53)
BRaf = Ras | Src & !(ERK | Akt)
BRCA1 = CHK2 | ATM | E2F1 & !Akt
c Myc = mTOR1 | beta catenin | ERK | p38 & !(FOXO3 | GSK3beta | Smad2 3 4 | PP2A)
CASP3 = CASP9& !XIAP
CASP9 = CytC | APAF1 & !(Akt | XIAP)
Cdc25 = !(CHK1 | CHK2) | PP2A | MK2
CHK1 = BRCA1& !Akt
CHK2 = ATM | DNA PK
CRaf = Ras | Src & !ERK | Akt
CREB = Akt | p90RSK | MSK& !GSK3beta
CyclinA = E2F1& CyclinE & !(Rb | p21 | p27)
CyclinB = Cdc25 & CyclinA)& !CyclinB
CyclinD = AP 1 | beta catenin | c Myc | S6K & !(FOXO3 | GSK3beta | p15)
CyclinE = !(CyclinA | CyclinB) & Cdc25 | E2F1 | CyclinD & !(p21 | p27)
CyclinG = !p53
CytC = Bax
DNA damage = DNA damage
DNA PK = DNA damage
E2F1 = c Myc | ATM | CHK2 | MK2 & !p14ARF & !(CyclinA | CyclinB | Rb)
EGF = EGF
EGFR = EGF | Src & ! (ERK | c Myc)
ELK1 = ERK | JNK | p38
ERK = MEK & !(MKPs | PP2A)
FOXO3 = JNK | p38 & !(Akt | ERK)
Frizzled = WNT
GAB1 = EGFR | Grb2 & !ERK
GADD45 = Smad2 3 | (p53 & DNA damage)
Grb2 = Shc | IRS & !SPRY
GSK3beta = PP2A & !(Akt | S6K | Frizzled | p38 | p90RS)
IRS = IGFR &!(S6K | mTOR1 | JNK)
JAK = IGFR
JNK = MKK4 & MKK7 & !(MKPs | PP2A)
MDM2 = Akt | MDMX | p53 | Wip1 & !(ATM | CyclinE | GSK3beta | p14ARF | Rb | CyclinG | PP2A)
MDMX = Akt | Wip1 & !(ATM | MDM2 | p14ARF)
MEK = BRaf | CRaf & !(PP2A | ERK)
MEKK1 = Grb2 | Shc | Ras
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Table B.5 – Continued from previous page
Boolean rule
MEKK2 = EGFR & Src
MEKK3 = TAK1& !(PP2A | GAB1)
MEKK4 = GADD45 &!(GSK3beta)
MK2 = p38
MKK3 6 = MEKK3 | MEKK4 | MLKs | TAK1 | TAO & !(Akt | PP2A)
MKK4 = MEKK1 | MEKK2 | MEKK4 | TAK1 | TAO | MLKs & !(Akt | PP2A)
MKK7 = MEKK1 | MEKK2 | TAK1 | TAO | MLKs & !GADD45
MKPs = AP 1 | CREB | ERK | JNK | p38
MLKs = JNK & !Akt
MSK = ERK | p38
mTOR1 = !TSC1 2
mTOR2 = PI3K | Akt & !S6K
p120RasGAP = EGFR & !(SHP2 | Src)
p14ARF = c Myc | E2F1 | DNA damage & !(p53 | Wip1)
p15 = Smad2 3 4 & !c Myc
p21 = p53 | Smad2 3 4 & !(GSK3beta | Akt | c Myc | MDM2)
p27 = FOXO3 | GSK3beta | Smad2 3 4 & !(Akt | c Myc | Ras | CyclinD)
p38 = MKK3 6 | MKK4 & !(MKPs | Wip1)
p53 = ATM | JNK | p38 | CHK2 | CHK1 | p90RSK | DNA PK & !(Bcl 2 | MDM2 | MDMX)
p90RSK = ERK
PDK1 = PIP3
PI3K = EGFR & GAB1 | Ras | Src | IRS & !S6K
PIP3 = PI3K & !PTEN
PP2A = p38 | TGFR & !(mTOR1 | Src)
PTEN = FOXO3 | p53 & !(AP 1 | GSK3beta)
Rac1 = Ras
Ras = Sos & !p120RasGAP
Rb = ATM | !((CyclinD& CyclinE) | CyclinA | CyclinB)
IGFR = Src | FOXO3 & !(c Myc | mTOR1)
S6K = mTOR1 & PDK1 & !PP2A
Shc = EGFR | IGFR | Src & !(PTEN | PP2A)
SHP2 = GAB1
SMAC = Bax & !Bcl 2
Smad2 3 4 = Smad2 3
Smad2 3 = p38 & JNK | TGFR & !(Smad7 | ERK)
Smad7 = Smad2 3
Sos = Grb2& SHP2 & !(ERK& p90RSK)
SPRY = ERK & !SHP2
Src = EGFR | IGFR & !Src
STAT = JAK | Src
TAK1 = TGFR& !PP2A
TAO = ATM
TGF beta = TGF beta
TGFR = TGF beta & !(Smad7 | ERK)
TSC1 2 = GSK3beta | AMPK & !(ERK | p90RSK | Akt | MK2)
Wip1 = p53
WNT = WNT
XIAP = Akt | STAT & !SMAC

The logical formalism of the modified Park et al. [47] model are displayed in Table B.6.

Table B.6: Boolean rules of the modified Park et al. model [47].

Boolean rule
Akt = mTOR2 & PDK1 & !PP2A
AMPK = p53
AP 1 = ATF2 | beta catenin | CREB | ELK1 | ERK | JNK | PP2A | p90RSK & !GSK3beta
APAF1 = CytC | FOXO3 | E2F1
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Table B.6 – Continued from previous page
Boolean rule
APC = !Frizzled
ATF2 = JNK | p38 | ATM
ATM = E2F1 & !(CyclinG | Wip1)
AXIN = beta catenin
Bax = c Myc | JNK | p53 | Smad2 3 4 | GSK3beta | PP2A | FOXO3 & ! (Akt | ERK | S6K | p90RSK | Bcl 2)
Bcl 2 = STAT | Akt | ERK | CREB | p90RSK & !(JNK | p53 | Smad2 3 4 | PP2A)
beta catenin = !APC | !(APC | (AXIN& GSK3beta) | p53)
BRaf = Ras | Src & !(ERK | Akt)
BRCA1 = CHK2 | ATM | E2F1 & !Akt
c Myc = mTOR1 | beta catenin | ERK | p38 & !(FOXO3 | GSK3beta | Smad2 3 4 | PP2A)
CASP3 = CASP9& !XIAP
CASP9 = CytC | APAF1 & !(Akt | XIAP)
Cdc25 = !(CHK1 | CHK2) | PP2A | MK2
CHK1 = BRCA1& !Akt
CHK2 = ATM | DNA PK
CRaf = Ras | Src & !ERK | Akt
CREB = Akt | p90RSK | MSK& !GSK3beta
CyclinA = E2F1& CyclinE & !(Rb | p21 | p27)
CyclinB = Cdc25 & CyclinA)& !CyclinB
CyclinD = AP 1 | beta catenin | c Myc | S6K & !(FOXO3 | GSK3beta | p15)
CyclinE = !(CyclinA | CyclinB) & Cdc25 | E2F1 | CyclinD & !(p21 | p27)
CyclinG = !p53
CytC = Bax
E2F1 = c Myc | ATM | CHK2 | MK2 & !p14ARF & !(CyclinA | CyclinB | Rb)
EGFR = Src & ! (ERK | c Myc)
ELK1 = ERK | JNK | p38
ERK = MEK & !(MKPs | PP2A)
FOXO3 = JNK | p38 & !(Akt | ERK)
GAB1 = EGFR | Grb2 & !ERK
GADD45 = Smad2 3 | p53 &
Grb2 = Shc | IRS & !SPRY
GSK3beta = PP2A & !(Akt | S6K | Frizzled | p38 | p90RS)
IRS = IGFR &!(S6K | mTOR1 | JNK)
JAK = IGFR
JNK = MKK4 & MKK7 & !(MKPs | PP2A)
MDM2 = Akt | MDMX | p53 | Wip1 & !(ATM | CyclinE | GSK3beta | p14ARF | Rb | CyclinG | PP2A)
MDMX = Akt | Wip1 & !(ATM | MDM2 | p14ARF)
MEK = BRaf | CRaf & !(PP2A | ERK)
MEKK1 = Grb2 | Shc | Ras
MEKK2 = EGFR & Src
MEKK3 = TAK1& !(PP2A | GAB1)
MEKK4 = GADD45 &!(GSK3beta)
MK2 = p38
MKK3 6 = MEKK3 | MEKK4 | MLKs | TAK1 | TAO & !(Akt | PP2A)
MKK4 = MEKK1 | MEKK2 | MEKK4 | TAK1 | TAO | MLKs & !(Akt | PP2A)
MKK7 = MEKK1 | MEKK2 | TAK1 | TAO | MLKs & !GADD45
MKPs = AP 1 | CREB | ERK | JNK | p38
MLKs = JNK & !Akt
MSK = ERK | p38
mTOR1 = !TSC1 2
mTOR2 = PI3K | Akt & !S6K
p120RasGAP = EGFR & !(SHP2 | Src)
p14ARF = c Myc | E2F1 & !(p53 | Wip1)
p15 = Smad2 3 4 & !c Myc
p21 = p53 | Smad2 3 4 & !(GSK3beta | Akt | c Myc | MDM2)
p27 = FOXO3 | GSK3beta | Smad2 3 4 & !(Akt | c Myc | Ras | CyclinD)
p38 = MKK3 6 | MKK4 & !(MKPs | Wip1)
p53 = ATM | JNK | p38 | CHK2 | CHK1 | p90RSK | DNA PK & !(Bcl 2 | MDM2 | MDMX)
p90RSK = ERK
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Table B.6 – Continued from previous page
Boolean rule
PDK1 = PIP3
PI3K = EGFR & GAB1 | Ras | Src | IRS & !S6K
PIP3 = PI3K & !PTEN
PP2A = p38 | TGFR & !(mTOR1 | Src)
PTEN = FOXO3 | p53 & !(AP 1 | GSK3beta)
Ras = Sos & !p120RasGAP
Rb = ATM | !((CyclinD& CyclinE) | CyclinA | CyclinB)
IGFR = Src | FOXO3 & !(c Myc | mTOR1)
S6K = mTOR1 & PDK1 & !PP2A
Shc = EGFR | IGFR | Src & !(PTEN | PP2A)
SHP2 = GAB1
SMAC = Bax & !Bcl 2
Smad2 3 4 = Smad2 3
Smad2 3 = p38 & JNK | TGFR & !(Smad7 | ERK)
Smad7 = Smad2 3
Sos = Grb2& SHP2 & !(ERK& p90RSK)
SPRY = ERK & !SHP2
Src = EGFR | IGFR & !Src
STAT = JAK | Src
TAK1 = TGFR& !PP2A
TAO = ATM
TGFR = !(Smad7 | ERK)
TSC1 2 = GSK3beta | AMPK & !(ERK | p90RSK | Akt | MK2)
Wip1 = p53
XIAP = Akt | STAT & !SMAC



C DecoupleR Tools and Benchmark Results

A complete list of the decoupleR tools, and their ranking in the benchmarking analysis of Badia-I-Mompel et
al. [53] is displayed in Table C.1 and Table C.2, respectively.

Table C.1: The software tools in the decoupleR ensemble. The table is collected from Badia-I-Mompel et
al. [53].

Name Sign Weight Permutation P-value Range

AUCell No No No No 0,1

UDT Yes Yes No No 0,Inf

MDT Yes Yes Yes No 0,Inf

FGSEA No No Yes Yes 0,1

GSVA No No No No -1,+1

WSUM Yes Yes Yes Yes -Inf,+Inf

WMEAN Yes Yes Yes Yes -Inf,+Inf

ORA No No No Yes 0,Inf

ULM Yes Yes No Yes -Inf,+Inf

MLM Yes Yes No Yes -Inf,+Inf

VIPER Yes Yes Yes Yes -Inf,+Inf

CONSENSUS No No No Yes 0,Inf

Table C.2: DecoupleR tools ranked by their performance in the benchmarking of Badia-I-Mompel et al.
[53]. The results are ranked based on the median AUC of the joint distribution of AUC ROCs and AUC

PRs.

Method P-value Median AUC

CONSENSUS < 2.2e-16 0.68

MLM < 2.2e-16 0.67

ULM < 2.2e-16 0.66

Norm WMEAN/Norm WSUM < 2.2e-16 0.65

ORA < 2.2e-16 0.64

Corr WSUM < 2.2e-16 0.64

UDT < 2.2e-16 0.64

MDT 5.76e-5 0.63

WSUM 0.144 0.64

VIPER 1 0.62

AUCell 1 0.62

Corr WMEAN 1 0.62

WMEAN 1 0.60

FGSEA 1 0.59

Norm FGSEA 1 0.58

GSVA 1 0.56
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D Step-by-Step Workflow of Creating Calibration Data for the Drug-
Logics Pipeline

D.1 DecoupleR Tools Workflow

The scripts for executing the decoupleR tools MLM, ULM and CONSENSUS can be found here.

A detailed step by step explanation of the extraction of biomarker activity by the decoupleR tools, translating
the entities to the node naming in the respective models, binarising the activity levels, and then fitting the output
to the format of the DrugLogics pipeline is as follows:

– The molecular matrix with omics data from Cell Model Passports(CMP) were imported and read as
a *.csv file. A molecular measure was selected, respectively ”TMP value”, ”Read count” or ”FPKM
value”, and the data was stored as a data frame.

– A regulatory network was imported, either the DoRothEA network or the CollecTRI network, and con-
fidence levels A, B and C were selected for. The network was also stored as a dataframe.

– The decoupleR tools cannot run with missing values so a check to see if there was any in the data was
performed. If present, NA’s (numbers that are not available) and Infs (infinity numbers) were removed.

– A decoupleR tool was selected (MLM, ULM or CONSENSUS) and the tool was utilised with the selected
network, a source (tf), a target (target), a mor (mor) and a minsize (5).

– The resulting output were filtered by a selected p-value threshold (0.05, 0.2 or no threshould).

– The filtered output were scaled between 0 and 1 and then subsequently binarised.

– Nodes in the output were converted from HGNC symbols to match the node names in the given model,
by using a separate script.

– Finally, the output were fitted to match the output format of the DrugLogics pipeline by using a special-
ised function.

D.2 PROFILE Workflow

The scripts for executing PROFILE can be found here.

A step by step explanation of the changes made to the ’OncoLogics pilot.Rmd’ script from the PROFILE
pipeline for extraction of biomarker activity and then fitting the output to the format of the DrugLogics pipeline
is as follows:

– A model was selected at the top of the .Rmd file (line 11), either ’Flobak’, ’Lu’ or ’Park’.

– The cancer type, namely ’Gastric Carcinoma’ or ’Colorectal Carcinoma’ was selected for (in line 57).

– The cell lines were selected, namely ”HCT-116”, ”AGS”, ”COLO 205”, ”SW48 or ”SW620”.

– The specific cell line profiles were selected from the output of PROFILE and each activity was matched
to a node name by restructuring the output data as a table.

– Finally, the output were fitted to match the output format of the DrugLogics pipeline by using a special-
ised function.
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E Synergy and Statistical Results of Lu and Park Models

All figures related to the synergy results and the statistical analysis conducted for the Lu model [45] and the
Park model [47] with the HCT-116, COLO 205, SW48 and SW620 cell lines can be found here.

E.1 Synergy Results - Tool Performances

Figure E.1 and Figure E.2 displays the obtained AUC ROC values from utilising the generated training data
files with the DrugLogics pipeline with the Park and the Lu model, respectively. Four cell lines were utilised
with both models: HCT-116, COLO 205, SW48 and SW620. Each column represents a different set of settings.
The dots are coloured based on inference tools utilised.

Park Model

(a) HCT-116 (b) COLO 205

(c) SW48 (d) SW620

Figure E.1: Synergy results of HCT-116, COLO 205, SW48 and SW620 with the Park model.
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Lu Model

(a) HCT-116 (b) COLO 205

(c) SW48 (d) SW620

Figure E.2: Synergy results of HCT-116, COLO 205, SW48 and SW620 with the Lu model.
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E.2 Synergy Results - Tool Parameters

Figure E.3 - E.24 displays the synergy results of the Lu and the Park models with each respective cell line,
highlighted for each software tool and parameter settings.

E.2.1 CONSENSUS

Gene Regulatory Networks

(a) HCT-116 (b) COLO 205

(c) SW48 (d) SW620

Figure E.3: Synergy results of HCT-116, COLO 205, SW48 and SW620 with the Park model.

(a) HCT-116 (b) COLO 205

(c) SW48 (d) SW620

Figure E.4: Synergy results of HCT-116, COLO 205, SW48 and SW620 with the Lu model.
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Expression Count Measures

(a) HCT-116 (b) COLO 205

(c) SW48 (d) SW620

Figure E.5: Synergy results of HCT-116, COLO 205, SW48 and SW620 with the Park model.

(a) HCT-116 (b) COLO 205

(c) SW48 (d) SW620

Figure E.6: Synergy results of HCT-116, COLO 205, SW48 and SW620 with the Lu model.
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P-values

(a) HCT-116 (b) COLO 205

(c) SW48 (d) SW620

Figure E.7: Synergy results of HCT-116, COLO 205, SW48 and SW620 with the Park model.

(a) HCT-116 (b) COLO 205

(c) SW48 (d) SW620

Figure E.8: Synergy results of HCT-116, COLO 205, SW48 and SW620 with the Lu model.
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E.2.2 ULM

Gene Regulatory Networks

(a) HCT-116 (b) COLO 205

(c) SW48 (d) SW620

Figure E.9: Synergy results of HCT-116, COLO 205, SW48 and SW620 with the Park model.

(a) HCT-116 (b) COLO 205

(c) SW48 (d) SW620

Figure E.10: Synergy results of HCT-116, COLO 205, SW48 and SW620 with the Lu model.
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Expression Count Measures

(a) HCT-116 (b) COLO 205

(c) SW48 (d) SW620

Figure E.11: Synergy results of HCT-116, COLO 205, SW48 and SW620 with the Park model.

(a) HCT-116 (b) COLO 205

(c) SW48 (d) SW620

Figure E.12: Synergy results of HCT-116, COLO 205, SW48 and SW620 with the Lu model.
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P-values

(a) HCT-116 (b) COLO 205

(c) SW48 (d) SW620

Figure E.13: Synergy results of HCT-116, COLO 205, SW48 and SW620 with the Park model.

(a) HCT-116 (b) COLO 205

(c) SW48 (d) SW620

Figure E.14: Synergy results of HCT-116, COLO 205, SW48 and SW620 with the Lu model.
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E.2.3 MLM

Gene Regulatory Networks

(a) HCT-116 (b) COLO 205

(c) SW48 (d) SW620

Figure E.15: Synergy results of HCT-116, COLO 205, SW48 and SW620 with the Park model.

(a) HCT-116 (b) COLO 205

(c) SW48 (d) SW620

Figure E.16: Synergy results of HCT-116, COLO 205, SW48 and SW620 with the Lu model.
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Expression Count Measures

(a) HCT-116 (b) COLO 205

(c) SW48 (d) SW620

Figure E.17: Synergy results of HCT-116, COLO 205, SW48 and SW620 with the Park model.

(a) HCT-116 (b) COLO 205

(c) SW48 (d) SW620

Figure E.18: Synergy results of HCT-116, COLO 205, SW48 and SW620 with the Lu model.
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P-values

(a) HCT-116 (b) COLO 205

(c) SW48 (d) SW620

Figure E.19: Synergy results of HCT-116, COLO 205, SW48 and SW620 with the Park model.

(a) HCT-116 (b) COLO 205

(c) SW48 (d) SW620

Figure E.20: Synergy results of HCT-116, COLO 205, SW48 and SW620 with the Lu model.
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PROFILE

Normalised/Binarised Output

(a) HCT-116 (b) COLO 205

(c) SW48 (d) SW620

Figure E.21: Synergy results of HCT-116, COLO 205, SW48 and SW620 with the Park model.

(a) HCT-116 (b) COLO 205

(c) SW48 (d) SW620

Figure E.22: Synergy results of HCT-116, COLO 205, SW48 and SW620 with the Lu model.
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Expression Count Measures

(a) HCT-116 (b) COLO 205

(c) SW48 (d) SW620

Figure E.23: Synergy results of HCT-116, COLO 205, SW48 and SW620 with the Park model.

(a) HCT-116 (b) COLO 205

(c) SW48 (d) SW620

Figure E.24: Synergy results of HCT-116, COLO 205, SW48 and SW620 with the Lu model.
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E.3 Statistical Analysis Results

Figure E.25 - E.32 displays the top five synergy results from each software tool compared to bootstrapping of
random training data for the Lu and Park models. Purple dots represent tool-specific AUC ROC values, black
lines represent the mean of bootstrapped random training data, and red lines indicate the associated confidence
intervals.

E.3.1 Park Model

HCT-116

(a) ULM (b) MLM

(c) CONSENSUS (d) PROFILE

Figure E.25: Bootstrap results with the HCT-116 cell line and the Park model.

COLO 205

(a) ULM (b) MLM

(c) CONSENSUS (d) PROFILE

Figure E.26: Bootstrap results with the COLO 205 cell line and the Park model.
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SW48

(a) ULM (b) MLM

(c) CONSENSUS (d) PROFILE

Figure E.27: Bootstrap results with the SW48 cell line and the Park model.

SW620

(a) ULM (b) MLM

(c) CONSENSUS (d) PROFILE

Figure E.28: Bootstrap results with the SW620 cell line and the Park model.
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E.3.2 Lu Model

HCT-116

(a) ULM (b) MLM

(c) CONSENSUS (d) PROFILE

Figure E.29: Bootstrap results with the HCT-116 cell line and the Lu model.

COLO 205

(a) ULM (b) MLM

(c) CONSENSUS (d) PROFILE

Figure E.30: Bootstrap results with the COLO 205 cell line and the Lu model.
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SW48

(a) ULM (b) MLM

(c) CONSENSUS (d) PROFILE

Figure E.31: Bootstrap results with the SW48 cell line and the Lu model.

SW620

(a) ULM (b) MLM

(c) CONSENSUS (d) PROFILE

Figure E.32: Bootstrap results with the SW620 cell line and the Lu model.



F Curated AGS Biomarker Activities

Table F.1 and Table F.2 displays the reports on conflicting findings for well sustained and less sustained AGS
steady state activity observations of Flobak et al. [30]. Only entities in the CASCADE 1.0 model are included
in the tables. References for these observations can be found in the supplementary material of Flobak et al.
[30].

• Pro: Number of scientific publications in favor of interpretation

• Con: Number of scientifc publications opposing interpretation

• Questionmarks: Indicate probable interpretations

Table F.1: Well substantiated observations of AGS biomarker activities reported by Flobak et al. [30].

Protein State Pro Con
AKT f On 21 2
ERK f On 16 13
MMP f On 10 4
JNK f Off 9 4
MAPK14 Off 7 2
BCL2 On 6 0
GSK3 f Off 6 0
KRAS On 6 0
NFB f On 6 1
TP53 Off 5 0
S6K f On 5 1
BAX Off 4 0
CASP3 Off 4 0
PIK3CA On 4 0
PTEN g Off 4 0
RAC f On 4 0
MYC On 4 1
CCND1 On 4 1
CTNNB1 ON 3 0
CASP8 Off 3 0
TCF7 f On 3 0

Table F.2: Less well substantiated observations of AGS biomarker activities reported by Flobak et al. [30].

Protein State Pro Con

LEF On 2 0

SOS1 On 2 0

GRB2 On 2 1

IKBKB Off 2 1

MAP2K7 On 2 1

RAF f On 2 1

MAP3K5 Off 1 0

BAD Off 1 0

CASP9 Off 1 0
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Table F.2 – Continued from previous page

Protein State Pro Con

cFLIP On 1 0

EGFR On/off 2 3

EGR1 Off 1 0

FOXO f On? 1 0

FZD f On 1 0

LRP f On 1 0

MAP2K4 Off 1 0

MAP3K11 Off? 1 0

PDPK1 On 1 0

SFRP1 Off 1 0

SHC1 Off 1 0

PTPN11 On 1 0

Tab1/2 Off 1 0

AXIN1 On/off 1 1

CHUCK On 1 1

MDM2 On 1 1

MEK f On/off 1 1

mTOR On/off 1 1

MAP3K7 Off 1 1

MAP3K8 Off 0 1

No experimental observations were reported for:

• betaTrCP

• CK1 f

• Cytochrome C

• DKKf f

• DUSP1

• DUSP6

• DVL f

• GAB f

• GRAP2

• IRS1

• ITCH

• MAP3K4

• MAP2K3
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• MSK f

• mTORC1 c

• mTORC2 c

• NLK

• AKT1S1

• RHEB

• RSK f

• TSC2/1



G AGS CASCADE 1.0 Synergy Results

Table G.1 displays the AUC ROC values for AGS CASCADE 1.0, together with the inferred biomarker activ-
ities and the respective inference tools and parameter settings.

Table G.1: AUC ROC values of synergy results from the DrugLogics pipeline using the CASCADE 1.0
model, along with the inferred biomarker activities from the AGS cell line, inference tools, and parameter

settings. The AUC ROC values are ranked from highest to lowest.

Tools (parameters) Biomarker activities AUC
ROC

Consensus (CollecTRI, FPKM, p<0.2) MYC:1, TP53:0 0,824

Consensus (CollecTRI,TPM,p<0.2) MYC:1, TP53:0 0,824

Consensus (doRothEA, FPKM, p<0.2) MYC:1, TP53:0 0,824

Consensus (doRothEA, TPM, p<0.2) MYC:1, TP53:0 0,824

ULM (CollecTRI, FPKM, no p-value) MYC:1, TP53:0, EGR1:0, NFKB f:1, FOXO f:0, TCF7 f:1, CTNNB1:1 0,779

ULM (CollecTRI, TPM, no p-value) MYC:1, TP53:0, EGR1:0, NFKB f:1, FOXO f:0, TCF7 f:1, CTNNB1:1 0,779

Consensus (CollecTRI, RC, p<0.2) MYC:1, TCF7 f:1, TP53:0 0,765

Consensus (CollecTRI, RC, no p-value) EGR1:0, FOXO f:0, MYC:1, TP53:0 0,765

Consensus (doRothEA, RC, p<0.2) MYC:1, TCF7 f:1, TP53:0 0,765

ULM (doRothEA, read,count, p<0.05) MYC:1, TCF7 f:1, TP53:0 0,765

ULM (doRothEA, RC, p<0.2) FOXO f:0, MYC:1, NFKB f:1, TCF7 f:1, TP53:0 0,765

ULM (doRothEA, RC, no p-value) EGR1:0, FOXO f:0, MYC:1, TP53:0 0,765

ULM (doRothEA, TPM, no p-value ) EGR1:0, MYC:1, TP53:0 0,765

ULM (doRothEA, FPKM, p<0.2) MYC:1 TCF7 f:1 TP53:0 0,765

ULM (doRothEA, TPM, p<0.2) MYC:1, TCF7 f:1, TP53:0 0,765

PROFILE (FPKM, normalized + binarized) AKT f:1, MAP3K5:0, AXIN1:0, BAD:0, BAX:1, CTNNB1:1, BTRC:0,
CASP3:1, CASP8:1, CASP9:0, CCND1:1, CFLAR:0, CK1 f:0, MYC:0,

CYCS:0, DKK f:1, JNK f, DVL f:0, EGR1:0, ERK f:1, FOXO f:0, FZD f:1,
GSK3 f:1, IKBKB:0, IRS1:1, ITCH:1, JNK f:1, LRP f:1, MAP3K8:1,

MDM2:1, MEK f:0, MAP3K4:0, MAP2K3:1, MAP2K4:1, MAP2K7:0,
MAP3K11:0, MSK f:1, mTORC1 c:1, mTORC2 c:0, NFKB f:0, NLK:0,

MAPK14:1, TP53:0, PDPK1:0, PIK3CA:0, AKT1S1:1, PTEN:0, RAC f:1,
RAF f:1, KRAS:1, RHEB:0, RSK f:1, RTPK f:1, S6K f:1, SHC1:1, PTPN11:1,

SOS1:0, TAB f:1, MAP3K7:1, TCF7 f:1, TSC f:1

0.76

ULM (CollecTRI, FPKM, p<0.2) MYC:1, FOXO f:0, TCF7 f:1 0,721

ULM (CollecTRI, TPM, p<0.2) MYC:1, FOXO f:0, TCF7 f:1 0,721

PROFILE (RC, binarized) FZD f:0, RTPK f:1 0,69

Consensus (CollecTRI, FPKM, p<0.05) MYC:1 0,676

Consensus (CollecTRI, RC, p<0.05) MYC:1 0,676

Consensus (CollecTRI, TPM, p<0.05) MYC:1 0,676

Consensus (doRothEA, FPKM, p<0.05) MYC:1 0,676

Consensus (doRothEA, RC, p<0.05) MYC:1 0,676

Consensus (doRothEA, TPM, p<0.05) MYC:1 0,676

MLM (doRothEA, FPKM, p<0.2) MYC:1 0,676

MLM (doRothEA, FPKM, no p-value) EGR1:0, FOXO f:0, MYC:1, NFKB f:0, TCF7 f:0, TP53:0 0,676

MLM (doRothEA, RC, p<0.05) MYC:1 0,676

MLM (doRothEA, RC, p<0.2) MYC:1 0,676

MLM (doRothEA,RC, no p-value) EGR1:0, FOXO f:0, MYC:1, NFKB f:0, TCF7 f:0, TP53:0 0,676

MLM (doRothEA, TPM, p<0.2) MYC:1 0,676

MLM (doRothEA, TPM, no p-value) EGR1:0, FOXO f:0, MYC:1, NFKB f:0, TCF7 f:0, TP53:0 0,676

MLM (CollecTRI, FPKM, p<0.05) MYC:1 0,676

MLM (CollecTRI, RC, p<0.05) MYC:1 0,676

MLM (CollecTRI, TPM, p<0.05) MYC:1 0,676

ULM (doRothEA, FPKM, p<0.05) TCF7 f:1 0,676

ULM (doRothEA, TPM, p<0.05) TCF7 f:1 0,676

ULM (CollecTRI, FPKM, p<0.05) MYC:1 0,676

ULM (CollecTRI, RC, p<0.05) MYC:1 0,676
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Table G.1 – Continued from previous page

Tools (parameters) Biomarker activities AUC
ROC

ULM (CollecTRI, TPM, p<0.05) MYC:1 0,676

Consensus (doRothEA, RC, no p-value) EGR1:0, FOXO f:0, MYC:1, NFKB f:0, TP53:0 0,662

ULM (doRothEA, FPKM, no p-value) EGR1:0, FOXO f:0, MYC:1, NFKB f:0, TP53:0 0,662

MLM (CollecTRI, RC, p<0.2) MYC:1, TP53:1, FOXO f:0 0,603

PROFILE (RC, normalized + binarised) AKT f:1, MAP3K5:0, AXIN1:0, BAD:0, BAX:1, BCL2:0, CTNNB1:1,
BTRC:0, CASP3:1, CASP8:0, CASP9:1, CCND1:1, CFLAR:0, CK1 f:0,

MYC:0, CYCS:0, DKK f:1, JNK f, DVL f:0, EGR1:0, ERK f:1, FOXO f:0,
FZD f:0, GAB f:1, GRB2:0, GSK3 f:1, IKBKB:0, IRS1:1, ITCH:1, JNK f:1,
LEF1:0, LRP f:1, MAP3K8:1, MDM2:1, MEK f:0, MAP3K4:0, MAP2K3:1,
MAP2K4:1, MAP2K7:0, MAP3K11:1, MMP f:0, MSK f:0, mTORC1 c:0,

mTORC2 c:0, NFKB f:0, NLK:0, MAPK14:1, TP53:0, PDPK1:1, PIK3CA:0,
AKT1S1:1, PTEN:1, RAC f:0, RAF f:1, KRAS:1, RHEB:0, RSK f:1,

RTPK f:1, RTPK g:1, S6K f:1, SFRP1:0, SHC1:1, PTPN11:1, SOS1:0,
TAB f:1, MAP3K7:0, TCF7 f:0

0,6

MLM (doRothEA, FPKM, p<0.05) no inferred biomarkers 0,588

MLM (doRothEA, TPM, p<0.05) no inferred biomarkers 0,588

PROFILE, RC (normalized) AKT f:0.54, MAP3K5:0.41, AXIN1:0.40, BAD:0.26, BAX:0.80, BCL2:0.14,
CTNNB1:0.84, BTRC:0.48, CASP3:0.74, CASP8:0.48, CASP9:0.60,

CCND1:0.72, CFLAR:0.46, CK1 f:0.49, MYC:0.32, CYCS:0.26, DKK f:0.68,
JNK f:0.44, DVL f:0.46, EGR1:0.40, ERK f:0.54, FOXO f:0.35, FZD f:0.42,
GAB f:0.57, GRB2:0.49, GSK3 f:0.60, IKBKB:0.31, IRS1:0.67, ITCH:0.55,

JNK f:0.57, LEF1:0.31, LRP f:0.57, MAP3K8:0.62, MDM2:0.74, MEK f:0.43,
MAP3K4:0.43, MAP2K3:0.67, MAP2K4:0.89, MAP2K7:0.33, MAP3K11:0.50,

MMP f:0.50, MSK f:0.47, mTORC1 c:0.48, mTORC2 c:0.48, NFKB f:0.42,
NLK:0.38, MAPK14:0.74, TP53:0.34, PDPK1:0.54, PIK3CA:0.46,

AKT1S1:0.53, PTEN:0.51, RAC f:0.47, RAF f:0.56, KRAS:0.60, RHEB:0.42,
RSK f:0.53, RTPK f:0.51, RTPK g:0.51, S6K f:0.52, SFRP1:0.26, SFRP1:0.26,

SHC1:0.61, PTPN11:0.56, SOS1:0.39, TAB f:0.51, MAP3K7:0.46,
TCF7 f:0.47, TSC f:0.53

0,57

PROFILE, FPKM (normalized) AKT f:0.61, MAP3K5:0.32, AXIN1:0.25, BAD:0.20, BAX:0.94,
CTNNB1:0.71, BTRC:0.50, CASP3:0.88, CASP8:0.62, CASP9:0.50,

CCND1:0.71, CFLAR:0.50, CK1 f:0.48, MYC:0.09, CYCS:0.04, DKK f:1.00,
DUSP1:0.40, DUSP6:0.41, DVL f:0.45, EGR1:0.33, ERK f:0.70, FOXO f:0.37,
FZD f:0.55, GAB1:0.68, GAB2:0.33, GSK3 f:0.67, CHUK:0.69, IKBKB:0.32,
IRS1:0.71, ITCH:0.69, JNK f:0.70, LRP f:0.65, MAP3K8:0.75, MDM2:0.94,
MEK f:0.42, MAP3K4:0.39, MAP2K3:0.61, MAP2K4:0.91, MAP2K7:0.20,

MAP3K11:0.40, MSK f:0.68, mTORC1 c:0.52, mTORC2 c:0.46, NFKB f:0.40,
NLK:0.36, MAPK14:0.84, TP53:0.21, PDPK1:0.50, PIK3CA:0.32,

AKT1S1:0.56, PTEN:0.44, RAC f:0.55, RAF f:0.66, KRAS:0.87, RHEB:0.19,
RSK f:0.55, RTPK f:0.55, S6K f:0.53, SHC1:0.70, PTPN11:0.79, SOS1:0.42,

TAB f:0.59, MAP3K7:0.60, TCF7 f:0.67, TSC f:0.63

0,53

MLM (CollecTRI, RC, no p-value) MYC:1, TP53:1, EGR1:0, TCF7 f:1, CTNNB1:1 0,485

PROFILE (FPKM, binarized) BAD:0, BAX:1, CASP3:1, MYC:0, MAP2K4:1, REL f:0, RTPK f:1 0,48

MLM (CollecTRI, FPKM, p<0.2) MYC:1, TP53:1 0,471

MLM (CollecTRI, TPM, p<0.2) MYC:1, TP53:1 0,471

ULM (CollecTRI, RC, p<0.2) MYC:1, FOXO f:0, TCF7 f:0 0,412

MLM (CollecTRI, FPKM, no p-value) MYC:1, TP53:1, EGR1:0, TCF7 f:1, CTNNB1:0 0,390

MLM (CollecTRI, TPM, no p-value) MYC:1, TP53:1, EGR1:0, TCF7 f:1, CTNNB1:0 0,390

Consensus (CollecTRI, FPKM, no p-value) EGR1:1, FOXO f:0, MYC:1, NFKB f:0, TP53:0 0,294

Consensus (CollecTRI, TPM, no p-value) EGR1:1, FOXO f:0, MYC:1, NFKB f:0, TP53:0 0,294

Consensus (doRothEA, FPKM, no p-value) EGR1:1, FOXO f:0, MYC:1, NFKB f:0, TP53:0 0,294

Consensus (doRothEA, TPM, no p-value) EGR1:1, FOXO f:0, MYC:1, NFKB f:0, TP53:0 0,294

ULM (CollecTRI, RC, no p-value) MYC:1, TP53:0, EGR1:0, NFKB f:0, FOXO f:0, TCF7 f:0, CTNNB1:0 0,294
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