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Abstract

This study examines the stability of asset pricing models at the Oslo Stock Ex-

change, specifically it focuses on the performance of the Capital Asset Pricing Model

(CAPM), the Fama-French three-factor model, the Carhart four-factor model, and a

five-factor model that incorporates the Pastor-Stambaugh liquidity risk factor. The

research employs the Fama-Macbeth two-step procedure and intercepts statistics

from Gibbons-Ross-Shanken (GRS) as testing methods. In order to conduct the

analysis we construct portfolios based on size, beta, momentum, and liquidity with

stocks listed on the Oslo Stock Exchange from January 2000 to December 2020.

The results of this study reveal that the utilized asset pricing models exhibit instabil-

ity across portfolio sortings. More precisely, the models demonstrate shortcomings

in accurately estimating risk premiums, determine how the risk premiums will un-

fold, and to consistently identify priced risk factors. We find that liquidity should

not be included in models along with market and size factors.
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Sammendrag

Denne studien undersøker stabiliteten til aktivaprisingsmodeller p̊a Oslo Børs, og

fokuserer spesifikt p̊a Kapitalverdimodellen (CAPM), Fama-French tre-faktor mod-

ellen, Carhart fire-faktor modellen og en fem-faktor modell med en Pastor-Stambaugh

likviditetsrisikofaktor. De anvendte testmetodene i avhandlingen er henholdsvis en

Fama-Macbeth to-stegs økonometrisk modell og en Gibbons-Ross-Shanken (GRS)

skjæringspunkttest. I forkant av testutførelsen har vi konstruert porteføljer best̊aende

av aksjer basert p̊a størrelse, beta, momentum og likviditet p̊a Oslo Børs i perioden

januar 2000 til desember 2020.

Funnene ved denne avhandlingen viser at de anvendte prisingsmodellene for finan-

sielle aktiva ikke viser stabilitet p̊a tvers av ulike porteføljesammensetninger. Mer

presist, modellene mislykkes i å estimere risikopremier med nøyaktighet, ved å for-

utsi utviklingen risikopremiene tar, og de ser heller ikke ut til å konsekvent kunne

identifisere prisede risikofaktorer. Vi finner at likviditet ikke burde innlemmes i

modeller med markeds- og størrelsesfaktorer.
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1 Introduction

Stock prices are known to be influenced by various factors, including macroeconomic

conditions, industry trends, and firm-specific characteristics. Understanding how

firm-specific characteristics affect stock prices is important for investors and financial

analysts, as it can inform investment decisions and portfolio management strategies.

The aim of this research is to investigate the stability of widely applied asset pricing

model in explaining cross-sectional returns on the Oslo Stock Exchange (OSE).

The Oslo Stock Exchange operates the only regulated market for securities in Nor-

way, and is among the world-leading within sectors such as energy, shipping, and

seafood. The stock exchange became a part of the Euronext concern back in June

2019, giving access to more investors to which the stock exchange expects increasing

capital, liquidity, and interest in the years to come. Historically, from the 1980s to

the time of writing, the stock exchange has experienced remarkable growth in value

(16.5 billion in 1980 to 2.9 trillion in 2020), number of listed stocks (93 listed in

1980 versus 250 listed in 2020), and trading volume (370 million in 1980 and 219

trillion in 2020). Despite this, the OSE continues to be an energy-driven stock ex-

change (more than 35% of the listings fall into this category). The OSE is mainly

represented by a few heavyweights (the biggest five account for about 45% of the

total value) (Euronext (n.d.)).

To maneuver through the research we are going to apply some of the better-known

asset pricing models with the desire of determining the stability of the factor models

at the Oslo Stock Exchange.

Specifically, we apply the Capital Asset Pricing Model (CAPM) as a starting point,

as this model is one of the most recognized and widely used among academics. The

CAPM, being very simple in its form implies that there are likely to be other models

that will better explain asset returns. This leads to the idea of a model with more

risk factors that is able to explain market returns with more precision. One of the

well-known asset pricing models we put into action is the Fama-French three-factor

model, which includes market risk, size, and book-to-market value. Further, we
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expand to the Carhart four-factor model in which momentum is incorporated as a

risk factor among the three mentioned Fama-French factors.

More advanced, to amplify the results we use a five-factor model accounting for

liquidity, in addition to the risk factors included in the Carhart four-factor model.

A large part of our motivation for choosing these asset pricing models and the

research question is that the mentioned models are widely applied in finance, much

due to their informative nature on common risk factors. Further, the fact that

the models are used extensively in finance courses also motivated us to move from

theory to practical implementation and the usage of them. Performing analysis of

the Norwegian stock market concerning these models is therefore in our opinion both

useful and interesting.

All asset pricing models will be commented on and tested by enforcing the Fama-

Macbeth two-step method, the Gibbons-Ross-Shanken test, the mean absolute value

of alpha (MAVA), and their goodness-of-fit.

The outline of the paper is as follows. In section 2 we present relevant literature in

a historical timeline. We then proceed to section 3 where we present the theoretical

framework for the employed asset pricing models. In section 4 we present the data

used in our analysis, and in section 5 we present the methodology used to derive our

results. Towards the end, in section 6 we undertake the analysis and results, and

finally in section 7 we conclude our main objective.
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2 Literature review

In this section, we provide an overview of already existing and relevant theoret-

ical literature on asset pricing models. Specifically, the models used to define how

distinct risk factors affect the excess returns1 of financial assets.

Stocks have been issued and traded for hundreds of years, dating back to the seven-

teenth century when the Dutch East India Company allowed the public to invest in

its business in 1602. Despite a long history of risk-bearing and risk-sharing there was

little to no modeling of the risk-return relationship in capital markets for centuries.

It was not until the 1950s the understanding and desire of theoretical and empirical

knowledge became a topic of interest (Perold 2004).

A natural starting point for this section is the work of Markowitz (1952) on the

trade-off between risk and return in financial markets. Markowtiz’s work is among

the earliest in illustrating how investors could maximize their return for a given level

of risk, or the other way around, minimize their risk for a given level of return. Both

by choosing an optimal portfolio.

In the following decade, Sharpe, Lintner, and Treynor developed the Capital Asset

Pricing Model (CAPM) built on the previous research by Markowitz. The model

has since then become well-known and broadly implemented in risk-return analysis.

CAPM aims to explain the asset return in a linear relation to the market risk. Des-

pite its popularity among academics, the CAPM has been subject to criticism due

to its simple and very general appearance in terms of assumptions. As mentioned,

the model has widely been tested and used in various studies, one of them carried

out by Michael C. Jensen (1968) on the U.S. stock market find that the CAPM

provides a reasonably good explanation of stock returns. Market risk is found to

be a significant predictor of asset returns. Likewise, on the Norwegian stock mar-

ket, Bernt Arne Ødegaard (1994) also find the CAPM to have explanatory power

in terms of returns when analyzing data from 1982 until 1991. Yet both studies

comment on how CAPM struggles to explain most of the returns. Some modifica-

tions of the model were introduced through the work of Robert Merton (1973) with

1Excess return is the return in excess of the risk-free rate.
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his Intertemporal Capital Asset Pricing Model (ICAPM), Robert Lucas (1978) and

Douglas Breeden (1979) with their consumption-based CAPM.

In relation to this, there have been developed several asset pricing models based on

CAPM. Other models investigate additional risk factors.

Eugene F. Fama and Kenneth R. French argue that the attraction of the CAPM

is that it offers powerful and intuitively pleasing predictions about how to measure

risk and the relation between expected return and risk. However, the empirical

record of the model is poor, and therefore poor enough to invalidate the way it

is used in its application (Fama and French 2004). Fama and French (1992) find

that when you include other risk factors in combination with the market risk, the

market risk turns out to have rather little explanatory power when assessing the

asset returns. More specifically, they find that when used in single-factor models,

size, E/P, leverage, and book-to-market equity have explanatory power. When

in combination, they find that size and book-to-market equity (BE/ME) have a

statistically significant relationship with asset returns and describe returns better

than the CAPM alone. In order to analyze the risk factors, they divided the assets

into portfolios based on size and book-to-market. Their research on risk factors gave

birth to the well-known Fama-French three-factor model introduced in Fama and

French (1993). Later, Fama and French (2015) proposed the five-factor model, also

known as the Fama-French five-factor model, as an extension of their three-factor

model. The extended version includes profitability and investment factors. The

three-factor model has been used by Næs et al. (2009) on the Oslo Stock Exchange

where they found the size and book-to-market to be significant risk factors.

Another extension of the Fama-French three-factor model proposed by Mark M.

Carhart. His model add momentum as a risk factor. Intending to illustrate that

stocks tend to perform well or poorly in the future based on previous performance.

Similar to Fama and French, Carhart constructed portfolios based on specific char-

acteristics to examine the performance and risk associated with different factors. In

various studies on the U.S. market returns it shows to provide a better explana-

tion of the variation in stock returns than CAPM and the Fama-French three-factor

model (Carhart 1997). Jegadeesh and Titman (1993) show how momentum persists

4



in U.S. market returns even after controlling for the three risk factors market, size,

and book-to-market. However on the Norwegian market Næs et al. (2009) find little

support for any momentum effect.

Næs et al. (2009) finds the presence of liquidity as a risk factor along with market

risk and size on the Oslo Stock Exchange. The same is reported by Pastor and Stam-

baugh (2003) when analyzing a broad range of potential risk factors for stock returns

in the U.S. market, including the Fama-French three-factor model and several ad-

ditional variables. They find that the Fama-French three-factor model is important

in explaining asset returns. However, they also argue that there are other variables

explaining a significant portion of the variation in stock returns. Specifically, they

identified liquidity and captured the tendency of more liquid stocks to outperform

less liquid stocks. Their study is a significant contribution to the literature on asset

pricing.

3 Theoretical framework

In this section, we briefly go through the efficient market theory as it is an important

and necessary concept in order to acknowledge asset pricing models in research. We

will then present the employed asset pricing models and their respective appearance

in terms of equation and theory. Thereafter, under each model we will provide a

subsection containing a more profound description and overview of the risk factors

that are specific to said asset pricing model.

3.1 Efficient markets

The efficient market hypothesis (EMH) is a key concept and cornerstone in modern

finance theory. EMH states that the asset prices fully reflect all publicly available in-

formation and respond quickly to new information, making it impossible to beat the

market. According to EMH, the market price is considered the true value of a said

asset, and investors cannot purchase undervalued stocks or sell stocks for inflated

prices. This means that the only way to obtain a return in excess of the market
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is through purchasing riskier investments. The assumption of efficient markets is

important for asset pricing models in several ways

The asset pricing models whose goal is to describe the relationship between asset

returns and systematic risk rely on the idea of efficient markets. It is crucial for

the asset pricing models that the asset prices reflect all information to be able to

capture systematic risk associated with an asset and create reliable estimates. The

EMH is in line with risk and return being inherently linked in asset pricing.

Noteworthy, the assumptions of market efficiency influence the behavior and strategies

of investors. In efficient markets, investors often adopt passive strategies, aiming

to replicate the market performance rather than outperform it. Constructing well-

diversified portfolios is therefore essential when assessing asset pricing models within

the framework of the efficient market hypothesis theory (Bodie et al. 2021).

3.2 Risk factors

Risk factors are variables or characteristics that are believed (or found) to impact

the returns of an asset or a group of assets. They capture systematic risks associated

with an investment and help explain the returns of assets. There exist several widely

recognized risk factors, among them are the ones used in this thesis; market, size,

book-to-market, momentum, and liquidity which will be present in the following

parts. Risk factors play a central role in this research paper because when they

are demonstrated to possess explanatory power in the overall market, they will

contribute to enhancing the accuracy of estimates produced by the asset pricing

models.

In order to portray the impact of risk factors on investment returns Figure 1 shows

the potential historical return associated with an investment in the risk factors SMB

(size), HML (book-to-market), LIQ (liquidity), and PR1Y R (momentum).
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Figure 1: Displays the return of a unit investment in the risk factor portfolios: SMB,

HML, LIQ, and PR1Y R.

3.3 CAPM

One of the most widely used models for pricing financial assets is the Capital As-

set Pricing Model (CAPM) developed by Jack Treynor (1962), William F. Sharpe

(1964), John Lintner (1965) and Jan Mossin (1966) in the early 1960s. The CAPM

is an equilibrium model that describes the relationship between risk and return for

individual securities. The premise of the model is that all investors are risk-averse

by nature, meaning that they require higher expected return to take on additional

risk. Beyond this, investors have the same time period to evaluate information and

there is unlimited capital to lend at the risk-free rate of return (Sharpe 1964). The

model is specified in an unconditional framework as

E[ri] = rf + βi(E[rM ]− rf ), (1)

where E[ri] is the expected return of asset i, rf is the risk-free rate, E[rM ] is the

expected return of the market portfolio. Here, βi =
σ(ri,rM )
σ2(rM )

is the sensitivity of

return in asset i to the market return M . The numerator denotes the covariance

between asset returns and market returns, and the denominator denotes the variance

of market returns.

7



The empirically tested market model derived from CAPM is

ri,t − rf,t = αi + βi(rM,t − rf,t) + ϵi,t. (2)

Evaluating the model now entails using historical values of asset returns, therefore

we remove ri,t’s notation of expected return and it is interpreted as the return of

asset i at time t. Market return, denoted by rM,t is the return of the market portfolio

at time t, rf,t is the risk-free rate at time t, αi is the intercept, and ϵi,t is the error

term. The βi can be derived as in equation (1), however, it will be retrieved through

time-series regression. More on this in section (5).

3.3.1 Market

The market risk factor was pointed out along with the CAPM in the 1960s. Market

risk is a systematic risk, and it refers to the risk affecting the prices of all securities

associated with the market. It is driven by various macroeconomic factors, such as

geopolitical events, changes in interest rates, and other macro trends. The market

risk cannot be diversified away, and investors therefore demand compensation for

bearing this risk.

The market risk factor is the excess return of market returns, and is given by

Market risk = (rM,t − rf,t). (3)

3.4 Fama-French three-factor model

One of the proposed extended models to the CAPM is the Fama and French three-

factor model. In addition to market risk, it contains the size and the book-to-market

risk factors. In an article published in the Journal of Finance in 1993 they show that

an empirically motivated three-factor model has better explanatory power than the

CAPM alone on the U.S. stock market (Fama and French 1993). The Fama-French

three-factor model is expressed by

8



ri,t − rf,t = αi + βi,1(rM,t − rf,t) + βi,2SMBt + βi,3HMLt + ϵi,t. (4)

The extension of the CAPM includes two additional risk factors, the other variables

are interpreted as in equation (2). SMB is a long-short portfolio2 referred to as

small minus big, and HML is a long-short portfolio referred to as high minus low.

Following, we provide a more detailed description of the additional risk factors.

The calculations of both SMB and HML are derived from first dividing into three

portfolios sorted on book-to-market, separating between high, median, and low (H,

M , and L), and then secondly divided into two size classifications within each book-

to-market portfolio, as small and big (S and B). This results in the combinations

SH, SM , SL, BH, BM , and BL.

3.4.1 Size

The first to document the size effect is Rolf W. Banz in 1981 where he find that the

size effect is not linear in the market value. The main observation is that smaller

firms, on average, have greater risk-adjusted returns than larger firms on the U.S.

stock market. Research on the size effect proved it had been present in the U.S. for

the last forty years and pointed towards evidence of the Capital Asset Pricing Model

being misspecified. The size risk factor is found to mainly affect smaller firms, while

there are little differences in return between larger firms. The research comments on

how there is not any theoretical foundation for such an effect and that it, potentially,

could be a proxy for other true but unknown risk factors correlated with size (Banz

1981).

To isolate returns related to size (SMB), Fama and French categorize stocks into

different size groups based on market capitalization. Then, they sort the stocks

within each size group based on their book-to-market ratio. By constructing portfo-

lios that combine these size and book-to-market categories, they isolate the specific

2Note that long-short portfolio is mainly a notational preference to us, the risk factors are,

in short, the average of a weighted average of stocks minus the weighted average of other stocks

(excluding the market risk).
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size-related effect.

The SMB portfolio is meant to mimic returns associated with size, it is derived as

SMB =
1

3
· (SL+ SM + SH)− 1

3
· (BL+BM +BH). (5)

For instance, the SL portfolio contains stocks with a small market capitalization (S)

and low book-to-market (L) ratio. Similarly, the BH portfolio contains stocks with

a large market capitalization (B) that is also in the high book-to-market (H) ratio

group (Fama and French 1993).

3.4.2 Book-to-market value

The book-to-market value is the ratio of the book value of equity, BE, to its market

value, ME. The book value represents firm value as reported in its financial state-

ment, while market value reflects the firm value as perceived by investors in the

stock market. Fama and French (1992) find that the book-to-market ratio, BE/ME,

is a priced risk factor in the U.S. market. There are several other studies support-

ing such discoveries, for instance, Rosenberg, Reid, and Lanstein conclude with a

significant book-to-market effect in the U.S. stock market. (Rosenberg et al. 1985).

Likewise, Chan, Hamao and Lakonishok (1991) infer that the book-to-market has a

direct relationship with asset returns in Japan (Chan et al. 1991).

In order to isolate effects related to the book-to-market ratio, Fama and French

follow a similar approach as with SMB. They categorize stocks into different size

groups based on market capitalization, and then sort the stocks within each size

group based on the book-to-market ratio. In that manner, they are able to isolate

the specific return associated with the book-to-market effect.

The HML portfolio aims to reflect the risk factor in returns related to the book-to-

market ratio and is derived by

HML =
1

2
· (SH +BH)− 1

2
· (SL+BL), (6)
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where the variables are defined as in equation (5). A more detailed description of

the SMB and HML are found in Fama and French (1993).

3.5 Carhart four-factor model

Later on, Mark M. Carhart published in The Journal of Finance his four-factor

model constructed using Fama-French three-factor model appending an additional

risk factor, momentum. Carhart finds that momentum is a risk factor that with favor

should be included in asset pricing models to strengthen its explanatory power when

investigating mutual funds return (Carhart 1997). He found that mutual funds with

high loading on size, book-to-market, and momentum tend to outperform those

with low loadings, even after adjusting for the expense ratios and turnover rates.

Carhart’s four-factor model is given by

ri,t − rf,t = αi + βi,1(rM,t − rf,t) + βi,2SMBt + βi,3HMLt + βi,4PR1Y Rt + ϵi,t. (7)

The variables are interpreted as in equation (2) and (4), and the PR1Y R is a long-

short portfolio mimicking the momentum risk factor.

3.5.1 Momentum

The momentum risk factor was presented by Jegadeesh and Titman in 1993, their

article revealed that stocks on an upward-moving trend tend to keep move in the

same direction and the other way around for stocks on a downward-moving trend.

They find that a strategy based on buying stocks that have performed well in the past

and selling stocks that have performed poorly in the past gives significant positive

returns when having a three to twelve-month holding period. They determine that

observed profitability does not come from systematic risk nor delayed stock price

reactions to common factors (Jegadeesh and Titman 1993). The Carhart factor,

PR1YR, is constructed by sorting companies into three portfolios (top 30%, median

40%, and bottom 30%) at the end of each month based on their return in the
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previous eleven months. Thereafter the portfolios are held constant throughout the

month and the PR1YR is calculated as the difference in return between the top and

the bottom portfolio (Carhart 1997). It can also be interpreted as the return on a

long-short portfolio, where you buy top 30% and sell bottom 30%.

3.6 Five-factor model

Motivated by the findings of Næs et al. (2009) on liquidity effects on the Oslo Stock

Exchange, we extend Carhart’s four-factor model with Pastor and Stambaugh’s

liquidity risk factor. The model is specified as

ri,t − rf,t = αi + βi,1(rM,t − rf,t) + βi,2SMBt + βi,3HMLt

+ βi,4PR1Y Rt + βi,5LIQt + ϵi,t,
(8)

where LIQ is a long-short portfolio representing the liquidity risk factor. Other

variables are interpreted as in the previous asset pricing models.

3.6.1 Liquidity

A fourth characteristic often related to CAPM anomalies3 is liquidity. This risk

factor is understood as the bid-ask spread, transaction costs, or trading volume.

Discussed by Amihud and Mendelson in their publication of 1986, liquidity is found

to have an impact on asset prices. The analysis is carried out on investors hav-

ing different expected holding periods and trading with different relative spreads.

The applied model for their study suggest increasing expected return as the bid-ask

spread increases (Amihud and Mendelson 1986). Nevertheless, other studies such as

Acharya and Pedersen (2005), Liu (2006), and Sadka (2006) suggest that liquidity

is an explanatory variable for size, book-to-market, and momentum. Another draw-

back for liquidity as a risk factor is that it has several dimensions, for instance, how

3Patterns in average stock returns not explained by the Capital Asset Pricing Model are typically

called anomalies (Fama and French 1996).
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much it costs to trade, how fast one can trade, and how much one can trade (Berge

et al. 2009).

The Pastor and Stambaugh liquidity factor is computed on a monthly basis. The

risk factor is created by sorting stocks into three portfolios based on liquidity (trade

volume); low (30%), median (40%), and high (30%). The risk factor is then con-

structed by creating a portfolio where you hold a long position in the low 30% and

a short position in the high 30% (Pastor and Stambaugh 2003).

4 Data

This study is based on a quantitative research design, which involves the use of

numerical data to derive conclusions. During our research we conduct an empirical

analysis employing a dataset containing monthly information about the stocks at

the Oslo Stock Exchange from 1980 until 2020. The dataset is collected from Titlon

which is a database operated by the University of Tromsø. Titlon has financial data

on stocks, indices, bonds, funds, and derivatives from all exchanges at Euronext and

with data from the Oslo Stock Exchange back to 1980 (University of Tromsø 2023).

Apart from Titlon, we gathered the Norwegian Interbank Offered Rate (NIBOR)

from the Federal Reserve Bank of St. Louis (2023) to implement as the proxy

for the risk-free interest rate. We use the Oslo Stock Exchange Benchmark Index

as the proxy for the market (see figure 2a & 2b), data collected on the OSEBX

is retrieved from Eikon (2023). In addition, we employ risk factors calculated by

Ødegaard (2023a), the risk factors are monthly observations on long-short portfolios

replicating the Fama-French risk factors, SMB and HML. The data has been

analyzed using the statistical software package Stata. We discuss and comment on

alteration, moderation, and processing of the dataset in section 4.1. In Figure 2 we

present the development of OSEBX and its volatility, the risk-free interest rate and

its return, and the number of listed companies in our dataset each month.
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(a) OSEBX (b) Volatility OSEBX

(c) NIBOR (d) Number of listed companies

Figure 2: Graph (a) illustrates the performance of the OSEBX since January 1980 to

November 2020. Indicating a growing trend with some notable recessions corresponding

to international events, such as the 2008 financial crisis. Graph (b) showcases the volatility

of the OSEBX, depicting periods of fluctuations and varying levels of market stability. In

(c) the risk-free interest rate, NIBOR, is illustrated. To give an idea of how its return

has been, there is also presented a unit investment in 1980 and how it has developed from

1980 through 2020. (d) plots the number of listed companies at the Oslo Stock Exchange

at the end of each month from 1980 to 2020.

4.1 Data processing

While evaluating asset pricing models, we are interested in a general model that is

able to explain the excess returns of stocks at the Oslo Stock Exchange. Unfortu-

nately, due to market anomalies4, extreme outliers, and volatile stocks, it is difficult

to create a comprehensive model that effectively explains excess return.

4Market anomalies are unusual occurrence or abnormality in smooth pattern of stock market

Latif et al. (2011).
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Mentioned issues could possibly generate large skewness in the returns and make

it challenging for the models to give accurate results for the entire market. Our

objective is to examine the stability of asset pricing models, in order to do so, we

depend on observations that are to a minimum extent affected by anomalies or other

biases to give a meaningful analysis, discussion, and results in our research. It is

therefore favorable to remove and cleanse the data to create a dataset that is closer

to a representative and stable sample for the overall market.

Although the raw files provided by Titlon are of high quality, there is still a need

to process the data to ensure accuracy and reliability. The data was processed and

cleaned using the statistical software Stata. The cleaning process involved removing

missing or incomplete data and correcting any errors or inconsistencies.

There are several companies with undefined industry classifications, missing values,

and repeated observations. One of the first things we did was to go through each

stock with missing sector classification and attributed an industry according to their

classification under the Global Industry Classification Standard (Intelligence 2018).

0% 5% 10% 15% 20% 25%

Consumer Discretionary

Consumer Staples

Energy

Financials

Health Care

Industrials

Information Technology

Materials

NA

1980-2020 2000-2020

Figure 3: Displays the industry composition in our dataset after attributing industry to

the ones missing.
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Due to the Oslo Stock Exchange not having a diversified industry composition,

stocks in industries comprised of a few companies were attributed an industry clas-

sification substitute (for example, Telenor being in the Telecommunication industry,

is attributed to the Information Technology industry). We also remove repeated

observations and missing values.

Furthermore, we remove firms with small market capitalization. More detailed, firms

during our twenty-year sample period with less than 1 million NOK in market cap-

italization are removed. If they happen to increase or decrease above/below the set

value, they will be included or excluded accordingly, as recommended by Ødegaard

(2021). It is common knowledge that small-cap stocks tend to be more volatile than

large-cap stocks and create large fluctuations. Apart from that, observed outliers in

returns are removed to further increase the precision of our model in describing the

general market. We define outliers as returns outside the 1st and 99th percentile.

When doing so we get rid of the biggest fluctuations that do not reflect how normal

returns appear at Oslo Stock Exchange. Well aware that such extreme returns do

happen and are part of financial markets, it will not do us any justice in including

them as they are not representative of the overall market.

After processing the dataset in terms of correcting missing values, removing outliers,

and removing stocks with small market capitalization, the final dataset consists of

monthly observations on 615 stocks in our sample period from January 2000 to

November 2020.
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5 Methodology

In the previous section, we presented the final dataset which we will use to derive

results through our methodology. In this section, we will first present the variables

we have computed and comment on active choices we have undertaken concerning

the method. Thereafter, we will provide an in-depth explanation of our portfolio

construction. Following, we introduce our methods for performance testing; the

Fama-Macbeth two-step approach, the Gibbons-Ross-Shanken test, and goodness-

of-fit.

5.1 Variables

In addition to the data we collected and processed, we compute a set of variables

from the final dataset. We comment briefly on decisions we have made regarding the

usage of adjusted prices and whether to use simple or logarithmic returns. Apart

from that, we show how we constructed the momentum risk factor.

5.1.1 Simple return versus logarithmic return

The decision between simple and logarithmic returns was discussed to a large extent.

Both calculations are viable options when studying asset returns. Simple return is

calculated as

rt =
Pt − Pt−1

Pt−1

, (9)

and logarithmic return is calculated as

rt = ln

(
Pt

Pt−1

)
. (10)

There is a distinction between the two methods, and the usages of the methods

vary. However, the choice of using simple returns can be partially attributed to

Bernt Arne Ødegaard who uses simple return calculations for his risk factors, SMB
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and HML, as well as for his benchmark indexes. Also, logarithmic returns produce

a lower total cumulative return than simple returns. We proceed to employ the

simple return calculation for our analysis.

Further, we calculate the excess return as

Rt = rt − rf,t−1. (11)

Where Rt is the excess return, rt is the simple return derived from equation (9),

and rf,t−1 is the risk-free interest rate. We subtract rf,t−1 and not rf,t because rf,t is

reported at the beginning of each period, whereas rt is reported at the end of each

period.

5.1.2 Adjusted prices

In our analysis, we will use adjusted prices. In finance, the use of adjusted prices

is important as it helps to provide a more accurate picture of the investment per-

formance over time. While doing so, certain events or factors affecting the original

price are accounted for. Examples are stock splits, dividends, and inflation to name

a few.

5.1.3 Momentum risk factor

Since we employ the Carhart (1997) four-factor model in our analysis we calculate

the PR1Y R risk factor. In order to do so we follow the methodology detailed in

his paper. We calculate each stock’s 11-month return on a rolling basis. In this

sense rolling basis means that we calculate the return of an asset from January to

December, then February to January, and so on. We first calculate individual asset’s

11-month returns as

r11mi,t =
Pt−1 − Pt−12

Pt−12

. (12)

The assets are then sorted into three portfolios based on their 11-month return; the
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top 30%, median 40%, and the bottom 30%. The portfolios are updated monthly

and are formed as equally-weighted portfolios. The PR1Y R risk factor is then

constructed as the difference in returns between the top and the bottom portfolios,

in the same manner as a long-short portfolio trading strategy.

5.2 Portfolio construction

In this subsection, we explain our methodology for constructing our own portfolios

and justify our choices. In section 2, we see how researchers use portfolio returns

instead of individual asset returns when applying the asset pricing models. Likewise,

we use portfolios to test the asset pricing models. The models are presented in

section 3 and we aim to examine how the models perform based on different sorting

characteristics for portfolios. Following, to clarify the choice of portfolio construction

we comment on certain aspects.

When running the regressions in the Fama-Macbeth two-step approach it may suffer

from an error-in-variable problem (EIV) if regressed with individual asset returns.

The problem arises when the explanatory variables are measured with error, result-

ing in biased estimates and underestimated standard errors (Shanken 1992). Fama

and MacBeth (1973) tackle the problem by grouping stocks into portfolios. They

argue that regressing portfolio returns, rather than individual asset returns, could

yield more precise coefficient estimates. That is, if the errors in β̂i are substantially

less than perfectly positively correlated, β̂p can be more precise estimates of true

βi’s than β̂i. A more intuitive understanding, by creating portfolios we eliminate

idiosyncratic risk from individual assets, in turn, coefficient estimates will be more

precise in describing the systematic risk-return relationship between excess returns

and risk factors.

However, constructing portfolios (to rectify the EIV problem) instead of using in-

dividual returns may lead to a loss of information in the risk-return relationship.

By aggregating individual assets into portfolios, some detailed information about

specific assets may be diluted or overlooked. In order to reduce the information

loss, Fama and MacBeth (1973) construct portfolios based on ranked values of a
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specific variable, beta coefficients in their case. This approach helps avoid excessive

information loss by ensuring that portfolios include a range of assets with different

characteristics.

Hence, we construct portfolios. Due to the dataset not providing all stocks listed on

the Oslo Stock Exchange, double- and triple-sorting5 stocks into portfolios as done

by Ødegaard (n.d.) will not offer sufficient diversification benefits or meaningful

insights in our case. We will therefore use a simple-sorting method, which can be

defined as creating X amount of portfolios based on a single characteristic.

For a given number of assets, the portfolios could be

(A) Numerous. Strengthens the possibility of identifying patterns and trends, but

results in poorly diversified portfolios. The EIV-problem discussed above will likely

occur.

(B) Few. Gives more diversified portfolios catching features from the market, but

could struggle to identify patterns and trends. May suffer from the commented

information loss.

Motivated by the objective of capturing the overall market and given the relatively

few stocks in our dataset, it was essential to strike a balance between diversification

and the ability to effectively describe the market dynamics. To establish a reasonable

level of diversification, we presume that a portfolio consisting of 10-15 stocks can be

said to be fairly well-diversified on the OSE, as proposed by Ødegaard (2018). To

ensure we have a sufficient number and diversification of portfolios we choose to use

a sample period from January 2000 to December 2020 (see figure 2d).

Depending on the sorting characteristic, we end up with between eleven and seven-

teen portfolios counting no less than 10 stocks in each observation throughout the

sample period.

5Double-sorting is to categorize assets based on two characteristics, allowing for a more detailed

analysis of the relationship between factors and expected returns. An example of this is, first sorting

stocks into portfolios based on industry, second sorting stocks within industry portfolios on market

capitalization.
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In selecting the sorting variables, our initial intention was to sort portfolios based

on industries. However, upon closer examination of the sector distribution on the

Oslo Stock Exchange (see figure 3), it became clear to us that relying on sectors to

create diversified portfolios would not yield reliable insights. The reason behind this

is that two sectors alone account for over 50% of the total stocks. Furthermore, the

insight from Fama and MacBeth (1973) regarding the use of ranked values when

constructing portfolios is useful. We choose to sort portfolios based on the risk

factors included in our asset pricing models (size, beta, momentum, and liquidity).

Note that due to the lack of accounting data in the dataset, we will not create

portfolios based on book-to-market ratio.

Another important aspect when constructing portfolios is how the individual assets

are assigned weights in their respective portfolios. The two options we consider are:

(A) Value-weighted. Assigns weight regarding the asset’s market capitalization and

gives the larger assets greater influence, yet potentially increasing risk and reducing

diversification. A value-weighted portfolio return is derived by

Rp,t =
N∑
i=1

wi,tRi,t, (13)

where Rp,t is the excess return on the portfolio, Ri,t is the excess return for individual

assets, and N is the total number of shares included in portfolio p at time t. The

weight (wi,t) is assigned to each asset, and wi,t is determined by

wi,t =
Market Capitalizationi,t

N∑
i=1

Market Capitalizationi,t

.
(14)

The numerator denotes the market capitalization for asset i in period t and the

denominator denotes the total market capitalization for portfolio p in period t.

(B) Equally-weighted. Promotes diversification by giving all assets equal weight,

but potentially overlooks the impact of assets with larger market capitalization. An

equally-weighted portfolio return is derived by
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Rp,t =
1

N

N∑
i=1

Ri,t, (15)

where the variables are interpreted as in equation (13).

One compelling argument for choosing equally-weighted portfolios is that they pro-

mote diversification across assets. By assigning equal weight to each asset, we ensure

that each asset has an equal impact on the portfolios performance. This approach

prevents the dominance of a few large-cap stocks, which can skew the portfolio re-

turns and expose it to higher levels of risk. In essence, equal weighting allows for

a more balanced representation of the entire portfolio. Therefore, we use equally-

weighted portfolios in our analysis.

5.2.1 Size-sorted portfolios

We create 17 portfolios based on ranked values of market capitalization, from low

to high. The portfolios have a mean of 12.42 stocks included at each observation,

with a maximum of 16 and a minimum of 10.

5.2.2 Beta-sorted portfolios

We calculate the market betas of each stock on a rolling basis of two years through

Ordinary Least Squares6 (OLS) time-series regressions. The beta estimations run

from January 1998 to the end of November 2020. When betas are calculated we

remove observations prior to January 2000. In doing so we ensure that we have beta

estimations from the start of our main sample period, that is from January 2000 to

November 2020.

Furthermore, stocks with less than 24 monthly observations are not included in the

portfolios. Also, the stocks’ first 23 observations are not included when sorting

portfolios, thereby losing a significant amount of observations. Due to this, we

reduce the number of portfolios in order to achieve portfolios that are diversified

6Ordinary Least Squares is a method for finding a best-fit line, given a set of data points.
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enough to remove the EIV-problem. In turn, this raises the question if we have

enough portfolios to properly capture the market. Some research seems to have

focused on achieving more portfolios rather than diversified portfolios, however, we

focus on achieving diversified portfolios. We sort stocks into 11 portfolios based on

low to high beta, with a mean of 13.48 stocks included each month, with a maximum

of 17 and a minimum of 10.

5.2.3 Momentum-sorted portfolios

We calculate the 11-month return for each stock, in the same manner as Carhart’s

PR1Y R risk factor. We create 17 well-diversified portfolios with a mean of 11.36

stocks included each month, with a minimum of 10 and a maximum of 14. Similarly

to the beta-sorted portfolios, we start the 11-month return calculations in January

1999 and end in December 1999, the simple return for this period is then used for

the period January 2000, and so on. Using the ′′warm-up” period allows us to keep

observations from the start of our sample period.

5.2.4 Liquidity-sorted portfolios

We create 17 portfolios based on the number of trades per month, from least liquid

to most liquid. The portfolios have a mean of 12.42 stocks, with a minimum of 10

and a maximum of 16.

5.3 Performance testing

We will now reveal the methods used when evaluating the performance of the asset

pricing models. During the entirety of this academic paper, we utilize the Fama and

Macbeth two-step regression method when validating chosen asset pricing models.

The method is developed by Fama and MacBeth (1973), and has since then proven

to be a practical way to measure how well risk factors explain asset returns. To

further evaluate the performance of the factor models, we will conduct GRS-tests.

In 1989, Michael R. Gibbons, Stephen A. Ross, and Jay Shanken developed a test
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based on the principle that if a particular asset pricing model is correctly specified,

there will be no correlation between the returns and the residuals. The key difference

between the tests is that the Fama-Macbeth approach validates the significance of

individual risk premium coefficients for each asset pricing model whereas the GRS-

test examines the joint significance of all the risk factors in a model. We will

also implement two supplementary components, the mean absolute variable alpha

(MAVA) and the R̄-squared7 as part of our methodology for performance testing.

5.3.1 Fama-Macbeth two-step approach

The Fama-Macbeth two-step regression approach does, as indicated by the name,

follow a two-step approach. We will begin by explaining the steps intuitively before

visualizing them. In short, the first step estimates the risk factor coefficients via

time-series regressions which will be used as factor loadings8 in step two. The

second step estimates the risk premium attributed from the risk factors.

The first step entails running Ordinary Least Squares time-series regressions, where

we obtain the coefficient estimates for each risk factor. The coefficients are assumed

to be constant throughout the entire sample period9. To estimate the coefficients

when having p portfolios and m risk factors, we regress the equations accordingly

R1,t = α1 + β1,F1F1,t + β1,F1F2,t + . . .+ β1,FmFm,t + ϵ1,t

R2,t = α2 + β2,F1F1,t + β2,F2F2,t + . . .+ β2,FmFm,t + ϵ2,t
...

Rp,t = αp + βp,F1F1,t + βp,F2F2,t + . . .+ βp,FmFm,t + ϵp,t.

(16)

Where Rp,t is the excess return on portfolio p, αp is the intercept, Fm,t is the in-

dependent risk factor, and t denotes the time. All regressions have the same inde-

pendent risk factors to enable examination of the exposure on the portfolio returns

7Adjusted R2. Defined in equation 23.
8Coefficients estimated in the time-series regression, used as dependent variables for the cross-

sectional regressions.
9Assuming that coefficients are constant entails that excess return attributed from risk factors

will not be subject to structural changes in the period.
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from the set of risk factors.

The second step involves cross-sectional regressions where we regress all portfolio

returns for each period t on the estimated coefficients (β̂p,Fm) from the first step, also

referred to as factor loadings. In turn, this estimates the risk premium attributed

from each risk factor. The cross-sectional regressions are carried out as

Rp,1 = γ1,0 + γ1,1β̂p,F1 + γ1,2β̂p,F2 + . . .+ γ1,mβ̂p,Fm + ϵp,1

Rp,2 = γ2,0 + γ2,1β̂p,F1 + γ2,2β̂p,F2 + . . .+ γ2,mβ̂p,Fm + ϵp,2
...

Rp,T = γT,0 + γT,1β̂p,F1 + γT,2β̂p,F2 + . . .+ γT,mβ̂p,Fm + ϵp,T .

(17)

Where γT,0 is the intercept, γT,m is the estimated risk premium of a unit exposure

to risk factor Fm.

We then proceed to derive the test statistics with the average of estimated risk

premiums ( ¯̂γj). The hypothesis being tested is ¯̂γj= 0. If the null hypothesis cannot

be rejected, the risk premium is significant. This entails both the intercept and risk

factor coefficients.

The test statistic is given by

t( ¯̂γj) =
¯̂γj

s(γ̂j)/
√
n
. (18)

Where s(γ̂j) is the standard deviation of the estimated risk premium and n denotes

the number of months in the sample, which as well is used to compute ( ¯̂γj) and s( ¯̂γj)

(Fama and MacBeth 1973).

The test statistic is compared to a critical value in the t-distribution to determine

the significance of the parameter.
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5.3.2 GRS

The GRS-test is a multivariate test approach to assess the performance of an asset

pricing model. Specifically, it is designed to evaluate whether a given asset pricing

model is capable of explaining cross-sectional variation in excess returns. More

intuitively, the capability of the model to produce a low and insignificant intercept,

αp. The null hypothesis is H0 : αp = 0 ∀ p, and is tested by the GRS statistic and

compared to a F -distribution. To not reject the null hypothesis, and with that the

efficiency of the asset pricing model, all αp must be jointly equal to zero. In cases

where we cannot reject the null hypothesis, it indicates that the model is correctly

specified and is capable of explaining the variation in excess returns (Gibbons et al.

1989).

The approach initially runs OLS time-series regressions to compute the intercept

for each portfolio. We test each asset pricing model under its respective sorting

characteristic separately.

R1,t = α1 + β1R1,t + . . .+ βiRi,t + ϵ1,t

R2,t = α2 + β1R1,t + . . .+ βiRi,t + ϵ2,t
...

Rp,t = αp + β1R1,t + . . .+ βiRi,t + ϵp,t.

(19)

Where Rp,t is the excess return of portfolio p in period t. The αp is the intercept.

Ri,t is the return on the risk factor portfolio and ϵp,t is the error term. βi is the

estimated coefficient of the risk factor.

The null hypothesis is

H0 : α1 = 0

H0 : α2 = 0

...

H0 : αp = 0,

(20)

and the GRS statistics (Ji) is defined by Gibbons et al. (1989) and expressed by

Ødegaard (2023b) in the following manner

26



Ji =
(T −N −K)

N
·
[
1 +

µ̂2
m

σ̂2
m

]−1

· α̂′Σ̂−1α̂ ∼ FN,T−N−K . (21)

Here T denotes the number of periods in the time-series regressions, N denotes the

number of portfolios, and K denotes the number of independent variables included

in the regression (risk factors). Further, µ̂2
m and σ̂2

m are estimations of the squared

mean and variance in excess return, measuring the portfolio performance. α̂′Σ̂−1α̂

is the Sharpe ratio, giving the average excess return per unit of risk in said portfolio

(Ødegaard 2023b).

The test statistic, Ji, is then compared to its corresponding critical value found by

an F -distribution, FN,T−N−K .

5.4 Goodness-of-fit

Goodness-of-fit statistics are used to evaluate how well a regression model fits the

data and explains variations in the dependent variable. One common measure is R-

squared (R2), which represents the square of the correlation coefficient between the

dependent variable and the corresponding fitted values from the model. R-squared

ranges between 0 and 1, with higher values indicating a better fit.

The R-squared can be derived in multiple ways, following we outline the formulations

given in Brooks (2019, p. 228-229),

R2 =
ESS

TSS
=

TSS −RSS

TSS
= 1− RSS

TSS
. (22)

Where TSS is the total sum of squares, ESS is the explained sum of squares, and

RSS is the residual sum of squares. R2 will always take a value between zero and

one when there is a constant term in the regression.

Another measure, the adjusted R-squared, takes into account the number of explan-

atory variables in the model and adjusts R-squared accordingly. It helps address the

issue of adding more variables that may artificially inflate R-squared. The adjusted

R-squared can be used as a criterion for model selection, considering both the fit of
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the model and the number of variables. The adjusted R-squared is expressed as R̄2

and derived by

R̄2 = 1−
[
T − 1

T − k
(1−R2)

]
. (23)

Where T refers to the total number of observations or data points in the regression

analysis, and k refers to the number of predictors or independent variables included

in the regression model, excluding the constant term. The R2 is derived in equation

(22). Contrary to its counterpart, the adjusted R-squared can be negative, and if

this is the case, the model is a very poor fit for the data.

It is important to note that R-squared and R̄-squared provide an indication of how

well the model fits the data but do not reveal how well the model represents the

true relationship between the variables, as the true relationship is typically unknown.

These statistics serve as useful tools for assessing the fit of the regression model. We

will use R̄-squared to compare models within the sorting characteristics. Lewellen

et al. (2009) argue that cross-sectional asset pricing models often obtain high and

misleading estimates of R-squared. They find that a R̄-squared should be as high as

44% for a one-factor model, 62% for a three-factor model, and 69% for a five-factor

model in order to be statistically significant. Furthermore, although R-squared

cannot be used to directly compare models with different dependent variables, we

will use it as a ′′weak indicator”10 of stability. That is because we have different

portfolios comprised of the same assets, the risk factors employed in the cross-

sectional regressions should then be able to explain the same level of variation in

returns.

6 Analysis and results

In this section, we present and discuss the results derived through our methodology.

First, we present and comment on the results of the second-step regressions for each

portfolio sorting characteristic. Second, the obtained R-squared and R̄-squared from

10Supportive indicator in decision making, not used to draw conclusions.

28



the second step regressions will undergo a goodness-of-fit discussion. There will also

be undertaken an intercept analysis of the first-step time-series regression to discuss

if the models are specified correctly and contain all priced risk factors. The intercept

analysis is based on the GRS statistics and its associated p-values, as well as the

average absolute mean of alpha. Further, the stability of the asset pricing models

will be discussed, and compared across the different portfolio sorting characteristics:

size, beta, momentum, and liquidity.

6.1 Results of second-step Fama-Macbeth regressions

6.1.1 Size

Table 1

Results of cross-sectional regressions conducted on seventeen size-sorted portfolios.

Fama-Macbeth second step

Model (size sorted) Intercept Market SMB HML PR1YR LIQ R2 Adj. R2

CAPM

-.060***

(.0054)

-10.98

.083***

(.0070)

11.85

.21 .15

Fama-French (3)

-.071***

(.0070)

-10.07

.092***

(.0084)

10.99

.011*

(.0065)

1.67

.024**

(.0098)

2.39

.34 .18

Carhart (4)

-.064***

(.0076)

-8.43

.084***

(.0089)

9.47

.015**

(.0071)

2.08

.014

(.0114)

1.24

-.026

(.0148)

-1.46

.40 .19

Factor model (5)

-.056***

(.0075)

-7.49

.077***

(.0088)

8.75

.038***

(.0091)

4.19

-.048***

(.0173)

-2.77

.022

(.0179)

1.21

.055***

(.0153)

3.57

.46 .22

The first row in the risk factor cells is the coefficient estimates, the second row is the coefficient standard

deviation, and the third row is the coefficients t-statistic. Column 8 and 9 displays the R-squared and R̄-squared,

respectively. Asterisks denote the variables significance level;

(1%)***, (5%)**, and (10%)*.

In the size-sorted portfolios, the intercept is significant at the 1% level in all models.

A significant intercept indicates that a model is poorly specified and that there are
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other risk factors that are priced11, but not included in the model. Either way, you

will favor a model with a lower intercept value as it means that the risk factors

included, explain more of portfolio returns12. The intercept values are between -

5.6% and -7.1%. Implying that mentioned proportion of returns are priced in, but

not included as risk factors in the models. The significant intercept directly violates

the Capital Asset Pricing Model theory which states that market risk is the only

priced risk factor.

The market risk factor is significant at the 1% level with positive and high estimates

of risk premium throughout the asset pricing models. The SMB risk factor is

increasing in its degree of significance and risk premium as we include additional

risk factors. HML varies in its estimate of risk premium, moving from positive at

2.4% in the three-factor model to negative at -4.8% in the five-factor model. While

being significant in mentioned models at 5% and 1%, respectively. PR1Y R is neither

statistically significant in the four-factor nor the five-factor model. Introducing the

Pastor-Stambaugh liquidity risk factor (LIQ) we observe a positive and significant

risk premium of 5.5%.

11Priced refers to a significant risk factor in the market
12Note that henceforth the term returns refers to excess returns.
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6.1.2 Beta

Table 2

Results of cross-sectional regressions conducted on eleven beta-sorted portfolios.

Fama-Macbeth second step

Model (beta sorted) Intercept Market SMB HML PR1YR LIQ R2 Adj. R2

CAPM

.006***

(.0018)

3.42

-.003

(.0043)

-.71

.40 .33

Fama-French (3)

.007**

(.0034)

2.12

-.001

(.0049)

-.25

-.010

(.0134)

-.73

.005

(.0204)

.26

.54 .34

Carhart (4)

.005

(.003)

1.42

.006

(.0054)

1.18

-.004

(.0131)

-.03

-.017

(.0199)

-.87

.042***

(.0127)

3.28

.63 .39

Factor model (5)

.001

(.0037)

.18

.010*

(.0057)

1.73

-.009

(.0148)

.63

-.016

(.0199)

-.79

.062***

(.0160)

3.98

-.059**

(.0254)

-2.30

.70 .40

The first row in the risk factor cells is the coefficient estimates, the second row is the coefficient standard

deviation, and the third row is the coefficients t-statistic. Column 8 and 9 displays the R-squared and adjusted

R-squared, respectively. Asterisks denote the variables significance level;

(1%)***, (5%)**, and (10%)*.

In the beta-sorted portfolios, the intercept is significant in both the single-factor and

three-factor models at 1% and 5%, respectively. Indicating that there are other risk

factors that are priced, but not included in the models. As we extend with additional

risk factors, the intercept becomes insignificant, indicating that the models include

the priced risk factors. The intercept value varies as the models are extended with

additional risk factors, but is positive in all models.

The market risk factor is only significant for the five-factor model at the 10% level

with an estimate of 1%. The SMB and HML risk factors are not comment-worthy

as they are insignificant for all models. When assessing the momentum risk factor

(PR1Y R) included in the Carhart four-factor model and the five-factor model, it

is highly significant at the 1% level with a risk premium of 4.2% and 6.2%. The
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liquidity risk factor is significant at the 5% level with a value of -5.9%.

6.1.3 Momentum

Table 3

Results of cross-sectional regressions conducted on seventeen momentum-sorted portfolios.

Fama-Macbeth second step

Model (momentum sorted) Intercept Market SMB HML PR1YR LIQ R2 Adj. R2

CAPM

.044***

(.0060)

7.32

-.056***

(.0098)

-5.70

.17 .11

Fama-French (3)

.048***

(.0080)

5.89

-.057***

(.0148)

-3.84

-.001

(.0103)

-.09

-.026*

(.0140)

-1.87

.34 .18

Carhart (4)

.014*

(.0080)

1.85

-.020

(.0143)

-1.43

.010

(.0110)

.87

.023

(.0143)

1.63

.034***

(.0052)

6.50

.40 .19

Factor model (5)

.014*

(.0078)

1.86

-.020

(.0143)

-1.43

.010

(.0105)

0.91

.022

(.0157)

1.38

.034***

(.0052)

6.50

.009

(.0114)

0.77

.46 .22

The first row in the risk factor cells is the coefficient estimates, the second row is the coefficient standard

deviation, and the third row is the coefficients t-statistic. Column 8 and 9 displays the R-squared and adjusted

R-squared, respectively. Asterisks denote the variables significance level;

(1%)***, (5%)**, and (10%)*.

The intercepts for momentum-sorted portfolios are significant throughout the mod-

els, albeit decreasing in significance from the 1% level for the single-factor and

three-factor model to a 10% level for the four-factor and five-factor models. The

intercept estimates drops by approximately 0.03 when extending from the single-

and three-factor model to the four and five-factor model. This indicates that the in-

cluded risk factor is able to explain more of the variance in the portfolio returns, and

that it is a priced risk factor. Ideally, we aim for low, if not insignificant intercept

values, indicating that the models include all priced risk factors.

The market risk premium is significant in the CAPM and the three-factor model

with estimates of -5.6% and -5.7%. When proceeding to the four-factor model and
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the five-factor model, market risk is insignificant with lower values. Again, the

PR1Y R appears to be a priced risk factor. The SMB is not significant for any

of the tested models. When considering the HML, the significance is only found

at a 10% level with an estimate of -2.6% in the Fama-French three-factor model.

In the Carhart four-factor and the five-factor models, the momentum risk factor

is significant at a 1% level with 3.4% for both models including said risk factor.

Liquidity is insignificant.

6.1.4 Liquidity

Table 4

Results of cross-sectional regressions conducted on seventeen liquidity-sorted portfolios.

Fama-Macbeth second step regression results

Model (liquidity sorted) Intercept Market SMB HML PR1YR LIQ R2 Adj. R2

CAPM

-.004**

(.0021)

-2.11

.009*

(.0047)

1.91

.23 .18

Fama-French (3)

-.003

(.0019)

-1.29

.015*

(.0065)

2.38

-.021

(.0137)

-1.53

.007

(.0121)

.56

.35 .20

Carhart (4)

-.003

(.0020)

-1.39

.015**

(.0065)

2.23

-.022

(.0138)

-1.59

-.008

(.0123)

.69

-.120

(-.0028)

-.94

.41 .21

Five-factor

-.003

(.0020)

-1.44

.016**

(.0072)

2.27

-.025*

(.0149)

-1.70

.010

(.0124)

.81

-.009

(.0140)

-.65

.001

(.0095)

.13

.47 .23

The first row in the risk factor cells is the coefficient estimates, the second row is the coefficient standard

deviation, and the third row is the coefficients t-statistic. Column 8 and 9 displays the R-squared and adjusted

R-squared, respectively. Asterisks denote the variables significance level;

(1%)***, (5%)**, and (10%)*.

The intercept is significant at a 5% level for the CAPM with a value of -0.4%. For

the rest of the models, it is not significant. This indicates that the CAPM is not

capturing all the priced risks with its single risk factor. For the rest of the models,

the insignificant intercept suggests stronger explanatory power than the CAPM.
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When examining the market risk, it is significant at a 10% level for the single-factor

and three-factor model with risk premiums of 0.9% and 1.5%. For the four-factor and

five-factor models, the significance level has increased to a 5% level. Having a slight

increase in its value to 1.5% and 1.6%. The Fama-French risk factor, SMB, does

not appear significant until the five-factor model with a value of -2.5%. Whereas

the HML is not significant at any level. The momentum and the liquidity are

insignificant, indicating that they are not priced risk factors.

6.2 Goodness-of-fit

Tables 1 through 4 report the second-step regression results with their corresponding

measures of goodness-of-fit. Following, we present and comment on the results of

the R-squared (R2) and the adjusted R-squared (R̄2).

For the size-sorted portfolios, there is a steadily increasing R-squared, as we would

expect. The CAPM reports an R-squared of 0.21, whereas the five-factor model

reports an R-squared of 0.46. The Fama-French three-factor and Carhart’s four-

factor model report an R-squared of 0.34 and 0.40, respectively. Indicating that

there is a significant amount of the excess returns which is explained by the included

variables.

Due to the fact that the value of R-squared will always increase when including

additional explanatory variables we employ the R̄-squared. By doing so, we get

an indication of whether the added variables contribute significantly to explaining

excess returns. A significant contribution can be defined in various ways, however, we

define a significant contribution as a 0.01 increase in the value of R̄-squared from the

former model. Throughout all the models we find that the R̄-squared is increasing

when introducing additional variables. In the beta-sorted portfolios, we have the

highest values of R-squared and R̄-squared, ranging from 0.40 to 0.70, and 0.33 to

0.40, respectively. Again, it should not come as a surprise that the five-factor model

has the best measure of goodness-of-fit. The momentum-sorted portfolios have the

lowest R-squared and R̄-squared across all portfolio sorts. Where the R̄-squared

ranges from 0.11 to 0.22. In the last portfolio sorting characteristic, liquidity, the
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values of R-squared are quite similar to that of size.

In conclusion, we find that the R̄-squared across all models, within their respective

characteristic portfolios are increasing as we introduce additional variables. Indic-

ating that employing these risk factors does explain more of the variation in the

portfolio returns. Excluding the beta-sorted portfolios, we find that the variation

explained by the models across different sorting characteristics is fairly similar. How-

ever, with regard to the findings of Lewellen et al. (2009) we cannot conclude that

any of the models are a good fit.

6.3 Intercept analysis

The intercept analysis is based on Table 5 which reports the statistics for the time-

series intercept analysis. The table provides the mean absolute value of alpha

(MAVA), α. In cases where the MAVA is equal to zero, there do not exist any

missing priced risk factors. The GRS statistic is the test statistic of a joint hypo-

thesis test of significance on the intercepts in the time-series portfolio regressions

(H0 : αp = 0 ∀ p). The p-value is the corresponding probability value of the

GRS statistic, a high p-value indicates that the model is well specified. Following,

we present the results of the MAVA and GRS-tests, with an emphasis on the GRS

statistic. We will also highlight which model performs the best within each sorting

and overall.
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Table 5

Statistics for time-series intercept analysis

Model (size sorted) α GRS (J) Prob. (GRS) Model (momentum sorted) α GRS (J) Prob. (GRS)

CAPM
-.001733

(.002628)
15.26 .000000 CAPM

-.001149

(.002740)
5.39 .000000

Fama-French (3)
-.007289

(.002537)
17.45 .000000 Fama-French (3)

-.006516

(.002695)
6.56 .000000

Carhart (4)
-.005584

(.002694)
13.49 .000000 Carhart (4)

-0.004679

(.002724)
4.19 .000000

Five-factor
-.005577

(.002696)
13.41 .000000 Five-factor

-.004684

(.002496)
4.15 .000000

Model (beta sorted) α GRS (J) Prob. (GRS) Model (liquidity sorted) α GRS (J) Prob. (GRS)

CAPM
-.000234

(.002414)
3.15 .000528 CAPM

-.001833

(.002602)
1.79 .029808

Fama-French (3)
-.005112

(.002367)
4.62 .000002 Fama-French (3)

-.007458

(.002528)
3.82 .000001

Carhart (4)
-.003669

(.002492)
2.29 .011213 Carhart (4)

-.005765

(.002694)
4.19 .000000

Five-factor
-.003699

(.002496)
2.32 .009949 Five-factor

-.005748

(.002691)
3.05 .000079

The second column reports the mean absolute value of alpha in the time-series regression. The third column is the

Gibbons et al. 1989 test statistic, and the fourth column reports its corresponding p-value.

For the size-sorted portfolios, the first-step regression intercepts cannot produce a

MAVA equal to zero, however, the lowest value is reported for the Capital Asset Pri-

cing Model. The GRS statistics are very high, ranging from 13.41 to 17.45, and the

corresponding probability values are equal to zero. Through the GRS statistic, we

conclude that none of the models include all the priced risk factors, but that models

with additional risk factors are capable of explaining more variation in portfolio

returns.

Moving on, for the beta-sorted portfolios the smallest mean value of alpha is found

for the CAPM. The GRS statistics are much lower for all the models compared to

the size portfolios, as the highest GRS statistic is 4.62 in the Fama-French three-

factor model. The lowest statistic is found for the Carhart four-factor model, which

is marginally better than the five-factor model.

For the momentum-sorted portfolios, the GRS statistic is, again, much lower than

for the size-sorted portfolios, but higher than the beta-sorted portfolios. The lowest
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GRS statistic is reported for the five-factor model, however, the null hypothesis is

rejected for all models.

In the last sorting, liquidity, we find that the GRS statistic is by far the lowest for

the Capital Asset Pricing Model, with a p-value of approximately 3%, but we still

reject the null hypothesis.

In conclusion, we find that there are no models across our employed sorting char-

acteristics that reject the null hypothesis of insignificant intercept in the first-step

regressions. Therefore, all models are missing priced risk factors. Surprisingly, and

contrary to other portfolio sorting characteristics, we find that the CAPM under

liquidity-sorted portfolios yields the lowest GRS statistic and therefore based on

the GRS statistics can be said to be the best model. However, overall we find that

models with more risk factors included are better.

6.3.1 Economic intuition and significance of the risk factors

In this section, we take a brief detour from our main topic and give an economic

intuition pertaining to results from the first- and second-step of the Fama-Macbeth

approach. We also investigate the significance of employed risk factors. The second-

step regression results in Tables 1 to 4 display the risk premium estimates for a unit

exposure to the risk factors. However, the economic impact each risk factor attrib-

utes to the stocks’ excess return can be interpreted from Tables 7 to 10, which show

the estimated coefficients in the first-step time-series regressions. In this discussion,

we will mainly focus on the mean of the estimated coefficients (
¯̂
βp)

13 across portfo-

lios. With an emphasis on the results from the five-factor model (as it includes all

risk factors).

In Tables 7 to 10 we observe that the means of the risk factors across sorting char-

acteristics are very similar. Approximately 0.7 for market risk, 0.3 for SMB, 0.11

for HML, -0.07 for PR1Y R, and 0 for LIQ. To visualize, we consider the mean of

factor loadings and the five-factor model under size-sorted portfolios. The mean of

13 ¯̂βp = 1
N

N∑
p=1

β̂p. Where p is portfolio p and N is the number of portfolios

37



excess portfolio returns can then be expressed as

R̄p,t = −5.6%+7.7%·0.697+3.8%·0.31−4.8%·0.109+2.2%·(−0.072)+5.5%·(−0.003),

giving an average monthly excess return of

R̄p,t = 0.002468 ≈ 0.25%.

Furthermore, we find that LIQ has very low coefficients, with estimates ranging

from -0.006 to 0.012, and is likely to be statistically insignificant. Indicating that

in reality, liquidity risk is not a priced risk factor at the Oslo Stock Exchange, and

thus should not be included as a risk factor in asset pricing models (at OSE). We

also find that HML and PR1Y R have a very low mean, ranging from 0.105 to

0.109 and -0.077 to -0.061, respectively. Further, to determine if risk factors are

truly priced, and with that should be included in asset pricing models, we run a

series of regressions on each sorting characteristic. More precisely, we run a series of

panel regressions14, and time-series regressions on each portfolio (these include all

five risk factors). For the panel regressions, we find that LIQ is not significant in

any, and in the time-series regressions we find that LIQ is only significant in 8 out

of 62 portfolios15.

Further, we find that LIQ is significant when regressed on excess portfolio returns

alone, insignificant when we additionally include the market risk factor and SMB,

but significant when regressed with market risk and SMB separately. These results

imply that market- and size risk capture risk related to liquidity, indicating that

the model16 is misspecified (omitted variables). To further evaluate the relationship

between market, size, and liquidity risk we turn to their correlation. Table 6 dis-

plays the correlation matrix of the independent risk factors used in the time-series

regression, it also includes a test of multicollinearity17 on the risk factors.

14Specifically, we use these panel techniques: pooled OLS, fixed effects, and random effects.

Outlined in Brooks (2019, p. 625-639)
15Where it is significant at the 10% level five times, 5% level one time, and 1% two times.
16Rp,t = αp + β1LIQt + εp,t
17Multicollinearity occurs when independent variables in a regression model are highly correlated.
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Table 6

Correlation matrix

Market SMB HML PR1YR LIQ VIF

Market 1 1.21

SMB .0338 1 1.14

HML .0844 -.1705 1 1.06

PR1YR -.1602 .0398 .0513 1 1.31

LIQ -.3869 -.2818 -.0926 .0515 1 1.03

Displays the correlation of the independent variables used in the first-step time-series regressions and their

variance inflation factor.

Firstly, we find that Market and SMB have a correlation with LIQ of -0.38 and

-0.28, respectively. Further, the variance inflation factor18 is sufficiently low, in-

dicating that the correlation between risk factors does not induce multicollinearity.

Overall, this leads to the conclusion that LIQ are not highly correlated with any

risk factors, only moderately with Market and SMB, and that Market and SMB

sufficiently capture risk associated with liquidity risk. Also, liquidity risk is not

found to be a priced risk factor in the test regressions, and therefore should not be

included in the cross-sectional regressions as an extension of the Carhart four-factor

model. Identical procedures do not yield similar results for the other risk factors.

In the following section, we will refrain from any further discussion regarding the

five-factor model.

18V IF = 1
1−R2

m
, where R2

m is the value of R2 from an auxiliary regression of the explanatory

variable m on an intercept plus the other explanatory variables (Brooks 2019, p. 294).
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6.4 Stability discussion

In this section, we comment on and discuss the stability of the models. A stable

model has the capability of explaining returns independent of the portfolio sorting

characteristics. That is, it will produce the same intercept, estimates, and R-squared

independent of the portfolio sorting characteristics. We will discuss each model

and its stability following the results given in Tables 1 to 4 for the size-, beta-,

momentum-, and liquidity-sorted portfolios.

Following, we refer to the respective sorting characteristic as S (size), B (beta), M

(momentum), and L (liquidity).

The second-step regressions for the Capital Asset Pricing Model have significant

intercepts ranging from -6% (S) to 4.4% (M), it does not showcase any stability

with values being both negative and positive. The market risk factor has a large

dispersion19, with estimates ranging from -5.6% to 8.3%, where it is significant for

all portfolio sortings, except beta. Similar to the intercept, the market risk factor

fluctuates between negative and positive estimates, not exhibiting stability. The

R-squared ranges from 0.17 to 0.40, indicating instability in the model’s ability to

consistently explain the variation in returns across different portfolio sorting criteria.

The Fama-French three-factor model has intercepts ranging from -7.1% (S) to 4.8%

(M), where they are significant in all, except the liquidity-sorted portfolios. The

market risk factor has premiums from -5.7% (B) to 9.2% (S), where it is significant

for all sortings, except beta. The SMB risk factor ranges from -2.1% (L) to 1.1%

(S) and is only significant for size-sorted portfolios. HML ranges from -2.6% (M)

to 2.4% (S), and is significant for momentum- and size-sorted portfolios. Based on

this we cannot conclude that the Fama-French three-factor model exhibits stability

across different compositions of the market portfolio. The model fails to precisely

estimate the risk premiums. Further, the model’s R-squared are 0.34 (S), 0.54 (B),

0.34 (M), and 0.35 (L). Excluding beta-sorted portfolios we find that the model

showcases more stability in explaining the variation of returns than with its risk

premium estimates.

19Dispersion is the difference between the highest and lowest value.

40



For the Carhart four-factor model, the intercept varies between being positive and

negative, it ranges from -6.4% (S) to 1.4% (M), where it is significant in these

portfolio sortings as well. The market risk factor is significant in size- and liquidity-

sorted portfolios, with estimates of 1.5% and 8.4%, respectively. The SMB risk

factor has estimates of 1.5% (S), -0.4% (B), 1% (M), and -2.2% (L), only significant

for size. HML is not significant under any portfolios. The PR1Y R has a dispersion

of 0.16 in the four-factor model, which is also the greatest dispersion of all risk

factors. Again, when excluding beta-sorted portfolios we find that the R-squared is

practically identical across the sortings

Throughout the models and the different sorts of portfolios, we can conclude that

the asset pricing models do not showcase any stability. This observation aligns

with what Blanco (2012) highlighted about how the results vary depending on how

the portfolios are formed. In our analysis, we study equally-weighted portfolios

comprised of stocks listed on the Oslo Stock Exchange. The models do not indicate

stability, with that, they are not able to provide precise estimates of the risk premium

associated with each risk factor.

To further enhance the stability analysis of asset pricing models at the Oslo Stock

Exchange we include additional tests on different portfolios. In Tables 11 to 19

we present the results for the first- and second-step regressions for another set of

portfolios without ′′penny stocks”20. Portfolios are created on the same methodology

outlined in section 5.2, however, we also remove stocks with a close price below

10 NOK. Ødegaard (2021) suggest removing penny stocks because they are not

representative of the returns at the OSE and therefore not meaningful to include for

empirical asset pricing investigations. We find that the capital asset pricing model

now yields more stable estimates, γ̂i, for size- and liquidity-sorted portfolios. In

other words, the dispersion is low, at only 0.003. Although it is interesting, it is also

to be expected since companies with a high market capitalization tend to have high

trading volumes. Interestingly, we did not observe this in Tables 1 and 4, possibly

due to the penny stocks’ variance in returns, making it more difficult for the models

to produce precise estimates. Overall, the new set of portfolios does not accredit

20Penny stocks are low-valued stocks, both in terms of market capitalization and price
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asset pricing models any stability.

7 Conclusion

This research paper examined the performance of various asset pricing models,

namely the Capital Asset Pricing Model (CAPM), Fama-French three-factor model,

Carhart four-factor model, and a five-factor model including liquidity. Through

analysis of the empirical results, several findings have emerged.

Firstly, the evidence suggests that the tested asset pricing models exhibit poor

specification. The intercept analysis indicates that the models fail to capture all

the priced risk factors in the market. This finding implies that there are additional

risk factors influencing asset prices that are not accounted for by the employed

models. Consequently, relying solely on these models for asset pricing decisions may

lead to mispricing and inaccurate estimations of expected returns. We also find that

the Pastor-Stambaugh liquidity risk factor should not be included as an extension

of the Carhart four-factor model. Further, we find that the market and size factors

capture risk associated with liquidity, and therefore including liquidity in models

with these is meaningless.

Secondly, the analysis reveals substantial variations in intercept estimates across

different portfolio characteristics and models. This variability signifies instability

and inconsistency in the estimated intercepts, further questioning the reliability of

the tested models. Such inconsistencies may arise due to model misspecification and

limitations in the explanatory power of the selected risk factors. Hence, it is crucial

for investors and researchers to exercise caution when utilizing these models and

consider the limitations inherent in their construction.

This study underscores the need for further research to identify and incorporate new

risk factors into asset pricing models. For instance, factors such as investment and

profitability have been identified in the literature as potential contributors to asset

pricing. Integrating these factors, among others, into the tested models may provide

a more comprehensive framework for asset pricing and improve the explanatory
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power of the models.

Further, we comment on some recent research that challenges the traditional under-

standing of asset pricing models. In 2022, Simon C. Smith and Alan Timmermann

published a study on whether risk premium have vanished on the U.S. stock mar-

ket. Their findings suggest that, over a certain time period, the risk premiums

associated with certain risk factors have weakened or even disappeared (Smith and

Timmermann 2022). There has also been a growing interest in the application of

machine learning algorithms in recent years. The ability of algorithms to analyze

vast amounts of data and identify complex patterns offers an advantage over tradi-

tional econometric models. One promising area is identifying new risk factors that

can explain variation in excess return. For example, a study by Gu et al. (2018)

uncovered a new risk factor related to corporate social responsibility on the Chinese

stock market by using machine learning. It highlights the potential within this area

in the future. These studies, in addition to the one conducted by us, add layers of

complexity to the existing understanding of asset pricing and raise questions about

the effectiveness of traditional models in capturing evolving market dynamics.

In conclusion, this paper contributes to the existing literature by highlighting the

limitations and challenges associated with the tested asset pricing models. The

findings emphasize the need for ongoing research and development of more soph-

isticated models that can capture the complexity and dynamics of asset pricing.

By refining and expanding our understanding of asset pricing mechanisms, we can

enhance investment decision-making processes, mitigate risk, and improve portfolio

performance in the ever-evolving financial markets.
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Appendix

Table 7

Results of time-series regressions conducted on seventeen size-sorted portfolios.

First step Fama-Macbeth regressions. Factor loadings.

CAPM Fama-French three-factor model Carhart four-factor model Five-factor model

Portfolio Market Market SMB HML Market SMB HML PR1YR Market SMB HML PR1YR LIQ

1 .467 .453 .441 .024 .339 .33 -.014 -.278 .326 .336 -.008 -.277 -.094

2 .552 .527 .367 .199 .464 .307 .178 -.151 .481 .299 .169 -.153 .128

3 .588 .563 .369 .194 .536 .342 .184 -.068 .537 .341 .183 -.068 .015

4 .636 .613 .49 .123 .544 .423 .1 -.168 .554 .418 .095 -.169 .079

5 .672 .65 .478 .121 .643 .471 .119 -.015 .627 .479 .128 -.014 -.13

6 .722 .694 .558 .172 .662 .527 .161 -.076 .657 .53 .164 -.076 -.04

7 .716 .697 .364 .119 .662 .33 .107 -.086 .66 .331 .108 -.086 -.018

8 .718 .704 .364 .061 .67 .331 .05 -.082 .668 .332 .051 -.082 -.015

9 .715 .69 .512 .135 .619 .444 .111 -.172 .624 .441 .108 -.172 .035

10 .767 .742 .455 .166 .691 .407 .149 -.121 .691 .407 .149 -.121 .001

11 .808 .789 .3 .143 .799 .309 .146 .024 .8 .309 .146 .024 .009

12 .902 .877 .31 .222 .871 .304 .22 -.015 .875 .302 .217 -.015 .034

13 .82 .798 .243 .2 .806 .251 .202 .019 .815 .246 .198 .018 .069

14 .804 .79 .249 .102 .777 .237 .098 -.03 .775 .238 .099 -.03 -.019

15 .872 .861 .202 .067 .863 .203 .068 .004 .858 .206 .07 .004 -.037

16 .975 .972 .127 -.01 .965 .12 -.013 -.019 .956 .124 -.009 -.018 -.066

17 .943 .946 -.081 -.01 .952 -.075 -.008 .015 .952 -.075 -.008 .015 .000

Mean 0.746 .727 .338 .119 .698 .309 .109 -.072 .697 .31 .109 -.072 -.003

Shows estimated coefficients from time-series regressions for each asset pricing model used as factor loadings in the

cross-sectional regressions. Where the portfolios are ranked on market capitalization from low (1) to high (17).

Table 8

Results of time-series regressions conducted on eleven beta-sorted portfolios.

First step Fama-Macbeth regressions. Factor loadings.

CAPM Fama-French three-factor model Carhart four-factor model Five-factor model

Portfolio Market Market SMB HML Market SMB HML PR1YR Market SMB HML PR1YR LIQ

1 -.022 -.038 .2 .149 -.027 .211 .153 .027 -.031 .213 .155 .028 -.029

2 .231 .216 .244 .11 .247 .274 .12 .075 .249 .273 .119 .075 .019

3 .335 .321 .198 .121 .327 .204 .123 .015 .329 .204 .123 .015 .011

4 .501 .485 .204 .133 .475 .195 .129 -.024 .481 .192 .126 -.024 .044

5 .641 .621 .255 .162 .625 .259 .164 .009 .627 .258 .163 .009 .012

6 .727 .709 .343 .11 .715 .349 .112 .015 .725 .344 .106 .014 .079

7 .817 .802 .303 .093 .784 .286 .088 -.043 .786 .286 .087 -.043 .014

8 .988 .974 .293 .085 .957 .277 .079 -.041 .962 .274 .076 -.041 .037

9 1.132 1.108 .417 .167 1.069 .379 .153 -.095 1.074 .377 .151 -.095 .036

10 1.247 1.235 .291 .057 1.143 .202 .026 -.223 1.134 .206 .03 -.222 -.064

11 1.726 1.707 .518 .069 1.548 .365 .016 -.385 1.545 .366 .018 -.385 -.024

Mean .757 .74 .297 .114 .715 .273 .106 -.061 .716 .272 .105 -.061 .012

Shows estimated coefficients from time-series regressions for each asset pricing model used as factor loadings in the

cross-sectional regressions. Where the portfolios are ranked on beta from low (1) to high (11).
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Table 9

Results of time-series regressions conducted on seventeen momentum-sorted portfolios.

First step Fama-Macbeth regressions. Factor loadings.

CAPM Fama-French three-factor model Carhart four-factor model Five-factor model

Portfolio Market Market SMB HML Market SMB HML PR1YR Market SMB HML PR1YR LIQ

1 .899 .886 .488 .001 .670 .279 -.072 -.524 .666 .281 -.070 -.523 -.029

2 .945 .910 .665 .212 .703 .464 .142 -.502 .703 .464 .143 -.502 -.001

3 .838 .813 .579 .120 .665 .436 .071 -.358 .660 .438 .073 -.358 -.039

4 .808 .787 .372 .147 .668 .257 .107 -.286 .656 .263 .114 -.286 -.096

5 .858 .833 .398 .190 .690 .260 .142 -.346 .703 .255 .136 -.346 .096

6 .771 .752 .405 .113 .693 .348 .093 -.144 .689 .349 .095 -.143 -.024

7 .701 .684 .247 .140 .638 .202 .125 -.112 .638 .202 .125 -.112 .002

8 .655 .636 .290 .144 .590 .246 .128 -.110 .602 .241 .122 -.111 .091

9 .693 .675 .188 .162 .652 .166 .154 -.056 .652 .166 .154 -.056 -.000

10 .663 .642 .230 .201 .651 .239 .204 .024 .665 .233 .197 .023 .105

11 .689 .675 .170 .128 .680 .175 .130 .012 .684 .173 .127 .012 .033

12 .605 .595 .198 .065 .629 .230 .076 .082 .629 .230 .076 .082 .002

13 .629 .618 .172 .089 .652 .205 .101 .083 .655 .204 .099 .083 .023

14 .573 .558 .152 .140 .630 .221 .164 .173 .625 .223 .166 .174 -.035

15 .670 .657 .238 .089 .731 .310 .114 .180 .727 .312 .116 .181 -.031

16 .731 .718 .266 .069 .803 .348 .098 .205 .798 .350 .099 .205 -.034

17 .866 .850 .497 .025 .999 .642 .075 .362 .996 .644 .077 .363 -.030

Mean .741 .723 .327 .120 .691 .296 .109 -.077 .691 .296 .109 -.077 .002

Shows estimated coefficients from time-series regressions for each asset pricing model used as factor loadings in the

cross-sectional regressions. Where the portfolios are ranked on momentum from low (1) to high (17).
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Table 10

Results of time-series regressions conducted on seventeen liquidity-sorted portfolios.

First step Fama-Macbeth regressions. Factor loadings.

CAPM Fama-French three-factor model Carhart four-factor model Five-factor model

Portfolio Market Market SMB HML Market SMB HML PR1YR Market SMB HML PR1YR LIQ

1 .287 .279 .093 .079 .259 .075 .073 -.047 .255 .076 .075 -.047 -.031

2 .396 .384 .229 .065 .35 .196 .054 -.082 .356 .193 .051 -.083 .053

3 .461 .446 .221 .119 .421 .197 .111 -.06 .425 .196 .109 -.060 .026

4 .469 .449 .285 .157 .447 .282 .156 -.006 .447 .282 .156 -.006 .003

5 .567 .551 .300 .098 .530 .281 .091 -.048 .539 .277 .086 -.049 .069

6 .567 .549 .327 .115 .521 .299 .106 -.068 .525 .297 .104 -.069 .031

7 .671 .648 .340 .185 .640 .333 .183 -.018 .649 .328 .178 -.019 .069

8 .622 .606 .335 .085 .558 .288 .068 -.117 .564 .285 .065 -.118 .051

9 .733 .714 .373 .117 .699 .358 .112 -.037 .690 .362 .117 -.036 -.073

10 .781 .768 .350 .053 .763 .346 .052 -.011 .761 .347 .053 -.011 -.019

11 .875 .855 .380 .126 .848 .373 .124 -.018 .846 .374 .125 -.017 -.014

12 .901 .872 .483 .221 .819 .432 .203 -.128 .837 .423 .194 -.129 .140

13 .987 .965 .442 .134 .895 .374 .110 -.171 .893 .375 .111 -.171 -.013

14 1.010 .982 .425 .215 .951 .396 .205 -.074 .923 .409 .219 -.072 -.216

15 1.089 1.079 .328 .014 1.015 .266 -.008 -.156 1.014 .266 -.008 -.156 -.001

16 1.127 1.116 .377 .008 1.084 .345 -.003 -.079 1.069 .352 .004 -.078 -.110

17 1.186 1.155 .526 .214 1.118 .49 .202 -.090 1.109 .494 .207 -.089 -.073

Mean .749 .730 .342 .118 .701 .314 .108 -.071 .700 .314 .109 -.071 -.006

Shows estimated coefficients from time-series regressions for each asset pricing model used as factor loadings in the

cross-sectional regressions. Where the portfolios are ranked on liquidity from low (1) to high (17).

Table 11

Results of cross-sectional regressions conducted on seventeen size-sorted portfolios with restriction close <10 .

Fama-Macbeth second, close <10 restriction

Model (size sorted) Intercept Market SMB HML PR1YR LIQ R2 fmb Adj. R2 fmb

CAPM

-.006*

(.0032

-1.85

.022***

(.0051)

4.28

.22 .13

Fama-French (3)

-.004

(.0037)

-1.12

.021***

(.0055)

3.72

-.003

(.0060)

-.42

.001

(.0096)

.13

.44 .16

Carhart (4)

-.004

(.0037)

-1.15

.021***

(.0055)

3.76

-.003

(.0063)

-.44

.001

(.0099)

.11

-.010

(.0184)

-.56

.55 .19

Factor model (5)

-.007

(.0047)

-1.43

.024***

(.0064)

3.69

.000

(.0069)

.01

-.006

(.0113)

-.51

-.019

(.0210)

-.89

.016

(.0189)

.87

.64 .19

The first row in the risk factor cells is the coefficient estimates, the second row is the coefficient standard

deviation, and the third row is the coefficients t-statistic. Column 8 and 9 displays the R-squared and R̄-squared,

respectively. Asterisks denote the variables significance level;

(1%)***, (5%)**, and (10%)*.
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Table 12

Results of cross-sectional regressions conducted on eleven beta-sorted portfolios with restriction close <10 .

Fama-Macbeth second, close <10 restriction

Model (beta sorted) Intercept Market SMB HML PR1YR LIQ R2 fmb Adj. R2 fmb

CAPM

.008***

(.0018)

4.55

-.001

(0043)

-.30

.46 .35

Fama-French (3)

.002

(.0033)

.55

-.003

(.0049)

-.57

.033*

(.0188)

1.77

.015

(.0210)

.71

.70 .40

Carhart (4)

.002

(.0032)

.56

.002

(.0058)

.42

.018

(.0199)

.91

.008

(.0212)

.39

.011

(.0192)

.58

.81 .45

Factor model (5)

.003

(.0036)

.83

.001

(.0062)

.13

.013

(.0235)

.54

.010

(.0221)

.47

.004

(.0221)

.17

.027

(.0487)

.56

.91 .47

The first row in the risk factor cells is the coefficient estimates, the second row is the coefficient standard

deviation, and the third row is the coefficients t-statistic. Column 8 and 9 displays the R-squared and R̄-squared,

respectively. Asterisks denote the variables significance level;

(1%)***, (5%)**, and (10%)*.

Table 13

Results of cross-sectional regressions conducted on seventeen momentum-sorted portfolios with restriction close <10 .

Fama-Macbeth second, close <10 restriction

Model (momentum sorted) Intercept Market SMB HML PR1YR LIQ R2 fmb Adj. R2 fmb

CAPM

.005

(.0048

.96

.007

(.0083)

.78

.23 .13

Fama-French (3)

.036***

(.0110)

3.29

-.052**

(.0215)

-2.43

.053***

(.0185)

2.84

-.042**

(.0190)

-2.20

.49 .23

Carhart (4)

.018

(.0109)

1.65

-.027

(.0207)

-1.28

.043**

(.0179)

2.38

.001

(.0203)

.07

.008

(.0054)

1.41

.59 .27

Factor model (5)

-.000

(.0113)

-.02

.009

(.0211)

.41

.005

(.0183)

.26

.043

(.0252)

1.72

.009

(.0054)

1.61

-.069***

(.0221)

-3.11

.70 .32

The first row in the risk factor cells is the coefficient estimates, the second row is the coefficient standard

deviation, and the third row is the coefficients t-statistic. Column 8 and 9 displays the R-squared and R̄-squared,

respectively. Asterisks denote the variables significance level;

(1%)***, (5%)**, and (10%)*.
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Table 14

Results of cross-sectional regressions conducted on seventeen liquidity-sorted portfolios with restriction close <10 .

Fama-Macbeth second, close <10 restriction

Model (liquidity sorted) Intercept Market SMB HML PR1YR LIQ R2 fmb Adj. R2 fmb

CAPM

-.004*

(.0021)

-1.82

.019***

(.0045)

4.18

.31 .22

Fama-French (3)

-.002

(.0040)

-.56

.015**

(.0060)

2.49

.017

(.0150)

1.13

-.032

(.0409)

-.77

.52 .27

Carhart (4)

-.003

(.0052)

-.60

.0156**

(.0066)

2.38

.015

(.0168)

.91

-.024

(.0523)

-.46

-.016

(.0256)

-.63

.60 .28

Factor model (5)

.007

(.0057)

1.19

-.002

(.0088)

-.18

.061**

(.0249)

2.44

-.111*

(.0596)

-1.86

.031

(.0278)

1.13

-.061**

(.0238)

-2.57

.68 .28

The first row in the risk factor cells is the coefficient estimates, the second row is the coefficient standard

deviation, and the third row is the coefficients t-statistic. Column 8 and 9 displays the R-squared and R̄-squared,

respectively. Asterisks denote the variables significance level;

(1%)***, (5%)**, and (10%)*.

Table 15

Statistics for time-series intercept analysis

Model (size sorted) Mean alpha GRS (J) Prob. (GRS) Model (momentum sorted) Mean alpha GRS (J) Prob. (GRS)

CAPM
.005713

(.002128)
12.46 .000000 CAPM

.005277

(.002209)
5.35 .000000

Fama-French (3)
.001596

(.002071)
11.73 .000000 Fama-French (3)

.001459

(.002203)
3.57 .000200

Carhart (4)
.002181

(.002219)
9.52 .000000 Carhart (4)

.002160

(.002226)
2.20 .018584

Five-factor
.002173

(.002221)
9.48 .000000 Five-factor

.002138

(.002229)
2.23 .017097

Model (beta sorted) Mean alpha GRS (J) Prob. (GRS) Model (liquidity sorted) Mean alpha GRS (J) Prob. (GRS)

CAPM
.003255

(.001953)
3.25 .002566 CAPM

.005758

(.002117)
5.82 .000000

Fama-French (3)
.000239

(.001971)
1.96 .061025 Fama-French (3)

.001605

(.002091)
3.44 .000312

Carhart (4)
.001029

(.002078)
.49 .841253 Carhart (4)

.002204

(.002241)
3.69 .000132

Five-factor
.000953

(.002080)
.47 .853805 Five-factor

.002195

(.002241)
3.94 .000055

The second column reports the mean absolute value of alpha in the time-series regression. The third column is the

Gibbons et al. 1989 test statistic, and the fourth column reports its corresponding p-value.
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Table 16

Results of time-series regressions conducted on seventeen size-sorted portfolios with restriction close <10 .

First step Fama-Macbeth, close <10 restriction.

CAPM Fama-French three-factor model Carhart four-factor model Five-factor model

Portfolio Market Market SMB HML Market SMB HML PR1YR Market SMB HML PR1YR LIQ

1 .308 .290 .288 .129 .276 .274 .124 -.034 .286 .270 .119 -.035 .079

2 .513 .494 .335 .126 .473 .314 .119 -.051 .471 .315 .120 -.051 -.016

3 .621 .612 .348 -.008 .613 .349 -.008 .002 .610 .350 -.006 .002 -.024

4 .642 .622 .455 .105 .593 .427 .095 -.070 .595 .426 .094 -.071 .016

5 .712 .696 .273 .115 .654 .232 .101 -.103 .651 .233 .102 -.103 -.018

6 .835 .810 .304 .218 .805 .298 .216 -.013 .808 .297 .214 -.014 .022

7 .796 .781 .234 .113 .790 .243 .116 .023 .797 .240 .113 .022 .052

8 .785 .772 .151 .110 .768 .147 .109 -.010 .768 .147 .109 -.010 -.003

9 .938 .931 .200 .020 .933 .202 .020 .004 .922 .207 .026 .004 -.085

10 .967 .971 -.083 -.018 .974 -.079 -.016 .008 .975 -.080 -.017 .008 .008

Mean .712 .698 .251 .091 .688 .241 .088 -.025 .688 .241 .087 -.025 .003

Shows estimated coefficients from time-series regressions for each asset pricing model used as factor loadings in the

cross-sectional regressions. Where the portfolios are ranked on market capitalization from low (1) to high (17).

Table 17

Results of time-series regressions conducted on eleven beta-sorted portfolios with restriction close <10 .

First step Fama-Macbeth, close <10 restriction.

CAPM Fama-French three-factor model Carhart four-factor model Five-factor model

Portfolio Market Market SMB HML Market SMB HML PR1YR Market SMB HML PR1YR LIQ

1 .091 .081 .133 .091 .114 .165 .102 .080 .117 .164 .100 .080 .020

2 .334 .320 .158 .125 .326 .163 .127 .014 .330 .161 .125 .014 .032

3 .511 .500 .110 .107 .507 .116 .109 .015 .508 .116 .109 .015 .012

4 .685 .668 .220 .147 .667 .219 .147 -.003 .670 .217 .145 -.003 .029

5 .869 .856 .208 .101 .852 .204 .100 -.009 .861 .200 .095 -.010 .070

6 1.084 1.074 .253 .039 1.053 .232 .032 -.051 1.061 .229 .028 -.052 .061

7 1.471 1.465 .209 .007 1.349 .097 -.032 -.279 1.349 .098 -.031 -.279 -.007

Mean .721 .709 .184 .088 .695 .171 .084 -.033 .699 .169 .082 -.034 .031

Shows estimated coefficients from time-series regressions for each asset pricing model used as factor loadings in the

cross-sectional regressions. Where the portfolios are ranked on beta from low (1) to high (11).
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Table 18

Results of time-series regressions conducted on seventeen momentum-sorted portfolios with restriction close <10 .

First step Fama-Macbeth, close <10 restriction.

CAPM Fama-French three-factor model Carhart four-factor model Five-factor model

Portfolio Market Market SMB HML Market SMB HML PR1YR Market SMB HML PR1YR LIQ

1 1.021 .995 .609 .125 .810 .429 .062 -.450 .799 .434 .068 -.449 -.083

2 .854 .839 .352 .069 .744 .260 .037 -.230 .747 .259 .036 -.230 .020

3 .700 .688 .215 .074 .611 .141 .048 -.186 .613 .140 .047 -.186 .014

4 .687 .671 .180 .150 .635 .146 .138 -.087 .645 .141 .132 -.087 .078

5 .592 .579 .164 .115 .558 .145 .108 -.049 .562 .143 .107 -.049 .027

6 .602 .589 .147 .118 .598 .155 .121 .021 .605 .152 .117 .020 .052

7 .597 .589 .104 .069 .622 .136 .080 .080 .623 .136 .079 .080 .013

8 .556 .547 .056 .090 .595 .103 .106 .116 .598 .101 .105 .116 .019

9 .647 .639 .176 .046 .699 .234 .066 .145 .694 .236 .069 .146 -.042

10 .756 .748 .320 -.012 .890 .457 .036 .344 .889 .458 .037 .344 -.004

Mean .701 .688 .232 .084 .676 .221 .080 -.030 .677 .220 .080 -.030 .009

Shows estimated coefficients from time-series regressions for each asset pricing model used as factor loadings in the

cross-sectional regressions. Where the portfolios are ranked on momentum from low (1) to high (17).

Table 19

Results of time-series regressions conducted on seventeen liquidity-sorted portfolios with restriction close <10 .

First step Fama-Macbeth, close <10 restriction.

CAPM Fama-French three-factor model Carhart four-factor model Five-factor model

Portfolio Market Market SMB HML Market SMB HML PR1YR Market SMB HML PR1YR LIQ

1 .293 .284 .103 .086 .276 .096 .083 -.018 .274 .097 .084 -.018 -.015

2 .418 .406 .203 .085 .371 .17 .073 -.084 .376 .168 .071 -.084 .035

3 .456 .441 .221 .125 .45 .23 .128 .022 .457 .227 .125 .022 .05

4 .541 .526 .269 .11 .517 .26 .107 -.022 .525 .256 .103 -.022 .065

5 .645 .628 .309 .109 .619 .3 .106 -.022 .626 .297 .102 -.023 .053

6 .718 .701 .296 .12 .694 .29 .118 -.017 .695 .289 .118 -.017 .004

7 .882 .868 .297 .089 .875 .305 .091 .018 .881 .302 .089 .018 .042

8 .942 .926 .367 .083 .913 .354 .079 -.031 .913 .354 .079 -.031 -.001

9 1.079 1.065 .287 .085 1.042 .265 .077 -.055 1.028 .272 .085 -.054 -.113

10 1.158 1.152 .174 .021 1.133 .156 .015 -.045 1.122 .161 .021 -.044 -.085

Mean .713 .700 .253 .091 .689 .243 .088 -.025 .690 .242 .088 -.025 .004

Shows estimated coefficients from time-series regressions for each asset pricing model used as factor loadings in the

cross-sectional regressions. Where the portfolios are ranked on liquidity from low (1) to high (17).
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