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Abstract

In the Internet of Things there is a focus on efficient and low cost
protocols. When it comes to key exchange protocols there is a need to
balance security, complexity and cost. Because of this need, different
protocols can often be specialized towards specific use cases. One such
protocol is the SAKE protocol. This protocol is an attempt at creating an
authenticated key exchange protocol that relies on symmetric encryption
methods. The SAKE protocol is intended specifically for use in low-energy
environments.

In this paper we make an analysis of the energy cost of the SAKE
protocol. The cost of the EDHOC protocol is also analysed to provide a
comparison. The result of the analysis and comparison is that SAKE is
much more energy efficient than EDHOC. We also determine that SAKE
has a good potential for future use in situations where pre-shared keys
are available. EDHOC on the other hand seems well suited to use in
situations where public keys are desirable for key management.





Sammendrag

I Internet of Things feltet er det et fokus på kosteffektive protokoller. Når
det gjelder nøkkelutvekslingsprotokoller så er det et behov for å balansere
sikkerhet, kompleksistet og kostnad. Forskjellige protokoller kan derfor
bli spesialisert for spesifike bruksområder. SAKE-protokollen er et forsøk
på å lage en autentisert nøkkelutvekslingsprotokoll som baserer seg på
symmetriske krypteringsmetoder. Protokollen er designet med bruk i
lav-energi situasjoner i tankene.

I denne oppgaven gjør vi en analyse av energikostnadene til SAKE-
protokollen. Vi analyserer også kostnadene til EDHOC-protokollen for
å gi en sammenligning. Analysen og sammenligningen kommer fram til
et resultat som viser at SAKE er mye mer energieffektiv enn EDHOC
og at SAKE har et godt potensiale for fremtidig bruk i situasjoner hvor
forhåndsdelte nøkler er tilgjengelige. Vi kommer også fram til at EDHOC
protokollen har et godt potensiale i bruksområder hvor offentlig delte
nøkler er foretrukket.
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Chapter1Introduction

The intention of this thesis is to take a closer look at the efficiency of the SAKE
protocol and see how it compares to a different protocol intended to be used for
similar cases. The following chapter presents an introduction to the project and the
motivation for exploring the topic. It also presents the research questions and gives
an explanation for the structure of the thesis.

1.1 Motivation

The Internet Of Things (IoT) is a broad term used to describe physical objects
embedded with sensors, processing capabilities and communications technologies
[WF15]. Many of these objects exist in resource constrained environments[Li17a],
requiring them to complete their tasks in a way that consumes as little energy as
possible. To do so, it requires protocols that are highly efficient, requiring as few
and simple operations as possible.

With the requirement of being lightweight, security protocols in constrained
environments often need to balance between security features and efficiency [Li17b].
This is due to the fact that robust and secure protocols often come at a high cost of
resources. The SAKE protocol is a suggested protocol that is intended for constrained
environments and attempts to solve some of the issues of a protocol intended for this
particular environment.

Specifically, SAKE is an Authenticated Key Exchange (AKE) protocol. That is,
a protocol whose goal is to establish a secret key that is shared between two parties,
while authenticating each party’s identity to the other [DvOW92]. SAKE attempts
to do so while providing strong security properties, but in a manner that makes it
less resource intensive.

The field of IoT has a great use for protocols with the properties SAKE attempts
to achieve. As the uses for embedded sensors becomes more apparent and widespread,
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2 1. INTRODUCTION

the need for protocols that are tailored for the emerging environments becomes
increasingly important. It is therefore highly useful to determine whether SAKE does
achieves its goal of being light weight whilst providing strong security properties.

1.2 Research question

To investigate the usefulness of SAKE the project poses the following research
questions.

– Is the energy usage of SAKE efficient?

– How does SAKE compare to other protocols intended for similar use?

1.3 Structure

The study has an overall structure with 6 chapters, consisting of an introduction,
theory, protocols, methodology, results and a discussion of the results and finally a
conclusion. A brief summary of the sections and its purpose is described below.

The first chapter provides the background of the research and why it is meaningful
to carry out. It will justify the importance of investigating how the SAKE performs
and why we make a comparison with a different protocol. The second chapter
gives a brief overview of important information and concepts that are necessary to
understand this project. In chapter three the two protocols that the project focuses
on are described in detail and a high level comparison is made. Chapter four explains
the method used to find the results that are presented in chapter five. Finally, the
last chapter will discuss the findings, summarise the research and answer the research
question. Additionally, implications for practice and further research in the area is
presented, as well potential limitations of the research.



Chapter2Background

The aim of this chapter is to provide an overview of the theory required to understand
the scope of this project. It will lay out an introduction to the field at hand, to the
types of protocol in question and several key concepts.

2.1 Cryptography and Security Features

The field of cryptography is the science of transforming data, or information, in such
a way that it becomes incomprehensible, maintains its authenticity and prevents
alteration or unauthorized use [Shi07; Sta20]. There are many important methods
and techniques that make up this field. The following section will give a brief overview
of the relevant parts.

2.1.1 Encryption

One of the key parts of the field of cryptography is encryption. Encryption is the act
of transforming information in some way that hides the original meaning, thereby
preventing the use of the original information. We often call the original piece of data
“plain text” and the transformed data “cipher text” [Shi07]. The reverse process of
encryption, transforming unintelligible cipher text into understandable clear text, is
called decryption [Shi07].

In the field of cryptography we have two main ways of encrypting messages,
symmetric and asymmetric encryption. These two cryptographic systems have
different advantages and disadvantages which will be explained in detail below.

2.1.2 Symmetric Cryptography

Symmetric cryptography, which is also known as private key or secret key cryptogra-
phy, is a cryptographic method where a single shared secret is used to encrypt data
between parties. The same key is used by both parties to both encrypt plaintext and

3



4 2. BACKGROUND

decrypt ciphertext [Sta20]. Symmetric encryption is important to explain in this
project as it is the method of encryption that SAKE relies on.

The Advanced Encryption Standard (AES) is an example of a well accepted and
much used cipher that utilizes symmetric encryption. The AES algorithm is a block
cipher developed by the National Institute of Standards and Technology (NIST) in
the US [Sta20]. When discussing cryptography the term “cipher” is used to describe
some algorithm that is used both for encryption and decryption. Saying AES is a
block cipher means that it uses a type of algorithm that separates plain text into
segments of fixed size and then uses the same key to encrypt each segment [Shi07].
AES is a well known algorithm and is in widespread use. To the point that it has
been included as a standard by the International Organization for Standardization
(ISO) [ISO10].

2.1.3 Asymmetric Cryptography

Asymmetric cryptography, also known as public key cryptography, is a cryptographic
method based on each party having a unique key pair, where one key is public and
one is private [Shi07]. The public keys are shared openly between parties while each
party has their own unique secret key. The key pairs are mathematically related
and their generation is based on one-way functions, functions where input is easy to
compute but inversion is computationally hard. One-way functions are also known
as non-invertible functions.

The public keys are used to encrypt plaintext. The resulting ciphertext can then
be decrypted using the related private key. By having the public key anyone can
encrypt a message, but only the holder of the private key can decrypt. This allows
for easy distribution of keys.

One of the earliest published examples of a public key method is the Diffie-Hellman
key exchange method [Sta20]. Pictured in Figure 2.1, the Diffie-Hellman method
relies on the difficulty of computing discrete logarithms. In the figure the values g
and p are the public parameters in the exchange, where p is a prime number and g
is a primitive root of p. The parties each choose a secret value, a and b, which are
kept secret throughout the exchange. Alice calculates the public value A using the
expression:

A = ga mod p

And Bob calculates the public value B with the expression:

B = gb mod p

Once the values A and B have been exchanged, both parties are able to calculate
the shared secret K. Both parties now share the secret value K without ever having
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disclosed their secret values a or b. While all values except a and b are public, they
are necessary to compute the shared secret and to find them using the public values
is computationally hard.

Public parameter:
g, p

Alice

a ∈R {2, . . . , p− 2}

A = ga mod p

K = (B)a = gba

Bob

b ∈R {2, . . . , p− 2}

B = gb mod p

K = (A)b = gab

A

B

Figure 2.1: Diffie Hellman operation

Another example of a commonly used and well known system that uses asymmetric
cryptography is the Rivest–Shamir–Adleman (RSA) cryptosystem. RSA is a block
cipher that relies on the operations of modulo and exponentiation to create key
pairs based on two large prime numbers. The security of the system relies on the
difficulty of factoring the product of two large primes [Sta20]. RSA was one of the
first published cryptosystems utilizing public key cryptography and has been one of
the most implemented and accepted schemes of this type.

Asymmetric cryptography is important to this project as a counterpart to sym-
metric cryptography. It is widely used and accepted due to its strong security
properties and scalability, and is the foundation of the security properties of the
EDHOC protocol. To understand what the SAKE protocol is innovating from, one
must understand the established schemes with their advantages and disadvantages.

2.1.4 Hash Functions

An important and often used tool in cryptography is the hash function. A hash
function is a function that takes an input of variable length and maps this to a
fixed length output [Shi07]. For the output of hash functions it is desirable to have
unpredictability and uniformity. By unpredictability we mean that any change to an
input string will give an unpredictable change in the output. And by uniformity we
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mean that the output should be as evenly distributed as possible, over the possible
output range.

When used in cryptography it is important for hash functions to have the
properties listed below. These properties are what make hash functions a basic tool
in cryptography and one of the building blocks of security protocols [Sta20].

– Ability to process input of any size.

– To always give an output of fixed length.

– The function is easy to compute for any input, and also quick to compute.

– The function is one-way. That is to say, if given the output it is computationally
hard to find the input. This property is essential for providing forward secrecy,
as old and deleted keys are hard to recover.

– For any input it is computationally hard to find another, different, input that
would result in the same output.

– It is computationally hard to find any pair of unique inputs that would result
in the same output.

Being used extensively in both SAKE and EDHOC, it is important to understand
the capabilities and limitations of hash functions when analysing both protocols.

2.1.5 MACs

In the field of cryptography a Message Authentication Code (MAC) is a computed
value that is used to authenticate a message [Sta20]. A MAC, or tag, is created
using a function that takes a message and a secret key as input and gives a value of
fixed length as output [Shi07]. The output of a MAC function will always be the
same for a given message and key. This means that a receiver can verify a message
by computing a MAC using a received message and a shared secret key, and then
comparing the result with a MAC that came appended to the received message. If
the MACs are the same then the receiver knows that the message came from someone
who shares the secret key, thereby authenticating the message.

One way of creating MACs is by using hash functions. By basing a MAC function
on a keyed hash function, a hash function that takes a key in addition to some other
input, we get a MAC that inherits its strength from the hash function it is based
on [Sta20]. The resulting function is called an keyed-Hash Message Authentication
Code (HMAC) [GTDD08]. HMACs can use any iterated hash function and thereby
vary its cryptographic strength by the strength of the used hash function [Shi07].
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2.1.6 Key derivation functions

Another important type of function in the field of cryptography is the Key Derivation
Function (KDF). A function that produces a key, or possibly several keys, deriving it
from some form of base key and possibly other parameters [Kal00]. To derive the keys
a KDF uses a pseudo-random function [lChe22]. A pseudo-random function being a
function that through a deterministic computational process and the use of some
form of input, gives an output of values that, according to specific statistical tests,
appears random [Shi07]. It is common to use HMAC functions as a pseudo-random
function [Zdz12].

As cryptography relies on using keys for encryption, decryption, keyed hash
functions and more. It is of great relevance to understand the basic principles of
KDFs and the use of their keys. The use of keys will be further explained in section
2.2.

Of particular interest to this project is the key derivation function HMAC-based
Extract-and-Expand Key Derivation Function (HKDF). HKDF is a KDF based
on HMAC functions and is composed of two main functions, HKDF-Extract and
HKDF-Expand. The Extract function takes some key material and optionally a salt
as input of a HMAC function to produce a Pseudo Random Key (PRK). The Expand
function takes the PRK, an additional data field and a length specification as input.
Using the PRK as a key and the additional data as a message, an HMAC function is
called to create an output of specified length. These inputs are chained by using the
output as the additional data the next time the HMAC function is called [KE10].

2.1.7 Digital Signatures

Another tool in the field of cryptography is the use of digital signatures. Digital
signatures are schemes that create a value by using an algorithm and some data
object as input for the algorithm. The resulting value is used to verify both integrity
and origin of the data object [Shi07]. Digital signatures are similar to MACs, but
offers some additional properties. The key property being the ability to uniquely
identify as specific system as the signer.

RSA is an example of a cryptosystem that has the ability to add signatures to
messages [Shi07]. It is a well adopted method of providing encryption with signatures,
utilizing depending on the factoring of the product of two large prime numbers. As
RSA is not a fast algorithm in comparison with symmetric encryption, it is often used
to establish a shared secret which is then used for symmetric methods for further
communication [Sta20].

An algorithm intended only for providing digital signatures is the Digital Signa-
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ture Algorithm (DSA). A standard developed by NIST, DSA is based on modular
exponentiation and the problem of discrete logarithms [Sta20]. The later versions of
DSA includes a technique for digital signatures that relies on elliptic curve cryptogra-
phy. This version is called the Elliptic Curve Digital Signature Algorithm (ECDSA).
Utilizing elliptic curves ECDSA achieves the same level of security while using shorter
key lengths than other algorithms would need [Sta20].

2.1.8 Post-Quantum Cryptography

A possible game-changer within the field of cryptography is the future of quantum
computing. Quantum computing is the combination of computer science and quantum
physics. This field is mainly theoretical as no functional system has been developed,
but as explained below it has the possibility of greatly impacting cryptographic
principles that are relied on today.

The theory of quantum computing is that it performs its calculations with the help
of quantum physical principles. It relies on representing information as theoretical
“qubits”, also known as “quantum bits”. A simplified explanation of qubits is that
they are similar to classic bits in the way they represent information, but they have
a behavior that follows the laws of quantum physics. This behavior gives qubits two
unusual properties, entanglement and superposition.

The property of superposition comes from the behavior of a system following the
laws of quantum mechanics. Such a system is only set to a specific state once it is
measured. Until then the system remains in a superposition consisting of all the
possible states. In quantum computing this property manifests itself in the ability of
a qubit to exist in a superposition of both “0” and “1”, only to collapse into one of
the two when measured [Sta20; Hid21].

Entanglement is a particular case of superposition of two system where the
measurement of one system is strongly correlated with the state of the second system.
In quantum computing this gives qubits the ability to be linked in such a way that
measuring one qubit will cause the second qubit to collapse into a state that can be
known beforehand.

These two properties allow for a scaling of computational power far greater
than conventional computing can, which leads to possible new threats to existing
cryptographic methods.

One example of the threat quantum computing can bring is Shor’s algorithm. As
explained in section 2.1.7, RSA relies on the difficulty in factoring the product of
two large prime numbers. Shor [Sho94] introduces a algorithm that can factorize the
primes of any positive product in polynomial time. The algorithm is estimated to
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need a few thousand qbits to break a 3072-bit RSA key. Also, the necessary amount
of qbits to break a key scales linearly with the amount of digits in the key. This
means that once functional quantum computers of some size are developed, systems
that rely on RSA become highly vulnerable to attack. The algorithm also works for
finding the discrete logarithm of elliptic curves, which means that the algorithm also
threatens systems based on elliptic-curve cryptography [BL17; Sta20].

A second example of a quantum algorithm that can threaten established cryp-
tographic methods is Grover’s algorithm. Introduced in 1996 by Grover [Gro96],
this algorithm can search an unordered list of size N in O(

√
N) time. While not

as impressive as the speed Shor’s algorithm operates at, this is still an immense
upgrade for the kind of algorithm that is used to perform brute force attacks on
symmetric encryption and hash algorithms. Using Grover’s algorithm, the security
of an algorithm with key size n can be reduced to the level of a key size of n/2. As
an example, this means that to maintain the security a 128-bit AES key provides
currently, one would only have to double the key length from 128-bit to 256-bit. This,
in combination with the discovery that searching algorithms at an exponential rate
is impossible, presents the theory that current symmetric cryptography methods and
hash functions can remain secure with minimal changes in a post quantum world
[BL17; Sta20].

2.2 Key Exchange

2.2.1 AKE protocols

An important protocol among the many that make up modern digital communication
are AKE protocols. These protocols are used to establish and exchange session keys
between communicating parties, while also providing each party with authentication
of the opposite party’s identity [DvOW92]. The SAKE protocol is a suggested AKE
protocol and as such it is important to understand the use of this type of protocol.
When two parties want to communicate and keep their messages hidden from third
parties, it is useful to encrypt the messages. To do so both parties must agree on
some form of key for encryption. In addition it is useful to have some way of verifying
that the messages one receives does indeed come from the expected party. This is
what AKE protocols offer.

When discussing AKE protocols there are several important terms regarding
types of keys that can be used. As many different types are mentioned and discussed
throughout this project it is important to understand the difference.

Master key: also known as a key-derivation key, is a key that is used by some
method to derive other keys. Master keys are long lasting and should be stored
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securely as their disclosure can compromise derived keys [Sta20].

Long Term Key: Long term keys are meant for use over an extended period of
time and maybe several sessions.

Session Key: A session key on the other hand is meant for use in only one session
and not to be used again [Bar20b].

Ephemeral Key: One sub type of session keys is an ephemeral key. Ephemeral
keys are for one time use only and never to be used again [Sta20; Bar20b].

2.2.2 Perfect Forward secrecy

In addition to easy key management, asymmetric cryptography has the advantage
of easily providing perfect forward secrecy when used. Perfect forward secrecy,
otherwise known as forward secrecy, is a security feature of key exchange protocols
which guarantees that compromise of long-term secret keying material does not
endanger the secrecy of keys that have been exchanged in previous runs [DvOW92].
That is to say, if a session key is compromised it will give access only to data
encrypted using this key [HC98]. Meaning that each key must be derived from
independent material. It also means that if a long term key is compromised this does
not compromise previously used session keys. Perfect Forward Secrecy (PFS) is of
interest to this project as the SAKE protocol is developed with the idea of providing
forward secrecy using only symmetric cryptography. It is therefore important to
understand what PFS does and how it is usually achieved.

A well known method of public key cryptography that can be used to provide
forward secrecy is the Diffie-Hellman key exchange. However, on its own it does
not provide authentication, nor forward secrecy. To provide authentication digital
signatures are often added to the messages. To provide forward secrecy long-term
keys are used for the digital signatures and ephemeral keys, that is to say temporary
keys, are used for the Diffie-Hellman exchange.

A more updated version of Diffie-Hellman key exchange is the Eliptic-Curve Diffie-
Hellman (ECDH) key agreement protocol. ECDH is a variant of the Diffie-Hellman
scheme that is based on the mathematics of elliptic curves [Shi07]. This results in
shorter key lengths and better computational efficiency than normal Diffie-Hellman.
When applied with ephemeral keys, ECDH too can provide forward secrecy to an
AKE protocol.

Another idea that can provide forward secrecy to a key exchange protocol is the
concept of key evolution. Key evolution requires a protocol to evolve its master key or
key derivation material between each derived session key. The term evolving in this
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context means changing the original material in some way that is computationally
hard to reverse, for instance by employing a hash function [ACF20].

One example of key evolution can be found in the Double Ratchet Algorithm,
utilised by the app Signal [CCD+16]. In this algorithm the term “ratchet” is used
to mean updating or evolving a key using some function. The algorithm intends to
provide distinct message keys for all new messages by using key chains created using
two distinctly separate ratchets. The first ratchet is based on the Diffie-Hellman key
exchange and adds an ephemeral public key to each message. The second ratchet uses
some KDF, for example a hash function, to update the symmetric key. Like SAKE
this scheme also requires two parties to have a common secret before initialization.

A chain of root keys is instantiated using the shared secret. Each key being the
input material for the next using a ratchet to derive a chain. For every root key the
second ratchet is also applied to derive a chain of keys from which the message keys
are derived. The second ratchet takes the root key as input and outputs two new
values. One is a message key. The other is a chain key used as input to derive the
next set of keys. Using deterministic functions, both parties can therefore produce
the same series of keys. The algorithm operates asynchronously with each party
using every other root key to encrypt messages before sending. That is to say a party
A will use a key chain derived from root key k1, until it receives at least one message
from party B, where B has used keys from a chain derived from k2. A will then send
its next messages using root key k3 as key chain material [BFG+22; PM16].

The scheme has a method for handling out of order messages. It includes in the
header a message’s number in its sending chain and the number of messages in the
previous chain. The receiver therefore knows which keys it needs to store in wait for
messages that have not arrived yet.

The result is a strong and secure algorithm. However this comes at the price of
being computationally intensive and requiring space for a lot of stored keys.

We note that while Signal gets a new key for each message sent, both SAKE and
EDHOC get session keys meant for use in a session consisting of several messages.
This way of using session keys is the more common and is seen for instance in the
Transport Layer Security (TLS) protocol [DR08]. A connection between our protocols
is that SAKE uses a mechanism that is very similar to the second ratchet of Signal.
That is, it updates the long-term keys each time it is run. EDHOC on the other
hand uses a mechanism that is similar to the first ratchet in Signal, however on a
per-session basis instead of a per-message basis.

Key evolution can introduce the challenge of synchronicity. Two parties must
somehow stay in sync when evolving a master key, otherwise they will not be able to
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find a shared secret key. This problem can be solved by keeping a counter to keep
track of which evolution each party is at, or by relying on clock timers to evolve the
master key at a set time or interval. These solutions however, are resource intensive
and not necessarily perfect. We will see that SAKE solves this problem in a different
manner in section 3.2.

2.3 Key Compromise Impersonation attacks

A particular challenge to AKE protocols is the exploit known as a Key Compromise
Impersonation (KCI), which was first identified by Blake-Wilson et al. [BJM97].
A KCI exploit is possible when an adversary has gained access to the private key
of an honest party. The exploit allows the adversarial party to impersonate the
compromised party to other parties, understandably since the adversary has both
keys of the honest party. More interesting is that the adversary can also impersonate
any third party to the honest party. This opens up possibility for the adversary to
amongst other things, perform Man-in-the-Middle exploits [HGFS15].

2.4 The Internet of Things

To understand the intentions behind the proposal of the SAKE protocol it is necessary
to explain where the intended use for the protocol is and what challenges this
environments can have.

In the field of information technology the IoT is a much used term that does not
have a common definition. One such definition is that the IoT generally describes
technologies and physical objects that come together to communicate data to other
devices over the internet or other communication channels [WF15]. This is only one
of many slightly differing definitions that attempts to describe a wide area within the
field of communications technology. Other definitions specify that the IoT involves
sensors embedded in devices that can communicate the data collected without human
interaction [Li17a].

2.4.1 Wireless Sensor Networks

An important part of the Internet of Things is the concept of Wireless Sensor Network
(WSN). WSNs are networks consisting of wireless connected nodes. Each node
contains one or more physical sensors that record data from their environments, some
computational power in the form of an embedded CPU and the hardware necessary
to communicate data over the internet or other wireless solutions [KB17]. These
nodes can often be low-cost, autonomous units that are expected to operate for longer
periods of time without physical maintenance. The lack of physical maintenance may
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come from reasons such as hostile environments or because widespread deployments
amount to a lot of maintenance.

The devices used in WSNs can greatly benefit from protocols specifically designed
for use in these types of networks. Lightweight protocols that have been designed for
low resource use and economical power use can give lightweight devices a boost in
longevity.

2.4.2 Related work

In the paper “A secure end-to-end IoT solution”, Mathur et al. [MNE+17] proposes
an IoT system for connecting sensors to other devices. The proposed scheme is a
secure end-to-end system that is intended for monitoring medical patients using
sensor nodes. The scheme is defined as being capable of connecting IoT-sensors to
any PC, while keeping direct access to the sensors from the internet.

The paper is of interest as the proposed scheme relies on ECDH and HKDF for key
management. The paper gives an analysis of both alongside some other algorithms
like RSA and AES. The analysis gives results for time and energy spent generating
keys. This is of interest as it presents comparable values from an implementation in
the same system.





Chapter3Protocols

This chapter intends to give an understanding of the chosen protocols, how they
work and to give a brief comparison of the two.

The EDHOC protocol was chosen because it is being developed as a possible
industry standard for IoT and constrained environments. With increasing amounts of
IoT devices being deployed it is desirable to have a protocol designed with the specific
requirements in mind. EDHOC is the Internet Engineering Task Force (IETF)s
response to this. The protocol uses established methods and algorithms to give a
safe and secure service, such as using ECDH to achieve PFS.

Being based on asymmetric encryption and using established methods, EDHOC is
a good protocol to use as a comparison to SAKE. SAKEs use of symmetric encryption
and evolving keys is a very different solution and having a point of comparison that
uses different but more established methods is useful for establishing how well SAKE
achieves its goals.

3.1 EDHOC

The EDHOC protocol, as defined by the EDHOC draft paper [SMP21], is a protocol
that is being developed by an IETF work group. This protocol is being developed to
become a possible industry standard AKE protocol for constrained environments. It
is being developed with other protocols and tools developed by IETF, such as The
Constrained Application Protocol (CoAP) and Concise Binary Object Representation
(CBOR), in mind. Of interest to this project is that while EDHOC is meant for
the same use cases as SAKE, it utilizes asymmetric cryptography instead of the
symmetric key cryptography used in SAKE. This will be further discussed in Sections
3.3.3 and 3.3.4 .

EDHOC uses ECDH to provide key agreement with forward secrecy, as explained
in Section 2.2.2. The protocol is being developed with multiple negotiable ciphersuites.

15
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A cipher suite in this case is a set of algorithms that an AKE protocol uses when
exchanging keys [DR08]. In the case of EDHOC the cipher suites specify:

– an Authenticated Encryption with Associated Data (AEAD) algorithm

– a hash algorithm

– the length of the MAC in bytes

– a key exchange algorithm

– a signature algorithm and AEAD algorithm for applications

– a hash algorithm for applications

The protocol currently has 9 defined ciphersuites and 3 private suites that users
can define themselves. Suites 0 to 3 are meant for constrained IoT use cases and
are based on AES-CCM. Suites 4 and 5 are meant for less constrained environments
and are based on ChaCha20. Suite 6 is intended for environments with no general
constraints. Suites 24 and 25 are meant for cases that require high security, such as
governments or financial use cases. The naming of the suites leave a large amount
of undefined suites available for future needs. With multiple cipher suites being
implemented it means that negotiation of which suite to use must be handled during
the key exchange process.

Fig. 3.1 is a simplified representation of EDHOC made to show the operation of
the protocol. The figure does not show the full operation of the protocol but tries to
focus on the elements that are relevant to this project.

The version displayed uses cipher suite 0 and method 3 for authentication. This
configuration is considered the most relevant for this project. This is because cipher
suite 0 is intended for low power deployments in IoT. Method 3 for authentication is
considered useful because this specifies the use of ephemeral-static Diffie-Hellman
to achieve authentication. Method 0 has both parties use digital signatures for
authentication, while in methods 1 and 2 a digital signature is used by one of the
parties for authentication as the other party uses Diffie-Hellman.

Since method 3 is used for authentication both parties must generate an individual
static key pair, R, GR for the responder and I, GI for the initiator.

Message 1: Before it can send the first message, the Initiator must generate an
ECDH ephemeral key pair, X, GX where GX = X ·G and G is a point on the
elliptic curve. The public key GX is sent in message one, along with identifiers
for the chosen method and cipher suite.
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Message 2: Upon receiving message 1 the responder Generates an ephemeral key
pair, Y and GY , as well. The responder can then generate the shared ECDH
secret GXY . Using the shared secret a PRK, PRK1 is generated. PRK1 is
used to derive the key-stream that will be used to encrypt part of message 2.
GRX alongside PRK1 is used to generate PRK2. The responder also generates
a transcript hash of message 1. PRK2 and the transcript hash are used to
generate a MAC. This MAC is then encrypted using PRK1 and sent in message
2 alongside GY and GR. Upon receiving message 2 the initiator must generate
PRK1 as well in order to decrypt the MAC. It must then generate the MAC
on its own in order to verify the MAC that it has received.

Message 3: Having authenticated the identity of the responder, the initiator uses
a static ECDH key pair, I, GI , to authenticate itself to the responder. The
initiator generates PRK3 and a transcript hash of message 2, which is then
used to create a new MAC. The MAC is encrypted using the EDHOC AEAD
algorithm and sent in message 3 along with the public key GI . Upon receiving
the message the responder decrypts the ciphertext and verifies the MAC.

Message 4: Message 4 is optional and only needs to be supported in deployments
where no protected application message is sent from the responder to the
initiator.

It is important to note that the protocol is still in development. This means that
current specifications for EDHOC may not be final and that there is a possibility of
changes and additions.

3.2 SAKE

The SAKE protocol, as defined in the SAKE paper [ACF20], is a proposed protocol
intended to provide strong security properties while using symmetric-key cryptography
[ACF20]. Figure 3.2 taken from [ACF20] shows the proposed operation of the protocol.

The protocol has been developed as an AKE protocol meant for low-resource
environments. The protocol relies only on symmetric cryptography to avoid the
heavier draw on resources that asymmetric methods rely on. In addition, the
protocol is designed to provide stronger security than other symmetric key protocols
by guaranteeing PFS.

It is important to note that SAKE is not a fully defined protocol but is loosely
defined in a paper by Avoine et al. [ACF20]. This paper does not give specific
communications details or alternatives to things like ciphersuites. Some assumptions
must therefore be made when analyzing and making comparisons of the protocol.
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Initiator Responder

X, GX

Message 1:GX−−−−−−−→
Y, GY

PRK1

R, GR

PRK2

MAC1
Message 2:GY , GR, enc(MAC)

←−−−−−−−
if:(vrf(MAC1 ⊕
PRK2) ̸= true

Then: Abort
I, GI

PRK3

MAC2
Message 3: GI , enc(MAC)

−−−−−−−→
if:(vrf(MAC2 ⊕
PRK3) ̸= true

Then: Abort
EAD

PRK3
Message 4: enc(EAD)

←−−−−−−−

Figure 3.1: EDHOC protocol [SMP21] operation
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The protocol provides PFS by employing an evolving master key, from which
session keys are derived. The introduction of the evolving master key creates a
challenge in that the initiator and receiver must somehow stay synchronised in the
evolution of keys. Should one party evolve its master key out of sync with the other
then the two will not find a common secret key.

The problem of synchronicity is solved by introducing a second master key used
only for synchronization. The synchronization master key is updated at the same time
as the authentication master key. The SAKE paper [ACF20] proves that by having
the initiator store the previous, the current and the next synchronization keys, and
by having the responder storing only the current synchronization key, the initiator
will almost always have the sufficient information necessary to re-synchronize. This
does however rely on the assumption that no concurrent sessions are running. As
described by Boyd et al. in the paper “Symmetric Key Exchange with Full Forward
Security and Robust Synchronization” [BDdK+21], if the protocol is run with two
or more parties at the same time then synchronization can be permanently lost.

To check and maintain synchronization the proposed pseudo-code of SAKE uses
several if and else if statements. These statements verify which step synchronization
is at and dictate the necessary action to maintain synchronicity.

3.3 Comparison

To give a greater understanding of the protocols we make a comparison to highlight
similarities and differences. Table 3.5 shows the results of this comparison.

3.3.1 Message count

An important part of any protocol is how many messages the protocol needs to send
to complete its function. Metrics such as power usage and time cost will depend in
part on the message count of the protocol. We therefore take a look at the necessary
messages of each of our protocols.

First we look at the message count of SAKE. SAKE as defined by Avoine et al.
[ACF20] has five mandatory messages. To achieve mutual authentication all five
messages are required. Three sent by the initiator and two by the responder.

Another operating mode for SAKE named SAKE in Aggressive Mode (SAKE-
AM), allows for one less message sent. This mode changes the formats of messages
somewhat but keeps the calculations and formats largely the same as the regular
operating mode.
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Figure 3.2: SAKE Protocol [ACF20] operation
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Boyd et al. [BDdK+21] make several suggestions of improved protocols that can
provide the same or better results than SAKE, using the same methods while only
sending 3 messages or less.

Now we look at EDHOC. The protocol has a message flow consisting of three
messages that must be sent to achieve mutual authentication. Two sent by the
initiator and one by the responder. The protocol also has an optional fourth message
from the responder to the initiator. This message is only to be sent in cases when
no protected application message is sent from the responder to the initiator. For
instance if EDHOC is “only used for authentication and no application data is sent”
[SMP21], then the responder must send message four. Another example is “When
application data is only sent from the Initiator to the Responder” [SMP21] , then
also message four must be sent.

Table 3.1: Message count

Protocol Initiator Responder
SAKE 3 2

SAKE-AM 2 2
EDHOC 2 1(2)

3.3.2 Message components

The efficiency of a protocol is also dependent on message sizes and what components
are sent in each message. We therefore take a closer look at which components are
necessary for our protocols and how they differ. In EDHOC the plaintext messages
are comprised of concatenated strings. Cipher-text in the messages is derived by
performing the XOR operation with a defined keystream.

EDHOC also encodes its messages as CBOR sequences. The CBOR data format
is designed for small message sizes and very small code sizes [Bor20]. This results in
EDHOC having quite short message sizes. From Figure 1 in the EDHOC specification
paper [SMP21] we get example sizes in bytes of how large each EDHOC message
is. These examples are shown in Table 3.2. This gives us a good idea of how large
EDHOC messages are. The table shows examples with different authentication
keys, static Diffie-Hellman keys or signature keys, and different header parameters,
represented by “kid” or “x5t” .
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Static DH Keys Signature Keys
kid x5t kid x5t

message_1 37 37 37 37
message_2 45 58 102 115
message_3 19 33 216 242

Total 101 128 216 242

Table 3.2: EDHOC messages sizes in bytes [SMP21]

As SAKE is not a fully defined protocol, we make an approximation of the message
sizes by looking at the components in each message. The size of these messages could
be larger or smaller in a real life implementation. Additional data could be added
to the messages to make them larger than our estimated sizes suggest. It is also
possible that messages would be encoded in some format, like CBOR, that would
decrease size of messages before sending.

Message 1 contains an identifier A concatenated with a pseudo random value rA.
rA is used in the authentication process and as input for key derivation. We expect
the keying material to be no larger than the output key. We therefore assume rA to
be at most 32 bytes. As A has no clear definition determining size is difficult. For
simplicity’s sake we assume it to be no larger than 32 bytes as well.

Message 2 is made up of a pseudo random value rB , concatenated with a MAC.
rB has the same properties as rA and as such is assumed to be 32 bytes. The MAC
utilizes SHA256 and therefore has a hash value of 32 bytes [Han05]. Other MACs
used in SAKE will also be 32 bytes. Message 3 consists of an integer, of a size of one
byte, and a MAC. For a total size of 33 bytes. Both message 4 and 5 consist only of
a MAC. Giving each a size of 32 bytes.

It is worth noting that while the message overhead of SAKE is slightly more than
double that of EDHOC. It is still far smaller than that of the TLS protocol, which
has a message overhead of 789 bytes [GM22]. This means that SAKE does have
almost three times smaller messaging overhead than TLS, making it suited to its
intended low cost purpose.
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Message Size
message 1 64
message 2 64
message 3 33
message 4 32
message 5 32
Average 45
Total 225

Table 3.3: SAKE message sizes in bytes

3.3.3 Key storage and key management

Key management is an important factor that often differs between symmetric- and
asymmetric-encryption. In addition the storage of keys, and other components,
makes demands of the storage space which affects the efficiency of the protocol. We
therefore take a look at the key management strategies of both protocols and what
components they need to store.

Once again we start by looking at EDHOC. With EDHOC each party needs to
store an ECDH key pair for encryption and decryption of messages. Since ECDH is
used for authentication as well, then a second key pair must be stored by each party.
Note that the static keys only need to be stored while the protocol is still running
and can be deleted once the session key is computed.

We know that EDHOC specifies the use of Curve25519 [SMP21]. We know that
this curve specifies keys, both public and private, to be 32 bytes long. This results in
each party needing to store 128 bytes worth of keys or 256 bytes in total.

Looking at SAKE we see that both parties must store at least one version of the
keys from each key chain it uses. The parties can also store up to three keys to lower
the need for recomputing keys. In addition both parties must also store a Pre-Shared
Key (PSK) that is used to derive the key chains.

To be used as keying material we expect the pre shared keys to be at least 32
bytes long. In addition we also expect the keys derived from the key chains to of 32
bytes length. This results in each party needing to store at the least 96 bytes of keys
and up to 224 bytes if more keys are stored to reduce the need for recomputing.
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SAKE EDHOC
Stored components 4-8 keys 4 key pairs

Total stored component size 96 (224) bytes 128 bytes

Table 3.4: Keys stored by SAKE and EDHOC

It is also important to note the differences in how the protocols do key management.
Because it uses asymmetric cryptography EDHOC has an easily scalable solution
using public-key infrastructure, though this does come at a computational and storage
cost. SAKE on the other hand relies on pre-shared keys which greatly limits the
amount of connections a party can have. PSKs also bring the challenge of how the
original keys have been shared and adds vulnerability to a system. With already
existing keys the possibility of a third party gaining access to the keys is always
there.

3.3.4 Security features

It is important to take a look at the security features of both protocols, so that we
can determine what level of security they seek to achieve and whether they do so.

Providing forward secrecy is an important feature for both protocols. According
to both Avoine et al. [ACF20] and Boyd et al. [BDdK+21] the SAKE protocol does
provide forward secrecy, as explained in section 2.2.2. As EDHOC uses ephemeral
Diffie-Hellman it is easy to see that it also provides forward secrecy, as this method
is a well established way to provide PFS [BJPS18].

As mentioned in section 2.3, AKE protocols are vulnerable to KCI attacks and
need protection against it. Selander et al. [SMP21] explain that while EDHOC is
protected against KCI attacks when it is authenticated using signature keys, it has
some vulnerability when static Diffie-Hellman is used. This means that a party who
accepts authentication with digital signatures will be protected, but a party who
accepts authentication using MACs with static Diffie-Hellman keys will be vulnerable
to a KCI attack. In the case of SAKE, Selander et al. [ACF20] explain that their
protocol would be entirely vulnerable to KCI attacks.

As both SAKE and EDHOC are AKE protocols, authentication is a key part of
their purpose. Each protocol is capable of providing one-way authentication or mutual
authentication, though both are primarily meant for mutual authentication. SAKE
uses authentication keys and MACs to achieve mutual authentication. EDHOC has
the option to either use static Diffie-Hellman or digital signatures provide mutual
authentication, both well established methods for this goal.
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According to Gunther et al. [GM22] EDHOC provides strong security for the AKE
process. However they also point out that the protocol is somewhat brittle when the
mac-then-sign method is employed as the authentication method. Gunther et al. go
on to state that while EDHOC may have some security issues in its current state, the
working group who are developing the protocol actively integrate recommendations
and fixes from analyses.

As mentioned in section 2.1.8 methods of symmetric cryptography are resilient
or even completely safe in a post-quantum environment. Some minor modifications
such as doubling key length may be all that is needed to maintain the security level
of SAKE when faced with the threat of quantum attacks. EDHOC on the other
hand would be vulnerable and open to such attacks. This means that in a long term
view, SAKE may be much more viable than EDHOC.

Table 3.5: Comparison of SAKE and EDHOC

SAKE EDHOC
Messages sent 5 mandatory messages 3 messages with optional 4th

Average Message size 45 bytes 34 bytes
Total size of messages 225 bytes 101 bytes
Stored component size 96 (224) bytes 128 bytes
Mutual Authentication Yes Yes

KCI resistance No Partiala

Post-Quantum resilience Yes No

adepends on authentication method





Chapter4Method

This chapter gives an explanation of the method used to find results that can bring
clarity to the research questions, and the resulting findings.

4.1 Method

The research questions ask about SAKEs energy efficiency and how it compares to
other protocols. To answer this, an estimate of the energy usage of SAKE is needed.
This is achieved with a granular approach. We start by breaking the protocol down
into its constituent cryptographic functions, the basic building blocks of protocols.
Then we take already existing findings, from reports or papers, that establish how
much energy these functions use. By adding up each cryptographic functions energy
use, an estimate of energy usage is made through focusing on the simplest parts of
the protocols.

Additionally a comparison is necessary as a point of reference to be able to gauge
how efficient the estimate for SAKE appears to be. Therefore, an estimate of the
EDHOC protocol is also made. The EDHOC protocol is meant for the same use cases
as SAKE and uses asymmetric cryptography instead of SAKEs symmetric encryption.
Thereby a comparison with EDHOC shows the difference between protocols that are
developed for the same use cases, but use different methods for achieving their goals.

Further, to make a useful comparison of the two protocols, some assumptions
were made. As previously stated, SAKE is not a fully defined protocol. That is to
say specific algorithms and functions are not specified in the article that proposes the
SAKE protocols [ACF20]. This analysis therefore chooses to use whatever equivalent
primitives that are already defined for EDHOC, as it is developed for a similar
environment and therefore assumed to use algorithms and functions with properties
that are also wanted in SAKE.

27
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4.2 Cryptographic Primitives

To make a comparison of the efficiency of the protocols, the cryptographic primitives
of the protocols have been singled out. Cryptographic primitives are functions and
algorithms that are well established within the field of cryptography and information
security [Bar20a]. These primitives are the building blocks used to construct the
algorithms and protocols of computer security.

In the paper that proposes the SAKE protocol the cryptographic primitives below
are specified as being necessary for the protocol. The cryptographic primitives are all
found in part 3.1, "Description of the protocol", in the SAKE paper [ACF20].These
are all types functions that are required to construct the SAKE protocol.

– A non-invertible functions, see Section 2.1.3

– A secure MAC function, see Section 2.1.6

– A key derivation function, see Section 2.1.7

– A Pseudo Random function, see also Section 2.1.7

Likewise we need the cryptographic primitives that the EDHOC protocol uses.
Chapters 2,3,4 and 5 are all used to determine the necessary cryptographic primitives
listed below.

– A Key Derivation Function

– A MAC function

– A Hash algorithm

– An ECDH key pair derivation function

– A signature algorithm

4.3 HKDF

To find an estimate of energy use, algorithms and functions with tested implementa-
tions are needed. The choice was made to use HKDF in place of all the cryptographic
primitives except for the ECDH key derivation function. This decision was based on
several reasons.

The EDHOC protocol specifies several functions and algorithms. The ciphersuites
0-3 dedicated for constrained environments, specify the use of HKDF for pseudo
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random key generation. HKDF is also specified in MAC, hash and signature oper-
ations in EDHOC. These are all forms of primitives that take an input, perform
a mathematical operation on the input to transform it into a fixed length output
[Shi07]. We also choose to focus on EDHOC using method 3 for authentication, that
is to say static Diffie-Hellman keys, because this is the most efficient mode.

The operations of HKDF mostly rely on the computation of an HMAC, which
in turn relies on a hash function. As such this is where the majority of HKDFs
computational cost comes from. As there is little difference in these operations we
assume them to have approximately the same computational cost, allowing us to use
the cost of HKDF in place of the other operations.

Additionally, it was desirable to find cryptographic primitives that have all
been implemented in the same system. If values of energy use was taken from
implementations in different systems then the differences in implementations could
have affected efficiency to a degree that would make estimations highly inaccurate or
even useless. The implementation done by Avijit et al. [MNE+17] uses both HKDF
and ECDH key derivation and the HKDF implementation uses SHA256, as specified
in EDHOC. Therefore it suits the purpose of this project.

Having decided this, the values in table 4.1, taken from [MNE+17] are the only
energy use values needed to make an estimate of both protocols’ energy use. The two
values are the recorded energy use of the specified algorithms when deriving keys.

Table 4.1: Energy usage values(mJ)

HKDF 0.049
ECDH 21.49

4.4 Summation of primitives

Finally, to make estimates of power use it is necessary to know how many times the
cryptographic primitives are used in each protocol. We see in Fig 3.2 a representation
of the SAKE protocol. By identifying the cryptographic primitives in this figure it is
easy to count how many times the cryptographic primitives are called in a run of
SAKE.

– rA and rB represent instances of Pseudo Random Function

– Mac(...) is an instance of a MAC function.

– Vrf(...) is a verification function in which the MAC function is performed once.
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– kdf corresponds to one performance of the Key Derivation Function

– updA and updB are both functions where the respective authentication and
derivation keys of a party are updated using the KDF. Meaning that updA and
updB represent two performances of HKDF.

Knowing this, it is easy to make a simple estimate of the energy usage of a run
of SAKE. It is important to note an element that allows for differences between
separate runs of SAKE. Namely the if and else if statements. The possibility of
different statements ending up true or false allow for different amount of calculations
needed for separate runs, with even the possibility of runs being aborted. This opens
up the possibility of best-case and worst-case scenarios where runs never abort, but
there is a considerable difference in the amount of times cryptographic primitives are
used.

To find the cryptographic primitives in EDHOC we use the explanations in
chapter 5: Message Formatting and Processing in [SMP21]. This chapter explains
how each message in EDHOC is created and processed, and by going through it is
simple to count the amount of times the cryptographic primitives are used. The
tally of cryptographic primitive instances in both SAKE and EDHOC is shown in
table 4.2. This table does not include the instances of ECDH in EDHOC. This is
because it is simpler to add up the amount of HKDF instances first. The use of
ECDH key generation only happens once each for initiator and responder in EDHOC.
The ECDH energy values can therefore easily be added after calculating the energy
use of HKDF in EDHOC.

It is important to note that runs which end with the protocol being aborted have
not been taken into account by this project. To do this it would have been necessary
to have statistical data on how often the protocols abort instead of completing a
handshake. Such data would need to come from some sort of implementation which
is not available at the time of writing.

Table 4.2: Cryptographic primitives in protocol runs

Run Initiator Responder
SAKE Worst case 15 10
SAKE Best case 6 8

EDHOC 5 4
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4.5 Communication cost

In addition to estimating the energy cost of computation it is necessary to gain some
understanding of other ways the protocols consume power. When operating a node
in a WSN draws different amounts of power when it is computing, transmitting,
receiving, listening and waiting.

To estimate the consumption of transmitting and receiving we need to know the
cost per bit for each of these operations and how many bits each protocol sends.
From table 3.5 we get our estimate of message size. To find cost per bit we utilize
the values in table 4.3, borrowed from De Meulenaer et al. [dMGSP08]. Multiplying
cost per bit with the bit size of messages sent and received give us an easy estimation
of how much these processes cost.

We also get an estimate of cost when computing, listening and sleeping from De
Meulenaer et al.. However these estimates gives energy cost per cycle. It is difficult
to use these estimates as we have no way of determining the amount of cycles or time
spent by SAKE. An operational implementation would be required to find usable
estimates.

We make the assumption that listening costs of EDHOC will be larger than
those of SAKE. De Meulenaer et al. make the same assumption based on the
fact that elliptic curve computations require considerably longer computations than
computations for symmetric functions [dMGSP08].

It is important to note that the results we draw from these estimates are only
rough estimates. The numbers we find are not applicable to real world situations,
but they give an approximation that can guide choices regarding the usefulness and
use-cases applicable to our protocols.

One reason why the estimates we find are only guiding answers is because we
draw data from two different sources. From De Meulenaer et al. [dMGSP08] we get
estimates for the energy use of communication and the energy cost of computation
using elliptic curves. However it does not give values for HKDF. From Mathur et al.
[MNE+17] we get estimates of the power consumption when computing keys using
both ECDH and HKDF, but no indication as to how much communication costs.
We still find the sources to be compatible for our comparison due to the similarity in
costs. De Meulenaer et al. estimate the cost of elliptic curve multiplication to be
55 mJ or 17 mJ, depending on which hardware it is implemented in. Mathur et al.
estimate the key generation of ECDH to cost 21.49 mJ. While the costs do vary they
are not in any great order of difference and as such we deem them to be close enough
to useful for our high level comparison. It is also notable that while the paper by De
Meulenaer et al. was published in 2008 it focuses on hardware and protocols that
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are still highly relevant and therefore useful for this thesis.

Energy cost MICAz TelosB
Compute for 1 Tclk 3.5 nJ 1.2 nJ

Transmit 1 bit 0.60 µJ 0.72 µJ
Receive 1 bit 0.67 µJ 0.81 µJ

Listen for 1 Tclk 9.2 nJ 15.0 nJ
Sleep for 1 Tclk 3 pJ 9 pJ

Table 4.3: Energy costs of MICAz and TelosB
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This chapter presents the results that have been found by using the previously
mentioned methodology. The results are also discussed and expanded upon.

5.1 Results

The energy cost is divided into three sections. We estimate the cost of computation,
first that of SAKE then that of EDHOC. The estimation of communication costs
covers both protocols in one subsection because of how simple the estimations are to
calculate.

5.1.1 Energy use of SAKE computation

Using the values from table 4.1 and the amount of uses of HKDF, shown in table 4.2,
estimations of energy usage are found. By multiplying the energy usage of a single
instance of HKDF key derivation by the amount of times HKDF is called throughout
a run a simple estimate of energy usage is calculated. The table below shows the
energy usage of best case and worst case runs and additionally the average of the
two.

Table 5.1: Energy use SAKE (mJ)

Run Initiator Responder Total
Worst case 0.735 0.490 1.225
Best case 0.294 0.392 0.686
Average 0.514 0.441 0.955

5.1.2 Energy use of EDHOC computation

In the same manner as done for SAKE, the values from table 4.1 and the determined
instances of HKDF in EDHOC, from table 4.2, is used to find the estimated values
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in the table below. In addition to HKDF an instance of ECDH key generation is
done by both Initiator and Responder. As such the value for ECDH key generation
is added to both parties energy usage.

Table 5.2: Energy use EDHOC (mJ)

Initiator Responder Total
Cost 21.735 21.686 43.421

5.1.3 Energy use of communication

To make an estimate of how much energy each protocol requires to transmit its
messages we multiply the total bit size of message by the cost per bit. We do the
same with cost per bit for receiving to find the energy used in receiving the messages.
The results are displayed in table 5.3.

SAKE EDHOC
Hardware MICAz TelosB MICAz TelosB

Transmitting 1.08 1.296 0.484 0.582
Receiving 1.206 1.458 0.541 0.654

Total 2.286 2.754 1.025 1.236

Table 5.3: Cost of communication (in mJ)

5.1.4 Comparison of energy use

To give as complete a picture as possible we add together the energy use of computa-
tion and communication in table 5.4.

SAKE EDHOC
Computation 1.225 (0.686) 43.421

Hardware MICAz TelosB MICAz TelosB
Communication 2.286 2.754 1.025 1.236

Total 3.511 (2.972) 3.979 (3.4) 44.446 44.657

Table 5.4: Comparison of energy costs
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5.2 Discussion

5.2.1 Energy cost

The results of the estimation of power use by each protocol shows a marked difference.
From table 5.4 it is plain to see that even in its worst case scenario for power use
SAKE has a distinctly lower cost than EDHOC. Looking at the computation cost,
when using EDHOC the initiator expends over 29 times the energy than it does
when using SAKE. For the responder the difference is even greater, over 44 times
the power use. This shows that SAKE seems to be a substantially more energy
efficient protocol than EDHOC is. Taking transmission cost into consideration the
difference becomes slightly less pronounced, due to SAKEs higher message count.
More messages invariably result in higher energy cost, however this increase is quite
small compared to the computation cost. The result being that the cost of EDHOC
is still an order of magnitude larger than that of SAKE.

But however great the difference in cost, we cannot take these results entirely at
face value. There are several considerations that must be taken into account when
viewing these result. Firstly, the implementation of the protocols can impact the
performance of the protocol in question. With SAKE being only a proposed protocol
with no implementations yet it is difficult to say how this may affect the efficiency.
As for EDHOC, it is still in development and therefore has the possibility to change.
With neither protocol being a finished product it must be kept in mind that choices
could be made that can greatly affect the future efficiency of these protocols. It is
also worth mentioning that the choice of hardware can greatly impact the energy
costs. Both computation and communication costs can change depending on the
choices of hardware.

5.2.2 Key management

The difference in key management is an important aspect of the protocols we look
at. The differences between symmetric and asymmetric cryptography necessitate
separate approaches to managing keys.

This is immediately clear when we see that SAKE relies on Pre-Shared Keys. The
use of PSKs presents challenges that EDHOC does not need to take into account.
When using PSKs the keys either need to come pre-loaded on the device or some
other protocol is needed to communicate the keys before they need to be used. If the
key are pre-loaded this poses a security risk and additional complexity if the keys for
some reason need to be updated. If not then another key exchange protocol would
have to be implemented in a device using SAKE adding complexity and taking up
storage space.
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EDHOC on the other hand requires a public key infrastructure to operate. As
mentioned in section 2.1.3, the key management of asymmetric cryptography is
much more easily scalable than symmetric and this is no exception. Once public
key infrastructure is established it easily scales with many parties. SAKE on the
other hand requires pre-loading keys in each individual device or an individual
communication session with each device to establish the PSKs.

5.2.3 Security levels and features

Our findings in section 3.3.4 show that both protocols have quite solid security and
similar features. Fan et al. [FCS+22] show that SAKE has strong security features.
Likewise Gunther et al. supports EDHOCs security, although it does point out some
possible brittleness.

SAKE does have an issue with parallel sessions. SAKE does not allow parallel
sessions as it may cause sessions to abort. This is not an issue common to AKE
protocols and not something EDHOC has trouble with. Boyd et al. [BDdK+21]
suggest three protocols also based on symmetric methods, but with all protocols
allowing for parallel sessions. This shows that this issue with SAKE can be solved
without resorting to using asymmetric methods, but it necessitates modification of
SAKE.

It is noteworthy to take a look at the differences in security features between
the two protocols. EDHOC has many implemented security features such as PFS,
identity protection and protection against some types of attacks [SMP21]. Being a
protocol in development, EDHOC is updated with new security features after drafts
have been analyzed. SAKE on the other hand has little focus on features other
than authentication and PFS. This is natural since creating an AKE protocol using
symmetric key cryptography and guaranteeing forward secrecy is the intention of
the proposal. This does mean that any attempt to implement SAKE must take into
consideration which other features, if any, are to be included.

As mentioned in section 2.1.8, symmetric encryption can remain secure in a
post-quantum environment with minimal changes. Asymmetric methods however
can become vulnerable in such an environment. This goes for our protocols as well.
SAKE would only need minimal changes to key sizes, while EDHOC would become
vulnerable to attack with no easy way to fix the issue. This means that in a long term
perspective, SAKE preempts issues that may arise from developments in quantum
computing.
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To conclude the thesis this chapter gives some remarks with regards to the research
questions. The chapter also points out possible issues with the project and gives
recommendations to future work on the SAKE protocol. Finally, some closing
remarks to the project are given at the end.

6.1 Answering Research Questions

Taking the previous chapter into consideration, the research questions can be answered,
albeit with some possible issues which will be discussed in the next section. We
stated the following research questions to begin with.

– Is the energy usage of SAKE efficient?

– How does SAKE compare to other protocols intended for similar use?

Our results show that SAKE appears to be very efficient when it comes to power
use. The results of the energy use estimations show us that the SAKE protocol is a
lot less energy intensive than EDHOC. EDHOC, being on average far more energy
intensive for both initiator and responder in the average case, is a great deal more
taxing on the energy use of a system than SAKE. SAKE is slightly less efficient
when it comes to message count, however this does seem to be outweighed by its low
communication cost.

Also, when compared to EDHOC, the protocol does seem to hold up quite well.
SAKE is a match in security features compared to EDHOC, and add resistance
to quantum attacks. Key management does provide a challenge that asymmetric
methods deal with more capably, but this is not insurmountable. And as mentioned
SAKE has a much lower energy cost than EDHOC.
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6.2 Possible issues

There are several possible issues that may have affected the results of this project, or
may affect their future validity.

To start with, the results of the energy use estimations rely heavily on the results
of Mathur et al. [MNE+17]. While the difference shown between HKDF and ECDH
in energy use is considerable, the possibility of some mistake that could have effected
the results does exist. Any mistake that could have impacted these measurements
would effect the results of this project.

Additionally, this project does not take code size into account. It is hard to
make an estimate of the code size and computational overhead of SAKE without an
implementation to base it on. While there does exist implementations of EDHOC, a
point of comparison is not useful without an estimate of SAKE to compare with.

Lastly, SAKE is only a proposed protocol and further development and implemen-
tation may change protocol drastically. The EDHOC protocol is also still just a draft.
Further iterations of the protocol may make changes to features and specifications.
Assumptions that have been made by this project may therefore prove to be in error
and thereby invalidate the results of the project. However we do not expect any
major changes to be made, making the results this project presents a solid guide to
the cost of the protocols.

6.3 Future work

The results of the energy estimations show that the SAKE protocol has promise, but
further work is required. An implementation of the protocol would be highly useful.

Any implementation would have to make choices regarding which algorithms
and methods to use. These choices and subsequent attempts to use them in an
implementation will give greater insights into the efficiency of the protocol. Simple
simulation using an implementation may be used to get a better estimation of the
energy usage of the protocol and give hints as to how the protocol will act in a
physical environment. Even further, implementing the protocol in a physical device
will allow for in depth testing in a realistic environment.

Testing an implementation of SAKE on the same hardware as a comparable
protocol, such as EDHOC, would give a solid view of just how much more efficient
the protocol is and would make for a good guide regarding choices of further use
for the protocol. Adding to that it would be interesting to see the behavior of the
protocol on newer hardware developed for the IoT field.
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As further work it is therefore recommended to:

– Develop an implementation of the protocol

– Simulate the operation of the protocol

– Implement the protocol in a physical device for testing

– Make further comparisons with other protocols running on the same hardware

6.4 Final Remarks

It seems clear from our results that SAKE is much more efficient than EDHOC
when it comes to energy use. The cost of computation is very low compared to
EDHOC and while the cost of communication is somewhat larger it still outperforms
EDHOC. Without a proper implementation it can not be said for certain exactly
how much more efficient in energy use SAKE is in comparison with EDHOC, but
our results give a clear indication that SAKE is at least an order of magnitude less
energy consumptive than EDHOC. The SAKE protocol shows great promise and
with further work can become a valuable tool in the field of IoT and communications
technology.
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