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Abstract

We go through parts Slepian’s article ”Some comments on Fourier
analysis, uncertainty and modelling” and try to understand the basics of
the theory of prolate spheroidal wave functions. We fill in the details
where Slepian has been hasty, and try to generally unravel why we care
about these objects.
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Abstrakt

Vi g̊ar gjennom deler av Slepians artikkel “Some comments on Fourier analysis,
uncertainty and modelling” og prøver og forst̊a noen grunnleggende detaljer om
prolate sfæriske bølgefunsksjoner. Vi legger til ekstra detaljer der Slepian ikke
har vist de åpenbare momentene, og prøver generelt sett å forst̊a hvorfor vi bryr
oss om disse objektene.
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1 Introduction

Our tale begins way back in the 60s in the United States, concerning a ”Fourier-
analytic” question arising in the fields of signal analysis and communication
Theory.

The question was related to a certain notion of concentration of interesting
functions, called signals, over some interval [−W,W ]. They used the fact that
an L2(R)-function with compact support cannot have a Fourier transform that
is also compactly supported. Therefore they were interested in analysing two
quantities defined for an L2(R)-function r by

α(T ) :=

∫ T
2

−T
2

|r(t)|2dt∫
R |r(t)|2dt

,

as well as

β(W ) :=

∫W

−W
|r̂(ξ)|2dξ∫

R |r̂(ξ)|2dξ
.

Slepian & co., who were working on the problem at the time, wanted to find an
L2(R)-function with a compactly supported Fourier transform, that maximise
this α in some ”time slot” [−T/2, T/2]. It turned out that by functional analysis
a maximising function r of α, must necessarily satisfy the following integral
equation: ∫ W

−W

sin [πT (ξ′ − ξ′′)]

π(ξ′ − ξ′′)
r̂(ξ′′)dξ′′ = α(T )r̂(ξ′), for |ξ′| ⩽W, (1.1)

which we can recognise as a homogeneous Fredholm equation of the second kind.
Through clever substitutions, we can go from (1.1) to∫ 1

−1

sin [c(x− y)]

π(x− y)
ψ(y)dy = λψ(x), for |x| ⩽ 1. (1.2)

Next we deduce some necessary analytic results to help us on our quest. It
all boils down to showing that certain integral operators, inspired by (1.2) are
compact. This is done so that we can use the well-developed spectral theory
for compact, self-adjoint operators on Hilbert spaces. From this we can deduce
that (1.2) must have solutions in L2(−1, 1) only for a discrete set of positive
values of λ. The corresponding functions ψ1, ψ2, . . . can be chosen to be real
and orthogonal on (−1, 1).

The next thing we do is define the Prolate Spheroidal Wave Functions
(PSWFs), and how they are related to the integral equation (1.2). Indeed, we
define the PSWFs to be the solutions to the second order differential equation

d

dx
(1− x2)

dψ

dx
+ (χ− c2x2)ψ = 0. (1.3)
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This, we recognise as a Sturm-Liouville problem, and we can therefore deduce
many interesting properties about them. We also show that we have a remark-
able commutation, which allows us to conclude that the ψ’s defined in (1.2) are
actually the same functions as the PSWFs, but with differing, although related,
eigenvalues. The commutation mentioned is the commutation of

Qc : L
2[−1, 1] → L2[−1, 1]

ψ 7→
∫ 1

−1

sin[c(x− y)]

π(x− y)
ψ(y)dy, .

the integral operator present in the eigenvalue problem (1.2), and

Lc : L
2[−1, 1] → L2[−1, 1]

ϕ 7→ − d

dx

[
(1− x2)

dϕ

dx
(x)

]
+ c2x2ϕ(x).

To be concrete, what is shown is that for a function ϕ of some regularity, we
have that

Lc[Qc[ϕ]](x) = Qc[Lc[ϕ]](x).

The situation described above was apprehended by Henry Pollack, Henry Lan-
dau and David Slepian, working at Bell Labs at the time. Slepian described
the problem as elegant in two different ways: firstly, because the problem was
(seemingly) completely solved. Secondly, because the answer itself was inter-
esting. Indeed, Slepian states: ”Usually I struggle for months or years with a
problem. If I do ”solve” it, it is usually only in part, and the answer itself is
rarely interesting. The interest generally lies in the fact that I have proved that
this is the answer.”[8][pp. 379]
In this thesis, we will take a step-by-step approach to see how Slepian & co.
arrived at the definition of the Prolate Spheroidal Wave Functions. The entire
thesis will lead up to some extremely elegant results regarding some properties
of the PSWFs. The caveat is that I am only providing explicit proofs for two
of six of the properties.
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2 Preliminaries

I want to make this thesis understandable to as many people as possible, but
I don’t want to spend too many pages on preliminaries. Thus I have set the
reasonably realistic goal of expecting whomever may read this thesis, to have a
basic understanding of real & complex analysis (equivalent to courses MA1101,
MA1102 and MA2106), as well as introductory functional analysis (equivalent
to TMA4145) and Fourier analysis (MA2106). Although I originally wanted to
avoid it, I’ve concluded that I must assume some knowledge of measure and
integration theory, equivalent to what one would learn in TMA4225.

2.1 Lebesgue Integration

We begin by way of a reminder from functional analysis.

Definition 2.1 (Lp-spaces). We define the vector space Lp(Ω), for 1 ⩽ p <∞
and Ω ⊆ C, by

Lp(Ω) :=

{
f : Ω → C

∣∣∣∣ ∫
Ω

|f(x)|pdx <∞
}
, (2.1)

and for p = ∞, we define

L∞(Ω) :=

{
f : Ω → C

∣∣∣∣ ess sup
x∈Ω

|f(x)| <∞
}
.

With this vector space comes the associated norm

∥f∥Lp(Ω) :=

[∫
Ω

|f(x)|pdx
] 1

p

,

if p ̸= ∞, and
∥f∥L∞(Ω) := ess sup

x∈Ω
|f(x)|

if p = ∞.

We say that a function f : Ω → C is integrable on Ω if its L1(Ω)-norm is
finite. A beautiful result in functional analysis states that these normed spaces(
Lp(Ω), ∥·∥Lp(Ω)

)
are Banach spaces (i.e. complete as metric spaces) for all

p ∈ [1,∞].
In much the same way as we define the Darboux integral as an approximation
from below, we would like to do the same for Lebesgue integration with so called
simple functions.

Definition 2.2 (Simple functions). A function is called simple if it only takes
finitely many values.

8



This immediately implies that if f : X → R is simple, then f =
∑n

j=1 cjχEj
,

where {ck} are the distinct non-zero values of f . Here Ek = f−1({ck}). If all
the Ek’s are intervals, then we say that the function f is a step-function.
This next theorem will give us some intuition for the fact that every function
can be well-approximated by simple functions in the L1-norm.

Theorem 2.3. Suppose (X,A, µ) is a measure space, and f : X → [0,∞] is
A-measurable. Then∫

X

fdµ = sup

{
n∑

j=1

cjµ(Aj)

∣∣∣∣A1, . . . , An are disjoint sets in A,

c1, . . . , cn ∈ [0,∞) and

f(x) ⩾
n∑

j=1

cjχAj
(x), for x ∈ X

}
.

Proof. A proof is to be found in [1, pp. 77].

Remark. You might have learnt measure theory with Theorem 2.3 as your defi-
nition of the Lebesgue integral (provided µ is Lebesgue measure on R of course).
This is totally fine, but in this text it is listed as a theorem rather than a defi-
nition, as other equally valid definitions exist (see for instance [1]).

Remark. Sometimes in analysis, it is customary to denote the integral of some
function f with respect to some measure µ over some set X, as

∫
X
fdµ as

is done in Theorem 2.3. In this text, I will always integrate with respect to
Lebesgue measure, but I will refrain from specifying this in my notation. In-
stead, familiar integral notation from single variable calculus will be used; that
is,
∫
X
f(x)dx. So whenever you see an integral with an integrand that is not

Darboux-integrable, this is meant to be interpreted as a Lebesgue integral.
The reasons why we want to use Lebesgue integration instead of classical Dar-
boux/Riemann integration is threefold. Firstly, we can integrate a larger class
of functions; functions with an uncountable amount of discontinuities, like χQ,
are easily integrated. Secondly, limit-functions of a sequence of measurable
functions, are always measurable, and integrable, but limits are not automati-
cally integrable for Riemann integration. Consider, for instance, the following
example: let {rj}∞j=1 := Q ∩ [0, 1] be all the rational numbers in [0, 1]. Define
fk : [0, 1] → R by

fk(x) :=

{
1 if x ∈ {r1, . . . , rk},
0 otherwise.

Then each fk is Riemann-integrable on [0, 1] with integral equal to 0, but the
limit function f is χQ, which is not Riemann-integrable. Lastly, limits are a
lot easier to deal with in Lebesgue integration, which can be seen by the next
theorem. Indeed a result this strong in the framework of Riemann integration
would require much stricter assumptions.

9



2.2 Integral Theorems

I will make quite liberal use of three particular theorems throughout the entire
text. One is about the limit of an integral of a sequence of functions, and the
remaining are about when you are allowed to switch up the order of integration.

The first of these results is the Dominated Convergence Theorem.

Theorem 2.4 (Dominated Convergence Theorem). Suppose (X,A, µ) is a mea-
sure space, f : X → [−∞,∞] is A-measurable, and f1, f2, . . . are A-measurable
functions from X to [−∞,∞] such that

lim
k→∞

fk(x) = f(x)

for almost every x ∈ X. If there exists an A-measurable function g : X → [0,∞]
such that ∫

X

gdµ <∞ and |fk(x)| ⩽ g(x)

for every k ∈ N and almost every x ∈ X, then∫
X

fkdµ→
∫
X

fdµ,

as k → ∞.

Proof. See [1][pp. 92-93].

The next two theorems, which are coincidentally the theorems most used in
the entire text, are somewhat technical, so I refer to [1][ch. 5] for a comprehen-
sive treatise.

Theorem 2.5 (Tonelli’s Theorem). Suppose (X,S, µ) and (Y, T , ν) are σ-finite
measure spaces. Suppose f : X × Y → [0,∞] is S ⊗ T -measurable. Then

x 7→
∫
Y

f(x, y)dν(y) is an S-measurable function on X,

y 7→
∫
X

f(x, y)dµ(x) is a T -measurable function on Y,

and∫
X×Y

fd(µ× ν) =

∫
X

∫
Y

f(x, y)dν(y)dµ(x) =

∫
Y

∫
X

f(x, y)dµ(x)dν(y).

Proof. A proof is to be found in [1][pp. 129-130].

Theorem 2.6 (Fubini’s Theorem). Suppose (X,S, µ) and (Y, T , ν) are σ-finite
measure spaces. Suppose f : X × Y → [−∞,∞] is S ⊗ T -measurable and∫
X×Y

|f |d(µ× ν) <∞. Then∫
Y

|f(x, y)|dν(y) <∞ for almost every x ∈ X

10



and ∫
X

|f(x, y)|dµ(x) <∞ for almost every y ∈ Y.

Furthermore

x 7→
∫
Y

f(x, y)dν(y) is an S-measurable function on X,

y 7→
∫
X

f(x, y)dµ(x) is a T -measurable function on Y,

and∫
X×Y

fd(µ× ν) =

∫
X

∫
Y

f(x, y)dν(y)dµ(x) =

∫
Y

∫
X

f(x, y)dµ(x)dν(y).

Proof. A proof is to be found in [1][pp. 132-133].

Remark. It is sometimes customary to merge Fubini and Tonelli into one ”su-
per theorem” called Fubini-Tonelli’s theorem, such that we are allowed to switch
order of integration if either non-negativity or absolute integrability is present.
This is the approach I will take. Therefore, whenever I switch order of integra-
tion it is due to this Fubini-Tonelli theorem.

2.3 Fourier analysis & Complex analysis

I will give a short repetition of how we define the Fourier transform on the real
line.

Definition 2.7 (Fourier Transform). If f ∈ L1(R), we define its Fourier trans-

form f̂ for ξ ∈ R by

f̂(ξ) :=

∫
R
f(x)e−2πixξdx. (2.2)

Remark. The Fourier transform, as defined in Definition 2.7, is well defined for
f ∈ L1(R). To see why, note that

|f̂(ξ)| =
∣∣∣∣ ∫

R
f(x)e−2πixξdx

∣∣∣∣
⩽
∫
R

∣∣f(x)e−2πixξ
∣∣dx

=

∫
R
|f(x)|dx

= ∥f∥L1(R).

Remark. I have been told by my algebraist friends that there is sometimes
confusion as to what fg means for functions f and g. Indeed fg often denotes
composition of functions. Throughout the text, I will without exception refer
to fg as the product of f and g defined as the function fg : x 7→ f(x)g(x).
The notation f ◦ g will define composition given some appropriate domain and
co-domain for g and f .
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Next we will show that the zeros of an holomorphic function are, in a certain
sense, well behaved. Recall that we denote the vector space of holomorphic
functions on a region Ω ⊆ C by H(Ω).

Theorem 2.8 (Isolated Zeros Theorem). Let f be holomorphic in a region
Ω ⊆ C such that f |Ω ̸≡ 0. If f has a zero z0 ∈ Ω then there exists a δ > 0 such
that f ∈ H(D(z0, δ)), and it has no other zeros there.

Proof. See [7][pp. 30]

Thus, holomorphic functions cannot have ”too many” zeros in small enough
disks.

2.4 Functional analysis

We care deeply about operators in functional analysis, and one way to measure
their ”size” is through their operator norm.

Definition 2.9 (Operator norm). Let T : X → Y be a linear operator between
normed spaces. Then we define the operator norm of T to be

∥T∥ = sup
∥u∥⩽1

∥T [u]∥.

for u ∈ X.

Theorem 2.10. Let (xi)i∈I be an orthonormal basis for an Hilbert space H.
Then, for every x ∈ H, we have

∥x∥2 =
∑
i∈I

|⟨xi, x⟩|2.

Proof. A proof is to be found in [6][pp. 187].

Definition 2.11. We say that a sequence of linear operators (Tn) between
normed spaces X and Y converges in the operator norm to an operator
T : X → Y if

lim
n→∞

∥T − Tn∥ = 0.

12



3 Preludium

3.1 Signal analysis

We will motivate the discussion of the problem given in the introduction by
looking at some chief uses of Fourier analysis in signal analysis. Like any analyst,
we are interested in functions, and functions of principal interest to us are so-
called signals. This leads to our first definition.

Definition 3.1 (Signals & Energy). We define a signal r : R → R, as an element
in the Lebesgue space L2(R), equipped with its usual norm. We also define the
energy, E of a signal r, as the square of its L2-norm,

E[r] := ∥r∥2L2 =

∫
R
|r(t)|2dx.

Indeed we see that E defines a functional

E : L2(R) → R⩾0

r 7→ ∥r∥2L2 .

It is sometimes customary for engineers to call L2(R) the signal space. To further
the discussion, we need to define the Fourier transform of a signal r. Since
µ(R) = +∞, we can not without justification say that r is integrable, and thus
we can not in good conscience use Definition 2.7; we have that L2(Ω) ⊂ L1(Ω)
only if µ(Ω) < +∞. This follows from the Cauchy-Schwartz inequality. Indeed,
if f ∈ L2(Ω), we have∫

Ω

|f(x)|dx =

∫
Ω

|f(x)| · 1dx

⩽

(∫
Ω

|f(x)|2dx
) 1

2
(∫

Ω

12dx

) 1
2

=
√
µ(Ω)∥f∥L2(Ω)

<∞,

if µ(Ω) <∞. Thus we need to modify our usual definition somewhat. Before we
do this modification of sorts, however, we need the famous Plancherel’s theorem
to show that f 7→ f̂ preserves L2(R) norms on L2(R) ∩ L1(R).

Theorem 3.2 (Plancherel’s Theorem). Suppose r ∈ L1(R) ∩ L2(R). Then
∥r∥L2 = ∥r̂∥L2 .

Proof. See [9, pp. 143-144] for proof.

Our modified definition will hinge on a density result, which is proven below.

Theorem 3.3. L1(R) ∩ L2(R) is dense in L2(R).

13



Proof. Let f be an arbitrary element of L2(R), and define a sequence (fj) by

fj(x) :=

{
f(x) if |x| < j,
0 if |x| ⩾ j.

Then each entry of our sequence (fj)j∈N is obviously square-integrable and by
the Cauchy-Schwartz inequality, we have

∥fj∥L1(R) =

∫
|x|<j

|f(x)|dx

⩽

(∫
|x|<j

|f(x)|2dx

) 1
2
(∫

|x|<j

12dx

) 1
2

<∞,

so we know that fj ∈ L1(R) ∩ L2(R) for every j ∈ N (in simpler terms, it is
both integrable and square-integrable), and quite trivially we know that fj → f
pointwise. Since |f(x)−fj(x)| ⩽ |f(x)|, we know by the Dominated convergence
theorem that ∫

R
|f(x)− fj(x)|2dx→ 0.

with dominating function |f |2. This we recognise as equivalent to the fact
that limj→∞∥f − fj∥2L2(R) = 0, so obviously limj→∞∥f − fj∥L2(R) = 0, which
completes the proof.

Because of Theorem 3.2 one can show that the map r 7→ r̂ uniquely extends
to a bounded linear map from L2(R) to L2(R). Indeed, we have an even more
general result.

Theorem 3.4. Suppose U is a subspace of a normed vector space V . Suppose
also that W is a Banach space and that S : U → W is a bounded linear map.
Then there exists a unique continuous function T : U →W such that T |U= S.

Proof. See [1][pp. 171].

The reason why Theorem 3.4 is of interest to us is that we now know that we
can uniquely extend the Fourier transform to L2(R). Indeed, let U = L1(R) ∩
L2(R), V = L1(R) and W = L2(R).

Definition 3.5 (Fourier transform on L2(R)). The Fourier transform, F , on
L2(R), is the bounded operator on L2(R) such that F [r] = r̂ for all r ∈ L2(R)∩
L1(R), where f̂ is the Fourier transform of an L1(R) function f .

Although the above definition distinguishes between the notation for the
Fourier transform of an L1-function (r̂) and an L2-function (F [r]), we will only
use the first notation for both. Rigorously, we would not define the Fourier
transform on L2(R) as the usual integral (because we do not know if r is inte-
grable), but as the limit of the Fourier transform of sequences in L2(R)∩L1(R)

14



that converges to r in the L2(R)-norm.
We now give a technical, but important definition for the functions that we will
later use. It will also serve as an alternative method for defining the Fourier
transform of an L2(R)-function.

Definition 3.6 (Schwartz space S(R)). The Schwartz space is defined as

S(R) =
{
f ∈ C∞(R)

∣∣∣∣ sup
x∈R

|x|k|f (ℓ)(x)| <∞, (k, ℓ) ∈ N2
0

}
.

In other words, S(R) consists of all smooth functions f , in the sense of
infinite continuous differentiability, such that f (n) are rapidly decreasing for all
n ∈ N0, where N0 := {0} ∪ N = {0, 1, 2, . . . }. Note that f (0) = f . We can
formulate the Schwartz space in a slightly more functional analytic way. Indeed
if we define the (k, ℓ)-norm of a smooth function f to be

∥f∥(k,ℓ) := sup
x∈R

|x|k|f (ℓ)(x)|,

then the Schwartz space S(R) is the space of smooth functions f such that
∥f∥(k,ℓ) < ∞, for all (k, ℓ) ∈ N2

0. By the continuity of polynomials, and of the
function f , one can also reformulate the definition of the Schwartz space to be
all smooth functions f , such that |x|k|f (ℓ)(x)| vanishes at infinity. Let us give
some examples and non-examples to showcase how the definition of a Schwartz
function works with some functions that we all know.

Example. If f is given by f : x 7→ e−x2

, a Gaußian function, then f ∈ S(R).
To see why, let us have a look at the derivatives of f .

f(x) = e−x2

,

f ′(x) = −2xf(x),

f ′′(x) = (4x2 − 1)f(x),

f ′′′(x) = (12x− 8x3)f(x),

. . .

From this we postulate that xk dℓ

dxℓ f(x) = p(x)f(x), where p ∈ Pk+ℓ(R) is a k+ℓ-
th degree polynomial. l’Hôpital’s rule then tells us that pf must be bounded
on the real line for any polynomial p (xk is a polynomial), and the conclusion
follows.

Example. If g is given by g : x 7→ e−|x|, then g /∈ S(R), because g /∈ C∞(R).

Example. If h is given by h : x 7→ 1
1+x2 , then h /∈ S(R), as h doesn’t decay fast

enough. Indeed, let k = 3 and ℓ = 0. Then ∥f∥(3,0) = sup
x∈R

x3

1+x2 = ∞.

15



From this definition there are some immediately desirable qualities we ob-
serve apply to Schwartz functions. Indeed, if f, g ∈ S(R), then the product
fg ∈ S(R). One can also show that the Fourier transform F : S(R) → S(R)
is an isomorphism. Last but not least, every Schwartz function is uniformly
continuous (even Lipschitz) as their derivative is bounded. This follows by con-
sidering ∥f∥(0,1) = |f ′(x)| <∞.

A well-known fact is that S(R) = Lp(R) for all 1 ⩽ p <∞. In particular, we
have the result for p ∈ {1, 2}, so we can ”näıvely” write the Fourier transform
of signals as an integral. This is because of Theorem 3.4. One must never make
the mistake of believing that the usual definition of the Fourier transform of an
L1(R)-function is valid for signals. We always define the Fourier transform as a
sequence of Fourier transforms of functions from either S(R) or from L1(R) ∩
L2(R). We can choose either one due to the previous density results.

We will, with our newfound knowledge, write

r̂(ξ) =

∫
R
r(t)e−2πiξtdt,

as the Fourier transform of a signal r. Note that these functions are themselves
square-integrable, and therefore elements of L2(R). Engineers typically call the
Fourier transform of a signal r its amplitude spectrum. We relate the signal to
its amplitude spectrum with the inverse Fourier transform, given by:

r(t) =

∫
R
r̂(ξ)e2πiξtdξ. (3.1)

The sinusoid of frequency ξ is the e2πiξt term in the integrand of (3.1). It has
amplitude given by |r̂(ξ)| and phase given by arg(r̂(ξ)) ∈ (−π, π]. We will often
like to think of our signals as being influenced or modified by some external
force, maybe from some concoction The Engineer has built. Perhaps naively,
we model the change as some nice operator applied to our signals {rj}j giving
rise to outputs or responses {sj}j , and one model that might be of interest to
us might be the following: if, for M : L2(R) → L2(R), sj(t) =M [rj ](t), then

as1(t) + bs2(t) =M [ar1 + br2](t), (3.2)

which we recognise as linearity and

s1(t− T ) =M [r1](t− T ), (3.3)

which is called translation invariance of M . (3.3) & (3.4) are meant to hold for
all real numbers T , complex numbers a, b and all signal inputs r1, r2. We call
this family of operators LT (L

2(R)) the family of linear, translation-invariant
operators acting on L2(R).
We realise that we can easily calculate the response sξ of a sinusoidal e2πiξt to
be

sξ(t) =M [e2πiξt],
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which tells us that

sξ(t+ T ) =M [e2πiξ(t+T )] = e2πiξTM [e2πiξt] = e2πiξT sξ(t). (3.4)

Letting t ↘ 0 in (3.4), and realising that the identity holds for all real T (in
particular T = t), we get

sξ(t) = e2πiξtsξ(0),

which gives us

sξ(t) =M [e2πiξt] = YMe
2πiξt, (3.5)

where we let YM (ξ) := sξ(0). Thus we have shown that the response to the
sinusoidal is a sinusoid with similar frequency ξ, but with different amplitude.
We call the function YM (ξ) the transfer function of M . In total, from (3.5) we
get the following theorem.

Theorem 3.7. Let M be a linear, translation-invariant operator on L2(R).
Then the eigenvectors of M are of the form e2πiξt, ξ ∈ R. Furthermore, they
have eigenvalues YM (ξ).

Before we can move on to our next result we will need the following lemma.

Lemma 3.8. LetM : L2(Ω) → L2(Ω) be a linear, translation-invariant operator
as defined in (2.3) & (2.4) on a non-empty, connected, open interval Ω ⊆ R.
Then, there exists a function h ∈ L2(Ω) such that

M [f ] = f ∗ h (3.6)

for every f ∈ L2(Ω), where the convolution is defined as

(f ∗ h)(x) :=
∫
Ω

f(y)h(y − x)dy =

∫
Ω

f(y − x)h(y)dy.

As every signal r can be expanded in terms of sinusoidals in the spirit of
(3.1), we can calculate the response of M ∈ LT (L

2(R)) applied to an arbitrary
signal r to see that

s(t) =M [r](t) =M

[∫
R
r̂(ξ)e2πiξtdξ

]
=

∫
R
r̂(ξ)M [e2πiξt]dξ

=

∫
R
r̂(ξ)YM (ξ)e2πiξtdξ,
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where we must somehow justify the fact that we have pulled M inside the
integral. Indeed we observe that, by Lemma 3.8, we have

M [r](t) = (r ∗ h)(t)

=

∫
R
r(x)h(t− x)dx

=

∫
R

[∫
R
r̂(ξ)e2πiξxdξ

]
h(t− x)dx

=

∫
R
r̂(ξ)

[∫
R
h(t− x)e2πiξxdx

]
dξ

=

∫
R
r̂(ξ)[h ∗ e2πiξt]dξ

=

∫
R
r̂(ξ)M [e2πiξt]dξ

=

∫
R
r̂(ξ)YM (ξ)e2πiξtdξ,

where we used the Fubini-Tonelli theorem to interchange order of integration.
Therefore, we can say that the amplitude spectrum of M [r], is

S(ξ) := YM (ξ)r̂(ξ). (3.7)

This makes more sense if we compare the inverse Fourier transform formula in
(3.1). The amplitude spectrum of r is the function r̂ such that

r(t) =

∫
R
r̂(ξ)e2πiξtdξ;

since we just showed that

M [r](t) =

∫
R
r̂(ξ)YM (ξ)e2πiξtdξ,

which is an inverse Fourier transform, we get that S(ξ) is the amplitude spec-
trum of M [r] by comparison with (3.1).

3.2 Limited signals

In real life, we often do not see sinusoids of arbitrarily high frequency without
attenuation, i.e. the decay of the amplitude of the signal; indeed, the trans-
fer functions YM often tend to zero as ξ increases. It follows from (3.7) that
the amplitude spectra of the responses to signals of finite energy are negligibly
small. For those interested in the real world, Slepian says:

”Examination of the most natural classes of input signals shows that they
too have amplitude spectra of finite support. For example, Fourier analysis of
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recorded male speech gives an amplitude spectrum that is zero for frequencies
higher than 8000 hertz (= cycles/second). Conventional orchestral music has
no frequencies higher than 20, 000 hertz, while the output of a television camera
(vidicon) has an amplitude spectrum vanishing for |ξ| > 2 · 106 hertz.” [8][pp.
3]

These observations lead us to consider the following definitions regarding
when the Fourier transform of a signal vanishes, as well as when the signal itself
vanishes.

Definition 3.9 (Bandlimited and Timelimited signals). Let r ∈ L2(R) be a
signal. Then r is called bandlimited if its Fourier transform vanishes for |ξ| > W
(i.e. is compactly supported on [−W,W ] ⊂ R), where W > 0 is some real
number. The space of these functions is denoted by BW = {r ∈ L2(R) |
supp(r̂) ⊂ [−W,W ]}. Likewise, we define a signal to be timelimited if it vanishes
whenever |t| > T/2. We similarly denote the space of these functions as TT =
{r ∈ L2(R) | supp(r) ⊂ [−T/2, T/2]}, with T > 0 some real number.

Definition 3.10 (Bandwidth). The number W in Definition 3.9 is called the
bandwidth of a bandlimited signal r ∈ BW .

The space BW ⊂ L2(R) is called the Paley-Wiener space.

A beautiful theorem from complex analysis is the so called Paley-Wiener
theorem. It is also exactly what we need!

Theorem 3.11 (Paley-Wiener theorem). A function f is bandlimited to [−W,W ]
if and only if

f(t) =

∫ W

−W

g(ω)e−iωtdω,

for some g ∈ L2(−W,W ) and if and only if f is an entire function of exponential
type that is square-integrable on R, i.e. f is an entire function with

|f(z)| ⩽ ess sup
x∈R

|f(x)| exp(W |y|),

and ∫
R
|f(x)|2dx <∞,

for z = x+ iy ∈ C.

Proof. A proof can be found in [5].

Notice that

r(t) =

∫
(−W,W )

r̂(ξ)e2πiξtdξ

is a finite Fourier transform. By the Paley-Wiener theorem it is an entire func-
tion. It is also smooth. It has no singularity in the complex plane, it is infinitely
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differentiable everywhere, and has a power series about every point with an in-
finite radius of convergence.

As a corollary of the Paley-Wiener theorem, it follows that any non-trivial
bandlimited signal cannot vanish on any interval on the t-axis. Indeed if we
found this to be the case, then it would follow that all its power series coefficients
would be zero at some interior point of the interval, meaning that it would be
identically zero everywhere.

Corollary 3.12. For BW and TT as defined in Definition 3.9, we have

BW ∩ TT = {0}.

Proof. By the Paley-Wiener theorem, if f̂ has compact support, then f is an
entire function. Therefore, if f also has compact support, it is necessarily zero
on a set with an accumulation point. By the isolated zeros theorem, f ≡ 0, and
since F is an injection, we must also have that f̂ ≡ 0.

In addition to sending smooth, continuous signals, like speech or music, we
also sometimes send short pulses of information such as the dots and dashes
used in telegraphy. We have shown that a signal which posses a time-support
of finite measure cannot be bandlimited, and it must contain sinusoids of (arbi-
trarily) large ξ. Simultaneously, we also know that bandlimited signals cannot
possibly have time-support of finite measure; they must ”go on forever”. Almost
paradoxical!

The mathematical description of such an observation is encoded in the un-
certainty principle of Fourier analysis. It says that a signal and its amplitude
spectrum cannot be simultaneously ”localised”.

Theorem 3.13 (Heisenberg’s Uncertainty principle). Suppose ψ ∈ S(R), such
that E[ψ] = 1. Then(∫

R
x2|ψ(x)|2dx

)(∫
R
ξ2|ψ̂(ξ)|2dξ

)
⩾

1

16π2
.

Proof. A proof can be found in [9, pp. 158-159].

3.3 Concentration

The standard notion of variance from statistics, appearing in Theorem 3.13, is
actually of minor use to us, so we decide to introduce a more helpful notion of
concentration for a signal r. Indeed, let

α(T ) :=

∫ T
2

−T
2

|r(t)|2dt∫
R |r(t)|2dt

(3.8)

be a measure of the concentration of the signal. Similarly, we can define

β(W ) :=

∫W

−W
|r̂(ξ)|2dξ∫

R |r̂(ξ)|2dξ
. (3.9)
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If we had that r was a timelimited signal on (−T/2, T/2), then α(T ) would
attain its greatest value, which is 1 (as the integral in the denominator must
always be greater or equal to the one in the numerator). But, we know that a
nontrivial bandlimited signal cannot be particularly timelimited. So, a natural
question arises: how large can α(T ) become for r ∈ BW ?

Recalling that |z|2 = zz and that we can relate r to r̂ via a finite Fourier
transform (see (3.1)), together with just a dash of Plancherel’s (Theorem 3.2),
we get that (3.8) becomes

α(T ) =

∫ T
2

−T
2

|r(t)|2dt∫
R |r(t)|2dt

=

∫ T
2

−T
2

r(t)r(t)dt∫
R |r̂(ξ)|2dξ

=

∫ T/2

−T/2

(∫W

−W
e2πiξ

′′tr̂(ξ′′)dξ′′
)(∫W

−W
e−2πiξ′tr̂(ξ′)dξ′

)
dt∫W

−W
|r̂(ξ)|2dξ

. (3.10)

How do we continue our surgery on this fraction? For sake of brevity, let
W := (−W,W )2 ⊂ R2, and dA := dξ′′dξ′. If we set aside our attention to just
the numerator of (3.10), we have∫ T/2

−T/2

(∫ W

−W

e2πiξ
′′tr̂(ξ′′)dξ′′

)(∫ W

−W

e−2πiξ′tr̂(ξ′)dξ′

)
dt

=

∫ T/2

−T/2

∫∫
W

r̂(ξ′′)r̂(ξ′)e2πi(ξ
′′−ξ′)tdA

 dt

=

∫∫
W

r̂(ξ′′)r̂(ξ′)

(∫ T/2

−T/2

e2πi(ξ
′′−ξ′)tdt

)
dA, (3.11)

where we in the last step of the above calculation have used Fubini-Tonelli’s
theorem for double integrals. For maximum clarity, let us deal with the expo-
nential integral in (3.11) separately. Indeed we have∫ T/2

−T/2

e2πi(ξ
′′−ξ′)tdt =

1

2πi(ξ′′ − ξ′)
e2πi(ξ

′′−ξ′)t

∣∣∣∣T/2

−T/2

=
1

2πi(ξ′′ − ξ′)

[
e

2πi(ξ′′−ξ′)T
2 − e

−2πi(ξ′′−ξ′)T
2

]
=

sin[πT (ξ′′ − ξ′)]

π(ξ′′ − ξ′)
.

Altogether, this gives us

α(T ) =

∫W

−W

[∫W

−W

sin[πT (ξ′−ξ′′)]
π(ξ′−ξ′′) r̂(ξ′′)r̂(ξ′)dξ′′

]
dξ′∫W

−W
r̂(ξ′)r̂(ξ′)dξ′

. (3.12)
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Now we regard r̂ as an arbitrary element of L2(−W,W ). Recall that we are
working over the Hilbert space L2(−W,W ), which means that

⟨f, g⟩L2(−W,W ) =

∫ W

−W

f(x)g(x)dx.

Let

k(x, y) :=

{ sin[πT (x−y)]
π(x−y) if x ̸= y,

T if x = y
(3.13)

be the sin(. . . )-term of the integrand of the integral in (3.12). We also let

T [r̂](ξ′) :=

∫ W

−W

sin [πT (ξ′ − ξ′′)]

π(ξ′ − ξ′′)
r̂(ξ′′)dξ′′. (3.14)

We see that our maximising problem boils down to finding

max
r̂∈L2

⟨T [r̂], r̂⟩L2

∥r̂∥2L2

,

or maximising the so-called Rayleigh quotient α(r̂), as given in (3.12). Notice
that by an appropriate scaling, we can assume ∥r̂∥L2 = 1.
Thus the Rayleigh quotient reduces to

α(r̂) = ⟨T [r̂], r̂⟩, (3.15)

and we would the like to find max∥r̂∥L2=1⟨T [r̂], r̂⟩.

It is from this point on-wards obvious that we are working over the Hilbert
space L2, and therefore no confusion arises in from now on neglecting to indicate
which inner product/norm it is we are working with.
One can also show that

V : ψ 7→
∫
K

sin (x− y)

x− y
ψ(y)dy (3.16)

is a positive definite operator between L2(K) and L2(K) for any compact K ⊂ R.

Lemma 3.14. The operator V given by

V : L2([−1, 1]) → L2([−1, 1])

ψ 7→
∫ 1

−1

sin (x− y)

x− y
ψ(y)dy

is a positive definite operator.

Proof. Stated without proof in [8].
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Integral operators with kernels that are elements of L2(Ω) are called Hilbert-
Schmidt operators. Indeed, we note that Ω = W = (−W,W )2 is Lebesgue-finite,
so we know that ∥k∥L2(W) < +∞.
Thus the operator T as defined in (3.14) is an Hilbert-Schmidt operator. Note
also that our kernel k, as defined in (3.13) is symmetric (i.e. k(x, y) = k(y, x)).
We have some results on operators with symmetric kernels.

Theorem 3.15. For all integral operators T with symmetric kernel k, we have

⟨T [f ], g⟩ = ⟨f, T [g]⟩ (3.17)

Proof. Let k(x, y) be symmetric such that k(x, y) = k(y, x), for all (x, y) ∈ R2.
Let f, g ∈ L2(R). Then

⟨T [f ], g⟩ =
∫
R
T [f ](x)g(x)dx

=

∫
R

(∫
R
k(x, y)f(y)dy

)
g(x)dx

=

∫
R
f(y)

(∫
R
k(x, y)g(x)dx

)
dy

=

∫
R
f(y)T [g](y)dy

= ⟨f, T [g]⟩.

The result follows by Fubini-Tonelli.

Thus, integral operators with symmetric kernels are self-adjoint. We can
easily show that self-adjoint operators have real eigenvalues.

Theorem 3.16. If S : X → Y is self-adjoint, then all its eigenvalues are real.
Eigenvectors corresponding to different eigenvalues are pairwise orthogonal.

Proof. Without loss of generality, we can assume that for an eigenvector x,
∥x∥ = 1. Then we have

λ = λ⟨x, x⟩ = ⟨λx, x⟩ = ⟨Sx, x⟩ = ⟨x, Sx⟩
= ⟨x, λx⟩ = λ⟨x, x⟩ = λ.

We conclude that λ is real. As to the orthogonality, we observe that

⟨Sx1, x2⟩ = ⟨x1, Sx2⟩,

for eigenvectors x1 ̸= x2, which implies that

⟨λ1x1, x2⟩ = ⟨x1, λ2x2⟩.

This is equivalent to
(λ1 − λ2)⟨x1, x2⟩ = 0.

We conclude that ⟨xi, xj⟩ = δij , for all i, j.
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We now give an important definition regarding a certain quality of operators.

Definition 3.17 (Compact operator). An operator T on a Hilbert space H is
called compact if, for every bounded sequence (fj)j in H, the sequence (Tfj)j
has a convergent sub-sequence.
We denote the family of compact operators on H by C(H).

Since the spectral theory for compact operators is a well-developed one, we
ideally want to show that our operator V, or equally T , as defined in (3.16)
and (3.14) respectively, is a compact operator. In actuality, we will show an
even more general result, stating that all Hilbert-Schmidt integral operators are
compact.

Lemma 3.18. If (ϕi(x)) is an orthonormal basis for L2(Ω), then (ϕi(x)ϕj(y))
is a basis for L2(Ω× Ω).

Proof. A method for proving the lemma is found in [6][pp. 262].

Lemma 3.19. Let (Tn) be a sequence of compact, linear operators from X to
Y . Suppose that Tn → T in the operator norm. Then T is compact.

Proof. A proof is to be found in [6][pp. 261].

Lemma 3.20. Let T : X → Y be a linear operator between normed spaces such
that dimT (X) is finite. Then T is compact.

Proof. Since T has finite rank, T (X) is a finite-dimensional normed space. Thus,
as normed spaces, we have that T (X) ∼= Rn where n = dimT (X). Then, for
any bounded sequence (xn) in X, the sequence (T [xn]) is bounded in T (X), so
by Bolzano-Weierstraß, the sequence must contain a convergent sub-sequence.
Thus T is compact.

Theorem 3.21. Let the kernel k : Ω×Ω → R be L2(Ω×Ω). Then the integral
operator K given by

K[u](x) :=

∫
Ω

k(x, y)u(y)dy

is compact.

Proof. By Lemma 3.18, we can construct a basis for L2(Ω × Ω) out of an or-
thonormal basis for L2(Ω). We can then expand k using this basis by

k(x, y) =

∞∑
i,j=1

kijϕi(x)ϕj(y),

where the sum converges to k in the L2(Ω× Ω)-norm, and

kij :=

∫∫
Ω2

k(x, y)ϕi(x)ϕj(y)dxdy.
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Furthermore by Theorem (2.10) we have∫∫
Ω2

|k(x, y)|2dxdy =

∞∑
i,j=1

|kij |2. (3.18)

We can now define an operator Kn and a kernel kn by

kn(x, y) :=

n∑
i,j=1

kijϕi(x)ϕj(y),

and

Kn[u](x) :=

∫
Ω

kn(x, y)u(y)dy.

We say that kn and Kn are a separable kernel and a separable operator re-
spectively. It is seen that the operator Kn is both bounded and has a finite-
dimensional image, so it has finite rank, and is therefore compact by Lemma
(3.20). Recall that for an operator T , we define (or show that your favourite
definition is equivalent to)

∥T∥ = sup
∥u∥⩽1

∥T [u]∥.

Thus we can show that

∥K −Kn∥2 = sup
∥u∥⩽1

∥(K −Kn)[u]∥2

= sup
∥u∥⩽1

∫
Ω

[∫
Ω

[k(x, y)− kn(x, y)]u(y)dy

]
dx

⩽ sup
∥u∥⩽1

∫
Ω

[∫
Ω

|k(x, y)− kn(x, y)|2dy
] [∫

Ω

|u(y)|2dy
]
dx (3.19)

= sup
∥u∥⩽1

∫
Ω

[∫
Ω

|k(x, y)− kn(x, y)|2dy
]
∥u∥2dx

=

∫∫
Ω2

|k(x, y)− kn(x, y)|2dxdy,

where the inequality in (3.19) is by virtue of Hölder’s inequality, so that

∥K −Kn∥2 ⩽
∫∫

Ω2

|k(x, y)− kn(x, y)|2dxdy.

By (3.18) we have that

0 ⩽ lim
n→∞

∥K −Kn∥ ⩽ lim
n→∞

∫∫
Ω2

|k(x, y)− kn(x, y)|2dxdy (3.20)

= lim
n→∞

 ∞∑
i,j=1

|kij |2 −
n∑

i,j=1

|kij |2
 (3.21)

= lim
n→∞

∞∑
i,j=n+1

|kij |2 = 0. (3.22)
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Thus Kn converges to K in the operator norm, which shows that K is compact,
by Lemma 3.19.

We can now show that our maximising problem is really an eigenvalue prob-
lem.

Theorem 3.22. Let T be a bounded, linear and self-adjoint operator on an
Hilbert space H. Then

∥T∥ = sup
∥x∥=1

|⟨Tx, x⟩|.

Proof. We begin by letting m := sup
∥x∥=1

|⟨Tx, x⟩|. Then |⟨Tx, x⟩| ⩽ m for all

x ∈ H with ∥x∥ = 1. By the Cauchy-Schwartz inequality, we have

|⟨Tx, x⟩| ⩽ ∥Tx∥∥x∥ = ∥Tx∥ ⩽ ∥T∥.

Hence m ⩽ ∥T∥. To prove inequality in the opposite direction we let x, y ∈ H,
which implies that ⟨T (x± y), x± y⟩ = ⟨Tx, x⟩+ 2Re⟨Tx, y⟩+ ⟨Ty, y⟩. Thus

4Re⟨Tx, y⟩ = ⟨T (x+ y), x+ y⟩ − ⟨T (x− y), x− y⟩
⩽ |⟨T (x+ y), x+ y⟩|+ |⟨T (x− y), x− y⟩|
⩽ m

(
|x+ y∥2 + ∥x− y∥2

)
= 2m(∥x∥2 + ∥y∥2), (3.23)

where (3.23) is due to the Parallelogram law. For every complex number z, we
have that z = |z| exp(iθ), thus ⟨Tx, y⟩ = |⟨Tx, y⟩| exp(iθ), for real θ. If we let
x 7→ x exp(iθ), then we arrive at

4|⟨Tx, y⟩| ⩽ 2m(∥x∥2 + ∥y∥2). (3.24)

Lettnig y = ∥x|
∥Tx∥Tx in (3.24), we get

∥Tx∥ ⩽ m∥x∥.

We conclude that m = ∥T∥.

Theorem 3.23. Let T be a bounded, linear and self-adjoint operator on an
Hilbert space H. Then the following holds:

i. Let λ := inf
|x∥=1

⟨Tx, x⟩. If there exists an x0 ∈ H such that ∥x0∥ = 1 and

λ = ⟨Tx0, x0⟩, then λ is an eigenvalue of T with corresponding eigenvector
x0.

ii. Let µ := sup
|x∥=1

⟨Tx, x⟩. If there exists an x1 ∈ H such that ∥x1∥ = 1 and

µ = ⟨Tx1, x1⟩, then µ is an eigenvalue of T with corresponding eigenvector
x1.
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Proof. We see by the definition of λ that

⟨T (x0 + αv), x0 + αv⟩ ⩾ λ⟨x0 + αv, x0 + αv⟩, (3.25)

for every α ∈ C and v ∈ H. Let us first expand the left-hand side of (3.25).
This becomes

⟨T (x0 + αv), x0 + αv⟩ = ⟨Tx0, x0⟩+ α⟨Tx0, v⟩+ α⟨Tv, x0⟩+ |α|2⟨Tv, v⟩

= ⟨Tx0, x0⟩+ α⟨Tx0, v⟩+ α⟨Tx0, v⟩+ |α|2⟨Tv, v⟩

= ⟨Tx0, x0⟩+ α⟨Tx0, v⟩+ α⟨Tx0, v⟩+ |α|2⟨Tv, v⟩
= ⟨Tx0, x0⟩+ 2Re[α⟨Tx0, v⟩] + |α|2⟨Tv, v⟩. (3.26)

The right-hand side of (3.25 becomes)

λ⟨x0 + αv, x0 + αv⟩ = λ
[
⟨x0, x0⟩+ α⟨x0, v⟩+ α⟨v, x0⟩+ |α|2⟨v, v⟩

]
= λ

[
⟨x0, x0⟩+ α⟨x0, v⟩+ α⟨x0, v⟩+ |α|2⟨v, v⟩

]
= λ

[
⟨x0, x0⟩+ α⟨x0, v⟩+ α⟨x0, v⟩+ |α|2⟨v, v⟩

]
= λ⟨x0, x0⟩+ 2Re [αλ⟨x0, v⟩] + λ|α|2⟨v, v⟩. (3.27)

Combining (3.25), (3.27) and (3.26), we get

⟨Tx0, x0⟩+ 2Re[α⟨Tx0, v⟩] + ⟨Tv, v⟩
⩾ λ⟨x0, x0⟩+ 2Re [αλ⟨x0, v⟩] + λ|α|2⟨v, v⟩. (3.28)

Let us now substitute λ = ⟨Tx0, x0⟩ and α = r⟨v, (T − λI)x0⟩ for r ∈ R. It
follows from a lengthy, but not particularly insightful calculation that (3.28)
implies that α = 0, which implies that

r⟨v, (T − λI)x0⟩ = 0

which by Theorem 3.22 implies that (T − λI)x0 = 0. This is equivalent to
Tx0 = λx0. The proof for ii. is identical if we replace T by −T .

Theorem 3.24. If T is a linear, bounded, compact and self-adjoint operator
on an Hilbert space H, then at least one of the numbers ∥T∥ or −∥T∥ is an
eigenvalue of T .

Proof. By Theorem 3.23, we can find a sequence (xn)n∈I ⊆ H, such that ∥xn∥ =
1 for every n ∈ I such that lim

n→∞
⟨Txn, xn⟩ = λ, where λ ∈ {±∥T∥}. Then

0 ⩽ ∥Txn − λxn∥2 = ∥Txn∥2 + λ2 − 2λ⟨Txn, xn⟩
⩽ 2λ2 − 2λ⟨Txn, xn⟩ → 0 as n→ ∞.

Since T is compact, there exists a sub-sequence (Txnj ) ⊂ (Txn) that converges
to some y ∈ H. Thus Txnj−λxnj → 0 as n→ ∞, but this means that xn → 1

λy.
Hence y = lim

n→∞
Txnj

= 1
λTy. Thus Ty = λy, and λ is an eigenvalue.
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Corollary 3.25. If T is a bounded, linear, compact and self-adjoint operator
on an Hilbert space H, then max

∥x∥=1
|⟨Tx, x⟩| = ∥T∥.

Applying these results to T , defined in (3.14), we see that a maximising
r̂ ∈ L2(−W,W ), must satisfy the eigenvalue problem

∫ W

−W

sin [πT (ξ′ − ξ′′)]

π(ξ′ − ξ′′)
r̂(ξ′′)dξ′′ = α(T )r̂(ξ′), for |ξ′| ⩽W

or
T [r̂](ξ′) = αr̂(ξ′). (3.29)

We can see that (3.29) belongs to a specific family of integral equations which
we define below.

Definition 3.26 (Homogeneous Fredholm equation of the 2nd kind). An equa-
tion of the form

ϕ(t) = λ

∫
Ω

K(t, s)ϕ(s)ds (3.30)

is called a Homogeneous Fredholm equation of the 2nd kind, with kernel K, with
ϕ some sufficiently smooth function and Ω some domain.

Another definition we will recognise is the following type of integral equation.

Definition 3.27 (Covolutional Volterra Equations). A convolutional Volterra
equation of the second kind is an expression of the form

φ(x) =

∫ x

a

K(x− t)φ(t)dt+ σ(x) (3.31)

where a, b ∈ R are such that a < b, and the functions σ,K : [a, b] → C are
elements of L2[a, b], and φ : [a, b] → C is some function to be found.

For this type of equation, we have the following uniqueness and regularity
result.

Theorem 3.28. The equation (3.31) always has a unique solution φ on [a, b],
and if K,σ ∈ Ck[a, b], then the solution φ is also k times continuously differen-
tiable.

Proof. See [4][pp. 7]

Now we do some clean-up. Indeed, let us define the following:

y :=
ξ′′

W
, x :=

ξ′

W
, ψ(y) := r̂(Wy), λ := α(T ), c := πWT. (3.32)

This gives us

|x| =
∣∣∣∣ ξ′W

∣∣∣∣ ⩽ 1, (3.33)
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as well as
dξ′′ = d(Wy) =Wdy, (3.34)

so that
ξ′′ ∈ (−W,W ) which implies y ∈ (−1, 1). (3.35)

Combining (3.27)-(3.30), we ultimately get that (3.29) becomes∫ 1

−1

sin [c(x− y)]

π(x− y)
ψ(y)dy = λψ(x), for |x| ⩽ 1, (3.36)

which is only depending on c ∈ R. We interpret (3.36) as an eigenvalue prob-
lem, where ψ is interpreted as an eigenfunction of an integral operator, with
corresponding eigenvalue λ on [−1, 1].
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4 Prolate spheroidal wave functions

In the style of all these operators, we give one final reformulation and clean-up
of our original champion T , as defined in (3.14), which we will use in our all our
future proofs and definitions. We define

Qc : L
2[−1, 1] → L2[−1, 1]

ψ 7→
∫ 1

−1

sin[c(x− y)]

π(x− y)
ψ(y)dy. (4.1)

The eigenfunctions (ψn)n of the operator Qc as defined in (4.1), are real and
complete in L2[−1, 1], where we mean complete in the following sense:

Definition 4.1 (Mean-square convergence). A sum of functions
∑∞

j=1 gj , where

(gj)j is a sequence of L1(R) functions, is convergent in the mean-square, and its
sum is the L1(R)-function g, if

lim
J→∞

∥∥∥∥∥∥g −
J∑

j=1

gj

∥∥∥∥∥∥
L2(R)

= 0. (4.2)

Definition 4.2 (Completeness). An orthonormal sequence (ϕj)j is said to be
complete if

f =

∞∑
j=1

⟨f, ϕj⟩ϕj , (4.3)

in the mean-square, for every f ∈ L1(R).

The completeness of the eigenfunctions is a result proven with classical
Sturm-Liouville theory, and will be done in a while. As noted, our kernel K,
as defined in (3.13) is symmetric (i.e. K(x, y) = K(y, x)). So Qc is self-adjoint.
Since our operator Qc acts on the space L2(−1, 1), the eigenvectors also lie
there. We also have the following result on the eigenvalues of the operator.

Theorem 4.3 (Spectral Theorem for compact self-adjoint operators). Let T ∈
C(L2[−1, 1]) be self-adjoint. Then there exists a system of orthonormal functions
(ψj)j consisting of eigenfunctions of T , with corresponding eigenvalues (λj)j
such that, if there are infinitely many eigenvalues, then

|λ1| ⩾ |λ2| ⩾ . . .

with
lim
j→∞

λj = 0.

Proof. We will prove the theorem in two steps.

Step 1: Construction of eigenvectors.
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We use our previous result on these operators , namely Theorem 3.24, to
construct eigenvectors and eigenvalues.
First we let H1 := L2[−1, 1], and T1 := T . By Theorem 3.24, there exists
and eigenvalue-eigenvector pair (λ1, ψ1) such that ∥ψ1∥ = |λ1| = ∥T1∥. Since
span{ψ1} is a closed subspace of H1, we know by the projection theorem that
H1 = span{ψ1} ⊕ span{ψ1}⊥. Let H2 := span{ψ1}; H2 is a closed subspace of
H1, and we have that T (H2) ⊆ H2.
Now, let T2 := T1|H2

. Then T2 is compact and self-adjoint in B(H2), the space
of bounded operators on H2.

If it so happened that T2 ≡ 0 then we are practically done, so let us suppose
that T2 isn’t the zero operator. Then, by the same argument used to construct
our first eigenvalue-eigenvector tuple, there exists a pair (λ2, ψ2) such that
|λ2| = ∥T2∥, and ∥ψ2∥ = 1. Since T2 is a restriction of T1, we obviously have
that |λ2| = ∥T2∥ ⩽ ∥T1∥ = |λ1|; we also have that ⟨ψ1, ψ2⟩ = 0 by Theorem
(2.14).

Now we unsurprisingly let H3 := span{ψ1, ψ2}⊥. Then, as before, we have
that H3 ⊆ H2 and T (H3) ⊆ H3. The operator T3 := T1|H3

is compact and
self-adjoint. Thus we know there exists a eigenvalue-eigenvector tuple (λ3, ψ3)
such that ∥ψ3∥ = 1. Since |λ3| = ∥T3∥, we have that |λ3| ⩽ |λ2| ⩽ |λ1|.

Continuing in this fashion we either end up with Tn ≡ 0 or we get our desired
chain: |λi+1| ⩽ |λi| for all i ∈ N.

Step 2: Limit of (λn).

Suppose for sake of contradiction that λ ̸→ 0 as n → ∞. Then there exists
an ε > 0 such that |λn| ⩾ ε for infinitely many n. if we let n ̸= m, then

∥Tψn − Tψm∥2 = ∥λnψn − λmψm∥2

= ⟨λnψn, λnψn⟩ − ⟨λnψn, λmψm⟩
− ⟨λmψm, λnψn⟩+ ⟨λmψm, λmψm⟩
= |λn|2 + |λm|2 > ε2.

Thus (T [ϕn]) has no convergent sub-sequence, which contradicts the assumption
that T is compact.

Since the maximising problem that led to (3.36) only needs to hold on the
closed unit ball, we extend the domain for the eigenfunctions such that

ψj(x) :=
1

λj

∫ 1

−1

sin [c(x− y)]

π(x− y)
ψj(y)dy, for |x| > 1.

Now, to simplify our calculations, let us divert our attention to the following
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operator, given by

Fc : L
2[−1, 1] → L2[−1, 1]

ψ 7→
∫ 1

−1

ψ(t)eicxtdt. (4.4)

Now we come to the real meat of the problem. Indeed, we actually have
what Slepian essentially describes as a miracle. Our most essential object of
study is the differential operator given by

Lc : L
2[−1, 1] → L2[−1, 1]

ϕ 7→ − d

dx

[
(1− x2)

dϕ

dx
(x)

]
+ c2x2ϕ(x). (4.5)

we will slowly build our way towards the final result. It is this operator that
gives rise to the PSWFs. Indeed the PSWFs are the eigenfunctions of the
operator Lc as defined in (4.5).

Theorem 4.4. Suppose c > 0 is a real number, and that Lc, Fc are defined as
in (4.5) and (4.4) respectively. Suppose additionally, that ψ ∈ C2([−1, 1],C).
Then

Lc[Fc[ψ]](x) = Fc[Lc[ψ]](x). (4.6)

for all x ∈ [−1, 1].

Proof. Leibniz’ rule gifts us with

d

dx

(
(1− x2)

d

dx
eicxt

)
− c2x2eicxt =

d

dt

(
(1− t2)

d

dt
eicxt

)
− c2t2eicxt (4.7)

which follows from direct computations. Combining (4.7) with the definitions
given in (4.5) and (4.4), we get that

Lc[Fc[ψ]](x) = Lc

[∫ 1

−1

ψ(t)eicxt(x)dt

]
(x)

=

∫ 1

−1

ψ(t)Lc[e
icxt](x)dt

= −
∫ 1

−1

ψ(t)

[
d

dx

(
(1− x2)

d

dx
eicxt

)
− c2x2eicxt

]
dt

= −
∫ 1

−1

ψ(t)

[
d

dt

(
(1− t2)

d

dt
eicxt

)
− c2t2eicxt

]
dt,

where we pull the operator into the integral by virtue of the Dominated conver-
gence theorem, as a derivative is really a limit. Performing integration by parts
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twice, we get thus∫ 1

−1

ψ(t)
d

dt

(
(1− t2)

d

dt
eicxt

)
dt

= ψ(t)(1− t2)
d

dt
eicxt

∣∣∣1
−1

−
∫ 1

−1

ψ′(t)(1− t2)
d

dt
eicxtdt

= −ψ′(t)(1− t2)
d

dt
eicxt

∣∣∣1
−1

+

∫ 1

−1

d

dt
(ψ′(t)(1− t2))eicxtdt

=

∫ 1

−1

d

dt
(ψ′(t)(1− t2))eicxtdt.

where we first let

u = ψ(t), dv =
d

dt

[
(1− t2)

d

dt
eicxt

]
, giving du = ψ′(t), v = (1− t2)

d

dt
eicxt

and then

ũ = ψ′(t)(1− t2), dṽ =
d

dt
eicxt, gives dũ =

d

dt
[ψ′(t)(1− t2)], ṽ = eicxt.

We then see that

Lc[Fc[ψ]](x) = −
∫ 1

−1

[
d

dt
(ψ′(t)(1− t2))− c2t2ψ(t)

]
eicxtdt = Fc[Lc[ψ]](x).

Next, we will show a result about the structure of the adjoint operator of
Fc, which we call F ∗

c .

Theorem 4.5. Suppose c > 0 is a real number, and that the integral operator
Fc : L

2[−1, 1] → L2[−1, 1] is given by (4.4). Suppose further that F ∗
c : L

2[−1, 1]
→ L2[−1, 1] is the adjoint operator of Fc such that∫ 1

−1

Fc[ϕ](x)ψ(x)dx =

∫ 1

−1

ϕ(x)F ∗
c [ψ](x)dx

for any two functions ϕ, ψ ∈ L2([−1, 1],C). Then

F ∗
c [ϕ](x) =

∫ 1

−1

ϕ(t)e−icxtdt

for every ϕ ∈ L2[−1, 1].
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Proof. Follows from simple calculations. Indeed we see that∫ 1

−1

Fc[ϕ](x)ψ(x)dx

=

∫ 1

−1

[∫ 1

−1

ϕ(t)eicxtdt

]
ψ(x)dx

=

∫∫
[−1,1]2

ϕ(t)eicxtψ(x)dxdt

=

∫∫
[−1,1]2

ϕ(t)e−icxtψ(x)dxdt

=

∫ 1

−1

ϕ(t)

[∫ 1

−1

ψ(x)e−icxtdx

]
dt

=

∫ 1

−1

ϕ(x)F ∗
c [ψ](x)dx

where everything converges nicely due to the L2-regularity. The result follows.

We immediately prove the following result.

Corollary 4.6. Suppose Qc : L
2[−1, 1] → L2[−1, 1] is defined as in (4.1). Fur-

thermore, suppose ϕ ∈ L2[−1, 1]. Then

Fc[F
∗
c [ϕ]](x) =

2π

c
Qc[ϕ](x) = F ∗

c [Fc[ϕ]](x)

for every real x ∈ [−1, 1].

Proof. From direct calculations, we get

Fc[F
∗
c [ϕ]](x) =

∫ 1

−1

F ∗
c [ϕ](t)e

icxtdt

=

∫ 1

−1

ϕ(s)

∫ 1

−1

eict(x−s)dtds.

=
2

c

∫ 1

−1

ϕ(s)
sin[c(x− s)]

x− s
ds

=
2π

c
Qc[ϕ](x).

The proof for the second equality is identical.

Following in the same fashion, we prove yet another result on commutation.

Theorem 4.7. Suppose that c > 0 is a real number, and that Lc, F
∗
c are defined

as in (4.5) and Theorem 3.5. Suppose as well, that ϕ ∈ C2([−1, 1],C). Then

Lc[F
∗
c [ϕ]](x) = F ∗

c [Lc[ϕ]](x). (4.8)
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Proof. The proof is indeed nearly identical to that in Theorem 3.4 and is there-
fore omitted.

Now, we have arrived at the meat of the problem. Indeed we can show that
the operators Qc, Lc commute.

Theorem 4.8. Suppose that c > 0 is a real number, and that Lc and Qc are
defined as in (4.5) and (4.1). Suppose also that ϕ ∈ C2([−1, 1],C). Then

Lc[Qc[ϕ]](x) = Qc[Lc[ϕ]](x) (4.9)

for all x ∈ [−1, 1].

Proof. Combining Theorem 4.4, Theorem 4.5, Corollary 4.6 & Theorem 4.7 we
get

Lc[Qc[ϕ]](x) =
c

2π
Lc[FcF

∗
c [ϕ]](x) =

c

2π
Fc[LcF

∗
c [ϕ]](x)

=
c

2π
Fc[F

∗
c Lcϕ](x) = Qc[Lc[ϕ]](x),

as required.

The proof of every theorem and corollary ranging from Theorem 4.4 to The-
orem 4.8 is due to [4][pp. 10-12].

From this commuting relationship, we can deduce many useful properties
of the ψn and λn. Most of the results below follow from standard theory for
ODEs, so we will have to rely on more general theory.

Definition 4.9 (Sturm-Liouville problem). A Sturm-Liouville problem is a sec-
ond order ODE of the form

d

dx

[
p(x)

dy

dx

]
+ q(x)y = −λω(x)y, (4.10)

for given functions p, q, ω of some given regularity, and an unknown function
y = y(x), together with an unknown constant λ, and some boundary condition
imposed on y.

The ω is to be understood and interpreted as a density or weight func-
tion for the problem. As with most of differential equation theory, we want
to somehow impose functional analytic methods, which often involves writing
the equation in operator form Df = λf , where D is some differential opera-
tor. In our context, we call this D the Sturm-Liouville operator.For our sake,
we can ignore the weight ω by setting it equal to unity; then we can define

D[f ](x) := − d
dx

[
p(x) df

dx

]
+ q(x)f . One can show multiple results on the prop-

erties of this kind of operator. One that stands out to us is the following result:
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Theorem 4.10. The operator

D : L2(I) → L2(I)

f 7→ − d

dx

[
p(x)

df

dx

]
+ q(x)f (4.11)

is self-adjoint for any compact interval I ⊂ R.

Proof. Proof follows from integration by parts twice, where the boundary terms
vanish by virtue of the given boundary conditions.

SinceD is self-adjoint, its eigenvalues are purely real, and also eigenfunctions
are pairwise orthogonal We observe that our linear differential operator Lc as
defined in (4.5) can be analysed under the microscope of Sturm-Liouville theory.
Indeed if one is clever in their choice of p, q and ω, then we can see that the
eigenvalue problem for the operator Lc is indeed a Sturm-Liouville problem! Let
us now see some examples of how to reduce ODEs to Sturm-Liouville problems.

Example (The Bessel equation). The equation

x2y′′(x) + xy′ + (x2 − ν2)y(x) = 0

is called the Bessel equation, and can easily be reduced to a Sturm-Liouville
problem by multiplying the equation through by 1

x . Then, after some surgery
is done, we are left with

[xy′(x)]′ +

(
x− ν2

x

)
y(x) = 0,

which we readily recongise as a Sturm-Liouville problem (given some boundary
conditions of course).

Example (Prolate spheroidal wave functions). Our prestigious Lc as defined
in (4.5) is also a Sturm-Liouville operator. Indeed we can let p(x) := 1−x2 and
q(x) := c2x2, we reach our desirable conclusion.

We can now prove the completeness of the prolate spheroidal wave func-
tions. Indeed, the following result holds for every set of orthonormal sequence of
eigenfunctions of a Sturm-Liouville operator corresponding to a Sturm-Liouville
eigenvalue problem with some boundary conditions on an interval [a, b] with
−∞ < a < b <∞.

Lemma 4.11 (C2-approximation). Let f ∈ C2[a, b]. Then

f =

∞∑
n=1

⟨f, ψn⟩ψn,

where the convergence is uniform on [a, b].
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Proof. Omitted, as it includes the use of Green’s functions, which is beyond the
relevancy for this thesis.

Theorem 4.12. The sequence (ψj)
∞
j=1 consisting of the prolate spheroidal wave

functions, is complete in L2[−1, 1].

Proof. It is enough to show that an integrable (L1) function can be arbitrarily
well approximated in mean-square by some linear combination of ψn’s. Let f
be integrable on [−1, 1]. Then we can assume without loss of generality that
f is real-valued on [−1, 1], and we must necessarily have that f is bounded on
[−1, 1]; we letM := sup{|f(x)| | x ∈ [−1, 1]}. We are now going to approximate
f in mean-square by a C2−function.
Let ε > 0. By Theorem (2.3), we may approximate f arbitrarily well by a
step-function s = s(x) in the L1−norm. Thus∫ 1

−1

|f(x)− s(x)|dx < ε2

18M
.

This gives

∥f − s∥2L2 =

∫ 1

−1

|f(x)− s(x)|2dx

=

∫ 1

−1

|f(x)− s(x)||f(x)− s(x)|dx

⩽
∫ 1

−1

(|f(x)|+ |s(x)|)|f(x)− s(x)|dx

⩽ 2M

∫ 1

−1

|f(x)− s(x)|dx < ε2

9
,

and thus ∥f − s∥L2 < ε
3 .

The next thing we do is approximate s by a C2-function g in mean-square, such
that ∥s− g∥L2 < ε

3 . Then

∥f − g∥L2 = ∥f − s+ s− g∥L2

⩽ ∥f − s∥L2 + ∥s− g∥L2

<
2ε

3
.

By Lemma 4.11, we can approximate g such that

g(x) =

∞∑
n=1

⟨g, ψn⟩ψn(x),

where the convergence of the series is uniform on [−1, 1]. Therefore we know
there exists an N ∈ N such that

sup
x∈[a,b]

∣∣∣∣∣g(x)−
N∑

n=1

⟨g, ψn⟩ψn(x)

∣∣∣∣∣ < ε

3
√
2
.

37



Then we have that∥∥∥∥∥g −
N∑

n=1

⟨g, ψn⟩ψn

∥∥∥∥∥
L2

=

√√√√∫ 1

−1

∣∣∣∣∣g(x)−
N∑

n=1

⟨g, ψn⟩ψn(x)

∣∣∣∣∣
2

dx

⩽

√√√√2 sup
x∈[−1,1]

∣∣∣∣∣g(x)−
N∑

n=1

⟨g, ψn⟩ψn(x)

∣∣∣∣∣
2

=

√√√√2

(
sup

x∈[−1,1]

∣∣∣∣∣g(x)−
N∑

n=1

⟨g, ψn⟩ψn(x)

∣∣∣∣∣
)2

<

√
2
ε2

18

=
ε

3
,

such that ∥∥∥∥∥g −
N∑

n=1

⟨g, ψn⟩ψn

∥∥∥∥∥
L2

<
ε

3
. (4.12)

Therefore∥∥∥∥∥f −
N∑

n=1

⟨g, ψn⟩ψn

∥∥∥∥∥
L2

⩽ ∥f − g∥L2 +

∥∥∥∥∥g −
N∑

n=1

⟨g, ψn⟩ψn

∥∥∥∥∥
L2

<
2ε

3
+
ε

3
= ε.

We also have these intriguing facts about the PSWFs.

Corollary 4.13. For the ψn and λn as defined in (3.29) the following holds:

i. λ0 > λ1 > λ2 > . . . with lim
n→∞

λn = 0;

ii. For every c > 0, there exists a strictly increasing unbounded sequence of
positive numbers χ0 < χ1 < . . . such that for every n ∈ N0, the differential
equation

(1− x2)ψ′′(x)− 2xψ′(x) + (χn − c2x2)ψ(x) = 0

has a continuous solution on [−1, 1].

iii. ψn is even or odd with n;

iv. ψn(x) has exactly n zeros in (−1, 1);

v. ψn(x) is asymptotically equal to kn
sin(cx)

x , as n→ ∞;

vi.
∫ 1

−1
ψn(t)e

2πixtdt = αnψn(2πx/n) for x ∈ R,
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where kn and αn are independent of x.

Before we give proofs, we will have to delve some more into some relevant
ODE theory from [2][pp. 321-340].

Notice that the last equation tells us the peculiar fact that the Fourier trans-
form of ψn restricted to |t| < 1 has the same form as ψn modulo some scaling
factor. Note that we denote the eigenvalues of the operator Lc, as defined in
(4.5), by (χn).

Lemma 4.14. Let u(t) ̸≡ 0 be a real-valued solution to the equation

(p(t)u′)′ + q(t)u = 0, (4.13)

on [a, b], where p(t) > 0 and q is real-valued, and both are continuous. Let u
have exactly n zeros t1 < t2 < · · · < tn on (a, b]. Let φ be a continuous function
defined by

φ(t) := arctan

(
u(t)

p(t)u′(t)

)
. (4.14)

and φ(a) ∈ [0, π). Then φ(tk) = kπ and φ(t) > kπ for t ∈ (tk, b] and k ∈ N.

Proof. Note that at the t-values where u = 0, i.e. where φ ≡ 0 mod π, (4.14)
implies that φ′ = 1

p > 0. Thus, φ is an increasing function in the neighbourhoods

of all points such that φ(t) = jπ for some integer j. This implies that if σ ∈ [a, b]
and φ(σ) ⩾ jπ, then φ(t) > jπ for t ∈ (σ, b]. Also, if φ(σ) ⩽ jπ, then φ(t) < jπ
for t ∈ [a, σ). This proves the assertion.

In light of equation (4.13), we define the equations

(pj(t)u
′)′ + qj(t)u = 0, j = 1, 2, (4.15)

where pj and qj are real-valued and continuous on some interval J ⊂ R. Suppose
further that

p1(t) ⩾ p2(t) > 0 and q1(t) ⩽ q2(t) (4.16)

on J . We call equation (4.15) with j = 2, a Sturm majorant for (4.15) with j = 1
on J , and we call the opposite case a Sturm minorant on J . If the inequalities
in (4.16) are strict, then we have a strict Sturm majorant and a strict Sturm
minorant.

Theorem 4.15 (Sturm’s First Comparison Theorem). Let the functions pj , qj
in (4.15) be point-wise continuous on an interval J = [a, b] and let (4.15) with
j = 2 be a Sturm majorant for (4.15) with j = 1. Let u = u1(t) ̸≡ 0 be a solution
of (4.15) with j = 1, and let u1 have exactly n(∈ N) zeros t = t1 < t2 < · · · < tn
on t ∈ (a, b]. Let u = u2 ̸≡ 0 be a solution of (4.15) with j = 2 satisfying

p1(t)u
′
1(t)

u1(t)
⩾
p2(t)u

′
2(t)

u2(t)
(4.17)

at t = t0. Then u2 has at least n zeros on (a, tn]. Furthermore u2 has at least
n zeros on (a, tn) if either the inequality in (4.17) holds at t = t0 or (4.15) with
j = 2 is a strict Sturm majorant for (4.15) with j = 1 on [t0, tn].
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Proof. Unfortunately quite long, but insightful nonetheless. A proof is to be
found in [2][pp. 334-335].

Now we are ready to prove ii. & iv. in Corollary 3.13.

Proof of ii. & iv. Let u = u(t, λ) be a solution of (4.13) (or (4.10) with ω(x) ≡
1). For a fixed λ, define a continuous function φ(t, λ) of t on [a, b] by

φ(t, λ) := arctan

(
u(t, λ)

p(t)u′(t, λ)

)
. (4.18)

It is a simple task to show that (4.18) has a continuous derivative given by

φ′ =
1

p(t)
cos2(φ) + [q(t) + λ] sin2(φ). (4.19)

With a bit of work, the details of which we will exclude, one can show that φ is
continuous in (t, λ) ∈ [a, b]× R. Next we see that by Lemma 3.14, φ(·, λ) is an
increasing function of λ. Note that

φ(b, λ) → ∞ as λ→ ∞. (4.20)

To see this, let us introduce a new independent variable through ds = dt/p(t)
and s(a) = 0; thus (4.13) becomes

ü+ p(t)[q(t) + λ]u = 0, t = t(s), u̇ =
du

ds
. (4.21)

If M > 0 is a real number, λ can be chosen so large that p(t)[q(t) + λ] ⩾ M2

for any t ∈ [a, b], since we always assume p(t) > 0. We now apply Sturm’s
Comparison Theorem, to the systems (4.21) and

ü+M2u = 0;

this tells us that if n is an arbitrary natural number, and M > 0 is sufficiently
big, then a non-trivial solution of (4.21) will have at least n zeros on the curious

interval
[
0,
∫ b

a
dt/p(t)

]
. In other words we must have that φ(b, λ) ⩾ n if λ > 0

is sufficiently large by Lemma 4.14. Similarly, we show that

φ(b, λ) → 0 as λ→ −∞. (4.22)

We know by Lemma 4.14 that φ(b, λ) ⩾ 0. Let −λ > 0 be large enough so that
p(t)[q(t) + λ] ⩽ −M2 < 0. Consider a solution u = u(s) ̸≡ 0 to the equation

ü−M2u = 0. (4.23)

Define the analogue to (4.18) by

ψ(s,M) := arctan

(
u(s)

u̇(s)

)
. (4.24)
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Any solution to (4.23) must necessarily be of the form u(s) = AeMs + Be−Ms,
where {A,B} ⊂ R. It follows that for any fixed s > 0, we have

lim
M→∞

u(s)

u̇(s)
= 0. (4.25)

Hence, ψ(b0,M) → 0 as M → ∞, where b0 :=
∫ b

a
dt/p(t). By Sturm’s Com-

parison Theorem, we must have that φ(b, λ) ⩽ ψ(b0,M). This proves (4.22).
Because of the fact that φ is a monotonically increasing function of λ, and the
limiting relations (4.20) and (4.22), we must have that there exists some set of
numbers λ0, λ1, . . . such that

φ(b, λn) = β + nπ for n ∈ N0,

where we suppose β ∈ (0, π]. Furthermore φ(b, λ) ̸≡ β mod π unless λ = λn.
This concludes our proof.

Since we have that every eigenfunction ψj is defined on R, we can show that
they are indeed orthogonal here. Let us normalise the eigenfunctions to have
unit energy. Then we have ∫

R
ψn(x)ψm(x)dx = δmn

which implies that ∫ 1

−1

ψn(x)ψm(x)dx = λnδmn (4.26)

where

δmn :=

{
1 if m = n,
0 if m ̸= n

is the Kronecker delta. This tells us that we can expand every pointwise con-
tinuous function f defined on all of R by

f(t) =

∞∑
n=0

γnψn(t),

with

γn =

∫
R
f(t)ψn(t)dt;

of course this obeys Parseval’s identity:

∞∑
n=0

|γn|2 =

∫
R
|f(t)|2dt.

For a detailed proof of (4.26), see [2][pp. 340].
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5 Conclusion

So, are we happy? The anticlimactic answer is ”I suppose”.

The properties stated in Corollary 4.13 are elegant, but finding proofs for
these have turned out to be more difficult than I would’ve imagined. Nonethe-
less, I am quite happy with what I have been able to show in the semester I
have spent chasing this project. If I can allow myself to be somewhat tongue in
cheek, I must say that experts in this field of research really try their hardest to
obscurify the precise details of results. That being said, I get how tiresome it
must get if every article included a large portion dedicated to proofs of elemen-
tary results. I must at some point have accepted that my experience with the
field is too ephemeral. At least this is my experience spending a whole semester
trying to piece together the glossed-over details of [8]. I suppose it is this that
has evolved into this thesis: trying to understand how in the world these results
”follow from simple calculations”. By talking with my fellow students, I don’t
think I am alone in this frustration.

All in all I am somewhat proud that I managed to show most of Slepian’s
derivations and calculations myself, with almost all of it being excluded from
[8]. With the help of [4], I have actually managed to fully show the commuta-
tion relationship between Lc & Qc, which from my understanding is really what
Slepian in [8] wants to relay as the most important detail.

Although this bachelor thesis is (hopefully) done, I would love to maybe
revisit PSWFs in the future. There are plenty of analytic detail and information
about PSFWs that I know exist, and I would love to get a stronger grasp on the
theory at some point. Another point worth mentioning is the relevancy of the
PSWFs. It is my understanding that PSWFs are still used in modern numerical
and analytic research, although to what extent I am unsure. A quick glance
at [3] seems to tell the story of continued interest; it should be noted that the
article works with the theory in a discrete framework as well as the continuous
one.
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